

Direct Entorhinal Control of CA1 Temporal Coding

Matteo Guardamagna^{1,2†}, Oscar Chadney^{1†}, Federico Stella^{2†},
Qiangwei Zhang¹, Clifford Kentros^{1,3,4}, Francesco P. Battaglia^{2,4*}

¹Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.

²Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.

³Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403, USA.

⁴Co-Senior Author.

*Corresponding author(s). E-mail(s): francesco.battaglia@donders.ru.nl;

Contributing authors: matteo.guardamagna@ntnu.no;

oscar.m.t.chadney@ntnu.no; federico.stella@donders.ru.nl;

qiangwei.zhang@ntnu.no; clifford.kentros@ntnu.no;

†These authors contributed equally to this work.

Abstract

During behavior, hippocampal neurons fire in consistent theta sequences, organized by the theta rhythm, which have been linked to predictive coding of future actions. The mechanisms of sequence generation are yet unclear, but in the hippocampal CA1 subfield, are thought to involve both major input streams into CA1 neurons, from CA3 pyramidal neurons and directly from entorhinal cortex. We disentangled the role of these two afferent input with highly specific optogenetic inhibition limited to the direct entorhinal afferents of CA1, thereby leaving the rest of the hippocampal-entorhinal circuit intact. While CA1 spatial firing properties were largely unaffected, theta phase precession was largely abolished. Surprisingly, while theta phase precession is thought to generate theta sequences, theta sequences were actually strengthened when it was suppressed. These results suggest that sequence generation is internal to the hippocampus, while the entorhinal inputs may act as a supervisory signal driving learning and representational updates.

047 Main

048

049 Temporal coding at multiple scales, from milliseconds to seconds, is used by the brain
050 to convey information and process parallel computations. Within the hippocampus,
051 “theta sequences” [13, 16] of spikes from cells with consecutive place fields, rapidly
052 sweeping through a theta oscillation cycle (≈ 100 ms), are a prominent expression
053 of temporal coding. Theta sequences have been linked to memory of events taking
054 place at different times, prediction of future occurrences, and action planning [25],
055 functions that require the comparison of previously stored traces with the current
056 stream of information about the external world [7]. The hippocampal sub-field CA1 is
057 an interesting candidate for this operation as it sits at the confluence of two inputs: a
058 tri-synaptic pathway through the CA3 sub-field (from Entorhinal Cortex Layer II, EC
059 LII) [36] and a direct extra-hippocampal pathway from the Entorhinal Cortex Layer
060 III (EC LIII; [36]), which are thought to carry, respectively, memorized and novel
061 information [11, 8]. Classic theoretical models see phase precession, the correlation
062 between the animal position and the firing phase of place cells within the theta cycle
063 [28], as the generating mechanism of theta sequences [33]. This does not take into
064 account the influence of dual input to CA1, which may act by itself as a considerable
065 source of variability. It also neglects multiple results indicating how phase precession
066 and sequences tend to appear most strongly under different network states, which in
067 turn have been associated with prevalence of the EC LIII or CA3 inputs respectively
068 [2, 38, 20]. While dynamical interactions between these inputs have been studied in
069 detail [11, 2, 38, 15, 20], including via the use of activity perturbations [5, 30, 12, 39],
070 dissecting their relative role is made difficult by the fact that EC LII also innervates
071 CA3 through the tri-synaptic circuit. Thus, standard, unspecific manipulations of
072 EC end up affecting both input streams [5, 30, 39, 25]. Here, we address this issue
073 with a combination of ensemble physiology, layer-resolved oscillation recording and
074 highly-specific manipulation of EC LIII projections to CA1.

075 We used the enhancer-driven gene expression (EDGE) [4] to create a novel trans-
076 genic mouse cross expressing an inhibitory opsin, JAWS [10], solely in EC LIII
077 pyramidal cells (Figure 1a-h). Since EC LIII projects directly to the distal dendrites
078 of CA1 pyramidal cells [36], applying light to a region of CA inhibits the local
079 direct input without affecting the circuit as a whole, or arguably even EC LIII cells
080 themselves. We quantified expression levels by counting the number of JAWS-GFP
081 RNA-positive nuclei within all brain areas and we estimated that the majority (78 %)
082 were in EC LIII (Figure 1c). The expression of JAWS-GFP was also largely overlap-
083 ping with Purkinje cell protein 4 (PCP4)-positive neurons (Figure 1d-h and Figure
084 S1a-d), which can be used as a marker for EC LIII neurons. We recorded both large
085 CA1 pyramidal cell populations and layer resolved oscillations with a novel version
086 of the Hybrid Drive, combining 13 independently movable tetrodes, one linear silicon
087 probe and one optic fiber in a single device ([19, 20], Figure 1i). Individual tetrodes
088 were located in dorsal CA1 and the optic fiber was positioned above (≈ 100 μ m) the
089 pyramidal layer and enabled optical manipulation of the direct EC LIII projection
090 in stratum lacunosum moleculare (s.l.m.) (Figure 1j,k,l,m and Figure S1e,f). Animals
091 were trained, in a familiar environment, to run back and forth on a linear track collect-
092 ing food rewards at both ends. The light of the laser was delivered continuously (max

30 s, 20 mW at fiber tip) every other lap, for both running directions consecutively (Figure 1n and Figure S2).

We first examined the effect of EC LIII distal input suppression on the rate code of CA1 neurons (Figure 2a). Among pyramidal neurons we only selected those with significant spatial modulation. Place fields were then selected and divided into two groups: "locking" (n=103) and "precessing" (n=199), on the basis of their relationship with theta oscillations (as previously described in [20]) during laser OFF periods. While we did not find changes in peak or mean (only a small, marginally significant effect for the precessing group), we found that the place field size slightly but significantly decreased during our manipulation (Figure 2b-d; t-test, $p<0.001$), only for the precessing sub-population. Effects were largely independent of changes in the running speed of the animals (Figure S3).

Importantly, place field representations remained largely stable, between the laser ON and OFF condition, as place field centers shifted by similar amount as in within-condition controls (Figure 2f and S5). These results point to the fact that the EC LIII direct input is not essential for the consistent expression of a place field representation of a familiar environment (Figure 2g), and only a subset of place fields are affected by its inhibition.

We then asked how the inhibition of EC LIII inputs affects temporal coding processes within the CA1 network. This is likely to be state dependent, as the intensity of CA3 and EC inputs have been found to fluctuate in time. In fact, the magnitude of slow gamma (SG; 20-45 Hz) and medium gamma (MG; 60-90 Hz) oscillations correlate with the relative instantaneous strength of, respectively, CA3 and EC inputs in CA1 [11, 31, 15, 20]. We found that CA1 single cell temporal coding is perturbed by inhibition of EC LIII inputs (Figure 3a-d), lending interventional confirmation for this link. The suppression of phase precession appears to be due to the shift/suppression of spikes in the earliest phases of the theta cycle during periods of EC LIII inputs inhibition (Figure 3b and S6). It has been previously shown [2, 20] that theta phase precession is more strongly observed during elevated MG periods. Here we show that EC LIII inputs inhibition abolishes phase precession in precessing fields even during periods of spontaneously elevated MG network-states (Figure 3c-d). Spike densities of phase locking fields in the position-by-theta phase plane remain unaffected by our manipulation (Figure 3d). On a cell-by-cell basis, EC LIII inhibition removes any dependence of the phase-position slope on theta index [20] (Figure 3d, left panel), rendering phase precessing and locking fields indistinguishable in the phase plane at the single cell level. Together, these observations show how the EC LIII afferents are crucial for the normal expression of theta phase precession in CA1. Conversely, our manipulation did not cause any alteration in rate and temporal coding properties of place cells in control littermates, mice that did not express the inhibitory opsin but received the same light stimulation protocol (Figure S7).

Since its discovery, phase precession, and the resulting temporal distribution of place field spikes, has been proposed as the "engine" underlying the formation of theta sequences [33]. This would predict that EC LIII inputs inhibition, which disrupts phase precession, should also abolish theta sequences. We first tested this prediction by quantifying the correlation between field spacing and average theta phase separation

139 of place cell pairs, an index of how consistently neurons fire in a stable sequence [13].
140 In contrast to the prediction above, the spatio-temporal correlation actually improved
141 during periods of EC LIII inhibition (laser ON; Figure 3e), regardless of whether SG or
142 MG dominated the LFP ($p < 10e-7$, confidence intervals). Elevated SG-network states
143 retained the highest spatio-temporal ordering in both conditions.

144 We confirmed and expanded these results by applying a Bayesian decoder (Figure
145 3f-g), looking at coding of current animal position and sequence expression across CA1
146 populations. Consistent with the pairwise result, we found an enhancement of sequen-
147 tial coding during periods of inhibition of EC LIII input (Figure 3g right panel; Paired
148 t-test, $p = 0.018$). In parallel, the accuracy of decoded position decreased, especially
149 during MG network states (Figure 3g left panel; Paired t-test, $p = 0.002$ and $p = 0.013$).

150 Additionally, sequential decoding improved in the second half of the theta cycle
151 (Figure S9b, right panels) while positional decoding decreased in the first half of the
152 theta cycle during our manipulation (Figure S9a left panels). This apparently surpris-
153 ing result is in fact consistent with the partial dissociation between the expression of
154 precession and sequences previously reported in interventional [26, 12] and descriptive
155 [20] studies.

156 We have previously shown that precessing and locking populations form two groups
157 of neurons that express theta sequences in a largely independent fashion [20]. Here,
158 overall correlations increased during EC LIII inhibition, with cells from both groups
159 expressing the highest ordering during slow gamma states (Figure 3d and Figure S8a).
160 Phase precessing cells improved their spatio-temporal correlations with the phase lock-
161 ing populations during medium gamma states (Figure S8a, right panel), while phase
162 locking cells improved their correlations both with cells of the other group and among
163 themselves (i.e. with phase precessing cells; left panel). Notably, when EC LIII inhibi-
164 tion is applied, within and across group correlations became largely indistinguishable
165 S8b). Thus, by releasing a subset of place fields from the influence of the EC LIII
166 input, sequences are expressed in a coherent way across the network, eliminating the
167 differentiation between groups observed under normal input conditions.

168 Last, we explored the effects of the manipulation on global oscillatory rhythms. We
169 did not find any change in the power profile in the s.l.m. (Figure S10). We found no
170 alterations in the theta power profile (6-10 Hz) across all CA1 layers (pyramidal, radi-
171 tum and lacunosum moleculare; Figure S11). Similarly, theta-gamma phase-frequency
172 coupling, was also left intact by our manipulation (Figure S12). These results sug-
173 gest that our spatially restricted manipulation did not impair the global coordinated
174 synaptic activity in CA1, beyond the small pool of neurons we are recording action
175 potentials from.

176 Theta sequences are a fundamental organizing principle of hippocampal activity
177 [6], which has been suggested to support planning and predictive coding [24]. Indeed,
178 disrupting hippocampal sequences lead to impairment in planning behavior [25]. Our
179 data suggests an update to current theories of sequence generation, decoupling them
180 from theta phase precession. Phase precession has been seen as a unitary organizing
181 principle for hippocampal neural activity, even generating a temporal phase code for
182 animal position [22] more precise than the information contained in the firing rate.
183 A number of potential network mechanisms have been proposed (for a review [14]),

each with implications for hippocampal computations. We show instead that phase precession in CA1 is an heterogeneous phenomenon and may be understood as a consequence of the temporal distribution of two inputs, from CA3 and EC LIII (Figure 3h [9, 15]). Namely, EC LIII exerts tight control over the CA1 spiking activity in the earliest phases of the ongoing theta cycle and in the second part of the place field [23, 20]. Phase precession is best observed when spikes in both earlier and later theta phase, for which presumably the CA3 input is sufficient, are present. Thus, our data suggests that rather than a “phase code” for position spiking, theta phase precession is a consequence of the different distribution in space and theta phase of the CA3 and EC LIII inputs [9, 15]) (Figure 3h), with less immediate computational implications. Even more striking is the finding that EC LIII inhibition improves the organization of theta sequences. The most parsimonious interpretation of this result is that sequence generation is internal to the hippocampus proper, and probably due to interactions across the tri-synaptic circuit (originating from EC LII). CA3 is endowed with the optimal recurrent connectivity to hold a reservoir of short-time spatial sequences, or preexisting neuronal dynamics [34], which may be passed to CA1. These spiking sequences may represent the basic units of many computations. Indeed, spikes in the first part of the place field, more robustly supported by CA3 input, appear to have a predictive coding character [24, 21]. CA3 input is also fundamental for rate and place coding in CA1 [26, 12, 39]. In contrast, the EC LIII input seems to be extraneous to such precise temporal organization, so that its presence disrupts sequence decoding. A hypothesis compatible with our data is that EC LIII drives plasticity in CA1 carrying external information, that may be used for prediction validation [17] and online update of CA1’s representations. This plasticity however cannot depend on precise spike timing, but it may rely on mechanisms at a longer time scales, as it has been recently proposed, bridging the ≈ 100 ms gap between theta phases [3]. What is then, one may ask, the role of spreading CA3 and EC inputs at different phases of the theta cycle? It is possible that it is just the by-product of the feedback dynamics among the structures that produce theta oscillations (in the hippocampus and elsewhere) [7, 27]. On the other hand, we may speculate that such arrangement in the temporal segregation of inputs may provide a time window (the later theta phase), in each theta cycle, where sequences can be expressed “undisturbed”, favoring their readout in downstream structures. As it has been hypothesized [24, 21] the theta cycle may be separated in a phase for “encoding” (early theta phase) with retrospective properties [35] and a phase for “retrieval”, prediction and other computations. Our data suggest a clear role for direct EC LIII inputs in the encoding phase, suggesting a novel network architecture.

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

231 **Extended data**

232

233 **Subjects**

234 10 male mice were used in this study. 9 mice were implanted with a Hybrid Drive
235 [19] and one with a 4-tetrode drive for representative examples of CA1 pyramidal unit
236 inhibition with repeated stimulations (Figure 1m). All animals received the implant
237 between 16 and 31 weeks of age. After surgical implantation, mice were individually
238 housed on a 12-h light-dark cycle and tested during the dark period. Water and food
239 were available *ad libitum*. All experiments were performed in accordance with the
240 Norwegian Animal Welfare Act and the European Convention for the Protection of
241 Vertebrate Animals used for Experimental and Other Scientific Purposes. Protocols
242 were approved by the Norwegian Food and Safety Authority (FOTS ID 17898).
243

244 **Transgenic mouse lines**
245

246 We crossed two transgenic mouse lines in this study. The ECLIII-tTA driver line
247 expressing the tetracycline transactivator (tTA) within a subpopulation of cells con-
248 fined to the Entorhinal Cortex Layer III (EC LIII) was made using the Enhancer
249 Driven Gene Expression method with enhancer LEC13-8A, mapped to the Dok5 gene
250 [4]. This ECLIII-tTA driver line was crossed to a tTA-dependent JAWS-tetO line gen-
251 erated as follows: transgene JAWS-GFP-ER2 (Addgene plasmid #65016) was cloned
252 with restriction enzyme BamHI and NotI into an injection plasmid containing TRE
253 tight 2 promoter (Clontech, now Takara Bio International). The injection plasmid
254 was linearized by enzyme digestion to keep the relevant elements but remove the bac-
255 terial elements of the plasmids. Linearized DNA was run on a 1% agarose gel and
256 isolated using a Zymoclean Gel DNA Recovery Kit (Zymo research, D4001). The
257 resulting final injection construct thus consisted of a TREtight2 promoter followed
258 by JAWS-GFP-ER2 sequences, WPRE element and SV40 polyA (TRE-Tight-2-tetO-
259 JAWS-GFP-ER-WPRE-SV40). Fertilized oocytes from strain B6D2F1 x B6D2F1 were
260 injected with the purified DNA. Both injection constructs were generated by the
261 Kentros group at the Kavli Institute for Systems Neuroscience and sent for pronu-
262 clear injections at the Transgenic Mouse Facility at the University of Oregon, Eugene,
263 OR USA. The control group (N=3) consisted of littermates that did not express the
264 inhibitory opsin JAWS but received the same light stimulation protocol.
265

266 **Implant device and surgical procedures**
267

268 The fabrication of the Hybrid Drive was done as described earlier [19]. This version
269 of the Hybrid Drive is equipped with a linear silicon probe, 13 tetrodes and an optic
270 fiber was incorporated in the design to carry out in-vivo optogenetic manipulations.
271 The optic fiber was placed at the center of the array and glued in place at a depth
272 of 1 mm from brain surface, sitting above the pyramidal layer \approx 100 μ m, in order
273 to maximize the light coverage in the s.l.m. with minimal disruption of the cell layer.
274 Mice were anaesthetized with isoflurane (5 % induction and 1-2 % maintenance). Prior
275 to implantation, mice were given a subcutaneous injection of analgesics (Metacam,
276 5 mg/kg and Temgesic, 0.1 mg/kg), plus a local anaesthesia (Marcain, 1 mg/kg).

Anaesthetized mice were secured in a stereotaxic frame. The skull was exposed, cleaned and dried. 3 stainless steel M0.8 screws were used to secure the drive (1 ground screw in the frontal plate, 1 screw in the parietal plate opposite to the drive, 1 screw in the occipital plate). Using a 0.9 mm Burr drill, a craniotomy was made over the right cortex (top-left corner at AP: -1.20 mm; ML: 0.6 mm relative to bregma; bottom-right corner at AP: -2.30 mm; ML: 2.10 mm relative to bregma). The dura was removed and the array of the drive was slowly lowered into the brain with the silicon probe shaft and the optic fiber already adjusted at the final depth. To prevent cement from entering the guide tube array and the exposed brain, the craniotomy was filled with sterile Vaseline before lowering the array. The drive was cemented onto the skull using dental adhesive (Superbond C&B, Sun Medical, Japan) and tetrodes were individually lowered into the brain (5 turns - $\approx 900 \mu\text{m}$). Mice were allowed to recover from surgery for at least seven days before experiments began.

Neural and behavioral data collection

Animals were transported to the recording room from post-surgery day 3 and electrophysiological signals were studied during a rest session in the home cage. Each day, tetrodes were lowered individually in 45/60 μm steps (1/2 of a screw turn), until clear physiological markers for the CA1 pyramidal layer were discernible (sharp wave ripple complexes during sleep or theta during locomotion). The target location was usually reached in 10 days. Electrophysiological signals from the silicon probe contacts helped to refine the final position of the tetrodes.

Electrophysiological data were recorded with an Open Ephys acquisition board [32]. Signals were referenced to ground, filtered between 1 and 7500 Hz, multiplexed, and digitized at 30 kHz on the headstages (RHD2132, Intan Technologies, USA). Digital signals were transmitted over two custom 12-wire cables (CZ 1187, Cooner Wire, USA) that were counter-balanced with a pulley-system. Waveform extraction and automatic clustering were performed using Dataman (<https://github.com/wonkoderverstaendige/dataman>). Clustered units were manually curated using the MClust toolbox. During all experiments, video data was recorded using a video camera (The Imaging Source, DMK 37BUX273) mounted above the linear track.

Behavioral paradigm

Each behavioural session was preceded and followed by a 60-minute rest session in the animal's home cage ("Pre sleep" and "Post sleep") to ensure units' stability. Mice were placed at one end of a 1-meter long track and trained to run to the other end, collecting a food reward (a piece of Weetos chocolate cereal). Following the animal's consumption of the reward, a new one was placed at the opposite end. A lap was defined as an end-to-end run in which the animal's body started at the first 10 cm of the track and finished at the other end without returning to its starting place. When the animals consistently carried out the task with a high number of laps, after approximately 10 days of consecutive training, the session with the optogenetic manipulation was carried out. Recordings typically lasted between 20 and 30 minutes. Animals were familiar

323 with the recording room and the proximal and distal cues around the linear track.
324 Mice were not food nor water deprived.

325

326 **Optogenetics**

327

328 For optical silencing of EC LIII projections to s.l.m. of the hippocampal CA1 subre-
329 gion, an optic fiber (core diameter: 100 μm , numerical aperture: 0.37, Doric Lenses)
330 with a cone termination was incorporated in the Hybrid Drive and unilaterally
331 implanted in the right hemisphere at a depth of 1 mm. Optogenetic stimulation was
332 performed by the delivery of continuous red light (640 nm, 20 mW at fiber tip) by a
333 diode laser (Coherent Obis LX 1185054). Laser power was carefully curated to obtain
334 sufficient irradiance in s.l.m. while avoiding excessive, detrimental effects. The onset
335 and offset of light delivery were triggered as the animal finished eating the reward from
336 one end and upon arrival at the other end of the linear track, respectively. Each lap
337 with light stimulation was followed by a non-stimulated lap, providing an internal con-
338 trol for the effect of light stimulation. Optogenetic silencing sessions were performed
339 once the mice proficiently performed on the linear track.

340

341 **Histology**

342

343 Following the end of experiments, tetrodes were left untouched. Animals were euth-
344 anized using an overdose of pentobarbital, and perfused transcardially with RNase
345 free 4 % paraformaldehyde in PBS. The brains were extracted and stored in RNase
346 free 4 % paraformaldehyde for 24 hours before being transferred into RNase free 30 %
347 sucrose for 2 days. For each animal, the left hemisphere was used to monitor transgene
348 expression and the right hemisphere was used to verify the location of tetrodes, sili-
349 con probe and optic fiber. Both hemispheres were sectioned sagitally in 30 μm thick
350 slices using a Cryostat (Fisher Scientific, Cryostar NX70). Sections were divided into 6
351 series and stored in a -80°C freezer. For the identification of recording sites and the
352 position of the optic fiber, the tissue was stained with Cresyl violet. The slides were
353 coverslipped and brightfield images were taken using a scanner (Zeiss Axio Scan.Z1,
354 Germany) at a magnitude of 5x. Tracts were assigned to the Allen Mouse Brain
355 Atlas and visualised in 3D using MeshView (<https://www.nesys.uio.no/MeshView/>).
356 To validate transgene expression, the tissue was stained using both fluorescent in situ
357 hybridization and immunohistochemistry. The sections were hybridized overnight at
358 62°C with a FITC-riboprobe for GFP (2.5:1200; Roche, Cat. 11685619910). Next,
359 the sections were washed with a tris-buffered saline with tween (TBST) solution and
360 incubated in a blocking solution (600 μl MABT, 200 μl sheep serum, 200 μl 10 %
361 blocking reagent; Roche, Cat. 285 No. 11096176001) at room temperature for 4 hours.
362 The blocking solution was replaced with anti-FITC-POD (1:1000) and the sections
363 were left to incubate overnight at room temperature. The following day, the tissue was
364 washed with a TBST solution before the fluorescein signal was developed using Tyr-
365 FL (1:50, PerkinElmer kit) for 45 mins at room temperature, then washed in a TBST
366 solution. The sections were then stained for PCP4 and NeuN with antibodies. The
367 tissue was washed with 1X phosphate-buffered saline (PBS) (2 x 10 mins), placed in a
368 permeabilisation buffer (1X PBS + 0.3 % Triton-X100, 10 mins) and preincubated in

a blocking buffer (1x PBS + 0.3 % Triton X-100 + 3 % bovine serum, BSA, 1 hour).
The sections were then incubated at room temperature for 48 hours with primary
antibodies: Rabbit anti-PCP4 (1:300, Sigma, HPA005792) and Guinea Pig anti-NeuN
(1:1000, Millipore, ABN90P) diluted in a solution of 1x PBS + 0.3 % Triton X-100 +
3 % BSA. Following primary antibody processing, sections were washed with 1X PBS
+ 0.3 % Triton X-100 + 3 % BSA (3 x 10 mins), then incubated at room temperature
overnight with secondary antibodies: Goat anti-Rabbit Alexa Fluor 546 (1:400, Life
technologies, A11010) and Goat anti-Guinea pig Alexa Fluor 647 (1:400, Life tech-
nologies, A21450) diluted in a solution of 1X PBS + 0.1 % Triton + 1 % BSA. The
slides were coverslipped and images were taken using a scanner (Zeiss Axio Scan.Z1,
Germany) at a magnitude of 5x.

Automated cell counting

Cell counting was performed on one series of brain slices per animal. The EBRAINS
semi-automated workflow QUINT ([[37](#), [18](#), [29](#)]; <https://ebrains.eu/service/quint/>)
was used for brain-wide cell quantification. The brain slices were registered to the
Allen Mouse Brain Atlas (<http://www.brain-map.org/>) using the QuickNII software.
Anatomical boundaries from the atlas were fine-tuned to fit the data using non-
linear adjustments in VisuAlign (<https://www.nitrc.org/projects/visualign/>). Cells
were extracted by using machine-learning image segmentation toolkit ilastik (inter-
active machine learning for (bio)image analysis, <https://www.ilastik.org/>). Finally,
Nutil Quantifier was used to quantify and assign anatomical locations to labelled cells
obtained by segmentation of brain images.

Place Cell Identification

We first selected putative excitatory pyramidal cells using their auto-correlograms,
firing rates and waveform information. Specifically, pyramidal cells were classified as
such if they had a mean firing rate <8 Hz and the average first moment of the auto-
correlogram (i.e., the mean value) occurring before 8 milliseconds. Only cells classified
as pyramidal cells were used for further place cell analysis. Place cells were defined
applying a combination of different criteria. All analysis were performed on speed-
filtered activity, after removing periods in which the animal speed was smaller than 3
cm/s. Only cells with an average activity above 0.3 Hz were taken into account. Then
for each of these cells, the Skaggs information per second $I = \sum_x \xi(x) \log \frac{\xi(x)}{\langle \xi \rangle_x}$ was
compared to the distribution of information values resulting from randomly shuffling
cell spike times. A cell passed the selection if its Skaggs information was significantly
higher than the ones of the surrogate distribution. Last, only place cells with peak
firing rate higher than 1 Hz were kept for further analysis.

Place Cell Classification

Spikes were filtered both in speed (>3 cm/s) and in position, by taking only those
emitted within the boundaries of the cell place field. For each place field, a 'Theta
Score' [[20](#)] was calculated as follows: Theta Score = Precession Score - Locking Score.

415 For the Precession Score we used a circular-linear correlation to measure the degree of
416 dependency between the spike phase and the position within the field. For the Locking
417 Score we computed the length of the Reyleigh vector associated to the distribution of
418 spike phases with respect to the instantaneous theta phase. Each measure produced
419 a score between 0 and 1, with 1 denoting perfect phase-position relation or perfect
420 phase locking. Negative Theta Score values indicate that spikes probability are mostly
421 modulated by specific phases of theta ('phase locking cells'), while positive Theta
422 Scores suggest a strong phase precession ('phase precessing cells').

423

424 **Place Cell Properties**

425

426 Place cell properties were calculated using a Generalized Linear Model (GLM;
427 described in detail in [20]) to infer the spike probability of each place field given i) the
428 position within the place field; ii) the instantaneous theta phase and iii) the instanta-
429 neous power in a specific gamma range and layer. In all our analysis, we considered a
430 partition of the environment in bins of 2.5 cm. Place fields were isolated as continu-
431 ous regions in the rate map with rate higher than 20 % of the cell maximum activity.
432 Spatial mean firing rate was calculated integrating these probabilities over the other
433 variables. Spatial firing rate of each cell was calculated within each condition and sep-
434 arately for laser OFF and laser ON. As place field center we took the bin within the
435 place field with highest firing rate. The effect of speed on the firing probabilities was
436 addressed in a similar manner, by including the instantaneous velocity of the animal
437 as a further covariate in the GLM. Place coding analysis were restricted to place field
438 without substantial change in peak firing rate between conditions (<15 cm, based on
439 average Peak Firing rate shift).

440

441 **Neural data analysis on oscillations**

442

443 Before applying other analysis, continuous (LFP) signals were down-sampled to 1 kHz.
444 Power spectral density (PSD) estimates were calculated across the frequency range
445 30–100 Hz using the pwelch function in Matlab, for each condition (laser OFF vs.
446 laser ON) separately. LFP across the probe's 16 contacts was also used to compute
447 the corresponding Current Source Density (CSD) signal. This transformation is based
448 on computing the discrete laplacian along the probe axis (that is along the direction
449 running through CA1 layers). The resulting CSD signal is limited to 14 channels (16
450 minus the 2 extremes) CSD signals were used to compute the phase-amplitude coupling
451 strength between a reference theta oscillation and faster oscillations, in a [15-150] Hz
452 range. We first applied a wavelet transform to obtain the analytical signal over time
453 and then we tracked the evolution of the phase-amplitude couplings across different
454 layers and frequencies, as previously described [20]. For each of the identified main
455 gamma frequency ranges (slow [20-45] Hz and medium [60-90] Hz) we extracted layer-
456 specific coupling strength and phase range of frequencies. Theta oscillation reference
457 was generally taken from the s.l.m., where theta modulation of the LFP is strongest.
458 Additionally, CSD signal were used to estimate the layer-resolved Gamma Coefficient
459 as follows: the instantaneous balance between the power in the slow gamma ($P_{Slow}(t)$)
460 and medium gamma ($P_{Med}(t)$) frequency range was computed as follow. First, both the

slow gamma power and medium gamma power during running periods were separately
z-scored. Second, a power-ratio score, spanning the [-1 1] interval was computed as: 461
462
463

$$\gamma = \frac{P_{Slow}^z(t) - P_{Med}^z(t)}{P_{Slow}^z(t) + P_{Med}^z(t)} \quad 464$$

465
466

so that a value of -1 would correspond to total medium gamma domination and +1
to slow gamma completely dominating. 467
468
469

Generalized-Linear Model (GLM) 470

The GLM analysis was carried out (separately for periods with and without laser
manipulation) as previously described in [20]. 471
472
473

Pairwise Spike Timing correlations 474

We performed pairwise correlations analysis as previously described in [20]. Firstly,
the analysis was done separately for periods with and without laser manipulation. For
each cell, only the first spike in each theta cycle and only spikes emitted within the
main place field (where the peak firing rate occurs), were considered. For each of these
spikes the simultaneous slow/medium gamma power ratio was calculated, and then
used as a label to further subdivide the spikes. Then, all the cell pairs in the population
of simultaneously recorded place cells were considered. Each pair (A,B) was defined
by 1) the spatial distance between the place fields of cell A and B, computed as the
distance between the centers of mass (using the distance between the fields peaks did
not change the results) and 2) the average phase interval between the spikes selected
for the two cells. The latter was computed by taking spikes of cell A as reference
and within each theta cycle (for which a spike from both cells was available) taking
the $d\theta_{A \rightarrow B}(k)$ (where k stands for the kth theta cycle), that is, the signed difference
between the phase of the spike of cell A and that of cell B spike. The center of mass
of the $d\theta_{A \rightarrow B}$ distribution was then computed and used as a measure of the average
phase offset between that cell pair. The spatial distance and phase distance were then
organized in a two-dimensional space, and the average phase offset was calculated for a
range of spatial distances, provided that there were at least ten pairs of cells available
in that range. The analysis was repeated using cell pairs from different subgroups, and
selecting spikes released under a particular gamma balance. 475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

Bayesian Decoding 497

Bayesian decoding analysis were carried out as previously described in [20]. First we
separated periods with and without laser manipulation and analysed them indepen-
dently from each other. We selected periods of active locomotion and segmented time
using the peaks of theta oscillation (extracted from the stratum lacunosum molecu-
lare). A sliding window of 30 ms length, with an offset of 10 ms, was used to further
divide each theta period. For each of these sub-windows, we built a population vector
 $\vec{\eta}(t)$, where t indicates the time within the theta cycle. Using Bayes' formula, we com-
puted $P(x|\vec{\eta}(t))$: the likelihood of position on the track x given the population activity. 498
499
500
501
502
503
504
505
506

507 The set of probabilities $P(\vec{\eta}(t))|x)$ were obtained from marginalizing the result of the
508 GLM over the phase of spiking. The resulting probability density $P(x, t)$ was normal-
509 ized so that $\sum_x P(x, t) = 1$ for each time window t that contained 3 spikes or more.
510 Time windows with 3 or less spikes were excluded from further analysis. Similarly,
511 theta cycles with less than n 'active' time windows were removed from the following
512 analysis (n was set to 5 when considering the entire cell population and decreased
513 to 3 when decoding from subgroups of cells). For each theta cycle we computed two
514 scores, using the normalized probability density. The amount of 'local' information
515 in the activity was first quantified by summing the probability concentrated around
516 the current position of the animal $\Upsilon_{Local} = \sum_t P(x^*, t)$. x^* denotes the set of spa-
517 tial bins in a range of 5 cm of the animal position at time t . Running a set of linear
518 regression over a modified version of the $P^*(x, t)$ matrix, where the 'local' decod-
519 ing probability density had been subtracted out of the original $P(x, t)$ so that we
520 could factor out the effect of positional decoding from the reconstructed trajectory),
521 allowed us to detect the presence of 'non-local' sequence-like activity over a signif-
522 icant spatial interval around the animal position. The best-fit was identified among
523 these regressions, overlapping with the largest amount of probability density. That is,
524 $\Upsilon_{NonLocal} = \max_{\beta} \sum_k P^*(x_{\beta(k)}, t_{\beta(k)})$ where β indicates a set of linear parametriza-
525 tions of x and t : $x = \beta_1 + t \times \beta_2$. Importantly β_2 was taken to be always > 0 so to
526 exclude fits very close to the Υ_{Local} defined above. The same procedure was applied
527 using different set of cells to compute the probability density, so to obtain an estima-
528 tion of the spatial information carried by specific cell groups (the entire population
529 and either phase precessing or phase locking cells). Theta cycles were further classi-
530 fied according to the simultaneously expressed gamma power ratio. To compare the
531 nature of activity across different cell populations, the decoding scores obtained from
532 each cell group were first normalized to $\max_{\Theta} \Upsilon = 1$ (where the max is taken over all
533 available theta cycles); then, for each theta cycle in which enough spikes were emitted
534 by cells from both independent cell groups, we computed the difference between the
535 two obtained decoding scores Υ_1 and Υ_2 (either Local or Non-Local) as the distance
536 of the point (Υ_1, Υ_2) from the equal-score diagonal $\Upsilon_1 = \Upsilon_2$.
537

538 **Statistics**

539 Data analyses were performed using custom MATLAB scripts (The Math Works).
540 Paired and unpaired t- tests were performed using standard built-in MATLAB func-
541 tions. 2-D Kolmogorov-Smirnov test was performed using custom code based on the
542 Peacock algorithm. All tests were two-tailed, except where stated otherwise.
543

544

545 **Acknowledgments**

546

547 We thank Morgane Audrain for help with the 3D illustration of the Hybrid Drive, Jor-
548 dan Carpenter, Abraham Z. Volland, the Kentros and Battaglia labs for comments on
549 the manuscript and helpful discussions at different stages of the project. This work was
550 supported by the European Union's Horizon 2020 research and innovation program
551 (MGate, grant agreement no. 765549; M.G., O.C., C.K. and F.P.B.), the European
552 Research Council (ERC) Advanced Grant "REPLAY-DMN" (grant agreement no.

833964; F.P.B.), and European Union’s Horizon 2020 Research and Innovation Program Grant “BrownianReactivation” (grant agreement no. 840704; F.S.), FRIPRO ToppForsk grant Enhanced Transgenics (90096000) of the Research Council of Norway (O.C., Q.Z. and C.K), the Kavli Foundation (O.C., Q.Z. and C.K), the Centre of Excellence scheme of the Research Council of Norway—Centre for Biology of Memory and Centre for Neural Computation (O.C., Q.Z. and C.K), The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits (O.C., Q.Z. and C.K), and the National Infrastructure scheme of the Research Council of Norway—NORBRAIN (O.C., Q.Z. and C.K).

Author contributions

Conceptualization: M.G., O.C., F.S., C.K. and F.P.B.; Investigation and Data Curation: M.G. and O.C.; Methodology and Software: M.G., O.C., Q.Z., F.S., C.K. and F.P.B.; Resources: C.K. and F.P.B.; Formal Analysis and Visualization, F.S., M.G. and O.C.; Writing – Original Draft: M.G., O.C. and F.P.B.; Writing – Review & Editing: M.G., O.C., F.S., C.K. and F.P.B.; Supervision and Funding Acquisition: F.S., C.K. and F.P.B.

Ethics declarations

The authors declare no competing interests.

References

- [1] AHMED, O. J., AND MEHTA, M. R. Running speed alters the frequency of hippocampal gamma oscillations. 7373–7383. Publisher: Society for Neuroscience Section: Articles. 580
- [2] BIERI, K. W., BOBBITT, K. N., AND COLGIN, L. L. Slow and fast gamma rhythms coordinate different spatial coding modes in hippocampal place cells. 670–681. 583
- [3] BITTNER, K. C., GRIENBERGER, C., VAIDYA, S. P., MILSTEIN, A. D., MACKLIN, J. J., SUH, J., TONEGAWA, S., AND MAGEE, J. C. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. 1133–1142. Number: 8 Publisher: Nature Publishing Group. 586
- [4] BLANKVOORT, S., WITTER, M. P., NOONAN, J., COTNEY, J., AND KENTROS, C. Marked diversity of unique cortical enhancers enables neuron-specific tools by enhancer-driven gene expression. 2103–2114.e5. 590
- [5] BRUN, V. H., OTNÆSS, M. K., MOLDEN, S., STEFFENACH, H.-A., WITTER, M. P., MOSER, M.-B., AND MOSER, E. I. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. 2243–2246. Publisher: American Association for the Advancement of Science. 593
- [6] BUZSÁKI, G., AND TINGLEY, D. Space and Time: The Hippocampus as a Sequence Generator. *Trends in Cognitive Sciences* 22, 10 (Oct. 2018), 853–869. 597

599 [7] BUZSÁKI, G., AND MOSER, E. I. Memory, navigation and theta rhythm in
600 the hippocampal-entorhinal system. 130–138. Number: 2 Publisher: Nature
601 Publishing Group.

602 [8] CABRAL, H. O., VINCK, M., FOUQUET, C., PENNARTZ, C. M. A., RONDI-
603 REIG, L., AND BATTAGLIA, F. P. Oscillatory dynamics and place field maps
604 reflect hippocampal ensemble processing of sequence and place memory under
605 NMDA receptor control. 402–415.

606 [9] CHANCE, F. S. Hippocampal phase precession from dual input components.
607 16693–16703. Publisher: Society for Neuroscience Section: Articles.

608 [10] CHUONG, A. S., MIRI, M. L., BUSSKAMP, V., MATTHEWS, G. A. C., ACKER,
609 L. C., SØRENSEN, A. T., YOUNG, A., KLAPOETKE, N. C., HENNINGER, M. A.,
610 KODANDARAMAIAH, S. B., OGAWA, M., RAMANLAL, S. B., BANDLER, R. C.,
611 ALLEN, B. D., FOREST, C. R., CHOW, B. Y., HAN, X., LIN, Y., TYE, K. M.,
612 ROSKA, B., CARDIN, J. A., AND BOYDEN, E. S. Noninvasive optical inhibition
613 with a red-shifted microbial rhodopsin. 1123–1129. Number: 8 Publisher: Nature
614 Publishing Group.

615 [11] COLGIN, L. L., DENNINGER, T., FYHN, M., HAFTING, T., BONNEVIE, T.,
616 JENSEN, O., MOSER, M.-B., AND MOSER, E. I. Frequency of gamma oscillations
617 routes flow of information in the hippocampus. 353–357. Number: 7271 Publisher:
618 Nature Publishing Group.

619 [12] DAVOUDI, H., AND FOSTER, D. J. Acute silencing of hippocampal CA3 reveals
620 a dominant role in place field responses. 337–342. Number: 3 Publisher: Nature
621 Publishing Group.

622 [13] DRAGOI, G., AND BUZSÁKI, G. Temporal encoding of place sequences by
623 hippocampal cell assemblies. 145–157.

624 [14] DRIEU, C., AND ZUGARO, M. Hippocampal sequences during exploration:
625 Mechanisms and functions.

626 [15] FERNÁNDEZ-RUIZ, A., OLIVA, A., NAGY, G. A., MAURER, A. P., BERÉNYI,
627 A., AND BUZSÁKI, G. Entorhinal-CA3 dual-input control of spike timing in the
628 hippocampus by theta-gamma coupling. 1213–1226.e5.

629 [16] FOSTER, D. J., AND WILSON, M. A. Hippocampal theta sequences. 1093–1099.
630 eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/hipo.20345>.

631 [17] GRIENBERGER, C., AND MAGEE, J. C. Entorhinal cortex directs learning-related
632 changes in CA1 representations. 554–562. Number: 7936 Publisher: Nature
633 Publishing Group.

634 [18] GROENEBOOM, N. E., YATES, S. C., PUCHADES, M. A., AND BJAALIE, J. G.
635 Nutil: A pre- and post-processing toolbox for histological rodent brain section
636 images.

637 [19] GUARDAMAGNA, M., EICHLER, R., PEDROSA, R., AARTS, A., MEYER, A. F.,
638 AND BATTAGLIA, F. P. The hybrid drive: a chronic implant device combining
639 tetrode arrays with silicon probes for layer-resolved ensemble electrophysiology
640 in freely moving mice. 036030. Publisher: IOP Publishing.

641 [20] GUARDAMAGNA, M., STELLA, F., AND BATTAGLIA, F. P. Heterogeneity of
642 network and coding states in mouse CA1 place cells. 112022.

643 [21] HASSELMO, M. E., AND STERN, C. E. Theta rhythm and the encoding and
644

retrieval of space and time. 656–666. 645

[22] HUXTER, J., BURGESS, N., AND O'KEEFE, J. Independent rate and temporal coding in hippocampal pyramidal cells. 828–832. Number: 6960 Publisher: Nature Publishing Group. 646
647
648

[23] LASZTÓCZI, B., AND KLAUSBERGER, T. Hippocampal place cells couple to three different gamma oscillations during place field traversal. 34–40. 649
650

[24] LISMAN, J., AND REDISH, A. Prediction, sequences and the hippocampus. 1193–1201. Publisher: Royal Society. 651
652

[25] LIU, C., TODOROVA, R., TANG, W., OLIVA, A., AND FERNANDEZ-RUIZ, A. Associative and predictive hippocampal codes support memory-guided behaviors. eadi8237. Publisher: American Association for the Advancement of Science. 653
654
655

[26] MIDDLETON, S. J., AND MCHUGH, T. J. Silencing CA3 disrupts temporal coding in the CA1 ensemble. 945–951. Number: 7 Publisher: Nature Publishing Group. 656
657
658

[27] MIZUSEKI, K., SIROTA, A., PASTALKOVA, E., AND BUZSÁKI, G. Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. 267–280. 659
660
661

[28] O'KEEFE, J., AND RECCE, M. L. Phase relationship between hippocampal place units and the EEG theta rhythm. 317–330. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/hipo.450030307>. 662
663
664

[29] PUCHADES, M. A., CSUCS, G., LEDERGERBER, D., LEERGAARD, T. B., AND BJAALIE, J. G. Spatial registration of serial microscopic brain images to three-dimensional reference atlases with the QuickNII tool. e0216796. Publisher: Public Library of Science. 665
666
667
668

[30] SCHLESIGER, M. I., CANNONA, C. C., BOUBLIL, B. L., HALES, J. B., MANKIN, E. A., BRANDON, M. P., LEUTGEB, J. K., LEIBOLD, C., AND LEUTGEB, S. The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. 1123–1132. Number: 8 Publisher: Nature Publishing Group. 669
670
671
672

[31] SCHOMBURG, E. W., FERNÁNDEZ-RUIZ, A., MIZUSEKI, K., BERÉNYI, A., ANASTASSIOU, C. A., KOCH, C., AND BUZSÁKI, G. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. 470–485. 673
674
675

[32] SIEGLE, J. H., LÓPEZ, A. C., PATEL, Y. A., ABRAMOV, K., OHAYON, S., AND VOIGTS, J. Open ephys: an open-source, plugin-based platform for multichannel electrophysiology. 045003. 676
677
678

[33] SKAGGS, W. E., MCNAUGHTON, B. L., WILSON, M. A., AND BARNES, C. A. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. 149–172. eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291098-1063%281996%296%3A2%3C149%3A%3AAID-HIPO6%3E3.0.CO%3B2-K>. 679
680
681
682
683

[34] VALERO, M., ZUTSHI, I., YOON, E., AND BUZSÁKI, G. Probing subthreshold dynamics of hippocampal neurons by pulsed optogenetics. 570–574. Publisher: American Association for the Advancement of Science. 684
685
686

[35] WANG, M., FOSTER, D. J., AND PFEIFFER, B. E. Alternating sequences of future and past behavior encoded within hippocampal theta oscillations. 247–250. Publisher: American Association for the Advancement of Science. 687
688
689
690

691 [36] WITTER, M. P., WOUTERLOOD, F. G., NABER, P. A., AND VAN HAEFTEN,
692 T. Anatomical organization of the parahippocampal-hippocampal net-
693 work. 1–24. *eprint*: <https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1749-6632.2000.tb06716.x>.

694 [37] YATES, S. C., GROENEBOOM, N. E., COELLO, C., LICHTENTHALER, S. F.,
695 KUHN, P.-H., DEMUTH, H.-U., HARTLAGE-RÜSAMEN, M., ROSSNER, S.,
696 LEERGAARD, T., KRESHUK, A., PUCHADES, M. A., AND BJAALIE, J. G.
697 QUINT: Workflow for quantification and spatial analysis of features in histological
698 images from rodent brain.

699 [38] ZHENG, C., BIERI, K. W., HSIAO, Y.-T., AND COLGIN, L. L. Spatial sequence
700 coding differs during slow and fast gamma rhythms in the hippocampus. 398–408.

701 [39] ZUTSHI, I., VALERO, M., FERNÁNDEZ-RUIZ, A., AND BUZSÁKI, G. Extrinsic
702 control and intrinsic computation in the hippocampal CA1 circuit. 658–673.e5.

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

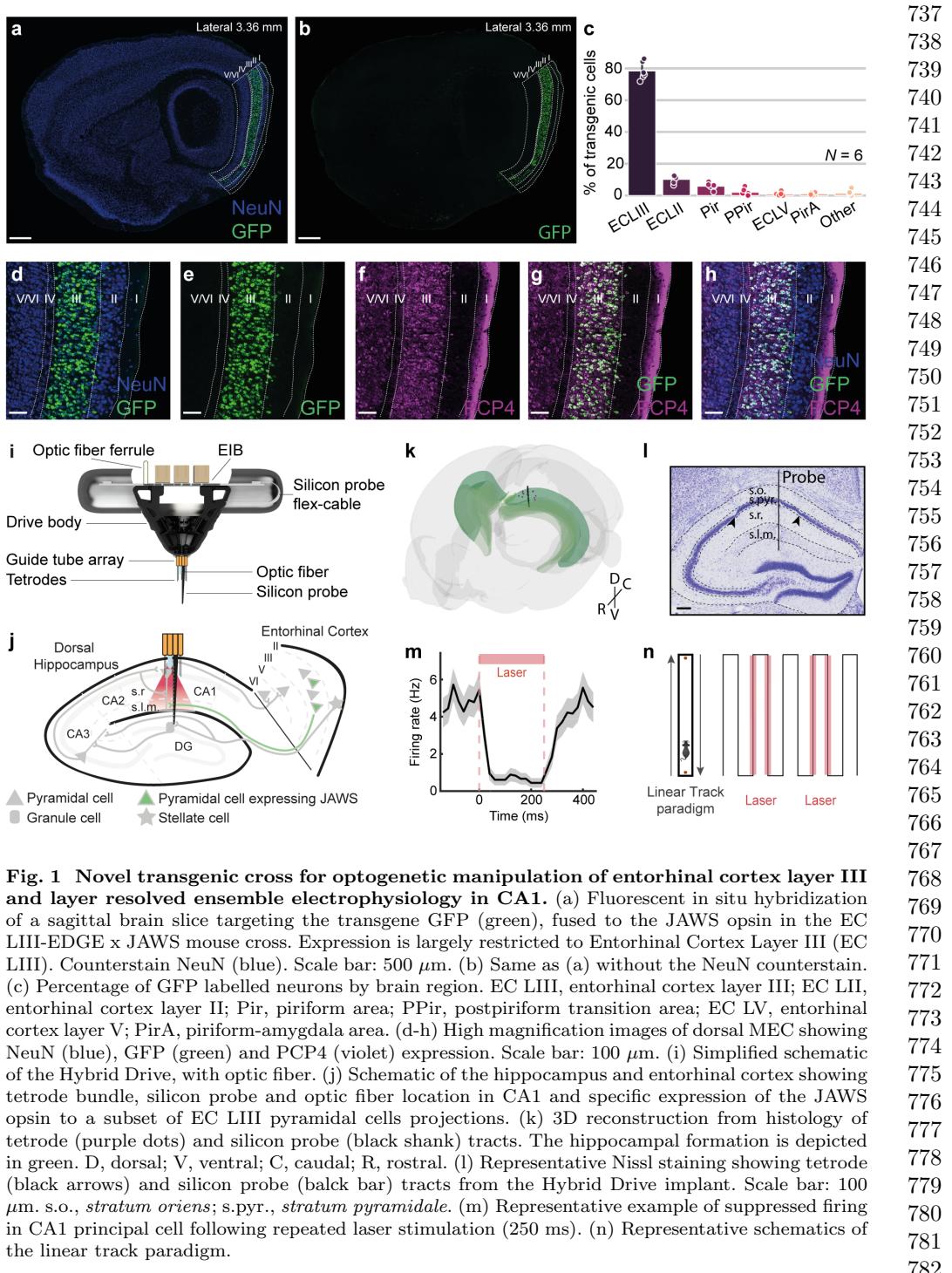
727

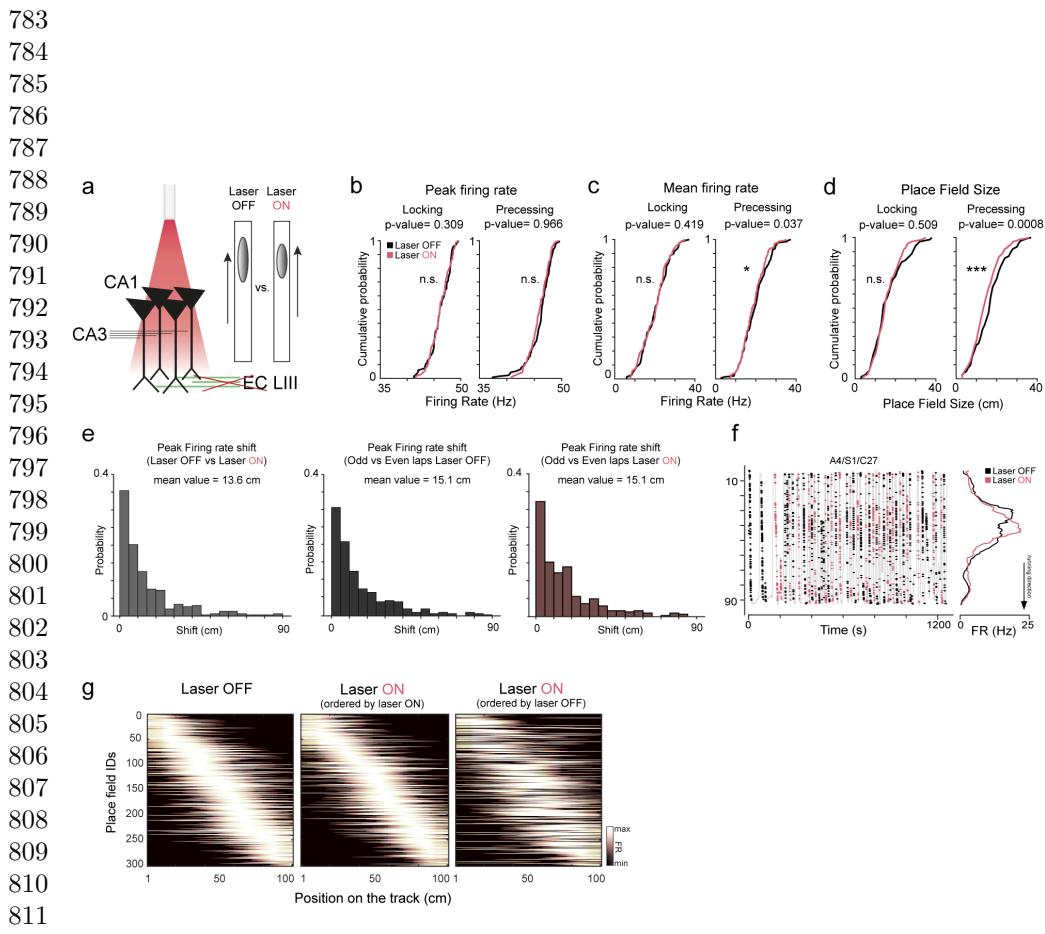
728

729

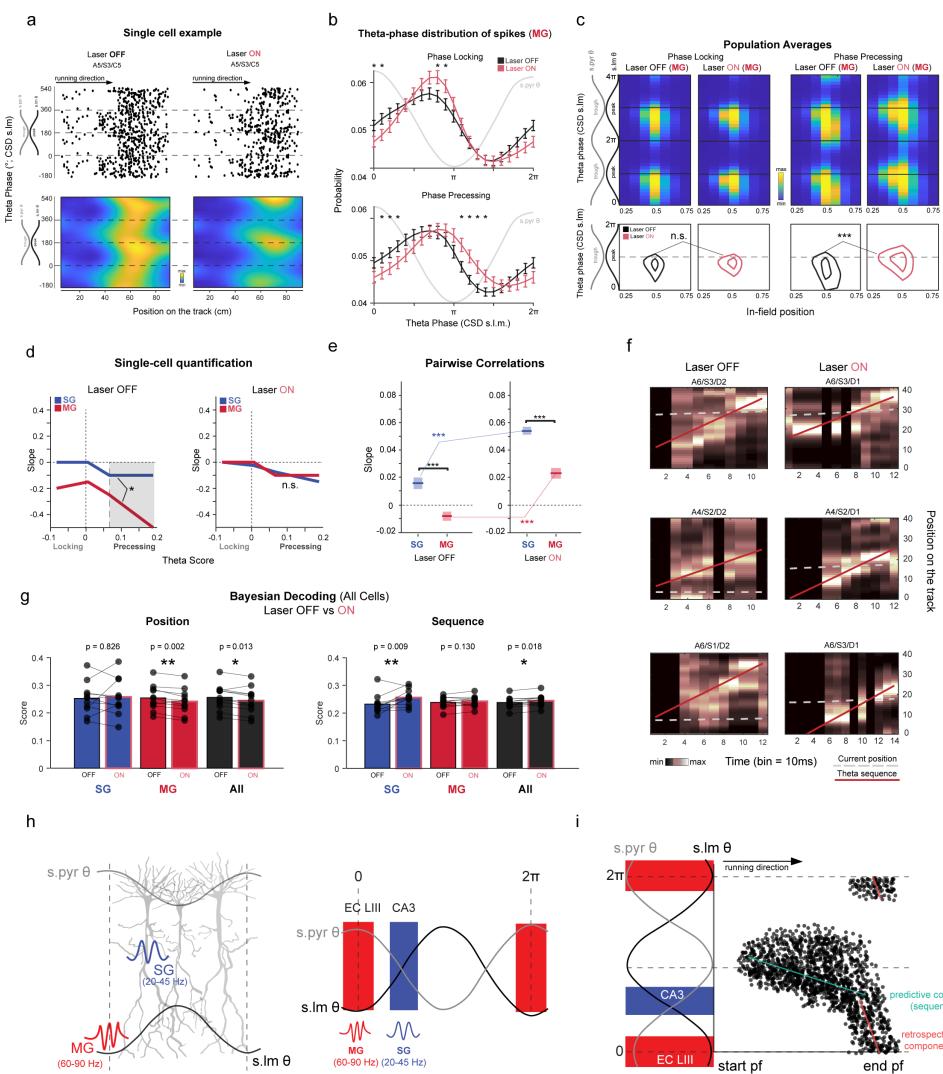
730

731

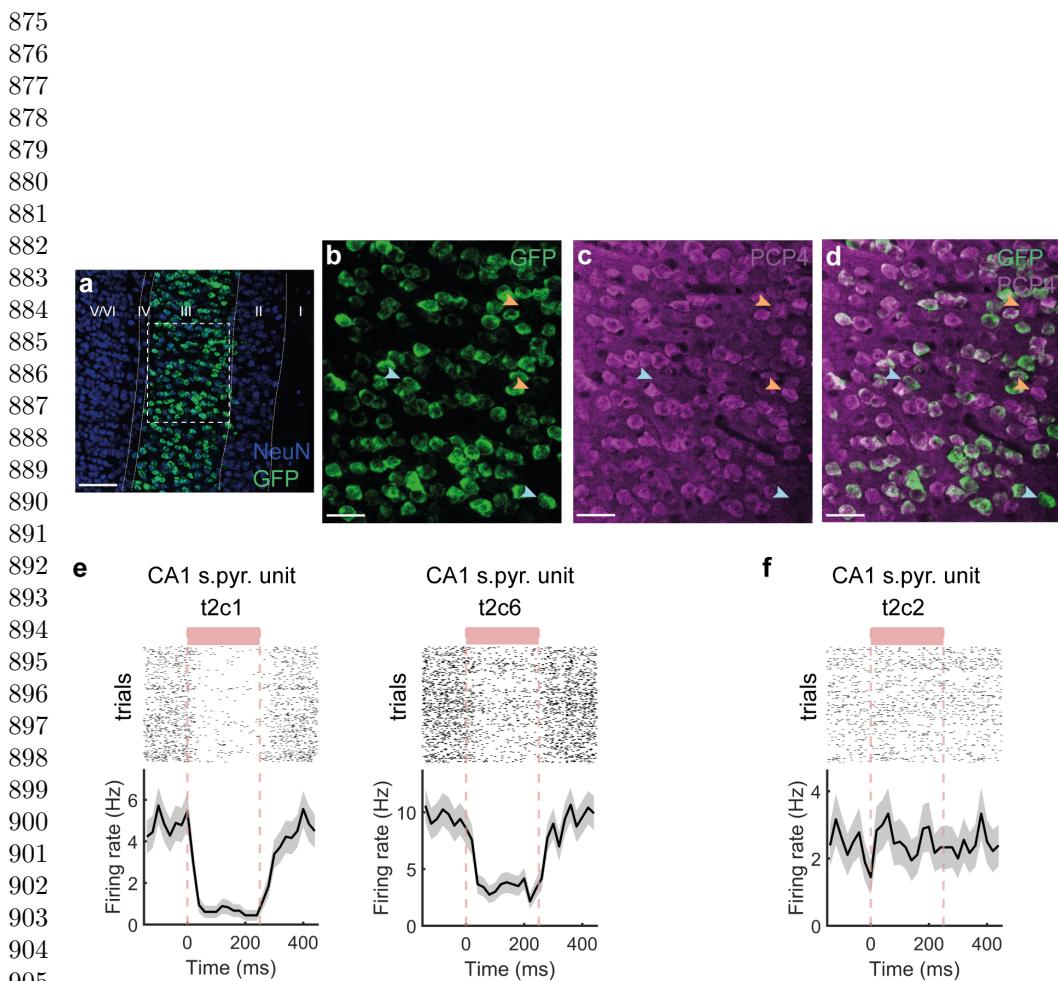

732

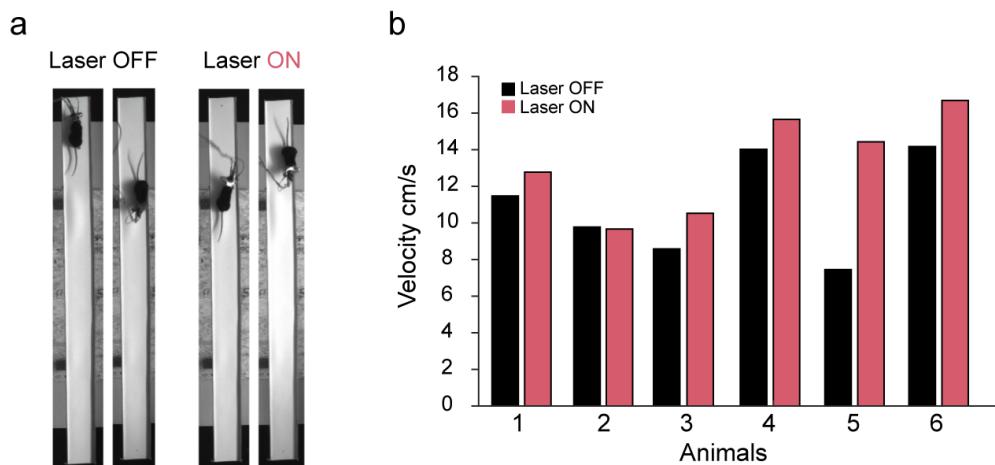

733

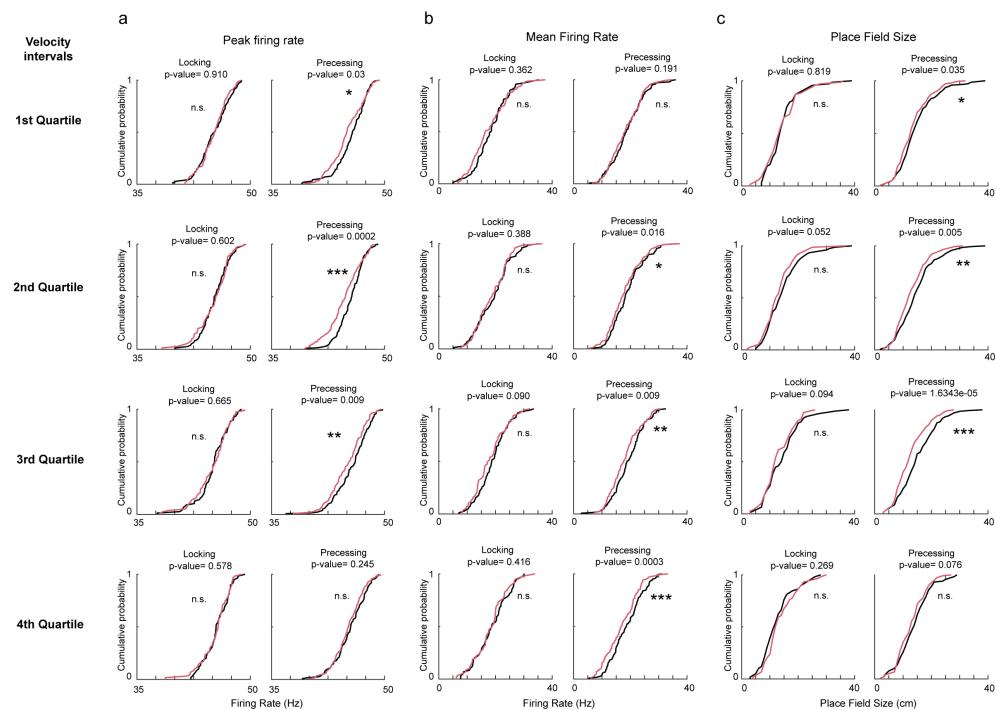
734


735

736




805
806
807
808
809
810
811
812
813 **Fig. 2 Spatial coding in CA1 does not rely on EC LIII direct input.** (a) Schematic illustration of the optogenetic manipulation, selectively blocking the pre-synaptic terminals coming from
814 EC LIII, on the distal dendrites of CA1 pyramidal cells in the s.l.m.. (b-d) Distributions of peak
815 firing rate, mean firing rate and place field size in laser OFF (black) vs laser ON (red) conditions for
816 phase locking and phase precessing fields. (e) Left, amount of shift of the place field center (defined
817 as peak firing rate) between the laser OFF and laser ON conditions. Mean value = 13.6 cm. Center,
818 change between Odd and Even laps in the laser OFF condition. Mean value = 15.1 cm. Right, change
819 between Odd and Even laps in the Laser ON condition. Mean value = 15.1 cm. (f) Representative
820 example of place field on the linear track. Grey: position of the mouse as a function of time, over-
821 laid with spiking activity only in the specified running direction (black dots: laser OFF. Red dots:
822 laser ON). Right: average place field calculated from lap-by-lap spiking activity. (g) All place fields
823 (rows), normalized by their maximum peak firing rate, sorted by their peak firing position on the
824 linear track. * $p<0.05$, ** $p<0.01$, *** $p<0.001$.


Fig. 3 EC LIII input inhibition suppresses theta phase precession but enhances theta sequences. (a) Representative examples of impaired phase precession during periods of optogenetic manipulation (laser ON). Top, Theta phase-position raster plot, bottom phase-position density plot. 0 = peak of theta oscillation in the pyramidal layer. (b) Theta-phase firing probability distribution during MG-network states for phase locking and phase precessing populations, during laser OFF and laser ON periods (* $p < 0.05$, t-test, Multiple Comparison Correction). (c) Top row, global average of the in-field spike probability during medium gamma network states, in Laser OFF (left) and Laser ON (right), for phase locking and phase precessing fields (two theta cycles). Phase 0 = peak of theta oscillation in the pyramidal layer. Bottom row, contour of regions with highest density of spikes for phase locking and phase precessing fields, curves correspond to 90 % and 85 % of the peak value of spike density (same data as top row panels). 2-Dimensional Kolmogorov-Smirnov test for spike densities ($p < 0.001$). (d) Phase-position slope values plotted as a function of the Theta Score for each individual field, for periods of elevated SG and MG. Left, laser OFF. Right, laser ON. ($p < 0.05$, Spearman correlation of Slow vs Gamma ratio vs Slope). (e) Place field distance vs phase distance regression for periods of elevated SG or MG and laser conditions (OFF and ON). All comparisons are statistically significant. Confidence intervals, $p < 0.001$. (f) Examples of encoded position (y axis) reconstruction over a theta cycle (x axis, 1 bin = 10ms). Black-white color scale: posterior probability from Bayesian decoding. Dotted grey line: real position of the animal, used to compute the amount of local coding as the probability density around the line. Red line: best positive-slope fit of probability distribution, used as an estimation of sequential non-local cell activation. (g) Comparison of mean positional and sequential scores from Bayesian Decoding between different gamma conditions (SG in blue, MG in red, all periods in black). Paired t-test. * $p < 0.05$, ** $p < 0.01$. (h) Left, illustration summarizing the layer-resolved preferred phases for the CA1's gamma components, and firing phase preference of CA3 and EC LIII afferent input [31]. (i) We redefine a dual-input model in which CA1's phase precession can be conceived as a heterogeneous phenomenon that arises in a subset of place fields following the interaction between local CA1 firing dynamics and CA3/EC LIII input. We propose that the predictive component of precession ([24]), which consists of a sequence of spatial position with small variations in phase at the entrance and center of the place field, directly arises as a consequence of CA3-CA1 interactions (and more broadly through the tri-synaptic loop). Sequences that arise from these interactions are largely independent of the expression of strong phase precession pattern [26, 12], that instead rely on both CA3 and EC LIII input, occurring at earlier phases and toward the end of the place field (or precession [35], renamed here "retrospective/update component" [17, 35]).

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

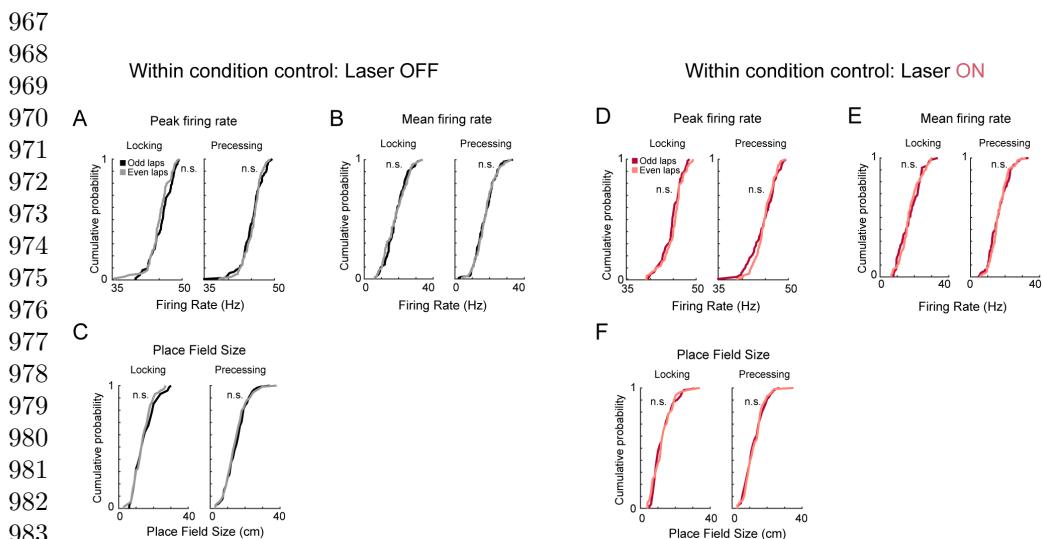
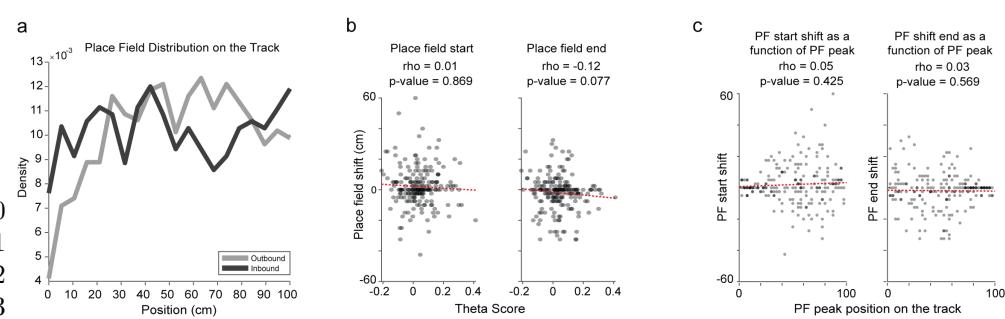
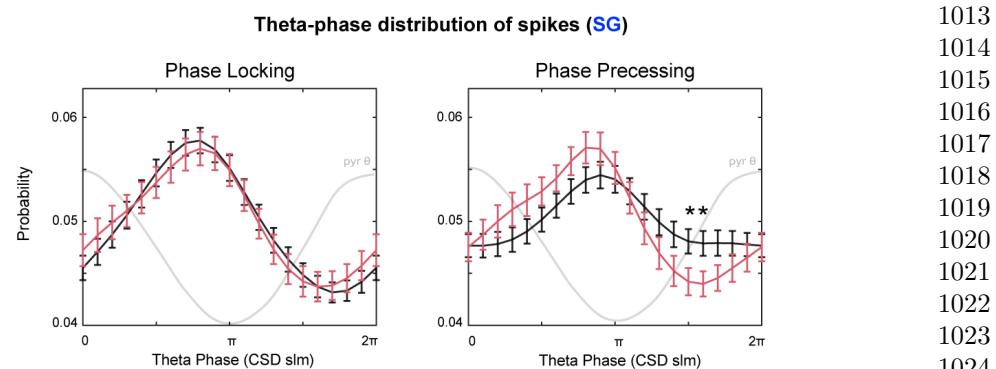


Fig. S2 Velocity performances during the goal-directed linear track task. (a) Examples of mice implanted with a Hybrid Drive in the linear track task during either laser OFF or laser ON runs, for both running directions. (b) Barplots displaying velocity performances across conditions (average across sessions). Periods of immobility (movements < 3 cm/s) were removed.




Fig. S3 Rate and place coding properties across velocity intervals. (a-c) Distributions of peak firing rate, mean firing rate and place field size respectively, across different velocity intervals. Same amount of data in each velocity interval. *p<0.05, **p<0.01, ***p<0.001.

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

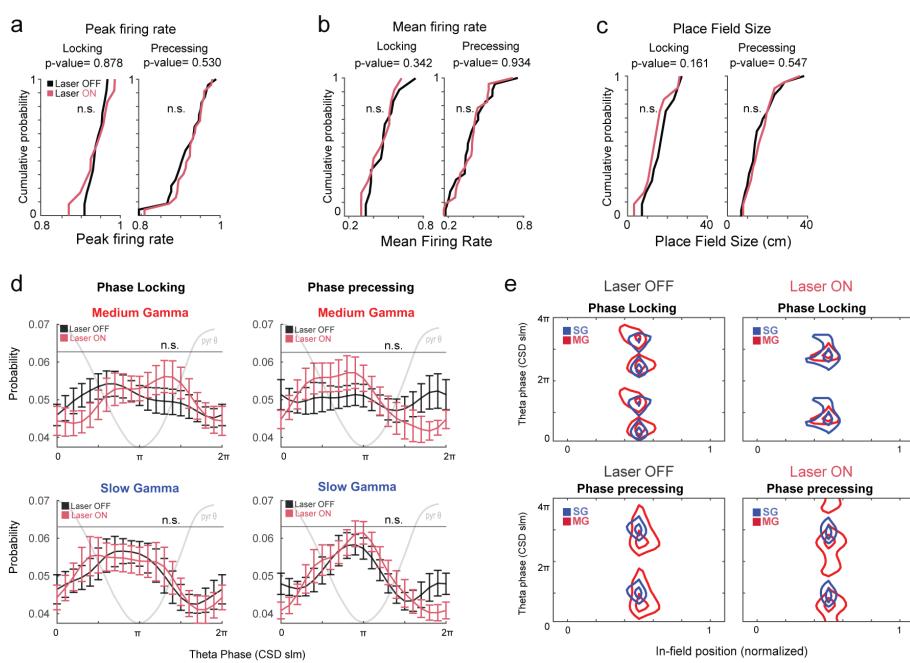
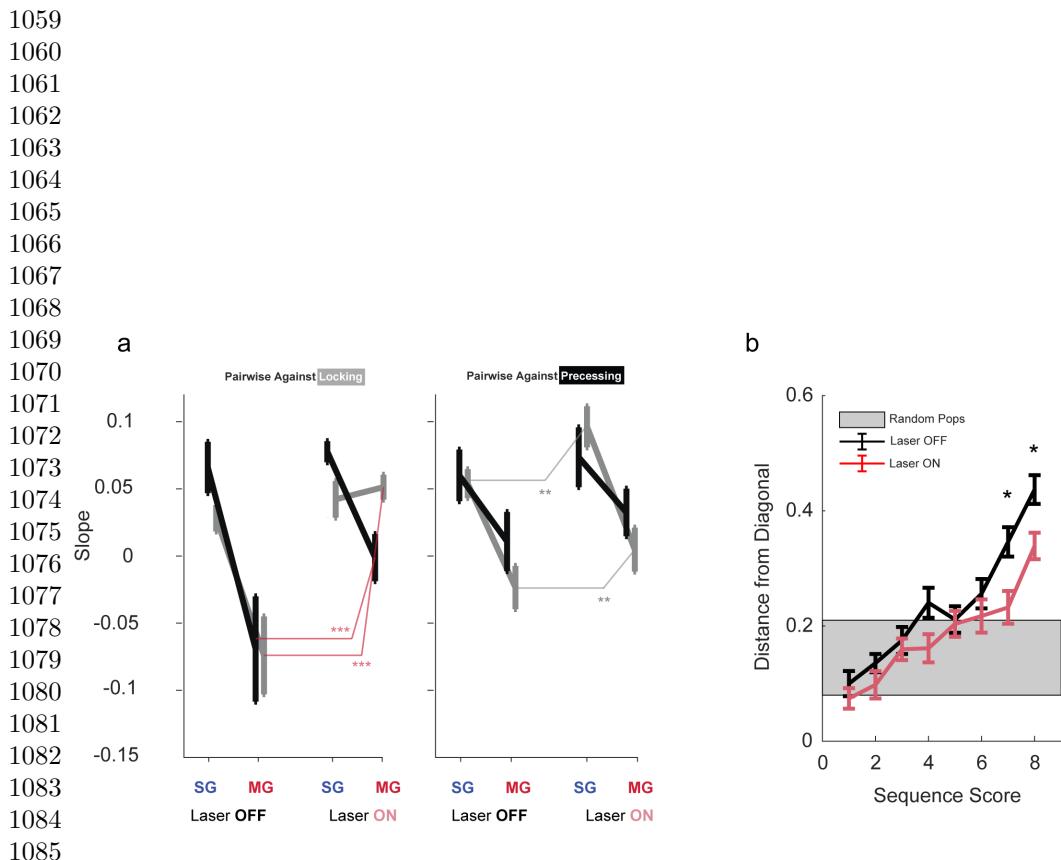


Fig. S4 Rate and place coding properties within conditions. (a-c) Distributions of normalized peak firing rate, mean firing rate and place field size, respectively; using only within conditions data (Odd and Even laps for laser OFF and laser ON separately). No significant differences were found ($p>0.05$; t-test for all conditions all comparisons). (d-f) Same thing but using Odd and Even laps within the Laser ON condition. No significant differences were found ($p>0.05$; t-test for all conditions all comparisons).



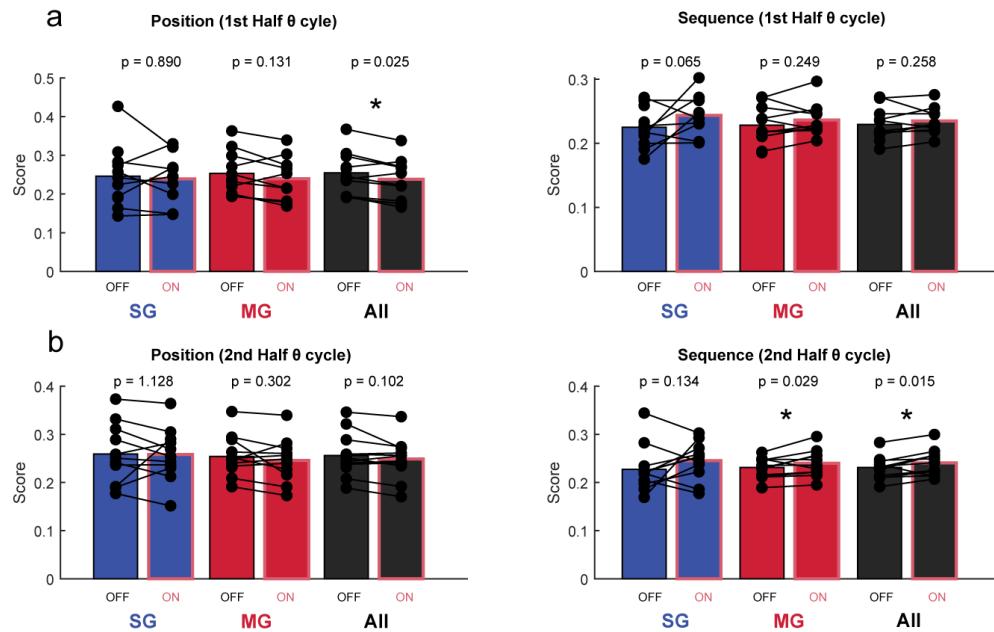
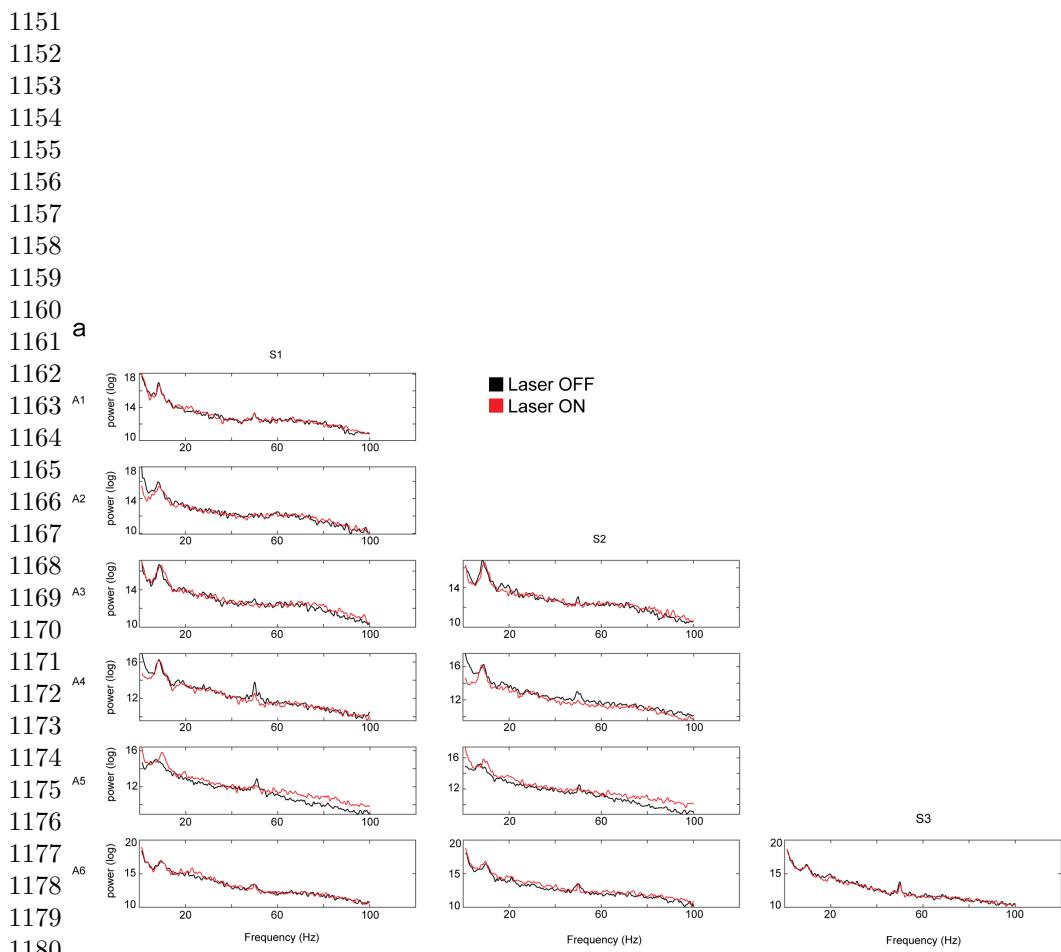

Fig. S6 Theta-phase distribution of spikes during SG network states. (a) Theta-phase firing probability distribution during SG-network states for phase locking and phase precessing populations, during laser OFF and laser ON periods ($p>0.05$, t-test)

Fig. S7 Rate and phase code dynamics in single positive control animals. (a-c) Distributions of normalized peak firing rate, mean firing rate and place field size in laser OFF vs laser ON conditions. All comparison are not statistically significant ($p>0.05$; t-test for all conditions, all comparison). (d) Theta-phase firing probability distribution during MG-and SG-network states for phase locking and phase precessing populations, during laser OFF and laser ON periods ($p>0.05$, ttest, Multiple Comparison Correction). Animals (N=2); session (n=5). (e) Global average of the in-field spike probability during medium gamma network states, in laser OFF (left) and laser ON (right), for phase locking and phase precessing fields. Phase 0 = peak of theta oscillation in the pyramidal layer. Contour of regions with highest density of spikes for phase locking and phase precessing fields. Curves correspond to 90 % and 85 % of the peak value of spike density. 2-Dimensional Kolmogorov-Smirnov test for spike densities ($p>0.05$). Animals (N=2); session (n=5).


1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

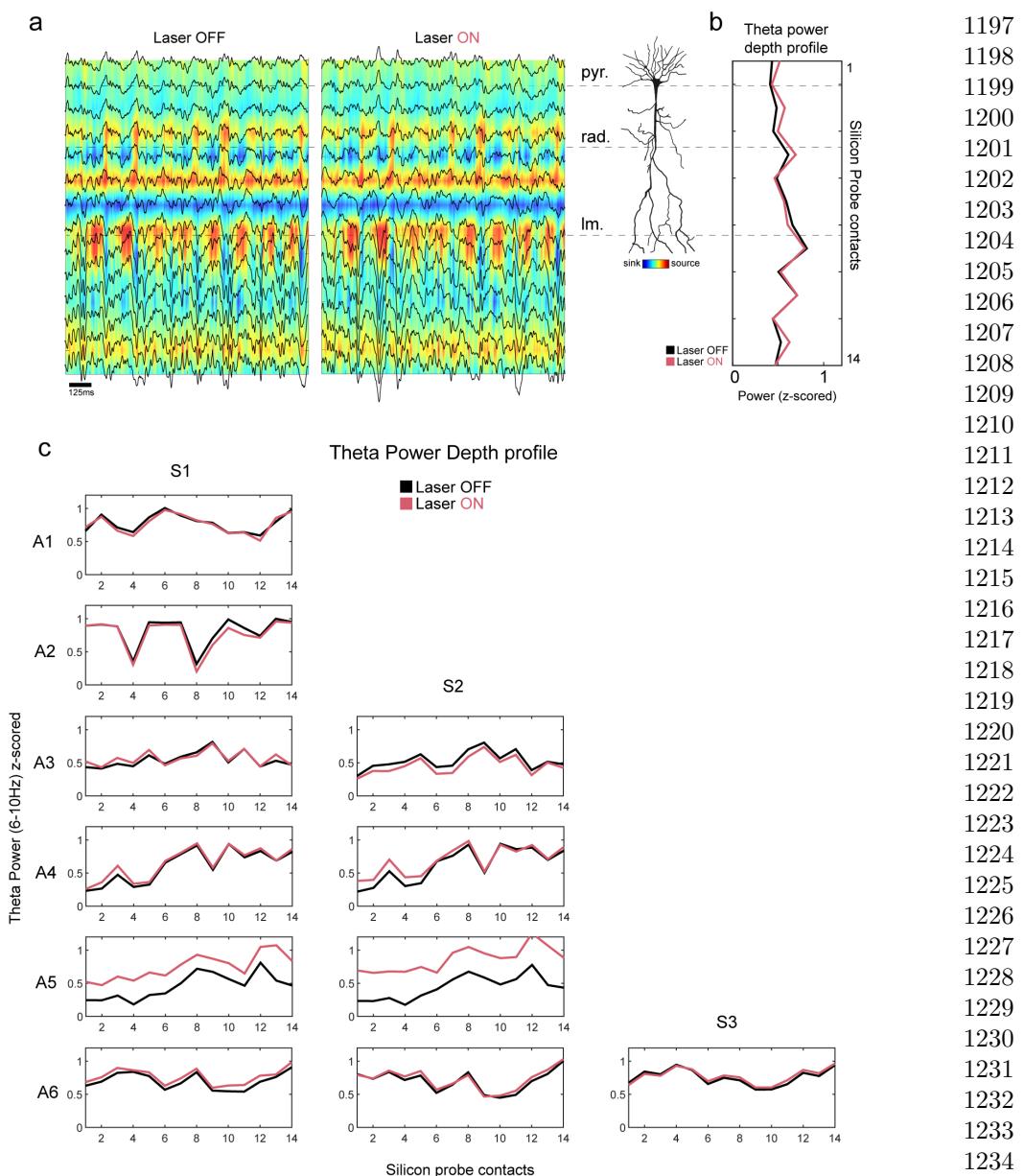


Fig. S9 Bayesian decoding across the theta cycle. (a) Comparison of mean positional and sequential scores between laser OFF vs laser ON periods in different gamma conditions (slow gamma in blue, medium gamma in red, all periods in black) in the first half of the theta cycle. Paired t-test. Statistical values in order of appearance, * $p<0.05$. Position: $p=0.890$, $p=0.131$, $p=0.025$. Sequence: $p=0.065$, $p=0.249$, $p=0.258$. (b) Comparison of mean positional and sequential scores between different gamma conditions (slow gamma in blue, medium gamma in red, all periods in black) in the second half of the theta cycle. Paired t-test. Statistical values in order of appearance; ** $p<0.01$, * $p<0.05$. Position: $p=1.128$, $p=0.302$, $p=0.102$. Sequence: $p=0.134$, $p=0.029$, $p=0.015$.

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

Fig. S11 Layer-resolved theta power profiles (6-10 Hz) in CA1 during optogenetic inhibition of EC LIII direct input. (a) Representative examples of color coded sink and sources currents during laser OFF and laser ON periods. Local field potential traces are superimposed in black. Silicon probe contacts span all CA1 layers. (b) Average theta power depth profile, same session as in (a). (c) Theta power profiles across CA1 layers. Periods of immobility (movements < 3 cm/s) were removed. All animals (N=6), all session (n=11). No differences are found between conditions (laser OFF vs laser ON) - especially in the s.l.m., where EC LIII connections reach CA1 pyramidal neurons. Higher power profiles in both sessions of the Animal 5 are due to higher velocity performances during laser OFF and laser ON runs (Figure S2) - faster velocities coincide with higher power in hippocampal oscillations at all frequency bands [1].

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

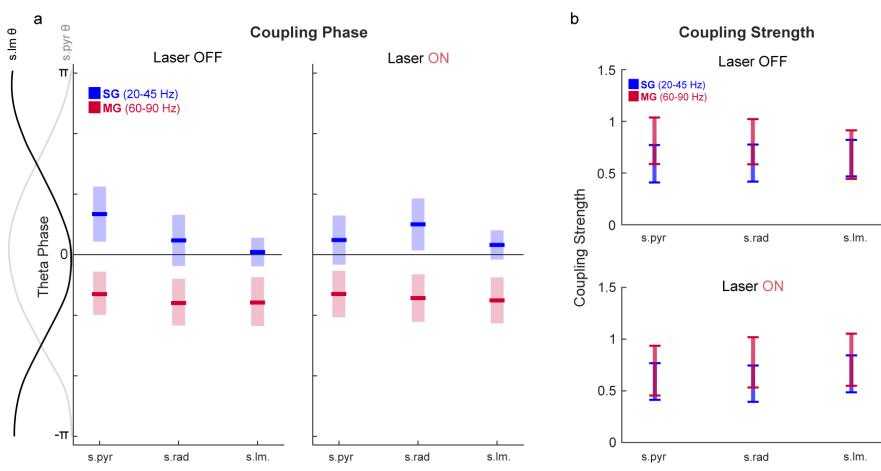
1261

1262

1263

1264

1265


1266

1267

1268

1269

1270

1271 **Fig. S12 Theta-gamma coupling properties in CA1 during transient optogenetic inhi-
1272 bition of EC LIII direct input.** (a) Coupling strength profiles of the slow and medium gamma
1273 components to the underlying theta rhythm, across all CA1 layers. (b) Theta phase preference profiles
1274 of the slow and medium gamma components across all CA1 layers. No differences in both coupling
1275 strength and preferred coupling phase profiles. SG = slow gamma (20-45 Hz). MG = medium gamma
1276 (60-90 Hz).

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288