

1 Deciphering sources of PET signals in the tumor microenvironment 2 of glioblastoma at cellular resolution

3
4 Laura M Bartos¹, Sabrina V Kirchleitner², Zeynep Ilgin Kolabas^{3,4,5}, Stefanie Quach², Jens
5 Blobner², Stephan A Mueller^{6,7}, Selin Ulukaya^{3,8}, Luciano Hoeher³, Izabela Horvath^{3,9}, Karin
6 Wind-Mark¹, Adrien Holzgreve¹, Viktoria C Ruf¹⁰, Lukas Gold¹, Lea H Kunze¹, Sebastian T
7 Kunte¹, Philipp Beumers¹, Melissa Antons¹, Artem Zatcepin^{1,7}, Nils Briel^{7,10}, Leonie
8 Hoermann¹, Denise Messerer¹¹, Peter Bartenstein^{1,12}, Markus J Riemenschneider¹³, Simon
9 Lindner^{1,12}, Sibylle Ziegler¹, Jochen Herms^{7,10,12}, Stefan F Lichtenthaler^{6,7,12}, Ali Ertürk^{3,4,5,12},
10 Joerg C Tonn^{2,14}, Louisa von Baumgarten^{2,14}, Nathalie L Albert^{1,14,15*}, Matthias Brendel^{1,7,12*}

11
12 ¹Dept. of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany

13 ²Dept. of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany

14 ³Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg,
15 Munich, Germany

16 ⁴Institute for Stroke and Dementia Research (ISD), University Hospital of Munich, Ludwig-Maximilians
17 University Munich, Munich, Germany

18 ⁵Graduate School of Systemic Neurosciences (GSN), Munich, Germany

19 ⁶Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München,
20 Munich, Germany

21 ⁷DZNE – German Center for Neurodegenerative Diseases, Munich, Germany

22 ⁸Faculty of Biology, Master of Science Program in Molecular and Cellular Biology, Ludwig-
23 Maximilians-Universität München, Planegg, Germany

24 ⁹School of Computation, Information and Technology (CIT), TUM, Boltzmannstr. 3, 85748 Garching,
25 Germany

26 ¹⁰Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany

27 ¹¹Dept. of Cardiology, University Hospital of Munich, LMU Munich, Munich, Germany

28 ¹²Munich Cluster for Systems Neurology (SyNergy), Munich, Germany

29 ¹³Dept. of Neuropathology, Regensburg University Hospital, Regensburg, Germany

30 ¹⁴German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center
31 (DKFZ), Heidelberg, Germany

32 ¹⁵Bavarian Cancer Research Center (BZKF), Erlangen, Germany.

33
34 January 26, 2022

35

36 **Running title:** Cellular origin of PET biomarkers

37 **Word count:** 4510

38 **Figures:** 6

39 **Tables:** 1

40 **Keywords:** PET, tumor microenvironment, cell sorting, cellular source, immune biomarker,
41 glioblastoma

42
43 *contributed equally as last authors

44

45 **First author:**

46 Laura Maria Bartos
47 Department of Nuclear Medicine

48 University Hospital of Munich, Marchioninistr.15, 81377 Munich, Germany
49 Phone: +49 (0) 89 4400 74646
50 Fax: +49 (0) 89 4400 77646
51 E-Mail: laura.bartos@med.uni-muenchen.de

52
53 **Corresponding author:**
54 Dr. Matthias Brendel, MHBA
55 Department of Nuclear Medicine
56 University Hospital of Munich, Marchioninistr.15, 81377 Munich, Germany
57 Phone: +49 (0) 89 4400 74650
58 Fax: +49 (0) 89 4400 77646
59 E-Mail: matthias.brendel@med.uni-muenchen.de

60

61

62

63

64 **Abstract**

65 **Various cellular sources hamper interpretation of positron-emission-tomography**
66 **(PET) biomarkers in the tumor microenvironment (TME). We developed**
67 **immunomagnetic cell sorting after *in vivo* radiotracer injection (scRadiotracing) in**
68 **combination with 3D-histology via tissue clearing to dissect the cellular allocation of**
69 **PET signals in the TME. In SB28 glioblastoma mice, translocator protein (TSPO)**
70 **radiotracer uptake per tumor cell was higher compared to tumor-associated**
71 **microglia/macrophages (TAMs). Cellular radiotracer uptake was validated by**
72 **proteomics and confirmed for *in vitro* samples of patients with glioblastoma. Regional**
73 **agreement between PET signals and single cell tracer uptake predicted the individual**
74 **cell distribution in 3D-histology. In consideration of cellular tracer uptake and cell type**
75 **abundance, tumor cells were the main contributor to TSPO enrichment in**
76 **glioblastoma, however proteomics identified potential PET targets highly specific for**
77 **TAMs. Combining cellular tracer uptake measures with 3D-histology facilitates precise**
78 **allocation of complex PET signal sources and will serve to validate novel TAM-specific**
79 **radioligands.**

80

81 **Introduction**

82
83 The tumor microenvironment (TME) emerged as an acknowledged key component in cancer
84 biology and treatment¹. In particular, novel immunotherapies against targets of the TME
85 facilitate potentiation of host antitumor immune responses². However, despite the need to
86 monitor novel anti-cancer therapeutics *in vivo*, specific biomarkers for immune cells of the
87 TME are still limited³. Recent efforts originated in radiolabeled antibodies for positron-
88 emission-tomography (PET) that specifically target immune cells⁴, but the cell-type
89 heterogeneity of the TME hampers cellular allocation and interpretation of such biomarkers.
90 Furthermore, antibody-based PET biomarkers have limited penetrance through the blood-
91 brain-barrier, which limits their use in brain malignancies, such as glioblastoma which
92 represents the most common malignant primary brain tumor with a very poor prognosis⁵. In
93 this disease, 18 kDa translocator protein (TSPO)-PET showed opportunities to assess
94 myeloid cells of the TME as important contributors to immune evasion of glioblastoma⁶.
95 However, the detailed sources of TSPO and other TME biomarkers in glioma have not yet
96 been thoroughly elucidated, which again hampers interpretation and understanding of
97 individual PET images. In glioma, tumor-associated microglia and macrophages (TAMs)
98 show elevated expression of TSPO *in vitro*⁷ and *in vivo*⁶, acting as a potential signal target of
99 TSPO ligands. However, this finding is a matter of debate since in high-grade tumors, TSPO
100 was found to be highly overexpressed by tumor cells as well^{8,9,10}.

101 To overcome the limitations of previous immunohistochemistry to PET comparisons, we
102 aimed to resolve the complex sources of TME biomarkers in glioma at cellular resolution. We
103 therefore established and validated a novel approach of immunomagnetic cell sorting after
104 radiotracer injection (single cell Radiotracing, scRadiotracing)¹¹ and exploited this technique
105 in a mouse model of experimental glioblastoma. TSPO tracer uptake was measured in single
106 tumor cells and CD11b-positive immune cells of a SB28 glioblastoma mouse model,
107 validated against TSPO protein levels as determined by proteomics as a proof of concept.
108 Furthermore, we investigated associations between single cell TSPO tracer uptake and
109 tumor heterogeneity in TSPO-PET. To bridge the gap between implantation of murine tumors

110 and spontaneous glioma development in human brain, we transferred TSPO scRadiotracing
111 to human samples and determined proportions of TSPO tracer uptake *in vitro* in tumor and
112 immune cells of patients with high-grade and low-grade glioma immediately after surgery. As
113 a second major innovation, 3D-histology via tissue clearing and light sheet microscopy was
114 integrated to acknowledge PET signals as a composite of cell type abundance and single cell
115 tracer uptake. Finally, the full proteome of isolated SB28 tumor cells and TAMs was analyzed
116 for identification of potential TAM-specific TME radioligand targets with superior binding
117 capacity when compared to TSPO.

118

119 **Results**

120 **Single cell tracer uptake measures of microglia as calculated by scRadiotracing** 121 **correspond to PET signal changes upon microglia depletion**

122 Immune PET biomarkers such as TSPO have the potential to monitor TAMs of the TME, but
123 the target signal of currently available TSPO radioligands is challenged by several cellular
124 sources. To validate scRadiotracing for the TSPO tracer [¹⁸F]GE-180, we compared the
125 magnitude of the microglia-specific TSPO-PET signal with the recovered radioactivity in
126 isolated microglia of untreated mice. First, we investigated the allocation of the TSPO tracer
127 in the healthy mouse brain. Isolated CD11b(+) microglia ($1.2 \pm 0.1 \times 10^5$ cells) of untreated
128 mice revealed $7.7 \pm 0.7 \times 10^{-7}$ percentage radioactivity (normalized to injected dose (ID) and
129 body weight (BW), %ID*BW) per single cell, whereas enriched ACSA2(+) astrocytes ($5.2 \pm$
130 0.7×10^5 cells) indicated 12.5-fold lower radioactivity per single cell ($6.2 \pm 0.7 \times 10^{-8}$
131 %ID*BW; $p = 0.00016$; **Fig. 1A**), speaking for strong specificity of the tracer for microglia
132 over astrocytes. Next, extrapolation by published microglia cell numbers (6% of all brain
133 cells, 7.63×10^6 microglia cells) from dedicated studies¹², whole brain radioactivity (0.19 -
134 0.30 MBq) and %brain dose per single microglia cell (1.8×10^{-6} - 3.6×10^{-6}) were used to
135 calculate the contribution of the microglia population to the radioactivity in the whole brain to
136 be $17.5\% \pm 2.2\%$.

137 To quantify the contribution of microglia to the overall TSPO-PET signal, we used CSF1R
138 inhibition via PLX5622 and hereby depleted 96% of all microglia in the mouse brain (**Fig.**
139 **1B**). As a result of microglia depletion, the TSPO-PET signal (**Fig. 1C**) in mice at 10.1 ± 2.1
140 months of age^{13,14} showed 18.5% lower standardized uptake values (SUV_H) when compared
141 to vehicle controls (0.19 ± 0.01 vs. 0.23 ± 0.01 ; $p < 0.0001$). This decrease corresponded to
142 the contribution of the microglia cell population extrapolated after scRadiotracing ($p = 0.770$;
143 **Fig. 1D**). Thus, TSPO scRadiotracing provided a nearly complete recovery of the microglia-
144 specific PET signal in healthy mice and suggested capability of the method to be used for
145 tracer allocation in cells of the TME.

146

147 **TSPO tracer uptake of tumor cells and TAMs reflects cellular TSPO protein levels in**
148 **the SB28 glioblastoma mouse model**

149 In the next step, we applied scRadiotracing to an experimental orthotopic glioblastoma model
150 (SB28) that closely reflects the human TME¹⁵ to investigate the contribution of tumor cells
151 and TAMs to the TSPO-PET signal (**Fig. 2A-C**). Using MACS, CD11b(+) immune cells were
152 isolated from tumor and sham injected brains (TAMs or sham microglia), tumor samples
153 underwent subsequent tumor cell isolation. Residual cell pellets were analyzed as depleted
154 fractions. We extracted $1.4 \pm 0.4 \times 10^5$ GFP(+) tumor cells and $6.7 \pm 1.7 \times 10^5$ CD11b(+)
155 TAMs from tumor mice and $4.2 \pm 0.8 \times 10^4$ CD11b(+) microglia from sham mice (**Fig. 2A**) in
156 enriched fractions at high purity as determined by flow cytometry (tumor cells: $87\% \pm 2\%$;
157 TAMs: $90\% \pm 1\%$; sham microglia: $89\% \pm 1\%$; **Fig. 2B-D**). Signal-to-noise-ratios (SNRs) for
158 radioactivity detection were consistently ≥ 2 (**Fig. 2A**).

159 Subsequently, single cell tracer uptake of tumor cells and TAMs was quantified to decipher
160 cellular contributions to the TSPO tracer uptake in glioblastoma. Both, single SB28 tumor
161 cells (3.53-fold, $1.7 \pm 0.2 \times 10^{-6}$ %ID*BW; $p < 0.0001$, 1-way ANOVA; **Fig. 2D**) and TAMs
162 (2.58-fold, $1.3 \pm 0.2 \times 10^{-6}$ %ID*BW; $p = 0.024$, 1-way ANOVA; **Fig. 2D**) indicated higher
163 TSPO tracer uptake when compared to sham microglia ($4.9 \pm 0.8 \times 10^{-7}$ %ID*BW). We also
164 tested if sham injections had an impact on TSPO tracer uptake of microglia and did not find

165 any remarkable difference in these cells when compared to control microglia of untreated
166 age-matched mice ($p = 0.999$, 1-way ANOVA, **Fig. 2D**).
167 In the direct comparison of tumor cells and TAMs, we noted 1.37-fold higher TSPO tracer
168 uptake of single SB28 tumor cells when compared to TAMs ($p = 0.0010$, paired t-test),
169 indicating a dual cellular allocation of the tracer with even slightly higher single cell uptake of
170 SB28 tumor cells when compared to the immune cell target population. Importantly, and
171 highly congruent to scRadiotracing, proteomics revealed increased TSPO protein levels in
172 SB28 tumor cells (2.98-fold, FDR-corrected $p = 0.015$) and TAMs (2.04-fold, $p = 0.0016$)
173 when compared to control microglia. Although not reaching significance after correction for
174 multiple comparisons, higher TSPO tracer uptake of SB28 tumor cells over TAMs was also
175 reflected by higher TSPO protein abundance (1.46-fold, $p = 0.357$; **Extended Fig. 1**). We
176 additionally proved the presence of the tracer target in SB28 tumor and immune cells by
177 revealing that the vast majority of isolated CD11b(+) and GFP(+) cells showed TSPO co-
178 labeling in flow cytometry (**Fig. 2E,F**), which is in accordance to the previously reported co-
179 localization of TSPO and GFP/CD11b in immunohistochemistry¹⁶.
180 To determine the contributions of the distinct cell types with TSPO expression to the
181 radioactivity in the cell pellets, we calculated a linear regression with normalized radioactivity
182 per cell count as dependent variable and cellular proportions (GFP(+) tumor cells, CD11b(+)
183 TAMs and ACSA2(+) astrocytes) of all enriched and depleted fractions as predictors. The
184 regression model significantly explained the variance in single cell TSPO tracer uptake ($F =$
185 6.2, $p = 0.0011$, $R^2 = 0.25$, $R^2_{adj} = 0.21$). Tumor cells showed highest contribution to the
186 single cell TSPO tracer uptake ($\beta = 0.76$ $p = 0.00017$), followed by TAMs ($\beta = 0.57$, $p =$
187 0.0032) and astrocytes ($\beta = 0.34$, $p = 0.0074$) (**Fig. 2G**). A global model using measured
188 radioactivity, total cell count and cell proportions indicated that 76% of the variance in
189 radioactivity measures could be explained by the cellular component of tumor cells, TAMs
190 and astrocytes ($F = 46.6$, $p < 0.0001$, $R^2 = 0.772$, $R^2_{adj} = 0.756$). To question the performed
191 calculations in depth, we correlated the radioactivity measured in the depleted tumor
192 fractions, containing $39\% \pm 2\%$ GFP(+), $7\% \pm 1\%$ CD11b(+) and $16\% \pm 3\%$ ACSA2(+) cells,

193 with estimated summed up radioactivity by single cell tracer uptake and cell count ($R = 0.74$,
194 $p = 0.0002$).

195 In summary, the established methodology accurately determines radiotracer uptake of single
196 cells, which closely reflects relative protein abundance in respective cell types. The cellular
197 allocation of TSPO as a biomarker consist of overexpression in both tumor and immune cells
198 in SB28 tumors.

199

200 **Single cell tracer uptake explains inter-individual PET heterogeneity and reveals
201 dominant association of tumor cells with TSPO-PET signals**

202 To bridge the gap between cellular tracer uptake and tumor imaging, PET was added to the
203 experimental workflow of scRadiotracing in SB28 glioblastoma mice (**Fig. 3A**). TSPO-PET
204 indicated heterogeneity of tumor signals 2.5 weeks after surgery (range of SUV_{mean} : 0.937 –
205 1.825), which were strongly elevated when compared to sham injection (SUV_{mean} : 0.842 \pm
206 0.032; $p < 0.0001$; **Fig. 3B**). We correlated the individual single cell TSPO tracer uptake of
207 SB28 tumor cells and TAMs with the TSPO-PET signal in the lesion and observed similar
208 degrees of strong association for both cell types (**Fig. 3C**). Interestingly, we also found an
209 inter-correlation between single cell tracer uptake of tumor cells and TAMs ($R = 0.758$, $p =$
210 0.0011), which indicated bidirectional dependence of TSPO enrichment in tumor and immune
211 cells (**Fig. 3D**). A combined vector of single cell TSPO tracer uptake of both tumor cells and
212 TAMs strongly correlated with the magnitude of the tumor TSPO-PET signal ($R = 0.848$, $p <$
213 0.0001; **Fig. 3E**). A regression model of TSPO tracer uptake of tumor cells and TAMs
214 however demonstrated that only tumor cells contributed significantly to the TSPO-PET signal
215 (tumor cells: $\beta = 0.55$, $p = 0.038$; TAMs: $\beta = 0.35$, $p = 0.157$).

216 Going into more detail, we interrogated the regional heterogeneity of tumor TSPO-PET
217 signals and correlated single cell TSPO enrichment with the regional PET signal magnitude.
218 Therefore, we performed a cluster-based analysis (k-means clustering, 50 clusters defining
219 intratumoral regions of increasing signal intensity) of TSPO-PET in the tumor lesion (**Fig. 3F**)
220 and correlated single cell tracer uptake with the PET signal in respective clusters. The

221 association between single cell TSPO enrichment and TSPO-PET signal intensity in the
222 cluster followed an inverted U-shape function for tumor cells and TAMs, with higher
223 agreement between tumor cell TSPO and regional TSPO-PET signal when compared to
224 TAM TSPO and regional TSPO-PET signal (**Fig. 3F-H**). Strikingly, the association between
225 TSPO-PET and single cell tracer uptake was increasingly dominated by tumor cell TSPO
226 enrichment as a linear function of cluster hierarchy ($y = 0.004x-0.026$; $R = 0.947$; $p < 0.0001$;
227 **Fig. 3F-H**). This indicates that especially regions with high TSPO-PET signal intensities were
228 characterized by strong dependence from single tumor cell TSPO. Thus, the combination of
229 PET and scRadiotracing identified a strong association between PET signals and cellular
230 tracer uptake, which was characterized by a dominant dependency of TSPO-PET signals
231 from tumor cells when compared to immune cells.

232
233 ***In vitro* scRadiotracing in human glioma underlines translational value of the**
234 **methodology and confirms higher TSPO tracer uptake of tumor cells when compared**
235 **to TAMs**

236 To test for a potential translational value of single cell tracer uptake measures in human
237 glioblastoma, we applied *in vitro* scRadiotracing in a cohort of patients with high-grade and
238 low-grade glioma that underwent biopsy or tumor resection (**Table 1, Extended Table 1**).
239 Tissue samples were investigated immediately after surgery applying *in vitro* [¹⁸F]GE-180
240 incubation of individual single cell suspensions and subsequent cell sorting (**Fig. 4A**). The
241 rationale was to check for discrepancies of cellular tracer binding between species.
242 scRadiotracing resulted in enriched fractions with visually well discernible populations of
243 tumor cells and TAMs (**Extended Fig. 2**). High-grade glioma indicated similar heterogeneity
244 of tumor-cell-to-TAM ratios in the single cell suspension when compared to low-grade glioma
245 (**Fig. 4B**). As the purity of tumor and TAM enriched fractions was limited in human samples,
246 negligibility of TSPO tracer uptake of non-tumor/non-TAM cells was proven by showing that
247 only the number of isolated TAMs correlated with measured tracer signal in the TAM
248 enriched cell pellet ($\beta = 0.875$, $p = 0.0021$), whereas non-tumor/non-TAM cells did not

249 contribute to the overall magnitude of radioactivity in the same sample ($\beta = 0.118$, $p = 0.542$;
250 **Fig. 4C**). Single cell TSPO enrichment in TAMs was similar between patients with high-grade
251 and low-grade glioma ($1.6 \pm 0.9 \times 10^{-7}$ %ID vs. $2.3 \pm 1.0 \times 10^{-7}$ %ID, $p = 0.618$), whereas
252 TSPO enrichment of tumor cells was higher in patients with high-grade glioma ($4.5 \pm 1.3 \times$
253 10^{-7} %ID) when compared to patients with low-grade glioma ($1.4 \pm 0.5 \times 10^{-7}$ %ID, $p = 0.047$,
254 **Fig. 4D**). Within the group of patients with high-grade glioma, TSPO enrichment of tumor
255 cells was stronger when compared to TAMs ($p = 0.0014$; **Fig. 4D**). Contrary, TSPO
256 enrichment of tumor cells showed no significant difference when compared to TAMs within
257 the group of patients with low-grade glioma. We questioned if previous therapy constitutes a
258 potential confounder of single cell tracer uptake, but we did not find any significant impact of
259 a previous therapy (radiation and/or chemotherapy, 11 out of 20) or resection (9 out of 20) on
260 TSPO enrichment of single tumor cells or TAMs (all $p > 0.05$).
261 In accordance with the combination of PET and scRadiotracing in the SB28 mouse model,
262 we correlated single cell TSPO enrichment with TSPO-PET imaging, which was performed in
263 a subset of patients prior to surgery. TSPO enrichment of tumor cells ($R = 0.934$, $p < 0.0001$)
264 but not TSPO enrichment of TAMs ($R = 0.295$, $p = 0.328$) was associated with the lesion
265 signal in TSPO-PET (**Fig. 4E**). Individual patients with varying TSPO-PET signal intensities
266 but similar FET and (ce)MRI findings showed a strong agreement between lesion signals and
267 corresponding tumor cell TSPO enrichment (**Fig. 4F**). Taken together, the dominance of
268 tumor cell radiotracer uptake and the association between scRadiotracing and PET in human
269 tissue samples closely reflected our findings in SB28 mice. Therefore, *in vitro* scRadiotracing
270 provides an opportunity to efficiently check for consistency in cellular target binding between
271 murine and human samples.
272
273 **The triangle of PET, scRadiotracing and 3D-histology dissects cellular sources of**
274 **regional PET signals and pinpoints dominant contribution of tumor cells to the TSPO-**
275 **PET signal**

276 Since PET tracer signals are a product of cellular tracer uptake and regional cell type
277 abundance, we used 3D-histology via tissue clearing and light sheet microscopy (**Fig. 5A**) to
278 determine absolute and relative cell numbers of GFP(+) tumor cells and CD11b(+) immune
279 cells throughout entire SB28 tumors in the intact ipsilateral hemispheres. GFP(+) volumes
280 were 5.5-fold larger when compared to CD11b(+) volumes ($18.6 \pm 6.8 \text{ mm}^3$ vs. $3.4 \pm 1.5 \text{ mm}^3$, $p = 0.037$; **Fig. 5B,C**). Confocal microscopy revealed a GFP(+) volume of $4493 \mu\text{m}^3$ per
282 SB28 tumor cell and a CD11b(+) volume of $2713 \mu\text{m}^3$ per TAM (**Fig. 5D**), resulting in higher
283 cell count of SB28 tumor cells when compared to TAMs in individual SB28 lesions (**Fig. 5E**).
284 Considering both single cell tracer uptake and cell distributions of tumor cells and TAMs, we
285 calculated a tumor-cell-to-TAM contribution to the TSPO-PET signals in SB28 lesions of
286 3.5:1 (**Fig. 5E**).
287 Next, PET, scRadiotracing and 3D-histology were used as an integrated concept.
288 Importantly, the regional resolution of 3D-histology could be predicted by combining lesion
289 PET signals with single cell tracer values (**Fig. 5F,G, Extended Fig. 3**). For this purpose, we
290 used the regional association between single cell tracer uptake of SB28 tumor cells and
291 TAMs with TSPO-PET (i.e. correlation coefficients per cluster, **Fig. 3F**) as a cluster-based
292 PET weighting factor. k-means cluster PET signals of all mice that received TSPO-PET
293 imaging and 3D-histology were multiplied with their respective correlation coefficients and
294 divided by single cell tracer uptake of both tumor cells and TAMs (**Fig. 2D**) to predict
295 individual regional abundance (i.e. light sheet signal intensity) for each cell type (**Fig. 5F-H**).
296 Predicted and standard of truth 3D-histology were strongly correlated (tumor cells: $R = 0.624$,
297 $p < 0.0001$; TAMs: $R = 0.304$, $p < 0.0001$; **Fig. 5H; Extended Fig. 3**). Hot spots of GFP-
298 positivity were co-localized with regions of high TSPO-PET signal intensity (**Fig. 5G**), fitting
299 to the strong association between tumor cell TSPO and regional TSPO-PET (**Fig. 3F**). The
300 radioactivity in individual tumors as measured by PET was precisely predicted by aggregated
301 single cell tracer uptake and cell count of tumor cells and TAMs (**Fig. 5I**). In summary,
302 exploiting the established methodological combination of PET, scRadiotracing and 3D-
303 histology enables to pinpoint complex PET signals to their detailed cellular origins.

304

305 **Proteomics identifies potential TAM-specific radiotracer targets with superior binding**
306 **capacity when compared to TSPO**

307 Since tumor cells dominate the TSPO-PET signal, the development of novel PET
308 radiotracers with higher specificity for TAMs could provide added value to glioblastoma
309 diagnostics. We therefore generated murine proteome data to identify potential TAM-specific
310 radiotracer targets. Starting from a total of 7869 proteins relatively quantified between TAMs
311 and microglia of healthy control mice, 1097 showed higher fold-changes than TSPO (**Fig.**
312 **6A,B**). 165 of these proteins could not be quantified in SB28 tumor cells and additional 16
313 proteins showed >10-fold higher levels in TAMs when compared to SB28 tumor cells (**Fig.**
314 **6B**), thus providing sufficient specificity for TAM over tumor cell expression.

315 To translate these findings from mouse to human, we used the Human Protein Atlas¹⁷ to
316 identify expression of respective human gene homologs in off-target cells in brain as an
317 index of TAM-specificity (see first set of columns in **Fig. 6C, Extended Fig. 4**). Physiological
318 expression in resident and invading cells of the tumor microenvironment (see second set of
319 columns in **Fig. 6C, Extended Fig. 4**) was characterized. In a next step, we ensured low
320 target expression in other cells in the organism to prevent peripheral radiotracer absorbance,
321 since this may cause a sink effect and high radiation exposure (see third set of columns in
322 **Fig. 6C, Extended Fig. 4**). This selection process resulted in 20 proteins with highly suitable
323 characteristics as specific immune PET tracer targets (**Fig. 6D**), which were ultimately
324 categorized into their immune cell expression cluster (**Fig. 6D**). *CYP4F3*, *H2AB1*, *PGR3*,
325 *FCGR3B* and *PHF24* were allocated to the neutrophil expression cluster. *ALOX15* and
326 *RNASE3* were associated with the eosinophil expression cluster and *PGR2* was localized in
327 the basophil expression cluster, while both expression clusters were shared for *RAB44* and
328 *RNASE2*. An association with the monocyte expression cluster was identified for *CLEC6A*,
329 *MPO*, *MYO1G* and *SIGLEC1*. Few identified genes belonged to B-cell (*ATP6V1G2* and
330 *SEPTIN1*) and T-cell (*STAP1*) expression clusters and group enrichment was found for
331 *LRRC25*, *LY9* and *PADI4* (**Fig. 6D**). High protein abundance, which allows sufficient PET

332 signal-to-noise-ratios, was observed for *ALOX15*, *PRG2*, *SIGLEC1*, *MYO1G* and *MPO*
333 (Label-free quantification (LFQ) intensity > 18, **Extended Fig. 5**). Radiolabeled ligands with
334 binding affinity to these proteins may re-enter the workflow of scRadiotracing, 3D-histology
335 and human translation to test for their cellular specificity *in vivo*.

336

337 **Discussion**

338 We present the first study that determines *in vivo* radiotracer uptake in the complex TME of
339 glioblastoma at cellular resolution. After validation of scRadiotracing for the immune target
340 TSPO, we deciphered the cellular sources of TSPO-PET signals in experimental
341 glioblastoma and patients with glioma. The established methodology accurately determined
342 higher radiotracer uptake of single glioblastoma tumor cells when compared to immune cells,
343 which closely reflected protein levels of respective cell types. The combination of PET and
344 single cell tracer uptake served to predict 3D-histology. Ultimately, a detailed proteome
345 analysis facilitated identification of TAM-specific radiotracer targets beyond TSPO.

346

347 As a prerequisite of the main analysis, a methodological validation of TSPO radiotracer
348 measures in single cells had to be addressed. We applied a microglia depletion paradigm¹⁸
349 to compare the signal reduction observed by *in vivo* [¹⁸F]GE-180 TSPO-PET of mice after
350 CSF1R inhibition with the total radioactivity attributable to the microglia cell population after
351 scRadiotracing. Here, we confirmed that scRadiotracing was able to closely recover the
352 tracer signal reduction observed in PET (**Fig. 1**). By CSF1R inhibition with PLX5622,
353 microglia cells can be depleted up to 99%, which may be maintained under continuous
354 treatment for up to 2 months¹⁹, but CSF1R inhibition does not change the TSPO gene
355 expression of other CNS cells²⁰. Thus, we claim that the reduction of TSPO-PET derived
356 from the nearly complete depletion of microglia after 7-weeks PLX5622 treatment.
357 Furthermore, we observed 12-fold higher single cell TSPO tracer uptake of microglia when
358 compared to astrocytes, pinpointing specificity of [¹⁸F]GE-180 to microglia in untreated mice.
359 Additionally, the high congruence between tracer signal in the microglia population and PET

360 signal reductions after microglia depletion fits to previous investigations that outlined a high
361 correlation between [¹⁸F]GE-180 TSPO-PET and the microglia markers Iba1 and CD68 in
362 immunohistochemistry²¹.

363

364 We were able to further validate scRadiotracing in tumor cells and TAMs of the experimental
365 SB28 glioblastoma model by quantification of relative cellular protein levels of TSPO in
366 respective cell populations using proteomics. The application of proteomics was particularly
367 important since transcriptomics does not necessarily reflect the amount of protein that can be
368 targeted by the radiotracer²². We also found that the inter-individual heterogeneity of SB28
369 and human tumor PET signals was correlated with the magnitude of tracer uptake per each
370 single cell, which implies that the PET signal is mainly driven by cellular uptake and not by
371 confounding alterations of the blood-brain-barrier²³ or off target binding²⁴. Our observations
372 of heterogeneous single cell tracer uptake fit to the biological variability of TSPO which has
373 not only been outlined in glioblastoma^{7,25} but also in neurodegenerative diseases^{26,27}.
374 Ultimately, the combination of PET and scRadiotracing with 3D-histology confirmed the
375 methodological capability to quantify cellular sources of *in vivo* PET signals. In this regard,
376 PET tracer signals are not only a function of cellular uptake but a product of cell type
377 abundance and single cell tracer uptake, making the novel combination of scRadiotracing
378 and 3-dimensional assessment of specific cell counts²⁸ a major achievement of the current
379 work. Furthermore, scRadiotracing allowed to predict 3D-histology at the individual level,
380 which may have clinical impact in patients with glioma, where histology can only be acquired
381 in subsamples of the highly heterogeneous tumor mass^{29,30}.

382

383 In this study, we used TSPO as an established immune PET biomarker in neurological and
384 neuro-oncological diseases with controversially discussed cellular signal sources. Although
385 several correlative investigations questioned the cellular sources of TSPO tracer signals in
386 glioma^{6,31}, direct measures of radiotracer allocation have not yet been performed and
387 contributions of tumor and immune cells to the PET signal remained unclear. Our data

388 indicated higher enrichment of [¹⁸F]GE-180 in SB28 tumor cells when compared to TAMs
389 after *in vivo* tracer administration and similar results were obtained in human high-grade
390 glioma cells when compared to TAMs of the same tumor after *in vitro* tracer incubation.
391 These findings were supported by stronger agreement of tumor TSPO-PET signals with
392 individual tumor cell tracer uptake in mice and humans. 3D-histology in SB28 mice moreover
393 showed higher abundance of tumor cells when compared to TAMs, pinpointing the
394 dominance of tumor cells to SB28 tumor TSPO-PET signals. Still, potential discrepancies
395 between murine and human glioblastoma (e.g. inoculation versus spontaneous tumor
396 growth) need to be considered. Although the SB28 model is reported to closely mimic the
397 human TME¹⁵ and our translational data indicate similar results regarding single cell TSPO
398 enrichment across species, the small sample size of the human analysis in respect of large
399 heterogeneity in diagnoses and previous therapy strategies remains to be acknowledged.
400 Further investigations in pre-defined subgroups with larger sample sizes may aid to
401 disentangle and differentiate therapy-related effects on TSPO expression in cells of the
402 human TME, i.e. after radiation therapy³².
403 A high contribution of tumor cells to the TSPO-PET signal of glioblastoma is in agreement
404 with preclinical investigations that used TSPO-PET and autoradiography after implantation of
405 GL261 cells into a full TSPO knock-out^{31,33}. However, several preclinical studies have
406 revealed a distinct co-localization of TSPO and Iba1/CD68 in immunohistochemistry in
407 different glioblastoma mouse models and concluded that TAMs contribute significantly to the
408 TSPO-PET signal⁷⁻¹⁰. While some of these studies have already drawn a qualitative
409 comparison between immunohistochemistry and TSPO-PET quantification by various
410 ligands⁸⁻¹⁰, our study provides first direct evidence for simultaneous allocation of a TSPO-
411 PET tracer in both cell types. Future research should also compare single cell TSPO
412 enrichment across the broad spectrum of different glioblastoma models (i.e. GL261) and
413 primary human glioblastoma cell lines.

414

415 Various signal sources with a significant impact on the TSPO-PET signal in the TME call for
416 detailed interrogation of TSPO as a glioblastoma imaging biomarker. First, lacking specificity
417 of TSPO-PET signals for TAMs in glioblastoma hampers the biomarker's application as a
418 mere immune index. However, since TSPO-PET signals allow prognostication of overall
419 survival³⁴, TSPO-PET still adds valuable biomarker features to the toolbox of glioblastoma
420 imaging assessments³⁵. These quantitative TSPO-PET data even exceeded the prognostic
421 value of gene expression levels³⁶, which could be related to the direct quantification of TSPO
422 receptor abundance instead of indirect mRNA measures. The pilot dataset of *in vitro*
423 scRadiotracing in patients with glioma already showed feasibility even with small amounts of
424 tissue obtained from biopsy. Thus, the current results should encourage to investigate the
425 separate prognostic value of single cell TSPO enrichment in tumor and immune cells since
426 such data would potentially result in different treatment strategies. Importantly, distinct
427 binding of radioligands to different cells of the TME will also impact personalized medicine,
428 including direct targeting of various tumors with radiotheranostics.

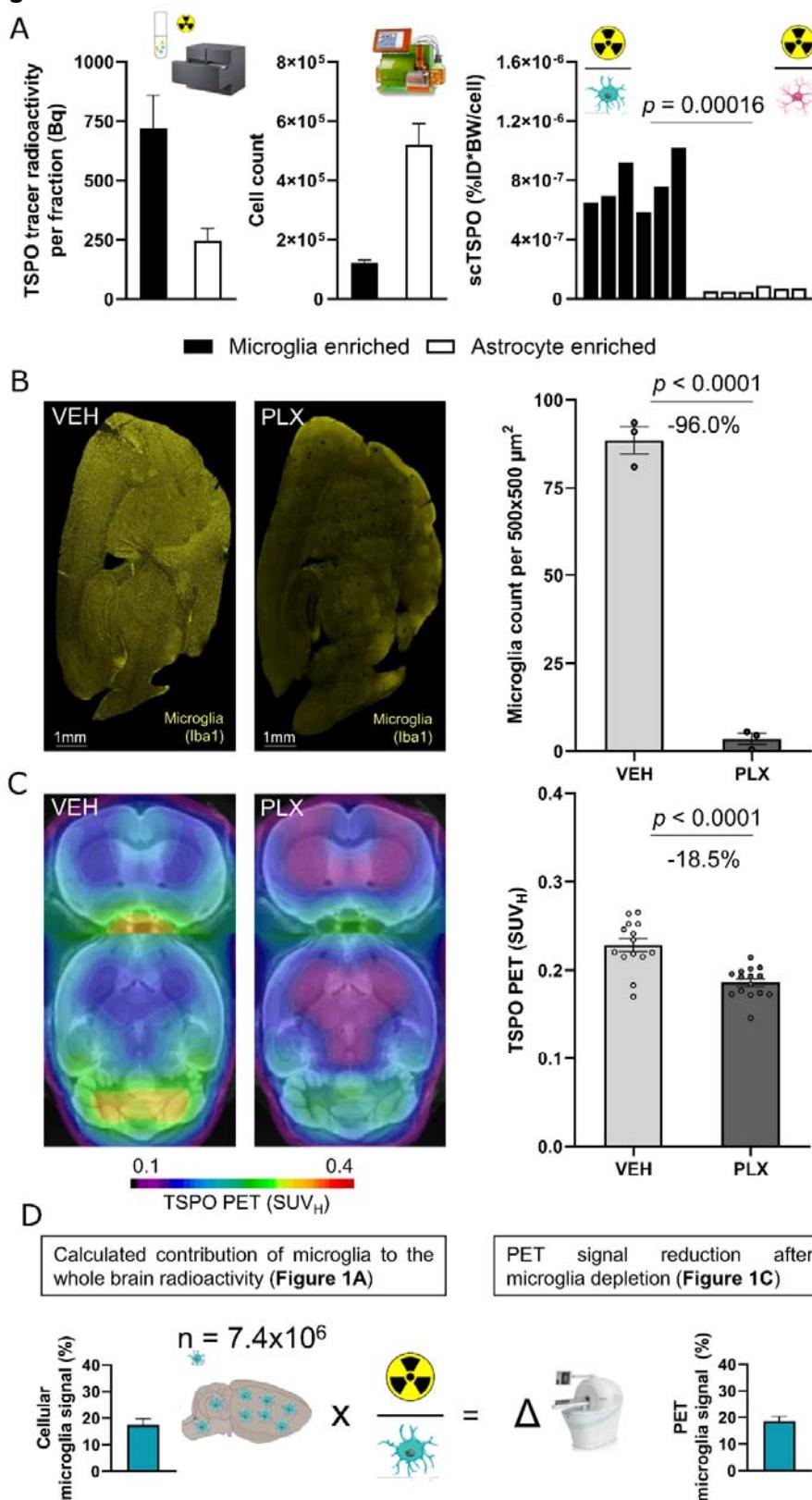
429
430 Beyond TSPO, TAM-specific radioligands for assessment of immune cells in the TME could
431 facilitate monitoring of novel immunotherapies³⁷. We used our murine proteomics dataset to
432 classify TSPO within the spectrum of potential radiotracer targets. Since TSPO was only
433 moderately elevated in TAMs and surpassed by the TSPO expression in tumor cells, there is
434 a major need for further improvement, identification and development of TAM-specific
435 radiotracers. The identified targets need to be further evaluated in terms of ligand
436 accessibility and stable target expression and screened for available crystal structures or
437 known binders that aid generation of lead molecules for radiotracer development.
438 Importantly, several of the identified proteins matched with signature genes of
439 immunosuppressive (i.e. *ALOX15*³⁸) TAM phenotypes or predicted therapy response upon
440 checkpoint inhibition (i.e. *LY9*³⁹ or *MPO*⁴⁰), thus indicating their potential as biomarkers of
441 immunomodulation in cancer. scRadiotracing will provide the opportunity for a precise

442 determination of the *in vivo* specificity of potential radioligands for these targets in their
443 developmental process despite the complexity of the TME.

444

445 In a nutshell, the established methodology yields robust and reliable quantification of cellular
446 radiotracer uptake in mice and patients and will serve to disentangle cellular sources of PET
447 signals of established or newly developed tracers. This is of particular importance since
448 many potential radiotracer targets are shared between tumor cells, TME cells and resident
449 cells of the brain⁴¹.

450 **Tables**


451 **Table 1**

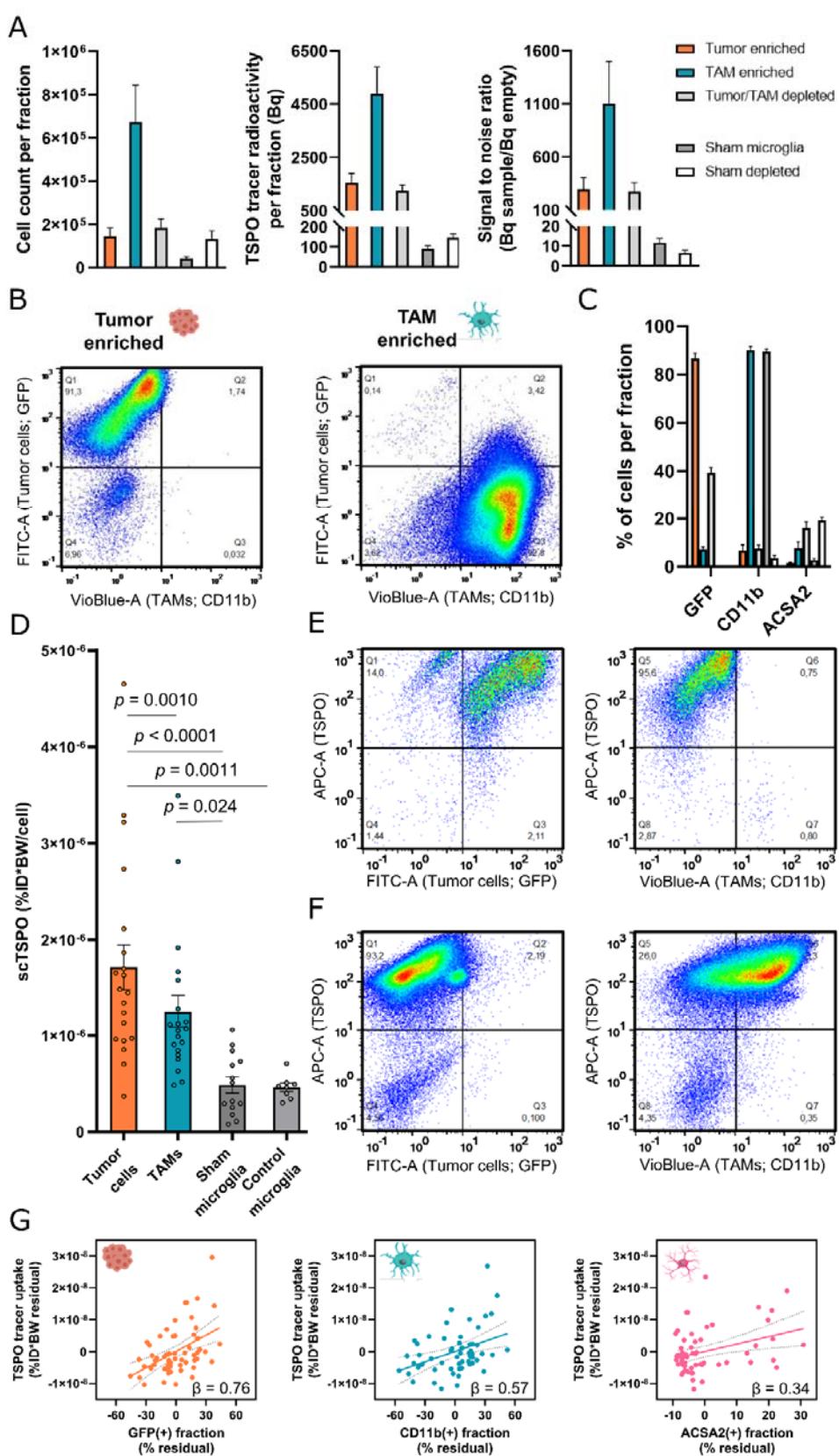
ID	Age (y)	Sex	Dx	Disease duration (m)	WHO grade	rs6971	IDH	Sample acquisition	Previous therapy	[¹⁸ F]GE-180 TSPO-PET
#1	36.0	m	Astrocytoma	5.6	2	HAB	+	Resection	-	+
#2	59.0	f	Oligodendrogioma	13.6	2	MAB	+	Resection	+	+
#3	50.6	f	Glioblastoma	0.9	4	MAB	-	Resection	+	+
#4	46.9	f	Oligodendrogioma	0.3	2	HAB	+	Resection	-	+
#5	75.7	f	Glioblastoma	0.2	4	MAB	-	Biopsy	-	+
#6	69.1	f	Glioblastoma	1.0	4	LAB	-	Resection	+	-
#7	64.3	f	Oligodendrogioma	17.8	2	-	+	Biopsy	+	-
#8	59.3	m	Astrocytoma	2.6	2	HAB	+	Biopsy	+	+
#9	36.4	f	Oligodendrogioma	1.1	2	HAB	+	Biopsy	-	+
#10	44.0	m	Oligodendrogioma	12.3	3	MAB	+	Biopsy	+	+
#11	72.3	f	Glioblastoma	0.1	4	-	-	Resection	-	-
#12	39.7	f	Astrocytoma	4.5	2	-	+	Biopsy	-	-
#13	27.2	f	Astrocytoma	0.7	2	-	+	Biopsy	-	-
#14	68.7	m	Glioblastoma	0.1	4	LAB	-	Resection	-	+
#15	66.8	f	Oligodendrogioma	25.9	2	-	+	Resection	+	-
#16	58.5	m	Astrocytoma	20.8	3	-	+	Biopsy	+	+
#17	52.8	f	Oligodendrogioma	20.9	3	HAB	+	Biopsy	+	+
#18	49.6	m	Oligodendrogioma	1.2	3	HAB	+	Biopsy	+	+
#19	57.9	m	Astrocytoma	12.9	3	MAB	+	Biopsy	+	-
#20	72.0	m	Glioblastoma	1.4	4	HAB	-	Resection	-	+

452 **Table 1: Characteristics of the human glioma cohort.** rs6971 = TSPO polymorphism rs6971⁴², LAB
453 = low-affinity binding status, MAB = medium-affinity binding status, HAB = high-affinity binding status,
454 Dx = Diagnosis, IDH = isocitrate dehydrogenase mutation, m = male, f = female, y = years. See
455 **Extended Table 1** for supplemental data.

456

457 **Figures and Figure Captions**
 458 **Figure 1**

460 **Figure 1: TSPO-PET signal reduction in the whole brain after microglia depletion corresponds**
461 **to the whole brain signal attributable to tracer uptake in microglia.**


462
463 **(A)** Components of scRadiotracing after *in vivo* tracer injection. Upon *in vivo* tracer injection and
464 magnetic cell separation, cell pellets were analyzed by a high sensitive gamma counter to measure
465 the radioactivity (Bq = Becquerel) in the sample (left panel, n=6, mean±SEM) as well as by flow
466 cytometry to determine the cell count (middle panel, n=6, mean±SEM). After calculation of radioactivity
467 per single cell (scTSPO, normalized to injected dose (ID) and body weight (BW)) in each sample,
468 untreated mice showed significantly higher TSPO tracer uptake in microglia when compared to
469 astrocytes (right panel; each bar represents a single animal; n=6, paired t-test).

470
471 **(C)** Representative sagittal Iba1 immunohistochemistry sections of VEH (n=3) and PLX5622 treated
472 (n=3) mice and quantification of stained Iba1 area (%). Unpaired t-test, mean±SEM.

473
474 **(B)** Group average TSPO-PET images of healthy mice upon a MRI template after vehicle treatment
475 (VEH, n=14) or CSF1R inhibition (PLX5622, microglia depletion, n=15) indicated a distinct signal
476 reduction in the whole brain of PLX treated animals (-18.5%). SUV_H = heart normalized standardized
477 uptake value (SUV). Unpaired t-test, mean±SEM.

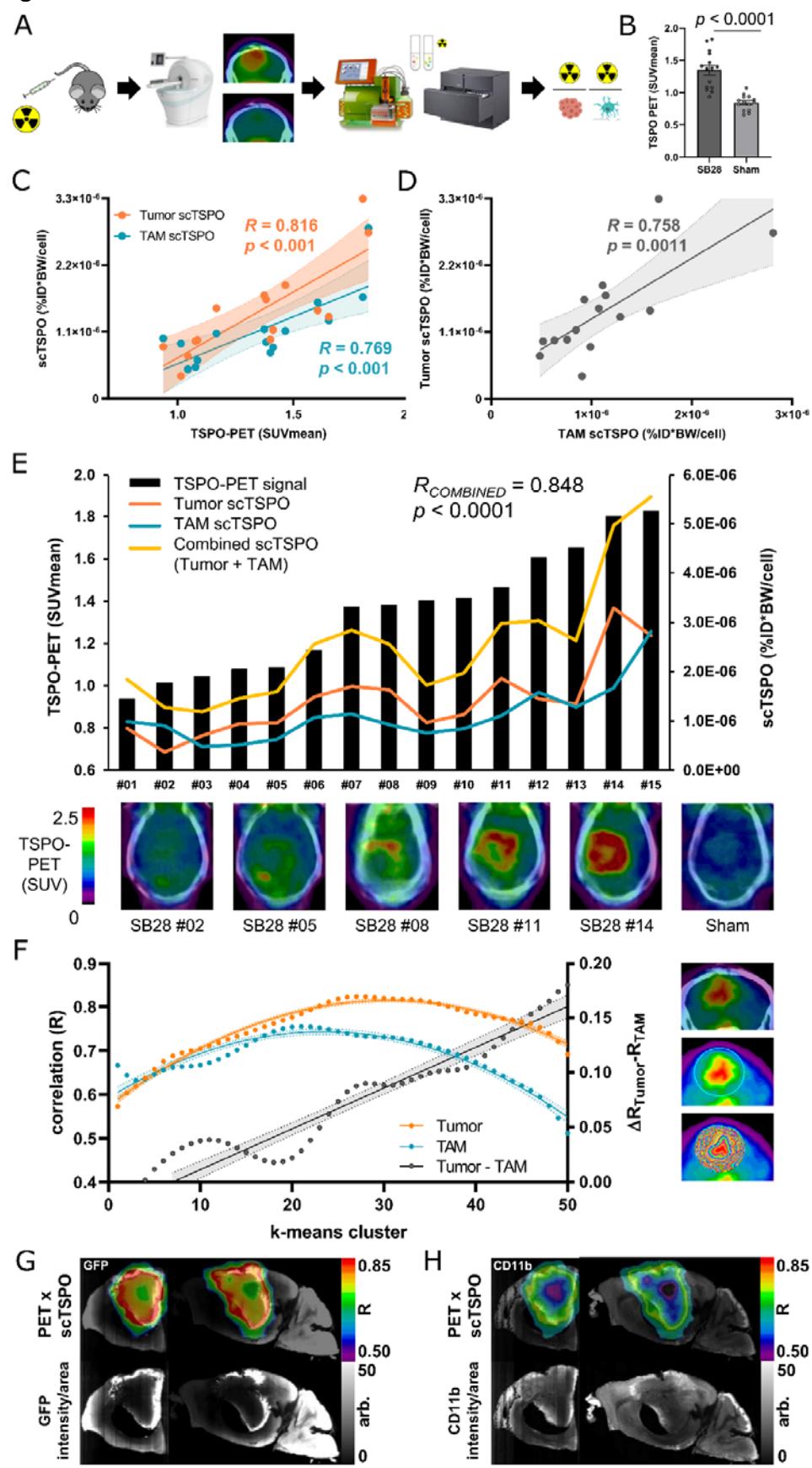
478
479 **(D)** Extrapolation of the signal attributable to microglia using published cell numbers⁴³ and tracer
480 uptake per single microglia cell as calculated by scRadiotracing. The calculated 17.5% contribution of
481 microglia to the whole brain TSPO-PET signal corresponded to the observed TSPO-PET signal
482 reduction after microglia depletion (18.5%). mean±SEM.

483 **Figure 2**

485 **Figure 2: scRadiotracing in the SB28 glioblastoma mouse model allows differential**
486 **assessment of TSPO tracer uptake in tumor cells and TAMs.**

488 (A) Acquired components of scRadiotracing after *in vivo* tracer injection in SB28 glioblastoma (n=20)
489 and sham (n=14) mice. Using immunomagnetic cell sorting, tumor cells (GFP(+)) and CD11b(+) TAMs
490 from SB28 bearing mice and CD11b(+) microglia from sham injected mice were enriched, thus leaving
491 the respective residual depleted cell fractions. Absolute cell numbers (left panel) and measured
492 radioactivity (middle panel) resulted in satisfying signal to noise ratios (right panel) for all enriched and
493 depleted fractions investigated. mean±SEM.

494 (B) Immunomagnetic cell sorting of tumor cells and TAMs led to >90% purity in enriched fractions as
495 confirmed by flow cytometry.


496 (C) Distribution of tumor cells (GFP), TAMs (CD11b) and astrocytes (ACSA2) in enriched and
497 depleted fractions of SB28 glioblastoma (n=20) and sham (n=14) mice. High purity was reached for
500 tumor and TAM enriched fractions, while remaining depleted fractions still contained tumor cells but no
501 TAMs. Astrocytes could be detected in both depleted fractions using ACSA2. mean±SEM.

502 (D) Comparison of the single cell TSPO tracer uptake of isolated tumor cells (n=20) and TAMs (n=20)
503 in SB28 glioblastoma mice as well as microglia of sham (n=14) and untreated control (n=8) mice.
504 Tumor cells and TAMs showed significantly higher TSPO tracer uptake per single cell (scTSPO,
505 normalized to injected dose (ID) and body weight (BW)) when compared to isolated microglia of sham
506 and untreated control animals. In SB28 mice, tumor cells showed higher single cell TSPO tracer
507 uptake when compared to TAMs. Single cell tracer uptake of sham microglia showed no difference
508 when compared to control microglia of untreated mice. Paired t-test for tumor cells vs. TAMs, one-way
509 ANOVA for all other comparisons, mean±SEM.

510 (E,F) TSPO co-staining in flow-cytometry shows that nearly all tumor cells (GFP; E) and TAMs
511 (CD11b; F) were also positive for TSPO. Notably, the minor population of CD11b(-) cells in the TAM
512 enriched fraction did not show positivity for TSPO (F, lower left quadrant), confirming the specificity of
513 the TSPO co-staining. Pooled data from n=3 tumors.

514 (G) Regression model including the enriched and depleted fractions of SB28 mice indicated highest
515 contribution of tumor cells (left) to the radioactivity in the sample, followed by TAMs (middle) and
516 astrocytes (right). Linear regression, β = standardized regression coefficient, n=60 samples, error
517 bands represent 95% confidence interval.

521 **Figure 3**

523 **Figure 3: Correlation of single cell TSPO tracer uptake of tumor cells and TAMs with TSPO-PET**
524 **indicates association of TSPO-PET heterogeneity with single cell tracer enrichment.**

525

526 **(A)** Schematic illustration of the scRadiotracing workflow in the SB28 glioblastoma mouse model
527 including *in vivo* tracer application, PET imaging and cell sorting, resulting in radioactivity per single
528 cell.

529

530 **(B)** TSPO-PET imaging indicated significantly higher lesion site signals in SB28 tumor mice (n=15)
531 than in sham (n=14) animals at day 18 after inoculation. Unpaired t-test, mean±SEM.

532

533 **(C)** Using the established quantitative endpoint of radioactivity per single tumor cell and TAM, the
534 correlation between scRadiotracing and TSPO-PET showed a strong dependence of PET signals from
535 both tumor and TAM single cell TSPO tracer uptake (scTSPO, normalized to injected dose (ID) and
536 body weight (BW)) in SB28 mice. N=15, R = Pearson's coefficient of correlation. Error bands
537 represent 95% confidence interval.

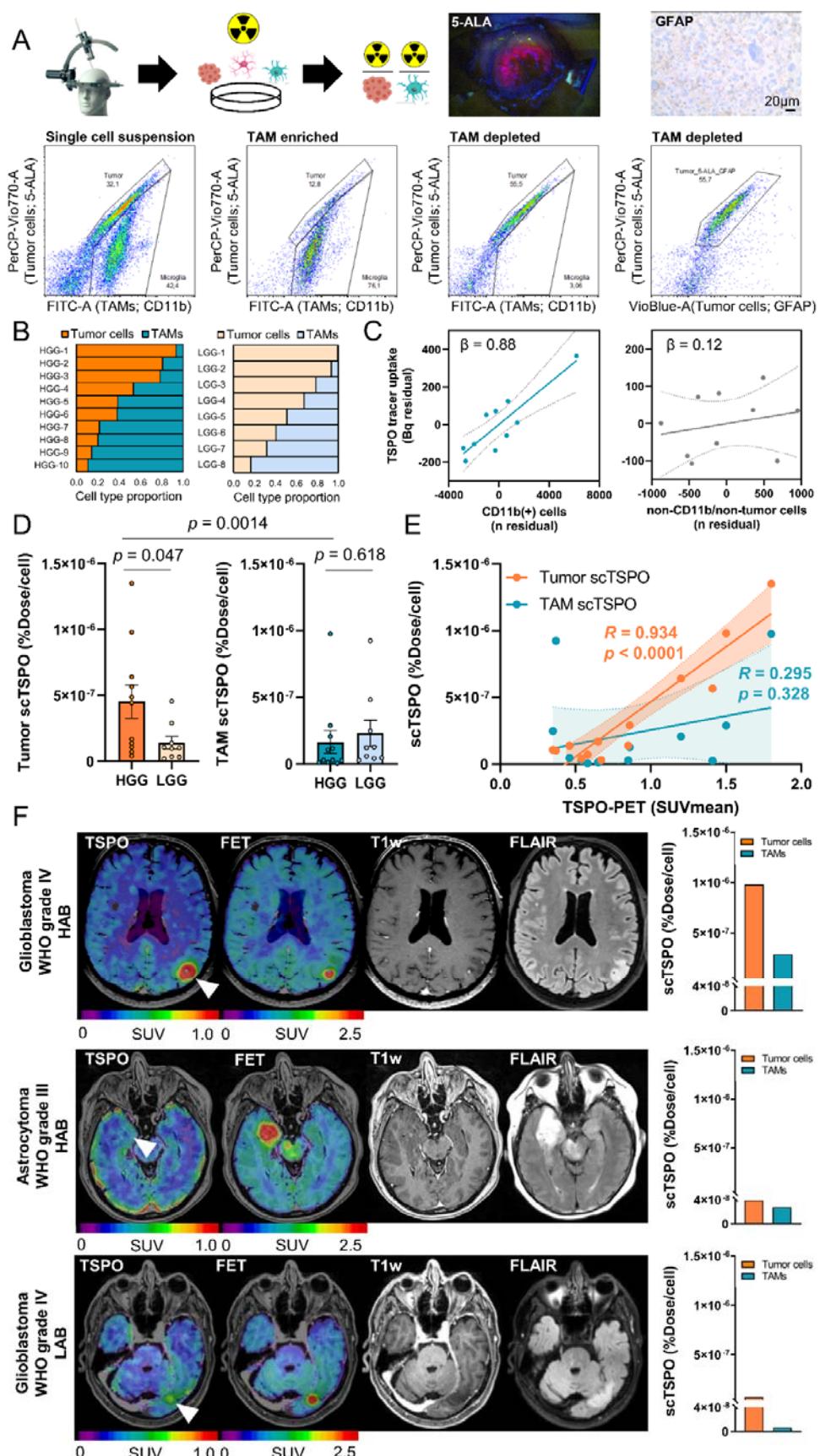
538

539 **(D)** Inter-correlation of scTSPO of tumor cells and TAMs in the SB28 glioblastoma mouse model.
540 N=15, R = Pearson's coefficient of correlation. Error band represents 95% confidence interval.

541

542 **(E)** Association between combined scTSPO and heterogeneous TSPO-PET signals. Black bars
543 symbolize the individual TSPO-PET signal for all SB28 mice investigated (n=15). The curves
544 represent scTSPO of tumor cells (orange) and TAMs (blue), both used to calculate a combined vector
545 of cellular tracer uptake (yellow) for each individual animal. Increasing TSPO-PET signals were
546 associated with increasing scTSPO, indicating a dependence of heterogeneous PET signals from
547 single cell tracer uptake. Axial sections of TSPO-PET images upon the individual contrast enhanced
548 computed tomography (ceCT) illustrate inter-individual TSPO-PET signal heterogeneity of SB28
549 tumors. R = Pearson's coefficient of correlation.

550


551 **(F)** Visualization of the regional k-means cluster analysis. A sphere was placed over the entire signal
552 enhancement in TSPO-PET, which was followed by application of k-means clustering. This resulted in
553 50 volumes of interest (VOIs) defining 50 intratumoral regions of increasing signal intensity (images on
554 the right).

555 The function between increasing cluster grade and scTSPO to PET correlations of tumor cells and
556 TAMs followed an inverted U-shape (quadratic fit) for both cell types. The correlation coefficients (R)
557 of TSPO-PET signals with scTSPO of tumor cells showed its peak in clusters of higher rank (cluster
558 27; orange) when compared to the respective cluster peak of TAMs (cluster 21; blue). Increasing
559 cluster hierarchy (i.e. the TSPO-PET hotspot) was associated with predominant dependency of TSPO-
560 PET signal intensity from scTSPO (linear fit of $\Delta R_{\text{Tumor}} - R_{\text{TAM}}$; grey).

561

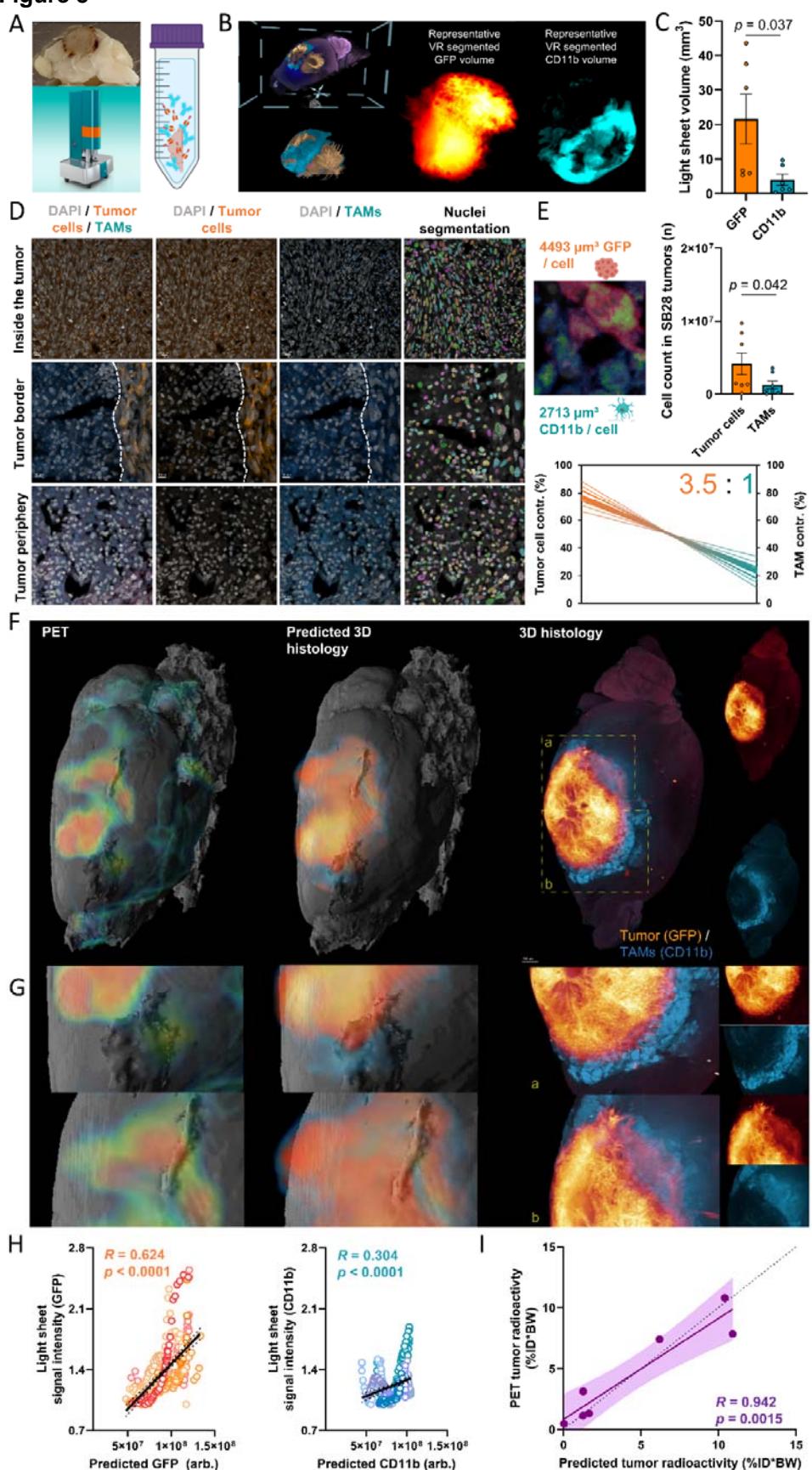
562 **(G,H)** Strong regional agreement between tumor and TAM cell density (GFP/ CD11b, light sheet
563 microscopy) and regions with high scTSPO-to-PET associations. Coronal and sagittal slices show
564 projections of correlation coefficients onto the k means cluster VOIs of an individual mouse. Notably,
565 both analyses resulted in a characteristic spherical distribution of peak values that encircled the "cold"
566 tumor core. R = Pearson's coefficient of correlation per voxel, arb. = arbitrary units.

567 **Figure 4**

569 **Figure 4: Translation of scRadiotracing to human glioma samples confirms higher TSPO tracer
570 uptake in tumor cells and stronger contribution of tumor cells to the TSPO-PET signal when
571 compared to TAMs**
572

573 (A) Schematic illustration of the *in vitro* scRadiotracing workflow in human glioma samples (n=20),
574 leading to calculation of radioactivity per single tumor cell and TAM. Pseudocolor plots derived from
575 flow cytometry show the applied gating strategy. The single cell suspension (left) was separated into
576 TAM-enriched (CD11b+), second from left) and tumor enriched (third from left) fractions. Tumor cells
577 were defined via GFAP or 5-ALA after confirmation of 5-ALA-positivity during surgery or after
578 confirmation of GFAP-positivity during neuropathological workup of the same samples. 5-ALA positive
579 cells co-localized with GFAP-positive cells in samples where both markers allowed tumor cell
580 identification (right).
581

582 (B) Relative distribution of tumor cells and TAMs in the single cell suspension of human glioma
583 samples revealed similar heterogeneity in human high-grade glioma (HGG, n=10) compared to low-
584 grade glioma (LGG, n=2). The initial two patients did not receive an analysis of the single cell
585 suspension.
586


587 (C) Regression model indicated strong contribution of TAMs (CD11b+ cells) but not of CD11b(-)/non-
588 tumor cells to the measured activity in the investigated TAM-enriched samples of patients that
589 underwent biopsy (n=10). Linear regression, β = standardized regression coefficient, error bands
590 represent 95% confidence interval.
591

592 (D) Comparison of single cell tracer uptake (scTSPO) of tumor cells and TAMs in samples of human
593 HGG (n=11) and LGG (n=9). Tumor cells of HGG indicated higher scTSPO than tumor cells of LGG,
594 whereas there was no significant difference for TAMs (unpaired t-test). Tumor cells of HGG showed
595 higher scTSPO than TAMs of HGG (paired t-test). Mean \pm SEM.
596

597 (E) Correlation of TSPO-PET signals with scTSPO elucidated a strong correlation between PET
598 signals and tumor cell TSPO enrichment and no correlation between PET signals and TAM TSPO
599 enrichment. N=13, R = Pearson's coefficient of correlation. Error bands represent 95% confidence
600 interval.
601

602 (F) Example of three patients with HGG investigated via *in vitro* scRadiotracing. All three patients
603 showed similar signals in amino acid PET (FET-PET) and only little contrast enhancement in MRI. The
604 patient with high tumoral TSPO-PET signal (upper row, glioblastoma, WHO grade IV, high-affinity
605 binding status (HAB)) showed distinctly more TSPO tracer uptake in both tumor cells and TAMs when
606 compared to the patients with only faint (middle row, astrocytoma, WHO grade III, high-affinity binding
607 status) or low (bottom row, glioblastoma, WHO grade IV, low-affinity binding status (LAB)) tumoral
608 signal in TSPO-PET. The patient with glioblastoma and low-affinity binding status (bottom row)
609 showed nearly absent single cell tracer uptake of TAMs but notable TSPO tracer uptake of tumor
610 cells. T1w = T1-weighted, FLAIR = Fluid-attenuated inversion recovery.
611

611 **Figure 5**

613 **Figure 5: Integrated analysis of regional PET signals, cellular tracer uptake and 3D-histology**
614 **via tissue clearing and light sheet imaging**

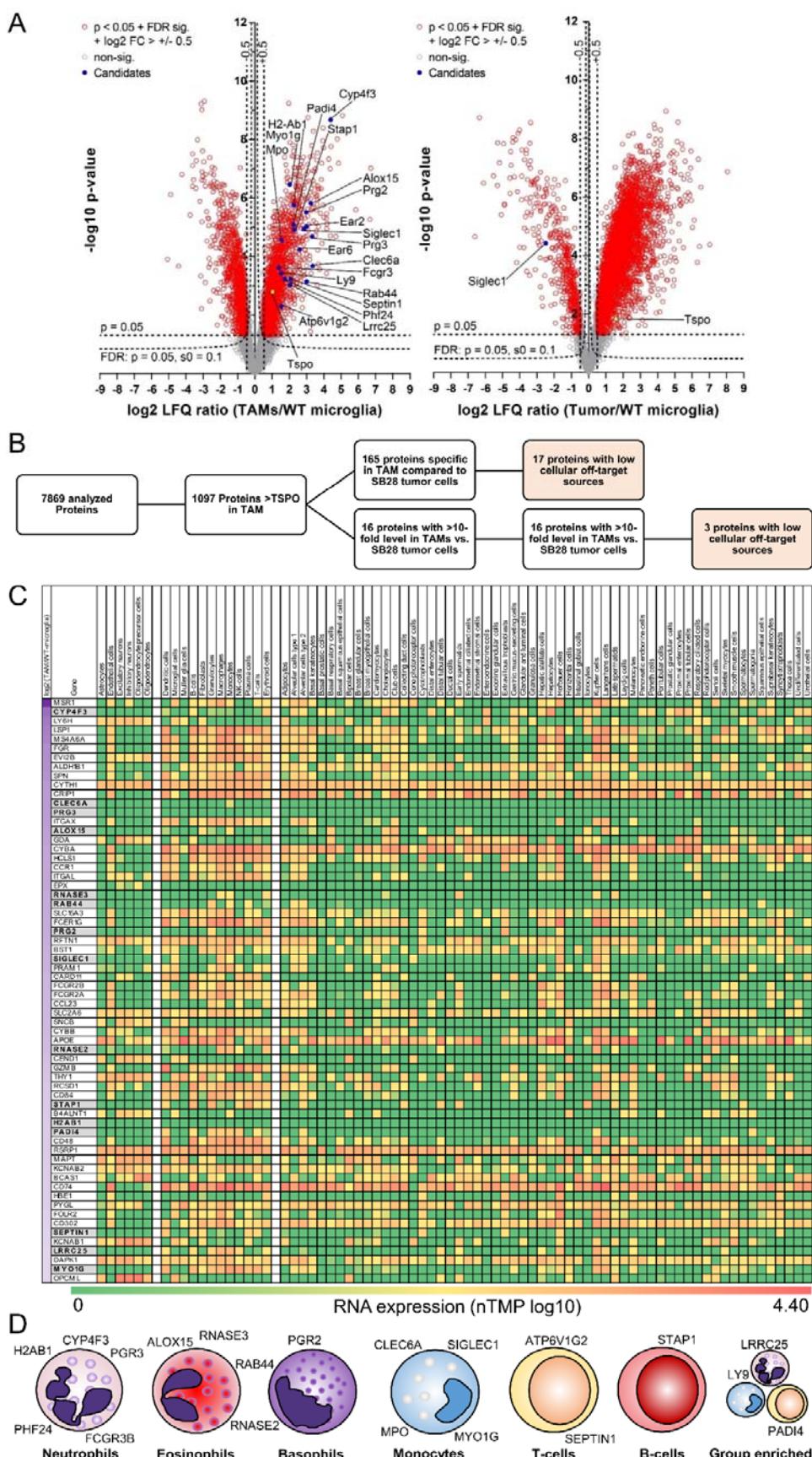
615
616 **(A)** A glioblastoma inoculated brain (top left) is cleared with a modified version of 3DISCO⁴⁴ and
617 imaged with light sheet fluorescent microscope (bottom left). The details of the clearing protocol are
618 shown on the right panel.

619
620 **(B)** The imaged brains are annotated using a VR-based annotation tool, representative masks of the
621 tumor (middle) and TAMs (right) are demonstrated. This process determined the occupied volume of
622 GFP(+) tumor cells and CD11b(+) TAMs within the whole tumor for each individual mouse using
623 segmentation via syGlass virtual reality tool⁴⁵.

624
625 **(C)** Quantitative comparison of determined GFP(+) and CD11b(+) volumes within individual SB28
626 tumors (n=7, paired t-test).

627
628 **(D)** Confocal microscopy was used to determine the average GFP(+) volume per single tumor cell and
629 the average CD11b(+) volume per single TAM by automatized count of DAPI nuclear stains within
630 regions of exclusive GFP/CD11b expression. GFP(+) tumor cells accumulated within the tumor core
631 (upper row), whereas the tumor periphery provided areas that were nearly exclusively composed of
632 CD11b(+) TAMs (lower row). The right column illustrates nuclei segmentation using cellpose⁴⁶
633 algorithm, which was applied to determine cell numbers per section.

634
635 **(E)** Upper row: Quantitative comparison of the absolute tumor and TAM cell count after extrapolation
636 by individual light sheet volumes (GFP-occupancy and CD11b-occupancy) and averaged GFP/CD11b
637 volumes per single cell (left). Tumor cells revealed higher numerical abundance over TAMs in SB28
638 tumors (n=7, paired t-test). Lower row: Contribution of tumor cells to the overall TSPO-PET signal
639 exceeded contribution of TAMs (3.5:1). Lines connecting tumor cell and TAM contributions indicate the
640 matrix of variance as determined by means and SEM bands of scTSPO and volume proportions (thick
641 lines: mean of scTSPO x upper/lower SEM Band of tumor volumes; thin lines: upper/lower SEM band
642 of scTSPO x upper/lower SEM Band of tumor volumes).


643
644 **(F)** Regional TSPO-PET signals (left) were combined with single cell tracer uptake values of tumor
645 cells and TAMs to predict cell type abundance within individual SB28 tumors. Predicted 3D-histology
646 (middle) shows high regional agreement with standard of truth 3D-histology as obtained by light sheet
647 microscopy (right). The whole set of analyzed mice is presented in **Extended Fig. 3**.

648
649 **(G)** Representative magnified areas within the SB28 tumor underline the regional agreement between
650 predicted and standard of truth 3D histology.

651
652 **(H)** Quantitative regional correlation of predicted and standard of truth 3D-histology within k means
653 clusters (**Fig. 3**) shows high agreement of predicted tumor cell abundance and moderate agreement of
654 predicted TAM abundance. Light sheet TIFFs were spatially co-registered to PET as 3D RGB images
655 to extract signal intensities of light sheet as a surrogate of cell type abundance in all PET derived
656 clusters. To predict 3D histology (separately for GFP and CD11b), PET signal intensities in each
657 cluster were multiplied with the cluster-based PET correlation coefficient (**Fig. 3F**) and divided by
658 single cell tracer uptake. n=350 single regions from n=7 tumors. R = Pearson's coefficient of
659 correlation. Error bands represent 95% confidence interval. arb. = arbitrary units.

660
661 **(I)** PET measured radioactivity of the tumor was predicted by the radioactivity derived from the product
662 of cell type abundance (tumor cells and TAMs) and single cell tracer uptake in all individual mice that
663 underwent PET imaging and light sheet microscopy. R = Pearson's coefficient of correlation. Error
664 bands represent 95% confidence interval. Dashed line represents line of identity (y=x).

665 **Figure 6**

667 **Figure 6: Proteome analysis of the SB28 tumor microenvironment identifies TAM-specific**
668 **radiotracer targets for glioblastoma**

669
670 **(A)** Volcano plot representation of the different protein levels in isolated TAMs (n = 5) and isolated
671 SB28 tumors cells (n = 3) in comparison with control microglia isolated from age matched mice (wt-
672 microglia; n = 6). TSPO (yellow) showed intermediate elevation of protein levels in TAMs and SB28
673 tumor cells. 1098 out of 7869 analyzed proteins indicated higher protein levels in TAMs than did
674 TSPO.

675
676 **(B)** Selection process of potential radiotracer targets for specific detection of TAMs over SB28 tumor
677 cells. 165 of the identified proteins in TAMs were not detected in SB28 tumor cells and another 16
678 proteins had >10-fold higher levels in TAMs compared to SB28 tumor cells. A total of 20 proteins
679 showed low cellular off-target sources and were identified as potential TAM radiotracer targets.

680
681 **(C)** Heat-map screening for TAM-specificity of the 181 proteins of interest. The Human Protein Atlas⁴⁷
682 was used to determine RNA expression levels of all proteins of interest in i) resident off-target cells of
683 the brain (left cell type columns), ii) resident and infiltrating cells in the presence of glioblastoma
684 (middle cell type columns) and iii) off-target cells of the organism (right cell type columns). Genes are
685 sorted by protein level differences in TAMs compared to control microglia of untreated mice (top to
686 bottom; log2 label-free quantification ratio; first column). 64 proteins with highest elevation (log2
687 (TAMs/wt-microglia) > 2, left column) are illustrated in **C** and all proteins are provided in **Extended**
688 **Fig. 4**. Proteins of interest are highlighted in grey.

689
690 **(D)** Immune cell expression cluster allocation of proteins of interest. scRNA data of the Human Protein
691 Atlas was used to categorize the final set of identified proteins.

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709 **Methods**

710

711 **Study design**

712 The primary goal of the study is to resolve PET tracer signals at cellular resolution. We
713 challenged our novel methodology by targeting TSPO as a biomarker with complex cellular
714 sources in glioblastoma. For this purpose, a combination of radiotracer injection and
715 immunomagnetic cell sorting (MACS) was applied (scRadiotracing¹¹). To validate the
716 workflow, the MACS data of microglia in untreated mice were compared to microglia
717 depletion experiments using CSF1R inhibition in combination with [¹⁸F]GE-180 TSPO-PET.
718 In mice with orthotopic implanted tumor (SB28, 2.5 weeks post inoculation) or sham injection,
719 the brain was removed 75 minutes after [¹⁸F]GE-180 injection and whole-brain activity was
720 measured. The tumor or the injection site was dissected, followed by radioactivity
721 measurement and dissociation of the tumor tissue into a single cell suspension. Tumor cells
722 (negative selection) and TAMs (CD11b) were isolated via magnetic cell sorting using specific
723 antibodies. The radioactivity in the cell-specific pellets was measured by a highly sensitive
724 gamma counter. To determine the absolute cell number in each pellet as well as the
725 proportions (i.e. purity) of the different cell populations, flow cytometry was performed
726 subsequent to cell sorting. TSPO tracer uptake was determined per single cell and compared
727 to TSPO protein expression levels, whereas contributions of the different cell populations to
728 the total activity were calculated by multiple regression. The methodology was translated to
729 human resection and biopsy samples of patients with high-grade and low-grade glioma and
730 *in vitro* scRadiotracing was performed to determine proportions of tumor and immune cell
731 tracer uptake. To acknowledge PET signals as product of cellular uptake and cellular
732 abundance, 3D-histology via light sheet microscopy was performed in PFA perfused mouse
733 brains to obtain absolute cell counts and relative quantitative proportions of glioblastoma and
734 immune cells within the tumor. Then, an integrated model of PET, single cell tracer uptake
735 and 3D-histology was used to disentangle regional PET signals by their distinct cellular
736 components. Finally, TSPO protein levels were characterized within the whole spectrum of

737 the tumor and immune cell proteome, with the goal to determine TAM-specific radiotracer
738 targets.

739

740 **Animals**

741 All animal experiments were performed in compliance with the National Guidelines for Animal
742 Protection, Germany and with the approval of the regional animal committee (Government of
743 Upper Bavaria) and overseen by a veterinarian. All animals were housed in a temperature-
744 and humidity-controlled environment with a 12-h light–dark cycle, with free access to food
745 (Ssniff, Soest, Germany) and water.

746 For scRadiotracing experiments, eight-week-old C57BL/6 mice were purchased from Charles
747 River (Sulzfeld, Germany) and acclimated for at least 1 week. At day 0, the mice were
748 inoculated with 100,000 SB28-GFP cells suspended in 2 μ l of DMEM (Merck, Darmstadt,
749 Germany) (glioblastoma mice, n=27) or 2 μ l of saline (sham mice, n=14). Additional n=8 mice
750 received no treatment before scRadiotracing, serving as control animals. For inoculation,
751 mice were anesthetized with intraperitoneal (i.p.) injections of 100 mg/kg ketamine 10% and
752 10 mg/kg xylazine 2% in 0.9% NaCl. Anesthetized mice were immobilized and mounted onto
753 a stereotactic head holder (David Kopf Instruments, Tujunga, CA, USA) in the flat-skull
754 position. After surface disinfection, the skin of the skull was dissected with a scalpel blade.
755 The scull was carefully drilled with a micromotor high-speed drill (Stoelting Co, Wood Dale,
756 IL, USA) 2 mm posterior and 1 mm left of the bregma. By stereotactic injection, 1×10^5 cells
757 were applied with a 10 μ l Hamilton syringe (Hamilton, Bonaduz, Switzerland) at a depth of 2
758 mm below the drill hole. Cells were slowly injected within 1 minute and after a settling period
759 of another 2 minutes the needle was removed in 1 mm steps per minute. After that, the
760 wound was closed by suturing. Mice were checked daily for tumor-related symptoms and
761 sacrificed when tumor burden (i.e. appearance, coordinative deficits, motor symptoms)
762 reached stop criteria (not reached in any animal). On the last day of the experiment, the mice
763 were injected with 15 ± 1 MBq [^{18}F]GE-180 into the tail vein before cervical dislocation and
764 brain extraction at 75 minutes post injection (n=33). N=15 of these glioblastoma and all sham

765 mice received TSPO-PET imaging directly before brain extraction. Additional n=7
766 glioblastoma mice received TSPO-PET imaging and perfusion with 4% PFA prior to 3D-
767 histology by light sheet microscopy. Another n=14 C57BL/6 mice were used for extraction of
768 naïve control microglia (n=8 scRadiotracing; n=6 proteomics).

769 For validation of scRadiotracing as a reliable method to determine TSPO-PET signal sources
770 at cellular resolution, we analyzed combined data of pharmacological depletion of microglia
771 by CSF1R inhibition⁴⁸ which was performed in C57BL/6 mice of two datasets^{13,14} by PLX5622
772 (1200 ppm, n=15) and vehicle controls (n=14), aged 10.1 ± 2.1 months. The TSPO-PET
773 scan was performed in the last week of seven weeks treatment.

774

775 **Cell culture**

776 SB28-GFP cells⁴⁹ were cultured in DMEM containing MEM non-essential amino acids (1x),
777 1% Penicillin-Streptomycin solution (Thermo Fisher Scientific, Waltham, MA, USA) and 10%
778 fetal bovine serum (FBS, Biochrome, Berlin, Germany). Cell cultures were maintained in the
779 incubator at 37°C in humidified and 5% CO₂-conditioned atmosphere. Cells were passaged
780 when the cell density in the flask reached 80% confluence.

781

782 **Radiosynthesis**

783 Automated production of [¹⁸F]GE-180 was performed on a FASTlabTM synthesizer with
784 single-use disposable cassettes. The pre-filled precursor vial was assembled on the cassette
785 and the cassette was mounted on the synthesizer according to the set-up instructions. The
786 FASTlabTM control software prompts were followed to run the cassette test and to start the
787 synthesis. No-carrier-added ¹⁸F-fluoride was produced via ¹⁸O(p, n)¹⁸F reaction by proton
788 irradiation of ¹⁸O-enriched water and delivered to the ¹⁸F incoming reservoir. The fully
789 automated manufacturing process consists of the following steps: trapping of ¹⁸F-fluoride on
790 a QMA cartridge, elution using Kryptofix[®]222, potassium hydrogen carbonate, water and
791 acetonitrile, azeotropic drying of ¹⁸F-fluoride at 120°C for 9 minutes, labelling of the precursor
792 in MeCN at 100°C for 6 minutes, dilution of the crude product with water, tC18 cartridge

793 based purification by use of 20 mL 40% (v/v) Ethanol and 11.5 mL 35% (v/v) Ethanol, elution
794 of the product with 3.5 mL 55% (v/v) Ethanol and final formulation with phosphate buffer.
795 RCY 39±7% (n=16) non d. c., synthesis time 43 minutes, RCP ≥98%.

796

797 **Immunomagnetic cell separation**

798 MACS was performed as described previously¹³ with slight modifications for additional tumor
799 cell isolation. Detailed descriptions of brain dissociation and isolation of different cell types
800 were as follows.

801

802 **Mouse brain dissociation**

803 Adult mouse brains were removed after cervical dislocation at 75 minutes post injection (p.i.)
804 and stored in cold D-PBS. The brains were cut into small pieces and dissociated using
805 gentleMACS Octo Dissociator with Heaters (Miltenyi Biotec, 130-096-427) in combination
806 with different Dissociation Kits according to the manufacturer's instructions. Adult Brain
807 Dissociation Kit, mouse and rat (Miltenyi Biotec, 130-107-677) was used for adult mouse
808 brain dissociation of WT mice and contralateral hemispheres of glioblastoma mice. Tumor
809 Dissociation Kit (Miltenyi Biotec, 130-096-730) was used for dissociation of tumor tissue. The
810 dissociated cell suspension was applied to pre-wet 70-µm Cell Strainer (Miltenyi Biotec, 130-
811 110-916). The cell pellet was resuspended using cold D-PBS and cold debris removal
812 solution. Cold D-PBS was gently overlaid on the cell suspension and centrifuged at 4°C and
813 3000g for 10 minutes with acceleration at 9 and deceleration at 5. The two top phases were
814 removed entirely. The cell pellets were collected. Non-tumoral cell pellets were additionally
815 resuspended with 1 mL of cold red blood cell removal solution followed by 10 minutes
816 incubation. Cell pellets were collected for further applications.

817

818 **Isolation of tumor cells**

819 Tumor Cell Isolation Kit, mouse (Miltenyi Biotec, 130-110-187) was used according to the
820 manufacturer's instructions. The prepared cell pellets were resuspended in 80 µl of D-PBS–

821 0.5% bovine serum albumin (BSA) buffer per 10^7 total cells including red blood cells. 20 μ l of
822 Non-Tumor Cell Depletion Cocktail were added and the suspension was incubated at 4°C in
823 the dark for 15 minutes. The volume was adjusted to 500 μ l per total 10^7 cells with D-PBS–
824 0.5% BSA buffer before proceeding to magnetic separation. The pre-wet LS columns
825 (Miltenyi Biotec, 130-042-401) were placed at QuadroMACS Separator (Miltenyi Biotec, 130-
826 090-976). The cell suspensions were applied onto the column. The columns were washed
827 with 2×1 mL of D-PBS–0.5% BSA buffer. The flow-through containing the unlabeled cells
828 was collected as the tumor-cell-enriched fractions. The columns were removed from the
829 magnetic field, and the non-tumor cells were flushed out using 3 mL of D-PBS–0.5% BSA
830 buffer.

831

832 **Isolation of TAMs and microglia**

833 TAMs (glioblastoma mice) or microglia (sham injected or untreated control mice) were
834 isolated from animals using CD11b MicroBeads, human and mouse (Miltenyi Biotec, 130-
835 049-601) and a MACS separation system (Miltenyi Biotec) as described previously^{50,51}. For
836 murine samples, the prepared cell pellets were resuspended in 90 μ l of D-PBS–0.5% BSA
837 buffer per 10^7 total cells. Ten microliters of CD11b MicroBeads per 10^7 total cells were added
838 and incubated for 15 minutes in the dark at 4°C. Human samples were resuspended in 80 μ l
839 of D-PBS–0.5% BSA buffer per 10^7 total cells and 20 μ l of CD11b MicroBeads per 10^7 total
840 cells were added and cells were incubated for 15 minutes in the dark at 4°C. Cells were
841 washed by adding 1 to 2 mL of buffer per 10^7 cells and centrifuged at 300g for 10 minutes.
842 The cell pellets were resuspended in 500 μ l of D-PBS–0.5% BSA. The pre-wet LS columns
843 (Miltenyi Biotec, 130-042-401) were placed onto a QuadroMACS Separator (Miltenyi Biotec,
844 130-090-976). The cell suspensions were applied onto the column. The columns were
845 washed with 3×3 mL of D-PBS–0.5% BSA buffer. The flow-through containing the
846 unlabeled cells was collected as the microglia-depleted fractions. The columns were
847 removed from the magnetic field, and microglia were flushed out using 5 mL of D-PBS–0.5%
848 BSA buffer.

849

850 **Isolation of astrocytes**

851 Adult Brain Dissociation Kit, mouse and rat (Miltenyi Biotec, 130-107-677) was used
852 according to the manufacturer's instructions. The prepared cell pellets were resuspended in
853 80 μ l of AstroMACS separation buffer (Miltenyi Biotec, 130-117-336) per 10^7 total cells. 10 μ l
854 of FcR blocking reagent were added and incubated for 10 minutes in the dark at 4°C. 10 μ l of
855 Anti-ACSA2 MicroBeads were added and incubated for 15 minutes in the dark at 4°C. Cells
856 were washed by adding 1 mL of AstroMACS separation buffer and centrifuged at 300g for 5
857 minutes. Cell pellets were resuspended in 500 μ l of AstroMACS separation buffer. The pre-
858 wet MS columns (Miltenyi Biotec, 130-042-201) were placed at OctoMACS Separator
859 (Miltenyi Biotec, 130-042-109). The cell suspensions were applied onto the column, followed
860 by washing with 3 \times 500 μ l of AstroMACS separation buffer. The flow-through was collected
861 containing non-astrocytic cells as an astrocyte-depleted fraction. The columns were removed
862 from the magnetic field, and the astrocytes were flushed out using 3 mL of AstroMACS
863 separation buffer.

864

865 **Gamma emission measurements**

866 Radioactivity concentrations of cell pellets were measured in a gamma counter (Hidex AMG
867 Automatic Gamma Counter, Mainz Germany), cross-calibrated to the activity in the whole
868 brain, with decay correction to time of tracer injection for final activity calculations.

869

870 **Flow cytometry**

871 Flow cytometry staining was performed at 4 °C. After gamma emission measurement, the
872 cell suspension was centrifuged at 400g for 5 minutes and the supernatant was aspirated
873 completely. The cell pellet was then resuspended in 100 μ l of cold D-PBS containing
874 fluorochrome-conjugated antibodies recognizing mouse CD11b and ACSA2 (Miltenyi Biotec,
875 130-113-810 and 130-116-247) in a 1:100 dilution and incubated for 10 minutes at 4°C in the
876 dark. Samples were washed with 2 mL of D-PBS and centrifuged for 5 minutes at 400g.

877 Finally, cell pellets were resuspended in 500 μ l of D-PBS and samples were immediately
878 used for flow cytometry using a MACSQuant® Analyzer. Precision Count Beads (Biolegend,
879 424902) were added for counting the absolute number of cells for the samples of n=9 mice
880 measured with a BD LSR Fortessa Cell Analyzer (BD Biosciences, Franklin Lakes, NJ,
881 USA). Acquired data included absolute cell numbers and purity of GFP(+), CD11b(+) and
882 ACSA2(+) cells in each sample.

883 TSPO co-staining was performed for tumor and CD11b enriched cell fractions of n=3 SB28
884 mice. To this end, cells were permeabilized after initial flow cytometry using Inside Stain Kit
885 (Miltenyi Biotec, 130-090-477) according to the manufacturer's instructions. Cell pellets were
886 resuspended in 250 μ l of cold D-PBS, 250 μ l of Inside Fix Solution was added, cells were
887 incubated for 20 minutes in the dark at 4°C, then centrifuged at 300g for 5 minutes. Complete
888 aspiration of supernatant was followed by washing with 1 mL of cold D-PBS and another
889 centrifugation step at 300g for 5 minutes. Cell pellets were washed with 1 mL of Inside Perm
890 Solution and centrifuged at 300g for 5 minutes. Supernatant was aspirated, cells were
891 resuspended in 47 μ l of Inside Perm Solution and stained with 3 μ l of Anti-PBR antibody
892 [EPR5384] (abcam, ab199836). After 10 minutes of incubation, cells were washed by adding
893 1 mL of Inside Perm Solution, centrifuged at 300g for 5 minutes and resuspended in 300 μ l
894 cold D-PBS for flow cytometry analysis.

895 For subsequent proteome analysis (see below), cell pellets of n=3 tumor enriched and n=5
896 CD11b enriched fractions of SB28 tumor samples were stored at -80 degree together with
897 n=6 CD11b enriched fractions (i.e. control microglia) derived from an independent cohort of
898 age- and sex matched untreated control mice.

899

900 **Calculation of single cell TSPO tracer signal**

901 Measured radioactivity (Bq) of cell pellets was divided by the specific cell number in the pellet
902 resulting in calculated radioactivity per cell. Radioactivity per cell was normalized by injected
903 radioactivity and body weight (i.e. %ID*BW). Published cell numbers of microglia¹² were used
904 to extrapolate the whole brain radioactivity located in the microglia fraction of untreated mice.

905 For tumor probes, cell numbers (tumor cells and TAMs) determined by light sheet
906 microscopy were multiplied with single cell %ID*BW as an estimate of cell fraction specific
907 contributions to the PET signal.

908

909 **Human samples and in vitro scRadiotracing**

910 Human tumor tissue samples were acquired during neurosurgical biopsy or open resection
911 and stored in Tissue Storage Solution (Miltenyi Biotec, 130-100-008) for 2-30 hours until
912 further processing for scRadiotracing. Details on the patient cohort are provided in the results
913 section (**Table 1**). Tissue was manually cut into smaller pieces if necessary and dissociated
914 using Tumor Dissociation Kit, human (Miltenyi Biotec, 130-095-929). Removal of debris and
915 red blood cells was performed for tumor resections as described above. Single cell
916 suspensions were incubated *in vitro* at a concentration of 56 ± 8 MBq [^{18}F]GE-180 in 1 mL for
917 30 minutes, then washed twice with 3 mL cold D-PBS and centrifuged at 400g for 5 minutes.
918 Cell pellets were resuspended in 100 μl cold D-PBS and stained with fluorochrome-
919 conjugated antibodies recognizing human CD11b and GFAP (Miltenyi Biotec, 130-113-810
920 and 130-123-846) as described above. Gamma counter measurement and flow cytometry
921 analysis of the stained single cell suspension were performed using 10% of the probe after
922 resuspension in 500 μl . Subsequently, TAM were isolated using CD11b microbeads (Miltenyi
923 Biotec, 130-093-634), followed by further gamma counter measurement and flow cytometry.
924 Proportions and cell count of TAM in the resulting cell pellets were determined using CD11b.
925 For tumor cells, a step-wise validation of the gating strategy was performed. Detection of
926 GFAP-positive cells was used for n=6 samples where GFAP positivity was validated by
927 staining during neuropathological workup of the same tumors. N=4 patients received 5-
928 aminolevulinic acid (5-ALA) guided surgery and differentiation of tumor cell populations by 5-
929 ALA-positivity in flow cytometry⁵². These n=10 samples were used for cross-validation of
930 autofluorescence-based gating (excitation wavelength 488 nm, emission wavelengths 655-
931 730nm)⁵³ which was applied in another n=10 samples without GFAP- or 5-ALA-positivity.

932 For samples containing very high proportions of TAMs, in the first step, the radioactivity per
933 single TAM cell was calculated using the well purified CD11b(+) TAM enriched fraction (see
934 gating and analysis strategy A in **Extended Fig. 2**). Since the tumor cells in the depleted
935 fraction were not purified to a satisfactory degree (<70%), the radioactivity attributable to the
936 fraction of TAM cells was subtracted from the total activity of the depleted fraction and the
937 remaining radioactivity was divided by the total cell number of tumor cells in the depleted
938 fraction for calculation of radioactivity per single tumor cell. For samples containing very low
939 concentrations of TAM, in the first step, the activity per single tumor cell was calculated in the
940 CD11(-) fraction (see gating and analysis strategy B in **Extended Fig. 2**). Since TAM in the
941 CD11b(+) fractions were not purified to a satisfactory degree (<70%), the radioactivity
942 attributable to tumor cells was subtracted from the measured radioactivity in the TAM
943 enriched fraction and the remaining radioactivity was divided by the total cell number of
944 CD11b(+) cells in the TAM enriched fraction to obtain radioactivity per TAM. Negligibility of
945 TSPO tracer uptake by non-TAM and non-tumor cells for the overall radioactivity in the cell
946 pellets was confirmed by a regression model of cell numbers and gamma emission in TAM
947 enriched fractions of all biopsy samples.

948

949 **Small-animal PET/CT**

950 All small animal positron emission tomography (PET) procedures followed an established
951 standardized protocol for radiochemistry, acquisition, and post-processing^{54,55}. For tumor and
952 sham mice, [¹⁸F]GE-180 TSPO small-animal PET (12 ± 1 MBq, n=36) recordings with an
953 emission window of 0-60 minutes after injection were obtained to measure cerebral TSPO
954 expression prior to sorting using a Mediso PET/CT system (Mediso, Budapest, Hungary). A
955 contrast enhanced CT was performed prior to the PET scan. For the mice of the depletion
956 experiment, a static [¹⁸F]GE-180 emission (13 ± 2 MBq) was recorded between 60 and 90
957 minutes after injection using a harmonized Siemens Inveon DPET (Siemens, Munich,
958 Germany). All small-animal PET experiments were performed with isoflurane anesthesia
959 (1.5% at time of tracer injection and during imaging; delivery 3.5 L/min).

960 All analyses were performed by PMOD (V3.5, PMOD Technologies, Basel, Switzerland)
961 using CT (tumor and sham mice) and tracer-specific templates (depletion experiment) for
962 spatial normalization⁵⁴. For tumor mice, a 40-60 minute frame was analyzed and
963 normalization of activity was performed by SUV. The average TSPO-PET SUV was obtained
964 from a spherical volume of interest at the tumor site as the primary PET read-out¹⁶. Within
965 the tumor volume of interest, we performed a 50-step k means clustering using the PMOD
966 segmentation tool (10 iterations) to delineate individual clusters of tumor tracer uptake in
967 each tumor. For correlation analysis with light-sheet microscopy, a 50% threshold was
968 applied prior to clustering to avoid artificial associations by inclusion of necrotic parts of the
969 tumor.
970 For the depletion experiment, normalization of injected activity was performed by the
971 previously validated myocardium correction method⁵⁶ and PET estimates deriving from a
972 whole brain volume of interest⁵⁴ were extracted.
973

974 **Human PET/CT**

975 TSPO-PET was available for 13 out of 20 (65%) patients that underwent scRadiotracing. All
976 human TSPO-PET scans were performed on a Biograph 64 PET/CT scanner (Siemens,
977 Erlangen, Germany). Tracer production and image acquisition were performed as described
978 previously⁵⁷. Approximately 180 MBq [¹⁸F]GE-180 were injected as an intravenous bolus and
979 summation images 60-80 minutes p.i. were used for image analysis using a Hermes
980 workstation (Hermes Medical Solutions, Stockholm, Sweden). MRI sequences included
981 gadolinium-enhanced T1- and T2-weighted images and were used for anatomical mapping of
982 stereotactic biopsy coordinates and resected tumor mass within the TSPO-PET images
983 using BRAINLAB ELEMENTS™ (Brainlab AG, Munich, Germany). For correlation analysis
984 between scRadiotracing and TSPO-PET imaging, the mean SUV was obtained from a 0.2
985 cm³ (25 voxels) volume-of-interest using the sample coordinates.
986 Amino acid PET was available for a subset of the investigated patients (80%) and served for
987 characterization of vital tumor tissue. Approximately 180 MBq [¹⁸F]FET were injected and

988 summation images 20-40 minutes p.i. were analyzed. Tumor uptake was assessed as
989 maximum standardized uptake value (SUV_{max}). As described previously⁵⁸, the mean
990 background activity was defined as the mean activity of at least 6 crescent-shaped cortical
991 areas in the healthy contralateral side and SUV_{mean} and SUV_{max} were divided by the mean
992 background activity to obtain mean and maximal tumor-to-background ratios (TBR_{mean} and
993 TBR_{max}). The biological tumor volume was semiautomatically delineated using the standard
994 1.6 x background activity as threshold.

995

996 **Neuropathological analysis**

997 5 μ m thick sections of formalin-fixed and paraffin-embedded (FFPE) tumor tissue were
998 routinely stained with Hematoxylin and eosin (H&E). In addition, immunohistochemical
999 stainings using antibodies against GFAP (polyclonal; Agilent Technologies, Santa Clara, CA,
1000 USA), MAP2 (HM-2; Merck, Darmstadt, Germany), IDH 1 (R132H) (QM002; quartett GmbH,
1001 Potsdam, Germany), ATRX (BSB-108; Bio SB, Goleta, CA, USA) and Ki67 (MIB1; Agilent
1002 Technologies, Santa Clara, CA, USA) were routinely performed according to standard
1003 protocols.

1004

1005 **Transcardial perfusion, immunohistochemistry and tissue clearing**

1006 Mice that were intended for 3D-histology were i.p. injected with 100 mg/kg ketamine 10%
1007 and 10 mg/kg xylazine 2% in 0.9% NaCl. After expiration of the pedal reflex, intracardial
1008 perfusion was performed with 0.1 M PBS (10 U/mL, Ratiopharm) for 6 minutes, followed by
1009 the administration of 4% paraformaldehyde (PFA) in 0.1 M PBS (pH 7.4) (Morphisto,
1010 11762.01000) for another 6 minutes. Afterwards, the brain was removed and post-fixed by
1011 4% PFA for 6-12 hours at 4°C and washed with 0.1 M PBS and stored in 0.1 M PBS.

1012 Samples were subjected to a modified version of vDISCO⁴⁴ and SHANEL⁵⁹ protocols.
1013 Samples were decolorized with 25% CUBIC solution for 1 day. An extra permeabilization
1014 step was performed using SHANEL reagents: 10% CHAPS with 25% N-
1015 Methyldiethanolamine in dH₂O at 37°C overnight in order to access the dense glioblastoma.

1016 Then, samples were further permeabilized with vDISCO permeabilization solution with
1017 additional 10% 2- Hydroxypropyl- β -cyclodextrin overnight at 37°C. The next day, antibody
1018 labeling and boosting step was performed with the addition of CD11b (1:50) (Miltenyi Biotec,
1019 130-110-611) and GFP-Nanoboomster LOT 102 (1:500) (Chromotek, gba647n). The samples
1020 were incubated in 37°C for 9 days. After labeling, samples were washed with vDISCO
1021 washing solution for 3 hours and 3DISCO clearing⁶⁰ with 50-70-90-100-100% tetrahydrofuran
1022 (THF) (Sigma, 186562), 1h each, dichloromethane (Sigma, 270997), 30 minutes, was
1023 performed. Lastly, samples were placed in BABB (2:1, Benzyl Benzoate, Benzyl alcohol)
1024 (Sigma, 24122 and W213802) solution indefinitely for refractive index matching and light
1025 sheet fluorescent imaging.

1026

1027 **Light sheet fluorescent microscopy**

1028 Ultramicroscope Blaze (Miltenyi Biotec) was used to acquire single plane illumination (light
1029 sheet) image stacks. Filters used were ex 470/40 nm, em 535/50 nm; ex 545/25 nm, em
1030 605/70 nm; ex 560/30 nm, em 609/54 nm for autofluorescence, CD11b signal and cancer
1031 cells respectively. For all scans, 1.66x magnification, 1x2 tiling, 30% overlap, 120 ms
1032 exposure time, 100% light sheet width, ~7 μ m laser sheet thickness, ~0.31 N/A and 5 μ m z-
1033 step was used. In order to prevent signal saturation, laser power was adjusted per each
1034 sample.

1035

1036 **Cryosectioning and immunofluorescence staining**

1037 To determine the absolute cell numbers within tumors, after acquiring the light sheet images
1038 of brains, tissue was rehydrated for sectioning. After sequential incubation in THF, samples
1039 were washed in PBS and placed in 30% sucrose solution for dehydration overnight. The next
1040 morning, samples were embedded in OCT and frozen. 15 μ m sagittal sections were acquired
1041 using a cryostat (CM3050S; 665 Leica, Wetzlar, Germany). Tissue sections blocked 0.2%
1042 TritonX-100, 10% DMSO, 10% goat serum in 0.1 M PBS for 1 hour, stained, CD11b (1:50)
1043 and GFP-Nanoboomster LOT 102 (1:500) in 0.2% Tween-20, 5% DMSO, 5% goat serum,

1044 0.001% heparin in 0.1 M PBS and washed with 0.2% Tween-20, 0.001% heparin in 0.1 M
1045 PBS for 3x2 minutes.

1046

1047 **Laser scanning confocal microscopy**

1048 Leica SP8 was utilized for laser scanning confocal microscopy. Images were acquired with
1049 40x magnification acquired as 8-bits with HC PL APO CS2 40 \times /1.30 NA HC PL APO CS2
1050 40 \times /1.30 NA or a HC PL APO CORR CS2 63 \times /1.30 NA objective, 1,024 \times 1,024 resolution,
1051 200 Hz, at 20–25°C. Tile scans were obtained with z-step size of 1 μ m to allow 3D
1052 reconstruction of tissue for depth of 15 μ m.

1053

1054 **Image processing**

1055 Tiles from each brain were stitched as described previously⁴⁴. Stitched images were saved in
1056 TIFF format for further processing. Volumes of segmented CD11b-positivity per TAM and
1057 segmented GFP-positivity per tumor cell were obtained via confocal images to allow
1058 calculation of absolute cell numbers in 3D-histology (see **Equation 1**). Regions of interest
1059 with predominant CD11b (n=5) and cancer cell (n=5) signal were acquired and DAPI nuclear
1060 stains were used to count cells per ROI. To segment single nuclei from cancer cells and
1061 CD11b(+) cells for estimation of absolute cell numbers, cellpose⁴⁶ was utilized. The
1062 percentage of fluorescence(+) nuclei/cells was determined via co-localization of nuclei with
1063 adjacent CD11b- and GFP-positivity. Volumes of CD11b- and GFP-positivity were obtained
1064 via assessment of segmented areas per channel (50% max. threshold) for each single layer
1065 after applying a Gaussian filter of 6mm. To account for positive areas not belonging to
1066 captured nuclei (i.e. at the edge of cells) we determined the area of CD11b- and GFP-
1067 positivity remote from nuclei (manual threshold visually matching the cell borders). To
1068 account for caption of variable profiles in single cells, and we assumed a Gaussian
1069 distribution of modelled percentage areas in a fluorescence positive sphere (i.e. cell) with an
1070 internal fluorescence negative sphere (i.e. nucleus), calculating a correction factor of 1.044.
1071 Areas per cell were then extrapolated to volumes per cell using spherical assumption.

1072 Equation 1:

$$\text{cell volume } (\mu\text{m}^3) = \frac{4}{3}\pi * \left[\sqrt{\left(\frac{\text{segmented area } (\mu\text{m}^2)}{\text{segmented nuclei } (n)} \times \frac{\text{nuclei adjacent area } (\mu\text{m}^2)}{\text{total area } (\mu\text{m}^2)} \times \frac{\text{all nuclei } (n)}{\text{fluorescence(+)} \text{ nuclei } (n)} \times 1.044 \right)} \right]^3$$

1073 To calculate the volume of tumor cells and TAMs within the tumor in 3D-histology, two
1074 channels were separately segmented using syGlass virtual reality tool⁴⁵. The TIFF-stack was
1075 imported into the syGlass software where the stack is rendered as a 3D image in a virtual
1076 space. The ROI tool was used to annotate the signal of interest with adjustable thresholding
1077 in the 3D space to get the best signal to noise ratio. The annotation mask was exported as
1078 TIFFs for further downstream processing. Based on the VR-aided manual annotations of
1079 tumor and TAM regions, areas were calculated as the sum of the marked mask voxels.
1080 LSFM's resolution of 19.58 mm³ per voxel was used to compute the total volume in mm³.
1081 The percentage of TAMs within the tumor was obtained by first filtering the annotated TAM
1082 mask with the tumor area by dot multiplication between the two masks. Then, the number of
1083 obtained voxels was divided by the total amount of tumor voxels. Finally, the PET signal of
1084 the tumor was compared with the aggregated recovered signals of tumor cells and TAMs
1085 (see **Equation 2**).

1086 Equation 2:

$$\text{PET signal } (Bq) = \left(\frac{\text{tumor GFP volume } (\mu\text{m}^3)}{\frac{\text{GFP } (\mu\text{m}^3)}{\text{tumor cell}}} \times \frac{Bq}{\text{tumor cell}} \right) + \left(\frac{\text{tumor CD11b volume } (\mu\text{m}^3)}{\frac{\text{CD11b } (\mu\text{m}^3)}{\text{TAM}}} \times \frac{Bq}{\text{TAM}} \right)$$

1087

1088 **Proteomics**

1089 Isolated TAMs (n=5) and tumor cells (n=3), as well as control microglia isolated from
1090 untreated control mice (n=6) were prepared for mass spectrometry based label free protein
1091 quantification. The cell pellets were lysed in 50 µl of RIPA lysis buffer (50 mM Tris, 150 mM
1092 NaCl, 5 mM EDTA, 1% (v/v) Triton, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, pH
1093 8.0) at 4°C with intermediate vortexing. DNA was disrupted by ultrasonication (M220
1094 Focused-ultrasonicator, Covaris, Woburn, MA, USA). The samples were centrifuged for 5
1095 minutes at 16000g and 4°C to remove cell debris and undissolved material. The

1096 supernatants were transferred to protein LoBind tubes (Eppendorf, Hamburg, Germany).
1097 Proteins were reduced at 37°C for 30 minutes with 15 mM dithiothreitol (DTT) followed by
1098 cysteine alkylation with 60 mM iodoacetamide (IAA) for 30 minutes at 20 °C. Excess of IAA
1099 was removed by adding DTT. Detergent removal and subsequent digestion with 0.2 µg LysC
1100 and 0.2 µg trypsin (Promega, Walldorf, Germany) was performed using the single-pot, solid-
1101 phase-enhanced sample preparation as previously described⁶¹. After vacuum centrifugation,
1102 peptides were dissolved in 20 µl 0.1% formic acid. The peptide amount of tumor cell samples
1103 was estimated using a fluorescence based protein assay (Qubit Protein assay, Thermo
1104 Fisher Scientific, Waltham, MA, USA).
1105 For mass spectrometry, the injected volume was adjusted on the basis of the counted cell
1106 numbers to analyze equal cell numbers with a maximum injection amount of 400 ng of
1107 peptides. The peptides were separated on a nanoElute nanoHPLC system (Bruker, Bremen,
1108 Germany) using a 5 mm trapping column (Thermofisher Scientific, Waltham, MA, USA) and
1109 an in-house packed C18 analytical column (15 cm × 75 µm ID, ReproSil-Pur 120 C18-AQ,
1110 1.9 µm, Dr. Maisch GmbH). Peptides were separated with a binary gradient of water and
1111 acetonitrile (B) containing 0.1% formic acid at flow rate of 300 nL/min (0 min, 2% B; 2 min,
1112 5% B; 70 min, 24% B; 85 min, 35% B; 90 min, 60% B) and a column temperature of 50°C.
1113 The nanoHPLC was online coupled to a TimsTOF pro mass spectrometer (Bruker, Bremen,
1114 Germany) with a CaptiveSpray ion source (Bruker, Bremen, Germany). A Data Independent
1115 Acquisition Parallel Accumulation–Serial Fragmentation (DIA-PASEF) method for spectrum
1116 acquisition. Briefly, ion accumulation and separation using Trapped Ion Mobility
1117 Spectrometry (TIMS) was set to a ramp time of 100 ms. One scan cycle included one TIMS
1118 full MS scan and with 26 windows with a width of 27 m/z covering a m/z range of 350-1002
1119 m/z. Two windows were recorded per PASEF scan. This resulted in a cycle time of 1.4 s.
1120 The data analysis and protein label-free quantification (LFQ) was performed with the
1121 software DIA-NN⁶² version 1.8. The data was analyzed using a spectral library including
1122 13912 protein groups and 208218 precursors in 174909 elution groups generated with the
1123 same samples and additional murine microglia samples using DIA-NN searching against a

1124 one protein per gene database from *Mus musculus* (download date: 2022-01-25, 21994
1125 entries). Trypsin was defined as protease and 2 missed cleavages were allowed. Oxidation
1126 of methionines and acetylation of protein N-termini were defined as variable modifications,
1127 whereas carbamidomethylation of cysteines was defined as fixed modification. The precursor
1128 and fragment ion m/z ranges were limited from 350 to 1002 and 200 to 1700, respectively.
1129 Precursor charge states of 2-4 were considered. The mass accuracy for peptides and
1130 peptide fragments was set to 15 and 20 ppm, respectively. A FDR threshold of 1% was
1131 applied for peptide and protein identifications. Data normalization was disabled to obtain
1132 quantification values, which reflect the protein amounts per cell.

1133 Ratios of TSPO protein expression between SB28 tumor cells, TAMs and control microglia
1134 were compared against corresponding ratios obtained by scRadiotracing. Furthermore, all
1135 proteins were analyzed regarding their SB28 tumor cell and TAM expression levels relative
1136 to control microglia. Potential TAM-specific radiotracer targets were identified in a multi-step
1137 process. First, all proteins with higher levels in TAMs (TAM-to-control-microglia ratio) when
1138 compared to TSPO were selected. Second, among these, we identified proteins that were
1139 not present in SB28 tumor cells or showed high specificity in TAMs over SB28 tumor cells
1140 (TAM-to-tumor cell ratios ≥ 10). Third, to further interrogate specificity, the Human Protein
1141 Atlas⁴⁷ was used to analyze single cell RNA expression levels of brain and non-brain cells for
1142 all identified target proteins that could serve for subsequent development of TAM-specific
1143 radioligands. Fourth, the predominant cell type and the functional immune cell cluster of the
1144 identified proteins for radiotracer development was determined by the Human Protein Atlas.

1145

1146 **Statistics**

1147 Statistical analyses were performed with Graph Pad Prism (V9, San Diego, CA, USA) and
1148 SPSS (V26, IBM, Armonk, NY, USA). A significance threshold of $p < 0.05$ was considered as
1149 significant for all experiments.

1150 *Validation of TSPO scRadiotracing:* Radioactivity per cell was compared between microglia
1151 and astrocytes by a paired Student's t-test. In the depletion experiment, TSPO-PET

1152 measures of whole brain were compared between treatment and vehicle by an unpaired
1153 Student's t-test. Iba1 immunoreactivity was compared between treatment and vehicle groups
1154 by an unpaired Student's t-test. The decrease of the TSPO-PET signal in the treatment
1155 group was considered as microglia bound radioactivity in brain and compared to extrapolated
1156 radioactivity of the microglia cell population as assessed by scRadiotracing using a Student's
1157 t-test.

1158 *scRadiotracing in SB28 glioblastoma mice:* Radioactivity per cell (%ID*BW normalized) was
1159 compared between different cell populations (tumor cells, TAMs, sham microglia, control
1160 microglia) by a one-way analysis of variance with Tukey post hoc test or by a paired
1161 Student's t-test for populations that were present in the same animals. Multiple regression
1162 was used to determine contributions of tumor cells [GFP(+)], microglia [CD11b(+)] and
1163 astrocytes [ACSA2(+)] to the radioactivity in the cell pellet. As a validation, measured
1164 radioactivity in the depleted fraction of the tumor was correlated with predicted radioactivity
1165 by cell count and single cell tracer uptake (Pearson's coefficient of correlation).

1166 *Association between scRadiotracing and PET imaging:* Lesion site SUV was compared
1167 between SB28 and sham mice by an unpaired Student's t-test. Single cell tracer uptake
1168 (tumor cells, TAMs and a summed vector) was correlated with the tumor PET signal and
1169 between cell types using Pearson's coefficient of correlation and we applied a regression
1170 model with both cell types as predictors and the PET signal as dependent variable. PET
1171 cluster values of the tumor segmentation were correlated with single cell tracer uptake and
1172 plotted as a function of cluster grade, after determining the best curve fit (linear, quadratic,
1173 exponential) by Akaike information criteria. The difference between the cluster agreement of
1174 tumor cells and TAMs was calculated to determine dominant contribution of cell types and
1175 likewise plotted as a function of cluster grade.

1176 *Human in vitro scRadiotracing:* A regression model with cell count of TAMs and non-
1177 TAM/non-tumor cells as predictors and pellet radioactivity as dependent variable was applied
1178 to test for significant contribution of non-TAM/non-tumor cells to the total radioactivity. Single
1179 cell tracer uptake was compared between cell types and between patients with high- and

1180 low-grade glioma by an unpaired Student's t-test. Single cell tracer uptake (tumor cells and
1181 TAMs) was correlated with the tumor PET signal using Pearson's coefficient of correlation.

1182 *Integrated model of PET, scRadiotracing and 3D-histology:* Comparisons of GFP(+) and
1183 CD11b(+) volumes and cell counts in SB28 tumors were performed using a paired Student's
1184 t-test. The following analysis was performed using the 50 cluster regions of interest per
1185 individual mouse. TSPO-PET SUVs were multiplied with the regional correlation coefficient of
1186 either tumor or TAM single cell tracer uptake correlations with PET. The individual single cell
1187 tracer uptake was estimated according to TSPO-PET SUV of the tumor (**Fig. 3B**) and applied
1188 to predict light sheet signal intensity per cluster as a surrogate for cell density. This was
1189 performed separately for tumor cells and TAMs. A linear regression was performed to test for
1190 the agreement between predicted and standard of truth cell density per region. Finally, a
1191 combined tumor cell and TAM model was used to predict absolute radioactivity in SB28
1192 tumors as measured by means of TSPO-PET. To this end, the cell count of both tumor cells
1193 and TAMs in seven SB28 tumors was multiplied with the individual single cell tracer uptake
1194 (as estimated according to TSPO-PET SUV of the tumor) and aggregated before correlation
1195 with equally normalized (%ID*BW) PET radioactivity.

1196 *Proteomics:* The statistical data analysis of the DIA-NN output was performed with the
1197 software Perseus Version 1.6.14.0⁶³. Only LFQ intensities from protein groups with at least
1198 two peptides were considered. The protein LFQ intensities were log2 transformed. A 1-way
1199 ANOVA test was applied to determine statistically significant differences between the means
1200 of the three groups. Afterwards, individual Student's t-tests were applied to evaluate proteins
1201 with a significantly different abundance between the TAMs, tumor cells and control microglia.
1202 Additionally, a permutation based false discovery rate estimation was used with a FDR of 5%
1203 at $s_0 = 0.1$ as threshold⁶⁴.

1204 All numeric values are reported as average group values \pm standard error of the mean
1205 (s.e.m.) unless otherwise indicated.

1206

1207 **Data availability**

1208 All source data (i.e. dynamic PET imaging data) is available per reasonable request to the
1209 corresponding author. Proteomics source data is available as extended data.

1210

1211 **Conflict of Interest**

1212 NLA and MB are members of the Neuroimaging Committee of the EANM. JCT received
1213 research grants from Novocure and Munich Surgical Imaging and a speaker honorarium from
1214 Seagen. NLA received funding from Novocure. MB received speaker honoraria from Roche,
1215 GE healthcare and Life Molecular Imaging and is an advisor of Life Molecular Imaging. VCR
1216 received speaker honoraria from Novocure. All other authors declare that the research was
1217 conducted in the absence of any commercial or financial relationships that could be
1218 construed as a potential conflict of interest.

1219

1220 **Author Contributions**

1221 LMB: performed tumor inoculation, performed PET acquisition, image analysis and
1222 interpretation of PET scans, established and performed scRadiotracing in mice and human
1223 tissue samples, performed scRadiotracing analyses, integrated data of 3D-histology and
1224 proteomics, wrote the first draft of the manuscript with input of all co-authors. SVK, SQ and
1225 JB: contributed and harvested SB28 cells, supported establishment of scRadiotracing,
1226 interpreted PET data in the context of human glioblastoma imaging, supported human
1227 scRadiotracing by suggesting patients and performing neurosurgical tissue acquisition. ZIK,
1228 SU, LH, IH: performed immunohistological analyses and 3D-histology, interpreted
1229 histological data and contributed representative images. SAM: performed and interpreted
1230 proteomics. KW, AH, LG, LHK: participated in preclinical PET acquisition, image analysis
1231 and interpretation. VCR, JH: neuropathological examination and characterization of the
1232 tumor samples. STK, PB, MA, LH, DM: supported scRadiotracing data acquisition and
1233 interpretation. AZ: performed 3-dimensional PET image reconstruction. NB: performed
1234 immunohistological analyses and interpretation of CSF1R inhibition experiments. SL:

1235 performed radiochemistry and TAM target identification. PB, MJR, SZ, JH, SFL, AE, JCT,
1236 LvB, NLA and MB: conception and design, contributed to interpreting data, enhancing
1237 intellectual content of manuscript. All authors contributed with intellectual content and revised
1238 the manuscript.

1239

1240 **Funding**

1241 This project was partly funded by the Deutsche Forschungsgemeinschaft (DFG, German
1242 Research Foundation) (FOR 2858 project numbers 421887978 and 422188432 and
1243 Research Training Group GRK 2274). NLA is supported by a research grant of the Else
1244 Kröner-Fresenius-Stiftung. MB and SFL were funded by the Deutsche
1245 Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy within the framework
1246 of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy – ID 390857198). SVK
1247 was supported by the Verein zur Förderung von Wissenschaft und Forschung an der
1248 Medizinischen Fakultät der LMU München (WiFoMed) and the Friedrich-Baur-Stiftung.

1249

1250 **Acknowledgments**

1251 We thank Rosel Oos and Giovanna Palumbo for excellent technical support during PET
1252 imaging.

1253

1254

1255 **References**

- 1256 1 Jin, M.-Z. & Jin, W.-L. The updated landscape of tumor microenvironment and drug
1257 repurposing. *Signal Transduction and Targeted Therapy* **5**, 166 (2020).
<https://doi.org/10.1038/s41392-020-00280-x>
- 1258 2 Pitt, J. M. *et al.* Targeting the tumor microenvironment: removing obstruction to
1259 anticancer immune responses and immunotherapy. *Annals of Oncology* **27**, 1482-1492
1260 (2016). <https://doi.org/https://doi.org/10.1093/annonc/mdw168>
- 1261 3 Fernandes, B. *et al.* Potential PET tracers for imaging of tumor-associated
1262 macrophages. *EJNMMI Radiopharmacy and Chemistry* **7**, 11 (2022).
<https://doi.org/10.1186/s41181-022-00163-2>
- 1263 4 Kist de Ruijter, L. *et al.* Whole-body CD8+ T cell visualization before and during
1264 cancer immunotherapy: a phase 1/2 trial. *Nature Medicine* **28**, 2601-2610 (2022).
<https://doi.org/10.1038/s41591-022-02084-8>

1268 5 Low, J. T. *et al.* Primary brain and other central nervous system tumors in the United
1269 States (2014-2018): A summary of the CBTRUS statistical report for clinicians.
1270 *Neurooncol Pract* **9**, 165-182 (2022). <https://doi.org/10.1093/nop/npac015>

1271 6 Zinnhardt, B. *et al.* TSPO imaging-guided characterization of the immunosuppressive
1272 myeloid tumor microenvironment in patients with malignant glioma. *Neuro-oncology*
1273 **22**, 1030-1043 (2020).

1274 7 Cai, L. *et al.* Glioblastoma Exhibits Inter-Individual Heterogeneity of TSPO and
1275 LAT1 Expression in Neoplastic and Parenchymal Cells. *Int J Mol Sci* **21** (2020).
1276 <https://doi.org/10.3390/ijms21020612>

1277 8 Pigeon, H. *et al.* TSPO-PET and diffusion-weighted MRI for imaging a mouse model
1278 of infiltrative human glioma. *Neuro-oncology* **21**, 755-764 (2019).

1279 9 Zinnhardt, B. *et al.* Combined PET Imaging of the Inflammatory Tumor
1280 Microenvironment Identifies Margins of Unique Radiotracer Uptake. *Cancer Res* **77**,
1281 1831-1841 (2017). <https://doi.org/10.1158/0008-5472.CAN-16-2628>

1282 10 Buck, J. R. *et al.* Preclinical TSPO Ligand PET to Visualize Human Glioma
1283 Xenotransplants: A Preliminary Study. *PloS one* **10**, e0141659 (2015).
1284 <https://doi.org/10.1371/journal.pone.0141659>

1285 11 Bartos, L. M. *et al.* Single cell radiotracer allocation via immunomagnetic sorting
1286 (scRadiotracing) to disentangle PET signals at cellular resolution. *J Nucl Med* (2022).
1287 <https://doi.org/10.2967/jnumed.122.264171>

1288 12 Dos Santos, S. E. *et al.* Similar Microglial Cell Densities across Brain Structures and
1289 Mammalian Species: Implications for Brain Tissue Function. *J Neurosci* **40**, 4622-
1290 4643 (2020). <https://doi.org/10.1523/JNEUROSCI.2339-19.2020>

1291 13 Xiang, X. *et al.* Microglial activation states drive glucose uptake and FDG-PET
1292 alterations in neurodegenerative diseases. *Sci Transl Med* **13**, eabe5640 (2021).
1293 <https://doi.org/10.1126/scitranslmed.abe5640>

1294 14 Shi, Y. *et al.* Long-term diazepam treatment enhances microglial spine engulfment
1295 and impairs cognitive performance via the mitochondrial 18 kDa translocator protein
1296 (TSPO). *Nat Neurosci* **25**, 317-329 (2022). <https://doi.org/10.1038/s41593-022-01013-9>

1298 15 Genoud, V. *et al.* Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint
1299 blockade in SB28 and GL261 mouse glioma models. *Oncoimmunology* **7**, e1501137
1300 (2018).

1301 16 Bartos, L. M. *et al.* 18 kDa translocator protein positron emission tomography
1302 facilitates early and robust tumor detection in the immunocompetent SB28
1303 glioblastoma mouse model. *Front Med (Lausanne)* **9**, 992993 (2022).
1304 <https://doi.org/10.3389/fmed.2022.992993>

1305 17 Uhlén, M. *et al.* Tissue-based map of the human proteome. **347**, 1260419 (2015).
1306 <https://doi.org/doi:10.1126/science.1260419>

1307 18 Dagher, N. N. *et al.* Colony-stimulating factor 1 receptor inhibition prevents
1308 microglial plaque association and improves cognition in 3xTg-AD mice. *Journal of*
1309 *neuroinflammation* **12**, 1-14 (2015).

1310 19 Acharya, M. M. *et al.* Elimination of microglia improves cognitive function following
1311 cranial irradiation. *Scientific reports* **6**, 1-11 (2016).

1312 20 Elmore, M. R. *et al.* Colony-stimulating factor 1 receptor signaling is necessary for
1313 microglia viability, unmasking a microglia progenitor cell in the adult brain. *Neuron*
1314 **82**, 380-397 (2014).

1315 21 Parhizkar, S. *et al.* Loss of TREM2 function increases amyloid seeding but reduces
1316 plaque-associated ApoE. *Nat Neurosci* **22**, 191-204 (2019).
1317 <https://doi.org/10.1038/s41593-018-0296-9>

1318 22 Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein
1319 abundance and mRNA expression levels on a genomic scale. *Genome Biol* **4**, 117
1320 (2003). <https://doi.org/10.1186/gb-2003-4-9-117>

1321 23 Zanotti-Fregonara, P. *et al.* Head-to-Head Comparison of (11)C-PBR28 and (18)F-
1322 GE180 for Quantification of the Translocator Protein in the Human Brain. *J Nucl Med*
1323 **59**, 1260-1266 (2018). <https://doi.org/10.2967/jnmed.117.203109>

1324 24 Wimberley, C. *et al.* Impact of Endothelial 18-kDa Translocator Protein on the
1325 Quantification of (18)F-DPA-714. *J Nucl Med* **59**, 307-314 (2018).
<https://doi.org/10.2967/jnmed.117.195396>

1327 25 Foray, C. *et al.* Interrogating Glioma-Associated Microglia and Macrophage
1328 Dynamics Under CSF-1R Therapy with Multitracer In Vivo PET/MRI. *J Nucl Med*
1329 **63**, 1386-1393 (2022). <https://doi.org/10.2967/jnmed.121.263318>

1330 26 Palleis, C. *et al.* In Vivo Assessment of Neuroinflammation in 4-Repeat Tauopathies.
1331 *Mov Disord* **36**, 883-894 (2021). <https://doi.org/10.1002/mds.28395>

1332 27 Pascoal, T. A. *et al.* Microglial activation and tau propagate jointly across Braak
1333 stages. *Nat Med* **27**, 1592-1599 (2021). <https://doi.org/10.1038/s41591-021-01456-w>

1334 28 Albert-Smet, I. *et al.* Applications of Light-Sheet Microscopy in Microdevices.
1335 *Frontiers in Neuroanatomy* **13** (2019). <https://doi.org/10.3389/fnana.2019.00001>

1336 29 Paulus, W. & Peiffer, J. Intratumoral histologic heterogeneity of gliomas. A
1337 quantitative study. *Cancer* **64**, 442-447 (1989). [https://doi.org/10.1002/1097-0142\(19890715\)64:2<442::aid-cncr2820640217>3.0.co;2-s](https://doi.org/10.1002/1097-0142(19890715)64:2<442::aid-cncr2820640217>3.0.co;2-s)

1339 30 Jackson, R. J. *et al.* Limitations of stereotactic biopsy in the initial management of
1340 gliomas. *Neuro Oncol* **3**, 193-200 (2001). <https://doi.org/10.1093/neuonc/3.3.193>

1341 31 Banati, R. B. *et al.* Selective, high-contrast detection of syngeneic glioblastoma in
1342 vivo. *Sci Rep* **10**, 9968 (2020). <https://doi.org/10.1038/s41598-020-67036-z>

1343 32 Betlazar, C. *et al.* Mitochondrial Translocator Protein (TSPO) Expression in the Brain
1344 After Whole Body Gamma Irradiation. *Front Cell Dev Biol* **9**, 715444 (2021).
<https://doi.org/10.3389/fcell.2021.715444>

1346 33 Banati, R. B. *et al.* Positron emission tomography and functional characterization of a
1347 complete PBR/TSPO knockout. *Nat Commun* **5**, 5452 (2014).
<https://doi.org/10.1038/ncomms6452>

1349 34 Quach, S. *et al.* TSPO PET signal using [(18)F]GE180 is associated with survival in
1350 recurrent gliomas. *Eur J Nucl Med Mol Imaging* (2022).
<https://doi.org/10.1007/s00259-022-06006-1>

1352 35 Law, I. *et al.* Joint EANM/EANO/RANO practice guidelines/SNMMI procedure
1353 standards for imaging of gliomas using PET with radiolabelled amino acids and
1354 [(18)F]FDG: version 1.0. *Eur J Nucl Med Mol Imaging* **46**, 540-557 (2019).
<https://doi.org/10.1007/s00259-018-4207-9>

1356 36 Wang, J. *et al.* Inhibition of translocator protein 18 kDa suppressed the progression of
1357 glioma via the ELAV-like RNA-binding protein 1/MAPK-activated protein kinase 3
1358 axis. *Bioengineered* **13**, 7457-7470 (2022).
<https://doi.org/10.1080/21655979.2022.2048992>

1360 37 Solomon, I. *et al.* CD25-Treg-depleting antibodies preserving IL-2 signaling on
1361 effector T cells enhance effector activation and antitumor immunity. *Nature Cancer* **1**,
1362 1153-1166 (2020). <https://doi.org/10.1038/s43018-020-00133-0>

1363 38 Wang, Y.-C. *et al.* Targeting monoamine oxidase A-regulated tumor-associated
1364 macrophage polarization for cancer immunotherapy. *Nature Communications* **12**,
1365 3530 (2021). <https://doi.org/10.1038/s41467-021-23164-2>

1366 39 Sade-Feldman, M. *et al.* Defining T Cell States Associated with Response to
1367 Checkpoint Immunotherapy in Melanoma. *Cell* **175**, 998-1013.e1020 (2018).
<https://doi.org/https://doi.org/10.1016/j.cell.2018.10.038>

1369 40 Martín-Ruiz, A. *et al.* Effects of anti-PD-1 immunotherapy on tumor regression: insights from a patient-derived xenograft model. *Scientific Reports* **10**, 7078 (2020). <https://doi.org/10.1038/s41598-020-63796-w>

1370 41 Couturier, C. P. *et al.* Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. *Nature Communications* **11**, 3406 (2020). <https://doi.org/10.1038/s41467-020-17186-5>

1371 42 Berroterán-Infante, N., Tadić, M., Hacker, M., Wadsak, W. & Mitterhauser, M. Binding Affinity of Some Endogenous and Synthetic TSPO Ligands Regarding the rs6971 Polymorphism. *International journal of molecular sciences* **20** (2019). <https://doi.org/10.3390/ijms20030563>

1372 43 Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. *Front Hum Neurosci* **3**, 31 (2009). <https://doi.org/10.3389/neuro.09.031.2009>

1373 44 Cai, R. *et al.* Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. *Nat Neurosci* **22**, 317-327 (2019). <https://doi.org/10.1038/s41593-018-0301-3>

1374 45 Pidhorskyi, S., Morehead, M., Jones, Q., Spirou, G. & Doretto, G. J. a. p. a. syGlass: interactive exploration of multidimensional images using virtual reality Head-mounted displays. (2018).

1375 46 Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. *Nat Methods* **18**, 100-106 (2021). <https://doi.org/10.1038/s41592-020-01018-x>

1376 47 Uhlén, M. *et al.* Tissue-based map of the human proteome. *Science* **347**, 1260419 (2015). <https://doi.org/10.1126/science.1260419>

1377 48 Spangenberg, E. *et al.* Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. *Nat Commun* **10**, 3758 (2019). <https://doi.org/10.1038/s41467-019-11674-z>

1378 49 Haddad, A. F. *et al.* Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. *Neurooncol Adv* **3**, vdab100 (2021). <https://doi.org/10.1093/noajnl/vdab100>

1379 50 Colombo, A. V. *et al.* Microbiota-derived short chain fatty acids modulate microglia and promote Abeta plaque deposition. *Elife* **10** (2021). <https://doi.org/10.7554/eLife.59826>

1380 51 Xiang, X. *et al.* The Trem2 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in mice but not in humans. *Mol Neurodegener* **13**, 49 (2018). <https://doi.org/10.1186/s13024-018-0280-6>

1381 52 Smith, S. J. *et al.* Metabolism-based isolation of invasive glioblastoma cells with specific gene signatures and tumorigenic potential. *Neuro-Oncology Advances* **2** (2020). <https://doi.org/10.1093/noajnl/vdaa087>

1382 53 Black, D. *et al.* Characterization of autofluorescence and quantitative protoporphyrin IX biomarkers for optical spectroscopy-guided glioma surgery. *Scientific Reports* **11**, 20009 (2021). <https://doi.org/10.1038/s41598-021-99228-6>

1383 54 Brendel, M. *et al.* Glial Activation and Glucose Metabolism in a Transgenic Amyloid Mouse Model: A Triple-Tracer PET Study. *J Nucl Med* **57**, 954-960 (2016). <https://doi.org/10.2967/jnunmed.115.167858>

1384 55 Overhoff, F. *et al.* Automated spatial brain normalization and hindbrain white matter reference tissue give improved [18F]-florbetaben PET quantitation in Alzheimer's model mice. *Frontiers in neuroscience* **10**, 45 (2016).

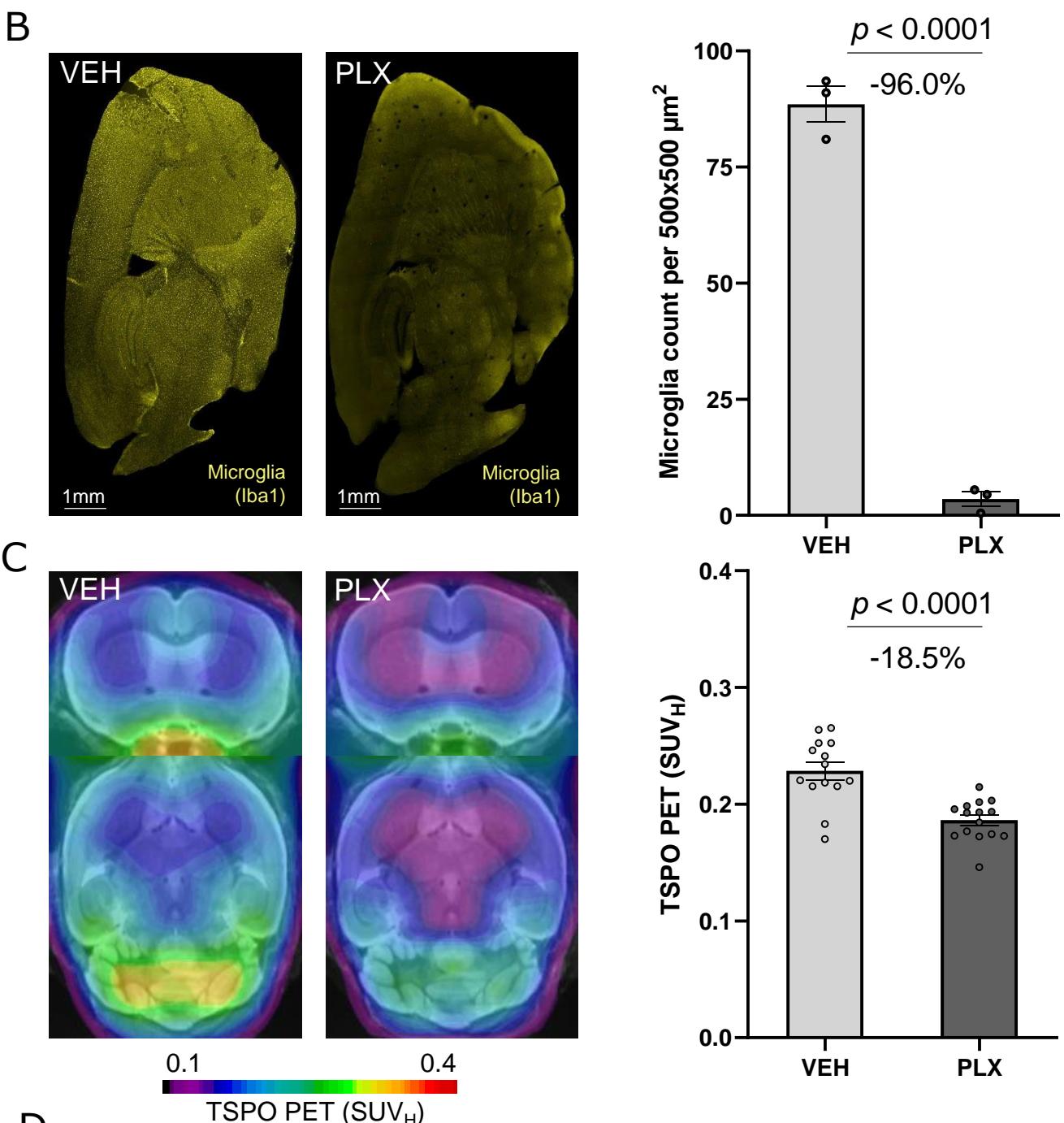
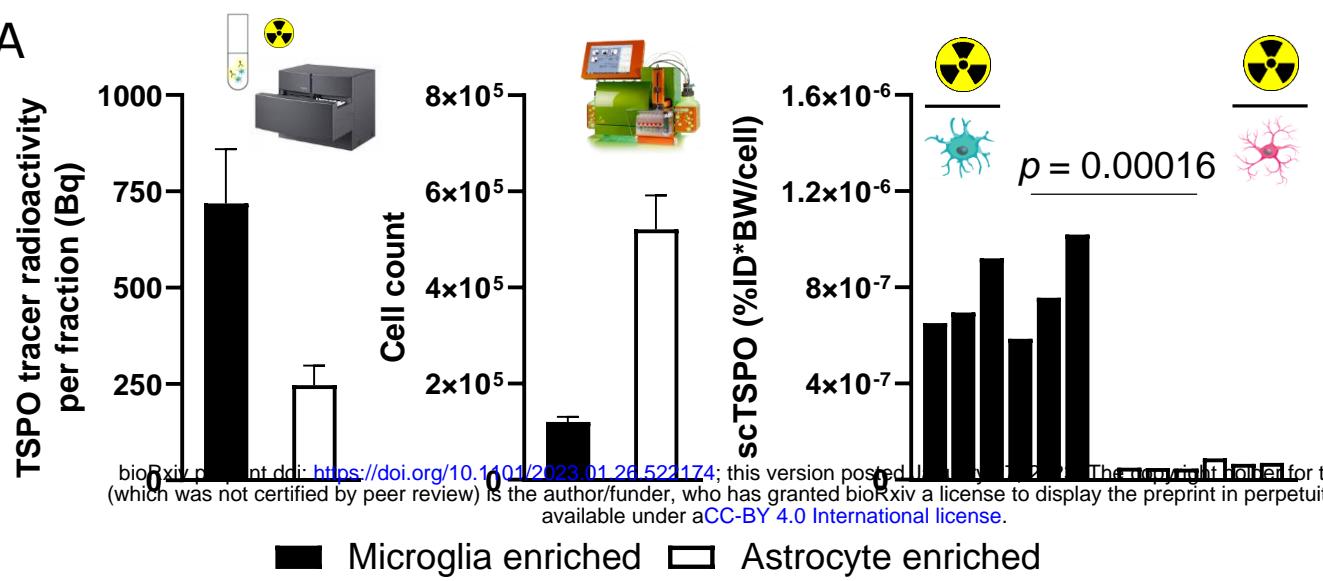
1385 56 Deussing, M. *et al.* Coupling between physiological TSPO expression in brain and myocardium allows stabilization of late-phase cerebral [(18)F]GE180 PET quantification. *Neuroimage* **165**, 83-91 (2017). <https://doi.org/10.1016/j.neuroimage.2017.10.006>

1420 57 Unterrainer, M. *et al.* TSPO PET, tumour grading and molecular genetics in
1421 histologically verified glioma: a correlative (18)F-GE-180 PET study. *Eur J Nucl Med*
1422 *Mol Imaging* **47**, 1368-1380 (2020). <https://doi.org/10.1007/s00259-019-04491-5>

1423 58 Unterrainer, M. *et al.* Towards standardization of (18)F-FET PET imaging: do we
1424 need a consistent method of background activity assessment? *EJNMMI Res* **7**, 48
1425 (2017). <https://doi.org/10.1186/s13550-017-0295-y>

1426 59 Zhao, S. *et al.* Cellular and Molecular Probing of Intact Human Organs. *Cell* **180**, 796-
1427 812 e719 (2020). <https://doi.org/10.1016/j.cell.2020.01.030>

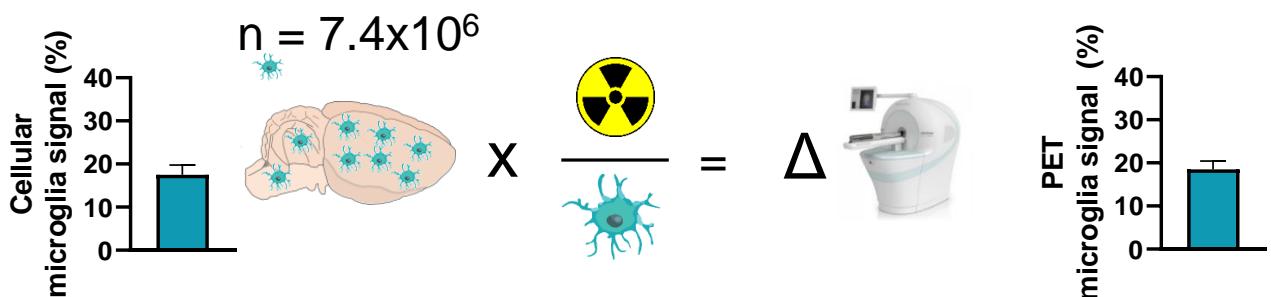
1428 60 Erturk, A. *et al.* Three-dimensional imaging of solvent-cleared organs using 3DISCO.
1429 *Nat Protoc* **7**, 1983-1995 (2012). <https://doi.org/10.1038/nprot.2012.119>

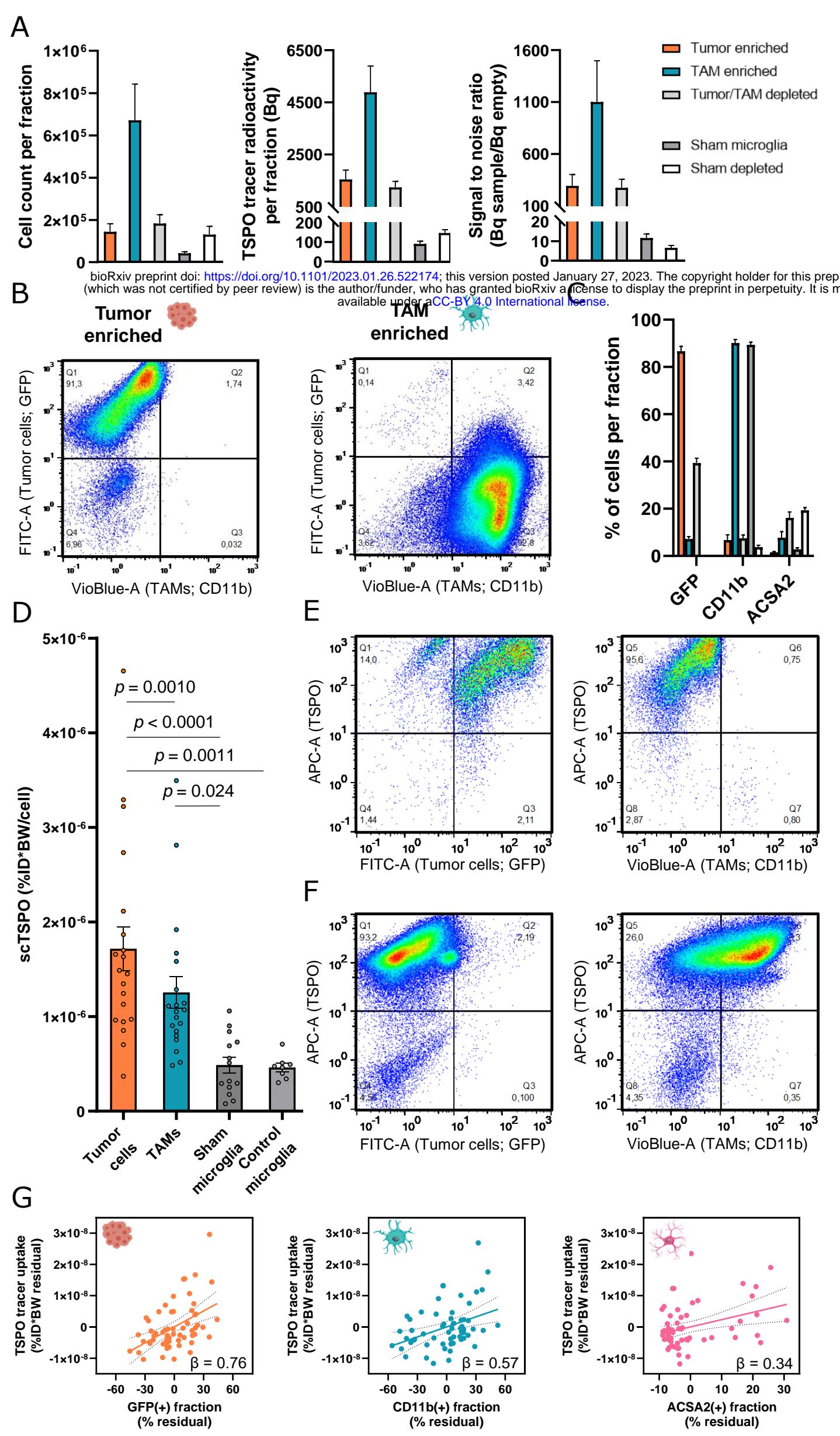


1430 61 Hughes, C. S. *et al.* Single-pot, solid-phase-enhanced sample preparation for
1431 proteomics experiments. *Nat Protoc* **14**, 68-85 (2019). <https://doi.org/10.1038/s41596-018-0082-x>

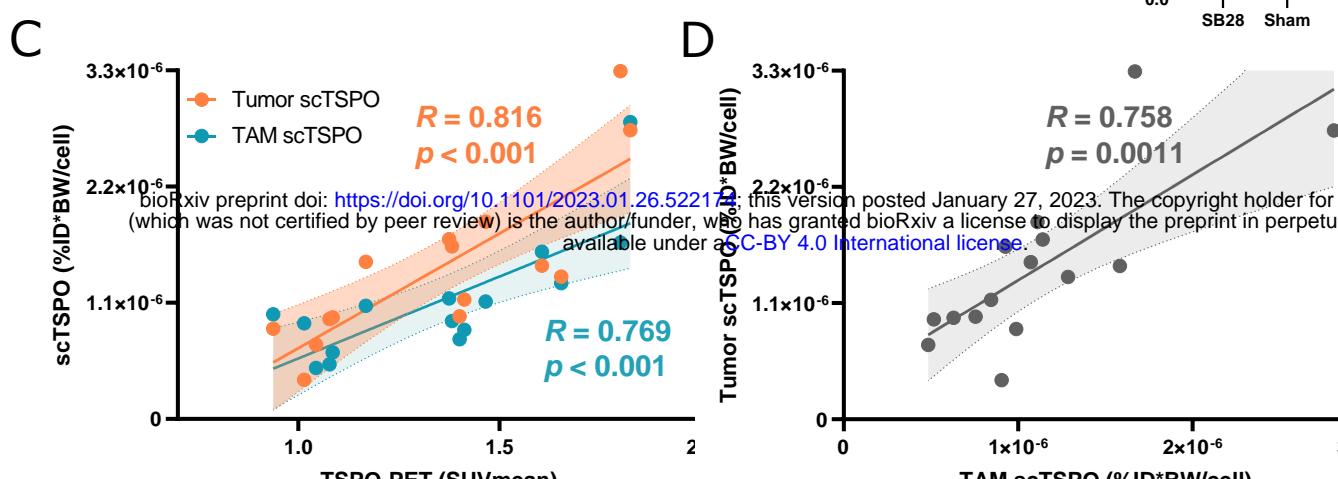
1433 62 Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN:
1434 neural networks and interference correction enable deep proteome coverage in high
1435 throughput. *Nature Methods* **17**, 41-44 (2020). <https://doi.org/10.1038/s41592-019-0638-x>

1437 63 Tyanova, S. *et al.* The Perseus computational platform for comprehensive analysis of
1438 (prote)omics data. *Nat Methods* **13**, 731-740 (2016).
<https://doi.org/10.1038/nmeth.3901>

1440 64 Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied
1441 to the ionizing radiation response. *Proc Natl Acad Sci U S A* **98**, 5116-5121 (2001).
<https://doi.org/10.1073/pnas.091062498>

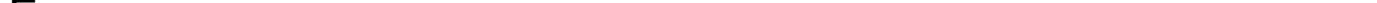

1443

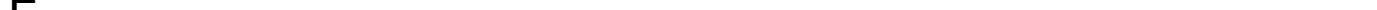


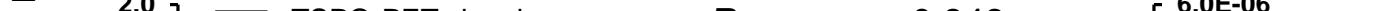

D

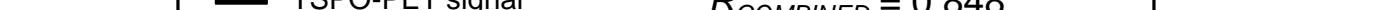
Calculated contribution of microglia to the whole brain radioactivity (**Figure 1A**)

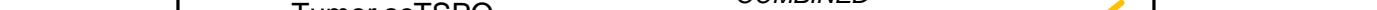
PET signal reduction after microglia depletion (**Figure 1C**)

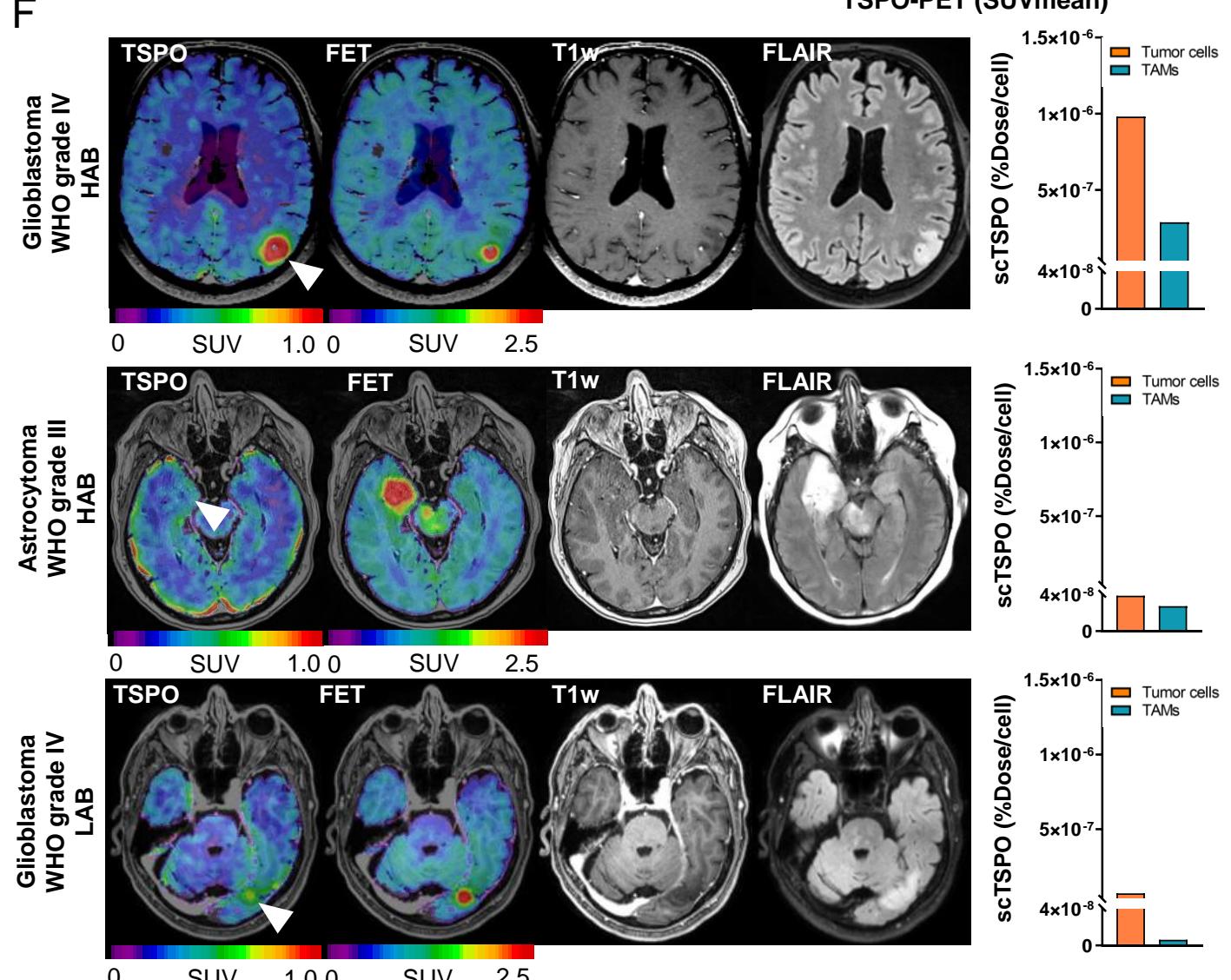
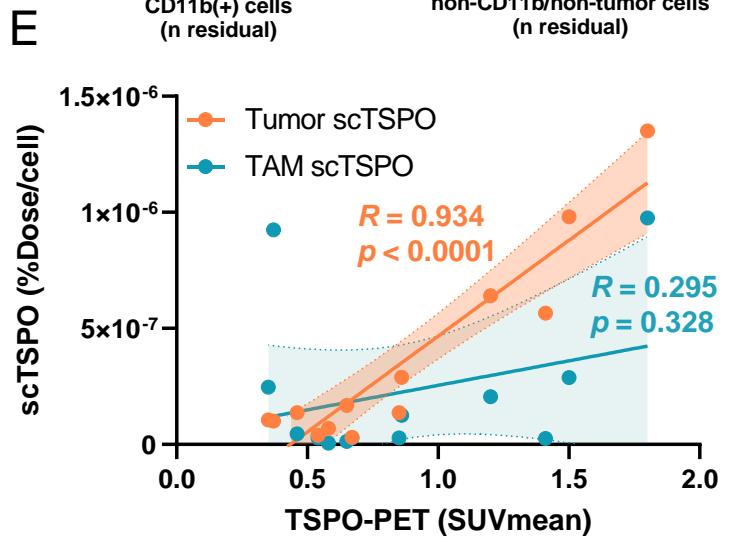
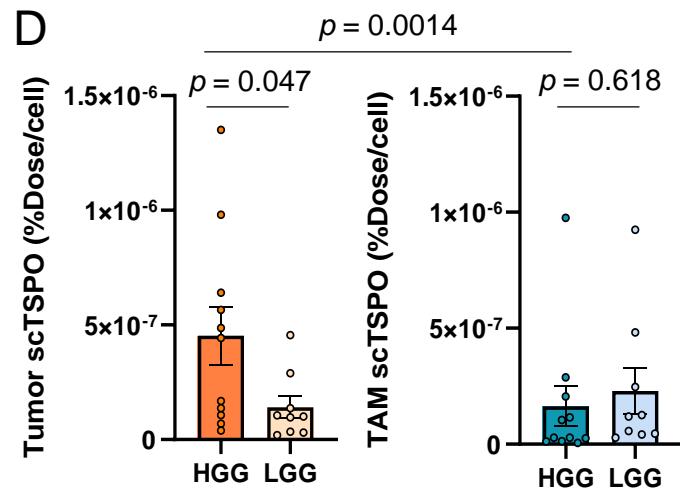
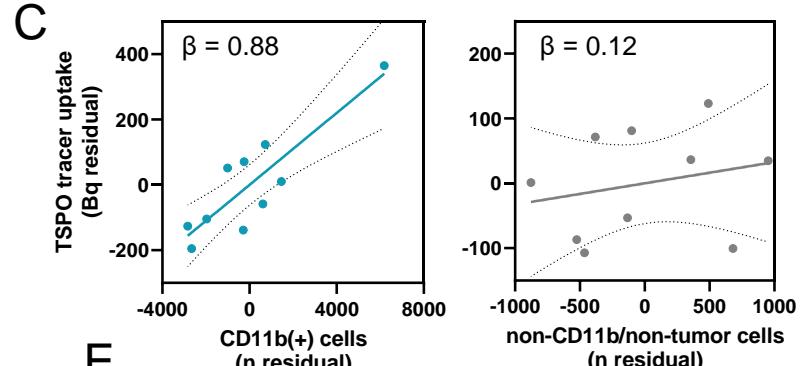
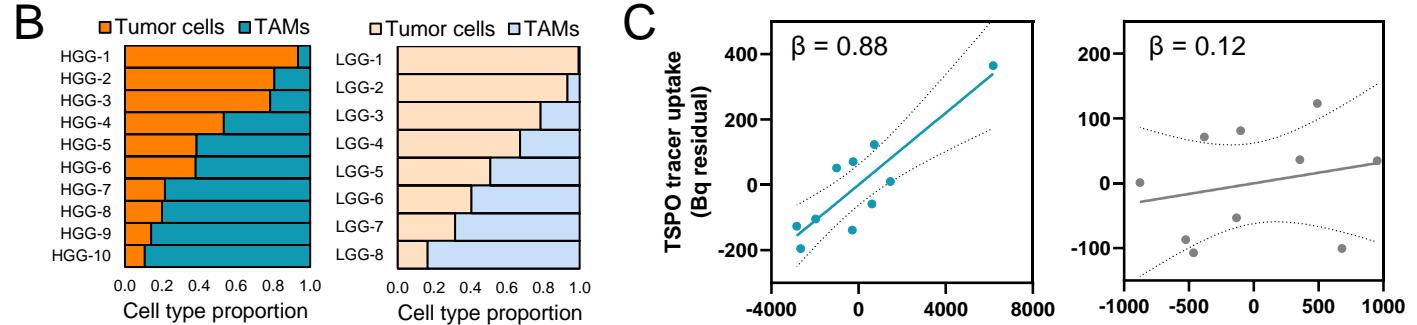
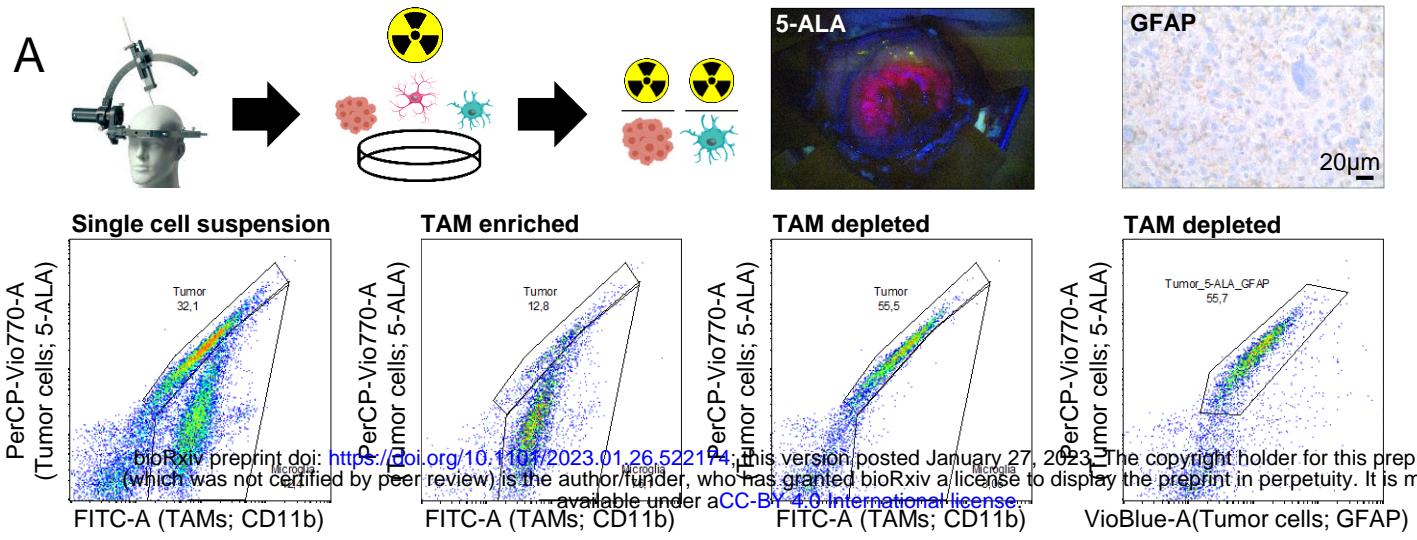


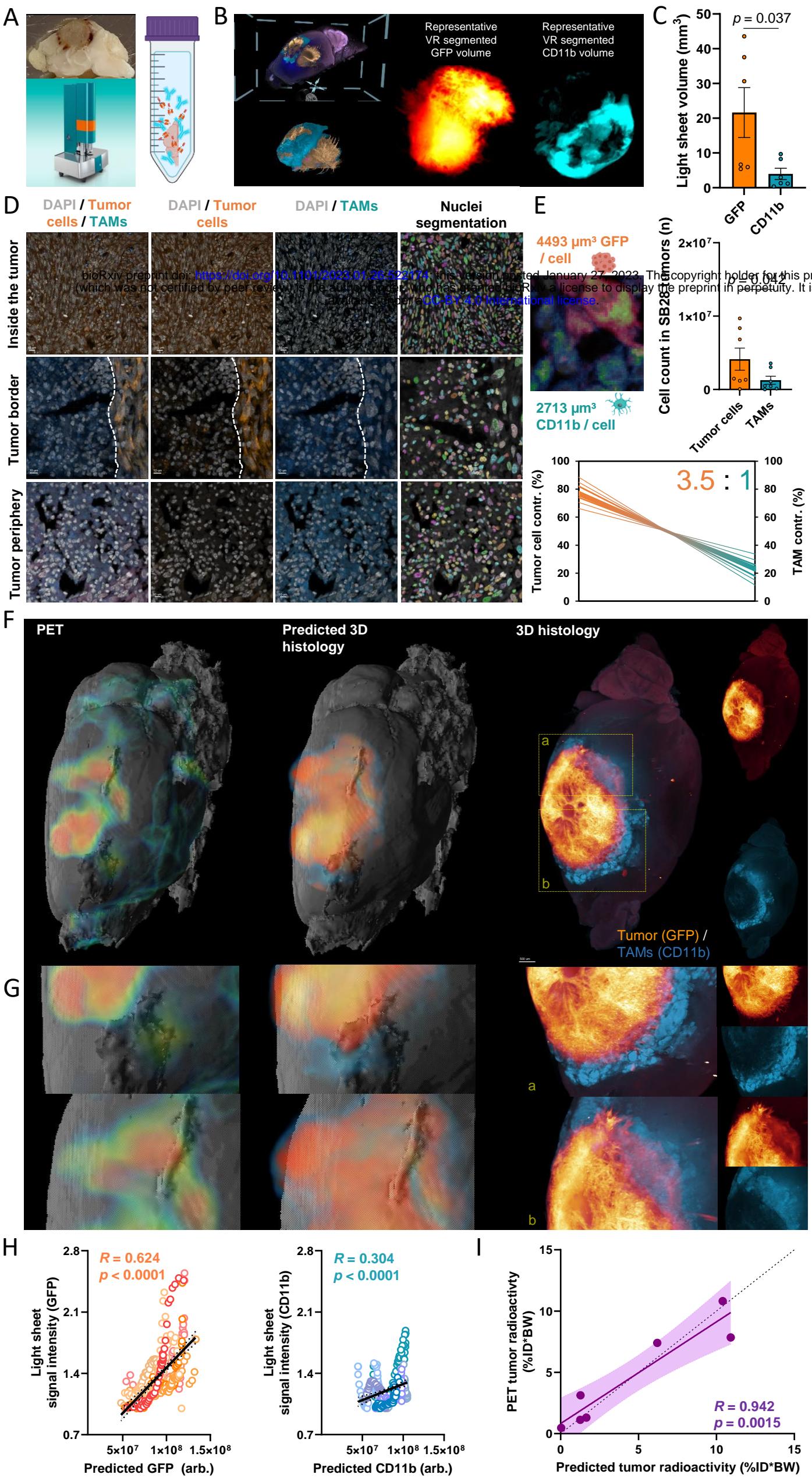

bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.26.522174>; this version posted January 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.26.522174>; this version posted January 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

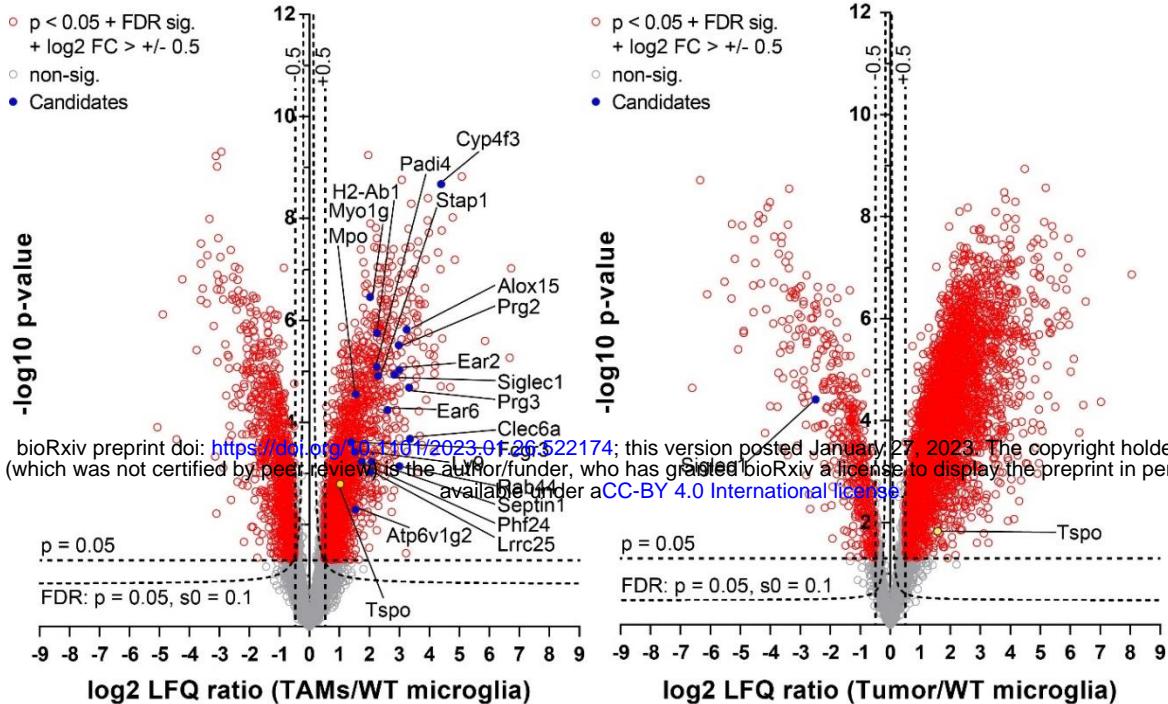

bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.26.522174>; this version posted January 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

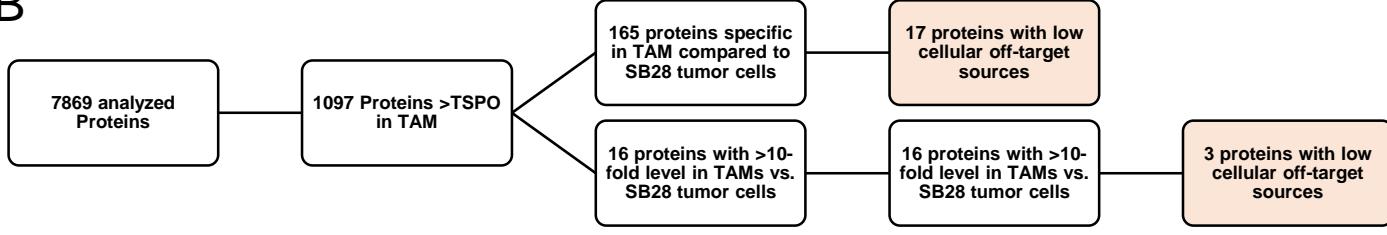

bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.26.522174>; this version posted January 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.26.522174>; this version posted January 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

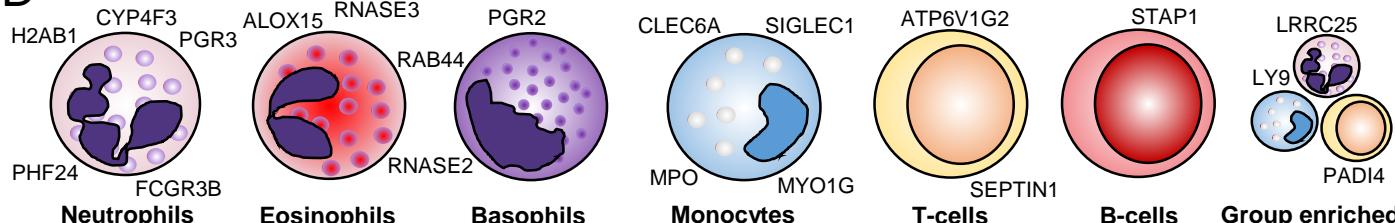
bioRxiv preprint doi: <https://doi.org/10.1101/2023.01.26.522174>; this version posted January 27, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.





A

- $p < 0.05 + \text{FDR sig.}$
- + $\log_2 \text{FC} > +/- 0.5$
- non-sig.
- Candidates


B

C

D

