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ABSTRACT  

Toxicogenomics databases are useful for understanding biological responses in individuals because 

they include a diverse spectrum of biological responses. Although these databases contain no 

information regarding immune cells in the liver, which are important in the progression of liver injury, 

deconvolution that estimates cell-type proportions from bulk transcriptome could extend immune 

information. However, deconvolution has been mainly applied to humans and mice and less often to 

rats, which are the main target of toxicogenomics databases. Here, we developed a deconvolution 

method for rats to retrieve information regarding immune cells from toxicogenomics databases. The 

rat-specific deconvolution showed high prediction accuracies for several types of immune cells 

between spleen and blood, and between liver treated with toxicants compared with those based on 

human and mouse data. Additionally, we found 4 clusters of compounds in Open TG-GATEs 

database based on estimated immune cell trafficking, which are different from those based on 

transcriptome data itself. The contributions of this work are three-fold. First, we obtained the gene 

expression profiles of 6 rat immune cells necessary for deconvolution. Second, we clarified the 

importance of species differences on deconvolution. Third, we retrieved immune cell trafficking from 

toxicogenomics databases. Accumulated and comparable immune cell profiles of massive data of 

immune cell trafficking in rats could deepen our understanding of enable us to clarify the relationship 

between the order and the contribution rate of immune cells, chemokines and cytokines, and 

pathologies. Ultimately, these findings will lead to the evaluation of organ responses in Adverse 

Outcome Pathway. 

 

INTRODUCTION 

Immune cell trafficking is one of the most important factors in the progression of liver injury, such 

as drug-induced liver injury (DILI) (Yang and Tonnesseen, 2019; Jaeschke et al., 2012; Hossain and 

Kubes, 2019). While the importance of various immune cells, such as Kupffer cells and NKT cells, has 

been demonstrated individually, their contribution to the progression of liver injury and their 

relationship with each other have remained largely unknown (Liu et al., 2006; Laskin et al., 1995; 

Yang et al., 2019; Liu et al., 2004). One possible explanation for this situation is that it is difficult to 

compare accumulated findings due to the complexity of the experimental systems, such as the fact 

that liver injury models that have been constructed using various methods including compound 

administration, diet, and surgery, as well as different time points for evaluation (Cai et al., 2017; 

Gehring et al., 2006; Graubardt et al., 2017; Chen et al., 2017). 

Large-scale toxicity databases of compounds (toxicogenomics databases), such as Open TG-

GATEs and DrugMatrix, are useful for understanding biological responses in individuals (Igarashi et 

al., 2015), (https://ntp.niehs.nih.gov/data/drugmatrix). This is because compound administration is 

relatively easy to control and less confounded compared with other model preparation approaches 

such as diet and surgery, making it easier to compare findings. In addition, considering that 
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compounds generally have multiple effects, including those unrecognized, it is also expected that a 

diverse spectrum of biological responses can be covered due to nonarbitrary perturbations by various 

compounds (Morita et al., 2020; Nemoto et al., 2021). Open TG-GATEs, for example, contain 

transcriptome data, pathological images, and blood biochemistry of tissues collected at various time 

points from rats treated with various compounds at various concentrations, while there is no 

information regarding immune cells in tissue in these databases. 

Deconvolution is a data analysis method that can be applied to estimate the ratio of cells in a 

specimen from bulk transcriptome data (Abbas et al., 2009; Im and Kim, 2023). Bulk transcriptome is 

affected by distinctive sample conditions (e.g., gene knock out), individual or technical variations, and 

relative cell subset proportions. Based on this concept, it is possible to analyse the impact of 

proportion changes on bulk transcriptome, by focusing on gene subsets uniquely expressed in target 

cells. To elaborate this, cell proportions can be calculated through a regression model using bulk 

transcriptome of a specimen, transcriptome of target cells, and specific marker genes for the target 

cells. Applying this method to transcriptome data of a toxicogenomics database, could add 

information regarding immune cell trafficking as a new layer to the database and contribute to a 

deeper understanding of immune cell relationships in liver injury.. However, deconvolution has been 

mainly applied to humans and mice, and there have been few applications to rats, which are the main 

target of large-scale toxicity databases (Z. Chen et al., 2018; Altboum et al., 2014; Wang et al., 2021; 

Petitprez et al., 2020). In particular, a gene expression dataset of various rat immune cells is currently 

absent and prior studies applying deconvolution to rats have used human immune cells as a 

substitute (Gil Del Alcazar et al., 2022; Wang et al., 2021). 

Here, we developed a rat deconvolution method, examined species differences in the 

deconvolution method, and established a methodology to obtain immune cell information from 

valuable toxicogenomics databases (Figure 1). 

MATERIAL AND METHODS 

Data Preparation,  

Open TG-GATEs dataset. All raw files were downloaded from the home page of Open TG-GATEs 

(https://toxico.nibiohn.go.jp) (Igarashi et al., 2015). Raw signal intensities for each probe set as they 

are contained in the CEL files, were analysed using MAS5.0, which is implemented in the software 

package Bioconductor (http://bioconductor.org) with R (version 3.6.3). 

Rat RNA sequencing dataset. FASTQ files of the rat RNA sequencing data were prepared according 

to the RNA isolation and sequencing sections. Quality control of all reads was performed using 

PINSEQ++ (version 1.2.4) with the indicated parameters (trim_left = 5, trim_tail_right = 5, 

trim_qual_right = 30, ns_max_n = 20, min_len = 30) (https://peerj.com/preprints/27553/). The 

expression of transcripts was quantified using Salmon (version 1.6.0) with the indicated parameters 

(validationMappings, gcBias, seqBias) and a decoy-aware index created using Salmon and 
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Rattus_norvegicus.Rnor_6.0.cdna.all was obtained from EMBL-EBI (https://www.ebi.ac.uk/) (Patro et 

al., 2017). Transcripts per kilobase million data were obtained using tximport, which is implemented in 

the software package Bioconductor with R (version 4.1.3) from quant.sh files created by Salmon. 

Animals 

Male Sprague Dawley rats (6 weeks old) were purchased from CLEA Japan (Tokyo, Japan) for RNA 

sequencing experiments or Oriental Yeast Co. (Tokyo, Japan) to validate the immune response in the 

present study. All animals were maintained under standard conditions with a reverse dark-light cycle 

and were treated humanely. Food and water were available ad libitum. The procedures reported in 

this article were performed in accordance with the guidelines provided by the Institutional Animal Care 

Committee (Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan). 

Rat Liver Injury Model 

For RNA Sequencing. To induce liver injury, acetaminophen (H0190, Tokyo Chemical Industry Co., 

Tokyo, Japan) or 4,4′-methylene dianiline (M0220, Tokyo Chemical Industry Co.) was administered at 

3 g/kg or 300 mg/kg, respectively by gavage. As a vehicle control group, 0.5 (w/v)% methylcellulose 

400 solution (133-17815, Fujifilm Wako Pure Chemical Corporation, Osaka, Japan) was given at 10 

µL/g. Only those rats in the experimental groups that were subjected to RNA sequencing had fasted 

between 21:00 and 9:00, which was the administration time. 

For Open TG-GATEs Validation Study. To validate the immune responses in the liver, metformin at 1 

g/kg by gavage (M2009, Tokyo Chemical Industry Co.), tiopronin at 1 g/kg by gavage (T2614, Tokyo 

Chemical Industry Co.), galactosamine at 1 g/kg by gavage (G0007, Tokyo Chemical Industry Co.), 

thioacetamide at 45 mg/kg by gavage (T0187, Tokyo Chemical Industry Co.), colchicine at 15 g/kg by 

gavage (C0380, Tokyo Chemical Industry Co.), or bortezomib at 0.6 mg/kg by i.v. through a tail vein 

(B5741, Tokyo Chemical Industry Co.) was administered. As a vehicle control group, 0.5 (w/v)% 

methylcellulose 400 solution at 10 µL/g by gavage or saline at 2.5 mL/kg by i.v. was given. In this 

validation experiment, no fasting was performed following the Open TG-GATEs protocol. 

Sample Collection and Preparation 

Liver. Rats were euthanized and the liver and blood were harvested after compound administration. 

Briefly, the superior vena cava was clipped using a clamp, and the blood was collected through an 

inferior vena cava into a 1.5-mL tube containing 1 µL heparin (Yoshindo, Toyama, Japan). The 

collected blood sample was centrifuged for 15 min at 1,700 g, and the supernatant was subjected to 

Fuji Drychem NX500sV (Fujifilm Corporation, Tokyo, Japan) to quantify the concentrations of alanine 

aminotransferase, aspartate aminotransferase, and total bilirubin. The liver perfusion was performed 

through an inferior vena cava using a plastic cannula-type puncture needle (SR-OT1832C, 18G 32 

mm) (Terumo corporation, Tokyo, Japan) and 5 mM HEPES (345-06681, Fujifilm Wako Pure 

Chemical Corporation) /5 mM EDTA (6381-92-6, Dojindo Laboratories, Kumamoto, Japan) Hanks' 
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balanced salt solution (17461-05, Nacalai Tesque, Kyoto, Japan). Finally, 1/9 of the liver’s largest 

lobe or 1/6 of all minced liver was subjected to RNA isolation or flow cytometry, respectively. For flow 

cytometry, the sample was dissociated using gentleMACS (Miltenyi Biotec, North Rhine-Westphalia, 

Germany) according to the manufacturer’s instructions. Except where noted, phosphate-buffered 

saline containing 2% fetal bovine serum was used as “wash buffer” thereafter. After using wash buffer 

to eliminate hepatocytes, the sample was centrifuged at 50 g at 4 °C for 3 min and the pellets were 

discarded. To eliminate the hepatic erythrocytes, 5 mL of ACK buffer was added to the sample, and 

the sample was incubated in a 37 °C water bath for 6 min. ACK buffer was prepared by adding 8,024 

mg of NH4Cl (A2037, Tokyo Chemical Industry Co.), 10 mg of NHCO3 (166-03275, Fujifilm Wako Pure 

Chemical Corporation), and 3.772 mg of EDTA 2Na2H2O (6381-92-6, Dojindo Laboratories) into 1 L 

of pure water. The sample was washed with the wash buffer three times, and then the sample was 

subjected to flow cytometry. 

Blood. An untreated was placed under anesthesia, and blood was collected from the heart by 

cardiopuncture. The blood was washed once with wash buffer once. After removing the supernatant, 

15 mL of ACK buffer was added to the sample and then incubated in a 37 °C water bath for 6 min to 

eliminate erythrocytes. After incubation, 25 mL of the wash buffer was added to the sample, which 

was then centrifuged at 400 g at 4 °C for 5 min. The incubation and wash operations were repeated 

twice. After the last wash, the sample was washed with the wash buffer three times, and then 

subjected to RNA isolation and flow cytometry or cell sorting. 

Spleen. An untreated rat was euthanized, and the spleen was collected. Single-cell suspensions from 

the spleen were obtained by gently forcing the tissues through a 70 µm nylon mesh grid in RPMI-1640 

(06261-65, Nacalai Tesque). After washing with the wash buffer, 15 mL of ACK buffer was added into 

the sample, and then incubated in a 37 °C water bath for 6 min to eliminate the splenic erythrocytes. 

The sample was washed with the wash buffer three times, and then subjected to RNA isolation and 

flow cytometry or cell sorting. 

RNA Isolation and RNA Sequencing 

Total RNA was prepared using ISOGEN II (311-07361, Nippon Gene Co., Tokyo, Japan) and purified 

using an RNeasy Plus Mini Kit (74136, Qiagen, Limburg, Netherland) with gDNA elimination using an 

RNase-Free DNase set (79254, Qiagen) according to the manufacturer’s protocols. RNA was used to 

prepare RNA-Seq libraries with a NEBNext Ultra ll Directional RNA Library Prep Kit for Illumina 

(E7760L, New England Biolabs, MA, USA). The libraries were sequenced for pair-end reads using a 

Novaseq 6000 (Illumina, CA, USA). Sequence reads from each cDNA library were processed as 

described in the Data Preparation section. 

Flow Cytometry 

Flow cytometric analysis was performed with FACSAria III (BD Biosciences, NJ, USA), and data were 

analysed with FlowJo software (BD Biosciences). The antibodies used are listed in Table 2. 
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Cell sorting 

Cell sorting was performed with a FACSAria III (BD Biosciences, NJ, USA). CD4 T cells 

(CD45+/CD11b-/CD3+/CD4+), CD8 T cells (CD45+/CD11b-/CD3+/CD8a+), NK cells (CD45+/CD11b-

/CD3-/CD161+), and B cells (CD45+/CD11b-/CD3-/CD45RA+) were obtained from the rat spleen and 

monocytes (CD45+/CD11b+/CD3-/CD45RA-/CD161-/SSC-low) and neutrophils 

(CD45+/CD11b+/CD3-/CD45RA-/CD161-/CD43int/SSC-high) were obtained from the rat blood. The 

antibodies used are listed in Table 2. Cells were suspended in wash buffer containing 5% 7-AAD 

solution (559925, BD Pharmgen) 5 min before analysis to exclude dead cells. The sorted cells were at 

once pooled in RPMI-1640 containing 10% fetal bovine serum. After centrifugation at 400 g at 4 °C for 

5 min, RNA was isolated and sequenced from the cells in the pellets collected. 

Deconvolution 

We converted transcript IDs to RGD gene symbols, and median values were selected for duplicate 

gene names. Only genes in common with the bulk tissue gene expression matrix were retained. 

Among the retained genes, up to 200 genes were retained as markers with an absolute fold-change > 

1.5 for other cell types. Finally, N genes collected from K cell markers defined above were included in 

the analysis, and the cell type-specific expression matrix  was defined. Consider a 

measured bulk gene expression matrix   for N genes across M samples, each containing K 

different cell types. The goal of deconvolution is to estimate cell type-specific expression  

and cell type-specific proportion  , and can be written as: 

 

Elastic Net is a regularized regression model with combined L1 and L2 penalties. We can estimate 

the cell type-specific expression  via: 

 

 

where  and  are hyperparameters, and we set  and  which are based on published 

paper using Elastic Net for deconvolution (Altboum et al., 2014). The essential codes are available in 

GitHub (https://github.com/mizuno-group/Deconv). The list of signature genes developed in this study 

is available in GitHub (RatDeconvolution/result/reference). Analysis was performed using Python 

(version 3.9.12) with open-source packages (numpy, version 1.22.4; pandas, version 1.1.5; scipy, 

version 1.8.0; scikit-learn, version 1.0.2; statsmodels, version 0.13.2; umap, 0.5.3) 

Other Species’ Signature Matrices 
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We used LM6 from the CIBERSORTx home page (https://cibersortx.stanford.edu/) as the human-

derived signature matrix (B. Chen et al., 2018). For the mouse-derived signature matrix, we collected 

mouse immune cell transcriptomes from the public database and summarized them to create 

reference profiles. To convert the gene names, the correspondence tables for rat gene symbols (RGD) 

to human gene symbols (HGNC) and mouse gene symbols (MGI) were downloaded from the BioMart 

Ensemble database (http://asia.ensembl.org/index.html). Genes that corresponded to RGD genes 

that do not exist were omitted from subsequent analysis. The locations and immune cell types of the 

data are listed in the Supplementary Data 4.  

Single Sample Gene Set Enrichment Analysis 

The GO annotation file (rgd.gaf) and GO tree structure (go.owl) were downloaded from the GO 

Consortium website (http://geneontology.org). The ontology at the fifth depth from the top of the tree 

structure and the corresponding gene set were extracted and used for the following analysis. We 

subjected RNA sequence data to single-sample gene enrichment analysis (ssGSEA) with following 

the ssGSEA algorithms (https://github.com/broadinstitute/ssGSEA2.0). Note that the gene expression 

profiles of the Open-TGGATEs database have approximately three duplicate samples for each 

administration condition. Figures about the ssGSEA include all those duplicates. 

Clustering Analysis 

Dimensionality reduction and clustering were performed using immune cell trafficking or transcriptome 

of the liver at 3, 6, 9, and 24 h after administration as features. All features were reduced in 

dimensionality by locally linear embedding, multidimensional scaling, spectral embedding, principal 

component analysis, t distributed stochastic neighbor embedding, and uniform manifold 

approximation and projection. The dimensionally reduced features were combined and visualized 

using a meta-visualization method (Ma et al., 2023). The combined meta-distance matrix was 

subjected to hierarchical clustering and visualized with a heat map. Note that only CD4 T cells, CD8 T 

cells, monocytes, and neutrophils were used for immune cell trafficking features, and all features were 

converted to a z-score for the corresponding control samples. Additionally, note that transcriptome 

features were log-transformed and converted to a z-score for each compound feature. Adding to 

immune cell trafficking, some of pickled hematology data (ALT, total bilirubin, platelets, red blood cells, 

lymphocytes in the blood) were collected from Open TG-GATEs database. All features were 

converted to a z-score for the corresponding control samples and their time courses were visualized. 

The detailed code used is found on GitHub (https://github.com/mizuno-group/RatDeconvolution). 

Analysis was performed using Python (version 3.9.12) with open-source packages (numpy, version 

1.22.4; pandas, version 1.1.5; scipy, version 1.8.0; scikit-learn, version 1.0.2; statsmodels, version 

0.13.2; umap, 0.5.3) 

RESULTS 

Extension of Application of Deconvolution to Rats 
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Deconvolution requires gene expression profiles of the sample to be analysed (mixture profiles) and 

gene expression profiles of the target cells with the specific marker genes (signature matrix) created 

from reference profiles. Given that  are the mixture profiles,  is the signature 

matrix, and  indicates the scores corresponding to the cell composition, deconvolution 

calculates F in the following equation: , where , , and  are the number of samples, 

genes, and the estimated cell types. 

To extend the application of deconvolution to rats, we obtained gene expression profiles of 

representative immune cell types for the rat-derived reference profiles. Neutrophils, monocytes, CD4 

T cells, CD8 T cells, natural killer cells, and B cells were selected and sorted from the spleen or blood 

of rats. The immune cell types used in this study are equivalent to LM6, the well-known reference 

profiles for humans composed of the representative 6 immune cell types prepared by Chen et al. (B. 

Chen et al., 2018). Spleen and blood, whose immune cell composition is known to be different, and 

the liver derived from rats treated with liver toxicants were obtained and subjected to both 

transcriptome analysis and flow cytometry simultaneously for validation. As liver toxicants, we 

selected acetaminophen and methylene dianiline, which are known to induce neutrophil and 

monocyte migration 24 h after treatment, respectively (Mitchell et al., 1973; Bailie et al., 1994). 

We compared the ratio of immune cells measured by flow cytometry and those estimated by applying 

deconvolution using the prepared rat-specific reference profiles to the counterpart mixture profiles. 

Regarding spleen and blood, the results showed that a positive correlation was observed for CD4 T, 

CD8 T, NK cells, neutrophils, and B cells between the evaluated tissues, whereas the estimate for 

monocytes varied (Figure 2A). The spleen contains resident macrophages with profiles similar those 

to monocytes (Davies et al., 2013; Ingersoll et al., 2011), which could interfere with deconvolution and 

be the cause the variation. We performed the same analysis on liver samples subjected to chemical 

perturbations and found a high positive correlation, especially for neutrophils and monocytes (Figure 

2B). 

We also examined the extrapolation using human and mouse signature matrices derived from existing 

reference profiles. The accuracy was very low especially for CD4 T and CD8 T cells, indicating that 

there are species differences in the expression of the gene cluster of each reference immune cell and 

that the rat gene expression profiles are required to create a signature matrix for rat deconvolution 

(Supplementary Figures S1 and S2). 

Based on these findings, we concluded that deconvolution in rat gene expression profiles had been 

established. Notably, in neutrophils and monocytes, the accumulation by perturbation of the 

compound can be readily predicted with deconvolution. However, care should be taken regarding the 

limited predictivity and sensitivity of the proposed method. In the comparison analysis of the liver, the 

estimation accuracy was low for some immune cells including NK cells (Supplementary Figure S3). 

Notably, robust positive correlations were observed across all immune cell types in relation to the 

spleen. Comparable positive correlations were evident in the blood, with exceptions in the case of 
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monocytes and NK cells (Supplementary Figure S4). Conversely, within the liver, we observed bad 

correlations across nearly all immune cell types under a single drug condition. It should be noted that 

the influence of one outlier sample regarding measurement values obtained by FACS was prominent 

in the evaluation of neutrophils within the liver control group, as well as NK cells within the liver 

acetaminophen group, which exhibited bad correlation. Combined with the fact that the preparation of 

liver samples is more complicated than for spleen and blood, it implies that detecting small variances 

within single condition groups is challenging even when employing experimental methodologies. 

Much larger sample size would be necessary for appropriate evaluation of such small variances within 

a single condition group. In summary, the established deconvolution method exhibits comparable 

accuracy in estimating immune cell trafficking for inter-condition sample comparisons. However, its 

efficacy in capturing subtle variances within a single condition group remains uncertain. These 

findings delineate a limitation of our method and underscore the significance of elucidating the lower 

threshold of predictable variation for subsequent investigations. 

Validation of Rat-specific Deconvolution to a Public Toxicogenomics Database 

Open TG-GATEs is a representative rat toxicogenomics database in which more than 150 

compounds were administered to rats at multiple concentrations, and blood biochemical values, liver 

and kidney gene expression profiles, and liver pathology specimens were obtained at multiple time 

points (Igarashi et al., 2015) . In the present, we used this database for further analysis. 

We validated whether the rat-specific deconvolution could be applied to the liver gene expression 

profiles of Open TG-GATEs, which shows generalized performance of our approach to external and 

public databases. From the compounds in the database, we targeted compounds causing ALT 

elevation, which indicates liver toxicity, within 24 h and analysed these data with the rat-specific 

deconvolution. Considering that there was no existing information regarding the relationships with the 

focused immune cells, four compounds were selected as candidates for validation. Colchicine and 

bortezomib were selected to verify whether the estimated NK and B cell fluctuations could be 

confirmed. In addition, galactosamine and thioacetamide were selected to compare whether the 

estimated fluctuations, including those in the early time of 3 h, could be confirmed (Figure 3A). 

The candidate compounds were administered to rats under the same conditions as those of Open 

TG-GATEs, and the ratio of immune cells in the liver was measured by flow cytometry. Then, we 

compared the ratio of immune cells measured by flow cytometry and the estimated values of immune 

cells by rat-specific deconvolution. Although no clear correlation was observed for NK and B cells, a 

positive correlation was observed for neutrophils, monocytes, CD4 T cells, and CD8 T cells (Figure 

3B). It is noteworthy that we confirmed consistency between the observed and estimated results for 

tiopronin treatment at 3 h: tiopronin induced a weak but significant increase in ALT but no change in 

the neutrophil ratio (Supplementary Figure S4). The tiopronin data here indicate that rat-specific 

deconvolution has the potential to detect these slight differences. One of the explanations for the 

difficulty in estimating NK and B cells is the possibility of large subpopulations of these cells in the 
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liver. Hepatic NK cells have subpopulations that exhibit different profiles than circulating NK cells in 

the blood (Mikulak et al., 2019). Similarly, B cells have a liver-resident subpopulation that exhibits a 

specific response during inflammation (Curry et al., 2003; Racanelli et al., 2001). It is possible that 

these subsets with close, but different, profiles in the liver, affect the accuracy of deconvolution. Our 

flow cytometry showed that many NK and B cells were resident in the liver specimens compared with 

the fewer other immune cells, which may support the impact of liver-resident NK and B cells. 

We also examined the extrapolation using human and mouse-derived signature matrices obtained 

from existing reference profiles. Overall, there were cell types that became less predictable 

(Supplementary Figure S5, Supplementary Data 1). This result supports the previous conclusion 

and the importance of preparing rat-derived reference profiles for rat deconvolution. 

These results suggest that it is possible to estimate and analyse immune cell trafficking except for B 

and NK cells in the liver from toxicogenomics databases, which are often organized with rats. 

Identification of Clusters of Compounds That Have Different Immune Cell Trafficking 

Although there are a few studies on immune cell trafficking as a response to a single compound or a 

few compounds, there are no reports comparing the responses to a large number of compounds. By 

applying the established deconvolution to existing large toxicogenomics databases, it is possible to 

gain aggregated knowledge of the differences in immune cell trafficking as biological responses to 

variable perturbations. As in the validation study, Open TG-GATEs database was subjected to 

deconvolution, followed by stratification, and analysis of biological phenomena. 

Based on ALT elevation (  65), we targeted 16 compounds (Supplementary Figure S6, Table 1). 

For the four types of cells (neutrophils, monocytes, CD4 T cells, and CD8 T cells) that had been 

accurately estimated, as shown in Figure 3, the estimated scores of each cell at each time point were 

used as the features.  

We used meta-visualization and 6 dimensional reduction methods to visualize and extracted the 

intrinsic structure of the normalized dataset (Figure 4A, Supplementary Figure S7) (Ma et al., 2023). 

Meta-visualization is a spectral method for assessing and combining multiple data visualizations 

produced by diverse algorithms, generating a consensus visualization that has improved quality over 

individual visualizations in capturing the underlying structure. This method is theoretically grounded in 

a general signal-plus-noise model and has robustness against noise and possible adversarial 

candidate visualizations. The compounds were divided into four clusters based on hierarchical 

clustering using the combined features by meta-visualization (Figure 4B). Note that the result of this 

clustering is different from the result of clustering of the liver gene expression profiles (Figures 4C, 

and 4D, Supplementary Figure S8). This indicates that the analysis based on immune cell trafficking 

captures a different perspective from that of gene expression profiles themselves and adds an 

interpretable new layer. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.06.20.545836doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545836
http://creativecommons.org/licenses/by/4.0/


11 

 

Characterization of the Compound Clusters 

Do the clusters based on immune cell trafficking found in the data-driven analysis in Figure 4 have 

any biological meaning? First, to gain insight into the behaviour of immune cell trafficking and ALT as 

the index of liver injury for each cluster, we plotted the time course of their changes (Figure 5A). Note 

that the colour filling around the line indicates the 95% confidence interval of all samples belonging to 

each cluster and depends on the number of compounds. Figure 5A shows that compounds belonging 

to cluster 3 have a strong effect on immune cell trafficking. Cluster 2 is the second most effective 

cluster, and interestingly, the monocytes at 6 and 9 h after administration show more accumulation 

than those of cluster 3. Compounds belonging to clusters 1 and 4 have much weaker effects than 

those of clusters 2 and 3, and cluster 1 is slightly stronger than cluster 4. When these clusters were 

classified using random forest, ALT did not contribute significantly to the model, suggesting that these 

clusters do not simply indicate the degree of liver injury (Supplementary Data 2). Not surprisingly, 

because the clusters are different, these behaviours differ from those resulting from clustering based 

on the transcriptome (Supplementary Figure S9). 

Cluster 3, the most effective cluster, contains two compounds, LPS, which is known as a strong 

inflammation inducer, and cycloheximide, a protein synthesis inhibitor targeting the translational 

process (Ferluga and Allison, 1978; Ledda-Columbano et al., 1992). Because the number of 

compounds in this cluster is small and easy to compare with existing knowledge, we focused on this 

cluster and evaluated its consistency with the existing biological knowledge. We calculated the gene 

ontology enrichment score back to the gene expression data of each compound to investigate the 

commonalities among the effects of the compounds. We searched for gene ontology terms that 

discriminate these compounds from those belonging to other clusters with statistical tests. As a result, 

the type I interferon signaling pathway was detected as a characteristic gene ontology term (Figure 

5B). Although existing knowledge of the inflammatory response induced by cycloheximide is limited 

compared to that of LPS, a representative inflammation inducer, in a literature survey, cycloheximide 

was reported to stimulate the production of type I interferon RNA (Ringold et al., 1984). 

Similarly, in cluster 4, to which tacrine and nitrofurazone belong, platelet aggregation was detected as 

a characteristic gene ontology term, particularly in the early time points (Figure 5C). Platelets are 

known to release signalling factors related to liver injury and regeneration, and their association with 

acute liver failure and liver disease has been reported (Morris and Chauhan, 2022). Their importance 

has also been suggested in mouse models of drug-induced liver injury (Chauhan et al., 2020; 

Miyakawa et al., 2015). A literature survey indicated that the two compounds inhibit platelet 

aggregation (Rossi and Levin, 1973; Slevin et al., 2018). In addition, the biochemical values of blood 

in the database showed a slight trend toward an increase in platelet concentration at 9 h compared 

with the other clusters (Supplementary Figure S10). The two compounds can influence liver injury by 

affecting pathways and mechanisms related to platelets. 
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Other characteristic other gene ontology terms for each cluster were found by statistical tests with 

conservative correction for multiplicity (Supplementary Figure S11, Supplementary Data 3). 

Biological knowledge, extracted by a stratification analysis using estimated immune cell trafficking, 

could not be extracted by using the liver transcriptome alone (Supplementary Figures S12 and S13). 

In summary, the clusters obtained by immune cell trafficking are expected to have biological 

meanings that are consistent with existing biological knowledge, rather than overfitting the data. 

DISCUSSION 

Importance of establishing deconvolution method in rats 

Although there have been studies that applied deconvolution to rat tissues, to our knowledge, there 

are no rat immune cell transcriptome datasets appropriate for reference profiles of deconvolution in 

public databases, and therefore, LM22, a human dataset, is often employed (Wang et al., 2021; Gil 

Del Alcazar et al., 2022). Here, we have confirmed that the use of mouse or human-derived reference 

profiles for deconvolution of rat specimens resulted in a decrease in accuracy for several immune cell 

types compared with rat-derived reference profiles, and that species differences did exist. This 

indicates that the rat-derived reference profiles obtained in this research are necessary for accurate 

deconvolution of rat specimens. Note that single-cell RNA-seq data of rat specimens, including rat 

liver, are currently available (Qaisar et al., 2021) . However, the characteristics of the data, which 

would affect the accuracy of the deconvolution, are different from the majority of accumulated legacy 

transcriptome datasets in public databases. 

Deconvolution can now be applied to rats, for which large-scale toxicogenomics data are available in 

public databases, and work as a knowledge miner for immune cell trafficking in response to various 

perturbations achieved by compounds. In the present study, we tested data obtained from Open TG-

GATEs because of its rich time-series data, while analysis of data from DrugMatrix, another large 

toxicogenomics database containing a larger number of compounds than Open TG-GATEs, is also an 

interesting target. Other individual data in the toxicological database, not used in this study, would be 

interesting as well. Pathological information is one of the most interesting targets for further analysis. 

Linking immune cell trafficking or compounds cluster to pathology holds the potential to promote our 

understanding of toxicological mechanisms and prognosis. By aggregating extracted knowledge, we 

could deepen our understanding of immune cell trafficking. Notably, rats are often used in the field of 

toxicology such as safety assessment of drugs and chemicals. Thus, the combination of rat-specific 

deconvolution and toxicity databases would contribute not only to understanding the mechanisms of 

immune cell trafficking in liver injury but also to toxicology such as stratification of the types of toxicity 

based on this new layer. Moreover, such efforts will lead to the expansion of organ responses in 

Adverse Outcome Pathway (Ankley et al., 2010). 

Types of immune cells that can be estimated in rat deconvolution 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.06.20.545836doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545836
http://creativecommons.org/licenses/by/4.0/


13 

 

One of the limitations of this study is the restricted number of immune cell types that can be estimated 

for the experimental and analytical reasons. First, knowledge of rat immunology is much lower than 

that of mice, and the established isolation protocols for rat immune-relative cells are restricted based 

on our preliminary literature survey. This is an interesting contrast to the field of toxicology, where rats 

are more often employed than mice. Second, as shown in Figure 3, it is difficult to estimate NK and B 

cells when rat-specific deconvolution is applied to the external data. In reference-based deconvolution, 

the signature matrix is created so that the co-correlation among immune cells to be analysed is low. 

Although the ν-support vector regression used in CIBERSORT and Elastic Net used in the present 

study are relatively resistant to multicollinearity compared with simple linear models, model instability 

is inevitable in the presence of multicollinearity (Dormann et al., 2013). A possible solution to this 

problem is to incorporate the other cells belonging to the tissue of interest in the model. Notably, the 

importance of modelling considering tissue specificity in the deconvolution method has been 

discussed, although it has not been rigorously demonstrated. In this regard, the dataset we provide 

through this study could act as a dataset to evaluate deconvolution on liver tissue. 

To increase the number of immune cell types for rat deconvolution, the utilization of scRNA-seq data 

is one idea (Schelker et al., 2017). However, care should be taken in using of scRNA-seq data for 

reference-based deconvolution because the shape of the scRNA-seq data differs from that of bulk 

transcriptome data accumulated in public databases. In this regard, unsupervised and semi-

supervised deconvolution methods, which are independent or less dependent on the reference profile, 

respectively, and have been developed in recent years, are good options (Gaujoux and Seoighe, 

2012; Dimitrakopoulou et al., 2018; Li and Wu, 2019; Tang et al., 2020). Comparison of deconvolution 

method paradigms is a future work for utilizing large toxicogenomics databases as data sources for 

immune cell trafficking (Avila Cobos et al., 2020). 

Contamination of blood into the liver transcriptome 

Blood contamination is one of the important discussion topics in the utilization of deconvolution for 

knowledge miner for immune cell trafficking from public databases. We measured the immune 

responses and transcriptomes using samples collected after liver perfusion. By contrast, the 

transcriptomes in the database were only collected after blood was released from the inferior vena 

cava. This may have resulted in contamination of the samples with blood-derived immune cells, and 

these differences may have affected the accuracy comparisons. In fact, in some samples, the number 

of neutrophils in the blood in the database is proportional to the score estimated by deconvolution 

(Supplementary Figure S14). However, it is difficult to determine whether this is the actual behaviour 

of immune cells in the liver or a significant blood influence. 

How can immune cells infiltrating tissues and blood-derived immune cells be distinguished and 

evaluated? Intravascular staining method is a possible experimental solution to this problem 

(Anderson et al., 2014). In this method, staining discriminates between tissue-localized cells and 

blood-born cells by intravenous injection of staining antibodies. However, the liver differs from organs 
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such as the lungs, where the intravascular staining method is generally applied, in that it has 

fenestrae, and care should be taken when applying intravascular staining method (Gracia-Sancho et 

al., 2021). Anderson et al referred to the specific character of CD69+ cells regarding the relationship 

between the liver and blood. In addition, there are few reports about applying intravascular staining 

method in studies of tissue injury (Anderson et al., 2014). The vascular wall discriminating 

hepatocytes and blood flow is disrupted in liver injury, and whether intravascular staining method can 

be applied to investigate liver injury remains to be determined (DeLeve et al., 1999). It is important to 

grasp the biological background of the source specimens when using legacy data because it directly 

affects the interpretation of the data analysis outcomes. Thus, it is essential to understand the 

relationship between the immune cells infiltrating in the liver and those from blood with a liver injury 

background. 
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TABLE AND FIGURES LEGENDS 

Table 1. Compound used in stratification analysis. Cluster numbers stratified by analysis are 

attached for immune-based and transcript-based. 

compound  
name 

immune 
cluster 

transcript 
cluster 

Tacrine 4 2 

Nitrofurazone 4 2 

Enalapril 1 2 

Metformin 1 4 

Gefitinib 1 1 

Simvastatin 1 2 

Tiopronin 1 2 

Naphthyl isothiocyanate 1 1 

Bromobenzene 1 3 

LPS 3 3 

Cycloheximide 3 3 

Bortezomib 2 4 

Methylene Dianiline 2 4 

Galactosamine 2 4 

Colchicine 2 3 

Thioacetamide 2 4 
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Table 2. List of antibodies and staining reagents used in sorting and flow cytometry of immune 

cells. 

Marker Detection Cat. No. Conjugate Clone Isotype 

CD11b FITC 561684 FITC WT.5 Mouse IgA, κ 

CD45 APC-Cy7 561586 APC-Cy7 OX-1 Mouse IgG1, κ 

CD45RA BV421 740043 BV421 OX-33 Mouse IgG1, κ 

CD3 BV605 563949 BV605 1F4 Mouse IgM, κ 

CD4 BV786 740912 BV786 OX-35 Mouse IgG2a, κ 

CD8 BV711 740724 BV711 OX-8 Mouse IgG1, κ 

CD43 PE 202812 PE W3/13 Mouse IgG1, κ 

CD161 APC FAB9766R    

7AAD 7-AAD 559925     - 
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Figure 1. Overview of the present study. The rat-specific ”signature matrix” comprising marker 

genes that are enriched in each immune cell type was created from our sorted immune cell 

transcriptome (“reference profiles”). Deconvolution using the prepared signature matrix was applied to 

the rat liver transcriptome (“mixture profiles”) and estimated immune cell trafficking was subjected to 

validation and stratification. 
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Figure 2. 

Comparison of estimated and measured immune cell trafficking in rat tissues. (A) Comparison 

in rat spleen (blue) and whole blood cells (WBC, orange). (B) Comparison using the rat liver after the 

compounds were administered. Measurement values were obtained with the flow cytometry after cell 

isolation and red blood cell lysis. Estimated values were calculated by deconvolution using a rat-

specific signature matrix. Concordance was measured by Pearson correlation (R) and linear 

regression (dashed line). Note that these values were converted to z-score between the compared 

samples. Ctrl, control (blue); APAP, acetaminophen (orange); MDA, methylene dianiline (green). 
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Figure 3. Analysis of Open TG-GATEs database. (A) Heatmaps of estimated immune cell 

trafficking in the liver. Estimated values at 3, 6, 9, and 24 h after administration of each compound 

used in the validation are shown. Note that these values are converted to z-score for the 

corresponding control samples in Open TG-GATEs database or obtained dataset by ourselves. (B) 

Comparison of estimated and measured immune cell trafficking in rat liver after administering each 

compound. Concordance was measured by Pearson correlation (R) and linear regression (dashed 

line). Note that these values are converted to z-scores between the compared samples. Note that 

each point is the median value in the experiment or in Open-TGGATEs database (n = 3~4). Mon, 

monocytes; Neu, neutrophils; CD4T, CD4 T cells; CD8T, CD8 T cells; NK, natural killer cells; B, B 

cells. 
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Figure 4. Clustering analysis of 16 compounds that induced significant ALT elevation in the 

Open TG-GATEs database. Dimensionality reduction and clustering were performed using (A), (B) 

immune cell trafficking (C), and (D) transcriptome of rat liver at 3, 6, 9, and 24 hours after 

administration. All features were reduced in dimensionality by locally linear embedding, 

multidimensional scaling, spectral embedding, principal component analysis, t distributed stochastic 

neighbor embedding, and uniform manifold approximation and projection. (A), (C) The dimensionally 

reduced features were combined and visualized by the meta-visualization method. Cluster 1, red; 

Cluster 2, blue, Cluster 3, green; Cluster 4, violet. (B), (D) The combined meta-distance matrix was 

subjected to hierarchical clustering and visualized with a heatmap. The colour bar closest to the 

heatmap corresponds to the stratified compound clusters of the heatmap, and the leftmost colour bar 

in (D) is the colour corresponding to the compound clusters stratified by (B), immune cell trafficking 

based. Note that only CD4 T cells, CD8 T cells, monocytes, and neutrophils were used for immune 

cell trafficking features. All features were converted to z-score for the corresponding control samples 

before being subjected to the dimensional reduction methods. Note also that transcriptome features 

were log-transformed and converted to z-score between each compound feature. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 21, 2023. ; https://doi.org/10.1101/2023.06.20.545836doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.20.545836
http://creativecommons.org/licenses/by/4.0/


24 

 

 

Figure 5. (A) Time course of changes in immune cell trafficking and ALT in stratified compound 

clusters. The line is the average value for each cluster, and the filled colour around it indicates the 

95% confidence interval. Each colour corresponds to the colour of the compound stratified by analysis 

of immune cell trafficking. Note that the scale of the x-axis does not correspond to the actual time 

values. (B), (C) Time course of changes in single-sample gene set enrichment analysis (ssGSEA) 

scores of the liver transcriptome. The ssGSEA scores of gene ontology terms GO: 0060337 type I 

interferon signaling pathway and GO: 0070527 platelet aggregation were visualized as violin plots. 

Note that other terms were visualized in Supplementary Figure 12. 
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Supplementary Figures 

 

Supplementary Figure S1 

Comparison of estimated and measured immune cell trafficking in the rat spleen and whole 

blood cells (WBCs). Values were measured by flow cytometry after cell isolation and red 

blood cell lysis. Estimated values were calculated by deconvolution using (A) a human-

derived signature or (B) mouse-derived signature matrices. Note that these values were 

converted to z-score between the compared samples. 
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Supplementary Figure S2 

Comparison of estimated and measured immune cell trafficking in rat liver after compounds 

were administered. values were measured by FACS after cell isolation and red blood cell 

lysis. Estimated values were calculated by deconvolution using (A) a human-derived 

signature matrix or (B) mouse-derived signature matrices. Note that these values were 

converted to z-score between the compared samples. Ctrl, control; APAP, acetaminophen; 

MDA, methylene dianiline. 
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Supplementary Figure S3 

Comparison of estimated and measured immune cell trafficking in rat liver after compounds 

were administered. Values were measured by FACS after cell isolation and red blood cell 

lysis. Estimated values were calculated by deconvolution using a rat-specific signature 

matrix. Note that these values were converted to z-score between the compared samples. 

Ctrl, control; APAP, acetaminophen; MDA, methylene dianiline. 
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Supplementary Figure S4 

Comparison of estimated and measured immune cell trafficking in the spleen, the blood or 

the liver after each compound were administered. Measurement values were measured by 

the flow cytometry after cell isolation and red blood cell lysis. Estimated values were 

calculated by deconvolution using a rat-specific signature matrix. Concordance was 

measured by Pearson correlation (R) and linear regression (dashed line). Note that these 

values were converted to z-score between the compared samples. Ctrl, control; APAP, 

acetaminophen; MDA, methylene dianiline. 
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Supplementary Figure S5 

(A) Time course of changes in neutrophils estimated in the liver and ALT measured in the 

blood of rat administered tiopronin as determined from the Open TG-GATEs database. 

Value of (B) ALT in blood and (C) neutrophils in the liver at 3 h after tiopronin administration. 

Note that neutrophils values are converted to z-score for the corresponding control samples. 

The tests of significance were conducted using an unpaired sample greater-sided Welch t 

test.
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Supplementary Figure S6 

Comparison of estimated and measured immune cell trafficking in the rat liver after 

administering each compound. Values were calculated by deconvolution using (A) human-

derived signature matrix or (B) mouse-derived signature matrices. Note that these values 

were converted to z-score between the compared samples. Note that each point is the 

median value in the experiment or in the Open-TGGATEs database (n = 3~4). 
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Supplementary Figure S7 

ALT distribution after (A) administration of control solvent or (B) of compound from the Open 

TG-GATEs database. The vertical dotted line is the threshold for targeting the compounds 

used for stratification. 
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Supplementary Figure S8 

Visualization of dimensionally reduced immune cell trafficking features from each method 

subjected to meta-visualization. Each color corresponds to the color of the stratified 

compound. LLE, locally linear embedding; MDS, multidimensional scaling; SPCE, spectral 

embedding; PCA, principal component analysis; TSNE, t distributed stochastic neighbor 

embedding; UMAP, uniform manifold approximation and projection. 
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Supplementary Figure S9 

Visualization of dimensionally-reduced transcriptome features from each method subjected 

to meta-visualization. Each color corresponds to the color of the compounds stratified by 

immune cell trafficking analysis. LLE, locally linear embedding; MDS, multidimensional 

scaling; SPCE, spectral embedding; PCA, principal component analysis; TSNE, t distributed 

stochastic neighbor embedding; UMAP, uniform manifold approximation and projection. 
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Supplementary Figure S10 

Time course of changes in immune cell trafficking and ALT in stratified compound clusters. 

The line is the average value for each cluster, and the filled color around it indicates the 95% 

confidence interval. Each color corresponds to the color of the compound stratified by 

analysis of the transcriptome. Note that the scale of the x-axis does not correspond to the 

actual times. 
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Supplementary Figure S11 

Time course of changes in blood biochemistry. The line is the average value for each cluster, 

and the filled color around it indicates the 95% confidence interval. Each color corresponds 

to the color of the compound stratified by analysis of immune cell trafficking. Note that the 

scale of the x-axis does not correspond to the actual times. TBIL, total bilirubin; Plat, 

Platelets; RBC, red blood cells; LymB, lymphocytes in the blood. 
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Supplementary Figure S12 

Time course of changes in single sample gene set enrichment analysis (ssGSEA) scores of 

the liver transcriptomes. For each cluster, calculated from the immune cell trafficking, from 

the top to the bottom, the gene ontology terms with the lowest p-value in the comparison test 

with the other clusters are shown. Terms with (A) highest and (B) lowest ssGSEA score in 

that time compared with other clusters. 
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Supplementary Figure S13 

Time course of changes in single sample gene set enrichment analysis (ssGSEA) scores of 

the liver transcriptomes. For each cluster, calculated from the liver transcriptomes, from the 

top to the bottom, the gene ontology terms with the lowest p-value in the comparison test 

with the other clusters are shown. Terms with (A) highest and (B) lowest ssGSEA score in 

that time compared with other clusters. 
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Supplementary Figure S14 

Time course of changes in single sample gene set enrichment analysis (ssGSEA) scores of 

the liver transcriptomes. For gene ontology terms of (A) interleukin-1-mediated signaling 

pathway and (B) platelet aggregation. 
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Supplementary Figure S15 

Time course of changes in estimated neutrophils, monocytes, and lymphocytes in the liver 

using deconvolution and that of measured in the blood of rats administered (A) naphthyl 

isothiocyanate or (B) thioacetamide as determined from the Open TG-GATEs database. 

Note that all values were converted to z-score for the corresponding control samples. 

Estimated values for lymphocytes are estimated from sum of NK, B, CD4 T, and CD8 T cells. 
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