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Abstract 

Non-small cell lung cancers (NSCLCs) in non-smokers are mostly driven by 

mutations in the oncogenes EGFR, ERBB2, and MET, and fusions involving ALK and 

RET. We term these “non-smoking-related oncogenes” (NSROs). In addition to 

occurring in non-smokers, NSRO-driven tumors also occur in smokers, and the clonal 

architecture and genomic landscape of these tumors remain unknown. We investigated 

genomic and transcriptomic alterations in 173 tumor sectors from 48 patients with 

NSRO-driven or typical-smoking NSCLCs. NSRO-driven NSCLCs in smokers and 

non-smokers have similar genomic landscapes. Surprisingly, even in patients with 

prominent smoking histories, the mutational signature caused by tobacco smoking 

was essentially absent in NSRO-driven NSCLCs. However, NSRO-driven NSCLCs in 

smokers had higher transcriptomic activities related to regulation of the cell cycle, 

suggesting that smoking still affects tumor phenotype independently of genomic 

alterations.  

 

Statement of significance 

This study highlights the lack of genomic scars caused by smoking in NSCLCs 

driven by non-smoking-related oncogenes regardless of smoking history. The impact 

of smoking on these tumors is mainly non-genomic. The transcriptomic features of 

NSCLCs associated with smoking may help in the development of therapeutic 

approaches. 
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Introduction 

Lung cancer remains the most lethal cancer worldwide and causes more than 1.8 

million deaths annually, even though the worldwide prevalence of tobacco smoking is 

decreasing (1, 2). However, in East Asia, lung cancer among non-smokers is 

increasing, has become an emerging health problem, and accounts for more than half 

of cases in Taiwan and Singapore (3, 4). Most of these are non-small-cell lung cancers 

(NSCLCs) driven by a specific set of oncogenic mutations, usually activating 

mutations in the oncogenes EGFR, ERBB2, or MET, or rearrangements involving 

ALK or RET (5-9). Here, we refer to these genes as “non-smoking-related oncogenes” 

(NSROs). Including both smokers and non-smokers, NSRO-driven NSCLCs 

constitute approximately half of all East-Asian lung cancer (10-13). These tumors 

tend to have similar clinical trajectories and favorable responses to tyrosine kinase 

inhibitors (TKIs) (14-21). In contrast, tumors that occur in smokers and that have 

activating mutations in the KRAS or BRAF genes or that lack mutations in known 

oncogenes altogether constitute a group that we term “typical-smoking NSCLCs”. 

Typical-smoking NSCLCs are more common in populations of European descent than 

in East-Asian populations. They often have high mutational burdens, sometimes 

respond well to immune checkpoint inhibitors, and have many somatic mutations 

caused by tobacco smoking (22, 23). In contrast, NSRO-driven NSCLCs tend to have 

lower mutational burdens and complex genomic architectures (24, 25).  

While NSRO-driven NSCLCs have been most studied in non-smokers, in East Asia, 

approximately 20% to 40% of patients with these cancers have histories of tobacco 

smoking (4, 5, 26-28). Furthermore, among patients with EGFR-mutated NSCLC 

treated with TKIs, smokers have worse prognoses than non-smokers (29-31). 

However, the impact of tobacco smoking on clonal architecture, somatic genomic 

alterations, and transcriptomic phenotypes in NSRO-driven NSCLCs remains largely 

unknown. By means of an integrated study of genomic and transcriptomic landscapes, 

clonal architecture, and intra-tumor heterogeneity, we investigated similarities and 

differences between (i) NSRO-driven NSCLCs in non-smokers (ii) NSRO-driven 

NSCLCs in smokers and (iii) typical-smoking NSCLCs. 

 

Results 

Characteristics of the study cohort 

We performed multi-region exome sequencing in a total of 173 sectors from 48 

NSCLCs with clinical and histopathological characteristics shown in Supplementary 

Tables S1 and S2. Overall, we identified 6,251 single-nucleotide variants (SNVs) and 
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314 small indels (insertions or deletions) affecting the exons of 4,738 genes and the 

splicing junctions of 177 genes. We also performed RNA sequencing on 103 of the 

173 sectors from 32 out of the 48 tumors (Supplementary Tables S1, S2).  

Consistent with previous studies in East-Asian NSCLC, EGFR and TP53 were the 

most frequently mutated genes (56%, 27 of 48, and 46%, 22 of 48, respectively) (9, 

10). In addition to the SNVs and indels, we also studied gene fusions using RNA 

sequencing data. Of the putative transcript fusions detected, three were known 

oncogenic variants: EML4-ALK, KLC1-ALK, and PARG-BMS1 (Supplementary Table 

S3), and the two ALK fusions were confirmed by fluorescence in situ hybridization 

(32-34). As expected, mutations in EGFR, MET, ERBB2, and KRAS and ALK fusions 

did not co-occur, suggesting that these were key initiating events (35). 

All EGFR, ERBB2, and MET mutations were truncal (occurred in every sector) and 

were clonal in every sector (Supplementary Table S4). Compared to mutations in 

non-driver genes, mutations in EGFR were statistically more likely to be truncal 

(Supplementary Table S5). These findings underscore the impact of these oncogene 

mutations on the clonal architecture of NSCLCs. In addition, mutations in KRAS were 

truncal in every tumor, but were subclonal in single sectors in 2 out of 7 of the tumors. 

A similar pattern was reported in another multi-regional study (36). 

 

Three categories of NSCLC and their genomic characteristics 

For the purposes of this study, we first defined NSRO-driven tumor as those with 

any of the mutations or other genetic alterations detailed in Supplementary Table S6, 

based on the incidences of these alterations reported in the literature (27, 28). The 

NSRO mutations observed in this study were activating mutations in EGFR exons 18 

through 21, ALK fusions, insertions in ERBB2 exon 20, and skipping of MET exon 14.  

We then focused on the following three groups: (i) NSRO-driven tumors in 

non-smokers (n = 23, 48%), (ii) NSRO-driven tumors in smokers (n = 12, 25%), and 

(iii) typical-smoking tumors (n = 11, 23%). In addition, there were 2 tumors without 

NSRO-mutations in non-smokers. This is typical of East-Asian populations, in which 

tumors without NSROs are rare in non-smokers (7, 8, 28). The proportion of 

non-smokers without NSROs in this study (8%, 2 out of 25) was lower than those 

reported in population of European descent (e.g., 51%, 96 out of 189, p = 0.05 by 

Fisher’s two-sided exact test) (37). Fig. 1A shows the genomic landscape of the three 

groups. 

Table 1 summarizes clinical characteristics and NSRO mutations in the three 

groups. Notably, smoking exposure was similar between NSRO-driven tumors in 
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smokers (median 34.5 pack-years, range 0.5-99) and typical-smoking tumors (median 

38 pack-years, range 2-168, Wilcoxon rank-sum test, p value = 0.5792).  

 

NSRO-driven NSCLC with and without smoking histories have similar genomic 

architectures 

Overall, NSRO-driven tumors in smokers and non-smokers had similar genomic 

architectures, including tumor mutational burdens (TMB), number of truncal 

mutations, and number of mutations in driver genes. In contrast, compared to 

NSRO-driven tumors in smokers, typical-smoking tumors had much higher TMBs 

(median 144 vs. 55.5, p = 0.017, two-sided Wilcoxon rank-sum test), more truncal 

mutations (median 56 vs. 22.5, p = 0.031), and more mutations in all driver genes 

(including NSROs, median 14 vs. 7.5, p = 0.002, Fig. 1B, Supplementary Data and 

Code). Intra-tumoral heterogeneity (ITH, defined as the mean ratio of the numbers of 

branch mutations to the total number of mutations, see Methods) was similar across 

the three groups (medians 0.549, 0.543, and 0.580, for NSRO-driven non-smokers, 

NSRO-driven NSCLCs in smokers, and typical-smoking NSCLCs, respectively, Fig. 

1B). However, “coconut-tree” phylogenies, characterized by a combination of high 

TMB (> 100) and low ITH (< 0.5), occurred exclusively among the typical-smoking 

tumors (5 out of 11, Fig. 2). Supplementary Fig. S1 details phylogenetic trees of all 

tumors across the three groups. 

In addition to the oncogenes used to categorize the three groups of tumors, CSMD3 

mutations were statistically more common in typical-smoking tumors (Fig. 1C, left 

and middle). In comparing NSRO-driven NSCLCs in smokers versus NSRO-driven 

NSCLCs in non-smokers, there was no significant difference in the prevalence of 

mutations in COSMIC driver genes (including NSROs, Fig. 1C, right, 

https://cancer.sanger.ac.uk/census).  

Previous studies reported that whole-genome doubling and chromosomal instability 

are common features of NSCLC (24, 25, 38, 39). In the present study, we found no 

significant difference across the three groups in tumor ploidy, proportions of tumors 

with whole-genome doubling, and chromosomal instability (Supplementary Fig. S2, 

Supplementary Table S2). Supplementary Fig. S3 provides details of somatic copy 

number alterations for all groups.  

We also noted that gender distribution differed strongly across the three groups. 

Among non-smokers with NSRO-driven tumors, only 30% (7 of 23) were male, 

whereas among the NSRO-driven smoking and typical-smoking groups, 92% and 

100% were male, respectively (p = 0.0024 and 0.0001 by two-sided Fisher’s exact 

tests compared to the NSRO-driven non-smoking group). We analyzed genomic 
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landscapes in NSRO-driven tumors by gender and found no significant differences 

(Supplementary Fig. S4). 

 

Mutational signatures of NSRO-driven NSCLCs in smokers 

Next, we investigated the impact of smoking on the mutational landscape across 

three groups. Overall, the median number of single-base substitution (SBS) per sector 

was 173 (range 47 to 2472). We used a signature presence test followed by signature 

attribution for each tumor sector to detect the mutational signature SBS4, which is 

caused by tobacco smoking in lung cancers (22, 40). Fig. 3A shows the activities of 

mutational signatures of the three groups. 

We detected SBS4 in 30 of 34 (88%) sectors in typical-smoking tumors. 

Surprisingly, however, SBS4 was found in only 7 of 48 (15%) sectors in 

NSRO-driven tumors in smokers, significantly less than sectors in typical-smoking 

tumors despite similar exposures to tobacco smoking (two-sided Fisher’s exact test, 

p < 2.1×10-11, Fig. 3D). For tumor sectors with SBS4 activity, the median number of 

mutations attributed to SBS4 was also significantly higher in typical-smoking tumors 

than in NSRO-driven tumors in smokers (216 vs. 53, two-sided Wilcoxon rank-sum 

test, p < 9×10-5, Fig. 3E). T-distributed stochastic neighbor embedding (tSNE) based 

on SBS spectra identified different mutational patterns in typical-smoking tumors 

compared to the other two groups (Fig. 3F, Supplementary Table S7 and S8). 

To confirm the paucity of SBS4 activity in NSRO-driven NSCLCs, we applied the 

same tumor classification and signature assignment algorithm to two large, previously 

reported cohorts of NSCLC (10, 41). Supplementary Table S9 provides clinical 

information, including smoking history, oncogenes and their mutations, and signature 

activities for patients in these cohorts. The SBS4 signature was found in only 38% (8 

of 21) and 29% (9 of 31) of NSRO-driven NSCLCs in smokers, significantly fewer 

than in typical-smoking tumors (90% and 78%, odds ratio of 0.07 and 0.12, two-sided 

Fisher’s exact tests, p values of 1.1×10-7 and 4.5×10-6, respectively, Supplementary 

Figs. S5, S6). Thus, all the genomic data indicates that NSRO-driven NSCLCs, 

whether in smokers or non-smokers, have origins and oncogenic histories distinct 

from those of typical-smoking NSCLCs. 

Previous studies of NSCLC suggested that mutations caused by smoking and 

APOBEC activities dominate at different stages of cancer evolution (24, 42). For 

smoking mutagenesis, in the current study, SBS4 contributed similar activities in 

trunks and branches in typical-smoking tumors, suggesting ongoing exposure to 

tobacco smoke during cancer development (Supplementary Fig. S7). Analysis of 

SBS4 was not meaningful for the other two groups of NSCLCs, because they had 
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almost no SBS4 mutations. For APOBEC, consistent with previous studies, there were 

more mutations in branches than in trunks across the entire data set (Supplementary 

Fig. S7). Unexpectedly, we found that mutations due to reactive oxygen species (ROS, 

SBS18) were significantly higher in the branches than in the trunks for every group of 

tumors (all q values < 0.018 by two-sided Wilcoxon paired rank-sum tests with 

Benjamini-Hochberg correction, Supplementary Fig. S7). Thus, ROS might contribute 

to NSCLC evolution. 

 

Transcriptomic features of NSRO-driven smoking tumors 

The similarity of genomic landscapes between NSRO-driven tumors with and 

without smoking histories was surprising because clinical studies have shown that 

smoking indicates poor prognosis in NSRO-driven NSCLC (29-31). Therefore, we 

investigated whether transcriptomic features may account for this clinical observation. 

To this end, we profiled the transcriptomes of 103 of the 173 sectors from 32 out of 

the 48 tumors (Table 1 and Supplementary Table S2). UMAP dimension reduction did 

not reveal a separation between NSRO-driven NSCLCs in smokers versus 

non-smokers in the first 2 dimensions (Supplementary Fig. S8A). Indeed, the primary 

separation seems to reflect membership in the terminal-respiratory-unit (TRU) 

expression subtype. There is a trend for association of the TRU subtype with 

NSRO-driven tumors in both non-smokers and smokers compared to typical-smoking 

tumors (Supplementary Fig. S8B). 

To further explore the transcriptomic activities associated with tobacco smoking, 

we investigated differential expression pathway activity between non-smokers (57 

sectors from 18 tumors) and smokers (46 sectors from 14 tumors, including both 

typical-smoking tumors and NSRO-driven tumors in smokers). We examined 

activities of 1,259 pathways from the Reactome Database (43) (Fig. 4, Supplementary 

Fig. S9, Supplementary Table S10). In this comparison, tumors in non-smokers had 

higher activities in pathways related to NOTCH signaling and to metabolism and 

lower activities in pathways related to cell cycle regulation and mitotic exit (Fig. 4). 

These differences in pathway activity were also evident in a comparison of 

NSRO-driven tumors in smokers versus in non-smokers (i.e., after excluding 

typical-smoking tumors and NSRO-negative tumors, Supplementary Table S10). 

These observations underscore the phenotypic differences associated with tobacco 

smoking in some transcriptomic pathways independent of genomic alterations. 

It has been proposed that smoking-associated lung cancers are associated with the 

immune repertoires of tumor microenvironments (TME) that would confer better 

responses to immunotherapy (44-47). TMEs with infiltration of cytotoxic T cells and 
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expression of proinflammatory cytokine genes are often called “immune-hot”, and 

have higher tendencies to respond to immune checkpoint inhibitors (48, 49). In this 

study, we investigated the TME of NSRO-driven NSCLCs in smokers versus the other 

two groups. To define immune-hot TME, we performed hierarchical clustering of 

sectors based on the transcript levels of T-cell inflammation and immune checkpoint 

genes (Supplementary Fig. S10A) (50-52). However, there was no strong evidence for 

enrichment for immune-hot TMEs in NSRO-driven NSCLCs in smokers (3 out of 9 

tumors, 33%) and typical-smoking-related NSCLCs (1 out of 5 tumors, 20%) 

compared to NSRO-driven tumors in non-smokers (5 out of 17 tumors, 29%, p = 

0.7332 by Fisher’s exact test across the three groups, Supplementary Fig. S10B). 

 

Discussion 

To our knowledge, this is the first integrated genomic study to directly compare 

NSRO-driven NSCLCs in non-smokers, NSRO-driven NSCLCs in smokers, and 

typical-smoking NSCLCs using multi-region exome and RNA sequencing. We found 

that tobacco smoking had almost no influence on the genomic features and clonal 

architectures of EGFR-mutated and other NSRO-driven NSCLCs. Despite prominent 

smoking histories, NSRO-driven tumors in smokers were similar to those in 

non-smokers in terms of mutational burden, intra-tumor heterogeneity, and mutational 

signature activity. In contrast, compared to both NSRO-driven groups, 

typical-smoking tumors showed higher TMBs and more mutations in driver genes. 

Furthermore, “coconut-tree” phylogenies, which are defined by a combination of high 

TMB (> 100) and low ITH (< 0.5), occurred in nearly half of the typical-smoking 

NSCLCs but were absent from NSRO-driven NSCLC. 

As noted in the Results section, gender distribution differed significantly across the 

three groups. Across all groups, tobacco smoking was more prevalent among males 

than females (Table 1). This male preponderance reflects the extreme gender 

imbalance of smoking in East Asia. For example, in the population we studied, 6.8% 

of women are smokers compared to 20.6% of men (2, 53, 54). Previously, 

NSRO-driven NSCLC was sometimes viewed as a disease of non-smokers, often 

women. This view may have been partly driven by this gender imbalance, due to 

which NSRO-driven tumors were particularly noticeable among women, since they 

were usually non-smokers. The current study confirms that NSRO-driven NSCLC 

occurs in both smokers and non-smokers and in both sexes, and it shows that genomic 

features are similar in both smokers and non-smokers and in both sexes 

(Supplementary Fig. S4). Because of the strong differences in smoking rates between 

women and men in the study population, it is not possible to disentangle the effects of 
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gender from the effects of smoking. Nevertheless, we note that available evidence 

suggests that NSRO-driven tumors are more common among women. Notably, in data 

from a previous study (55), in both non-smokers and smokers, EGFR-mutated 

NSCLC was more common among women: for non-smokers, odds-ratio 1.38 (p < 8× 

10-9); and for smokers, odds ratio 1.40 (p < 0.006), analyses by two-sided Fisher’s 

exact tests. 

While it has been recently reported that NSCLCs that occur in smokers but that 

lack SBS4 are enriched for mutations in EGFR and other NSROs (36, 56), here we 

have shown that the paucity of mutations due to tobacco smoking is a nearly-universal 

characteristic of NSRO-driven tumors in smokers. We further confirmed this finding 

in two large cohorts of patients with lung adenocarcinomas (10, 41). It is unclear why 

NSRO-driven tumors rarely acquire mutations caused by smoking, while 

typical-smoking tumors with similar exposures have abundant smoking mutations. 

Possibly, as suggested by some studies, the cell of origin of NSRO-driven NSCLC 

may be different from that of typical-smoking NSCLC (57-61). Thus, one possibility 

is that NSRO-driven tumors are less prone to mutation because their cells of origin are 

less exposed to tobacco smoke or have more effective DNA damage repair. 

Although NSRO-driven tumors in non-smokers and in smokers have similar clonal 

architectures and genomic features, they differ in their transcriptomic pathway 

activities, especially those related to the cell cycle and mitotic exit. Consistent with 

previous studies (62, 63), for these pathway activities, NSRO-driven tumors in 

smokers are more similar to typical-smoking tumors than to NSRO-driven tumors in 

non-smokers (Fig. 4, Supplementary Fig. S9). Despite the lack of somatic mutations 

caused by smoking, it is still possible that chronic tobacco exposure causes 

epigenomic changes to bronchial epithelial cells, leading to a carcinogenic phenotype 

that is independent of genomic alterations (64). Of note, advanced EGFR-mutated 

NSCLCs treated with TKIs had worse outcomes in smokers than in non-smokers (30, 

31). The transcriptomic activities of NSCLC driven by NSROs, including EGFR, in 

smokers, might account for these cancers’ higher resistance to standard TKIs and 

suggests the possibility of better responses to therapies such as chemotherapy or 

CDK4/6 inhibitors that target the cell cycle (65). This warrants further investigation 

regarding treatment selection for patients with NSRO-driven NSCLC. 

In summary, based on multi-region whole-exome and RNA sequencing data, we 

have elucidated the clonal architectures and genomic features of three groups of 

East-Asian NSCLC: NSRO-driven in non-smokers, NSRO-driven in smokers, and 

typical-smoking tumors. We found no evidence that tobacco smoking affects clonal 

architecture or patterns of genomic alteration in NSRO-driven NSCLC. However, 

some transcriptomic pathway activities were more similar between NSRO-driven 
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tumors in smokers and typical-smoking tumors than between NSRO-driven cancers in 

smokers and non-smokers. The in-depth analysis of NSRO-driven NSCLC in smokers 

and non-smokers presented here may provide guidance for optimizing treatment 

approaches. 

 

Methods 

Patients and clinical outcomes 

Patients diagnosed with NSCLC at the National Cancer Centre Singapore (between 

2013 and 2017) who underwent surgical resection of their tumors prior to receiving 

any form of anti-cancer therapy were enrolled in this study. Clinical information and 

histopathological features were obtained from the Lung Cancer Consortium Singapore. 

Written informed consent was obtained from all participants. This study was approved 

by the SingHealth Centralized Institutional Review Board (CIRB reference 

2018/2963). 

 

Tumor/normal sample processing and whole-exome sequencing 

Resected tumors and paired normal samples were sectioned and processed as 

previously described (24). Peripheral blood, or if peripheral blood was not available, 

normal lung tissue adjacent to the tumor was taken as a normal sample. The median 

number of sectors for an individual tumor was 3 (range 2-7, Supplementary Table S1). 

For whole exome sequencing, genomic DNA was extracted with the AllPrep 

DNA/RNA/miRNA Universal Kit (Qiagen), and 500 ng to 1 µg of genomic DNA was 

sheared using Covaris to a size of 300 to 400 bp. Libraries were prepared with 

NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolabs). Regions 

to sequence were selected with the SeqCap EZ Human Exome Library v3.0 (Roche 

Applied Science) according to the manufacturer’s instructions and underwent 2 × 151 

base-pair sequencing on Hiseq 4000 (Illumina) sequencers. The median coverage of 

the capture target was 55.1X and 54.4X for normal and tumor samples, respectively 

(Supplementary Table S2). 

 

Somatic single nucleotide variation and insertion-deletion calling  

Exome reads were trimmed with trimmomatic (version 0.39) to remove 

adaptor-containing or poor-quality sequences (66). Trimmed reads were mapped to 

the human reference sequence GRCh38.p7 (accession number GCA_000001405.22) 

using the BWA-mem software (version 0.7.15) with default parameters (67). 

Duplicate reads were marked and removed from variant calling using Sambamba 

(version 0.7.0) (68). Global mapping quality was evaluated by Qualimap 2 (version 
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2.2.1, Supplementary Table S2) (69). Somatic single nucleotide variations (SNVs) and 

insertion-deletions (indels) were called by MuTect2 (version 4.1.6.0) and Strelka2 

(version 2.9.2) with default parameters (70, 71). We considered only variants called 

by both variant callers and with (i) ≥ 3 reads supporting the variant allele in the tumor 

sample, (ii) sequencing depth ≥ 20 in both the normal and tumor samples, and (iii) 

variant allele fraction ≥ 0.05. Variants were annotated by wANNOVAR 

(https://wannovar.wglab.org/) (72). Driver status of genes was based on the Catalog of 

Somatic Mutations in Cancer (COSMIC) database, downloaded February 24, 2021 

(https://cancer.sanger.ac.uk/census) (73).  

We excluded 12 out of 185 sectors (6.5%) that had tumor purity < 0.1 as assessed 

by HATCHet (74) (Supplementary Table S2). In tumor sectors with low tumor purity, 

fewer variants were called than in other sectors of the same tumor, supporting the 

estimation of low tumor purity (Supplementary Fig. S11). 

 

Definitions of truncal mutation, branch mutation, tumor mutational burden, and 

intra-tumor heterogeneity 

We refer to mutations present in every sector of a tumor as “truncal”, and we refer 

to other mutations as “branch”. We defined tumor mutational burden (TMB) as the 

mean number of unique non-silent (nonsynonymous or splice-site) mutations across 

all sectors of a tumor. We defined intra-tumor heterogeneity (ITH) as the mean 

proportion of the number of unique branch mutations across all sectors. The clonality 

of somatic variants was evaluated by using MutationTimeR R package (75). 

 

Phylogenetic analysis  

We used the Python PTI package (https://github.com/bioliyezhang/PTI, version 1.0) 

using the input of a “binary matrix” to infer phylogenetic relationships based on 

non-silent mutations (76).  

 

Mutational signature assignment and spectrum reconstruction 

Mutational signature assignment was carried out with mSigAct R package (version 

2.3.2, https://github.com/steverozen/mSigAct) and COSMIC mutational signature 

database (version 3.2) (77). For mutational signature analysis, we used all single-base 

substitution (SBS), including exonic and non-exonic variants. To better estimate the 

impact of smoking on cancer evolution, we first used the SignaturePresenceTest 

function with default parameters on all individual sectors within each group to decide 

whether the SBS4 mutational signature (the signature of tobacco smoking) was 
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present in the sector’s mutational spectrum. In brief, SignaturePresenceTest estimates 

optimal coefficients for the reconstruction of the observed spectrum using the 

mutational signatures previously detected in NSCLC (40). The test does this without 

the SBS4 signature (null hypothesis) and with the SBS4 signature (alternative 

hypothesis). The test then carries out a standard likelihood ratio test on these two 

hypotheses to calculate a p-value. We then calculated Benjamini-Hochberg false 

discovery rates across all sectors of all tumors within the group. 

To estimate the contribution of signatures to each spectrum we used the 

SparseAssignActivity function and the signatures found in lung adenocarcinomas in 

reference (40), except that SBS4 was included only if the false discovery rate based 

on the SignaturePresenceTest was < 0.05. We excluded SBS3 (caused by defective 

homologous recombination DNA damage repair mechanism) from sparse assignment 

after ensuring no pathogenic germline or somatic alterations in the BRCA1 or BRCA2 

genes. Supplementary Table S7 and S8 show the SBS mutational spectra and 

signature activities of each sector. We did not assign activities for indels or 

double-base substitutions because there were too few of these mutations (median 

exome-wide counts of 10 and 1, respectively). 

 

Detection of fusion transcripts  

We used STAR-Fusion (version 1.10.0) (78) to detect transcript fusions in the 

RNA-sequencing data with default parameters. We required candidate fusions to 

satisfy the following criteria:  

• spanning fragment count ≥ 1 

• junction read count + spanning fragment count ≥ 5 

• presence of a large anchor-support read, and  

• for intrachromosomal fusion partners, a genomic distance ≥ 1MB between 

fusion breakpoints 

Supplementary Table S3 provides the full list of putative fusions. 

 

RNA sequencing and gene expression subtype 

Total RNA was extracted and processed from 103 tumor samples as previously 

described (79). We used STAR (version 2.7.3a) to align raw RNA sequence reads to 

the human genome (GRCh38p7 build) and to estimate transcript abundance based on 

the reference transcriptome (GRCh38.85 build) (80). Only the counts of 

protein-coding genes were included for downstream analysis.  
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Transcriptomic pathway analysis 

Raw gene expression levels were transformed to transcript levels in transcripts per 

million (TPM) values (81). We computed pathway enrichment scores with the GSVA 

R package (version 1.40.1) and the Reactome subset of the Molecular Signatures 

Database (MSigDB, version 7.5.1) (43, 82, 83). Differential pathway expression was 

assessed using the limma R package (version 3.48.0) (84). Pathways with a 

Benjamini-Hochberg false discovery rate < 0.05 were taken as significant. 

Assignment of gene expression subtypes (terminal respiratory unit, TRU, versus 

non-TRU) was carried out as described (85). Gene expression values and pathway 

enrichment scores were transformed to Z-scores (mean of 0 and standard deviation of 

1) before downstream analysis. Heatmaps were constructed with the 

ComplexHeatmap R package (version 2.8.0) (86). Heatmap columns were first 

clustered based on all rows using ComplexHeatmap::Heatmap function using default 

arguments for clustering distance and method, and then ordered by main group, 

patient, and gene expression status accordingly. Immune cell deconvolution was 

performed by using the CIBERSORT web application (https://cibersortx.stanford.edu/) 

(87). 

 

Data Availability 

All WES and RNA sequencing data were deposited at the European 

Genome-phenome Archive (EGA, http://www.ebi.ac.uk/ega/), under the accession 

number EGAS00001006942. Supplementary Data and Code, including lists of 

somatic mutations, mutation-timing and clonality output from the MutationTimeR 

package, gene fusions, gene expression matrices, transcriptomic pathway activities, 

and immune cell deconvolution, are publicly available at 

https://github.com/Rozen-Lab/oncogene-NSCLC/. 
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Table 1. Baseline clinical and genomic characteristics of NSRO-driven NSCLCs in non-smokers, 
NSRO-driven NSCLCs in smokers, and typical-smoking NSCLCs. 

Clinical or genomic 
characteristic, n (%) 

NSRO-driven in 
non-smokers (n = 23) 

NSRO-driven in 
smokers (n = 12) 

Typical-smoking  
(n = 11) 

P value 

Number of patients 23 (48) 12 (25) 11 (23) 
 

Number of tumor 
sectors with WESa 

83 (100) 48 (100) 34 (100) 0.8608 

Number of tumors 
with RNA seq 

17 (74) 9 (75) 5 (45) 0.2139 

Number of tumor 
sectors with RNA seq 

52 (63) 32 (67) 14 (41) 0.3392 

Age, median (range) 67 (53-82) 70 (39-79) 66 (49-74) n.s.c 

Gender 
       

  Male 7 (30) 11 (92) 11 (100) <0.0001 
  Female 16 (70) 1 (8) 0 (0) 

 
Cigarette smoking 
status        

  Never 23 (100) 0 (0) 0 (0) <0.0001 

  Current/Former 0 (0) 12 (100) 11 (100) 
 

Pack years, median 
(range) 

0 (0-0) 34.5 (0.5-99) 38 (2-168) 0.58d 

Ethnicity        
  Chinese 20 (87) 10 (83) 10 (91) 1 

  Non-Chinese 3 (13) 2 (17) 1 (9) 
 

Stage at diagnosis 
       

  Early (I & II) 19 (83) 9 (75) 11 (100) 0.2719 

  Late (III & IV) 4 (17) 3 (25) 0 (0) 
 

Histology 
       

  Adenocarcinoma 22 (96) 12 (100) 10 (91) 0.7333 

  Squamous cell 
  carcinoma 

1 (4) 0 (0) 1 (9) 
 

Key mutations  
Non-smoking related 
oncogenes 

       

  EGFR exon 18-21 18 (78) 9 (75) 0 (0) <0.0001 

  MET exon 14 
  skipping 

3 (13) 1 (8) 0 (0) 
 

  ALK fusion 1 (4) 1 (8) 0 (0) 
 

  ERBB2 exon 20 1 (4) 1 (8) 0 (0) 
 

KRAS exon 2-3 0 (0) 0 (0) 7 (64) 
 

No NSRO, KRAS, or 
BRAF mutation  

0 (0) 0 (0) 4 (36) 
 

aWES, whole exome sequencing.  

bP value by two-sided Fisher's exact tests across all three group within category (e.g., Gender, Cigarette smoking, 

status, etc.). 

cP values by two-sided Wilcoxon rank-sum test > 0.05 in all pairwise comparisons across the three groups.  

dP values by two-sided Wilcoxon rank-sum test > 0.05 between NSRO-driven smoking and typical-smoking 

groups. 
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Figure Legends  

 

Fig. 1. (A) Overview of genomic alterations in tumors and tumor sectors. (B) Counts 

of total mutations, truncal mutations, numbers of mutations in driver genes, and levels 

of intra-tumor heterogeneity in the three groups. We used the list of driver genes from 

COSMIC (https://cancer.sanger.ac.uk/census). (C) Enrichment for mutations in driver 

genes in pair-wise comparisons among the three groups.  

 

Fig. 2. (A) Intra-tumor heterogeneity (ITH) versus tumor mutation burden (TMB) for 

each tumor. Five tumors with “coconut-tree” phylogenies are labeled (a) through (e) 

and the corresponding phylogenies are in panel (B). These phylogenies occurred only 

in the typical-smoking-related group. 

 

Fig. 3. Single-base substitution (SBS) mutational signatures. (A, B) 

Mutational-signature activities in the three groups by absolute mutation counts (A) 

and by proportions (B). Colors indicate various mutational signatures (e.g., SBS1, 

SBS5, etc.), as indicated by the legend above. (C) Smoking history, key mutated 

genes, and whether the tumor has a coconut tree pattern. (D) Proportions of tumor 

sectors with SBS4 (caused by tobacco smoking). (E) Counts of mutations due to 

SBS4 in tumor sectors that have SBS4 mutations. (F) tSNE (t-distributed stochastic 

neighbor embedding) dimension reduction based on the mutational spectra. For 

information on 10the mutational signatures, see COSMIC 

(https://cancer.sanger.ac.uk/signatures/). 

 

Fig. 4. Heatmap of activities of the top 10 pathways up- and down-regulated in all 

non-smokers compared to all smokers. Each column is a tumor sector, and sectors are 

grouped by patient as shown in the row labeled “Patient”. Z-scores are of pathway 

activity. The Benjamini-Hochberg false discovery rates (q values) of differential 

pathway activity were based on p-values calculated using limma (84). Supplementary 

Fig. S9 and Supplementary Tables S10 and S11 provide details. 
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Figure 2. (A) Intra-tumor heterogeneity (ITH) versus tumor mutation burden (TMB) for each tumor. 
Five tumors with “coconut-tree” phylogenies are labeled (a) through (e) and the corresponding 
phylogenies are in panel (B). These phylogenies occurred only in the typical-smoking-related group.
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Figure 3. Single-base substitution (SBS) mutational signatures. (A, B) Mutational-signature 
activities in the three groups by absolute mutation counts (A) and by proportions (B). Colors indicate 
various mutational signatures (e.g., SBS1, SBS5, etc.), as indicated by the legend above. (C) 
Smoking history, key mutated genes, and whether the tumor has a coconut tree pattern. (D) 
Proportions of tumor sectors with SBS4 (caused by tobacco smoking). (E) Counts of mutations due 
to SBS4 in tumor sectors that have SBS4 mutations. (F) tSNE (t-distributed stochastic neighbor 
embedding) dimension reduction based on the mutational spectra. For information on the mutational 
signatures, see COSMIC (https://cancer.sanger.ac.uk/signatures/).
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Figure 4. Heatmap of activities of the top 10 pathways up- and down-regulated in all non-smokers 
compared to all smokers. Each column is a tumor sector, and sectors are grouped by patient as 
shown in the row labelled “Patient”. Z-scores are of pathway activity. The Benjamini-Hochberg false 
discovery rates (q values) of differential pathway activity were based on p-values calculated using 
limma. Supplementary Fig. S9 and Supplementary Tables S10 and S11 provide details.

Group
NSRO-driven in non-smokers (sector n = 52)
Non-smokers, NSRO absent (sector n = 5)
NSRO-driven in smokers (sector n = 32)
Typical smoking (sector n = 14)
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