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Abstract

Non-small cell lung cancers (NSCLCSs) in non-smokers are mostly driven by
mutations in the oncogenes EGFR, ERBB2, and MET, and fusions involving ALK and
RET. We term these “non-smoking-related oncogenes” (NSROs). In addition to
occurring in non-smokers, NSRO-driven tumors also occur in smokers, and the clonal
architecture and genomic landscape of these tumors remain unknown. We investigated
genomic and transcriptomic alterations in 173 tumor sectors from 48 patients with
NSRO-driven or typical-smoking NSCLCs. NSRO-driven NSCLCs in smokers and
non-smokers have similar genomic landscapes. Surprisingly, even in patients with
prominent smoking histories, the mutational signature caused by tobacco smoking
was essentially absent in NSRO-driven NSCLCs. However, NSRO-driven NSCLCs in
smokers had higher transcriptomic activities related to regulation of the cell cycle,
suggesting that smoking still affects tumor phenotype independently of genomic
alterations.

Statement of significance

This study highlights the lack of genomic scars caused by smoking in NSCLCs
driven by non-smoking-related oncogenes regardless of smoking history. The impact
of smoking on these tumors is mainly non-genomic. The transcriptomic features of
NSCLCs associated with smoking may help in the development of therapeutic
approaches.
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I ntroduction

Lung cancer remains the most lethal cancer worldwide and causes more than 1.8
million deaths annually, even though the worldwide prevalence of tobacco smoking is
decreasing (1, 2). However, in East Asia, lung cancer among non-smokers is
increasing, has become an emerging health problem, and accounts for more than half
of cases in Taiwan and Singapore (3, 4). Most of these are non-small-cell lung cancers
(NSCLCs) driven by a specific set of oncogenic mutations, usually activating
mutations in the oncogenes EGFR, ERBB2, or MET, or rearrangements involving
ALK or RET (5-9). Here, we refer to these genes as “non-smoking-related oncogenes”
(NSROs). Including both smokers and non-smokers, NSRO-driven NSCLCs
constitute approximately half of all East-Asian lung cancer (10-13). These tumors
tend to have similar clinical trajectories and favorable responses to tyrosine kinase
inhibitors (TKIs) (14-21). In contrast, tumors that occur in smokers and that have
activating mutations in the KRAS or BRAF genes or that lack mutations in known
oncogenes altogether constitute a group that we term “typical-smoking NSCLCs”.
Typical-smoking NSCLCs are more common in populations of European descent than
in East-Asian populations. They often have high mutational burdens, sometimes
respond well to immune checkpoint inhibitors, and have many somatic mutations
caused by tobacco smoking (22, 23). In contrast, NSRO-driven NSCLCs tend to have
lower mutational burdens and complex genomic architectures (24, 25).

While NSRO-driven NSCLCs have been most studied in non-smokers, in East Asia,
approximately 20% to 40% of patients with these cancers have histories of tobacco
smoking (4, 5, 26-28). Furthermore, among patients with EGFR-mutated NSCLC
treated with TKIs, smokers have worse prognoses than non-smokers (29-31).
However, the impact of tobacco smoking on clonal architecture, somatic genomic
alterations, and transcriptomic phenotypes in NSRO-driven NSCLCs remains largely
unknown. By means of an integrated study of genomic and transcriptomic landscapes,
clonal architecture, and intra-tumor heterogeneity, we investigated similarities and
differences between (i) NSRO-driven NSCLCs in non-smokers (ii) NSRO-driven
NSCLCs in smokers and (iii) typical-smoking NSCLCs.

Results

Characteristics of the study cohort

We performed multi-region exome sequencing in a total of 173 sectors from 48
NSCLCs with clinical and histopathological characteristics shown in Supplementary
Tables S1 and S2. Overall, we identified 6,251 single-nucleotide variants (SNVs) and
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314 small indels (insertions or deletions) affecting the exons of 4,738 genes and the
splicing junctions of 177 genes. We also performed RNA sequencing on 103 of the
173 sectors from 32 out of the 48 tumors (Supplementary Tables S1, S2).

Consistent with previous studies in East-Asian NSCLC, EGFR and TP53 were the
most frequently mutated genes (56%, 27 of 48, and 46%, 22 of 48, respectively) (9,
10). In addition to the SNVs and indels, we also studied gene fusions using RNA
sequencing data. Of the putative transcript fusions detected, three were known
oncogenic variants: EML4-ALK, KLC1-ALK, and PARG-BMSL1 (Supplementary Table
S3), and the two ALK fusions were confirmed by fluorescence in situ hybridization
(32-34). As expected, mutations in EGFR, MET, ERBB2, and KRAS and ALK fusions
did not co-occur, suggesting that these were key initiating events (35).

All EGFR, ERBB2, and MET mutations were truncal (occurred in every sector) and
were clonal in every sector (Supplementary Table S4). Compared to mutations in
non-driver genes, mutations in EGFR were statistically more likely to be truncal
(Supplementary Table S5). These findings underscore the impact of these oncogene
mutations on the clonal architecture of NSCLCs. In addition, mutations in KRAS were
truncal in every tumor, but were subclonal in single sectors in 2 out of 7 of the tumors.
A similar pattern was reported in another multi-regional study (36).

Three categories of NSCL C and their genomic characteristics

For the purposes of this study, we first defined NSRO-driven tumor as those with
any of the mutations or other genetic alterations detailed in Supplementary Table S6,
based on the incidences of these alterations reported in the literature (27, 28). The
NSRO mutations observed in this study were activating mutations in EGFR exons 18
through 21, ALK fusions, insertions in ERBB2 exon 20, and skipping of MET exon 14.

We then focused on the following three groups: (i) NSRO-driven tumors in
non-smokers (n = 23, 48%), (ii) NSRO-driven tumors in smokers (n = 12, 25%), and
(iii) typical-smoking tumors (n = 11, 23%). In addition, there were 2 tumors without
NSRO-mutations in non-smokers. This is typical of East-Asian populations, in which
tumors without NSROs are rare in non-smokers (7, 8, 28). The proportion of
non-smokers without NSROs in this study (8%, 2 out of 25) was lower than those
reported in population of European descent (e.g., 51%, 96 out of 189, p = 0.05 by
Fisher’s two-sided exact test) (37). Fig. LA shows the genomic landscape of the three
groups.

Table 1 summarizes clinical characteristics and NSRO mutations in the three
groups. Notably, smoking exposure was similar between NSRO-driven tumors in
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smokers (median 34.5 pack-years, range 0.5-99) and typical-smoking tumors (median
38 pack-years, range 2-168, Wilcoxon rank-sum test, p value = 0.5792).

NSRO-driven NSCL C with and without smoking histories have similar genomic
architectures

Overall, NSRO-driven tumors in smokers and non-smokers had similar genomic
architectures, including tumor mutational burdens (TMB), number of truncal
mutations, and number of mutations in driver genes. In contrast, compared to
NSRO-driven tumors in smokers, typical-smoking tumors had much higher TMBs
(median 144 vs. 55.5, p = 0.017, two-sided Wilcoxon rank-sum test), more truncal
mutations (median 56 vs. 22.5, p = 0.031), and more mutations in all driver genes
(including NSROs, median 14 vs. 7.5, p = 0.002, Fig. 1B, Supplementary Data and
Code). Intra-tumoral heterogeneity (ITH, defined as the mean ratio of the numbers of
branch mutations to the total number of mutations, see Methods) was similar across
the three groups (medians 0.549, 0.543, and 0.580, for NSRO-driven non-smokers,
NSRO-driven NSCLCs in smokers, and typical-smoking NSCLCs, respectively, Fig.
1B). However, “coconut-tree” phylogenies, characterized by a combination of high
TMB (> 100) and low ITH (< 0.5), occurred exclusively among the typical-smoking
tumors (5 out of 11, Fig. 2). Supplementary Fig. S1 details phylogenetic trees of all
tumors across the three groups.

In addition to the oncogenes used to categorize the three groups of tumors, CSMD3
mutations were statistically more common in typical-smoking tumors (Fig. 1C, left
and middle). In comparing NSRO-driven NSCLCs in smokers versus NSRO-driven
NSCLCs in non-smokers, there was no significant difference in the prevalence of
mutations in COSMIC driver genes (including NSROs, Fig. 1C, right,
https://cancer.sanger.ac.uk/census).

Previous studies reported that whole-genome doubling and chromosomal instability
are common features of NSCLC (24, 25, 38, 39). In the present study, we found no
significant difference across the three groups in tumor ploidy, proportions of tumors
with whole-genome doubling, and chromosomal instability (Supplementary Fig. S2,
Supplementary Table S2). Supplementary Fig. S3 provides details of somatic copy
number alterations for all groups.

We also noted that gender distribution differed strongly across the three groups.
Among non-smokers with NSRO-driven tumors, only 30% (7 of 23) were male,
whereas among the NSRO-driven smoking and typical-smoking groups, 92% and
100% were male, respectively (p = 0.0024 and 0.0001 by two-sided Fisher’s exact
tests compared to the NSRO-driven non-smoking group). We analyzed genomic
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landscapes in NSRO-driven tumors by gender and found no significant differences
(Supplementary Fig. S4).

M utational signatures of NSRO-driven NSCL Csin smokers

Next, we investigated the impact of smoking on the mutational landscape across
three groups. Overall, the median number of single-base substitution (SBS) per sector
was 173 (range 47 to 2472). We used a signature presence test followed by signature
attribution for each tumor sector to detect the mutational signature SBS4, which is
caused by tobacco smoking in lung cancers (22, 40). Fig. 3A shows the activities of
mutational signatures of the three groups.

We detected SBS4 in 30 of 34 (88%) sectors in typical-smoking tumors.
Surprisingly, however, SBS4 was found in only 7 of 48 (15%) sectors in
NSRO-driven tumors in smokers, significantly less than sectors in typical-smoking
tumors despite similar exposures to tobacco smoking (two-sided Fisher’s exact test,

p < 2.1x10™, Fig. 3D). For tumor sectors with SBS4 activity, the median number of
mutations attributed to SBS4 was also significantly higher in typical-smoking tumors
than in NSRO-driven tumors in smokers (216 vs. 53, two-sided Wilcoxon rank-sum
test, p < 9x107, Fig. 3E). T-distributed stochastic neighbor embedding (tSNE) based
on SBS spectra identified different mutational patterns in typical-smoking tumors
compared to the other two groups (Fig. 3F, Supplementary Table S7 and S8).

To confirm the paucity of SBS4 activity in NSRO-driven NSCLCs, we applied the
same tumor classification and signature assignment algorithm to two large, previously
reported cohorts of NSCLC (10, 41). Supplementary Table S9 provides clinical
information, including smoking history, oncogenes and their mutations, and signature
activities for patients in these cohorts. The SBS4 signature was found in only 38% (8
of 21) and 29% (9 of 31) of NSRO-driven NSCLCs in smokers, significantly fewer
than in typical-smoking tumors (90% and 78%, odds ratio of 0.07 and 0.12, two-sided
Fisher’s exact tests, p values of 1.1x107" and 4.5x10°°, respectively, Supplementary
Figs. S5, S6). Thus, all the genomic data indicates that NSRO-driven NSCLCs,
whether in smokers or non-smokers, have origins and oncogenic histories distinct
from those of typical-smoking NSCLCs.

Previous studies of NSCLC suggested that mutations caused by smoking and
APOBEC activities dominate at different stages of cancer evolution (24, 42). For
smoking mutagenesis, in the current study, SBS4 contributed similar activities in
trunks and branches in typical-smoking tumors, suggesting ongoing exposure to
tobacco smoke during cancer development (Supplementary Fig. S7). Analysis of
SBS4 was not meaningful for the other two groups of NSCLCs, because they had
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almost no SBS4 mutations. For APOBEC, consistent with previous studies, there were
more mutations in branches than in trunks across the entire data set (Supplementary
Fig. S7). Unexpectedly, we found that mutations due to reactive oxygen species (ROS,
SBS18) were significantly higher in the branches than in the trunks for every group of
tumors (all g values < 0.018 by two-sided Wilcoxon paired rank-sum tests with
Benjamini-Hochberg correction, Supplementary Fig. S7). Thus, ROS might contribute
to NSCLC evolution.

Transcriptomic features of NSRO-driven smoking tumors

The similarity of genomic landscapes between NSRO-driven tumors with and
without smoking histories was surprising because clinical studies have shown that
smoking indicates poor prognosis in NSRO-driven NSCLC (29-31). Therefore, we
investigated whether transcriptomic features may account for this clinical observation.
To this end, we profiled the transcriptomes of 103 of the 173 sectors from 32 out of
the 48 tumors (Table 1 and Supplementary Table S2). UMAP dimension reduction did
not reveal a separation between NSRO-driven NSCLCs in smokers versus
non-smokers in the first 2 dimensions (Supplementary Fig. S8A). Indeed, the primary
separation seems to reflect membership in the terminal-respiratory-unit (TRU)
expression subtype. There is a trend for association of the TRU subtype with
NSRO-driven tumors in both non-smokers and smokers compared to typical-smoking
tumors (Supplementary Fig. S8B).

To further explore the transcriptomic activities associated with tobacco smoking,
we investigated differential expression pathway activity between non-smokers (57
sectors from 18 tumors) and smokers (46 sectors from 14 tumors, including both
typical-smoking tumors and NSRO-driven tumors in smokers). We examined
activities of 1,259 pathways from the Reactome Database (43) (Fig. 4, Supplementary
Fig. S9, Supplementary Table S10). In this comparison, tumors in non-smokers had
higher activities in pathways related to NOTCH signaling and to metabolism and
lower activities in pathways related to cell cycle regulation and mitotic exit (Fig. 4).
These differences in pathway activity were also evident in a comparison of
NSRO-driven tumors in smokers versus in non-smokers (i.e., after excluding
typical-smoking tumors and NSRO-negative tumors, Supplementary Table S10).
These observations underscore the phenotypic differences associated with tobacco
smoking in some transcriptomic pathways independent of genomic alterations.

It has been proposed that smoking-associated lung cancers are associated with the
immune repertoires of tumor microenvironments (TME) that would confer better
responses to immunotherapy (44-47). TMEs with infiltration of cytotoxic T cells and
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expression of proinflammatory cytokine genes are often called “immune-hot”, and
have higher tendencies to respond to immune checkpoint inhibitors (48, 49). In this
study, we investigated the TME of NSRO-driven NSCLCs in smokers versus the other
two groups. To define immune-hot TME, we performed hierarchical clustering of
sectors based on the transcript levels of T-cell inflammation and immune checkpoint
genes (Supplementary Fig. S10A) (50-52). However, there was no strong evidence for
enrichment for immune-hot TMEs in NSRO-driven NSCLCs in smokers (3 out of 9
tumors, 33%) and typical-smoking-related NSCLCs (1 out of 5 tumors, 20%)
compared to NSRO-driven tumors in non-smokers (5 out of 17 tumors, 29%, p =
0.7332 by Fisher’s exact test across the three groups, Supplementary Fig. S10B).

Discussion

To our knowledge, this is the first integrated genomic study to directly compare
NSRO-driven NSCLCs in non-smokers, NSRO-driven NSCLCs in smokers, and
typical-smoking NSCLCs using multi-region exome and RNA sequencing. We found
that tobacco smoking had almost no influence on the genomic features and clonal
architectures of EGFR-mutated and other NSRO-driven NSCLCs. Despite prominent
smoking histories, NSRO-driven tumors in smokers were similar to those in
non-smokers in terms of mutational burden, intra-tumor heterogeneity, and mutational
signature activity. In contrast, compared to both NSRO-driven groups,
typical-smoking tumors showed higher TMBs and more mutations in driver genes.
Furthermore, “coconut-tree” phylogenies, which are defined by a combination of high
TMB (> 100) and low ITH (< 0.5), occurred in nearly half of the typical-smoking
NSCLCs but were absent from NSRO-driven NSCLC.

As noted in the Results section, gender distribution differed significantly across the
three groups. Across all groups, tobacco smoking was more prevalent among males
than females (Table 1). This male preponderance reflects the extreme gender
imbalance of smoking in East Asia. For example, in the population we studied, 6.8%
of women are smokers compared to 20.6% of men (2, 53, 54). Previously,
NSRO-driven NSCLC was sometimes viewed as a disease of non-smokers, often
women. This view may have been partly driven by this gender imbalance, due to
which NSRO-driven tumors were particularly noticeable among women, since they
were usually non-smokers. The current study confirms that NSRO-driven NSCLC
occurs in both smokers and non-smokers and in both sexes, and it shows that genomic
features are similar in both smokers and non-smokers and in both sexes
(Supplementary Fig. S4). Because of the strong differences in smoking rates between
women and men in the study population, it is not possible to disentangle the effects of
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gender from the effects of smoking. Nevertheless, we note that available evidence
suggests that NSRO-driven tumors are more common among women. Notably, in data
from a previous study (55), in both non-smokers and smokers, EGFR-mutated
NSCLC was more common among women: for non-smokers, odds-ratio 1.38 (p < 8%
10®); and for smokers, odds ratio 1.40 (p < 0.006), analyses by two-sided Fisher’s
exact tests.

While it has been recently reported that NSCLCs that occur in smokers but that
lack SBS4 are enriched for mutations in EGFR and other NSROs (36, 56), here we
have shown that the paucity of mutations due to tobacco smoking is a nearly-universal
characteristic of NSRO-driven tumors in smokers. We further confirmed this finding
in two large cohorts of patients with lung adenocarcinomas (10, 41). It is unclear why
NSRO-driven tumors rarely acquire mutations caused by smoking, while
typical-smoking tumors with similar exposures have abundant smoking mutations.
Possibly, as suggested by some studies, the cell of origin of NSRO-driven NSCLC
may be different from that of typical-smoking NSCLC (57-61). Thus, one possibility
is that NSRO-driven tumors are less prone to mutation because their cells of origin are
less exposed to tobacco smoke or have more effective DNA damage repair.

Although NSRO-driven tumors in non-smokers and in smokers have similar clonal
architectures and genomic features, they differ in their transcriptomic pathway
activities, especially those related to the cell cycle and mitotic exit. Consistent with
previous studies (62, 63), for these pathway activities, NSRO-driven tumors in
smokers are more similar to typical-smoking tumors than to NSRO-driven tumors in
non-smokers (Fig. 4, Supplementary Fig. S9). Despite the lack of somatic mutations
caused by smoking, it is still possible that chronic tobacco exposure causes
epigenomic changes to bronchial epithelial cells, leading to a carcinogenic phenotype
that is independent of genomic alterations (64). Of note, advanced EGFR-mutated
NSCLCs treated with TKIs had worse outcomes in smokers than in non-smokers (30,
31). The transcriptomic activities of NSCLC driven by NSROs, including EGFR, in
smokers, might account for these cancers’ higher resistance to standard TKIs and
suggests the possibility of better responses to therapies such as chemotherapy or
CDKA4/6 inhibitors that target the cell cycle (65). This warrants further investigation
regarding treatment selection for patients with NSRO-driven NSCLC.

In summary, based on multi-region whole-exome and RNA sequencing data, we
have elucidated the clonal architectures and genomic features of three groups of
East-Asian NSCLC: NSRO-driven in non-smokers, NSRO-driven in smokers, and
typical-smoking tumors. We found no evidence that tobacco smoking affects clonal
architecture or patterns of genomic alteration in NSRO-driven NSCLC. However,
some transcriptomic pathway activities were more similar between NSRO-driven
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tumors in smokers and typical-smoking tumors than between NSRO-driven cancers in
smokers and non-smokers. The in-depth analysis of NSRO-driven NSCLC in smokers
and non-smokers presented here may provide guidance for optimizing treatment
approaches.

M ethods

Patients and clinical outcomes

Patients diagnosed with NSCLC at the National Cancer Centre Singapore (between
2013 and 2017) who underwent surgical resection of their tumors prior to receiving
any form of anti-cancer therapy were enrolled in this study. Clinical information and
histopathological features were obtained from the Lung Cancer Consortium Singapore.
Written informed consent was obtained from all participants. This study was approved
by the SingHealth Centralized Institutional Review Board (CIRB reference
2018/2963).

Tumor/normal sample processing and whole-exome sequencing

Resected tumors and paired normal samples were sectioned and processed as
previously described (24). Peripheral blood, or if peripheral blood was not available,
normal lung tissue adjacent to the tumor was taken as a normal sample. The median
number of sectors for an individual tumor was 3 (range 2-7, Supplementary Table S1).
For whole exome sequencing, genomic DNA was extracted with the AllPrep
DNA/RNA/MIRNA Universal Kit (Qiagen), and 500 ng to 1 ug of genomic DNA was
sheared using Covaris to a size of 300 to 400 bp. Libraries were prepared with
NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolabs). Regions
to sequence were selected with the SeqCap EZ Human Exome Library v3.0 (Roche
Applied Science) according to the manufacturer’s instructions and underwent 2 x 151
base-pair sequencing on Hiseq 4000 (Illumina) sequencers. The median coverage of
the capture target was 55.1X and 54.4X for normal and tumor samples, respectively
(Supplementary Table S2).

Somatic single nucleotide variation and insertion-deletion calling

Exome reads were trimmed with trimmomatic (version 0.39) to remove
adaptor-containing or poor-quality sequences (66). Trimmed reads were mapped to
the human reference sequence GRCh38.p7 (accession number GCA_000001405.22)
using the BWA-mem software (version 0.7.15) with default parameters (67).
Duplicate reads were marked and removed from variant calling using Sambamba
(version 0.7.0) (68). Global mapping quality was evaluated by Qualimap 2 (version
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2.2.1, Supplementary Table S2) (69). Somatic single nucleotide variations (SNVs) and
insertion-deletions (indels) were called by MuTect2 (version 4.1.6.0) and Strelka2
(version 2.9.2) with default parameters (70, 71). We considered only variants called
by both variant callers and with (i) > 3 reads supporting the variant allele in the tumor
sample, (ii) sequencing depth > 20 in both the normal and tumor samples, and (iii)
variant allele fraction > 0.05. Variants were annotated by wWANNOVAR
(https://wannovar.wglab.org/) (72). Driver status of genes was based on the Catalog of
Somatic Mutations in Cancer (COSMIC) database, downloaded February 24, 2021
(https://cancer.sanger.ac.uk/census) (73).

We excluded 12 out of 185 sectors (6.5%) that had tumor purity < 0.1 as assessed
by HATCHet (74) (Supplementary Table S2). In tumor sectors with low tumor purity,
fewer variants were called than in other sectors of the same tumor, supporting the
estimation of low tumor purity (Supplementary Fig. S11).

Definitions of truncal mutation, branch mutation, tumor mutational burden, and
intra-tumor heterogeneity

We refer to mutations present in every sector of a tumor as “truncal”, and we refer
to other mutations as “branch”. We defined tumor mutational burden (TMB) as the
mean number of unique non-silent (nonsynonymous or splice-site) mutations across
all sectors of a tumor. We defined intra-tumor heterogeneity (ITH) as the mean
proportion of the number of unique branch mutations across all sectors. The clonality
of somatic variants was evaluated by using MutationTimeR R package (75).

Phylogenetic analysis

We used the Python PTI package (https://github.com/bioliyezhang/PTI, version 1.0)
using the input of a “binary matrix” to infer phylogenetic relationships based on
non-silent mutations (76).

Mutational signature assignment and spectrum reconstr uction

Mutational signature assignment was carried out with mSigAct R package (version
2.3.2, https://github.com/steverozen/mSigAct) and COSMIC mutational signature
database (version 3.2) (77). For mutational signature analysis, we used all single-base
substitution (SBS), including exonic and non-exonic variants. To better estimate the
impact of smoking on cancer evolution, we first used the SignaturePresenceTest
function with default parameters on all individual sectors within each group to decide
whether the SBS4 mutational signature (the signature of tobacco smoking) was
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present in the sector’s mutational spectrum. In brief, SignaturePresenceTest estimates
optimal coefficients for the reconstruction of the observed spectrum using the
mutational signatures previously detected in NSCLC (40). The test does this without
the SBS4 signature (null hypothesis) and with the SBS4 signature (alternative
hypothesis). The test then carries out a standard likelihood ratio test on these two
hypotheses to calculate a p-value. We then calculated Benjamini-Hochberg false
discovery rates across all sectors of all tumors within the group.

To estimate the contribution of signatures to each spectrum we used the
SparseAssignActivity function and the signatures found in lung adenocarcinomas in
reference (40), except that SBS4 was included only if the false discovery rate based
on the SignaturePresenceTest was < 0.05. We excluded SBS3 (caused by defective
homologous recombination DNA damage repair mechanism) from sparse assignment
after ensuring no pathogenic germline or somatic alterations in the BRCA1 or BRCA2
genes. Supplementary Table S7 and S8 show the SBS mutational spectra and
signature activities of each sector. We did not assign activities for indels or
double-base substitutions because there were too few of these mutations (median
exome-wide counts of 10 and 1, respectively).

Detection of fusion transcripts

We used STAR-Fusion (version 1.10.0) (78) to detect transcript fusions in the
RNA-sequencing data with default parameters. We required candidate fusions to
satisfy the following criteria:

e spanning fragment count > 1
e junction read count + spanning fragment count > 5
e presence of a large anchor-support read, and
e for intrachromosomal fusion partners, a genomic distance > 1MB between
fusion breakpoints
Supplementary Table S3 provides the full list of putative fusions.

RNA sequencing and gene expression subtype

Total RNA was extracted and processed from 103 tumor samples as previously
described (79). We used STAR (version 2.7.3a) to align raw RNA sequence reads to
the human genome (GRCh38p7 build) and to estimate transcript abundance based on
the reference transcriptome (GRCh38.85 build) (80). Only the counts of
protein-coding genes were included for downstream analysis.
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Transcriptomic pathway analysis

Raw gene expression levels were transformed to transcript levels in transcripts per
million (TPM) values (81). We computed pathway enrichment scores with the GSVA
R package (version 1.40.1) and the Reactome subset of the Molecular Signatures
Database (MSigDB, version 7.5.1) (43, 82, 83). Differential pathway expression was
assessed using the limma R package (version 3.48.0) (84). Pathways with a
Benjamini-Hochberg false discovery rate < 0.05 were taken as significant.
Assignment of gene expression subtypes (terminal respiratory unit, TRU, versus
non-TRU) was carried out as described (85). Gene expression values and pathway
enrichment scores were transformed to Z-scores (mean of 0 and standard deviation of
1) before downstream analysis. Heatmaps were constructed with the
ComplexHeatmap R package (version 2.8.0) (86). Heatmap columns were first
clustered based on all rows using ComplexHeatmap::Heatmap function using default
arguments for clustering distance and method, and then ordered by main group,
patient, and gene expression status accordingly. Immune cell deconvolution was
performed by using the CIBERSORT web application (https://cibersortx.stanford.edu/)
(87).

Data Availability

All WES and RNA sequencing data were deposited at the European
Genome-phenome Archive (EGA, http://www.ebi.ac.uk/ega/), under the accession
number EGAS00001006942. Supplementary Data and Code, including lists of
somatic mutations, mutation-timing and clonality output from the MutationTimeR
package, gene fusions, gene expression matrices, transcriptomic pathway activities,
and immune cell deconvolution, are publicly available at
https://github.com/Rozen-Lab/oncogene-NSCLC/.
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Table 1. Baseline clinical and genomic characteristics of NSRO-driven NSCLCs in non-smokers,
NSRO-driven NSCLCs in smokers, and typical-smoking NSCLCs.

Clinical or genomic NSRO-driven in NSRO-driven in Typical-smoking P value
characteristic, n (%) non-smokers (n =23)  smokers (n = 12) (n=11)
Number of patients 23 (48) 12 (25) 1 (23)
Number of tumor
sectors with WES? 83 (100) 48 (100) 34 (100) 0.8608
Number of tumors
with RNA seq 1 (74 o (75) 5 (45) 0.2139
Number of tumor
sectors with RNA seq 52 (63) 32 (67) 14 (41) 0.3392
Age, median (range) 67 (53-82) 70 (39-79) 66 (49-74) n.s.
Gender
Male 7 (30) 11 (92) 1 (100) <0.0001
Female 16 (70) 1 (8) 0 0)
Cigarette smoking
status
Never 23 (100) 0 (0) 0 0) <0.0001
Current/Former 0 0) 12 (100) 1 (100)
Pack years, median (0-0) 345 (05-99) 38 (2-168)  0.58°
(range)
Ethnicity
Chinese 20 (87) 10 (83) 10 (91) 1
Non-Chinese 3 (13) 2 a7 1 9)
Stage at diagnosis
Early (I & 1) 19 (83) 9 (75) 1 (100) 0.2719
Late (11l & IV) 4 7 3 (25) 0 0)
Histology
Adenocarcinoma 22 (96) 12 (200) 10 (91) 0.7333
Squamous cell
carcinoma 1 ) 0 ©) 1 ©)
Key mutations
Non-smoking related
oncogenes
EGFRexon 18-21 18 (78) 9 (75) 0 0) <0.0001
MET exon 14
skipping 3 (13) 1 (8) 0 (0)
ALK fusion 1 (@) 1 (8) 0 0)
ERBB2 exon 20 1 4 1 (8) 0 (0)
KRAS exon 2-3 0 0) 0 0) 7 (64)
No NSRO, KRAS or
BRAF mutation 0 ©) 0 ©) 4 (36)

*WES, whole exome sequencing.

PP value by two-sided Fisher's exact tests across all three group within category (e.g., Gender, Cigarette smoking,
status, etc.).

°P values by two-sided Wilcoxon rank-sum test > 0.05 in all pairwise comparisons across the three groups.

P values by two-sided Wilcoxon rank-sum test > 0.05 between NSRO-driven smoking and typical-smoking

groups.
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Figure Legends

Fig. 1. (A) Overview of genomic alterations in tumors and tumor sectors. (B) Counts
of total mutations, truncal mutations, numbers of mutations in driver genes, and levels
of intra-tumor heterogeneity in the three groups. We used the list of driver genes from
COSMIC (https://cancer.sanger.ac.uk/census). (C) Enrichment for mutations in driver
genes in pair-wise comparisons among the three groups.

Fig. 2. (A) Intra-tumor heterogeneity (ITH) versus tumor mutation burden (TMB) for
each tumor. Five tumors with “coconut-tree” phylogenies are labeled (a) through (e)
and the corresponding phylogenies are in panel (B). These phylogenies occurred only
in the typical-smoking-related group.

Fig. 3. Single-base substitution (SBS) mutational signatures. (A, B)
Mutational-signature activities in the three groups by absolute mutation counts (A)
and by proportions (B). Colors indicate various mutational signatures (e.g., SBS1,
SBS5, etc.), as indicated by the legend above. (C) Smoking history, key mutated
genes, and whether the tumor has a coconut tree pattern. (D) Proportions of tumor
sectors with SBS4 (caused by tobacco smoking). (E) Counts of mutations due to
SBS4 in tumor sectors that have SBS4 mutations. (F) tSNE (t-distributed stochastic
neighbor embedding) dimension reduction based on the mutational spectra. For
information on 10the mutational signatures, see COSMIC
(https://cancer.sanger.ac.uk/signatures/).

Fig. 4. Heatmap of activities of the top 10 pathways up- and down-regulated in all
non-smokers compared to all smokers. Each column is a tumor sector, and sectors are
grouped by patient as shown in the row labeled “Patient”. Z-scores are of pathway
activity. The Benjamini-Hochberg false discovery rates (q values) of differential
pathway activity were based on p-values calculated using limma (84). Supplementary
Fig. S9 and Supplementary Tables S10 and S11 provide details.
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Figure 1. (A) Overview of genomic alterations in tumors and tumor sectors. (B) Counts of total
mutations, truncal mutations, numbers of mutations in driver genes, and levels of intra-tumor
heterogeneity in the three groups. We used the list of driver genes from COSMIC
(https://cancer.sanger.ac.uk/census). (C) Enrichment for mutations in driver genes in pair-wise
comparisons among the three groups.


https://doi.org/10.1101/2023.07.04.547310
http://creativecommons.org/licenses/by/4.0/

Figure 2

A bioRxiv preprint doi: https://doi.org/10.1101/2023.07.04.547310; this version posted July 21, 2023. The copyright holder for this preprint (which

as ot certified by peer review) s theauthor/funder, who tras granted-bioRxiv a ticerse to disptay the preprintimperpetuity. It is made
available under aCC-BY 4.0 International license.
... Group
T 0.75- o e ° NRSO-driven in
L:, ® non-smoker (n = 23)
2 (] Non-smoker,
% : ] NRSO absent (n = 2)
g © @® NRSO-driven in
& 0501 L smoker (n = 12)
2 (] @® Typical-smoking
5 ") (n=11)
E Phylogenetic pattern
= ® (b)
£ 0.25 [ (@ A (e)A A Coconut tree
c Y207
= A A(C) ® Unclassified
(]
A @
T T T T
0 200 400 600
Tumor mutational burden (TMB)
a c e
A250 b) A247 A590 d) A301 A306
(KRAS Q61H) (KRAS G12C) (Wild type) (Wild type) (KRAS G12V)
Ein° 0 Chuz08 CHL1211
CHL1202 CHL1767 FAT4
CHL646 AKS prosHA PROSHA — chi1212 POLZHLEB
ZFHX3 \ me CHL1210 \\>/KAT7 ZEB1 CHL1574
CHL1769 SALL4
CHL1753 / KEAP1 MUC16
\ SPEN PDGFRA
SETD2 ARID1A
KLF4 PABPC1 SETBP1 LRP1B
CHL1203 Fam13se | X
/ KRAS
KRrAS KDR P53
P53 BAZIA KMT2A CTNND2
oy KRAS BRCA2 CDH10 CSMD3
CsMD3 TP53 CNTNAP2 Muc16 FAT3
iy CSMD3 CSMD3 RAD21 NOTCH1
CTNNDZ ERCC4 LRP1B RB1 CNTNAP2 | IL7R
e ESR1 MTOR P53 PRKCB LZTR1
o FBLN2 MUC16 CSMD3 AXINI EPHA3
oot ACVR2A iy EPHA3 AXIN2 AMER1
PTPRD PRDM2 PREX2 ERCCS FKBP9 ACVR2A
ﬁ?f,ﬁ’ 11 3 MUC16 RoBO2 KDR RGS7 PTPRD
FBXW7 cAsP8 P53 mucie BMPS ARID2
(TMB, ITH) 144,0.22 182,0.26 209, 0.18 210,0.12 725,0.24

Figure 2. (A) Intra-tumor heterogeneity (ITH) versus tumor mutation burden (TMB) for each tumor.
Five tumors with “coconut-tree” phylogenies are labeled (a) through (e) and the corresponding
phylogenies are in panel (B). These phylogenies occurred only in the typical-smoking-related group.


https://doi.org/10.1101/2023.07.04.547310
http://creativecommons.org/licenses/by/4.0/

Figure 3

bioRxiv preprin

Non-smokers
(sector n =91

JLaYatoto Watw MoVl o lwZo X Wa ¥

NSRO-driven in smokers
(sector n = 48)
toddiilye22023=Fhe-copyiighth

Typical-smoking
(sector n = 34)

iliSsuaisieaspacted July 21, 2023. The copyright h
was pof ¢ ertlfled by peer review) isgke arthar/funder, who has granteskbiaRi a license to display the preprlnt |n perpetuity. It is made

der for this-preprint- (which

A (sector n =@gfilable under aCC-BY 4sé:toterngtional license.
Single-base substitution (SBS) signature activity
SBS40 [l sBs2+13 (APOBEC) [l SBS4 (smoking)
fggg: SBS5 (clock-like) SBS9 SBS17a
M sBS1 (clock-like) [l SBS18
1000
Signature
activity 500+
(count) l h
“ﬂ. 1 -l Wop - i hoh "I..ll.
H als -1 N I'|I|l'l-.l|..
= | [ l -
Signature
activity 0.5
(proportion)
T I|I (] .Illhl 1 A h
C Smoking II- [ [ [ ] | [ | IIIIIIIIII
Oncogene [ HENNNET I ENTNEN YN (L (] []] |
Phylogenetic pattern 1 BRI
. T O P VAN T - © O NN AN O = 0 =—P00 N~ ®© o o N N ST O« oo N - Q (=3 © S No N~ Vo o v
PatientlD § S3885 53 858 8582823555288 58 B2 L3558 5 388 8§ 835 ygev8ss
CALCCCLCC C € € € €€ € € <€ € L < << < < << <« <<€ < < < << < < L <€ < <<
Oncogene Smoking (pack-year) Phylogenetic pattern
W EGFR ERBB2 I MET ALK KRAS Wild type [ I Coconut tree
0 20 40 60 80+ Unclassified
=5.8x10% T . ; :
D e E NRSO-driven in NRSO-driven in Typical-smoking F 10
q=0.004 q=3.1x10"° non-smoker (n = 1/83)|| smoker (n = 7/48) (n = 30/34) L]
> 9, —
2 100% o [ ]
= 88.2% <
8 ]
© o 54
< [ ]
‘3 75% = 21500 ..‘ se ‘
7] =
< © ° o( * ¢ L) (Y
= =] o~
H T w, @ ° (J
£ 50% 1 2 % ® ] < :
o ° -
8 ) ® °
5 S 1000 { ] 3 ® ®
» s °
k] g )
§ - = 2 e @ !
£
g % 500 zQ °
[ -g ° @
o 0 —
0% 5
z 35 o 5 : o
S 0 a°® 009 tSNE 1
éqi‘”‘g} 10 100 1000 10000 10 100 1000 10000 10 100 1000 10000 o NRSO-driven in non-smokers (n = 83)
Q . s e NRSO-driven in smokers (n = 48
N Total number of single-base substitution ¢ )

@ Typical smoking (n = 34)

Figure 3. Single-base substitution (SBS) mutational signatures. (A, B) Mutational-signature
activities in the three groups by absolute mutation counts (A) and by proportions (B). Colors indicate
various mutational signatures (e.g., SBS1, SBS5, etc.), as indicated by the legend above. (C)
Smoking history, key mutated genes, and whether the tumor has a coconut tree pattern. (D)
Proportions of tumor sectors with SBS4 (caused by tobacco smoking). (E) Counts of mutations due
to SBS4 in tumor sectors that have SBS4 mutations. (F) tSNE (t-distributed stochastic neighbor
embedding) dimension reduction based on the mutational spectra. For information on the mutational
signatures, see COSMIC (https://cancer.sanger.ac.uk/signatures/).


https://doi.org/10.1101/2023.07.04.547310
http://creativecommons.org/licenses/by/4.0/

Figure 4
.
i
1

GPUPH23. The copyright holder for this preprint (which
bioRxiv a Ilceaaeqwnsmayaﬁ@preprint in perpetuity. It is made

BeaiRSéxpression subtype
- SBS4 activity (caused by tobacco smoking)
- - II 1l

fl %MB

1

2.6x10%
6.2 x 10
1.2x10°
1.3x10°®
1.4x10°
2.7x10%
3.5x10°
4.7 x10%
4.8 x10°
4.8 x10°

2.6x10°
2.6x10°
2.6x10°
3.8x10°
4.3x10°
8.1x10°
1.2x10°
8.9x10°
9.2x10°

iy e

l Patient (alternative black/grey)

HS-GAG Degradation

NOTCH4 Intracellular Domain Regulates Transcription

The Activation Of Arylsulfatases

Mucopolysaccharidoses

NOTCHS3 Intracellular Domain Regulates Transcription

Regulation Of Branching Morphogenesis Pancreatic Precursor Cells
Activation Of The TFAP2 Family Of Transcription Factors

Defective EXT2 Causes Exostoses 2

r-Carboxylation Hypusine Formation And Arylsulfatase Activation
Synthesis Of IP3 And IP4 In The Cytosol

Inhibition Of APC/C Required For Anaphase

APC/C CDC20 Mediated Degradation Of Cyclin B
Phosphorylation Of The APC/C

APC-CDC20 Mediated Degradation Of NEK2a

Conversion of APC/C:CDC20 In Late Anaphase

Aberrant Regulation Of Mitotic Exit Due To RB1 Defects
SLBP Dependent Processing Of Histone Pre-mRNAs
Butyrate Response Factor 1 (BRF1) Destabilizes mRNA
Tristetraprolin (TTP, ZFP36) Binds And Destabilizes mRNA

1.6 x 10* Meiotic Recombination
q value Pathway
Group Oncogene Gene expression subtype SBS4 activity Smoking (pk-yr) Z-score
[7] NSRO-driven in non-smokers (sector n = 52) W EGFR M ALK [l Terminal respiratory unit (TRU) Il High (SBS4 > 200) [T
[T Non-smokers, NSRO absent (sector n = 5) W MET KRAS ¥ Non-TRU Low (SBS4 0-200) 0 20 40 60 80+ -2 0 2
[ NSRO-driven in smokers (sector n = 32) W ERBB2 Wild type

M Typical smoking (sector n = 14)

Figure 4. Heatmap of activities of the top 10 pathways up- and down-regulated in all non-smokers
compared to all smokers. Each column is a tumor sector, and sectors are grouped by patient as

shown in the row labelled “Patient”. Z-scores are of pathway activity.

The Benjamini-Hochberg false

discovery rates (q values) of differential pathway activity were based on p-values calculated using
limma. Supplementary Fig. S9 and Supplementary Tables S10 and S11 provide details.
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