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ABSTRACT

Single-cell multi-omics methods are enabling the study of cell state diversity, which is
largely determined by the interplay of the genome, epigenome, and transcriptome. Here,
we describe Gtag&T-seq, a genome-and-transcriptome sequencing (G&T-seq) protocol
of the same single cells that omits whole-genome amplification (WGA) by using direct
genomic tagmentation (Gtag). Gtag drastically decreases the cost and improves
coverage uniformity at both the single-cell and pseudo-bulk level when compared to
WGA-based G&T-seq. We also show that transcriptome-based DNA copy number
inference has limited resolution and accuracy, underlining the importance of affordable
multi-omic approaches. Moreover, applying Gtag&T-seq to a melanoma xenograft
model before treatment and at minimal residual disease revealed differential cell state
plasticity and treatment response between cancer subclones. In summary, Gtag&T-seq
Is a low-cost and accurate single-cell multi-omics method enabling the exploration of

genetic alterations and their functional consequences in single cells at scale.
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INTRODUCTION

Single-cell genomics is key to study genetic heterogeneity in cells of developing and
ageing organisms in health and disease. Compared to conventional bulk DNA
sequencing, these methods offer enhanced resolution to characterise the mutational
processes operative in tissues and organs (Bian et al., 2018; Navin and Hicks, 2011,
Pellegrino et al., 2018). Leveraging the detected somatic mutations, the phylogeny of
the cells and tissues can be reconstructed (Bae et al., 2018; Eirew et al., 2015; Gao et
al., 2016; Kim et al., 2018; Navin et al., 2011; Wang et al., 2014), increasing our
understanding of the developmental and evolutionary mechanisms of (diseased) tissues
as well as of the aetiological role of the acquired mutations in the phenotype (Cai et al.,

2014; Lodato et al., 2018).

The majority of single-cell genome sequencing methods require whole-genome
amplification (WGA) to preamplify the genomic DNA (gDNA) and obtain enough
material for preparing a sequencing library. In general, WGA methods apply either
Polymerase Chain Reaction (PCR, e.g. DOP-PCR, LM-PCR, Amplil) (Ferrarini et al.,
2018; Klein et al., 1999; Telenius et al., 1992), multiple displacement amplification
(MDA e.g. RepliG, GenomiPhi) (Dean et al., 2002), or a combination of both (e.g.
MALBAC, picoPlex) (Langmore, 2002; Zong et al., 2012). Amplification, however,
introduces coverage bias and nucleotide errors due to buffer and polymerase artefacts.
Additionally, the process of preamplification followed by library preparation is low
throughput, labour intensive and costly. Recently, tagmentation-based methods were

reported, preparing sequencing libraries from single-cell gDNA without upfront WGA
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(Laks et al., 2019; Rohrback et al., 2018; Vitak et al., 2017; Xi et al., 2017; Zachariadis
et al., 2020), and providing a more uniform representation of the cell's genome, while

enabling a higher throughput.

Single-cell multi-omics technologies have been developed to simultaneously assess the
genome, epigenome, transcriptome, and/or selected proteins of single cells by either
joint or parallel processing of the molecular hierarchy, or by data analysis
methodologies (Angermueller et al., 2016; Cao et al., 2018; Clark et al., 2018; Dey et
al., 2015; Hou et al., 2016; Lietal., 2015; Macaulay et al., 2015; Pott, 2017; Zachariadis
et al., 2020). Methods for the joint processing of gDNA and RNA of single cells either
use a single-tube gDNA-and-mRNA (DR-seq) preamplification followed by separate
library preparation (Dey et al., 2015) or rely on their physical separation before their
parallel amplification (Macaulay et al., 2015; Han et al., 2014; van Strijp et al., 2017,
Zachariadis et al., 2020). DR-seq preamplifies gDNA and mRNA simultaneously,
minimizing nucleic acid loss, but complicating data analysis and interpretation due to
the presence of RNA-derived reads in the gDNA-seq data. Physical separation of
MRNA and gDNA, as in Genome-and-Transcriptome sequencing (G&T-seq)
(Macaulay et al., 2015) and DNTR-seq (Zachariadis et al., 2020) yields a more flexible
protocol and allows the RNA- and gDNA-seq protocols to be adapted to the researcher’s
needs. Up to now, gDNA sequencing in G&T-seq necessitates WGA techniques,
making large-scale G&T-seq cost prohibitive and time consuming. Other groups have
studied the interplay between genome and transcriptome, by either inferring copy

number alterations (CNA) from gene expression profiles (Patel et al., 2014; Tirosh et
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al., 2016) or integrating separate single-cell gDNA and RNA datasets (Campbell et al.,
2019; McCarthy et al., 2020). While these approaches have led to new insights into
tumour heterogeneity, tumour progression, as well as therapeutic strategies, only direct
multi-omics approaches allow genotype-phenotype relations to be unambiguously

ascertained (Bock et al., 2016; Chappell et al., 2018; Macaulay et al., 2017).

Here, we present Gtag&T-sequencing, a method that enables genome-and-
transcriptome sequencing of single cells without upfront WGA, enhancing throughput
while minimising coverage bias, amplification noise, and cost. Gtag&T-seq of a patient-
derived xenograft (PDX) melanoma model highlights the advantages of genome-based
over transcriptome-based CNA inference, and the transcriptional effects of complex
genomic alterations. We construct a DNA-based cell lineage tree annotated with RNA-
based cell type and state information from the same cells, providing unique insights in
the role of genetic and non-genetic factors as well as their interplay during tumour

evolution under therapeutic pressure.

RESULTS

WGA-free parallel genome and transcriptome sequencing of single cells
Gtag&T-seq is based on genome-and-transcriptome (G&T) sequencing (Fig. 1A),
developed by Macaulay et al. (Macaulay et al., 2015, 2016). Following physical
separation of the DNA and mRNA of the same cell, Gtag&T-seq applies tagmentation

to produce a gDNA sequencing library directly from the cell's genome, instead of
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preamplifying it with WGA (Fig. 1A). Following tagmentation, PCR adds cell-specific
barcodes and sequencing adapters to enable multiplexed low coverage sequencing and

cost-effective multi-modal analysis of single cells (Fig. 1B).
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Figure 1. Gtag&T is a cost-effective method for joint analysis of DNA and RNA of single cells. A General
workflow of genome-and-transcriptome separation followed by Gtag (in black) or conventional G&T-seq with
picoPlex and Smart-Seq2 (in grey). B Cost of 384 cells processed either by picoPlex (1/2 volumes) and Nextera
XT (1/10™ volumes) or by Gtag after G&T-separation and sequencing performed on one HiSeq4000 lane. C
Spearman correlation of the mean expression per gene after conventional G&T-seq versus Gtag&T-seq for the

HCC38 and matched normal (BL) cell line. D Median absolute pairwise difference (MAPD) of logR values
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between consecutive genomic bins, for HCC38 and BL single-cell DNA samples processed by Gtag or picoPlex,
and analysed using genomic bins of 500 kb. E Lorenz curves showing the mean coverage uniformity of single-
cell genomes. The dotted line represents perfect uniformity. Vertical lines on the Lorenz curves represent the
standard deviations from the mean. F Observed genome coverage of merged Gtag and picoPlex genomes for a
given theoretical genome coverage. The coverage indicated with the dotted line is the coverage maximally
attainable assuming no overlapping reads. For each method, increasing amounts of single-cell genomes are
merged, plotted, and a local regression is performed. G MAPD values for Gtag and picoPlex genomes obtained
by merging either 5, 10, 15, or 20 single-cell genomes for different genomic bin sizes.
The centreline, top and bottom of the boxplots represent respectively the median, 25th and 75th percentile and

whiskers are 1.5 x IQR. ****: p <= 0.0001 (Wilcoxon test).

The performance of Gtag&T-seq was evaluated against conventional G&T-seq
(Macaulay et al., 2015), using picoPlex for WGA, for both the HCC38 cancer cell line
and its matched normal cell line (BL). PicoPlex was chosen for its proven
reproducibility and high accuracy to detect DNA copy numbers (Chen et al., 2018;
Deleyeetal., 2017; Zhang et al., 2017). At the RNA level, the datasets were comparable,
highlighted by the high correlation of the mean expression per gene for both cell lines
(BL, R? =0.83; HCC38, R? = 0.87; Fig. 1C and Supplemental Fig. S1A,B). To allow
for a fair comparison of the genome sequences, gDNA reads of each cell were down-
sampled to a maximum of 400,000 reads before duplicate removal (Methods and
Supplemental Data S1), a depth obtainable by sequencing 384 libraries on one
Illumina HiSeg4000 lane. Reliable genetic variant detection from single-cell gDNA
data is largely dependent on the noise and coverage uniformity attained by the method.
Genomic readouts were significantly less noisy for Gtag (BL, p <0.0001; HCC38, p <
0.0001) as assessed by median absolute pairwise difference (MAPD) (Fig. 1D). In

addition, Gtag provided improved coverage uniformity, discernible from Lorenz curves
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(Fig. 1E and Supplemental Fig. S1C,D) and Gini index comparison (uctag = 0.20

VErsus ppicoriex= 0.27; p <0.0001) of individual BL genomes.

Low-depth single-cell genomes can be pooled to derive pseudo-bulk genomes, enabling
refinement of genomic variant characterization (Laks et al., 2019; Zahn et al., 2017).
To investigate differences in performance resulting from omitting WGA, we compared
coverage breadth, uniformity, and noise after merging single-cell genomes (HCC38-
BL) in silico for both multi-omics methods. Plotting the theoretical versus the observed
coverage breadth for increasing amounts of pooled single-cell genomes (Fig. 1F)
showed a rapid saturation of coverage breadth for picoPlex, which is most likely caused
by limited random priming during WGA.. Pseudo-bulks can be further leveraged to map
DNA breakpoints more precisely, conditional on smaller bin sizes not exacerbating
noise. We observed that picoPlex suffered from inflated MAPD scores in comparison
to Gtag for pseudo-bulks analysed with smaller bin sizes (Fig. 1G). In addition, a more
even coverage uniformity was obtained for Gtag 20-cell pseudo-bulk genomes as

evidenced by Gini indexes (Uctag = 0.18, versus ppicoriex= 0.42; p <0.0001).

Single-cell and pseudo-bulk analysis of a human melanoma PDX model

To study genetic subclonal dynamics, cellular phenotypic heterogeneity —including
phenotype switching or a more continuous plasticity (Shen and Clairambault, 2020)— as
well as genotypic-phenotypic interactions during cancer treatment at single-cell

resolution, we processed 165 and 176 single cells from a melanoma PDX model using
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Gtag&T- and G&T-seq, respectively. The MEL006 model was established from a
patient with a BRAFY%%E mutant melanoma that had an almost complete response to
combined dabrafenib (BRAFV®E inhibitor) and trametinib (MEK inhibitor) therapy
(Rambow et al., 2018). Single cells from the PDX model were collected before
treatment (T0) and at minimal residual disease (MRD; T28), when most of the tumour
cells are eradicated by the therapy. However, a small subset of the cancer cells persists
in a drug-tolerant state, providing a substrate for relapse. The molecular mechanisms
underpinning drug tolerance and/or resistance may comprise genetic as well as non-
genetic plasticity factors. A deeper understanding of these genetic and non-genetic

mechanisms is required for the design of longer-lasting combination treatments.

After removing low quality genomes (Methods and Supplemental Data S2), 150
single-cell Gtag genomes were compared to 173 single-cell picoPlex genomes. DNA
copy number profiles were called using genomic bins of 500 kb, revealing a highly
rearranged tumour cell population (Fig. 2A) with an average ploidy of 3.5, indicative
of an early whole-genome doubling event, coherent with previous bulk sequencing

observations (Marin-Bejar et al., 2021).

Five distinct subclones (A-E; Fig. 2A) were identified using hierarchical clustering on
Canberra distance. Subclone D (n = 8) and E (n = 1) contained a small number of cells
and were omitted from downstream analyses. The three major subclones differed by the
presence of an additional copy of chr2 in A and B, and a loss of one copy of chr7 in

subclone B. Within each subclone, single cells displayed similar copy number profiles
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(mean pairwise R: A=0.86, B = 0.86, C=0.78), indicative of stable clonal expansions.
To refine the CNA states and breakpoints, pseudo-bulk genomes were created per
method for each of the subclones (A-C) at both time points. Similar to our observations
with cell lines, WGA resulted in increased noise and decreased coverage uniformity in
pseudo-bulk genomes (Supplemental Fig. S2F), leading to incorrect clustering of the
picoPlex-derived pseudo-bulks (Fig. 2B). As a consequence, Gtag pseudo-bulk

genomes allowed for a more detailed dissection of focal CNAs (Fig. 2C,D).

Detection of subclone-specific focal amplifications at near base-pair resolution
using Gtag

Single-cell and pseudo-bulk CNA profiling with 500 kb bins (Fig. 2A-D) indicated the
existence of highly amplified loci on chrl3 and chr22. The elevated levels of
amplification in these regions combined with the lower noise and higher uniformity of
Gtag genomes allowed us to further refine the breakpoints using 10 kb bins. In total, 11
focal amplifications ranging in size from 0.12 to 1.20 Mb were found: 10 on chrl3
(913.3A, g13.3B, q14.2, q14.3, g21.2, q21.33, g22.3, g31.1, 931.3, 932.3) and 1 on
chr22 (g11.21). GISTIC2 analysis of 367 skin cutaneous melanoma samples recently
revealed that 13g and 22q arms are frequently amplified (Broad Institute TCGA
Genome Data Analysis Center, 2016). Moreover, a 22911.21 focal amplification is
found in 10% of the CCLE skin cancer cell lines (e.g. Hs294-T and COLO679

BRAF(V600) mutant cell lines), 22g11.21 was also identified as recurrently amplified
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in a pan-cancer analysis (Zack et al., 2013), and was recently associated with inferior

survival in acral melanoma (Farshidfar et al., 2022).
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Figure 2. Gtag improves breakpoint and copy number calling in a melanoma xenograft model. A Genome-
wide copy number heatmap of 323 single cells from a patient-derived xenograft (PDX) model of human
melanoma. Columns correspond to chromosomes (divided into genomic bins of 500 kb) and rows to single cells
(n = 323). All libraries were down-sampled to 400,000 reads before duplicate removal. B DNA copy number
heatmap of pseudo-bulk genomes (genomes are merged per method, subclone, and time point). Gtag and picoPlex
pseudo-bulk genomes are plotted separately. Red arrows indicate incorrect CNA detection resulting in incorrect
clustering of subclone A and B (red rectangle) based on pseudo-bulk genomes. In A and B cells are annotated for
their subclone assignment and time point of isolation, as well as the methodology used for DNA processing. C, D
Copy-number plots from respectively Gtag and picoPlex pseudo-bulk genomes (subclone A at T0) of chrl3 (left
panel) and chr22 (right panel). Black dots represent genomic bins of 10 kb, and the red line represents the
segmented integer DNA copy number. E Heatmap of the focal amplifications on chrl3 and chr22 (annotated in
top row in blue and orange respectively). The approximate size of the focal amplification is depicted at the top.
DNA copy numbers are indicated in greyscale. F View, adapted from IGV, of read distribution in Gtag pseudo-
bulk genomes (A TO versus C T28). A breakpoint of subclone A is represented at kilobase resolution (left panel)

and base pair resolution (right panel).

Subclonal differences in the presence, size and copy number were observed for the
majority of the focal amplifications on chrl3 (Fig. 2E). Subclone C was characterised
by the presence of 139g31.1 and 13g32.3 amplicons, as well as different breakpoints for
4 focal amplifications (e.g. 13q13.3A, 13914.3, 13g21.2, and 13qg21.33; Fig. 2E).
Furthermore, a small number of cells belonging to subclone A and B showed additional
breakpoints in 13914.2-3 and 13g21.33, resulting in multiple smaller amplicons (Fig.
2E) as well as small alterations in 22q11.21 that were only detected in Gtag genomes
and not in picoPlex genomes, but are confirmed using pseudo-bulk genomes as well as
transcriptomic analysis (Supplemental Fig. S3). Within subclones, however, most of

the breakpoints were conserved (mean pairwise R: A=0.73, B =0.72, C=0.71).
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The copy number of the majority of chrl3 amplicons was significantly correlated with
the amplification level of 22g911.21, suggesting that these amplicons are co-amplified
(Supplemental Fig. S4). The absence of correlation for amplicon 13922.3 is explained
by its absence in half of the cells irrespective of clonal context. All aforementioned
subclonal differences were also detected in pseudo-bulk genomes and remained after
downsampling to the same depth (Fig. 2C-D and Supplemental Fig. S5). Furthermore,
these pseudo-bulk genomes allowed us to pinpoint the breakpoint of the focal

amplifications to near base-pair resolution (Fig. 2F).

Although full reconstruction of the amplicon structure is challenging from single-end
sequencing data, we were able to make two key observations. First and foremost, the
subclonal organization of these focal amplifications supports the existence of at least 3
major genomic subpopulations in this tumour, with subclones A and B closely related.
Secondly, the heterogeneity in the copy number of the amplicons indicates that these

are dynamic instead of static DNA entities.

Transcriptome-based DNA copy number inference has limited accuracy and fails
to detect focal amplifications

In order to address the added value of direct genome measurements along with
transcriptome profiling we first set out to identify the three major genomic subclones

from the single-cell transcriptome data. Of the G(tag)&T single-cell transcriptomes, 256
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passed our quality thresholds (Methods and Supplemental Data S2) and were used for
downstream analysis. We inferred CNAs using averaged gene expression patterns with
normal human melanocytes as a reference using inferCNV (Patel et al., 2014).
Comparison to the matching gDNA-derived DNA copy number profiles of the same
cells, revealed an average sensitivity and specificity of respectively, 48% and 90%
(Methods). InferCNV failed to detect the copy number of the whole-chromosome gains
for chromosomes 4, 6, 8 and 18 for all cells, as well as chr2 for cells belonging to
subclones A and B (Fig. 3A). Instead, we obtained the correct copy number for smaller
regions of these chromosomes (Fig. 3A), suggesting that not all genes are affected to
the same degree by genomic imbalances. Furthermore, the focal amplifications on
chromosomes 13 and 22 and the p-ter amplification of chr12 were not detected. These
shortcomings notwithstanding, we trained a Support Vector Machine (SVM) model on
our single-cell genome-and-transcriptome data that achieved a mean classification
accuracy of 0.72 [95% CI 0.58-0.84]. Although we were able to identify the three
subclones to some degree, we found a high misclassification rate of subclone B to A.
Combining subclones A and B, increased the accuracy of the model to 0.92 [95% CI
0.81 - 0.98]. This highlights the need for direct multi-omics to accurately dissect both

genomic evolution and transcriptome plasticity in full.
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Figure 3. InferCNV is unable to accurately reconstruct CNAs and discern the focal amplifications on chr13
and chr22. Copy number alteration heatmap obtained using inferCNV on the transcriptome data of both the G&T-
seq and Gtag&T-seq datasets. Single cells are annotated according to their subclone assignment and time point of
isolation. The reference Gtag&T pseudo-bulk copy number profiles per subclone are depicted underneath the

inferCNV results for each subclone. All copy numbers were capped at 6 to allow for a fair comparison between

the methods.

Differential expression analysis reveals subtle effects of subclonal chromosomal
alterations

Previously, single-cell RNA-seq of the same PDX melanoma model exposed to
BRAFI/MEKI treatment, identified four inducible drug-tolerant cell states: a “starved”
(starved-like melanoma cell, SMC) state that could either differentiate into a
“pigmented” state, or de-differentiate into an “invasive/mesenchymal-like (or
undifferentiated)” state or a “neural crest stem cell (NCSC)-like” state (Rambow et al.,
2018). To investigate the effects of the genomic alterations on the cell’s transcriptome,

and the aforementioned drug-tolerant states, we performed pairwise differential gene
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expression analysis between the three genomic subclones at each time point. In total,
only 14 differentially expressed genes were identified (FDR < 0.05) (Fig. 4A). At both
TO and T28, no difference was found between subclones A and B, indicating that the
loss of one copy of chr7 has only subtle effects on the transcriptomes of cells belonging
to subclone B. This observation agrees with the difficulties of the SVM model to
correctly classify subclone B based on the CNAs obtained with inferCNV. In contrast,
we found that loss of chr2 in subclone C caused lower expression of PCBP1 and ARPC2
compared to A, and PCBP1 and OST4 to subclone B. At T28, AQP1 (chr7) and LICAM
(chrX), both markers of the NCSC state, showed increased expression in subclone A
and B respectively, while CD36 (chr7), a marker for the SMC state, was expressed at
higher levels in subclone C compared to subclone A. Three differentially expressed
genes were located on the focal amplicons of chrl3 and chr22. At both TO and T28,
THAP7 (22911.21) was found to be higher expressed in subclone C, while LZTR1
(22911.21) was additionally found at T28. Lastly, GPC5 (13¢g31.3) had a higher
expression in cells belonging to subclone B at T28. These observations suggest the
presence of subclonal differences in expression levels of genes located on the focal
amplifications, or alternatively, differences in the copy number of the amplicons

influencing the gene expression between subclones A, B and C.
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Figure 4. Differential gene expression analysis between subclones reveals subclone and time-point specific

gene expression as well as gene dosage effects. A Lollipop plot depicting genes differentially expressed between

18


https://doi.org/10.1101/2023.01.13.521174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.521174; this version posted March 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

genetic subclones at specific time points (FDR < 0.05). No differential expression was observed between
subclones A and B at either time point. The colour of the dots reflects the chromosomal location of the genes,
while the shape highlights marker genes related to melanoma minimal residual disease states. The size depicts the
percentage of cells expressing the gene. B Gene dosage plots of four genes located on the focal amplification of
chrl3. The copy number (log-scale with base e) of the 10 kb bin overlapping with the transcription start-site (x-
axis) is plotted against log normalized gene expression counts (y-axis). C Same as B but for genes located on
22¢11.21 that had observable gene expression. D Gene expression dosage plots for genes related to pigmentation
and the copy-number of the 22q11.21 amplicon (log-scale). B, C and D Dots are coloured per subclone. Linear
regression was performed for each subclone (shaded region indicates 95 % confidence interval). NCSC, neural

crest stem cell; SMC, starved-like melanoma.

Focal amplifications influence subclone-specific gene expression

To assess the effect of ongoing amplicon evolution on the phenotype of the subclones,
we calculated the correlation between the DNA copy number of genes located on each
of the focal amplifications and their normalized expression (Fig. 4B,C and
Supplemental Fig. S6). For chrl3 we found 5 genes with a gene-dosage effect across
all the subclones (e.g. UFM1 and CLN5, Fig. 4B), 4 genes with a subclone-specific
effect (e.g. GPC5; Fig. 4B) and finally, 4 genes that did not show a dosage effect (e.g.
DCLK1; Fig. 4B). All 11 genes located on the 22g11.21 amplicon showed clear gene-
dosage effects (e.g. CRKL; Fig. 4C) in at least one of the subclones. Of these we found
that 8 genes showed subclone-specific differences in gene expression when controlling
for amplicon copy number (e.g. LZTR1, THAP7, PI4KA; Supplemental Table S1 and
Fig. 4C). For LZTR1, a tumour suppressor in many cancers although recently also
suggested as a key oncogene in acral melanoma (Farshidfar et al., 2022), and THAP7,

the disparity is elucidated by additional breakpoints in subclones A and B, resulting in
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a small region of lower copy number (Supplemental Fig. S3). The difference in PI4KA
expression, on the other hand, did not appear to be caused by subclone-specific
breakpoints. Taken together these observations suggest concomitant gene-dosage
effects and epigenomic regulation modulating differential expression of genes between

subclones.

Amplicon copy number is associated with drug-tolerant cell state plasticity

Subsequently, we investigated if the amplicons were associated with phenotypic MRD
states. No significant effects were observed for the majority of chrl3 amplicons
(Supplemental Fig. S7A,B). However, for the 22q11.21 amplicon we found that the
expression of MLANA, a marker for the pigmented state, was inversely correlated with
the copy number (Fig. 4D). In addition, genome-wide gene set enrichment analysis
(GSEA) revealed a strong enrichment of gene ontology terms related to pigmentation
(e.g. pigmentation, melanin metabolic process, pigment granule; Supplemental Table
S2) for genes negatively correlated with the copy number of this amplicon (e.g. DCT,
TYR, SLC45A2). These findings might indicate that cells with a lower 22q11.21 copy
number could be more prone to occupy the differentiated pigmented cell state. In
contrast, we observed a significant enrichment for high 22911.21 copy number in the
invasive state compared to both the SMC and NCSC state (Supplemental Fig. S7D).
While there was no difference in amplicon copy number between the SMC and NCSC
state, 6 genes (e.g. KLHL22, TMEM191A, PI4KA, LZTR1, THAP7, TUBA3FP) were

expressed more strongly in the SMC state (Supplemental Fig. S7C). In summary, while
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none of the previously described MRD-specific markers or known melanoma-specific
transcription factors are located on the 22g11.21 amplicon, our data suggests a
correlation between the amplicon and the MRD states available to the subclones

(Rambow et al., 2018).

Cellular plasticity and phenotypic cell-state diversity within and between
different genetic subclones on treatment

G(tag)&T-seq allows to construct, with single-cell resolution, a phylogenetic tree
throughout therapy, annotated with the aforementioned drug-tolerant states. We found
that while all genetic subclones were observed at both time points, their relative
abundance shifted. TO was enriched for subclones A and B (50% and 28% of cells,
respectively), while subclone C was the most abundant at T28, increasing from 22% at
TO to 66% (X>-test p = 1.773e-13; Fig. 5A). Strikingly, we found the NCSC state to be
enriched in subclones A and B at T28, while the SMC state was present in all genetic
subclones. Both observations were validated using inferCNV and our trained SVM
classifier on the Smart-seg2 data from Rambow et al. (Rambow et al., 2018) (Fig. 5B).
Differential expression analysis indeed revealed higher expression of the SMC-marker
CD36 in subclone C, and increased expression of NCSC markers AQP1 and L1CAM in
subclones A and B respectively (Fig. 4A). Furthermore, GSEA revealed enrichment of
genes related to epithelial-mesenchymal transition (EMT) at T28 in both subclone A

and B, but not in subclone C (A, p =0.0006; B, p =0.0006; Supplemental Table S3,4).
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Moreover, we found that at T28, the copy number of the 22q11.21 amplicon in subclone

C had increased compared to TO (Fig. 5C), and to A and B at T28 (Fig. 5D).
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Figure 5. Phylogenetic tree reveals subclonal differences in treatment response and cellular plasticity. A

Phylogenetic tree annotated with drug-tolerant cell states at TO and T28. The shift in the proportion of cells per
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subclone that occurs between TO and T28 is visualized with polygons. Gene set enrichment analysis revealed
epithelial-mesenchymal transition (EMT) at T28 in subclones A and B. B InferCNV together with the trained
SVM classifier applied to Smart-seq2 data supports the subclonal differences that were observed with G(tag)&T -
seg. Subclone A and B are taken together and compared with subclone C. Percentages indicate the proportion of
cells per subclone in the Gtag&T/G&T data (grey) and Smart-seq2 data (black) of Rambow et al. (Rambow et al.,
2018). Dots represent the percentage of cells with a particular MRD state in the combined G(tag)&T-Seq data. C
Comparison of DNA copy number distribution of the 22g11.21 amplification between timepoints (TO versus T28)
per subclones. D The same as ¢, but here subclones are compared before treatment (TO) and at MRD (T28).

The centreline, top and bottom of the boxplots represent respectively the median, 25th and 75th percentile and
whiskers are 1.5 x IQR. Significance levels after Wilcoxon test are as follows, ns: p > 0.05; *: p <= 0.05; **: p

<=0.01.

Taken together, we show that subclone C likely has a higher prevalence at MRD, while
the NCSC state is primarily found in subclones A and B. Since drug-tolerant states
appear only in a small subset of cells, direct single-cell genome-and-transcriptome

methodologies are best-suited for studying this process.

DISCUSSION

We developed Gtag&T-seq, a genome-and-transcriptome sequencing protocol of the
same single cell that omits WGA by using direct genomic tagmentation. Compared to
G&T-seq using picoPlex, Gtag&T-seq is characterized by improved coverage breadth
and uniformity in both single-cell and pseudo-bulk genomes, which allows for more
precise detection of genomic alterations. This is in line with previous reports of other
research groups that used tagmentation-based library preparation without WGA (Laks

et al., 2019; Rohrback et al., 2018; Vitak et al., 2017; Xi et al., 2017; Zahn et al., 2017;
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Zachariadis et al., 2020). Furthermore, Gtag&T-seq requires less processing time and
significantly reduces the cost of G&T-seq. Moreover, it proved to be superior in the
profiling of small focal amplifications (0.12-1.20 Mb), allowing breakpoints to be
pinpointed to near base-pair resolution in pseudo-bulk genomes. In addition, Gtag&T
allowed us to confirm the resulting gene expression dosage effects using the mRNA of

the same cell.

Importantly, we highlight the need for direct multi-omics approaches to accurately
dissect both genomic evolution and transcriptome plasticity in full, as opposed to
inferring CNAs from single-cell transcriptomes. Besides failing to detect small focal
amplifications, several whole-chromosome gains were found as smaller regions of
amplification, suggesting that not all genes are affected to the same degree by genomic
imbalances. Furthermore, this approach had difficulties in obtaining the correct copy
number, potentially underestimating the heterogeneity present in the sample when

subclones have shared breakpoints.

We applied Gtag&T-seq to a human PDX melanoma model to study the interplay of
genomic and transcriptomic alterations in the context of tumour evolution and therapy
resistance. Previously this model was used to identify four inducible drug-tolerant cell
states —SMC, NCSC, pigmented and invasive— and revealed limited genomic
heterogeneity (Rambow et al., 2018). Here, we discerned three major genomic
subclones and constructed a longitudinal cell lineage tree annotated with the drug-

tolerant states throughout therapy. We found subclonal differences with regard to

25


https://doi.org/10.1101/2023.01.13.521174
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.521174; this version posted March 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

treatment response and transcriptome plasticity: subclone C, which lost a copy of chr2,
was better suited to survive the initial treatment, but had no cells with the NCSC state.
In the G(tag)&T-seq data, no cells were assigned to the pigmented state while at T28
about 3% of Smart-seq2 samples from Rambow et al. (Rambow et al., 2018) are
assigned to this state. It is unclear if the differences we observe between G(tag)&T-seq
and Smart-seq2-regarding the proportion of drug-tolerant states is due to the limited
number of cells analysed. In addition, we suggest a potential role for the 22q11.21
amplification in determining phenotypic differences between the subclones as well as
the drug-tolerant states. One hypothesis is that this effect is mediated by THAP7, which
Is expressed higher in both subclone C and the SMC state, and is known to promote cell
proliferation in lung adenocarcinoma (Chen et al., 2019). Another key gene to explain
the subclonal differences could be LZTR1 which is higher expressed in clone C cells
with a high copy number of 22g11.21 and is located on a breakpoint in clone A and B.
Although LZTR1 is generally considered a tumour suppressor, a recent study in acral
melanoma suggests that LZTR1, as well as CRKL, also have tumour-promoting and

metastasizing capabilities (Farshidfar et al., 2022).

In the melanoma model we observed extensive heterogeneity regarding the presence,
size, and dosage of focal amplicons that would be difficult to resolve using bulk
sequencing and was also not always detected by picoPlex. Similar levels of amplicon
heterogeneity were recently also observed in breast cancer by single-nucleus
sequencing (Baslan et al., 2020). It should be further investigated whether focal

amplifications, as found in the melanoma model, are drivers of subclonal differences
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regarding tumour evolution and therapy resistance (Francis et al., 2014), or whether
they are passenger events. Nevertheless, recent studies have shown the importance of
profiling driver amplicons as they proved to be predictors for survival as well as
actionable targets for cancer therapy (Koboldt et al., 2012; Leucci et al., 2016; Xue et
al., 2017). In this work, we show that Gtag&T is a suitable method to profile focal

amplifications at near base-pair resolution in single cells.

The past years, several multi-omics techniques that interrogate the genome and
transcriptome have been developed. Some of these techniques rely on separating the
nucleus from the cytoplasm and are therefore limited in that nuclear mRNAs are not
sequenced (Han et al., 2014; van Strijp et al., 2017; Zachariadis et al., 2020). The
separation principle of transcriptogenomics (Li et al., 2015) is similar to that of G&T-
seq but Li et al. (Li et al., 2015) only performed exome sequencing. In DR-seq (Dey et
al., 2015), gDNA and mRNA are preamplified before splitting the reaction, which
minimizes the risk of losing nucleic acids during the separation process. However,
separating the mRNA and gDNA prior to amplification enables more flexibility in
choosing which assay is used downstream. For example, in Gtag&T, Smart-seq2 can be
replaced with the recently developed alternatives, like Smart-seq3 (Hagemann-Jensen
et al., 2020), or 3> RNA-seq technologies (Hashimshony et al., 2016; Sasagawa et al.,
2018) to further reduce costs. In terms of throughput, the recently developed Sci-L3-
RNA/DNA co-assay enables at least 10,000s of single nuclei to be profiled per 2-day
experiment. Yin et al. (Yin et al., 2019) show that this combinatorial-indexing based

co-assay is able to distinguish female HEK293T cells from male BJ cells based on Y
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chromosome presence. At the moment it is unclear how sci-L3-RNA/DNA compares
to other genome-and-transcriptome technologies in terms of detected genes, and
precision for detecting smaller CNAs. We do want to note that there is need for both
high throughput methods, like sci-L3, as well as low-to-medium throughput when
studying rare cells that can be isolated (Demeulemeester et al., 2016) or when only
smaller populations of cells are available, like for example when studying genomic
instability during preimplantation embryo development (Petropoulos et al., 2016;

Vanneste et al., 2009).

Taken together, Gtag&T will enable researchers to study the interplay of genome and
transcriptome at unprecedented detail. We suspect that our method will be broadly
applicable in studying the role of somatic variation in health and disease in fields such

as oncology, neurology, and embryology.

METHODS
Data accession codes
Human data are available from the European Genome-phenome Archive (EGA) with

accession number EGAS00001007043.

Patient-derived xenograft (PDX) model
The MELOQ06 cutaneous melanoma PDX model is part of the Trace collection

(https://gbiomed.kuleuven.be/english/research/50488876/54502087/Trace/PD X-
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repository) and was established using lesions derived from a patient undergoing surgery
as part of standard treatment at UZ Leuven. Written informed consent was obtained and
all procedures were approved by the UZ Leuven/KU Leuven Medical Ethical
Committee (S63799, S57760, S58277) and performed in accordance with the principles
of the Declaration of Helsinki and with GDPR regulations. The experiments were
approved by the KU Leuven animal ethical committee under ECDs P164-2019 and
performed in accordance with the internal, national, and European guidelines of animal
care and use. Single-cell suspensions were implanted subcutaneously in the
interscapular fat pad of female NMRI nude BomTac:NMRI-Foxnlnu, 4-wk-old females
(Taconic Biosciences). Mice were maintained in a pathogen—free facility under standard
housing conditions with continuous access to food and water. The health and welfare of
the animals was supervised by a designated veterinarian. The KU Leuven animal
facilities comply with all appropriate standards (cages, space per animal, temperature
[22°C], light, humidity, food, and water), and all cages are enriched with materials that
allow the animals to exert their natural behaviour. Mice used in the study were
maintained on a diurnal 12-h light/dark cycle. MELOO6 was derived from a female,
drug-naive melanoma patient. When the tumour reached 1000 mm?® the mice were
randomly assigned to the different experimental groups. Mice were treated daily by oral
gavage with a capped dose of 600 pug dabrafenib —6 ug trametinib (DT), in 250 pl total

volume.

Sample preparation for single-cell sorting
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HCC38 breast cancer cells and HCC38-BL lymphoblastoid cells were cultured in
Dulbecco’s Modified Eagle Medium (DMEM/F12) containing 10% fetal bovine serum
(FBS) at 37°C ina 5% CO2 incubator (Voet et al., 2013). Trypsinized HCC38 cells and
HCC38-BL cells were washed in fresh culture medium and then resuspended in FACS
sorting buffer (DMEM/F12 supplemented with 5% FBS, 1mM EDTA, and 1.5 uM
DAPI). The BD FACS Melody sorter device was used for sorting single cells into 96-
well plates (FrameStar®, 4T1-0960/C) containing 2.5 pl RLT plus buffer (Qiagen).
Plates were then spun down at 1,000g for 1 minute at 4°C, and finally stored at -80 °C.
MELOOG cells were retrieved as described before (Rambow et al., 2018), resuspended
in serum-free DMEM/F12 medium and sorted using the BD FACS Aria 1l into 96-well

plates containing 2.5 ul RLT plus buffer.

Gtag&T

Genomic DNA and mRNA separation and DNA precipitation was performed as per the
G&T protocol of Macaulay et al. (Macaulay et al., 2015, 2016) on an Hamilton® liquid
handling robot. First, the plate containing the lysed cells is supplemented with RNA
spike-ins (1 pL of a 1:1,600,000 dilution of ERCC spike-in mixture A (Life
Technologies)), which is followed by the addition of oligo-dT conjugated to
streptavidin beads. After incubation, the poly-adenylated mRNAs are collected to the
side of the well using a magnet, while the DNA, present in the supernatant, is transferred
to a new recipient DNA plate. The wash solution used to rinse the mRNA-bead
complexes is also added to the DNA plate. After mixing the solution containing the

DNA with Ampure XP beads, the DNA is precipitated using a magnet. For Gtag, the
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precipitated genomic DNA was resuspended in 4.5 pl resuspension buffer (0.5X NEB4,
0.37% lgepal CA-630, 0.37% Tween-20). Next, tagmentation is performed in a total
volume of 10 pl by adding 5.5 pl tagmentation master mix (5 pl Tagment DNA buffer,
0.1 pl Tagment DNA Enzyme, 0.4 pl nuclease free water) for 10 minutes at 55°C. The
reaction was inactivated by adding 1 ul of 0.44 % SDS to the sample and incubating 5
minutes at 55°C. Then we added 13 pl of Q5 Ultra II (NEB, 2x mastermix), 1 pl S5
primer, and 1 pl S7 primer to the sample. PCR amplification was performed with the
following cycling program: 72°C for 3 min; 98°C for 30 sec; 16 cycles of 98°C for 10
sec, 60°C for 30 sec and 72°C for 30 sec; 72°C for 5 min; and held at 10°C. In between
reaction steps, 96-well plates were placed in an Eppendorf thermomixer at room
temperature to mix (1,000 rpm) for one minute, and briefly centrifuged using a tabletop
centrifuge. Finally, the PCR products were pooled per plate and purified using AMPure

XP beads (1x ratio).

Sequencing library preparation

DNA and cDNA quality of picoPlex and Smart-seq2 amplification reactions,
respectively, was confirmed using the 2100 Bioanalyzer (high sensitivity chip, Agilent).
Next, DNA and cDNA concentrations were determined using a Quantifluor® Assay
(Promega®). Samples were diluted to 200 pg/uL or 100 pg/uL for Nextera XT (Illumina)
library preparation in respectively one-fourth or one-tenth of the volume recommended
by the manufacturer using manual or automated liquid handling. After library
preparation, samples were pooled and purified using AMPure XP beads (0.6x ratio).

Quiality check of the DNA (picoPlex and Gtag) and cDNA library pools was performed
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using the 2100 Bioanalyzer (high sensitivity chip, Agilent) in combination with Qubit™
HS (High sensitivity) DNA Assay Kit (Invitrogen™) before diluting the pools to a
concentration of 4nM. We used the KAPA Library Quantification Kit for Illumina®
platforms (Roche, KK4854) on the LightCycler 480 and diluted the pools to 2nM
(HCC38 samples) or 1.5 nM (MELO06 samples) before sequencing 51-bp single-end

reads on HiSeq2500 or HiSeq4000 respectively.

Processing of genome data and DNA copy number analysis

Single-end sequencing reads obtained were aligned to the GRCh37 human reference
genome using BWA-MEM (Li, 2013). Samtools was used to sort, index, and sample
the mapped BAM files down to 400,000 reads. Our mapping statistics were obtained

through samtools and Picard (http://broadinstitute.github.io/picard/). PCR duplicates

were removed with Picard. To create pseudo-bulk genomes, samtools merge was used
to combine BAM files. DNA copy number analysis was performed as discussed in
Macaulay et al. (Macaulay et al., 2015, 2016). Segmentation of the corrected logR
values was done using piecewise constant fitting, with the penalty parameter (y) set to
10 for the 500 kb bin genomes and y = 35 for the 10 kb bin genomes. The average ploidy
was chosen based on logR values of a large region with few to no copy number

aberrations:

Sample Avg ploidy Ref region
HCC38 3 chr12
HCC38-BL 2 all chr
MELO006 3 chr3
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scDNA-seq quality filtering

For quality filtering of MELOO6 genomes, we only processed single cells with at least
400,000 reads before deduplication. HCC38 genomes were only processed if they had
at least 100,000 raw reads before deduplication. We calculated the Median Absolute
Pairwise Difference (MAPD) score for all samples by first measuring the absolute
difference between two consecutive logR values, %GC-corrected and normalized,
across the genome. Next, the median across all absolute differences is computed. For
MAPD cut offs, genomes only passed if their MAPD score was less than the 75™
percentile + 1.5 times the interquartile range (HCC38, MAPD ¢t off = 0.64; MELO0O06,
MAPDcut oft = 0.69). An overview of the QC pass/fail samples can be found in

Supplemental Data S1 and S2.

Coverage uniformity calculations

Lorenz curves were computed by taking the cumulative fraction of the covered genome
against the cumulative fraction of the mapped bases. From the BAM files, duplicates
were first removed, and all genomes were down-sampled to 230,000 unique reads (with
a quality of at least 20). Gini coefficients were calculated in R using the ineq package

(https://cran.r-project.org/web/packages/ineq/).

Heatmaps and clustering
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The Canberra distance was used as a dissimilarity metric between the DNA copy
number profiles of individual single cells. Hierarchical clustering was performed using
Ward’s D2 criterion to minimize the total variance within each cluster. Both the gap
statistic and the silhouette score indicated the two as the optimal number of clusters,
resulting in the detection of subclones A|B and C. However, the generation of pseudo
bulks for these clusters, as well as manual inspection revealed remaining heterogeneity
regarding chr7 in cluster A|B. Therefore, we extended the number of clusters to five,
wherefore no remaining heterogeneity was observed in the pseudo-bulk genomes.
Regions of focal amplifications were determined on the pseudo-bulk Gtag genomes on
10 kb bins segmented by piecewise constant fitting (y = 35). For each region, 20
additional genomic bins were taken on each flank for visualization. All heatmaps were

constructed using the ComplexHeatmap package (version 2.2.0).

Processing of single-cell RNA seq data:

After trimming of the adaptor sequences with cutadapt (version 1.13), sequencing reads
were aligned to the GRCh37 reference genome including ERCC sequences using STAR
with default parameters (version 2.5.2b). HTseq (version 0.6.0) with the GENCODE

H19 transcript annotations were used to generate the count matrix.

Analysis of single-cell RNA-seq: HCC38 and HCC38-BL
Quality control was performed using the scater R package (version 1.10.1): cells with
less than 100,000 counts, expression of less than 2000 unique genes, more than 30%

counts assigned to mitochondrial sequences or 8% counts belonging to ERCC
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sequences were removed for downstream analysis. Genes with less than 32 counts
across the complete dataset were excluded from downstream analysis. All data analysis
was conducted in R v3.5.0 (CRAN), while plots were created with the ggplot2 (version

3.0.0) R package.

Analysis of single-cell RNA-seq: MEL006

Quiality control was performed using the scater R package (version 1.10.1): cells with
less than 100,000 counts, expression of less than 1000 unique genes, more than 25%
counts assigned to mitochondrial sequences or 15% counts belonging to ERCC
sequences were removed for downstream analysis (McCarthy et al., 2017). Genes with
less than 5 counts across the complete dataset were excluded from downstream analysis.
Expression value scaling and normalization, cell-cycle regression, batch correction,
PCA and UMAP dimensionality reductions and clustering were performed using the
Seurat R package (version 3.0.2) (Butler et al., 2018). Marker gene discovery was
performed using the FindAlIMarkers function of the Seurat package using the Wilcoxon
Ranked Sum test. A clustering resolution of 0.4 was selected since it revealed clusters
with biological meaningful significance as well as displaying cluster stability when
using the clustree R package (version 0.4.0). pySCENIC (commit 0.9.9+2.gcaded79)
(Aibar et al., 2017) with default parameters was used to perform gene set regulatory
network analysis. The R package presto (version 1.0.0) was used to perform a fast
Wilcoxon rank sum test where the AUC value served as input for gene set enrichment
analysis with FGSEA (version 1.8.0.). Gene sets were accessed with msigdbr (version

6.1.1). Gene set enrichment analysis was also performed with FGSEA using the
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correlation scores of all genes passing quality control and the copy number of the
22011.21 amplicon. Gene dosage plots were created for all genes located on focal
amplifications when at least 10 single cells expressed the gene, the unsegmented copy
number was taken from the bin overlapping with the transcription start site for each
gene. The copy number of the bin closest to the middle of focal amplification was used
as the overall copy number of the amplicon. MRD states were assigned as described in
Rambow et al. (Rambow et al., 2018). All data analysis was conducted in Python v3.6
(Python software foundation) or R v3.5.0 (CRAN). Plots were created with the ggplot2

(version 3.0.0) and ggpubr (version 0.2.1) R packages.

Benchmarking of inferCNV with G(tag)&T-seq data and classification of the
Rambow et al. (Rambow et al., 2018) Smart-seg2 data

Raw single-cell RNA-seq reads from 96 normal human melanocytes (ethics approval
S63257) (data available on request), as well as the Rambow et al. (Rambow et al., 2018)
(GEO: GSE116237) data were aligned to the GRCh37 reference genome including
ERCC sequences using STAR with default parameters (version 2.5.2b). After creating
a count matrix with HTseq (version 0.6.0) and the GENCODE H19 transcript
annotations, the data was merged with the G(tag)&T transcriptome counts. The scater
R package was used to discard low-quality cells, namely cells with less than 100,000
counts, less than 1000 unique genes expressed, more than 25% counts assigned to
mitochondrial sequences or more than 15% counts belonging to ERCC sequences.
InferCNV v1.2.1 was subsequently used to infer copy number estimates from the

scRNA-seq data using standard parameters for Smart-seq2 and the 6-state Hidden-
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Markov Model while using the transcriptome data of the normal melanocytes as
reference. The mitochondrial and sex chromosomes were excluded from the analysis.
The G(tag)&T data was used to benchmark the copy number calls obtained with
inferCNV, where the DNA-seq data was considered the gold truth. Segments were then
classified as (i) true positive if both DNA and RNA copy number calls indicated a gain
or if both indicated a loss; (ii) true negative if both indicated a neutral copy number
state; (iii) false negative if the DNA data indicated a copy number aberration and the
RNA did not; (iv) false positive if the RNA indicated a copy number aberration and the
DNA did not. The copy number calls, and modified expression intensities obtained with
inferCNV for the G(tag)&T transcriptome data were both used to train 5 machine
learning algorithms (Linear Discriminant Analysis, Classification and Regression
Trees, k-Nearest Neighbours, radial function Support Vector Machine (SVM) and
Random Forest) to classify a sample to the correct genomic subclone. Briefly, the caret
R package (Version 6.0-80) was used to split the data 80%-20% after removing highly
correlated features (cor > 0.8) and train the classifiers using 10-fold cross-validation.
Accuracy was selected as the scoring metric to assess the performance. The best
accuracy on the test data was observed for the radial function SVM trained on the
modified expression intensities when combining subclones A and B. The model was
then used to assign the Rambow et al. (2018) to either subclone AB or C. Data analysis
was conducted in R v3.5.0 (CRAN) while plots were created with the ggplot2 (version

3.0.0) and ggpubr (version 0.2.1) R packages.
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