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Abstract 19 

Microscopy image profiling is becoming increasingly important in biological research. 20 
Microsnoop is a new deep learning-based representation tool that has been trained on large-scale 21 
microscopy images using masked self-supervised learning, eliminating the need for manual 22 
annotation. Microsnoop can unbiasedly profile a wide range of complex and heterogeneous images, 23 
including single-cell, fully imaged, and batch-experiment data. Its performance was evaluated on 24 
seven high-quality datasets, containing over 358,000 images and 1,270,000 single cells with 25 
varying resolutions and channels from cellular organelles to tissues. The results show that 26 
Microsnoop outperforms previous generalist and even custom algorithms, demonstrating its 27 
robustness and state-of-the-art performance in all biological applications. Furthermore, Microsnoop 28 
can contribute to multi-modal studies and is highly inclusive of GPU and CPU capabilities. It can 29 
be easily and freely deployed on local or cloud computing platforms. 30 
 31 

MAIN TEXT 32 

 33 

Introduction 34 

Automatic quantitative profiling of microscopy images has become increasingly ubiquitous in 35 
a broad range of biological research, spanning from small-scale investigations to high throughput 36 
experiments1. The analysis of visual phenotypes, which involves profiling intricate information 37 
from images, has demonstrated its usefulness in diverse areas of biology2. These include protein 38 
localization3, cell cycle stage classification4, mechanisms of action predictions5, and high-content 39 
drug discovery6. Additionally, the emergence of spatial omics has given rise to new requirements 40 
for the quantification of microscopy images. For example, spatial proteomics methods can image 41 
more than 50 disease-related proteins in a single tissue slice7, while spatial transcriptomics allows 42 
for the simultaneous acquisition of both image data and transcriptional profiles8. These 43 
developments underscore the need for a high-performance, generalist representation tool that can 44 
effectively handle heterogeneous microscopy images. 45 
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The traditional approach to profiling microscopy images involves extracting predefined 46 
morphological features, such as intensity, shape, texture, granularity, and colocalization9-10. 47 
However, this method has several limitations, including low computational efficiency, potential 48 
information loss, and sensitivity to image quality11. To overcome these deficiencies, recent 49 
advancements in computer vision and deep learning have given rise to learning-based feature 50 
extraction methods that use representation learning. This technique involves pre-training a model 51 
on pretext tasks and then using part of the network as a feature extractor for downstream analysis. 52 
These methods can be divided into two categories: task-oriented custom methods and generalist 53 
methods. Task-oriented methods4, 12-15 are pre-trained on data from the same source and designed 54 
specifically for biological research, such as cell cycle stage prediction. In contrast, generalist 55 
methods require training data that are not specific to any particular biological problem. One of the 56 
most widely used generalist methods involves using models trained for ImageNet16 (a natural image 57 
classification task), which has also been utilized in recent multi-modal research17. 58 

However, the extent to which the feature extraction patterns learned from natural images can 59 
capture the subtle phenotypes of microscopy images has not been fully validated by comparative 60 
research. To better match the feature domain to downstream microscopy image profiling tasks, the 61 
CytolmageNet18 study was conducted, where image representation was learned based on a 62 
microscopy image classification task (890K images,894 classes). Although this study demonstrated 63 
comparable performance to ImageNet, it still relied on the supervised learning approach that can 64 
be labor-intensive, prone to biases from semantic annotations, and potentially increase the difficulty 65 
of achieving higher representation performance. 66 

The field of microscopy image analysis can greatly benefit from the development of an 67 
unbiased, high-performance, generalist image representation tool. Beyond facilitating accurate 68 
downstream analysis, such a tool would enable unsupervised analysis for identifying new 69 
phenotypes. It can facilitate the separation of feature extraction and downstream analysis process, 70 
allowing for downstream analysis conducted on computers with limited computing power. The 71 
representations of images that are much smaller than the original images can be easily stored and 72 
transferred, and private data can be shared securely through these representations without disclosing 73 
the original images. In addition, secondary analysis becomes possible, such as the creation of large 74 
image databases or joint analysis with other data representations. Nevertheless, the complexity and 75 
diversity of microscopy images pose significant challenges in the development of such a tool. 76 

Self-supervised representation learning offers a promising solution by allowing the model to 77 
learn directly from pixels without relying on pre-defined semantic annotations. This approach 78 
involves transforming the original images and training the model to learn the mapping between the 79 
transformed and original image. Various transformation methods have been employed, such as 80 
direct copying19, partial channel drop20, or image masking21, with masked visual representation 81 
learning being particularly popular in natural image studies22-24. Recent advancements in cell 82 
segmentation algorithms have also indicated the remarkable generalization ability of networks 83 
trained on generalized data25-27. However, developing a universal tool for microscopy image 84 
profiling presents several challenges, including handling images with varying resolutions and 85 
channel numbers (such as 1, 2, 3, 5 and 56)3-4, 7, 26, 28, joint representation learning for multiple 86 
image styles, processing various image types, and addressing technical variations in high-content 87 
experiments that may introduce batch effects in the feature space29-30. 88 

This study presents Microsnoop, a universal tool for the impartial representation of 89 
microscopy images using masked self-supervised learning. The proposed pipeline is capable of 90 
handling heterogeneous images and includes a task distribution module to cater to users with 91 
varying computing power. To meet diverse image profiling requirements, the images are 92 
categorized into three types with corresponding pipelines. The performance of Microsnoop was 93 
assessed using seven evaluation datasets from various biological studies and compared against both 94 
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generalist and custom algorithms. The findings demonstrate Microsnoop's robust feature extraction 95 
capabilities and potential for analyzing multi-modal biological data. The tool is freely available at 96 
https://github.com/cellimnet/microsnoop-publish. 97 
 98 

Results  99 

The design of a generalist representation tool. 100 

In this study, we developed a generalist tool called Microsnoop for the unbiased representation 101 
of microscopy images through masked self-supervised learning. As large and diverse datasets are 102 
beneficial for the training of generalist models, we collected and curated 10,458 high-quality 103 
microscopy images from various sources published by the cell segmentation community25-27, 31-33. 104 
These images were taken using different technologies and have different resolutions and channel 105 
numbers, with channels ranging from cellular organelles to tissues. The four main types of images 106 
include fluorescence, phase-contrast, tissue and histopathology images (Fig. 1a(i) and 107 
Supplementary Table 1). To accommodate the variable number of image channels, the input to the 108 
neural network was set as one-channel images (related to one-channel feature concatenation 109 
strategy below). All images channels in the training set were split out and further selected to form 110 
a one-channel data pool (Methods). Before training, images in each batch were preprocessed in 111 
three steps: (1) Sample: randomly select one batch of images from the four types in turn to reduce 112 
the effects of unequal amounts of data; (2) Augment: randomly crop a 224*224 region (pad if 113 
smaller) from each image, then normalize, random rotate and scale the image, with the result 114 
serving as the network target; (3) Transform: randomly mask a portion of the target image patches, 115 
with the result serving as the network input. In terms of network architecture design, this study 116 
employed a CNN-based34 (convolution neural network) architecture, despite the growing interest 117 
in Transformer-based architectures35 for natural image analysis. This choice was motivated by the 118 
superior performance observed for the CNN architecture in our preliminary evaluations (Extended 119 
Data Fig. 1 and Methods). This performance disparity may be attributed to the difference in the 120 
amount of training data provided. Typically, the pre-training of a ViT architecture36 requires a large 121 
corpus of data, with over 1 million or even 1 billion images used in the case of natural image 122 
studies21. However, our microscopy image dataset involved a relatively smaller set of training data, 123 
which may not have been sufficient to provide adequate training for the Transformer-based 124 
architecture. 125 

We employed a masked self-supervised learning strategy to train the network, where a 126 
randomly selected percentage of image patches are masked and used as inputs. The network was 127 
then tasked with reconstructing the original, unmasked images. During training, masked images are 128 
encoded into high-level features through four consecutive downsampling steps, and the process of 129 
image reconstruction is accomplished through mirror-symmetric upsampling (Fig. 1a(ii)). The 130 
learning process is guided by minimizing the self-supervision loss function (Methods), which 131 
promotes the model to learn useful features that enable it to recover the masked parts of the images 132 
based on the information present in the remaining parts. This is a challenging task, which 133 
necessitates a comprehensive understanding that transcends simple low-level image statistics. 134 

At test time, a generalist tool needs to face a range of image processing needs. To cater for this 135 
condition, we chose to categorize images based on the image profiling process itself, rather than 136 
solely on their biological applications that may be limited in scope. Our categorization comprises 137 
three types: single-cell images, fully-imaged images, and batch-experiment images. (Fig. 1b(i)). 138 
The images to be processed are first managed by an in-built task distribution module (below), and 139 
then fed into the pre-trained encoder on a batch-by-batch basis for feature extraction. The output 140 
smallest convolutional maps are processed through global average pooling to produce initial 256-141 
dimensional feature embeddings. Subsequently, feature aggregation is performed in accordance 142 
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with different profiling tasks (details provided below). The final image representations can be used 143 
for various downstream analyses (Fig. 1b(ii)). 144 
 145 
Diversified evaluation datasets. 146 

In prior studies, attention was primarily focused on a limited number of specific datasets5, 37-147 
39. In our work, to give a more comprehensive evaluation of our generalist tool, we collected and 148 
curated 7 evaluation datasets, encompassing commonly used datasets along with some novel 149 
additions, comprising over 358,000 images and 1,270,000 single cells (Methods and Extended Data 150 
Fig. 2). These images showcase a diverse array of characteristics, including various resolutions, 151 
image types, number of channels, and biological applications, such as protein localization 152 
estimation, cell cycle stage identification, and MoA prediction (Supplementary Table 2). In our 153 
study, four of the seven evaluation datasets focused on single-cell images. The performance of the 154 
model on fluorescent images, including bright-field channels, was assessed by COOS7 Test 1-439, 155 
CYCLoPs3 and BBBC0484. For the assessment of the model's ability to handle more challenging 156 
histopathology images, we employed the CoNSeP40 dataset. The LIVECell Test26 and TissueNet 157 
Test27 datasets were designed to evaluate a model's performance on fully-imaged image 158 
classification tasks, involving phase-contrast and tissue image representation, respectively. Lastly, 159 
the BBBC02141 dataset was employed to evaluate the representation ability of the model for batch-160 
experiment images. 161 
 162 
Microsnoop accurately reconstructs the masked input images. 163 

In the investigation of optimal mask ratio for learning features from microscopy images, we 164 
found that a 25% mask was optimal for this task. This was determined by testing 8 different mask 165 
ratios (5%, 15%, 25%, 35%, 45%, 55%, 65% and 75%) and comparing the results (Extended Data 166 
Fig. 3). To get a qualitative sense of the reconstruction task, we showed an example of each image 167 
type from the validation set (Fig. 2a). By inputting the 25% masked image into the pre-trained 168 
network, we were able to produce a reconstructed image that closely resembles the original, with 169 
only some detailed textures lost. This level of detail recovery is not easily achievable by humans. 170 
The reconstruction results on single-cell images from the evaluation datasets were even more 171 
impressive, with the reconstructed image being nearly indistinguishable from the original image 172 
(Fig. 2b and Extended Data Fig. 4). The improved performance on single-cell images in comparison 173 
to fully-imaged ones can be attributed to cellular heterogeneity, which results in diverse cell 174 
phenotypes. The abundance of reference information from single-cell images allows for the more 175 
successful recovery of a limited number of instances. These results demonstrate that the pre-trained 176 
Microsnoop network, has learned good representations of the microscopy images. 177 
 178 
Microsnoop profile of single-cell images with one-channel feature concatenation. 179 

Single-cell images can be produced directly by an imaging instrument such as imaging flow 180 
cytometry (IFC)42, or obtained through cell segmentation processing on fully-imaged images. To 181 
accommodate the variable number of channels, we devised a one-channel feature concatenation 182 
strategy (Fig. 3a). Each channel of the multi-channel image is processed independently by 183 
Microsnoop, and the resulting embeddings are concatenated in an orderly manner. To prevent 184 
confusion during processing, a unique index is assigned to each image when multiple images are 185 
being processed. To address potential memory overflow issues when processing large batches of 186 
data, we established a task distribution module. This module efficiently manages image pathways 187 
and distributes images for processing, read into the CPU and transferred to the GPU as needed. The 188 
user is empowered to optimize performance by adjusting parameters according to the available 189 
memory capacity of both the CPU and GPU. Furthermore, our system features a scalable, 190 
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distributed design, which is capable of supporting multiple GPUs, providing a solution for 191 
increasing data demands. 192 

In our benchmark, we included three previous developed generalist methods in the 193 
comparisons: EfficientNetB043, Inception V344, CytoImageNet18, and custom methods that are 194 
accessible (Methods). For the COOS7 Test 1-4, CYCLoPs and CoNSeP, we evaluated performance 195 
with the K-Nearest Neighbor (KNN) classification accuracy (match between prediction and ground 196 
truth using the KNN classifier, which has been utilized in prior study18). For the dataset BBBC048, 197 
we used fivefold cross-validation for dataset split and evaluated the performance with the multilayer 198 
perceptron (MLP) classification accuracy (match between prediction and ground truth using the 199 
MLP classifier, as employed in the original paper4). Our evaluations revealed the exceptional 200 
performance of Microsnoop, which consistently outperformed all other methods. In the majority of 201 
cases, Microsnoop achieved significant improvements of more than 6%, and up to 10% (Fig. 3b-f). 202 
Notably, for the 7-classification task of BBBC048, Microsnoop achieved an accuracy of 85.62% 203 
without using any data from the dataset, surpassing the custom supervised learning algorithm in the 204 
original paper by 5.02%. 205 
 206 
Microsnoop profile of fully-imaged images with cell region cropping. 207 

Fully-imaged images are a common format directly obtained from most microscopes. Cell 208 
segmentation is usually the first step of phenotype profiling due to the inherent heterogeneity of 209 
cells. Although various generalist segmentation algorithms25-27 have been developed along with 210 
some fine-tuning strategies45-46, they may still introduce unwanted segmentation errors. For 211 
instance, in a large drug screening experiment, cell body images can present a range of phenotypes, 212 
and a segmentation algorithm may perform well on some but poorly on others (Extended Data Fig. 213 
5a), potentially leading to unpredictable impacts on downstream analysis. To mitigate these issues, 214 
we introduced a cell region cropping strategy, where the segmentation algorithm is applied only on 215 
the easiest channel, such as the nucleus channel, which presents more robust segmentation results 216 
(Extended Data Fig. 5b). Cell regions are computed and cropped based on the segmentation masks 217 
and rescale constant (Fig. 4a(i) and Methods). Then, Microsnoop extracts features from the cropped 218 
single-cell images as described above (Fig. 4a(ii)). Finally, the resulting single-cell level 219 
embeddings are aggregated by computing their mean to obtain the fully-imaged level 220 
representations (Fig. 4a(iii)). 221 

We evaluated the representation ability of Microsnoop on two fully-imaged image phenotype 222 
classification tasks, and tested previously mentioned generalist algorithms for comparison. Both 223 
tasks were evaluated using the KNN classification accuracy. The results showed that Microsnoop 224 
again outperformed other methods, and even a 41.93% improvement was obtained on the LIVECell 225 
Test dataset (Fig. 4b-c). Furthermore, Microsnoop showed strong inclusiveness to various image 226 
styles, with an accuracy of 98.08% on the LIVECell Test dataset and 96.64% on TissueNet Test. 227 
 228 
Microsnoop profile of batch-experiment images with sphering batch correction. 229 

In high-content screening experiments, batch effects due to technical variability can affect 230 
downstream analysis29-30, 37-38 (Fig. 5a). To address this issue, we employed a sphering batch 231 
correction method47. This assumes that the large variations observed in negative controls are 232 
associated with confounders, and any variation that is not observed in controls is associated with 233 
phenotypes. Sphering transformation aims to separate phenotypic variation from confounders. In 234 
our image representation pipeline for batch-experiment images, Microsnoop first extracts features 235 
from the fully-imaged images (as described above), and the resulting fully-imaged level 236 
representations are corrected via sphering transformation (Fig. 5b). Finally, the fully-imaged level 237 
representations are aggregated to treatment level representations by computing their mean (Fig. 5c). 238 
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We evaluated the representation ability of Microsnoop on the classic BBBC021 dataset, while 239 
including previously reported results of generalist and custom methods in the comparisons. We 240 
assessed the performance with the Not-Same-Compound (NSC) and Not-Same-Compound-or-241 
Batch (NSCB) KNN classification accuracy. Microsnoop still achieved state-of-the-art 242 
performance without using any data from the dataset, even if compared with the methods 243 
exclusively studied on it (Fig. 5d-e). 244 
 245 
Two other fully-imaged image profile modes and the robustness of cell region cropping mode. 246 

In addition to the cell region cropping mode, we provided two alternative modes for processing 247 
fully-imaged datasets: rescaling and tile mode. In the rescaling mode, the shape of the fully-imaged 248 
images is directly rescaled to the input size (224*224) as inputs (Extended Data Fig. 6a-b). In the 249 
tile mode, the original image is cropped into multiple 224x224 tiles, and the fully-imaged level 250 
representations are aggregated by computing the mean over all tiles (Extended Data Fig. 6c). We 251 
evaluated the performance of these three processing modes, including different rescale constants 252 
for the cell region cropping mode, on both the fully-imaged and batch-experiment datasets 253 
(Extended Data Fig. 6d-g and Methods). The rescaling and tile modes outperformed the single-cell 254 
mode on LIVECell and TissueNet tests; however, both modes displayed a significant performance 255 
decline on the BBBC021 dataset. The reason for the underperformance of the rescaling mode could 256 
be attributed to the fact that it discards high-resolution phenotypic information during the rescaling 257 
process. On the other hand, the decline in performance observed with the tile mode may be due to 258 
the fact that it averages out important subtle phenotype variations present in certain regions of fully-259 
imaged images. In contrast, the cell region cropping mode displayed robust performance across a 260 
range of parameters on all three datasets. Although the single-cell mode is more robust and efficient, 261 
it requires more time and memory compared to the other two modes. (Extended Data Fig. 6h-i). 262 
 263 
Microsnoop improves the performance of the multi-modal structured embedding algorithm. 264 

A recent study of the multi-modal structured embedding algorithm (MUSE17) has shown 265 
impressive results for the integrative spatial analysis of image and transcriptional data. The authors 266 
conducted a simulation experiment to assess the performance of MUSE when transcriptional data 267 
quality is degraded. Here, we focused on the impact of image feature quality, and the results of our 268 
simulation experiment showed that with the quality improvement of image representations, the 269 
performance of MUSE can also be significantly improved (Extended Data Fig. 7). Next, we tested 270 
Microsnoop on the real-world dataset seqFISH+8 in comparison with the representation method 271 
used in the original paper. After acquiring the image representations, we use principal component 272 
analysis (PCA) performing feature dimensionality reduction to match the latent space dimensions 273 
of MUSE (Fig. 6a). We employed the silhouette coefficient48 to evaluate the feature quality. 274 
Microsnoop demonstrated better image representation quality and greater improvement in the 275 
performance of MUSE (Fig. 6b). 276 
 277 

Discussion  278 

Advances in imaging technology, such as phase-contrast microscopy, imaging flow cytometry, 279 
automated high-throughput microscopy and microscopy combined with spatial omics techniques 280 
have created a massive demand to solve the complex challenge of microscopy image representation. 281 
In this study, we present Microsnoop, an innovative deep learning tool that effectively addresses 282 
this challenge. The accurate analysis of heterogeneous microscopy images, as a critical aspect of 283 
both fundamental and applied biological research, is highly valued by the microscopy image 284 
analysis community49-50. Our proposed solution offers promising advancements to this field. 285 
Microsnoop was trained on large-scale high-quality data using a masked self-supervised pretext 286 
task, allowing it to learn valuable and unbiased features for image representation. The one-channel 287 
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feature concatenation strategy, efficient task distribution module, and rational classification mode 288 
of profiling needs make our tool flexible to meet various user needs. In addition, Microsnoop is 289 
capable of processing complex fully-imaged images through cell region cropping and mitigating 290 
batch effects in batch-experiment images through sphering transformation. For fully-imaged 291 
images, our results show that the single-cell analysis mode is more robust compared to other modes, 292 
reinstating the importance of considering cellular heterogeneity in biological research. Our 293 
benchmark results demonstrate robust and state-of-the-art performance on all evaluated datasets, 294 
eliminating the need to use of any evaluation data for fine-tuning. Furthermore, the enhanced 295 
representation of unimodal image data leads to significant improvements in the performance of 296 
multi-modal algorithms. 297 

In our methodology experiments, we found that a mask ratio of 25% is optimal for microscopy 298 
images, which is significantly lower than the 75% that has been found optimal for natural images21. 299 
The difference is primarily due to the smaller size and erratic content of instances in microscopy 300 
images, which may result in lost information if too much reference information is masked. 301 
Compared with the CytoImageNet18 study that utilized a supervised classification task as the pretext 302 
task, our masked self-supervised learning approach only requires raw images without any manual 303 
annotation and yields unbiased and more capable representations. Recently, a similar self-304 
supervised representation learning study has also been reported as useful in learning the 305 
representations of protein subcellular location images through a pretext task that requires the 306 
network to directly reconstruct original images and images corresponding to similar proteins having 307 
similar representations19. In contrast, the uniqueness of our method is that ours do not require 308 
domain-specific knowledge and is developed for generalist image representation. Our benchmark 309 
study has shown that a single network is capable of handling heterogeneous microscopy images, 310 
which is in line with the conclusion reached in the sister domain of cell segmentation25. Furthermore, 311 
our pretext task was trained on the same network structure as Cellpose. This is reminiscent of the 312 
recent success of  large pre-trained language models in the field of natural language processing51-313 
53. With continued advancements in the understanding of computer vision and the further 314 
development of models for microscopy image representation and other image processing tasks, 315 
such as cell segmentation, it may be possible to merge these models into a single, unified model in 316 
the future. 317 

While Microsnoop is a powerful tool, there are several areas for improvement. For example, 318 
further evaluation is needed to determine the efficacy of our approach of one-channel feature 319 
concatenation and feature aggregation in 3D and time-series imaging datasets in comparison to 320 
training a network to directly extract spatial or temporal information. To enhance the capabilities 321 
of Microsnoop, future work could include incorporating additional self-supervised pretext tasks for 322 
multi-task learning, optimizing the quality of the training dataset and refining the single-cell level 323 
feature aggregation methods. Moreover, the current training images are still limited in size 324 
compared to natural images, and a larger training data volume combined with the Transformer 325 
architecture can be studied to improve the performance. Last but not least, deploying our model on 326 
mobile devices to aid rapid detection could be a valuable application scenario54. 327 

Overall, we have developed an impressive, generalist tool for microscopy image 328 
representation. We anticipate its positive impact on the microscopy image analysis community, 329 
facilitating new phenotype discovery, data sharing, and the establishment of large image databases, 330 
among other benefits. Furthermore, we envision that Microsnoop can be effectively utilized in 331 
multi-modal studies such as combining molecular and image representation for MoA prediction55-332 
56 or exploring the relationship between gene expression, image representation for drug discovery57 333 
and much broader applications58-59. 334 

  335 
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Methods 479 

Training set. 480 
The training set consisted of four diverse image types from seven published datasets: Cellpose, 481 

LIVECell, TissueNet, and Histo, which includes MoNuSeg, MoNuSAC, and NuCLS. Firstly, all 482 
channels of the images were separated. For Cellpose and TissueNet, only the cell body channel was 483 
utilized, while the original RGB images of Histo were transformed into grayscale. The original 484 
training-validation dataset split was maintained for Cellpose, LIVECell, and TissueNet, while the 485 
images from the three Histo subsets were mixed and 20% were randomly reserved for validation 486 
purposes. Finally, the training set was organized into a one-channel image data pool. A 487 
comprehensive summary of the training set can be found in Supplementary Table 1. 488 
 489 
Model architecture. 490 

The network architecture was based on a refined version of the classic U-Net34, as utilized in 491 
Cellpose. The standard convolutional blocks were replaced with residual blocks and style 492 
embeddings were incorporated into the concatenation stages. The downsampling scale was set as 493 
32, 64, 128 and 256, and the upsampling scale was mirror symmetry. Both the input and output 494 
tensors were of shape batch_size*1*224*224 (in Pytorch tensor format, where batch_size is 495 
described below). 496 
 497 
Masked self-supervised learning. 498 

In the masked self-supervised learning approach, the network is tasked with reconstructing the 499 
original image from partial masked images. Our implementation involved dividing the target image 500 
(after normalization and augmentation) into 16*16 non-overlapping patches. Subsequently, a 501 
portion of these patches were randomly replaced with black patches of size 16*16, where every 502 
pixel was zero. Different from the original MAE built on a Transformer architecture, the 503 
transformed patches were restored to the image format to accommodate the input format of the 504 
CNN architecture. 505 
 506 
Model training. 507 

The self-supervision loss was set as the mean square error loss (MSE), which calculates the 508 
difference in both the masked and unmasked areas. The network was optimized by AdamW 509 
optimizer from the torch.optim Python package. In our implementation, we adopted a different 510 
definition of an epoch, in which one epoch corresponds to a complete iteration through all the 511 
sampled data, rather than through all the training data, as is commonly defined. During each epoch, 512 
we randomly sampled 12000 images from the four different types of training data in turn. The batch 513 
size was set as 16. The initial learning rate was set as 0.001, and we used a learning rate (LR) 514 
warmup trick: at the first 40 epochs, the LR was computed as: 515 

LR ൌ 0.001 ∗
epoch

40
 516 

after 40 epochs, the LR was computed as: 517 

LR ൌ 0.001 ∗ 0.5 ∗ ሾ1 ൅ cos ൬
epoch െ 40

nepoch െ 40
∗ π൰ሿ 518 

where nepoch represents the epoch size of the training process, here it was set as 1000. 519 
 520 
One-channel feature concatenation strategy for multi-channel image representation. 521 

In our implementation of Microsnoop for feature extraction, we assumed that the input data 522 
comprised multi-channel images with the same number of channels, represented as (c, h, w), where 523 
c denotes the number of channels, and h and w denote the height and width, respectively. In the 524 
event that images had different h and w, we padded them with zeros to obtain a consistent shape. 525 
The task distribution module is then used to read the images into CPU memory, where they are 526 
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transformed into an array with shape (n, c, h, w), where n denotes the number of images read. This 527 
array is then reshaped into (n*c, 1, h, w), with each image assigned a unique index represented as 528 
a shape (n*c, ) vector. For each batch of size b, the task distribution module transfers b images into 529 
the GPU memory, resulting in a tensor of shape (b, 1, h, w). After Microsnoop processes all n*c 530 
images, the CPU cache is cleared using the collect function from the gc Python package, and the 531 
next n images are read. The resulting embedding array had the shape of (N*c, 256), where N denotes 532 
the total number of processed images, and 256 is the pre-set dimensionality of the feature vector 533 
for a one-channel image in Microsnoop. These embeddings are then concatenated in channel to 534 
obtain a final feature embedding array of shape (N, 256*c). 535 
 536 
Evaluation datasets. 537 

We curated seven evaluation datasets, four of which were directly available from public 538 
sources and three (CoNSeP, LIVECell Test and TissueNet Test) were processed by us based on 539 
publicly acquired images. The summary of these datasets can be seen in Supplementary Table 2. 540 
 541 
COOS7. This dataset contains 132,209 single-cell fluorescence images, including a training set and 542 
four test sets that vary in different factors. The training set consists of images from 4 independent 543 
plates, while Test 1 includes randomly held-out images from the same plates as the training set, 544 
Test 2 includes images from the same plates but different wells, Test3 comprises images produced 545 
months later, and Test 4 has images produced by other instruments. The images were downloaded 546 
through the link provided by Stanley Bryan Z. Hua18. Each image takes the shape of 2*64*64 and 547 
is a pixel crop centered around a unique mouse cell. One channel marks the protein targeting a 548 
specific component of the cell and the other marks the nucleus. There are 7 protein location classes 549 
in each set: Endoplasmic Reticulum, Inner Mitochondrial Membrane, Golgi, Peroxisomes, Early 550 
Endosome, Cytosol and Nuclear Envelope, and the evaluation task requires the model to accurately 551 
predict the protein location.  552 
 553 
CYCLoPs. This dataset consists of 28,166 single-cell fluorescence images from the CYCLoPs 554 
database, and we downloaded the data through the link provided by Stanley Bryan Z. Hua18. Each 555 
image has a shape of 2*64*64 and is a pixel crop centered around a unique yeast cell. One channel 556 
marks the protein location and the other marks the cytosol. There are 17 protein location classes: 557 
ACTIN, BUDNECK, BUDTIP, CELLPERIPHERY, CYTOPLASM, ENDOSOME, ER, GOLGI, 558 
MITOCHONDRIA, NUCLEARPERIPHERY, NUCLEI, NUCLEOLUS, PEROXISOME, 559 
SPINDLE, SPINDLEPOLE, VACUOLARMEMBRANE and VACUOLE. The aim of the 560 
evaluation is to accurately predict the protein localization. 561 
 562 
CoNSeP. This dataset has 41 H&E stained fully-imaged images with a shape of 3*1000*1000 pixels. 563 
14 of these are test images and 27 are training images. The raw data were obtained from 564 
https://warwick.ac.uk/fac/sci/dcs/research/tia/data and then transformed into grayscale format. 565 
Each cell was cropped based on the provided segmentation mask, resulting in 8777 single-cell test 566 
images and 15554 single-cell training images with a shape of 1*112*112 pixels. In cases where the 567 
cells were smaller, padding was applied to obtain the desired size. The class information was 568 
extracted from the classification mask, with 4 classes: Other, Inflammatory, Epithelial, Spindle-569 
shaped. The evaluation task requires the model to accurately predict the cell types. 570 
 571 
BBBC048. This dataset contains 32,266 single-cell images from the Broad Bioimage Benchmark 572 
Collection60. These single-cell images of Jurkat cells were directly captured with the ImageStream 573 
imaging flow cytometer. Each image has a shape of 3*66*66 pixels, with a brightfield channel and 574 
two fluorescence channels. There are 7 cell phases: G1, S, G2, Prophase, Metaphase, Anaphase and 575 
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Telophase. Another 5-phase case considers G1, S and G2 phase as a single class. The evaluation 576 
task requires the model to accurately predict the cell cycle stages. 577 
 578 
LIVECell Test. This dataset comprises 1512 fully-imaged phase-contrast images provided by 579 
Christoffer Edlund26, where each image has a shape of 1*520*704 pixels. There are 8 cell types: 580 
A172, BT474, BV2, Huh7, MCF7, SHSY5Y, SkBr3 and SKOV3. The evaluation task requires the 581 
model to accurately predict the cell types of full-imaged images. 582 
 583 
TissueNet Test. This dataset comprises 1249 fully-imaged tissue images provided by Noah F. 584 
Greenwald . Each image has a shape of 2*256*256 pixels, one channel marks the membrane or 585 
cytoplasm and the other marks the nucleus. We extracted the tissue type information from the 586 
metadata provided. There are 6 tissue types: Breast, Gi, Immune, Lung, Pancreas and Skin. The 587 
evaluation task requires the model to accurately predict the tissue types of full-imaged images. 588 
 589 
BBBC021. This dataset includes 3848 fully-imaged fluorescence images, a subset from the Broad 590 
Bioimage Benchmark Collection60. The images are of MCF-7 breast cancer cells with a collection 591 
of 113 small molecules at different concentrations and a DMSO negative control. Each image has 592 
a shape of 3*1024*1280 pixels, and different channels respectively mark the DNA, F-actin and B-593 
tubulin. There are 12 mechanisms: Actin disruptors, Aurora kinase inhibitors, Cholesterol-lowering, 594 
DNA damage, DNA replication, Eg5 inhibitors, Epithelial, Kinase inhibitors, Microtubule 595 
destabilizers, Microtubule stabilizers, Protein degradation and Protein synthesis. The evaluation 596 
task requires the model to accurately predict the MoA of different treatments. 597 
 598 
Three modes for the profile of fully-imaged images. 599 
Cell region cropping mode. We utilized the generalist tool Cellpose on the easiest channel (such as 600 
the nucleus channel) to perform cell segmentation. For each image, following the acquisition of the 601 
segmentation mask, we extract all the (x, y) pixel coordinates of each cell, and compute the region 602 
of each cell as follows: 603 

𝑤 ൌ 𝑥௠௔௫ െ 𝑥௠௜௡ ;  h ൌ 𝑦௠௔௫ െ 𝑦௠௜௡ 604 

𝑥௖ ൌ 𝑥௠௜௡ ൅ 0.5 ∗ w ;  y௖ ൌ 𝑦௠௜௡ ൅ 0.5 ∗ h 605 

Rs ൌ minሺmaxሺw, hሻ ∗ Rc, Sta ∗ 0.5ሻ 606 

bbox଴ ൌ max ሺ𝑥௖ െ 𝑅𝑠, 0ሻ ;  bboxଵ ൌ max ሺ𝑦௖ െ 𝑅𝑠, 0ሻ 607 

bboxଶ ൌ minሺ 𝑥௖ ൅ 𝑅𝑠 , Wሻ ;  bboxଷ ൌ minሺ 𝑦௖ ൅ 𝑅𝑠 , Hሻ 608 

where 𝑥௠௔௫ , 𝑥௠௜௡,𝑦௠௔௫ ,𝑦௠௜௡  denote the max/min x/y, respectively, among all the pixels 609 

coordinates; 𝑥௖ , 𝑦௖ denote the coordinates of centroid; Rc denotes the rescale constant (it is set by 610 

user according to the average size of cell bodies); Sta denotes the side length of cropped image 611 
(here we set it as 224, the input size of Microsnoop); Rs denotes the crop size (it cannot be more 612 
than half of Sta); W, H denote the width and height of the fully-imaged image, respectively. 613 

bbox௢, bboxଵ, bboxଶ, bboxଷ denote the left, up, right, down of the cropped region in the original 614 
image, respectively, and they cannot go beyond the boundaries of the image. Finally, single-cell 615 
images are cropped on all channels and padded to (c, Sta, Sta) with zero pixels if smaller, where c 616 
denotes the number of channels. The fully-imaged level embedding of the image is obtained by 617 
computing the mean of all single-cell image embeddings. 618 
 619 
Rescaling mode. In the case that the height of the image is not equal to its width, the initial step is 620 
to pad the image with zeros to create a square shape. The fully-imaged images are then rescaled to 621 
input size using the resize function from the cv2 Python package. The fully-imaged level 622 
embedding of the image is directly obtained through this process. 623 
 624 
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Tile mode. The fully-imaged images are cropped into tiles using the make_tiles function from the 625 
cellpose.transforms Python package. The parameter bsize was set as the input size, and the 626 
parameter tile_overlap was set as 0.1. The fully-imaged level embedding of the image is obtained 627 
by computing the mean of all tile embeddings. 628 
 629 
Sphering transformation for the profile of batch-experiment images. 630 

The detailed description can be found in ref. 47. Here, we fitted the ZCA_corr transformer from 631 
https://github.com/jump-632 
cellpainting/2021_Chandrasekaran_submitted/blob/main/benchmark/old_notebooks/utils.py on 633 
the embeddings of negative control, and then used the fitted transformer to correct the embeddings 634 
of each batch. 635 
 636 
Benchmarking. 637 

For BBBC021, we directly adopted the previously published state-of-the-art (SOTA) results 638 
from the curated resource at https://bbbc.broadinstitute.org/BBBC021. We also included the results 639 
of recently reported generalist methods. All results were formatted to two decimal places. 640 

For other datasets, we compared with three generalist deep-learning methods: 641 
EfficiententNetB0, Inception V3 and CytoImageNet. EfficiententNetB0 was pretrained on the 642 
ImageNet and was included in the comparison in CytoImageNet. The famous project DeepProfiler47 643 
also used this network for the profiling of microscopy imaging data. Inception V3, which was also 644 
pre-trained on ImageNet, had been utilized in the MUSE project, a study of advanced multimodal 645 
algorithms. CytoImageNet, a recently published generalist microscopy image representation 646 
learning algorithm, was pre-trained using a self-constructed microscopy image classification 647 
dataset. 648 

The results of EfficiententNetB0 and CytoImageNet on COOS7 and CYCLoPs have been 649 
previously reported18 and were directly adopted from the relevant publication. For BBBC048, we 650 
also included the custom algorithm results reported in the original paper. The remaining results 651 
presented in this paper were generated by the authors. 652 

EfficiententNetB0 and CytoImageNet were established using the EfficientNetB0 class from 653 
the tenforflow.keras.applications Python package, with different weights loaded 654 
(EfficiententNetB0 used the ImageNet weights and CytoImageNet used the weights published by 655 
Stanley Bryan Z. Hua). Inception V3 was established using inception_v3 class from the 656 
torchvision.models Python package. We dropped the last classification layer and used the remaining 657 
network for feature extraction. Because these network architectures are presented in natural RGB 658 
image study, at test time, each one-channel image is copied three times to mimic RGB images (also 659 
used in ref. 18, 37). The other steps, such as data preprocessing and feature aggregation, are identical 660 
to those used in the Microsnoop protocol. 661 

For LIVECell and TissueNet Test, we directly used the provided segmentation masks (nucleus 662 
channel for the TissueNet) without applying the cell segmentation algorithm in the cell region 663 
cropping mode. For the COOS7, CYCLoPs and BBBC021 datasets, the number of nearest 664 
neighbors (k) in the KNN classifier was set to 11, 11, and 1, respectively, in accordance with the 665 
ref. 18. For BBBC048, the MLP was conducted using the MLPClassifier class from the 666 
sklearn.neural_network Python package, and the parameter max_iter was set as 1000. 667 
 668 
Joint use of Microsnoop and MUSE. 669 

In the simulation experiment, we utilized the simulation_tool.multi_modal_simulator function 670 
from the MUSE project to generate the transcriptional and image representations along with the 671 
corresponding ground truth. We used the adjusted Rand index (ARI)61 to assess the ability of 672 
discovering true subpopulations. For the analysis of seqFISH+ data, the microscopy images were 673 
provided by the authors of the seqFISH+ paper. Each cell region of the images was determined by 674 
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the coordinates of the cell centroid provided. We used Microsnoop and Inception V3 to conduct 675 
feature extraction on the Nissl and DAPI stained images separately. The shape of each single-cell 676 
embedding output was 512 (256*2), then we used PCA to reduce the feature dimensionality to 500. 677 
The process of the transcript data was the same as MUSE. We used the silhouette coefficient to 678 
assess feature quality by the compactness of the clusters, which was conducted using the 679 
silhouette_score function from the sklearn.metrics Python package. 680 
 681 

Graph plotting 682 

All bar graphs were plotted using GraphPad PRISM 8.0 software (GraphPad Software, Inc., 683 
CA, USA). Fig. 1b(i) and Fig. 5a were created using resources from BioRender.com. The sources 684 
of images in Fig. 1 also included https://www.rxrx.ai/rxrx2, in addition to those listed in the 685 
supplementary Table 1 & 2. Some microscopy images in the figures have been processed using 686 
“Enhance Contrast…” from ImageJ62 for better presentation. 687 
 688 

Software and hardware 689 

The programming was conducted using Python v.3.7. Training and all evaluations were 690 
performed on NVIDIA GeForce RTX 3090 GPUs. The deep learning framework of Microsnoop 691 
used PyTorch63 v.1.10. 692 
 693 

Data availability 694 

The links to download the raw data of training set and evaluation datasets are provided in 695 
Supplementary Table 1-2. The new evaluation datasets generated by this study are available on 696 
figshare: 697 
https://figshare.com/articles/dataset/Microsnoop_a_generalist_tool_for_the_unbiased_representati698 
on_of_heterogeneous_microscopy_images/22197607. 699 

SeqFISH+ mouse cortex dataset: Transcript data were downloaded from 700 
https://github.com/CaiGroup/seqFISH-PLUS. Image data were provided by the authors of the 701 
seqFISH+ paper. 702 

All data in this study are available from the corresponding author upon reasonable request. 703 
 704 

Code availability 705 

Source code for Microsnoop, including detailed tutorial, is available on GitHub 706 
(https://github.com/cellimnet/microsnoop-publish). A configured Amazon Machine Image (AMI) 707 
will be made available upon publication for quickly and conveniently deploying Microsnoop for 708 
microscopy image analysis. 709 
 710 
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Figures and Tables 731 

  732 

  733 
Fig. 1 | Design of Microsnoop for microscopy image representation. a, Schematic of 734 
the learning process. (i) Example of the four main category images are shown. The 735 
channels range from cellular organelles to tissues. (ii) A masked self-supervised learning 736 
strategy was employed and only images are required for training without additional 737 
manual annotation. One-channel masked images were set as the input and the Encoder- 738 
Decoder were required to reconstruct the original images. b, At test time, (i) Example 739 
images from various downstream tasks are shown, with different resolutions, number of 740 
channels and image types. These microscopy images are categorized into 3 types to ensure 741 
the broad coverage of image profiling needs. (ii) Application of Microsnoop. Firstly, 742 
images are managed by an in-built task distribution module (Fig. 3a), which generates one 743 
batch one-channel images for feature extraction. Each batch of images is fed into the pre-744 
trained encoder, and the output smallest convolutional maps are processed by average 745 
pooling. Then, all extracted embeddings are processed according to different profiling 746 
tasks (introduced in the following section). The potential downstream analyses of our 747 
generalist representation tool are shown in the panel. 748 
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 750 

 751 
Fig. 2 | Reconstruction results with Microsnoop. a, Example results for images from the 752 
validation set, with a masking ratio of 25% applied on inputs. One representative image is 753 
selected for each image type. b, Example results for single-cell images from evaluated 754 
data, with a masking ratio of 25% applied on inputs. The left two columns are from 755 
COOS7 and the right two are from CYCLoPs. Two representative images (different 756 
imaging channels of the same cell) are selected for each dataset. Example results on other 757 
evaluated datasets are shown in Extended Data Figs. 4. 758 
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 760 

 761 
Fig. 3 | Profiling with Microsnoop on single-cell images. a, Pipeline. Every channel of 762 
the single-cell image is processed independently, and the one-channel level embeddings 763 
are concatenated to get multi-channel level image representations. A task distribution 764 
module is provided to prevent memory overflow. The Extractor denotes the pretrained 765 
encoder combined with the average pooling layer shown in Fig. 1a(ii). b-f, Benchmarks. 766 
b, Benchmark on COOS7, containing four separate test sets. c, Benchmark on CYCLoPs. 767 
d, Benchmark on CoNSeP. e,f, Benchmarks on BBBC048, with two different 768 
classification tasks. Performances reported by the original paper are shown with dotted red 769 
lines. Error bars represent the mean ± SD of fivefold cross-validation results. 770 
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 772 

 773 
Fig. 4 | Profiling with Microsnoop on fully-imaged images. a, Pipeline. (i) Cell 774 
segmentation algorithm is conducted on the easiest channel (such as the nucleus channel) 775 
of the multi-channel fully-imaged image, then the cell region for each single cell is 776 
computed and cropped. (ii) Multi-channel single-cell images are processed as Fig. 3a, and 777 
(iii) the output single-cell level embeddings are aggregated to obtain the fully-imaged 778 
level image representations. b, Benchmark on LIVECell. c, Benchmark on TissueNet. 779 
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 781 

 782 
Fig. 5 | Profiling with Microsnoop on batch-experiment images. a, Schematic of multi-783 
well plates in a drug screening experiment containing negative control wells and different 784 
treatment wells set in each plate. b, Batch correction on fully-imaged level 785 
representations. c, Feature aggregation on fully-imaged level embeddings to obtain 786 
treatment level image representations. d,e, Benchmark on BBBC021, with different 787 
evaluation metrics. 788 
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 790 

 791 
Fig. 6 | Joint use of Microsnoop and MUSE. a, Pipeline. Image modality data is first 792 
processed by Microsnoop, then PCA is performed on the output representations to reduce 793 
feature dimensionality. Finally, two modality representations are mixed by MUSE. b, 794 
UMAP visualization of different modality latent spaces on seqFISH+, using two different 795 
image representation methods. Silhouette score was used to quantify the separateness of 796 
clusters. 797 
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Extended Data 799 

 800 

 801 

 802 
Extended Data Fig. 1 | Performance evaluation of Microsnoop trained with different 803 
network architectures. Three representative datasets from seven evaluation datasets were 804 
selected for the early trials: single-cell image task (CYCLoPs), fully-imaged image task 805 
(LIVECell), and batch-experiment image task (BBBC021). The ViT architecture referred 806 
to the MAE, and the classification accuracy for the corresponding dataset was reported. 807 
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 809 

 810 
Extended Data Fig. 2 | Example images of evaluation datasets. Each channel of the 811 
example image was presented for each dataset: a, COOS7 b, CYCLoPs c, CoNSeP d, 812 
BBBC048 e, LIVECell f, TissueNet g, BBBC021. 813 
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 815 

 816 
Extended Data Fig. 3 | Performance evaluation of Microsnoop trained with different 817 
mask ratios. Three representative datasets from seven evaluation datasets were selected 818 
for the early trials: a, Single-cell image task b, Fully-imaged image task c,d, Batch-819 
experiment image task. The mask ratio was set ranging from 0.05 to 0.75, and the 820 
classification accuracy for the corresponding dataset was reported. 821 
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 823 

 824 
Extended Data Fig. 4 | Reconstruction results with Microsnoop on the remaining 825 
evaluation datasets. Each channel of the example images from each dataset were 826 
performed: a, CoNSeP b, BBBC048 c, LIVECell d, TissueNet e, BBBC021. For fully-827 
imaged image datasets (c-e), the processed single-cell images after cell region cropping 828 
were used. 829 
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 831 

 832 
Extended Data Fig. 5 | Example segmentation results of the generalist model for 833 
high-content screening images. Images were shown in pairs, with the original image on 834 
the left and the segmentation results on the right using two visualization methods; the 835 
predicted outlines show the boundary of each cell and the predicted masks mark the 836 
segmented cells with different colors. Three images were selected from the BBBC021 837 
dataset, in which cells were treated with different compounds and presented complex 838 
phenotypes. Cell segmentation was conducted with Cellpose. a, Segmentation on F-actin 839 
channel images. b, Segmentation on corresponding nucleus channel images.  840 
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 841 

 842 
Extended Data Fig. 6 | Different profile modes of fully-imaged images. a, An example 843 
image. b, Example of the rescaling mode, where the original image was patched and 844 
rescaled to the input size (224*224). c, Example of the tile mode, where the original image 845 
is cropped to many 224*224 tiles (ntile) using the make_tiles function from the 846 
cellpose.transforms Python package, and the tile_overlap parameter was set as 0.1. d-g, 847 
Performance comparison of different modes on three evaluation datasets: d, LIVECell e, 848 
TissueNet f,g, BBBC021. The cell region cropping mode (CRC) was tested with different 849 
rescale constant to study the robustness. h,i, Time (h) and memory (i) cost of different 850 
modes. In the case of CRC mode, the memory cost computes the representations of all 851 
single-cell images, rather than the final fully-imaged level image representation. 852 
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 854 

 855 
Extended Data Fig. 7 | UMAP visualizations of latent embeddings from single- and 856 
combined-modality methods. Colors: ground truth subpopulation labels in simulation. 857 
Cluster accuracy is quantified using the adjusted Rand index (ARI). 858 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 6, 2023. ; https://doi.org/10.1101/2023.02.25.530004doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/

