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Abstract

Microscopy image profiling is becoming increasingly important in biological research.
Microsnoop is a new deep learning-based representation tool that has been trained on large-scale
microscopy images using masked self-supervised learning, eliminating the need for manual
annotation. Microsnoop can unbiasedly profile a wide range of complex and heterogeneous images,
including single-cell, fully imaged, and batch-experiment data. Its performance was evaluated on
seven high-quality datasets, containing over 358,000 images and 1,270,000 single cells with
varying resolutions and channels from cellular organelles to tissues. The results show that
Microsnoop outperforms previous generalist and even custom algorithms, demonstrating its
robustness and state-of-the-art performance in all biological applications. Furthermore, Microsnoop
can contribute to multi-modal studies and is highly inclusive of GPU and CPU capabilities. It can
be easily and freely deployed on local or cloud computing platforms.

MAIN TEXT

Introduction

Automatic quantitative profiling of microscopy images has become increasingly ubiquitous in
a broad range of biological research, spanning from small-scale investigations to high throughput
experiments'. The analysis of visual phenotypes, which involves profiling intricate information
from images, has demonstrated its usefulness in diverse areas of biology®. These include protein
localization®, cell cycle stage classification®, mechanisms of action predictions®, and high-content
drug discovery®. Additionally, the emergence of spatial omics has given rise to new requirements
for the quantification of microscopy images. For example, spatial proteomics methods can image
more than 50 disease-related proteins in a single tissue slice’, while spatial transcriptomics allows
for the simultaneous acquisition of both image data and transcriptional profiles®. These
developments underscore the need for a high-performance, generalist representation tool that can
effectively handle heterogeneous microscopy images.
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The traditional approach to profiling microscopy images involves extracting predefined
morphological features, such as intensity, shape, texture, granularity, and colocalization®!°,
However, this method has several limitations, including low computational efficiency, potential
information loss, and sensitivity to image quality!'. To overcome these deficiencies, recent
advancements in computer vision and deep learning have given rise to learning-based feature
extraction methods that use representation learning. This technique involves pre-training a model
on pretext tasks and then using part of the network as a feature extractor for downstream analysis.
These methods can be divided into two categories: task-oriented custom methods and generalist
methods. Task-oriented methods* '>!° are pre-trained on data from the same source and designed
specifically for biological research, such as cell cycle stage prediction. In contrast, generalist
methods require training data that are not specific to any particular biological problem. One of the
most widely used generalist methods involves using models trained for ImageNet'¢ (a natural image
classification task), which has also been utilized in recent multi-modal research!’.

However, the extent to which the feature extraction patterns learned from natural images can
capture the subtle phenotypes of microscopy images has not been fully validated by comparative
research. To better match the feature domain to downstream microscopy image profiling tasks, the
CytolmageNet'® study was conducted, where image representation was learned based on a
microscopy image classification task (890K images,894 classes). Although this study demonstrated
comparable performance to ImageNet, it still relied on the supervised learning approach that can
be labor-intensive, prone to biases from semantic annotations, and potentially increase the difficulty
of achieving higher representation performance.

The field of microscopy image analysis can greatly benefit from the development of an
unbiased, high-performance, generalist image representation tool. Beyond facilitating accurate
downstream analysis, such a tool would enable unsupervised analysis for identifying new
phenotypes. It can facilitate the separation of feature extraction and downstream analysis process,
allowing for downstream analysis conducted on computers with limited computing power. The
representations of images that are much smaller than the original images can be easily stored and
transferred, and private data can be shared securely through these representations without disclosing
the original images. In addition, secondary analysis becomes possible, such as the creation of large
image databases or joint analysis with other data representations. Nevertheless, the complexity and
diversity of microscopy images pose significant challenges in the development of such a tool.

Self-supervised representation learning offers a promising solution by allowing the model to
learn directly from pixels without relying on pre-defined semantic annotations. This approach
involves transforming the original images and training the model to learn the mapping between the
transformed and original image. Various transformation methods have been employed, such as
direct copying'®, partial channel drop®®, or image masking?', with masked visual representation
learning being particularly popular in natural image studies?>**. Recent advancements in cell
segmentation algorithms have also indicated the remarkable generalization ability of networks
trained on generalized data®?’. However, developing a universal tool for microscopy image
profiling presents several challenges, including handling images with varying resolutions and
channel numbers (such as 1, 2, 3, 5 and 56)** 7 2% 28 joint representation learning for multiple
image styles, processing various image types, and addressing technical variations in high-content
experiments that may introduce batch effects in the feature space?-°.

This study presents Microsnoop, a universal tool for the impartial representation of
microscopy images using masked self-supervised learning. The proposed pipeline is capable of
handling heterogeneous images and includes a task distribution module to cater to users with
varying computing power. To meet diverse image profiling requirements, the images are
categorized into three types with corresponding pipelines. The performance of Microsnoop was
assessed using seven evaluation datasets from various biological studies and compared against both
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95  generalist and custom algorithms. The findings demonstrate Microsnoop's robust feature extraction
96  capabilities and potential for analyzing multi-modal biological data. The tool is freely available at
97  https://github.com/cellimnet/microsnoop-publish.

98

99  Results
100  The design of a generalist representation tool.

101 In this study, we developed a generalist tool called Microsnoop for the unbiased representation
102 of microscopy images through masked self-supervised learning. As large and diverse datasets are
103 beneficial for the training of generalist models, we collected and curated 10,458 high-quality
104  microscopy images from various sources published by the cell segmentation community?>2731-33,
105  These images were taken using different technologies and have different resolutions and channel
106  numbers, with channels ranging from cellular organelles to tissues. The four main types of images
107 include fluorescence, phase-contrast, tissue and histopathology images (Fig. la(i) and
108 Supplementary Table 1). To accommodate the variable number of image channels, the input to the
109  neural network was set as one-channel images (related to one-channel feature concatenation
110  strategy below). All images channels in the training set were split out and further selected to form
111 a one-channel data pool (Methods). Before training, images in each batch were preprocessed in
112 three steps: (1) Sample: randomly select one batch of images from the four types in turn to reduce
113 the effects of unequal amounts of data; (2) Augment: randomly crop a 224*224 region (pad if
114  smaller) from each image, then normalize, random rotate and scale the image, with the result
115 serving as the network target; (3) Transform: randomly mask a portion of the target image patches,
116  with the result serving as the network input. In terms of network architecture design, this study
117 employed a CNN-based* (convolution neural network) architecture, despite the growing interest
118 in Transformer-based architectures® for natural image analysis. This choice was motivated by the
119 superior performance observed for the CNN architecture in our preliminary evaluations (Extended
120  Data Fig. 1 and Methods). This performance disparity may be attributed to the difference in the
121  amount of training data provided. Typically, the pre-training of a ViT architecture®® requires a large
122 corpus of data, with over 1 million or even 1 billion images used in the case of natural image
123 studies®!. However, our microscopy image dataset involved a relatively smaller set of training data,
124 which may not have been sufficient to provide adequate training for the Transformer-based
125 architecture.

126 We employed a masked self-supervised learning strategy to train the network, where a
127 randomly selected percentage of image patches are masked and used as inputs. The network was
128 then tasked with reconstructing the original, unmasked images. During training, masked images are
129 encoded into high-level features through four consecutive downsampling steps, and the process of
130 image reconstruction is accomplished through mirror-symmetric upsampling (Fig. la(ii)). The
131 learning process is guided by minimizing the self-supervision loss function (Methods), which
132 promotes the model to learn useful features that enable it to recover the masked parts of the images
133 based on the information present in the remaining parts. This is a challenging task, which
134 necessitates a comprehensive understanding that transcends simple low-level image statistics.

135 At test time, a generalist tool needs to face a range of image processing needs. To cater for this
136 condition, we chose to categorize images based on the image profiling process itself, rather than
137 solely on their biological applications that may be limited in scope. Our categorization comprises
138 three types: single-cell images, fully-imaged images, and batch-experiment images. (Fig. 1b(1)).
139 The images to be processed are first managed by an in-built task distribution module (below), and
140  then fed into the pre-trained encoder on a batch-by-batch basis for feature extraction. The output
141 smallest convolutional maps are processed through global average pooling to produce initial 256-
142 dimensional feature embeddings. Subsequently, feature aggregation is performed in accordance
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143 with different profiling tasks (details provided below). The final image representations can be used
144 for various downstream analyses (Fig. 1b(ii)).

145

146  Diversified evaluation datasets.

147 In prior studies, attention was primarily focused on a limited number of specific datasets® 3"

148 3%, In our work, to give a more comprehensive evaluation of our generalist tool, we collected and
149 curated 7 evaluation datasets, encompassing commonly used datasets along with some novel
150  additions, comprising over 358,000 images and 1,270,000 single cells (Methods and Extended Data
151 Fig. 2). These images showcase a diverse array of characteristics, including various resolutions,
152 image types, number of channels, and biological applications, such as protein localization
153 estimation, cell cycle stage identification, and MoA prediction (Supplementary Table 2). In our
154 study, four of the seven evaluation datasets focused on single-cell images. The performance of the
155 model on fluorescent images, including bright-field channels, was assessed by COOS7 Test 1-4°°,
156 CYCLoPs® and BBBC048*. For the assessment of the model's ability to handle more challenging
157 histopathology images, we employed the CoNSeP* dataset. The LIVECell Test*® and TissueNet
158  Test?’ datasets were designed to evaluate a model's performance on fully-imaged image
159  classification tasks, involving phase-contrast and tissue image representation, respectively. Lastly,
160  the BBBC021*! dataset was employed to evaluate the representation ability of the model for batch-
161  experiment images.

162

163  Microsnoop accurately reconstructs the masked input images.

164 In the investigation of optimal mask ratio for learning features from microscopy images, we
165  found that a 25% mask was optimal for this task. This was determined by testing 8 different mask
166  ratios (5%, 15%, 25%, 35%, 45%, 55%, 65% and 75%) and comparing the results (Extended Data
167  Fig. 3). To get a qualitative sense of the reconstruction task, we showed an example of each image
168  type from the validation set (Fig. 2a). By inputting the 25% masked image into the pre-trained
169  network, we were able to produce a reconstructed image that closely resembles the original, with
170  only some detailed textures lost. This level of detail recovery is not easily achievable by humans.
171 The reconstruction results on single-cell images from the evaluation datasets were even more
172 impressive, with the reconstructed image being nearly indistinguishable from the original image
173 (Fig. 2b and Extended Data Fig. 4). The improved performance on single-cell images in comparison
174 to fully-imaged ones can be attributed to cellular heterogeneity, which results in diverse cell
175  phenotypes. The abundance of reference information from single-cell images allows for the more
176 successful recovery of a limited number of instances. These results demonstrate that the pre-trained
177 Microsnoop network, has learned good representations of the microscopy images.

178

179  Microsnoop profile of single-cell images with one-channel feature concatenation.

180 Single-cell images can be produced directly by an imaging instrument such as imaging flow
181  cytometry (IFC)*, or obtained through cell segmentation processing on fully-imaged images. To
182  accommodate the variable number of channels, we devised a one-channel feature concatenation
183 strategy (Fig. 3a). Each channel of the multi-channel image is processed independently by
184  Microsnoop, and the resulting embeddings are concatenated in an orderly manner. To prevent
185  confusion during processing, a unique index is assigned to each image when multiple images are
186  being processed. To address potential memory overflow issues when processing large batches of
187  data, we established a task distribution module. This module efficiently manages image pathways
188 and distributes images for processing, read into the CPU and transferred to the GPU as needed. The
189  user is empowered to optimize performance by adjusting parameters according to the available
190  memory capacity of both the CPU and GPU. Furthermore, our system features a scalable,
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191  distributed design, which is capable of supporting multiple GPUs, providing a solution for
192 increasing data demands.

193 In our benchmark, we included three previous developed generalist methods in the
194  comparisons: EfficientNetB0*, Inception V3%, CytolmageNet'®, and custom methods that are
195  accessible (Methods). For the COOS7 Test 1-4, CYCLoPs and CoNSeP, we evaluated performance
196  with the K-Nearest Neighbor (KNN) classification accuracy (match between prediction and ground
197 truth using the KNN classifier, which has been utilized in prior study'®). For the dataset BBBC048,
198  weused fivefold cross-validation for dataset split and evaluated the performance with the multilayer
199  perceptron (MLP) classification accuracy (match between prediction and ground truth using the
200 MLP classifier, as employed in the original paper*). Our evaluations revealed the exceptional
201  performance of Microsnoop, which consistently outperformed all other methods. In the majority of
202 cases, Microsnoop achieved significant improvements of more than 6%, and up to 10% (Fig. 3b-f).
203  Notably, for the 7-classification task of BBBC048, Microsnoop achieved an accuracy of 85.62%
204  without using any data from the dataset, surpassing the custom supervised learning algorithm in the
205 original paper by 5.02%.

206

207  Microsnoop profile of fully-imaged images with cell region cropping.

208 Fully-imaged images are a common format directly obtained from most microscopes. Cell
209  segmentation is usually the first step of phenotype profiling due to the inherent heterogeneity of
210 cells. Although various generalist segmentation algorithms?>-?” have been developed along with
211 some fine-tuning strategies* %, they may still introduce unwanted segmentation errors. For
212 instance, in a large drug screening experiment, cell body images can present a range of phenotypes,
213 and a segmentation algorithm may perform well on some but poorly on others (Extended Data Fig.
214 5a), potentially leading to unpredictable impacts on downstream analysis. To mitigate these issues,
215 we introduced a cell region cropping strategy, where the segmentation algorithm is applied only on
216  the easiest channel, such as the nucleus channel, which presents more robust segmentation results
217 (Extended Data Fig. 5b). Cell regions are computed and cropped based on the segmentation masks
218 and rescale constant (Fig. 4a(i) and Methods). Then, Microsnoop extracts features from the cropped
219 single-cell images as described above (Fig. 4a(ii)). Finally, the resulting single-cell level
220  embeddings are aggregated by computing their mean to obtain the fully-imaged level
221  representations (Fig. 4a(iii)).

222 We evaluated the representation ability of Microsnoop on two fully-imaged image phenotype
223 classification tasks, and tested previously mentioned generalist algorithms for comparison. Both
224  tasks were evaluated using the KNN classification accuracy. The results showed that Microsnoop
225  again outperformed other methods, and even a 41.93% improvement was obtained on the LIVECell
226 Test dataset (Fig. 4b-c). Furthermore, Microsnoop showed strong inclusiveness to various image
227  styles, with an accuracy of 98.08% on the LIVECell Test dataset and 96.64% on TissueNet Test.
228

229  Microsnoop profile of batch-experiment images with sphering batch correction.

230 In high-content screening experiments, batch effects due to technical variability can affect
231 downstream analysis®®>% 3738 (Fig. 5a). To address this issue, we employed a sphering batch
232 correction method*’. This assumes that the large variations observed in negative controls are
233 associated with confounders, and any variation that is not observed in controls is associated with
234 phenotypes. Sphering transformation aims to separate phenotypic variation from confounders. In
235 our image representation pipeline for batch-experiment images, Microsnoop first extracts features
236  from the fully-imaged images (as described above), and the resulting fully-imaged level
237  representations are corrected via sphering transformation (Fig. 5b). Finally, the fully-imaged level
238 representations are aggregated to treatment level representations by computing their mean (Fig. 5c¢).
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239 We evaluated the representation ability of Microsnoop on the classic BBBC021 dataset, while
240  including previously reported results of generalist and custom methods in the comparisons. We
241  assessed the performance with the Not-Same-Compound (NSC) and Not-Same-Compound-or-
242 Batch (NSCB) KNN classification accuracy. Microsnoop still achieved state-of-the-art
243 performance without using any data from the dataset, even if compared with the methods
244 exclusively studied on it (Fig. 5d-e).

245

246 Two other fully-imaged image profile modes and the robustness of cell region cropping mode.

247 In addition to the cell region cropping mode, we provided two alternative modes for processing
248 fully-imaged datasets: rescaling and tile mode. In the rescaling mode, the shape of the fully-imaged
249  images is directly rescaled to the input size (224*224) as inputs (Extended Data Fig. 6a-b). In the
250  tile mode, the original image is cropped into multiple 224x224 tiles, and the fully-imaged level
251  representations are aggregated by computing the mean over all tiles (Extended Data Fig. 6¢). We
252 evaluated the performance of these three processing modes, including different rescale constants
253 for the cell region cropping mode, on both the fully-imaged and batch-experiment datasets
254  (Extended Data Fig. 6d-g and Methods). The rescaling and tile modes outperformed the single-cell
255 mode on LIVECell and TissueNet tests; however, both modes displayed a significant performance
256  decline on the BBBCO021 dataset. The reason for the underperformance of the rescaling mode could
257  be attributed to the fact that it discards high-resolution phenotypic information during the rescaling
258  process. On the other hand, the decline in performance observed with the tile mode may be due to
259 the fact that it averages out important subtle phenotype variations present in certain regions of fully-
260  imaged images. In contrast, the cell region cropping mode displayed robust performance across a
261  range of parameters on all three datasets. Although the single-cell mode is more robust and efficient,
262 it requires more time and memory compared to the other two modes. (Extended Data Fig. 6h-i).
263

264  Microsnoop improves the performance of the multi-modal structured embedding algorithm.

265 A recent study of the multi-modal structured embedding algorithm (MUSE'?) has shown
266  impressive results for the integrative spatial analysis of image and transcriptional data. The authors
267  conducted a simulation experiment to assess the performance of MUSE when transcriptional data
268  quality is degraded. Here, we focused on the impact of image feature quality, and the results of our
269  simulation experiment showed that with the quality improvement of image representations, the
270  performance of MUSE can also be significantly improved (Extended Data Fig. 7). Next, we tested
271 Microsnoop on the real-world dataset seqFISH+® in comparison with the representation method
272 used in the original paper. After acquiring the image representations, we use principal component
273 analysis (PCA) performing feature dimensionality reduction to match the latent space dimensions
274 of MUSE (Fig. 6a). We employed the silhouette coefficient*® to evaluate the feature quality.
275  Microsnoop demonstrated better image representation quality and greater improvement in the
276  performance of MUSE (Fig. 6b).

277

278 Discussion

279 Advances in imaging technology, such as phase-contrast microscopy, imaging flow cytometry,
280  automated high-throughput microscopy and microscopy combined with spatial omics techniques
281  have created a massive demand to solve the complex challenge of microscopy image representation.
282 In this study, we present Microsnoop, an innovative deep learning tool that effectively addresses
283 this challenge. The accurate analysis of heterogeneous microscopy images, as a critical aspect of
284  both fundamental and applied biological research, is highly valued by the microscopy image
285  analysis community*->°. Our proposed solution offers promising advancements to this field.
286  Microsnoop was trained on large-scale high-quality data using a masked self-supervised pretext
287  task, allowing it to learn valuable and unbiased features for image representation. The one-channel
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288  feature concatenation strategy, efficient task distribution module, and rational classification mode
289  of profiling needs make our tool flexible to meet various user needs. In addition, Microsnoop is
290  capable of processing complex fully-imaged images through cell region cropping and mitigating
291  batch effects in batch-experiment images through sphering transformation. For fully-imaged
292 images, our results show that the single-cell analysis mode is more robust compared to other modes,
293  reinstating the importance of considering cellular heterogeneity in biological research. Our
294  benchmark results demonstrate robust and state-of-the-art performance on all evaluated datasets,
295  eliminating the need to use of any evaluation data for fine-tuning. Furthermore, the enhanced
296  representation of unimodal image data leads to significant improvements in the performance of
297  multi-modal algorithms.

298 In our methodology experiments, we found that a mask ratio of 25% is optimal for microscopy
299  images, which is significantly lower than the 75% that has been found optimal for natural images?'.
300  The difference is primarily due to the smaller size and erratic content of instances in microscopy
301  images, which may result in lost information if too much reference information is masked.
302  Compared with the CytoImageNet!® study that utilized a supervised classification task as the pretext
303  task, our masked self-supervised learning approach only requires raw images without any manual
304 annotation and yields unbiased and more capable representations. Recently, a similar self-
305  supervised representation learning study has also been reported as useful in learning the
306  representations of protein subcellular location images through a pretext task that requires the
307  network to directly reconstruct original images and images corresponding to similar proteins having
308  similar representations'®. In contrast, the uniqueness of our method is that ours do not require
309  domain-specific knowledge and is developed for generalist image representation. Our benchmark
310  study has shown that a single network is capable of handling heterogeneous microscopy images,
311  which s in line with the conclusion reached in the sister domain of cell segmentation®’. Furthermore,
312 our pretext task was trained on the same network structure as Cellpose. This is reminiscent of the
313 recent success of large pre-trained language models in the field of natural language processing’!-
314 3. With continued advancements in the understanding of computer vision and the further
315  development of models for microscopy image representation and other image processing tasks,
316  such as cell segmentation, it may be possible to merge these models into a single, unified model in
317  the future.

318 While Microsnoop is a powerful tool, there are several areas for improvement. For example,
319  further evaluation is needed to determine the efficacy of our approach of one-channel feature
320  concatenation and feature aggregation in 3D and time-series imaging datasets in comparison to
321  training a network to directly extract spatial or temporal information. To enhance the capabilities
322 of Microsnoop, future work could include incorporating additional self-supervised pretext tasks for
323 multi-task learning, optimizing the quality of the training dataset and refining the single-cell level
324  feature aggregation methods. Moreover, the current training images are still limited in size
325  compared to natural images, and a larger training data volume combined with the Transformer
326  architecture can be studied to improve the performance. Last but not least, deploying our model on
327  mobile devices to aid rapid detection could be a valuable application scenario®*.

328 Overall, we have developed an impressive, generalist tool for microscopy image
329  representation. We anticipate its positive impact on the microscopy image analysis community,
330  facilitating new phenotype discovery, data sharing, and the establishment of large image databases,
331  among other benefits. Furthermore, we envision that Microsnoop can be effectively utilized in
332 multi-modal studies such as combining molecular and image representation for MoA prediction®
333 %or exploring the relationship between gene expression, image representation for drug discovery®’
334 and much broader applications®*>,

335
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479  Methods

480  Training set.

481 The training set consisted of four diverse image types from seven published datasets: Cellpose,
482 LIVECell, TissueNet, and Histo, which includes MoNuSeg, MoNuSAC, and NuCLS. Firstly, all
483  channels of the images were separated. For Cellpose and TissueNet, only the cell body channel was
484  utilized, while the original RGB images of Histo were transformed into grayscale. The original
485  training-validation dataset split was maintained for Cellpose, LIVECell, and TissueNet, while the
486  images from the three Histo subsets were mixed and 20% were randomly reserved for validation
487  purposes. Finally, the training set was organized into a one-channel image data pool. A
488  comprehensive summary of the training set can be found in Supplementary Table 1.

489

490  Model architecture.

491 The network architecture was based on a refined version of the classic U-Net™, as utilized in
492 Cellpose. The standard convolutional blocks were replaced with residual blocks and style
493  embeddings were incorporated into the concatenation stages. The downsampling scale was set as
494 32, 64, 128 and 256, and the upsampling scale was mirror symmetry. Both the input and output
495  tensors were of shape batch size*1*224*224 (in Pytorch tensor format, where batch size is
496  described below).

t34

497
498  Masked self-supervised learning.
499 In the masked self-supervised learning approach, the network is tasked with reconstructing the

500  original image from partial masked images. Our implementation involved dividing the target image
501  (after normalization and augmentation) into 16*16 non-overlapping patches. Subsequently, a
502  portion of these patches were randomly replaced with black patches of size 16*16, where every
503  pixel was zero. Different from the original MAE built on a Transformer architecture, the
504  transformed patches were restored to the image format to accommodate the input format of the
505  CNN architecture.

506
507  Model training.
508 The self-supervision loss was set as the mean square error loss (MSE), which calculates the

509  difference in both the masked and unmasked areas. The network was optimized by AdamW
510  optimizer from the torch.optim Python package. In our implementation, we adopted a different
511  definition of an epoch, in which one epoch corresponds to a complete iteration through all the
512 sampled data, rather than through all the training data, as is commonly defined. During each epoch,
513 we randomly sampled 12000 images from the four different types of training data in turn. The batch
514  size was set as 16. The initial learning rate was set as 0.001, and we used a learning rate (LR)
515 warmup trick: at the first 40 epochs, the LR was computed as:

epoch
516 LR = 0.001 *
517  after 40 epochs, the LR was computed as:
518 LR = 0.001 % 0.5  [1 + (epOCh_40 )
= 0. * (0.5 * _ %
[ €os nepoch — 40 )l

519  where nepoch represents the epoch size of the training process, here it was set as 1000.

520

521  One-channel feature concatenation strategy for multi-channel image representation.

522 In our implementation of Microsnoop for feature extraction, we assumed that the input data
523 comprised multi-channel images with the same number of channels, represented as (c, h, w), where
524 ¢ denotes the number of channels, and h and w denote the height and width, respectively. In the
525  event that images had different h and w, we padded them with zeros to obtain a consistent shape.
526  The task distribution module is then used to read the images into CPU memory, where they are
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527  transformed into an array with shape (n, c, h, w), where n denotes the number of images read. This
528 array is then reshaped into (n*c, 1, h, w), with each image assigned a unique index represented as
529  ashape (n*c, ) vector. For each batch of size b, the task distribution module transfers b images into
530  the GPU memory, resulting in a tensor of shape (b, 1, h, w). After Microsnoop processes all n*c
531  images, the CPU cache is cleared using the collect function from the gc Python package, and the
532 nextnimages are read. The resulting embedding array had the shape of (N*c, 256), where N denotes
533 the total number of processed images, and 256 is the pre-set dimensionality of the feature vector
534  for a one-channel image in Microsnoop. These embeddings are then concatenated in channel to
535  obtain a final feature embedding array of shape (N, 256*c).

536
537  Evaluation datasets.
538 We curated seven evaluation datasets, four of which were directly available from public

539 sources and three (CoNSeP, LIVECell Test and TissueNet Test) were processed by us based on
540  publicly acquired images. The summary of these datasets can be seen in Supplementary Table 2.
541

542 COOS?7. This dataset contains 132,209 single-cell fluorescence images, including a training set and
543 four test sets that vary in different factors. The training set consists of images from 4 independent
544  plates, while Test 1 includes randomly held-out images from the same plates as the training set,
545  Test 2 includes images from the same plates but different wells, Test3 comprises images produced
546  months later, and Test 4 has images produced by other instruments. The images were downloaded
547  through the link provided by Stanley Bryan Z. Hua'®. Each image takes the shape of 2*64*64 and
548  is a pixel crop centered around a unique mouse cell. One channel marks the protein targeting a
549  specific component of the cell and the other marks the nucleus. There are 7 protein location classes
550  in each set: Endoplasmic Reticulum, Inner Mitochondrial Membrane, Golgi, Peroxisomes, Early
551  Endosome, Cytosol and Nuclear Envelope, and the evaluation task requires the model to accurately
552 predict the protein location.

553

554  CYCLoPs. This dataset consists of 28,166 single-cell fluorescence images from the CYCLoPs
555  database, and we downloaded the data through the link provided by Stanley Bryan Z. Hua'®. Each
556  image has a shape of 2*64*64 and is a pixel crop centered around a unique yeast cell. One channel
557  marks the protein location and the other marks the cytosol. There are 17 protein location classes:
558  ACTIN, BUDNECK, BUDTIP, CELLPERIPHERY, CYTOPLASM, ENDOSOME, ER, GOLGI,
559 ~ MITOCHONDRIA, NUCLEARPERIPHERY, NUCLEI, NUCLEOLUS, PEROXISOME,
560 SPINDLE, SPINDLEPOLE, VACUOLARMEMBRANE and VACUOLE. The aim of the
561  evaluation is to accurately predict the protein localization.

562

563  CoNSeP. This dataset has 41 H&E stained fully-imaged images with a shape of 3*1000*1000 pixels.
564 14 of these are test images and 27 are training images. The raw data were obtained from
565  https://warwick.ac.uk/fac/sci/dcs/research/tia/data and then transformed into grayscale format.
566  Each cell was cropped based on the provided segmentation mask, resulting in 8777 single-cell test
567  images and 15554 single-cell training images with a shape of 1*112*112 pixels. In cases where the
568  cells were smaller, padding was applied to obtain the desired size. The class information was
569  extracted from the classification mask, with 4 classes: Other, Inflammatory, Epithelial, Spindle-
570  shaped. The evaluation task requires the model to accurately predict the cell types.

571

572 BBBC04S. This dataset contains 32,266 single-cell images from the Broad Bioimage Benchmark
573 Collection®. These single-cell images of Jurkat cells were directly captured with the ImageStream
574  imaging flow cytometer. Each image has a shape of 3*66*66 pixels, with a brightfield channel and
575  two fluorescence channels. There are 7 cell phases: G1, S, G2, Prophase, Metaphase, Anaphase and
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576 ~ Telophase. Another 5-phase case considers G1, S and G2 phase as a single class. The evaluation
577  task requires the model to accurately predict the cell cycle stages.

578

579  LIVECell Test. This dataset comprises 1512 fully-imaged phase-contrast images provided by
580  Christoffer Edlund®®, where each image has a shape of 1*520%704 pixels. There are 8 cell types:
581  A172,BT474,BV2, Huh7, MCF7, SHSYSY, SkBr3 and SKOV3. The evaluation task requires the
582 model to accurately predict the cell types of full-imaged images.

583

584  TissueNet Test. This dataset comprises 1249 fully-imaged tissue images provided by Noah F.
585  Greenwald. Each image has a shape of 2*256*256 pixels, one channel marks the membrane or
586  cytoplasm and the other marks the nucleus. We extracted the tissue type information from the
587  metadata provided. There are 6 tissue types: Breast, Gi, Immune, Lung, Pancreas and Skin. The
588  evaluation task requires the model to accurately predict the tissue types of full-imaged images.

589

590  BBBCO021. This dataset includes 3848 fully-imaged fluorescence images, a subset from the Broad
591  Bioimage Benchmark Collection®®. The images are of MCF-7 breast cancer cells with a collection
592 of 113 small molecules at different concentrations and a DMSO negative control. Each image has
593 ashape of 3*1024*1280 pixels, and different channels respectively mark the DNA, F-actin and B-
594  tubulin. There are 12 mechanisms: Actin disruptors, Aurora kinase inhibitors, Cholesterol-lowering,
595 DNA damage, DNA replication, Eg5 inhibitors, Epithelial, Kinase inhibitors, Microtubule
596  destabilizers, Microtubule stabilizers, Protein degradation and Protein synthesis. The evaluation
597  task requires the model to accurately predict the MoA of different treatments.

598

599  Three modes for the profile of fully-imaged images.

600  Cell region cropping mode. We utilized the generalist tool Cellpose on the easiest channel (such as
601  the nucleus channel) to perform cell segmentation. For each image, following the acquisition of the
602  segmentation mask, we extract all the (x, y) pixel coordinates of each cell, and compute the region
603  of each cell as follows:

604 W = Xmax = Xmin s N = Ymax — Ymin

605 Xe = Xmin + 0.5 *%W; Y. = ynin +05%h

606 Rs = min(max(w, h) * Rc, Sta * 0.5)

607 bbox, = max(x, — Rs,0) ; bbox; = max(y. — Rs, 0)
608 bbox, = min(x. + Rs, W) ; bbox; = min(y, + Rs, H)

609  where Xmmax, Xmin» Ymax» Ymin denote the max/min x/y, respectively, among all the pixels
610  coordinates; x., ¥ denote the coordinates of centroid; Rc denotes the rescale constant (it is set by
611  user according to the average size of cell bodies); Sta denotes the side length of cropped image
612  (here we set it as 224, the input size of Microsnoop); Rs denotes the crop size (it cannot be more
613  than half of Sta); W, H denote the width and height of the fully-imaged image, respectively.
614  bbox,, bbox;, bbox,, bbox; denote the left, up, right, down of the cropped region in the original
615  image, respectively, and they cannot go beyond the boundaries of the image. Finally, single-cell
616  images are cropped on all channels and padded to (c, Sta, Sta) with zero pixels if smaller, where c
617  denotes the number of channels. The fully-imaged level embedding of the image is obtained by
618  computing the mean of all single-cell image embeddings.

619

620  Rescaling mode. In the case that the height of the image is not equal to its width, the initial step is
621  to pad the image with zeros to create a square shape. The fully-imaged images are then rescaled to
622  input size using the resize function from the cv2 Python package. The fully-imaged level
623  embedding of the image is directly obtained through this process.

624
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625  Tile mode. The fully-imaged images are cropped into tiles using the make tiles function from the
626  cellpose.transforms Python package. The parameter bsize was set as the input size, and the
627  parameter tile_overlap was set as 0.1. The fully-imaged level embedding of the image is obtained
628 by computing the mean of all tile embeddings.

629
630  Sphering transformation for the profile of batch-experiment images.
631 The detailed description can be found in ref. *’. Here, we fitted the ZCA_corr transformer from

632  https://github.com/jump-

633  cellpainting/2021 Chandrasekaran_submitted/blob/main/benchmark/old notebooks/utils.py = on
634  the embeddings of negative control, and then used the fitted transformer to correct the embeddings
635  of each batch.

636
637  Benchmarking.
638 For BBBCO021, we directly adopted the previously published state-of-the-art (SOTA) results

639  from the curated resource at https://bbbc.broadinstitute.org/BBBC021. We also included the results
640  of recently reported generalist methods. All results were formatted to two decimal places.

641 For other datasets, we compared with three generalist deep-learning methods:
642  EfficiententNetB0, Inception V3 and CytolmageNet. EfficiententNetBO was pretrained on the
643  ImageNet and was included in the comparison in CytolmageNet. The famous project DeepProfiler*’
644  also used this network for the profiling of microscopy imaging data. Inception V3, which was also
645  pre-trained on ImageNet, had been utilized in the MUSE project, a study of advanced multimodal
646  algorithms. CytolmageNet, a recently published generalist microscopy image representation
647  learning algorithm, was pre-trained using a self-constructed microscopy image classification
648  dataset.

649 The results of EfficiententNetBO and CytolmageNet on COOS7 and CYCLoPs have been
650  previously reported'® and were directly adopted from the relevant publication. For BBBC048, we
651  also included the custom algorithm results reported in the original paper. The remaining results
652  presented in this paper were generated by the authors.

653 EfficiententNetBO and CytolmageNet were established using the EfficientNetBO class from
654 the tenforflow.keras.applications Python package, with different weights loaded
655  (EfficiententNetBO used the ImageNet weights and CytolmageNet used the weights published by
656  Stanley Bryan Z. Hua). Inception V3 was established using inception v3 class from the
657  torchvision.models Python package. We dropped the last classification layer and used the remaining
658  network for feature extraction. Because these network architectures are presented in natural RGB
659  image study, at test time, each one-channel image is copied three times to mimic RGB images (also
660  used in ref. '%37). The other steps, such as data preprocessing and feature aggregation, are identical
661  to those used in the Microsnoop protocol.

662 For LIVECell and TissueNet Test, we directly used the provided segmentation masks (nucleus
663  channel for the TissueNet) without applying the cell segmentation algorithm in the cell region
664  cropping mode. For the COOS7, CYCLoPs and BBBCO021 datasets, the number of nearest
665  neighbors (k) in the KNN classifier was set to 11, 11, and 1, respectively, in accordance with the
666  ref. ', For BBBC048, the MLP was conducted using the MLPClassifier class from the
667  sklearn.neural network Python package, and the parameter max_iter was set as 1000.

668

669  Joint use of Microsnoop and MUSE.

670 In the simulation experiment, we utilized the simulation_tool.multi modal simulator function
671  from the MUSE project to generate the transcriptional and image representations along with the
672 corresponding ground truth. We used the adjusted Rand index (ARI)®! to assess the ability of
673  discovering true subpopulations. For the analysis of seqFISH+ data, the microscopy images were
674  provided by the authors of the seqFISH+ paper. Each cell region of the images was determined by
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675  the coordinates of the cell centroid provided. We used Microsnoop and Inception V3 to conduct
676  feature extraction on the Nissl and DAPI stained images separately. The shape of each single-cell
677  embedding output was 512 (256*2), then we used PCA to reduce the feature dimensionality to 500.
678  The process of the transcript data was the same as MUSE. We used the silhouette coefficient to
679  assess feature quality by the compactness of the clusters, which was conducted using the
680  silhouette score function from the sklearn.metrics Python package.

681

682 Graph plotting

683 All bar graphs were plotted using GraphPad PRISM 8.0 software (GraphPad Software, Inc.,
684  CA, USA). Fig. 1b(i) and Fig. 5a were created using resources from BioRender.com. The sources
685  of images in Fig. 1 also included https://www.rxrx.ai/rxrx2, in addition to those listed in the
686  supplementary Table 1 & 2. Some microscopy images in the figures have been processed using
687  “Enhance Contrast...” from ImageJ® for better presentation.

688

689  Software and hardware

690 The programming was conducted using Python v.3.7. Training and all evaluations were
691  performed on NVIDIA GeForce RTX 3090 GPUs. The deep learning framework of Microsnoop
692  used PyTorch® v.1.10.

693

694  Data availability

695 The links to download the raw data of training set and evaluation datasets are provided in
696  Supplementary Table 1-2. The new evaluation datasets generated by this study are available on
697  figshare:

698  https://figshare.com/articles/dataset/Microsnoop_a_generalist tool for the unbiased representati
699  on_of heterogeneous_microscopy_images/22197607.

700 SeqFISH+ mouse cortex dataset: Transcript data were downloaded from
701 https://github.com/CaiGroup/seqFISH-PLUS. Image data were provided by the authors of the
702 seqFISH+ paper.

703 All data in this study are available from the corresponding author upon reasonable request.
704

705 Code availability

706 Source code for Microsnoop, including detailed tutorial, is available on GitHub
707 (https://github.com/cellimnet/microsnoop-publish). A configured Amazon Machine Image (AMI)
708  will be made available upon publication for quickly and conveniently deploying Microsnoop for
709  microscopy image analysis.

710

711
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Figures and Tables

(i)

Representation learning with masked self-surpervised strategy
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Fig. 1 | Design of Microsnoop for microscopy image representation. a, Schematic of
the learning process. (i) Example of the four main category images are shown. The
channels range from cellular organelles to tissues. (ii) A masked self-supervised learning
strategy was employed and only images are required for training without additional
manual annotation. One-channel masked images were set as the input and the Encoder-
Decoder were required to reconstruct the original images. b, At test time, (i) Example
images from various downstream tasks are shown, with different resolutions, number of
channels and image types. These microscopy images are categorized into 3 types to ensure
the broad coverage of image profiling needs. (ii) Application of Microsnoop. Firstly,
images are managed by an in-built task distribution module (Fig. 3a), which generates one
batch one-channel images for feature extraction. Each batch of images is fed into the pre-
trained encoder, and the output smallest convolutional maps are processed by average
pooling. Then, all extracted embeddings are processed according to different profiling
tasks (introduced in the following section). The potential downstream analyses of our
generalist representation tool are shown in the panel.
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750

a b
751
752 Fig. 2 | Reconstruction results with Microsnoop. a, Example results for images from the
753 validation set, with a masking ratio of 25% applied on inputs. One representative image is
754 selected for each image type. b, Example results for single-cell images from evaluated
755 data, with a masking ratio of 25% applied on inputs. The left two columns are from
756 COOS7 and the right two are from CYCLoPs. Two representative images (different
757 imaging channels of the same cell) are selected for each dataset. Example results on other
758 evaluated datasets are shown in Extended Data Figs. 4.
759

Page 18 of 29


https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.25.530004; this version posted May 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC 4.0 International license.

760
a
icl, W= chan,
= chan,
—
id, ‘_ ], E——
= |d2- I
concat
.E 'i GPU memory o - ) :
% -' ‘ id CPU memory e N |dn-'~—W -—
= k d.,.. " - multi-channel level
s = ,idy Task distribution module -
|d1 one-channel level
Data pool (one-channel images) One-channel feature concatenation
b
COOS7 Test 1 COOST7 Test 2 COOS7 Test 3 COOS7 Test 4
5. 100 5725 5., 100 o719 .. 100 s62
§ 90 % 920 % 920
< < <
é 80 é 80 § 80
% 70 % 70 % 70
3 3 3
60 60 60
& e&‘}o e‘&f
C CYCLoPs d CoNSeP e BBBC048 5 f BBBC048 7
- 80 - 100 97.05 - 90 562
g 75 % % 80
3 3 s
§n 5 5
% 65 % % 60
5 3 5
60 50
8 & &
& &
761
762 Fig. 3 | Profiling with Microsnoop on single-cell images. a, Pipeline. Every channel of
763 the single-cell image is processed independently, and the one-channel level embeddings
764 are concatenated to get multi-channel level image representations. A task distribution
765 module is provided to prevent memory overflow. The Extractor denotes the pretrained
766 encoder combined with the average pooling layer shown in Fig. 1a(ii). b-f, Benchmarks.
767 b, Benchmark on COOS7, containing four separate test sets. ¢, Benchmark on CYCLoPs.
768 d, Benchmark on CoNSeP. e,f, Benchmarks on BBBC048, with two different
769 classification tasks. Performances reported by the original paper are shown with dotted red
770 lines. Error bars represent the mean = SD of fivefold cross-validation results.
771
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Multi-channel fully-imaged data
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Fig. 4 | Profiling with Microsnoop on fully-imaged images. a, Pipeline. (i) Cell
segmentation algorithm is conducted on the easiest channel (such as the nucleus channel)
of the multi-channel fully-imaged image, then the cell region for each single cell is
computed and cropped. (ii) Multi-channel single-cell images are processed as Fig. 3a, and
(ii1) the output single-cell level embeddings are aggregated to obtain the fully-imaged
level image representations. b, Benchmark on LIVECell. ¢, Benchmark on TissueNet.
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783 Fig. 5 | Profiling with Microsnoop on batch-experiment images. a, Schematic of multi-
784 well plates in a drug screening experiment containing negative control wells and different
785 treatment wells set in each plate. b, Batch correction on fully-imaged level
786 representations. ¢, Feature aggregation on fully-imaged level embeddings to obtain
787 treatment level image representations. d,e, Benchmark on BBBC021, with different
788 evaluation metrics.
789
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792 Fig. 6 | Joint use of Microsnoop and MUSE. a, Pipeline. Image modality data is first
793 processed by Microsnoop, then PCA is performed on the output representations to reduce
794 feature dimensionality. Finally, two modality representations are mixed by MUSE. b,
795 UMAP visualization of different modality latent spaces on seqFISH+, using two different
796 image representation methods. Silhouette score was used to quantify the separateness of
797 clusters.
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803 Extended Data Fig. 1 | Performance evaluation of Microsnoop trained with different
804 network architectures. Three representative datasets from seven evaluation datasets were
805 selected for the early trials: single-cell image task (CYCLoPs), fully-imaged image task
806 (LIVECell), and batch-experiment image task (BBBCO021). The ViT architecture referred
807 to the MAE, and the classification accuracy for the corresponding dataset was reported.
808
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809
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810

811 Extended Data Fig. 2 | Example images of evaluation datasets. Each channel of the
812 example image was presented for each dataset: a, COOS7 b, CYCLoPs ¢, CoNSeP d,
813 BBBC048 e, LIVECell f, TissueNet g, BBBC021.
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817 Extended Data Fig. 3 | Performance evaluation of Microsnoop trained with different
818 mask ratios. Three representative datasets from seven evaluation datasets were selected
819 for the early trials: a, Single-cell image task b, Fully-imaged image task c,d, Batch-
820 experiment image task. The mask ratio was set ranging from 0.05 to 0.75, and the
821 classification accuracy for the corresponding dataset was reported.
822
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825 Extended Data Fig. 4 | Reconstruction results with Microsnoop on the remaining
826 evaluation datasets. Each channel of the example images from each dataset were
827 performed: a, CoNSeP b, BBBC048 ¢, LIVECell d, TissueNet e, BBBCO021. For fully-
828 imaged image datasets (c-e), the processed single-cell images after cell region cropping
829 were used.
830
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Extended Data Fig. 5 | Example segmentation results of the generalist model for
high-content screening images. Images were shown in pairs, with the original image on
the left and the segmentation results on the right using two visualization methods; the
predicted outlines show the boundary of each cell and the predicted masks mark the
segmented cells with different colors. Three images were selected from the BBBC021
dataset, in which cells were treated with different compounds and presented complex
phenotypes. Cell segmentation was conducted with Cellpose. a, Segmentation on F-actin
channel images. b, Segmentation on corresponding nucleus channel images.

Page 27 of 29


https://doi.org/10.1101/2023.02.25.530004
http://creativecommons.org/licenses/by-nc/4.0/

841

842
843

844
845
846
847
848
849
850
851
852
853

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.25.530004; this version posted May 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

512*640

-
=]
5

95

Classification Accuracy

200

150

=
& =]
=1 o
1

~

N
=
1

Time of feature extracting

224224

LIVECell

2914

48

2 4

made available under aCC-BY-NC 4.0 International license.

4 4

Classification Accuracy

100

224*224*ntile

TissueNet

9904 05 55

16 18
Bl
|—||T\ (] T

O Rescale
3 Tile

@ CRC

o

T

LIVECell

TissueNet

BBBCO021

Classification Accuracy

Memory size of embeddings

2000

1500
1000
500

20 1

BBBCO021 - NSC

151 1.51

‘ 2.50 2.50

BBBC021 - NSCB

=]
=3

0674

85T g

©
=

Classification Accuracy
@
2

70

N I S
A P NP o

&
GF &7 &7
& F &

[0 Rescale
3 Tile
= CRC

1710.08

11.5311.53

il

o

T
LIVECell

=

TissueNet

BBBC021

Extended Data Fig. 6 | Different profile modes of fully-imaged images. a, An example
image. b, Example of the rescaling mode, where the original image was patched and
rescaled to the input size (224*224). ¢, Example of the tile mode, where the original image
is cropped to many 224*224 tiles (ntile) using the make _tiles function from the
cellpose.transforms Python package, and the tile overlap parameter was set as 0.1. d-g,
Performance comparison of different modes on three evaluation datasets: d, LIVECell e,
TissueNet f,g, BBBCO021. The cell region cropping mode (CRC) was tested with different
rescale constant to study the robustness. h,i, Time (h) and memory (i) cost of different
modes. In the case of CRC mode, the memory cost computes the representations of all
single-cell images, rather than the final fully-imaged level image representation.
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856 Extended Data Fig. 7 | UMAP visualizations of latent embeddings from single- and
857 combined-modality methods. Colors: ground truth subpopulation labels in simulation.
858 Cluster accuracy is quantified using the adjusted Rand index (ARI).
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