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Abstract

The malaria parasite Plasmodium vivax remains a major global public health challenge,
causing major morbidity across tropical and subtropical regions. Several candidate vaccines
are in preclinical and clinical trials, however no vaccine against P. vivax malaria is approved
for use in humans. Here we assessed whether P. vivax strain-transcendent immunity can be
achieved by repeated infection in Aotus monkeys. For this purpose, we repeatedly infected
six animals with blood stages of the P. vivax Salvador 1 (SAL-1) strain until sterile immune,
and then challenged with the AMRU-1 strain. Sterile immunity was achieved in 4/4 Aotus
monkeys after two homologous infections with the SAL-1 strain, while partial protection
against a heterologous AMRU-1 challenge (i.e., delay to infection and reduction in peak
parasitemia compared to control) was achieved in 3/3 monkeys. IgG levels based on P. vivax
lysate ELISA and protein microarray increased with repeated infections and correlated with
the level of homologous protection. Analysis of parasite transcriptional profiles across
inoculation levels provided no evidence of major antigenic switching upon homologous or
heterologous challenge. In contrast, we observed significant transcriptional differences in the
P. vivax core gene repertoire between SAL-1 and AMRU-1. Together with the strain-specific
genetic diversity between SAL-1 and AMRU-1 these data suggest that the partial protection
upon heterologous challenge is due to molecular differences between strains (at genome and
transcriptome level) rather than immune evasion by antigenic switching. Our study
demonstrates that sterile immunity against P. vivax can be achieved by repeated homologous
blood stage infection in Aotus monkeys, thus providing a benchmark to test the efficacy of

candidate blood stage P. vivax malaria vaccines.
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Author summary

Plasmodium vivax is the most widespread human malaria parasite. Elimination efforts are
complicated due to the peculiar biology of P. vivax including dormant liver forms, cryptic
reservoirs in bone marrow and spleen and a large asymptomatic infectious reservoir in
affected populations. Currently there is no vaccine against malaria caused by P. vivax. Here
we induce sterile immunity by repeated P. vivax infection with the SAL-1 strain in non-
human primates. In contrast, heterologous challenge with the AMRU-1 strain only provided
partial protection. Antibody levels against a crude antigen and a protein microarray correlated
with the level of homologous protection. Parasite transcriptional profiles across inoculation
levels failed to show major antigenic switching across SAL-1 infections or upon heterologous
challenge, instead suggesting other mechanisms of immune evasion. Our study demonstrates
that sterile immunity against P. vivax can be achieved by repeated blood stage infection in
Aotus monkeys, thus providing a benchmark to test the efficacy of candidate blood stage P.

vivax malaria vaccines.

Introduction

Malaria is caused by parasites of the genus Plasmodium that are transmitted to humans by the
bite of the female anopheles mosquito. Currently, approximately 241 million cases and 0.6
million deaths from malaria occur worldwide, an increase of 12% from the previous year (1).
Most deaths are due to infection with Plasmodium fal ciparum, the most pathogenic of the
species, especially in children under the age of five living in sub-Saharan Africa (1-3).

After the elimination of P. falciparum, Plasmodium vivax is expected to remain a
major cause of morbidity and mortality outside of Africa, especially in Central and South
America, Asia, and the Pacific Islands (4-6). This is due in part to its peculiar biology,

including silent parasite liver forms known as hypnozoites that can cause relapses and major
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parasite reservoirs in bone marrow and spleen that may act as an unobserved pathogenic
biomass and source for recrudescence (7-13). Complete removal of the parasite from the
human reservoir is therefore challenging (5, 14), underscoring the need for innovative
therapeutic strategies including the development of an effective vaccine (15, 16).
Vivax malaria impacts the health of individuals of all ages causing repeated febrile episodes
and severe anemia (15, 17), clinical severity including hemolytic coagulation disorders,
jaundice, coma, acute renal failure, rhabdomyolysis, porphyria, splenic rupture (4, 18), and
Acute Respiratory Distress Syndrome (ARDS)(19-22). Fatal P. vivax cases are reported from
all endemic regions across the globe (3, 15, 23). Compounding the epidemiology of the
disease, P vivax malaria transmission is intermittent and acquired immunity is short and
strain-specific (15). Even in low transmission regions, it is common to find individuals with
asymptomatic parasitemia suggestive of natural premunition — a phenomenon resulting from
a delicate host-parasite equilibrium in individuals with acquired immunity (15, 24).
Epidemiological studies have demonstrated that repeated exposure increases clinical
immunity and decreases parasite density and frequency of clinical episodes (25). For
instance, individuals subjected to malariotherapy with P. vivax for treatment of neurosyphilis
rapidly developed immunity after repeated blood stage infections (8, 26-28), and such
repeated infection provided strain transcending protection (25). Moreover, acquired immunity
by repeated blood stage infection during malariotherapy has been reported in humans against
P. vivax, P. falciparum, P. ovale and P. malariae (28-30), providing an early benchmark for
the feasibility of developing a vaccine against P. vivax (8). However, understanding the
correlates of protective immunity against P. vivax infection has proven difficult, mainly due
to the lack of a continuous in vitro culture system for this parasite (31, 32).

The development of a vaccine against malaria with at least 75% protective efficacy is

one of the two main objectives identified in the roadmap adopted by the global vaccine action
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plan until 2030 (33). Such an effective P. vivax vaccine should provide long-term and strain-
transcending immunity. Current P. vivax vaccine studies are focused at inducing a stronger
antibody response in combination with an already robust T-cell response (34, 35), based upon
passive antibody transfer studies done in humans and laboratory animals (25, 36, 37).
Nonetheless, to date, there is no vaccine against P. vivax approved for use in humans (15).
Several studies suggest that immunity to repeated blood stage infection in non-human
primates is strain- and species-specific. For instance, Rhesus macaques immune to one strain
of P. knowles may be partially susceptible to infection by another strain (36). Similar
observations have been reported for Aotus repeatedly infected with P. falciparum blood stage
parasites. (38, 39). Interestingly, the same approach has produced heterologous cross-
protection against Plasmodium chabaudi infection in mice (40). To assess whether strain-
transcendent immunity can be achieved by repeated blood stage infection in P. vivax, we used
the Aotus non-human primate model. The aims of our study were to determine i) how many
repeated homologous infections are required for control of parasitemia and development of

sterile immunity, and ii) whether strain-transcending immunity could be achieved.

Results

P. vivax blood stage infection induces sterile immunity to homologous challenge

To evaluate the level of protection against repeated P. vivax blood stage infection, six Aotus
monkeys (MN30014, MN30034, MN32028, MN32047, MN25029, MN29012) were infected
intravenously with 50,000 parasites of the P. vivax SAL-1 strain and monitored until peak
parasitemia (Figure 1A and S1). SAL-1 strain was originally isolated from a patient in El
Salvador in the late 1960s and adapted to Aotus monkeys by W.E. Collins (41). During the
first infection, all six animals were positive by day 6 post inoculation (PI) and parasitemia

increased steadily to more than 100 x 10%/uL infected red blood cells iRBCs)/pL (mean + sd
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= 100,198 £ 43,661/uL) until days 13-14 PI, when the animals were treated with a curative
course of chloroquine (CQ) (Figure 1B). Sixty-five days PI, one animal (MN29012) was
removed from the study due to malaria unrelated causes (Figure 1A and S1).

Eighty-five days Pl the remaining five animals (MN30014, MN30034, MN32028,
MN32047, MN25029) and the donor from the first inoculation (MN29041) were infected
with SAL-1 using the same inoculum size of 50,000 parasites i.v. This time, by day 91 (day 6
P1 of inoculation level I, D6 PI I1), all animals were positive by blood smear but parasitemia
remained low with a mean peak of 2,332/uL between days 94-95 (D9-10 PI II) (Figure 1B).
A similar pattern was observed when total parasite load was measured by gPCR (18s rRNA
levels) and parasite biomass by ELISA (pLDH levels) after this second inoculation (Figure
S2A, B). Two animals (MN32047 and MN30034) self-cured on day 98 (D13 PI Il) and 102
(D17 P111) respectively, and a third animal (MN30014) became negative for two days
between days 98-99 (D13-14 PI I1) but recrudesced on day 100 (D15 PI I1) and was treated
with CQ on day 105 (D20 PI I1) while still positive at the level of <10 parasites /uL.
Meanwhile, MN29041 that had controlled its parasitemia until day 98 (D13 PI I1), became
negative on day 99 (D14 PI 1), but recrudesced the next day, reaching a parasitemia level of
11,500/uL on day 105 (D20 PI 1) when it was treated with CQ (42). All animals received CQ
treatment on day 105 (D20 PI 11). Two animals (MN30034 and MN29041) were excluded
following CQ treatment - MN30034 on day 169 (D114 PI 1) due to severe anemia (Hct% =
20) and kindney failure, and MN29041 for malaria unrelated causes on day 143 (D58 PI II).
On day 166 the remaining 4 original animals (MN30014, MN32028, MN32047 and
MN25029) plus a malaria naive infection control (MN32029), were re-inoculated a third time
with SAL-1 and followed up as described above (Figure 1B). This time, all animals except
for the control (MN32029) that had a peak parasitemia of 95,550/uL on day 179 (D13 PI IlI)

remained negative and did not require CQ treatment. Of note, MN32028 had to be removed
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148  from the experiment on day 254 (D88 PI I11) due to anemia and kidney failure. At necropsy,
149  the animal presented with generalized subcutaneous oedema (Anasarca), with pericardial and
150  pleural effusion, pulmonary oedema and evidence of chronic renal lesions. The cause of

151  death was determined as renal failure (Figure 1A).

152 Altogether, these experiments demonstrate that repeated homologous P. vivax

153 infection confers full protection (or sterile immunity) against a homologous challenge.

154

155  Partial protection to heterologous challenge after repeated homologous infection

156  To determine the difference in protection between homologous and heterologous infections,
157  we challenged on experimental day 276 the three remaining monkeys that went through three
158  SAL-1 inoculations (MN30014, MN32047 and MN25029) plus a new malaria naive infection
159  control (MN31029) and the donor of the second SAL-1 infection (MN27050) with the CQ
160  resistant AMRU-1 strain (Figure 1A, B). The AMRU-I strain was originally isolated from a
161  patient in Papua New Guinea in 1989 (43).

162 This time all animals became positive. First, the 2 controls (MN27050 and MN31029)
163  were positive on day 283 (D7 PI IV) with peak parasitemia of 131.5 x 10%/uL and 180 x

164  10%pL on day 290 (D14 PI 1V), respectively when they were treated with MQ. Meanwhile,
165  MN25029 became positive four days later on day 287 (D11 PI IV) with a lower (10-fold)
166  peak parasitemia of 11.4 x 10%/uL on day 290 (D14 PI IV), clearing on day 296 (D20 PI 1V)
167  and treated with MQ on day 297 (D21 PI1 1V). Similarly, MN30014 became positive on day
168 295 (D19 PI IV) with a 100-fold lower peak parasitemia of 1,700/uL on day 297 (D21 PI IV)
169  compared to the peak parasitemia of the controls. The animal was treated with MQ on day
170 304 (D28 PI 1V) for moderate anemia (Hct% = 27.4) and thrombocytopenia (PLT = 54 x

171 10%uL), while still positive at 1,510 parasites /uL. In contrast, MN32047 was positive only
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172 once on day 292 (D16 PI IV) with less than 10 parasites /L and was treated with MQ for
173  severe anemia (Hct% = 16) on day 297 (D21 PI1 1V).

174 Altogether, this experiment revealed partial protection in 3/3 of the monkeys to a
175  heterologous P. vivax challenge in sterile homologous immune animals. Partial protection
176  was characterized by a delay of 4-12 days in patency and reduced parasitemia compared to
177  the controls and a delay of 5-13 days in patency compared to the first homologous SAL-1
178  challenge. To further investigate the difference between repeated homologous and

179  heterologous infections, we used survival analysis to assess the probability of the test subjects
180  not requiring treatment at each inoculation level (Figure 1C). Median time to treatment was
181  established at 14, 20 and none for homologous inoculation levels I-111, respectively, and 21
182  days for the heterologous challenge. Further analysis of various parasitemia-related

183  parameters including mean days patent, mean day of peak, mean peak parasitemia and the
184  Total Area Under the parasitemia Curve (AUC) (Figure S2), indicated that the level of

185  protection against the heterologous challenge in inoculation level IV was similar to protection
186  after one homologous challenge (i.e., inoculation level 11). Indeed, the mean days of patency
187  was shorter in infection level IV (unpaired t-test = 3.060; df = 6; p = 0.0222) while the mean
188  day to peak parasitemia was longer compared to level Il (unpaired t-test = 3.032; df = 6; p =
189  0.0230). No significant difference was found in peak parasitemia (unpaired t-test = 2.191; df
190 =6;p=0.0709) and AUC (unpaired t-test = 2.409; df = 6; p = 0.0526) between level 1l and
191 IV (Figure S2).

192

193  Severeanemia upon P. vivax heter ologous challenge in sterile homologousimmune

194  Aotus

195  Next, we investigated the longitudinal dynamics of hematological parameters and selected

196  blood chemistry during the repeated P. vivax infections (Figure 2 and Table S1). During the
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197  first inoculation we observed a temporary but significant reduction of both hematocrit and
198 platelet counts that coincided with peak parasitemia, as has been previously observed in

199  Aotus (44) and humans experimentally infected with P. vivax (45) (Figure 2A, B -

200 inoculation level 1). During the second homologous infection, and with partial immunity
201  ensuing, all the animals had hematological values within the normal range at peak

202  parasitemia on day 20 PI, when they were treated with CQ for three days (Figure 2A, B -
203 inoculation level I1). Of note, MN25029 developed mild anaemia (Hct% = 34.7) and severe
204  thrombocytopenia (39 x 10%uL). During the third homologous infection, none of the animals
205  became parasitemic and their hematocrit and platelet counts remained stable (note MN25029
206  again developed a moderate thrombocytopenia (90 x 10%/uL)) on day 14 Pl (Figure 2A, B —
207 inoculation level 111). In contrast, the heterologous P. vivax AMRU-1 strain challenge

208  triggered anemia and thrombocytopenia in all the animals (Figure 2A, 2B - inoculation level
209 1V). For instance, mild to moderate anemia developed in two animals (MN30014 and

210  MN32047) by day 7 PI, even though both animals had undetectable or subpatent parasitemia.
211  Later, on day 28 PI MN30014 developed moderate anemia and severe thrombocytopenia with
212 aparasitemia of 1510/uL and needed treatment with MQ to end the experiment. Similarly,
213  MN32047 developed severe anemia (Hct% = 19.3) on day 18 PI while still negative by light
214  microscopy and needed treatment with MQ on day 21 PI to end the experiment. In contrast,
215  MN25029 developed severe thrombocytopenia (24 x 10°/ L) at peak parasitemia

216  (11,430/uL) on day 14 PI, even though, its Hct% remained within normal limits (Hct% = 45),
217  but later developed moderate anemia (Hct% = 26.2) on day 18 Pl when it was still positive at
218 <10 pL and was treated with MQ on day 21 to end the experiment.

219 Taken together, these data support previous studies observing the development of
220  severe anemia (hematocrit < 50% of baseline) and thrombocytopenia (< 50 x 10° x pL) in P.

221 vivax-infected Aotus monkeys around days 12-15 PI (44). Indeed, 2/3 of the remaining
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original animals (MN30014, MN32047) and a control (inoculated once) (MN27050) showed
a Reticulocyte Production Index (RPI) below 1.0 suggestive of bone marrow
dyserythropoiesis (46) before inoculation level 1V (Figure 2D), while only 1/3 of the original

animals (MN25029) was over an RPI of 1.0 with a Hct% of 45.

Antibody levelsincrease with repeated infections

In a next series of experiments, we analyzed the development of antibodies against a crude P.
vivax lysate across repeated infections (Figure 3A, Table S2). After the first inoculation with
P. vivax SAL-1 total antibody (Ab) levels reached a mean of 3.1 Log10 arbitrary ELISA units
(day 28 PI), decreasing slightly to 2.9 Log10 ELISA units by day 84 PI. After the second
homologous inoculation (day 84 PI) Ab levels peaked to 4 Log10 ELISA units on day 114 PI,
decreasing slightly again to 3.5 Log10 ELISA units by day 165 PI (Figure 3B). After the
third homologous inoculation (day 165 PI) when all the animals were sterile protected against
challenge (Figure 3B), Ab levels remained over 4.0 Log10 ELISA units until day 275 PI
when the animals were challenged with the heterologous P. vivax AMRU-1 strain. This time
a booster response was observed with Ab levels increasing to 4.3 Log10 ELISA units by day
304 PI (Figure 3B). Interestingly, Ab levels appear to be negatively correlated with
parasitemia (Figure 3C). In summary, the dynamics of mean parasitemia and ELISA titers
during inoculation levels I-1V suggest that an ELISA titer of 3-4 arbitrary Log10 units would
fully protect against challenge with a homologous but only partially protect against a
heterologous strain of P. vivax (Figure 3D). These correlates of protection provide a

benchmark for efficacy testing of P. vivax blood stage candidate vaccines in the Aotus model.

Quantification of antigen responses using a P. vivax protein microarray

10
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Antibody responses during repeated infection (log2 (antigen reactivity/no DNA control
reactivity)) show that 66 out of 244 P. vivax antigens in the protein microarray demonstrated
reactivity above 0 in 10% of all samples analyzed (Figure 4A). When we compared the
antibody levels for these 66 antigens for all time points in inoculation 111 (the final
homologous challenge) vs inoculation 1V (the heterologous challenge) for the three monkeys
that completed the entire experiment, there were no differentially reactive antigens (paired t-
test with FDR correction). It is possible that there are differentially reactive antigens that
were not identified in this study due to the limited number of antigens tested and/or the small
sample size.

Within inoculation levels I-111, the number of reactive antigens (antigen breadth) was
significantly increased at days 14, 21, and/or 28 when compared with the pre-inoculation
antigen breadth (Figure 4B, p < 0.05 Wilcoxon matched pairs test). The trend for increased
antigen breadth over time is similar but non-significant for the heterologous infection with
the P. vivax AMRU-1 in inoculation IV. When we calculated the area under the curve of
antigen breadth for each inoculation level for the three monkeys which completed all four
inoculations, inoculation 111 and IV were both significantly higher than inoculation I (and
were not different from each other) (Figure 4C, p < 0.05 repeated measures ANOVA with
paired sample post hoc t-tests). These data show that repeated infections of the homologous
strain P. vivax SAL-1 (inoculation levels I-111) increase the breath of the immune response as
the number of infections increased, and that the breadth remained (but did not increase
further) high during heterologous challenge with P. vivax AMRU-1. Those antigens eliciting
the strongest immune response also showed the strongest positive correlation with ELISA
titers (Figure S3). Interestingly, no negative association with parasite parameters was
observed while similar sets of antigens showed significant negative correlations with platelet

counts (Figure S3). These include two MSP1 peptides (PVX_099980), an ETRAMP peptide

11
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(PVX_090230) and peptides to two exported proteins (PVX_121935 and PV X_083560). We
also found that the ELISA titer for the crude lysate correlated well with antigen breadth,
however correlations were only significant at inoculation level 11; days 99 (Pearson R = 0.98,
significant at p < 0.005) and 114 (Pearson R = 0.86, trend at p = 0.062) (Figure 4D and $4).
Longitudinal follow up during repeated infection revealed major immunogenic
antigens (Ags) by protein microarray. Indeed, seven targets have significantly higher
antibody responses at inoculation level 1l compared to inoculation level | (Figure S5, Table
S3), including the Early Transcribed Membrane Protein (ETRAMP) [PV X_090230],
Parasitophorous vacuolar protein 1 (PV1) [PVX_092070], Merozoite Surface Protein 1
(MSP-1) [PVX_099980, fragments 2 & 3], and three Plasmodium Exported Proteins
[PVX_121930, PVX_083560 & PVX_121935]. The maintenance of antigen breadth after
heterologous challenge (inoculation IV) may suggest the presence of homologous or cross-
reactive antigens between the two isolates. However, amino acid sequences for all 7 targets (6
genes) were identical, except for a region of 14 amino acids in one of the Plasmodium
exported proteins (PVX_083560). Altogether these data suggest that sterile protection upon
homologous challenge and partial protection upon heterologous challenge may not be due to

these proteins, however they may be used as correlates of protection.

Genetic diversity rather than immune evasion deter mines level of strain transcendent
protection

Our data so far suggest that protection from the homologous challenge is antibody mediated,
however the limited resolution of the ELISA and protein array data cannot explain the lower
protection after the heterologous challenge. As an alternative approach we investigated

possible immune evasion mechanisms on genomic and transcriptional level.
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For this purpose, we performed whole genome sequencing of both SAL-1 and AMRU-1
strains to improve the strain-transcendent coverage of the existing P. vivax microarray
platform (47). Selective WGA enabled targeted amplification of the AT-rich subtelomeres of
AMRU-1 and SAL-1 strains used in this study (Figure 5A). Assembly and annotation
generated continuous subtelomere sequences for SAL-1 and AMRU-1. The number of
contigs in the original SAL-1 dropped from 2748 to 113, highlighting the continuity of the
PacBio assembly (Figure 5B). After the annotation with Companion (48) the improved
assembly increased the number of pir genes for SAL-1 from 124 to 425, demonstrating that
long reads better represent the number of variable gene families in subtelomeric regions.
Comparison of the pir gene repertoire across strains revealed 593 and 425 pir genes in
AMRU-1 and SAL-1, respectively, compared to over 1000 in the PvPO1 reference strain
(Figure 5C). This difference in number may be because the reference strain came straight
from patient infection while SAL-1 and AMRU-1 may have adapted during repeated
passages through monkeys. Finally, the proportion of pir subtypes remains constant across
strains as previously reported (49).

With this information in hand, we complemented the existing microarray probe set that
was generated for the P. vivax core genome (47) with probes for the SAL-1 and AMRU-I
subtelomeric genes. Next, we investigated whether the virulent phenotype upon heterologous
AMRU-1 infection was a result of immune evasion. Differential gene expression (DGE)
analysis and principal component analysis (PCA) of the expressed genes revealed greater
differences in both core and pir genes when comparing AMRU-1 parasites from heterologous
challenges (after 3 inoculations with SAL-1) with SAL-1 parasites during the homologous
challenges (Figures 6A —|eft pand, 6B). We also compared DGE of AMRU-1 parasites
between animals previously infected with three SAL-1 inoculations with i) animals

previously infected with only one SAL-1 inoculation and ii) with the malaria naive infection
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320  control. Interestingly, only a small number of changes in core and pir genes was observed
321  across these comparisons (Figure 6A —right panel). The clear overall similarity of sample
322  distribution in the PCA plots based on DGE of core (Figure 6B - left panel) or pir genes
323  (Figure6B —right panel) suggests that the repeated SAL-1 infections do not induce

324  extensive pir gene switching either in SAL-1 or AMRU-1 parasites. Rather, there appear to
325  Dbe significant strain-specific differences in both core and pir expression between SAL-1 and
326 AMRU-1. Further analysis using a pir gene network revealed no apparent changes in pir gene
327  expression across SAL-1 challenges or upon AMRU-1 challenge (Figure 6C).

328 Altogether, the transcriptional analysis does not indicate that AMRU-1 parasites

329  actively evade the antibody mediated protection induced by SAL-1 homologous challenges
330 Dby antigenic switching. Thus, the lower protection observed after the heterologous challenge
331  may be due to major genetic and hence antibody epitope variation between these two

332  geographically separated strains (50).

333
334 Discussion

335  Previous trials of P. falciparumand P. vivax vaccine candidates have demonstrated the utility
336  of the Aotus model in supporting vaccine development (51-53). Various asexual stage

337  vaccine candidate antigens have been subjected to testing in Aotus (52, 54-62), but only a few
338  have shown some level of efficacy in human clinical trials (15, 63). Development of highly
339 effective strain-transcendent immunity against malaria is a universal goal of vaccine

340 developers (64). Recently, whole organism blood stage malaria vaccines have gained

341  prominence as an alternative to subunit vaccines (65, 66). One major advantage of

342  vaccination using whole blood stage parasites is the multiplicity of immunogenic antigens,
343 including those conserved across strains that may be able to induce strain transcendent

344  immunity (67, 68).
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To assess whether strain-transcendent immunity can be achieved by repeated blood stage
infection with P. vivax, and to investigate possible correlates of protection during repeated
infection, we infected six Aotus monkeys with the P. vivax SAL-1 strain until sterile
protected and then challenged with the AMRU-1. We demonstrate that repeated whole blood
stage infection with a homologous P. vivax strain (i.e., same strain) induces sterile immunity
in Aotus monkeys after only two infections. In contrast, Aotus monkeys infected with P.
fal ciparum needed between three to four (69) and six to seven (38) repeated infections,
respectively, to achieve sterile immunity. This is consistent with previous observations made
during malariotherapy in patients with neurosyphilis demonstrating that immunity to P.
falciparum is acquired more slowly than to P. vivax or P. malariae (25). Interestingly,
Saimiri sciureus boliviensis monkeys immunized with irradiated sporozoites of P. vivax SAL-
1 and challenged four to nine times with homologous viable sporozoites over a period of
almost four years showed sterile protection (70). However, all animals remained susceptible
when challenged with SAL-1 blood stage parasites, suggesting that humoral immunity is a
correlate of protection against repeated blood stage infections.

Furthermore, our study demonstrates that the sterile immunity achieved after repeated
infection with a homologous strain was only partially protective after a heterologous
challenge (i.e., delay to infection and reduction in peak parasitemia compared to control).
Similar observations have been reported for P. falciparumin Aotus (38). In both cases,
heterologous challenges resulted in severe anemia and thrombocytopenia irrespective of
parasitemia level. Such hematological manifestations in semi-immune Aotus monkeys with
low or subpatent P. falciparum parasitemia have been attributed in the past to clearance of
non-infected RBCs mediated by autoantibodies (71-74), sequestration of infected RBCs, bone
marrow suppression (71, 72) and immune-mediated thrombocytopenia (44, 75-77). The

pernicious severe anemia without thrombocytopenia observed in the monkey MN32047
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during subpatent parasitemia may have been the result of immune complex disease, or of
dyserythropoiesis due to bone marrow infection, as previously described in humans and
Aotus monkeys infected with P. falciparum, P. malariae and P. brasilianum (75, 78-84).

A P.vivax IVTT protein microarray revealed antibody responses against major
immunogenic blood stage antigens (Ags) in this study. Immune reactivity to individual
antigens and antibody breath in sera from these animals increased with each inoculation level
and were statistically significantly different between inoculation levels I and Ill, when the
animals achieved sterile immunity to a homologous SAL-1 challenge. Among the most
significant asexual blood stages antigens detected by the protein microarray were ETRAMP
(PVX_090230) located in chromosome 5, and two MSP1 fragments: PVVX_099980_s4 and
PVX 099980 s2 located on chromosome 7, the latter, a leading vaccine candidate that has
been identified as a major determinant of strain-specific protective immunity (85).

In this study, animals with sterile immunity to a P. vivax SAL-1 homologous
challenge were partially protected against a heterologous AMRU-1 strain. This difference in
protection may have been the result of cross-reactive but polymorphic antigens associated
with essential parasite phenotypes such as red cell invasion, rosetting or cytoadherence.
Maintaining genetic diversity enables immune evasion, as suggested in recent genomic
studies of P. vivax parasites from distinct geographic origin such as SAL-1 and AMRU-1 (50,
86). Finding conserved and cryptic (not exposed to the immune system) epitopes involved in
essential phenotypes that could be targeted by strain transcending neutralizing antibodies
represents a possible way forward (87). In contrast to P. falciparum that utilizes the variant
PfEMP1 antigens to induce cytoadherence and avoid splenic clearance of blood stage
parasites, limited vascular sequestration occurs in most other Plasmodium species
investigated so far. At least in P. vivax, this process may be mediated by P. vivax orthologs of

the Plasmodium interspersed repeat (PIR) variant antigens (49). In our study, gene expression
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395  analysis along multiple infections allowed correlating pir gene expression with the immune
396  response across infections to illuminate parasite immune evasion mechanisms during

397 heterologous challenge. Interestingly, only minor changes in pir gene variant expression

398  were observed across all the different inoculation levels, whether homologous or

399 heterologous. Further analysis using a pir gene network confirmed no apparent changes in pir
400  gene expression in AMRU-1 parasites, regardless of the nature of the previous infections.
401  Together, the transcriptional analysis does not indicate that P. vivax actively evades the

402  antibody-mediated protection through antigenic switching. These findings are in accordance
403  with previous studies that have shown no significant difference when comparing the sera of
404  single versus repeated infection in patients for VIR antigens and question their role in

405  immune evasion (88, 89). The partial protection observed in the heterologous AMRU-1

406  challenges may therefore be due to major genetic differences and hence antibody epitope
407  variation between the two strains (50). To overcome this limitation and induce high levels of
408  protective antibodies, we propose use of an immunization regime with whole parasite antigen
409  pools from a mixture of genetically diverse strains.

410 In conclusion, our study demonstrates that sterile immunity against P. vivax can be
411  achieved by repeated homologous blood stage infection in Aotus monkeys. It also contributes
412  to our understanding of the pathogenesis of P. vivax-induced anemia, P. vivax asexual blood
413  stage antigen discovery and correlates of protection, as well as possible immune evasion

414  mechanisms. Most importantly, we establish a benchmark for P. vivax protective immunity in
415  the Aotus monkey model, providing an important criterion for vaccine development (38).

416

417 Materialsand methods

418 Ethicsstatement
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The experimental protocol entitled “Induction of sterile protection by blood stage repeated
infections in Aotus monkeys against subsequent challenge with homologous and heterologous
Plasmodium vivax strains” was approved and registered at the ICGES Institutional Animal
Care and Use Committee (CIUCAL) under accession number CIUCAL-01/2016. The
experiment was conducted in accordance with the Animal Welfare Act and the Guide for the
Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources,

National Research Council (90), and the laws and regulations of the Republic of Panama.

Animals and parasites

Twelve laboratory bred (lab-bred) adult male and female “spleen-intact” Aotus|.
lemurinus lemurinus Panamanian owl monkeys of karyotypes VI1I and 1X were used in the
study (91). The animals were cared and maintained as described elsewhere (92). Isolates of P.
vivax SAL-1 originally adapted to splenectomized Aotus monkeys by W.C. Collins in 1972
(41) and further adapted to spleen intact A. |. lemurinus (44, 52), and of P. vivax AMRU-1
from Papua New Guinea (PNG) originally adapted to splenectomized Aotus by R.D. Cooper
in 1994 (93, 94), and further adapted to spleen intact A. |. lemurinus by Obaldia N.I11. in 1997
(95) were used. This study can be considered as exploratory (i.e. looking for patterns of
response rather than hypothesis testing (96)), hence the number of subjects used in the only
group studied is typical of such exploratory research with humans (35, 97) and NHP (38).

Briefly, each frozen stabilate of SAL-1 and AMRU-1 was thawed, washed three times
with incomplete RPMI medium, and resuspended in 1 ml of RPMI medium. This suspension
was used for intravenous (i.v.) inoculation into the saphenous vein of a donor animal using a
25-gauge butterfly needle catheter attached to a 3-ml syringe. When the level of parasitemia

reached a peak around days 12-15 post-inoculation (PI), a dilution of blood was made in
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RPMI to get a total inoculum of 50,000 parasites/ml. All animals received 1 ml of the
inoculum through the saphenous vein.

In total 12 spleen intact lab-bred animals were used in this experiment. Six monkeys
(three male and three females; MN30014, MN30034, MN32028, MN32047, MN25029,
MN29012) were repeatedly infected with P. vivax SAL-1 (Homologous challenge) for three
times (Levels I-111) and another six animals served as either donors or were assigned as
infection or naive controls. Donors and controls were reassigned back into subsequent
inoculation levels as depicted in Figures 1A and S1. Three SAL-1 homologous sterile
immune monkeys from the original six, plus one infected once with SAL-1 and one malaria
naive control, were re-challenged (Level 1V) with the heterologous CQ resistant and Aotus
adapted P. vivax AMRU-1 strain (44). The animals were treated with CQ at 15 mg/kg for
three consecutive days during inoculation level I-111 and a drug wash out period of 70 days
was kept between inoculation levels | and Il and 65 days between levels Il and 111. No CQ
treatment was instituted in inoculation level I11. To treat the P. vivax AMRU-1 CQ resistant
strain, inoculated animals on inoculation level IV and at the end of the experiment were

treated with MQ at 25 mg/kg orally once.

General procedures

Five days after infection, the animals were monitored for any signs of clinical disease and
bled 5 pL from a prick made with a lancet in the marginal ear vein to measure daily
parasitemia. Parasitemia was determined using thick blood smear stained with Giemsa as
described in the Earle and Perez (1932) technique (98). Blood samples were also collected at
regular intervals from the femoral vein to assess humoral immune responses against P. vivax
blood stage proteins, for complete blood count (CBC) and blood chemistry (liver and renal

panel), for collection of parasite DNA on FTA® Elute cards (Whatman, Florham Park, NJ.
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468  USA) and for RNA in TRizol® solution (Invitrogen, Carlsbad, CA, USA) for molecular

469  biology studies. The animals were treated with Mefloquine (MQ) at 25 mg/kg orally by

470  gastric intubation to end the experiment.

471

472  Criteriafor parasitemia

473  For this study patency was defined as the first of three consecutive positive days after

474 inoculation. Clearance was defined as the first of three consecutive negative days.

475  Recrudescence was defined as the first of three consecutive positive days after a period of
476  clearance. Positivity of <10/uL for less than three days was considered evidence of subpatent
477  infection.

478

479  Criteriafor anemia and thrombocytopenia

480  For this study we classified anemia based on the hematocrit % as mild (Hct% = 31-36),

481  moderate (Hct% = 25-30), or severe (Hct% < 25). Thrombocytopenia was considered mild if
482  platelet counts were between 149-100 x 10*/uL, moderate if between 99 and 50 x 10%/pL or
483  severe if < 50 x 10°*/uL.

484

485  Drugtreatment

486  CQ was administered orally for three consecutive days at 10 mg/Kg daily at peak

487  parasitemia. Rescue treatment with MQ was triggered if the hematocrit reached 50% of

488  baseline or hemoglobin was < 8 gm/dL, platelets were < 50 x 10%/pL or the animals remained
489  positive by LM after day 28 PI (44).

490

491  Serology

20


https://doi.org/10.1101/2023.02.13.528262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.13.528262; this version posted September 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

available under aCC-BY 4.0 International license.

Serum ELISA. P. vivax SAL-1 antigen was prepared from Aotus iRBCs purified by
Percoll™(GE Healthcare Bio-Sciences AB, Uppsala, Sweden) cushion (47%) centrifugation
as described (99) and adsorbed at 5 ug/mL concentration diluted in PBS pH 7.4 to a 96 well
plate at 4-8 degrees Celsius overnight. The plates were blocked with 5% skimmed milk in
PBS-0.05% Tween for 2 hours. Serum samples were added to the plate at a dilution of 1/100
in dilution buffer and incubated for one hour, washed further 5 times with PBS pH 7.4 and
incubated for one hour with Goat anti-monkey (Rhesus macaque) (Abcam cat # al112767),
diluted 1:2000 in PBS pH 7.4. 100 uL per well of the OPD substrate solution (P9029-50G,
Sigma-Aldrich, St. Louis, MI, USA) was added to the plate and incubated for 30 minutes
away from light and the reaction was stopped with 50 pL of sulfuric acid 3N. To detect the
antigen—antibody reactivity, the plates were then read immediately at 492 nm in a ELx808
Plate reader (BioTek®, Winooski, VT, USA).

pLDH ELISA. To measure P. vivax lactate dehydrogenase levels (PvLDH) in the monkey
plasma samples, ELISA was performed using a matching pair of capture and detection
antibodies (Mybiosource, San Diego, CA). Briefly, 96-well microtiter plate was coated with
mouse monoclonal anti-Plasmodium LDH (clone #M77288) at a concentration of 2ug/mL in
PBS (pH 7.4) and incubated overnight at 4 °C. The plate was washed and incubated with
blocking buffer (PBS-BSA 1% - reagent diluent) at room temperature for 2hrs. After
washing, samples were diluted 1:2, added to the plate and incubated for 2hrs. Next, plates
were washed and HRP-conjugated anti-pLDH detection antibody (clone #M12299), diluted
1:1000 in blocking buffer, was incubated for 1hr at room temperature Plates were washed and
incubated for 15 min with substrate solution (OPD), the reaction was stopped adding
sulphuric acid 2.5M. Optical density was determined at 450 nm. Cut-off of positivity was
defined by correcting absorbance values generated in the plasma samples from blank values

(plate controls). Total protein concentration from Plasmodium falciparum schizont extracts
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was determined and samples were used to perform standard curves ranging from
15.625ng/mL up to 2000ng/mL. Lower absorbance values were in the range of O.D = 0.01-
0.02. All positive monkey samples gave O.D. values equal to or higher than 0.05.

Protein microarray and hybridization. The construction of the protein microarray was
conducted using methods as described elsewhere (100). Briefly, coding sequences were PCR
amplified from P. vivax SAL-1 genomic DNA and cloned into the PXT7 plasmid using
homologous recombinant as complete or overlapping fragments, the resulting plasmids
(n=244) were expressed in an Escherichia.coli based in vitro transcription/translation (IVTT)
reactions, and the completed reactions printed onto nitrocellulose-coated microarray slides
(Grace Bio-Labs, USA). Serum samples mixed with 1/100 blocking buffer (Arraylt Corp,
USA) supplemented with E. coli lysate (Genscript, USA). The diluted serum samples were
incubated with the protein arrays overnight at 4°C, followed by incubation with a goat anti-
human 1gG Texas Red secondary antibody (Southern Biotech, USA). The arrays were
scanned using a Genepix 4300A scanner (Molecular Devices, UK) at 5um resolution and a
wavelength of 594nm (101).

Protein microarray data processing and analysis. Raw median fluorescent intensity was local
background corrected using the normexp function (offset = 50, method = “mle”, limma R
package). All data was log transformed (base 2) and normalized as a ratio of the signal for
each spot to the mean of the no DNA control spot within each sample. The number of
antigens that have reactivity above 0 in at least 10% of samples was calculated and included
in the heatmap (generated in Microsoft excel). Seropositive antigens for each sample were
defined as those with reactivity above the mean of the sample specific No DNA control spots
+ 3SD. These seropositive antigens were totalled for each sample to determine the antigen
breadth (number of reactive antigens). The antigen breadth AUC was calculated using the

trapezoid rule after limiting the data to only the same number of time points for all
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inoculations. Pearson’s correlations were performed for available ELISA titers and antigen

breadth. All statistics and plots were done using R unless otherwise specified.

PacBio Whole Genome Sequencing and analysis

P. vivax AMRU-1 and SAL-1 were amplified with selective whole genome amplification
(SWGA), using primers specific for the subtelomeres that are enriched for low GC content
(102). Amplified DNA was used for PacBio sequencing using a commercial protocol
(Genscript). We obtained 373,772 subreads with an N50 (type of median length of the reads)
of 13,119 bp for SAL-1 and 325,996 subreads with an N50 of 12,035 bp for AMRU-1. The
reads were mapped with BWA MEM for quality control (Figure 5A) and then assembled
with canu (103) (parameter: genomeSize=32m ErrorRate=0.10 gnuplotTested=true
useGrid=0 -pachio-raw, version January 2018). The assemblies generated 113 and 103
contigs with an N50 of 50k and 41k and the largest contig be 195kb and 140kb for SAL-1
and AMRU-1, respectively. For annotation, the assemblies were loaded into Companion (48),
using PvPOL1 as reference strain (June 2018, Augustus cut-off set to 0.4). The genome and its
annotation can be found at http://cellatlas.mvls.gla.ac.uk/Assemblies/.

For the Gephi analysis, we extracted all the genes annotated as pir from the two
Companion runs, merged them with the pir genes of PvP01 and performed an all-against-all
BLASTp (-F F, Evalue 1e-6). The results were parsed into the open source software Gephi to
produce Figure 5C. For graphical representation, a force atlas algorithm was run and then the

global identity cut-off was set to 32% and the Fruchterman Reingold algorithm was run.

Gene expression microarray and gene expression analysis

pir gene probe development: Sequences from SWGA, representing mostly the AT-rich

subtelomeres and excluding the mitochondrial genes, were used as input for probe design
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using OligoRankPick (104)(oligo size=60, %GC=40). The oligos that were overlapping with
core genome oligos from the existing P. vivax microarray (47) were removed (12 for SAL-1
and 6 for AMRU-1). The final list of new oligos contains 929 SAL-1 probes and 701 AMRU-
1 probes, amongst which 8 match two SAL-1 genes and 5 ma tch two AMRU-1 genes (Full
list as Table S5).

RNA preparation and microarray hybridization. Cell pellets from the blood samples collected
at different time points during SAL-1 or AMRU-1 inoculations were stored in trizol. RNA
was extracted and processed to be run in a customized microarray assay detecting both core
and subtelomoeric genes. The previously described microarray hybridization protocol was
used for this study, with several modifications (105). In brief, 100 ng of cDNA was used for
subsequent 10 rounds of amplification to generate aminoallyl-coupled cDNA for the
hybridizations as described (105). 17ul (~ 5 pug) of each Cy-5-labelled (GE Healthcare)
cDNA of the sample and an equal amount of Cy-3-labelled (GE Healthcare) cDNA of the
reference pool were then hybridized together on customized microarray chip using
commercially available hybridization platform (Agilent) for 20 h at 70 °C with rotation at 10
rpm. Microarrays were washed and immediately scanned using Power Scanner (Tecan) at 10
um resolution and with automated photomultiplier tubes gain adjustments to balance the
signal intensities between both channels. The reference pool used for microarray was a
mixture of 3D7 parasite strain RNA collected every 6 h during 48 h of the full IDC.
Microarray analysis. To quantify microarray data signals, intensities were first corrected
using an adaptive background correction using the method “normexp” and offset 50 using the
Limma package in R(106). Next, we performed within-array loess normalization followed by
quantile-normalization between samples/arrays. Each gene expression was estimated as the
average of log2 ratios (Cy5/Cy3) of representative probes, thus intensities or log-ratios could

be comparable across arrays. Finally, probes with signal showing median foreground
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intensity less than 2-fold of the median background intensity at either Cy5 (sample RNA) or
Cy3 (reference pool RNA) channel were assigned missing values. Fold changes and standard
errors of relative gene expression were estimated by fitting a linear model for each gene,
followed by empirical Bayes smoothing to the standard errors. Next, the average log 2-
expression level for each gene across all the arrays was calculated using the topTable
function of the limma package. In parallel we adjusted p-values for multiple testing using the
Benjamini and Hochberg’s method to control the false discovery rate. The lists of
diTJerentially expressed genes (DEGs) for each of the comparisons were extracted by
defining a cut-off of adjusted p-values < 0.001 and fold change > 1. The log fold change and
adjusted p-values were graphed in volcano plots, using the EnhancedVolcano package in R.
From the lists of DEGs, we matched and highlighted those related to 3 categories: (i) surface
proteins related to parasite invasion, determined as syntenic orthologs with the P. falciparum
exportome (refs); (ii) proteins whose expression is spleen-dependent (ref); and (iii) P. vivax

IVTT antigens inducing high antibody responses as determined by the protein array.
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Fig. 1. Experimental timeline, parasite dynamics and survival analysis.

A. Experimental timeline of infection and challenge. *: died of malaria unrelated causes. **:

anemia and renal failure. B. Peripheral parasitemia across the experiment. Panels I-111 show

individual parasitemia of Aotus monkeys repeatedly infected with P. vivax SAL-1

(inoculations I to I11). Panel IV shows Aotus challenged with P. vivax AMRU-1 (inoculation
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IV). Inoculated control animals were treated at peak parasitemia. C. Probability of no
treatment of Aotus repeatedly infected with the homologous P. vivax SAL-1 and heterologous
P. vivax AMRU-1 strains at each inoculation level. p values for survival curve comparison
were obtained using the Log-rank (Mantel-Cox) test. Survival curves for homologous
infection 1 shown in blue; homologous infection 2 shown in red; homologous infection 3
shown in green. P. vivax AMRU-1 heterologous infection 4 shown in black. CBC: red blood
cell count. CQ: chloroquine, at 15 mg/kg oral for 3 days. MQ: mefloquine, at 25 mg/kg oral
once. C: malaria naive control. C1: control, once inoculated with P. vivax. PI: post

inoculation.
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1047  Fig. 2. Hematological and parasite parameters. Panels A-C show hematocrit levels (Hct%)
1048  (A), platelet counts (B) and combined data from A, B and mean parasitemia (C) across

1049 inoculation levels I to IV. Panel D shows the percentage of reticulocytes and the Reticulocyte
1050  Production Index (RPI) at infection level IV. RPI = Reticulocyte Absolute Count/

1051  Reticulocyte Maturation Correction. Reticulocyte Absolute Count = Hct% / 45 x

1052  Reticulocyte %. T = CQ: chloroquine, at 15 mg/kg oral for 3 days; MQ at 25 mg/kg once for

1053  rescue treatment of P. vivax AMRU-1 infections in panel C.
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1055  Fig. 3. ELISA titers of Aotus repeatedly infected with P. vivax blood stages. A. Crude
1056  antigen checkerboard titration. P. vivax SAL-1 antigen was prepared from Aotus iRBCs

1057  purified by Percoll cushion (47%) centrifugation and adsorbed to the plate wells diluted in
1058 PBS pH 7.4 at a concentration of 5 g / mL. Secondary antibodies (peroxidase conjugated
1059  Goat anti-monkey, Rhesus macaque) were diluted 1:2000 in PBS pH 7.4., and optical density
1060 (OD) read using a 492 nm filter. B. Mean ELISA* titers of Aotus immunized by repeated
1061 infection with the homologous SAL-1 and challenged with the heterologous AMRU-1 strains
1062  of P. vivax. I-1V indicates inoculation level, each with inoculum of 50 x 10° iRBCs. Level I-
1063 Il infection with homologous SAL-1. Level IV indicates infection with heterologous

1064  AMRU-1. C. Pearson correlation analysis of mean ELISA titers at inoculation levels I (n =
1065  6), Il (n=5)and Il (n = 4) showed a high negative correlation vs mean parasitemia (r —

1066  0.98), the mean area under the curve (AUC) (r = -0.98), and a moderate positive correlation
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1067  vs mean peak parasitemia (r = 0.63). D. Combined plot of mean parasitemia and ELISA titers
1068  with Aotus repeatedly infected with the homologous SAL-1 (Infection I-111) and challenged
1069  with the heterologous AMRU-1 (Infection 1V).

1070

48


https://doi.org/10.1101/2023.02.13.528262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.13.528262; this version posted September 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1071

Inoculation level

Number of Reactive Antigens

9]

Antigen Breadth AUC

available under aCC-BY 4.0 International license.

Inoculation Level

Antigen
% W E‘;’ = ;, ng:a, 3 § 3 5 3 sad ;
R R R e e R e b R e
THER R FEEH B R R
S S ESEE E S E S  E S E SN EECECECECEEEEEEEEEEEEEREsEE
- -
=
W =] y =
om "- B o
.:-- ." Iﬂ. - ™ -
N -
0 s -
Inoculation level
504 I I Lom v
40 4 . .
30 1 . y £
N . T é %3
10 | ’ == é e
-1 10 14 21 28 17 14 20 29 1 7 1a 21 28 &7 17 14 28
Day
D
600+ L L " Day 28 Day 99 Day 114
5004 £ w0
e ® < R=022.p=072 R=0.98,p=0.004 R=0.86,p=0.062
400 (] 3 .
20
L Monkey %’ o .
3004 @ 25029 2 -— °
o B ol
2004 @ 30014 E
<] @32047 <
roonomw 800 1200 1600 2000 O 2500 5000 7500 10000125000 5000 10000

ELISA Titer (Arbitrary Units)

49


https://doi.org/10.1101/2023.02.13.528262
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.13.528262; this version posted September 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

available under aCC-BY 4.0 International license.

Fig. 4. Protein microarray. A. Shown are antibody responses (log2(antigen reactivity / no
DNA control reactivity)) to 66 out of 244 P. vivax IVTT antigens with reactivity above 0 in
10% of all samples and across monkeys. Thus, zero represents equal or lower reactivity than
the mean of the no DNA control spots. Antigens are ordered from highest to lowest overall
mean. Samples are ordered top to bottom by inoculation level, day, and then by monkey. B.
Antigen breadth (number of P. vivax reactive antigens) by post-infection day at each
inoculation level (I-1V). Antigens were considered reactive if the reactivity was higher than
the mean + 3SD of the no DNA control spots for that sample. * indicates a significantly
higher antigen breadth at that day than at baseline (day -1) within each inoculation (p<0.05,
Wilcoxon matched pairs test, one-sided). C. Area under the curve (AUC) of the antigen
breadth at each inoculation level for the three monkeys that completed the experiment. D.
Pearson correlation of ELISA titer at each day post-infection versus antigen breadth. p values

shown are from t-tests with the null hypothesis that the correlation coefficient equals 0.
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1087  Fig. 5. PacBio Whole Genome Sequencing (WGA) of Plasmodium vivax SAL-1 and

1088 AMRU-1. A. Artemis screenshot. Shown is one arm of P. vivax PvP0O1 chromosome 14, with
1089  PacBio reads mapped (SAL-1 in blue and AMRU-1 in red). Most of the coverage occurs in
1090 subtelomeric regions, demonstrating the specificity of the SWGA. B. Circos plot of one

1091  representative SAL-1 contig that contains mostly pir genes. The contig maps to chromosome
1092 1 of P. vivax reference PvP01. Gray lines show syntenic matches of pir genes between the
1093  two strains. C. Gephi plot showing pir genes from AMRU-1 (red), SAL-1 (blue) and PvP01
1094 reference (gray). Genes are connected if they share at least 32% global identity.
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1097 Fig. 6. Parasite gene expression comparisons acr oss infection regimes. A. Differential

1098 gene expression (DGE) across core genes. Volcano plots show DGE between infection
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regimes. Left: DGE of core genes between SAL-1 inoculation Il vs SAL-1 inoculation |
(black) and between AMRU-1 inoculation IV vs the averaged expression of SAL-1 during
the homologous challenges (blue). Right: DGE of core genes across AMRU-I infection
regimes. Yellow dots represent DGE between AMRU-1 parasites from Aotus monkeys
previously infected with three SAL-1 inoculations (AMRU3Sal) vs AMRU-1 parasites from
naive Aotus monkeys (AMRUNaive). Black dots represent DGE between AMRU3Sal vs
AMRU-1 parasites from Aotus monkeys previously infected with only one SAL-1 inoculation
(AMRU1Sal). Blue dots represent DGE between AMRU1Sal vs AMRUNaive. Each dot
represents one annotated P. vivax core gene and is displayed according to the fold-change in
expression (x-axis, in log2) and statistical significance (y-axis, in negative logarithm to the
base 10 of the p-value). B. Principal Component Analysis (PCA) of the parasite core gene
(left panel) and pir gene (right panel) expression profiles from each biological replicate,
coloured according to the corresponding group: SAL-1 parasites at day 14 PI of the first
inoculation (gray); SAL-1 parasites at day 14 Pl of the second inoculation (black); AMRU-1
parasites at day 14 PI from Aotus monkeys previously infected with three SAL-1 inoculations
(light blue dots); gene expression of AMRU-1 parasites at day 28 Pl from Aotus monkeys
previously infected with three SAL-1 inoculations (blue dots); gene expression of AMRU-1
parasites at day 1 PI from naive Aotus monkeys (orange dots); gene expression of AMRU-1
parasites at day 14 Pl from naive Aotus monkeys (red dots). C. pir gene network analysis
comparing P. vivax pir gene expression in SAL-1 vs AMRU-1 infections in Aotus monkeys.
Same network as in Figure 5C, except that larger circles indicate pir gene expression level.
Left panel: pir expression in SAL-1 parasites at day 14 Pl of the first inoculation across
individual monkeys. Right panel: comparison of pir expression in monkey MN32047
between SAL-1 parasites at day 14 PI of the first inoculation AMRU-1 parasites at day 14 Pl

of the fourth inoculation.
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Supplementary figures and legends
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Fig. S1. Experimental scheme. Diagram depicting repeated infection of Aotus monkeys with
the homologous P. vivax SAL-1 and challenge with heterologous AMRU-1 strain.
Inoculation level, inoculation day, donor monkey, monkey number, and number of animals

remaining from the original group of six inoculated are shown.
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Figure S2. Parasite load and biomass acr oss animals. A Parasite load. Panels I-111 show
parasite load (QPCR 18sRNA in copies x pL) across inoculation levels I-111 in individual
monkeys infected with P. vivax SAL-1. Panel IV shows inoculation level 1V, i.e., individual
monkeys infected with P. vivax AMRU-1. B. Parasite biomass. Panels I-111 show parasite
biomass (pLDH ng/mL) across inoculation levels I-111 in individual monkeys infected with P.
vivax SAL-1. Panel IV shows inoculation level IV, i.e., individual monkeys infected with P.
vivax AMRU-1. Plasmodium LDH levels in ng/mL was calculated based on standard curves
using Plasmodium fal ciparum schizont extracts. C. Parasitemia parameters across
inoculation levels I-IV (Mean + SD). Left: Days patent. Mid left: Day of Peak. Mid right:

Peak parasitemia. Right: Area under the curve (AUC). P value; unpaired t-test with equal

standard deviation.
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1146  Fig. S3. Association of individual antibody responseswith EL I SA and other parameters.
1147  Matrix plot of the Spearman’s rank correlations between the protein array hits and IgG titers
1148  (determined by ELISA), parasitemia, parasite load (determined by gPCR), parasite biomass
1149  (represented by pLDH levels) and hematological parameters at each inoculation level.

1150  Asterisks represent level of significance (*p<0.05, **p<0.01, ***p<0.001).
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Fig. $4. Protein microarray and EL| SA titer. Pearson correlation of ELISA titer at each

day post-infection vs antigen breadth. p values shown are from t-tests with the null

hypothesis that the correlation coefficient equals 0.
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Fig. S5. Top protein microarray responses. Reactivity of Aotussera repeatedly infected
with P. vivax blood stages against selected immunogenic targets. PVX_090230 = ETRAMP;
PVX_099980 s3 & PVX_099980_s4 = MSP1; PVVX_092070 = PV1. All data is log2(antigen
reactivity / no DNA control reactivity). Notably, the dynamic of antibody acquisition varies

across individual antigens and monkeys.

Supplementary tables

Table S1. Summary hematological and parasitemia values of Aotus repeatedly infected with
P. vivax SAL-1 (inoculation levels I-111) and challenged with the heterologous P. vivax strain
AMRU-1 (inoculation level IV).

Table S2. Mean ELISA titers of Aotus repeatedly infected with P. vivax SAL-1 (inoculation
levels I-111) and challenged with the heterologous P. vivax strain AMRU-1 (inoculation level

V).

Table S3. P. vivax immunogenic targets with significantly higher antibody levels at

inoculation level 111 vs inoculation level |I.

Table 4: Normalized microarray data across monkeys and time points.

Table S5. Microarray probe set for SAL-1 and AMRU-1.
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