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Abstract

We propose to capture reaction-diffusion on a molecule-by-molecule basis from
the fastest acquirable timescale, namely individual photon arrivals. We illustrate our
method on intrinsically disordered human proteins, the linker histone H1.0 as well as
its chaperone prothymosin α, as these diffuse through an illuminated confocal spot and
interact forming larger ternary complexes on millisecond timescales. Most importantly,
single-molecule reaction-diffusion, smRD, reveals single molecule properties without
trapping or otherwise confining molecules to surfaces. We achieve smRD within a
Bayesian paradigm and term our method Bayes-smRD. Bayes-smRD is further free
of the average, bulk, results inherent to the analysis of long photon arrival traces by
fluorescence correlation spectroscopy. In learning from thousands of photon arrivals
continuous spatial positions and discrete conformational and photophysical state changes,
Bayes-smRD estimates kinetic parameters on a molecule-by-molecule basis with two
to three orders of magnitude less data than tools such as fluorescence correlation
spectroscopy thereby also dramatically reducing sample photodamage.
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1 Introduction

Individual biochemical reactions are the basis of information communication and signaling in
cells [1–3]. As such, developing methods to track and study individual biochemical reactions
is the key towards unraveling, on a molecule-by-molecule basis, the mechanisms of life. In
order to capture individual molecular interactions at the fastest possible acquirable timescale,
one may analyze photon arrivals derived from single molecules as these traverse a confocal
spot [4, 5].

Typical methods of analysis of confocal data, such as fluorescence correlation spectroscopy
(FCS), indeed analyze photon arrival data [6, 7] and draw conclusions on events at or below
microsecond timescales [8–10]. However, in order to derive diffusion coefficients [11, 12] as
well as other dynamical quantities [11–13], correlative methods rely on averaging over multiple
(often thousands and more) single-molecule traversals through the confocal spot (termed
bursts, see Fig. 1) [6–13]. In doing so, correlative methods provide bulk, averaged, properties.
Yet information at the single-molecule level is encoded in individual bursts. This includes
information on the heterogeneity of pairwise interactions of interest here, for example, the
interactions of intrinsically disordered protein (IDP) pairs [14].

Toward resolving full reaction-diffusion dynamics at the single-molecule level, attempts
have been made towards obtaining reaction rates with Förster resonance energy transfer
(FRET) pairs [15] as molecules diffuse through confocal volumes, although these methods
lack the ability to simultaneously resolve diffusion dynamics [5, 16–18]. Other tools exist
for tracking molecules through confocal spots in the absence of reaction kinetics [19–23].
Similarly, numerous methods exist for extracting FRET state transitions albeit for complexes
tied to surfaces [24–28]. Yet tying substrates to surfaces can lead to changes in conformation
and reactivity [29, 30] and this motivates our ambition to investigate single-molecule reaction-
diffusion, smRD, for freely diffusing substrates.

In other words, we seek a method capable of extracting both reaction rates and diffusion
dynamics at the single-molecule level from the fastest acquirable timescale, namely photon
arrivals. As such, we propose smRD dynamics using the following information: (i) photon
arrival times (i.e., excited state lifetimes) for pulses resulting in photon arrivals; (ii) whether
pulses yield detectable photons (i.e., which pulses are “empty”); and (iii) donor or acceptor
channels from which each photon is detected.

To avoid biases in our estimates for smRD parameters, we must also incorporate factors
including background photon shot noise, fluorophore photophysical transitions (such as
photoblinking and non-radiative decays), the shape of instrumental response functions (IRFs),
direct acceptor excitation probability, and the bleed-through between donor and acceptor
detection channels.

Given that we aim to capture both reaction kinetics and diffusion dynamics from single
bursts, accounting for the factors highlighted above, our smRD framework, Bayes-smRD, must
efficiently extract information from every photon. In order to achieve this goal, we operate
within the Bayesian paradigm [19–21, 31–33] from which we build a hierarchical mathematical
model that establishes probabilistic connections between the reaction-diffusion dynamics, and
experimental observations. As all temporal correlations in the data are leveraged within this

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.05.556378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556378
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: An illustration of a molecule labeled with a FRET pair undergoing state transitions
while traversing a confocal spot. (a) The molecule’s 3D spatial trajectory. Darker colors
indicate the molecule being further away from the spot center. (b) The molecule’s state
trajectory. State 1(2) corresponds to the low(high)-FRET efficiency state. State 1 also has a
slower diffusion coefficient. (c) The molecule’s probability of being excited by a laser pulse
versus time. This trajectory encodes information on the excitation rate and spatial distance
with respect to the confocal spot’s center. (d) A photon detection trace coming from these
trajectories. A region with dense photon detections is often referred to as a burst.
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mathematical model without data pre-processing, our framework is highly efficient.
Concretely, in the Bayesian paradigm, our objective is to calculate complete probability

distributions for the trajectories of the molecule states (including conformational, photophys-
ical, and spatial) as well as their coinciding dynamical parameters (transition kinetics and
diffusion coefficients) self-consistently and simultaneously. In this study, we consider discrete
conformational and photophysical states, which directly influence FRET efficiency. We also
consider continuous spatial states unrelated to FRET efficiency. For the sake of clarity, we
use the term “state” to refer specifically to the joint conformational and photophysical state,
while we use “spatial position” or “spatial trajectories” instead of speaking of a continuous
spatial state.

An important concern when analyzing single photon arrivals is the possibility that the
duration of a traversal, a “burst”, determined by the confocal volume size and diffusion
coefficient, might be shorter than the state lifetimes. In such cases, the analyzed burst may
not capture any transitions. To address this issue, our framework also allows for the analysis
of multiple bursts with independent state and spatial trajectories, while assuming they share
the same reaction-diffusion parameter values. Despite considering multiple bursts, the amount
of data analyzed is still two to three orders of magnitude less than data typically analyzed in
Ref. [34, 35]. This is a critical advantage of the method we propose in avoiding photodamage
with the potential to probe reactions of photosensitive biomolecules [36, 37].

In the subsequent sections, we demonstrate Bayes-smRD on both synthetic and experimen-
tal data involving the necessarily heterogeneous pairwise interaction of intrinsically disordered
human proteins prothymosin α (ProTα) to linker histone H1.0 (H1) at a single-molecule
level.

2 Results

Within the Bayesian paradigm, we compute full joint probability distributions (termed
posteriors) over a molecule’s state trajectories, spatial trajectories, state transition rates,
diffusion coefficients, as well as other quantities of interest (including FRET efficiencies and
excitation rate). The breadth of these posterior probability distributions, especially critical
in single-molecule settings, reflects uncertainty propagated from the finiteness of the data
available (as molecules come in and out of the confocal volume), but also other experimental
parameters (background noise, breadth of IRF, and detector bleed-through). All posterior
distributions, shown as histograms, in this paper are normalized as probability densities
(with unit area). In addition to distributions, specifically for state trajectories and spatial
trajectories, we also provide the maximum a posteriori (MAP) trajectories as point estimates.

In this work, we make the assumption (though not required) of a 3D Gaussian confocal
volume [38, 39]. The framework, as discussed in the Methods section, can accommodate any
pre-calibrated (known) confocal volume shape. The confocal volume’s spatial symmetries
result in multiple spatial trajectories sharing the same probability density, leading to degener-
acy in a molecule’s absolute spatial positions. While this degeneracy does not pose a problem
during the inference step, it introduces ambiguity visualizing results. Therefore, only when
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visualizing results, we represent the molecule’s “excitation probability trajectory” instead
of its absolute spatial trajectory. The excitation probability trajectory, defined in Eq. (S.5),
combines statistically equivalent spatial trajectories and provides a combined measure of the
molecule’s excitation rate and its distance from the confocal spot center (see Fig. 1c).

Along these same lines, in what follows we report escape rates (inverse lifetime) of each
state reflecting how fast the system leaves its current state as an alternative to reporting
concentration dependent association rates otherwise less meaningful at the single-molecule
level.

In the next two subsections, we first apply Bayes-smRD to experimental data collected on
the interaction of IDP fragments ProTα and H1, then validate our framework’s robustness
using synthetic data where ground truth is accessible for sake of comparison.

2.1 Experimental data and analysis description

P
PH PPH

PHH

P

H

H

Figure 2: Some kinetic schemes involving ProTα and H1 molecules (P and H in this figure,
respectively) shown with snapshots from coarse-grained molecular dynamics simulations [40,
41]. A freely diffusing ProTα and an H1 may form a ProTα-H1 (PH) dimer, compactifying
their conformation. This dimer may putatively continue binding other ProTα’s and H1’s if
available forming larger ternary complexes including ProTα2-H1 and ProTα-H12 (PPH and
PHH in this figure, respectively). Possible further reactions, e.g., the formation of tetramers,
are excluded herein. At each step, this figure illustrates only one of many candidate structures
for this highly dynamic and intrinsically disordered system.

In the experimental analysis, we monitor the interactions of human proteins ProTα (net
charge -44) and linker histone H1 (net charge +53). As both are highly and oppositely charged,
ProTα and H1 appear in bound states while retaining disordered features [40–42], as illustrated
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in Fig. 2. Experimental data from single-molecule, circular dichroism, and nuclear magnetic
resonance spectroscopy, as well as molecular simulations [40–42] support the hypothesis
of non-specific ProTα and H1 binding with expected diffusion-limited and concentration
dependent association and rapid concentration-independent dissociation, despite their high
and opposite charges [40–42]. It has been hypothesized that this type of (dis)association may
help retain regulatory cell network responsiveness [41].

Here, a fluorescent FRET pair (Alexa Fluor 488 as donor and 594 as acceptor) is attached
to ProTα at positions 56 and 110, respectively. A free doubly labeled ProTα, with two dyes
typically far apart, is expected to coincide with a low FRET efficiency state, while bound
states of the IDP pair bring the two fluorophores on ProTα closer together, yielding higher
FRET efficiencies [40–42].

The concentration of labeled ProTα in the data sets analyzed is either 50 pM or 75 pM.
Given the confocal volume’s dimensions (see Table S.2), the expected number of labeled ProTα
within the volume is less than 0.05 percent at any instant. As such, a good approximation is
to assume that either zero labeled ProTα or, at most, one is present within the illuminated
region. As a result, we anticipate data with bursts of photon arrivals indicating the presence
of one ProTα diffusing within the volume.

From Ref. [40, 41] we know that some complexes, e.g. the ProTα-H1 (PH) dimer,
have lifetimes longer than the average duration of a burst (about 5ms). Therefore, for
all concentrations discussed in this paper, as mentioned in the Introduction, we analyze
several bursts together assuming they have independent state and spatial trajectories but
otherwise share the same reaction-diffusion dynamics (e.g., same diffusion coefficients for each
conformational state even if each state is not visited in each trajectory). To be more specific,
from a roughly eight-minute long time trace, we select 12 short time intervals in total at
different times, half of which contain bursts (the burst group) with the other half containing
burst-free regions (the burst-free group). Each group has its own reaction-diffusion dynamics.
See Section 4.2 for more details on how we select bursts.

2.2 75 pM pM labeled ProTα

The first data set analyzed contains only 75 pM doubly labeled ProTα. The burst group
contains six bursts that are 34ms long in total amounting to 5,517 photon detections. From
this data set, we expect to encounter only one conformational state (and thus one FRET
state) though blinking of both dyes [43, 44] may introduce apparent FRET transitions. For
this reason, we run a two-state model on this data set. If our model considers more states
than present in the data, we find (shown in Fig. S.1) that the additional states have, as
expected, much higher uncertainty (broader posterior probability distributions) associated to
state trajectories, escape rates, diffusion coefficients, and FRET efficiencies, than those of
the real states. Moreover, these additional states are often hardly visited. For instance, in
Fig. S.1, the additional state (state 3) is visited for less than 2% of the time.

The results of our analysis are shown in Fig. 3. In particular, we show the state trajectory
of one burst in Fig. 3a, the corresponding excitation probability trajectory in Fig. 3b, from
the burst shown in Fig. 3c. We also obtain both states’ escape rates (equivalent to transition
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Figure 3: Results from the experimental data set with 75 pM labeled ProTα alone. (a)
Learned state trajectory with the MAP trajectory highlighted by a purple line. In the main
text we explain why state 1 is attributed to acceptor photophysics while state 2 corresponds
to a freely diffusing labeled ProTα. The color map indicates confidence of the learned
trajectory in terms of probability at each pulse. (b) The corresponding excitation probability
trajectory which offers a joint measure of the spatial trajectory and the excitation rate. (c)
The corresponding experimental data trace containing 458 detected photons within nearly
3ms. (d)-(f) The escape rates, diffusion coefficients, and FRET efficiencies learned from
six bursts (only one shown in (a)-(c)). All gray histograms are from state 1 while all blue
histograms are from state 2.
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rates in a two-state system), diffusion coefficients, and FRET efficiencies in Figs. 3d to 3f,
respectively, jointly from all six bursts analyzed, for the reason explained in Introduction.
With high certainty, Fig. 3a shows that the system visits both of the states, suggesting the
existence of one more state than expected. Fig. 3f provides more evidence for the existence
of this extra state as it shows two very sharp and well-separated FRET efficiencies.

One state here should coincide with the freely diffusing doubly labeled ProTα molecule.
We attribute state 2 (blue in Figs. 3d to 3f) to this freely diffusing ProTα because its FRET
efficiency, 0.317 to 0.359 as the 95% credible interval, is very close to that of a free ProTα
reported in Ref. [41]. On the other hand, state 1 (gray in Figs. 3d to 3f) has zero FRET
efficiency with very low uncertainty (95% credible interval is 0.000 to 0.029). This low
FRET efficiency state may putatively be attributed to: (i) a conformation yielding large
distance between the donor and the acceptor; (ii) free donor fluorophores in solution; and
(iii) acceptor’s dark state (donor dye’s photophysics typically decreases donor channel photon
counting rate and yields higher FRET efficiencies).

Here (i) is unlikely as it is not supported by any known simulation or experiment [40].
We also have reason to believe (ii), free dye, is not very likely as the 95% credible interval for
the diffusion coefficient of state 1 is (12.6 to 47.4) µm2/s, agreeing with state 2’s diffusion
coefficient 95% credible interval (22.4 to 42.0) µm2/s. Thus we conclude that state 1 likely
originates from the acceptor’s dark state (option (iii)).

The difference in the inferred diffusion coefficient estimates presented above from those
reported for free ProTα’s diffusion coefficient, 55± 1 µm2/s [40], being to light an important
point. Estimating diffusion coefficients using a confocal volume relies on the calibration of
the volume’s shape and size. In support of our diffusion coefficient estimate, we perform
FCS on the full time trace provided with more than 3× 107 photons to learn the diffusion
coefficient under the same confocal volume calibration (Table S.2). As we have argued so far,
in this dataset all states share the same conformation and hence we perform a one-state FCS
fit. Fig. S.2 shows our FCS curves and associated fits. The best least-square fit diffusion
coefficient is 28 µm2/s by FCS, falling within our credible intervals. Furthermore, in Fig. S.1e
where we run Bayes-smRD on the same dataset but with a three-state model, state 2’s
diffusion coefficient credible interval is (21.4 to 28.8) µm2/s. These agreements suggest that
our method learns diffusion coefficients consistently given accurate and confocal volume
calibration.

Having interpreted the states and diffusion dynamics in our analysis, we now turn to the
transition rates between them. As shown in Fig. 3d, the transition rate from state 2 to state
1 (i.e., the rate at which an acceptor transitions to a dark state), has 95% credible interval
(0.12 to 0.64) s−1, while that of the reverse process is (0.67 to 4.02) s−1 based on all six bursts
analyzed.

In order to further support the reaction-diffusion dynamics estimates reported so far, here,
we also list the estimates from the same six bursts but using a three-state model, Fig. S.1.
States 1 and 2 in Fig. S.1 maintain their interpretations while state 3 is intended to be
redundant (and therefore has no meaningful interpretation) for the reason explained in the
beginning of this section. The diffusion coefficient credible intervals of states 1 and 2 are (14.5
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to 39.5) µm2/s and (21.4 to 28.8) µm2/s, respectively. As for the transition rates from 1 to 2
and from 2 to 1 in Fig. S.1, we have (0.09 to 0.77)ms−1 and (0.16 to 4.07)ms−1, respectively.
Therefore, the two-state model and the three-state model yield consistent reaction-diffusion
dynamics estimate.

2.3 75 pM labeled ProTα and 10 nM H1

The second data set we analyzed contains 75 pM labeled ProTα and 10 nM H1. As H1’s
concentration is much higher than that of labeled ProTα, as illustrated in Fig. 2, we expect
to start seeing another state corresponding to the ProTα-H1 complex with a higher FRET
efficiency than the free ProTα state [40–42] as ProTα compactifies upon binding. At least
four states are anticipated in this data set: (i) free ProTα with a bright acceptor, (ii) free
ProTα with a dark acceptor, (iii) ProTα-H1 with a bright acceptor, and (iv) ProTα-H1 with
a dark acceptor. Other possibilities such as a burst created by free dyes can be excluded
during burst selection, see Section 4.2.

However, as states (ii) and (iv) have the same FRET efficiency (zero) and similar diffusion
coefficients [40] (difference is less than the breadth of the posteriors in Fig. 3e), they are
challenging to distinguish from the observables provided. Therefore, instead of treating them
as separate states, we run a three-state model.

Just as before, we select a group of six bursts (5,930 photons in total) for analysis. Our
results are shown in Fig. 4 following the same layout as the earlier Fig. 3. Immediately from
Fig. 3f we detect a high FRET efficiency state (state 3, green) with 0.618 to 0.701, which
(when comparing to the results of Fig. 3) we ascribe as originating from the ProTα-H1 dimer
(making note that the FRET efficiency estimates depend on the pre-calibrated background
photon rates, see Table S.2 for the value used in our analyses). Moreover, Fig. 3a shows that
the system actually spends most amount time in state 3, consistent with Ref. [41]. As for
state 3’s diffusion coefficient, Fig. 4e gives a 95% credible interval of (32.0 to 41.9)µm2/s.
Although no literature is found to have measured this value for sake of direct comparison,
Ref. [40] reports 55± 1 µm2/s as free ProTα’s diffusion coefficient and this number decreases
to 47± 3 µm2/s for a mixture of ProTα and H1 (at a 1:1 molar ratio). Since the analyzed
data set contains 75 pM labeled ProTα and 10 nM H1 (3:400 molar ratio), our diffusion
coefficient estimate should be lower than 47± 3 µm2/s. This is because a higher molar ratio
of H1 leads to a higher fraction of ProTα in its bound states (larger complexes) [41], and
therefore decreases the overall diffusion coefficient. Indeed, this speculation is consistent with
our estimate.

State 1 (gray), on the other hand, has FRET efficiency range of 0.001 to 0.094, very
similar to the state interpreted as acceptor photophysics in Fig. 3. In order to confirm this,
we look at the transition rates between state 1 and state 3. From state 3 to state 1, the
transition rate has 95% credible interval (0.003 to 0.38)ms−1 while the reverse transition has
(0.09 to 5.96)ms−1. Both are similar to the photophysical rate ranges reported in Fig. 3, and
subtle discrepancies may originate from variations in the acceptors’ photophysics as they are
brought closer to the donor dyes in the ProTα-H1 complex.

On the flip side, interpreting state 2 is trickier as both Figs. 4a and 4d indicate that
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Figure 4: Results from the experimental data set with 75 pM labeled ProTα and 10 nM H1.
Layout is the same as in Fig. 3. We discuss in the main body why state 3 is most likely
attributed to the ProTα-H1 complex.
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the system hardly spends any time in state 2 (average lifetime is about 0.01ms). However,
state 2’s parameter posterior probability distributions, Figs. 4d to 4f, despite being broad, do
not closely follow the shape of the corresponding priors (for this case see Fig. S.1 state 3),
meaning the analyzed bursts probably carry enough data supporting state 2’s existence but
its reaction-diffusion dynamics as wells as FRET efficiency can hardly be pinpointed due to its
short lifetime; see Fig. S.4 for how short lifetimes affect our analysis. We also speculate that
state 2 may originate from the photoblinking of acceptor fluorophores as fluorophores may
exhibit photophysics dependent upon variations in ProTα and H1 concentrations. Another
speculation is that state 2 corresponds to a free ProTα molecule and its short lifetime is
caused by the abundance of H1 in the surrounding environment. Though this speculation is
less likely, as state 2’s escape rate (Fig. 4d blue) is much higher than the association rates
(with 10 nM H1) reported in Ref. [41], we mention it nonetheless due to the high uncertainty
in state 2’s escape rate.

2.4 50 pM labeled ProTα, 20 µM H1, and 84 µM unlabeled ProTα

In order to further demonstrate the profound data efficiency of Bayes-smRD, we now move
to the third date set in which unlabeled ProTα is added (50 pM labeled ProTα 20 µM H1,
and 84µM unlabeled ProTα). Under this set of concentrations, we expect both ProTα-H1
and ProTα2-H1 to be present [41].

Following the argument we made in the previous subsection, we still run a three-state
model with the expectation of seeing three states with different FRET efficiencies and
subsequently interpret these states based on their reaction-diffusion dynamics. Immediately
from Figs. 5a and 5f we can see that, as expected, Bayes-smRD indeed recovers three distinct
states whose posteriors over FRET efficiency differ substantially from the prior and captures
transitions amongst them. Moreover, Fig. 5d shows that the average lifetimes of the zero
FRET (state 1, gray) and the low FRET state (state 2, blue) are both around 0.2ms. This
indicates that, in order to capture these transitions, binning-based FRET analysis tools
must have a bin size no greater than 0.2ms. However, in the burst shown in Fig. 5c, there
are 760 photon detections in total and hence setting 0.2ms means each bin contains less
than 40 photons. Such low number of detections will result in very low signal-to-noise ratio
thereby greatly undermining the effectiveness of binning-based tools [28] and highlighting the
importance of the direct photon-by-photon analysis used herein.

In previous subsections, we have presented how the zero-FRET state (Figs. S.1 and 4
state 1) and the low-FRET state (Fig. S.1 state 2) are interpreted as acceptors’ dark state
and free ProTα, respectively. The same arguments still hold for state 1 and 2 in Fig. 5.
Though state 2’s diffusion coefficient and FRET efficiency in this dataset differ from the
estimates presented in Figs. S.1 and 3, we attribute this discrepancy to the finiteness of data
as only about 7% of the 4548 photons collected in all six bursts originate from state 2. One
may argue against this statement by saying the finiteness of data should result in higher
uncertainties represented by wider posteriors, unlike what is shown in Fig. 5e. However, a
posterior probability distribution’s breadth reflects uncertainty when sufficient samples are
present. Therefore, the number of photons and posterior breadths are both necessary in

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.05.556378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556378
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Results from the experimental data set with 50 pM labeled ProTα 20 µM H1, and
84 µM unlabeled ProTα. Layout is the same as Fig. 3.
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evaluating the confidence of our estimates.
On the other hand, it is still worth discussing what contributes to state 3 in Fig. 5. As

mentioned earlier, under this set of concentrations (50 pM labeled ProTα 20 µM H1, and
84 µM unlabeled ProTα), according to [41], we anticipate complexes including not only
ProTα-H1 but also larger ternary complexes such as ProTα2-H1 or ProTα-H12 to form (see
Fig. 2).

In order to proceed, we first calculate state 3’s escape rate from Fig. 5d, whose 95%
credible interval is (0.31 to 1.07)ms−1 and mean value is 0.63ms−1. These numbers are
smaller than the dissociation rate of ProTα2-H1 reported in Ref. [41], which is 1.9ms−1.
However, we argue this is not a discrepancy. The key point here is that ProTα-H1 and
ProTα2-H1 do not show noticeable difference in their FRET efficiencies [41] and hence, they
can hardly be separated during burst selection. Therefore, part of the six burst analyzed may
contain ProTα-H1 while some others contain ProTα2-H1. Consequently, state 3 in Fig. 5 can
represent a mixture of these two complexes. Since ProTα-H1 has a much lower dissociation
rate, 1.7 × 10−3ms−1 [41], it is reasonable that the overall escape rate of state 3 is lower
than 1.9ms−1. This explanation in fact highlights the importance of having a tool capable of
inferring reaction-diffusion dynamics from single bursts.

2.5 Synthetic data

To validate Bayes-smRD, we generate synthetic data by computer simulation [45–49], rep-
resenting the Brownian motion of a single molecule in a confocal volume while undergoing
transitions. In these simulations, we incorporate real-life complications, including background
noise, IRF, direct excitation of the acceptor fluorophores, excitation probabilities dependent
on light intensity at the fluorophore’s instantaneous spatial location, and detector bleed-
through. These parameters mimic those in real experiments [40, 41] and are tabulated in SI
table Table S.2.

As illustrated in Fig. 6, Bayes-smRD is able to capture a single molecule’s state and
spatial trajectories simultaneously in good agreement with ground truth. In Fig. 6, (d)
and (e) show Bayes-smRD’s performance in learning reaction rates (escape rates) as well
as diffusion coefficients. All ground truth values fall within the 95% credible intervals, and
usually lie close to the posterior probability distribution maxima. Moreover, Fig. 6 shows
that Bayes-smRD avoids binning artifacts introduced in FRET analysis methods thereby
reducing temporal resolution as transitions occurring on timescales shorter than the bin size
are averaged out.

To further demonstrate Bayes-smRD’s robustness and validity, we tested our method by
varying two key quantities, the number of bursts included in the analysis as well as reaction
rates. Figures S.3a to S.3c shows how Bayes-smRD performs better (narrower credible
intervals centered at ground truths) as more bursts (thus more photons and more information)
are considered in the calculation while fixing the excitation rate. In Figs. S.3d to S.3f, we
multiply all entries of the original transition rate matrix by a multiplicative factor while
keeping the photon counting rate and the total number of photons fixed. This quantifies
how higher photon counting rates are needed to probe faster reaction-diffusion dynamics for
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Figure 6: Results from synthetic data, along with the corresponding ground truths, priors,
and credible intervals. Our simulation assumes a two-state model. Layout is the same as in
Fig. 3.
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fixed length trajectories to maintain about the same degree of uncertainty. Roughly, photon
counting rates should scale linearly with reaction kinetics.

In addition, we also briefly explain the implication of Figures S.3a to S.3c on diffusion
coefficients and excitation rate. As these quantities directly affect photon numbers obtained
in each burst, the effect of having a rapidly diffusing species is then equivalent to reducing
the photon budget available for analysis within a burst.

Along these lines, we further test Bayes-smRD’s robustness by increasing a state’s lifetime
while keeping the other state’s lifetime constant in Figs. S.4a to S.4c, and by increasing the
fraction of a burst analyzed in Figs. S.4d to S.4f. The results from both tests are consistent
with our conclusion, that is photon number and photon counting rates both positively
contribute to our analyses.

3 Discussion

The current focus in unraveling single-molecule reaction-diffusion dynamics at the highest
temporal resolution necessarily requires the analysis of sequential photon arrivals. Single-
photon analysis, already common in FRET [5, 16–18], is key toward resolving fast processes
including protein folding [4] as well as interactions of transcription factors with nucleotides
critical to cellular regulation [50]. On the other hand, a single-molecule data analysis method
capable of learning reaction-diffusion dynamics can be coupled with deep learning based tools
predicting biochemical reactions [51] to provide training and verification data. While many
single-molecule processes can be probed by FRET-labeled molecules tagged to surfaces [25,
26, 41] in addition to force spectroscopy [52], or both combined [53, 54], these setups also
raise questions as to whether fixing molecules to surfaces impact their reactivity [30].

Diffusion-limited single-molecule reactions, with both molecular actors freely diffusing,
however introduce unique complexities that so far have limited our ability to resolve smRD
models from photon arrivals.

Currently, in an effort to achieve smRD, severe approximations must be invoked including
assuming that the illumination is roughly uniform over the diffusion volume [5, 16], thereby
eliminating our ability to infer spatial trajectories containing information on state switching.

Alternatively, tens of millions of photons have to be used in the analysis thereby limiting
our ability to resolve events at the single-molecule level [4, 41]. At its very core is the problem
that a molecule diffuses in continuous space across an inhomogeneously illuminated volume
while evolving in a discrete state space.

As we work within the Bayesian paradigm, Bayes-smRD can rigorously propagate all
sources of error including spectral bleed-through and background photons into estimates of the
reaction rates, diffusion coefficients, FRET efficiencies of each state. Inevitably, Bayes-smRD
comes with higher computational cost as compared with traditional correlative methods [55,
56]. Bayes-smRD’s computational time scales roughly linearly with the number of pulses
considered.

Beyond providing a single-molecule reaction-diffusion picture, Bayes-smRD can be further
generalized to include any confocal volume shape by inserting its mathematical form into
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Eqs. (S.26) and (S.27). What is more, the method can also treat any pulse shape or sequence
by appropriate modification of Eqs. (S.44) to (S.46).

Despite advancements brought by Bayes-smRD, several challenges remain (beyond reac-
tions occurring on experimentally inaccessible timescales): (i) finite data; (ii) multiple labeled
particles present in the observation volume; and (iii) unknown number of system states.

Challenge (i) may arise for different reasons, including but not limited to, fast diffusion
dynamics regarding the size of observation volumes and rapid photobleaching. In this paper,
in order to ease the issue, we choose to analyze several bursts together assuming all selected
bursts share the same reaction-diffusion dynamics. An alternative would be to rely on
increasingly photostable labels [57] as well as detectors with shorter dead times, to help
maximize the information contained in each burst, though theoretical tools may be leveraged
to partially beat detector dead times or even integration times in the case of binned photon
analysis [58, 59].

On the other hand, challenge (ii) and (iii) can potentially be resolved theoretically. In the
Bayesian paradigm, particle number and state number can both be treated as parameters to
learn. This approach, requiring Bayesian nonparametrics, would place priors on infinite candi-
date number of states and molecules, i.e., it would require a doubly nonparametric framework.
Despite technical challenges, the ability to theoretically recruit, within a computational
framework, multiple states would provide a powerful generalization.

While Bayes-smRD has been applied here to protein binding interactions by monitoring
labels from just one binding partner, it raises broader questions. In particular, it places
within conceptual reach the notion that dynamics may be extracted from multiple molecular
actors all simultaneously operating within a small diffraction limited region, such as a gene
locus under active transcription [60], from photon arrivals.

4 Methods

4.1 Mathematical formulation

We immediately consider equally spaced pulses at times t1:K = (t1, t2, . . . , tK) with an
interpulse interval of T and total pulse number K. At time point tk we have three observations:
(i) if there is a photon detection; (ii) the photon arrival time following the pulsed laser δk,
termed the microtime; and (iii) the detector in which the photon is detected dk (correlated
to the color of the photon). In case pulse k does not yield a photon detection, both δk and
dk take the value of void (∅). These three types of observations can be combined into two
arrays: δ1:K = (δ1, δ2, . . . , δK) and d1:K = (d1, d2, . . . , dK).

Now, both δ1:K and d1:K are used as the input data in order to construct a posterior
over the quantities we care about, namely, θ = (Qc, D1:M , c1:K ,x1:K). Here, Qc is the state
transition rate matrix of size M ×M , where M is the number of states, D1:M contains all
the diffusion coefficients of each state, c1:K and x1:K are the state and spatial trajectories,
respectively.

We assume that states and spatial positions remain relatively constant during the interpulse
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interval of approximately 50 ns. To validata our assumption, we perform two quick back-of-
envelope calculations. After transitioning into a state with a lifetime of 5 µs, the probability
of the system leaving this state within 50 ns is less than 1%. Furthermore, if a particle in
this state has a diffusion coefficient of 1000 µm2s−1, there is a 95% chance that the particle’s
displacement will be less than 0.02 µm, which is more than 10 times smaller than the size of
a confocal spot.

4.1.1 Forward Model

In order to simulate and later infer θ, we must first prescribe the system’s evolution, in terms
of its state as well as spatial trajectories. The state trajectory is given by

ck
∣∣πck−1

∼ Categorical1:M
(
πck−1

)
. (1)

Here, πck−1
is the row ck−1 of the transition probability matrix Π, and Π is obtained from

Π = exp(TQc). Next, the evolution of the spatial trajectory is given by

xk

∣∣xk−1, Dck−1
∼ Normal

(
xk−1, 2Dck−1

T
)

(2)

which follows from the solution of the diffusion equation with open boundaries.
With state and spatial trajectories, we can briefly describe how they give rise to obser-

vations δk and dk. As mentioned earlier, dk has 3 possible outcomes, no photon detected
(dk = ∅, a photon detected in donor channels (dk = D), or a photon detected in acceptor
channels (dk = A), so dk is sampled from

dk|xk, fD, fA, λE, λ
ck
F ∼ Categorical∅,D,A (Pdk=∅, Pdk=D, Pdk=A) . (3)

Here, Pdk=∅, Pdk=D, and Pdk=A are probabilities of each possible outcome whose complete
formulas can be found in Eqs. (S.44) to (S.46), and fD and fA are two binary variables
marking the existence of donor and acceptor, respectively. These probabilities are calculated
based on the state ck, the illumination at position xk, a Bernoulli random variable denoting
whether an active donor/acceptor fluorophore is present or not fD/A, the effective excitation
rate λE, and the FRET rates of each state λ1:M

F =
(
λ1
F , λ

2
F , . . . , λ

M
F

)
. Here, we define the

effective excitation rate as the number of molecule-emitted photon detections per unit time.
Also, in our model, the true FRET efficiency of state k is defined as λk

F/
(
λk
F + λD

R

)
, where

λD
R is the predefined donor emission rate.
In addition, calculating these probabilities also involves the consideration of spectral

bleed-through, uniform background photons, and the direct excitation of acceptor dyes, see SI
Section 2 for details. For bleed-through, we predefine probabilities connecting photon emission
channels to detection channels. Uniform background photons are treated as independent
photon sources with fixed emission rates. Furthermore, the direct excitation of acceptor dyes
is dealt with by introducing a multiplicative factor multiplying the donor excitation rate. All
predefined parameters can be obtained based on the wavelengths of photon emissions and
optical filters used in actual experiments.
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Next we write down a likelihood for the microtime observation δk. When no photon is
detected (dk = ∅), δk is identically void (∅) with probability 1. Otherwise, δk is sampled
from

δk
∣∣dk, ck,xk, fD, fA, λE, λ

1:M
F ∼ P

(
dk, ck,xk, fD, fA, λE, λ

1:M
F

)
. (4)

The full expression for this distribution can be found in Eqs. (S.21) to (S.23). Eq. (4) is derived
mostly from the convolutions of exponential distributions and the IRF. The exponential
distributions reflect waiting times in the excited states of both donor and acceptor, so they
depend on ck, fD, fA, λE, λ

1:M
F , as well as the pre-calibrated donor and acceptor emission rates

λD
R and λA

R. Moreover, the IRF, whose mathematical form is pre-calibrated from experiments,
is characterized by two fixed parameters, offset τδ and width σδ.

4.1.2 Inverse Model

From the previous section, we see that in order to infer θ, we must also learn the latent variables
coinciding with the state trajectory c1:K and spatial trajectory x1:K . As such, the full set of
quantities to be learned can now be expanded to Θ =

(
c1:K ,x1:K , fD, fA,Π, D1:M , λE, λ

1:M
F

)
.

Given all the equations above, and the expanded likelihoods accounting for bleed-through,
uniform background photons, acceptor direct excitation, and IRFs, see Eqs. (S.47) to (S.49),
we can now, alongside with priors, construct a full posterior probability distribution over θ.

In order to sample this high dimensional posterior, P (Θ|d1:K , δ1:K), we opt for specialized
Markov Chain Monte Carlo schemes that we design herein. The sampling of this posterior is
achieved by invoking a global Gibbs sampling scheme [61]. Within this Gibbs sampler, for fD,
fA, each row of Π, and each element of D1:M , we select priors listed in Section B.6. Briefly, for
computational convenience (detailed in the Supplementary Information), directly sampling fD
and fA requires Bernoulli priors, each row of Π requires a Dirichlet prior, and each element of
D1:M requires an Inverse Gamma prior. The corresponding conditional posteriors can be found
in Eqs. (S.52), (S.53), (S.116) and (S.125). As for c1:K , we place a Categorical distribution as
prior on c1, and then apply the forward-filtering backward-sampling algorithm [62] to sample
all the states recursively, as shown in Eq. (S.111).

Other quantities, λ1:M
F , x1:K , and λE, cannot be sampled directly. As a result, we use the

Metropolis-Hastings (MH) algorithm [63, 64]. To sample λ1:M
F , we use Gamma distributions as

proposal probability distributions and prior probability distributions. As x1:K and λE are slow
to converge, on account of the fact x1:K contains many intercorrelated continuous variables
and inferring λE heavily depends on x1:K , we therefore opt for Hamiltonian Monte Carlo
(HMC) steps [65] within our broader Gibbs sampling scheme to help speed up the overall
convergence. Detailed sampling schemes for λ1:M

F , x1:K , and λE are covered in Section C.3,
Section C.7, and Section C.8.

4.2 Burst selection

Burst selection is achieved by first binning the single-photon arrival data and setting a
threshold on the number of photons per bin. For bins above the threshold, we then locate
a bursts’ start and end times. Within each burst, we calculate the FRET efficiencies

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2023. ; https://doi.org/10.1101/2023.09.05.556378doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.05.556378
http://creativecommons.org/licenses/by-nc-nd/4.0/


and stoichiometries with the corrections often regarding background photon emission rate,
detection efficiencies, and bleed-through ratios provided by our experimental collaborators.
For the experimental data sets analyzed in this paper, corrections are applied through the
route correction matrix [66, 67]. FRET efficiencies and stoichiometries are checked to rule out
any burst that may contain uneven numbers of donor fluorophores and acceptor fluorophores.
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framework for fluorescence correlation spectroscopy. Biophys. J. 116, 282a (2019).
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