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Abstract

Bulk tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting
disease-associated variants, while context-specific QTLs show particular relevance for disease.
Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other
phenotypic variables in multi-omic, longitudinal data from blood of individuals of diverse
ancestries. By modeling the interaction between genotype and estimated cell type proportions,
we demonstrate that cell type iQTLs could be considered as proxies for cell type-specific QTL
effects. The interpretation of age iQTLs, however, warrants caution as the moderation effect of
age on the genotype and molecular phenotype association may be mediated by changes in cell
type composition. Finally, we show that cell type iQTLs contribute to cell type-specific
enrichment of diseases that, in combination with additional functional data, may guide future
functional studies. Overall, this study highlights iQTLs to gain insights into the context-specificity
of regulatory effects.

Introduction

Bulk tissue molecular quantitative trait loci (molQTLs) have been valuable in highlighting
potential target genes and gene regulatory mechanisms of disease-associated genetic
variants'~. However, context-specific regulatory variants, such as cell type-specific or response
QTLs, exhibit particular relevance for disease as compared to standard molQTLs from steady-
state tissues*. Mapping cell type interaction expression QTLs by modeling the interaction effect
between the genotype of a SNP and computationally inferred cell type estimates has shown to
aid discovery of cell type-specific effects of expression QTLs®>”. Pinpointing the true mediating
cell type with this approach may still be challenging due to the properties of the interaction
model and correlations between cell type proportions. Thus, rigorous interpretation of cell type
iQTLs is important for inferring insights about the true cell type specificity of these effects.

The etiology of most complex diseases is recognized to be influenced both by genetic and
environmental factors and their interactions®. Detecting gene-environment (GxE) interactions in
genome-wide association studies (GWAS) has proven difficult due to small effect sizes and
computational challenges®'°. Mapping interaction molQTLs for physiological environments, such
as age, sex, smoking, or inflammation, offers an opportunity to identify GxE interactions at the
molecular level with improved statistical power attributed to stronger effects of regulatory
variants. Recently, transcription-based framework has shown the potential to link genes with
genetic variant-age interaction to age-associated diseases'!, suggesting to focus on regulatory
variants to study their complex interplay with other factors contributing jointly to variability in
traits and diseases.

To comprehensively assess the utility of interaction molQTLs, we performed cell type interaction
molQTL (iQTL) mapping from gene expression (RNA-seq) and DNA methylation (EPIC array) in
1,319 participants of diverse ancestries as part of the Trans-Omics for Precision Medicine
(TOPMed) program Multi-Ethnic Study of Atherosclerosis (MESA) Multi-Omics pilot with data
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from two time points (exam 1 and exam 5, ten years apart) (Figure 1A, Figure S1A). This
longitudinal design enabled us to assess the robustness of cell type iQTLs. Additionally, we
characterize the sharing, replication and functional enrichment of cell type iQTLs with respect to
their direction of effect. MESA phenotyping data allows us to map age, sex, and smoking iQTLs
and study the mediation by cell type iQTLs. Finally, we highlight the informativeness of cell type
iQTLs for proposing cell type-specific mechanisms underlying diseases.

Material and Methods

MESA Multi-Omics pilot

The Multi-Ethnic Study of Atherosclerosis (MESA) is a prospective cohort study with the goals to
identify progression of subclinical atherosclerosis'?. MESA recruited 6,814 participants at six
field centers, ages 45-84 years and free of clinical cardiovascular disease, during 2000-2002.
MESA included multiple race/ethnic groups (38% non-Hispanic white, 28% African-American,
22% Hispanic and 12% Asian-Americans), is 53% female, and includes 49% ever-smokers
(18% current). All MESA participants provided written informed consent, and the study was
approved by the institutional review boards of collaborating institutions.

The MESA Multi-Omics pilot data includes 30x whole genome sequencing (WGS) of ~4,600
individuals through the Trans-Omics for Precision Medicine (TOPMed) Project®, with ~1,000
participants samples collected from two time points (exam 1 and exam 5, ten years apart).
Whole blood and/or cell types (peripheral blood mononuclear cells (PBMCs), monocytes, T
cells) were assayed for transcriptome (RNA-seq), lllumina EPIC methylomics data, plasma
targeted and untargeted metabolomics data, and plasma proteomics data. The MESA Multi-
Omics pilot biospecimen collection, molecular phenotype data production and quality control
(QC) are described in detail in the Supplemental Material and Methods.

Here, we analyzed PBMC gene expression data for 19,699 genes from exam 1 (n = 931) and
exam 5 (n = 864), and whole blood DNA methylation (DNAm) data for 747,868 CpG sites from
exam 1 (n =900, CpG sites passing QC - 740,291) and/or exam 5 (n = 899, CpG sites passing
QC - 747,771) together with genotype data from TOPMed Freeze 8.

Cell type deconvolution

We estimated the cell type composition of PBMC expression and whole blood DNAm by
applying two widely used methods - CIBERSORT" and the Houseman method'®, respectively.

We ran CIBERSORT with default settings, using the LM22 signature matrix provided with the
software, on the TPM gene expression matrix containing 2,648 samples from the RNA-seq
analysis freeze. We limited our analyses to broad cell types and added the proportions of cell
subgroups for B cells, T cells, and NK cells.
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We used the Houseman method implemented in the meffil R package'’ together with the whole
blood reference from Reinius et al.'® by using the me££i1 . qc function with "blood gse35069
complete" reference applied on the DNAm IDAT files. Importantly, in meffil each sample is
individually normalized to the cell type reference dataset to avoid dependence between other
samples and cell type composition estimates.

For downstream analysis of cell type estimates, we excluded data points per cell type that were
more than +3 standard deviations (SD) from the mean.

Variability in cell type composition, gene expression, and DNAmM

To estimate the unique contribution of different traits to variation in estimated cell type
proportions, gene expression, and DNAm, we used fixed effects linear models with no
interactions. We applied inverse normal transformation on the response variable (cell type
proportions, gene expression levels of autosomal genes, DNA methylation levels of 100,000
randomly selected autosomal CpG sites). More specifically, we used the Type Il test for
computation of sums of squares (SS) to assess the significance of the main effects'® using the
car package in R. To calculate the proportion of variation uniquely explained by a given trait, we
used the eta squared metric by dividing the SS of each term by the total SS.

Association between estimated cell type proportions and different traits

The effect of various traits on estimated cell type proportions was measured using a linear
model. First, we applied inverse normal transformation on the estimated cell type proportions to
justify the assumptions of linear regression. To avoid ties, we added random noise from normal
distribution N(0, 107'®). Second, we leveraged the rich phenotype data available in MESA. We
selected traits from 11 different categories, defined as baseline covariates (including age, sex,
genotype PCs), anthropometric, smoking habits, alcohol consumption, physical activity,
atherosclerosis, blood pressure, inflammation, kidney function, lipids, and lung function. Log-
transformation with a pseudo-count of 1 was applied on the molecular traits, data points with
>|3| SD from the mean were excluded, and numeric variables were scaled by dividing by two
times its SD. This transformation results in comparable coefficients for untransformed binary
traits and numeric traits?°. Third, linear regression was fit with a cell type proportion as response
variable and a trait as explanatory variable adjusted for age, sex, self-reported race/ethnicity,
educational attainment, site, and month of the exam. If genotype PCs were the traits of interest,
then self-reported race/ethnicity was excluded from the covariates list. To adjust for multiple
correction, we applied Bonferroni correction and considered associations to be significant, if P-
value < 0.05 / (# of traits groups x # cell type groups), where the count of cell type groups is
equal to 5, corresponding to B cells, T cells/CD4 T cells/CD8 T cells, NK cells, monocytes, and
neutrophils.

Mapping of interaction QTLs (iQTLs)

We mapped interaction QTLs (iQTLs) using tensorQTL2'. Namely, we fit a linear regression
model Y ~ G + E + GxE + C, where Y is the molecular phenotype (gene expression or DNAm;
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inverse normal transformed), G is the genotype of the genetic variant with MAF > 0.01 in the
MESA Multi-Omics pilot data, E is the environmental variable (estimated cell type proportions,
age, sex, smoking phenotype; mean-centered), GxE is the interaction effect between the
genotype and environmental variable, and C represents additional covariates that correspond to
11 genotype PCs from TOPMed Freeze 8, sex, and PEER factors®. Estimation of PEER factors
are described in the Supplemental Material and Methods. Smoking phenotypes considered as
environmental variables were current smoking (binary variable), smoking status (hnumeric
variable with current smokers coded as 2, former smokers as 1, and never smokers as 0), and
cotinine levels (inverse normal transformed with random noise added from normal distribution
N(0, 107 to avoid ties).

As for regular QTL mapping in the MESA Multi-Omics data (Supplemental Material and
Methods), iQTLs were tested for variants +1Mb of the gene’s TSS or +500kb of the CpG site.
To avoid potential outlier effects in cell type iQTLs, only variants with MAF > 0.05 in the samples
belonging to the top and bottom halves of the distribution of estimated cell type proportions were
included to the analyses. For age, sex, and smoking iQTLs, we used more stringent MAF filter
in the top and bottom halves of interaction values (MAF interaction > 0.1).

To identify genes with significant ieQTLs (ieGenes) or CpG sites with significant imeQTLs
(imeSites), the top nominal P-values for each molecular phenotype were corrected for multiple
testing at the phenotype level using eigenMT?, followed by Benjamini-Hochberg procedure
across molecular phenotypes. As the significance threshold accounting for multiple testing, we
used false discovery rate (FDR) < 0.05 for cell type iQTLs and FDR < 0.25 for trait iQTLs. We
further combined significant iQTLs across exams by selecting the molecular phenotype-variant
pair with lower interaction P-value.

We note that cell type iQTLs could be confounded by factors that affect both the cell type
abundance and/or also modify the molQTL effect size, but correcting cell type abundances for
these factors and using residualized cell type proportions in the iQTL model rather reduces the
study power in most typical scenarios (Supplemental Note).

We noticed considerably lower number of monocyte imeQTLs as compared to other cell type
imeQTLs, probably attributable to the lower variance in monocyte estimates (SD = 0.02, SD >
0.03 for other cell type estimates). Thus, we only show data related to monocyte imeQTLs on
the supplemental figures and tables.

Direction of iQTL effect

For continuous interaction variables, we grouped the direction of iQTL effect into three
categories: 1) positive (increasing) - QTL effect size is positively correlated (increasing) with the
interaction variable, 2) negative (decreasing) - QTL effect size is negatively correlated
(decreasing) with the interaction variable, 3) uncertain. Assignment of iQTLs into these three
categories was done based on the estimates from the linear model. iQTL with nominally non-
significant genotype main effect (Pg > 0.05) was assigned to the “uncertain” group. For
clarification, with mean-centered interaction variables, the genotype main effect corresponds to
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the QTL effect when the interaction variable is 0. Thus, the genotype effect crosses in the
middle when plotting interaction variable against molecular phenotype and coloring data points
according to the genotype of the iQTL variant. iQTL with nominally significant genotype main
effect (Pe < 0.05) was assigned to the “positive” or “negative” group, if the product of genotype
main effect and interaction effect (4c X 4ex) was greater or smaller than 0, respectively.

For binary interaction variables, we fit QTL models separately for both groups. We assigned
iQTL into one of the four categories: 1) no effect in one - nominally non-significant genotype
effect if one of the groups, 2) magnitude difference - nominally significant genotype effect in
both of the groups with the same sign of the estimate, 3) opposite effect - nominally significant
genotype effect in both of the groups with the opposite sign of the estimate, 4) uncertain -
nominally non-significant genotype effect in both of the groups.

Sentinel CpG sites for imeQTLs

Using bisulfite DNA sequencing, significant correlation in DNAm between CpG sites (co-
methylation) has been observed for short distances up to 1kb, which decreases to baseline after
2kb?. To investigate the extent of co-methylation in the EPIC array, we calculated pairwise
Pearson correlation coefficients between CpG sites within 500kb on chromosome 22. We used
inverse normal transformed DNAm data from exam 5 as an example. We observed that the
degree of co-methylation dropped rapidly within 500bp and stayed on average around 0.19 after
1kb. Of note, a similar observation of shorter distances for stronger co-methylation has been
previously made based on the lllumina 450K array?®. Based on this, for the imeQTLs we defined
sentinel CpG sites to be used in all the downstream analyses by keeping the CpG site-variant
pair with the most significant interaction P-value in a 2kb window (£1kb from the most
associated CpG site).

Reproducibility of iQTLs

We leveraged data from two time points in MESA to estimate reproducibility of iQTLs by treating
one of the time points as discovery and the other as validation. We calculated the proportion of
true positives (11)%® based on the interaction P-value observed in the validation data using the
gvalue package in R. This metric was used, if more than 20 or more than 100 phenotype-variant
pairs were found in the validation data (setting lambda = 0.5 or lambda = 0.85 in the piOest ()
function, respectively). Additionally, we calculated the fraction of phenotype-variant pairs
showing at least nominal significance of the interaction effect in the validation data.

Sharing of cell type iQTLs

We estimated sharing among the same type of cell type iQTLs using the m4 statistic as in the
reproducibility of iQTLs analysis.

To estimate sharing between cell type ieQTLs and sentinel cell type imeQTLs (FDR < 0.05 in
exam 1 or exam 5), we focused on ieVariants that are in LD (r? = 0.5 within 1Mb) with
imeVariants, and vice versa. First, we calculated LD using MESA multi-omics pilot data between
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the cell type iVariants. Second, for a given query and validation set, we calculated the
proportion of variants from the query set to be in LD with the variants from the validation set with
the denominator set to the minimum of variants from the query and validation set, termed as the
normalized overlap. Third, to estimate the significance of sharing between a cell type ieQTL
(query set) and a cell type imeQTL (validation set), or vice versa, we asked whether the query
set with positive direction is more likely to overlap with the validation set with positive direction
as compared to the validation set with negative direction. For this, we calculated the odds ratio
(OR) as the ratio of the odds of the two aforementioned events. To estimate the OR if any cell is
equal to zero in the 2x2 table, we applied the Haldane-Anscombe correction?” by adding a fixed
value of 0.5 to all cells.

Sharing of cell type iQTLs across populations

To assess the sharing of cell type iQTLs across self-reported race/ethnicity groups in MESA, we
leveraged eQTL data from purified cell types from MESA. Namely, expression data from
monocytes and T cells were available for a subset of individuals from exam 5 (n = 355 and n =
362, respectively). We chose monocytes as the cell type of interest for this analysis, because of
the high quality of the data. There was more variability among estimated cell type proportions
from T cell data. eQTL mapping in monocytes was done following the standard pipeline
(Supplemental Material and Methods). Monocyte eQTLs were fine-mapped to 95% credible
sets of putative causal variants using SuSiE?® across all the individuals and by self-reported
race/ethnicity groups. Then, we calculated the maximum LD between the monocyte ieQTLs and
fine-mapped variants from the credible set across all individuals with expression data from
monocytes or by self-reported race/ethnicity. For comparison between self-reported
race/ethnicity groups, we focused on whether 1) the ieGene has been fine-mapped to putative
causal variants in monocytes, 2) if yes, whether the maximum LD is above or below a specified
threshold.

Replication of cell type ieQTLs in the eQTL Catalogue

We performed replication analysis of cell type ieQTLs in 45 eQTL datasets from purified blood
cell types (with and without stimulation) from the eQTL Catalogue®. For studies based on
microarray technology, if multiple probes per gene existed, we chose the one with the lowest
eQTL P-value.

We estimated replication using three different metrics: 1) the proportion of true positive (1)
using the qvalue R package, if more than 20 or more than 100 gene-variant pairs were found in
the replication data (setting lambda = 0.5 or lambda = 0.85 in the piOest () function,
respectively); 2) effect size quantified as the absolute value of the median of the genotype effect
in replication data; and 3) concordance in allelic direction defined as the proportion of gene-
variant pairs having the same directionality of the genotype effect in the replication data and
genotype main effect in the cell type iQTL data.
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Functional enrichment analysis

For functional enrichment analysis, we used the registry of candidate cis-regulatory elements
(cCREs) produced by the ENCODE consortium®. The registry V2 consisted of 926,535 human
cCREs covering 839 cell and tissue types. We downloaded 61 files representing unique
samples with cCREs from various blood cell types, corresponding to 19 unique blood cell types.
To maximize data about cCREs available per cell type, we combined data across different
samples per cell type. For example, for a H3K27ac-high feature, we required that all samples
with H3K27ac data available have an indication of high H3K27ac signal.

To test for the significance of overlap between cell type iQTLs and cCREs, we used the
Genomic Annotation Shifter*’ (GoShifter) method. GoShifter tests for enrichment by locally
shifting annotations within the boundaries of associated loci. To generate a null distribution, the
shifting process was repeated 10,000 times. As input, we only used independent (sentinel) cell
type iQTLs with FDR < 0.05 in exam 1 or exam 5 that had positive or negative direction and
provided a list of their LD proxies. To ensure independence of cell type iQTLs, we performed LD
pruning with PLINK®? in a window of 1,000 variants, sliding by one variant at the time, and with a
r? threshold of 0.1. LD proxies were defined as variants with r* = 0.8 within 100kb of the cell type
iQTLs. LD was calculated based on the unrelated 1,319 individuals from the MESA Multi-Omics
pilot.

To quantify the observed enrichment, we used the delta-overlap parameter. Delta-overlap is
defined as the difference between the observed proportion of loci overlapping a cCRE and the
mean of the proportion of loci overlapping the cCRE under the null. Thus, larger delta-overlap
values show stronger enrichment. To estimate the significance of the enrichment we calculated
one-sided permutation P-value as the proportion of permuted loci overlapping a cCRE is equal
to or greater than the observed overlap (adding a pseudo-count of 1 to numerator and
denominator). To account for multiple testing, we applied Bonferroni correction method and
accounted for the number of target cell types with the given cCRE data available, number of cell
types tested for interaction effect, and the number of groups of direction of effect. This was
applied separately for each of the tested cCRE and cell type iQTL combination.

Colocalization analysis of cell type iQTLs

To investigate whether cell type iQTLs provide insights into cell type-specific mechanisms of
diseases, we performed colocalization analysis with cell type iQTLs with positive or negative
direction and selected diseases/traits. We focused on 7 immunological diseases (asthma*?, hay
fever®, Crohn’s disease®, inflammatory bowel disease®, rheumatoid arthritis®, systemic lupus
erythematosus®, ulcerative colitis®*) and 3 metabolic traits (HDL cholesterol®”, LDL
cholesterol®, triglycerides®’). We used the harmonized and imputed GWAS summary statistics
by the GTEx Consortium*®. For this analysis we used autosomal cell type ieQTLs with FDR <
0.25 in exam 1 or exam 5 and autosomal sentinel cell type imeQTLs with FDR < 0.05 in exam 1
or exam 5 that had either positive or negative direction of effect.
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We performed colocalization analysis with coloc®® assuming one causal variant. Coloc was run
on a 400kb region centered on each cell type iQTL (x200kb from the iQTL) that had at least one
GWAS variant with P-value < 10 within 100kb of the iQTL. Priors were set to p; =107,
p2=107% p3=5x107° as suggested*®’. As input for cell type iQTL data, we used regression beta
and the variance of beta, and for GWAS data, we used the P-values. We excluded loci, where
the molecular phenotype (TSS of a gene or CpG site) fell into the MHC region, due to
complicated LD patterns in this region. Posterior probability for colocalization (PP4) > 0.5 was
used as evidence for colocalization. For visualization of colocalized loci, we used locuszoom-
like figures with LD calculated based on MESA individuals used for iQTL mapping.

Next, we tested whether we observe more colocalized loci for cell type iQTLs with positive
direction and a given disease/trait as compared to height®®. Height was used as a comparison to
account for the enrichment of regulatory variants among trait-associated variants. We calculated
the odds ratio (OR) as the ratio of the odds of cell type iQTL colocalizing with a trait of interest to
the odds of cell type iIQTL colocalizing with height. To estimate the OR if any cell is equal to
zero in the 2x2 table, we applied the Haldane-Anscombe correction?’ by adding a fixed value of
0.5 to all cells. For testing the significance of the OR, we required that at least 10 loci were
tested for colocalization with the trait of interest. Bonferroni correction was applied separately for
cell type ieQTLs and cell type imeQTLs to account for the number of cell type iQTL and
disease/trait pairs used in enrichment testing.

Mediated moderation

We hypothesized that trait iQTLs may be mediated by GxCell type effects. First, we assessed
whether we observe enrichment of cell type iQTL effects among our trait iQTLs (age, sex,
smoking iQTLs). For this we evaluated the interaction effect between the genotype of iQTL
variant and cell type proportions. Enrichment was estimated using the inflation marker lambda
(A), which is calculated as the ratio of median observed ;* test statistic to the median expected
P test statistic under the null.

Second, to formally assess mediation, we formulated the mediated moderation model*', where
the effect of a moderator (W, e.g., age) on the association between the independent variable (G,
e.g., genotype) and dependent variable (Y, e.g., molecular phenotype) is transmitted through a
mediator (M, e.qg., cell type proportion). Structural equation modeling (SEM) has been proposed
for the analysis of mediated moderation*'. As the mediated moderation effect is described by
the path XW — XM — Y, we observed in a simulation analysis that similar results can be
obtained by using mediation analysis techniques instead of SEM. Thus, we applied mediation
analysis using the mediate package in R*? for added flexibility to account for additional
covariates. More precisely, we defined the mediator and outcome models as follows:

mediation model: GxXM = B¢ + 1G + B2W + BsGxW + BsM + Bs-«C + ¢,
outcome model: Y = 3o + B1G + B2W + BsGxW + BsM + B5GxM + Bs-kC+e,
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where C is the covariates matrix including 11 genotype PCs from TOPMed, sex, and PEER
factors. G, M, and W were mean-centered for the mediation analysis.

We estimated the significance of the average causal mediation effect (ACME), average direct
effect (ADE), total effect, and proportion of mediated effect by bootstrapping using kK = 1000
Monte Carlo draws, and 95% confidence intervals were calculated using the bias-corrected and
accelerated (BCa) method. P-value for ACME < 0.05 was used as an indicator for support for
mediation.

Cell type composition probes

To evaluate whether imeSites are likely associated with cell type composition, we used the “Cell
Composition Association Table” from the FlowSorted.Blood.450k Bioconductor package*®. This
table summarizes the association between each autosomal probe on the lllumina 450k array
that does not contain annotated SNPs and blood cell composition using ANOVA.

Results

Cell type composition of blood tissue

We used two methods to characterize the cellular composition of peripheral blood mononuclear
cells (PBMCs) from RNA-seq and whole blood from DNA methylation (DNAm) data in MESA —
CIBERSORT' and the Houseman method', respectively. These deconvolution methods
leverage external purified leukocyte data to infer the proportions of white blood cells (WBC) in
heterogeneous tissue samples by modeling bulk tissue data as the sum of weighted cell type-
specific expression or DNAm signatures (Figure 1B).
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Figure 1. Study design and overview of the estimated cell type proportions. A) lllustration of the
study design and data types profiled for n = 1,319 individuals. B) Graphical illustration of cell type
deconvolution. C) Correlation of cell type proportions using exam 5 data from three sources: estimated
with the CIBERSORT method from PBMC gene expression, estimated with the Houseman method from
whole blood DNA methylation, and cell counts measured by flow cytometry. D) Sources of variability in
estimated cell type proportions with CIBERSORT and the Houseman method, gene expression from
PBMCs and DNA methylation from whole blood using exam 5 data. Median of the total variation
explained is calculated across all the tested cell types, genes, CpG sites, respectively. Gray dashed line
denotes 1% of total variance explained.

Neutrophils were the most abundant cell type in whole blood samples, as expected, but were
depleted in PBMC samples where monocytes and T cells constituted a majority of the cell
populations (Figure S1B). We observed a moderate correlation between the CIBERSORT and
Houseman estimates for the same cell type (Pearson correlation 0.42 < r < 0.57 in exam 5 data
for B cell, NK cell, and T cell comparisons, Figure S2). Furthermore, clustering of the cell type
abundances showed good concordance between the estimated proportions from different
molecular datasets and measured cell type estimates available for a subset of individuals in
exam 5 time point (Figure S1C). However, more rare cell types, such as eosinophils, were not
estimated as accurately as more abundant cell types (Figure $3). Of note, for more abundant
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cell types, correlation coefficients were similarly high across the different self-reported
race/ethnicity groups (Figure S4).

Next, we sought to identify factors that account for variability in cell type composition. Genotype
principal components (PCs) that reflect genome-wide genetic effects and ancestry/population
structure explained the highest median proportion of variance (~7%), followed by age, sex and
donor site (Figure 1D). For a more detailed quantification of the unique contributions to total
variation in gene expression and DNAm, we studied four categories of factors: 1) cis genetics -
lead cis-molQTLs mapped in MESA (Supplemental Material and Methods), 2) cell type
composition - estimated cell type proportions, 3) extrinsic technical and/or biological factors -
batch variables, donor site, and season, 4) intrinsic biological variables - genotype PCs, age,
sex, smoking status, and educational attainment as a proxy for socioeconomic status. The total
amount of variability explained by all considered factors varied greatly from ~5% to 90% per
gene or CpG site (median of 40% and 20%, respectively, Figure S5). Both in gene expression
and DNAm data, the largest fraction of inter-sample variation was accounted for by batch
variables, estimated cell type proportions, and lead cis-molQTLs after controlling for other
variables (Figure 1D). While the median contribution of intrinsic biological variables was lower
compared to other categories, the loci where a large proportion of variation was explained by
age or smoking status identified known molecular biomarkers for aging (e.g., CD248*, ELOVL2,
and FHL2*), or smoking (e.g., AHRR*®*" and GPR15%) (Figure S5). Discovery of age-related
differences may be confounded, however, by relative changes in cell type composition due to
the impact of age on cell type proportions*®, which is generalizable for any outcome of interest
that correlates with cell type composition. This highlights the importance of accounting for cell
type composition as one of the largest sources of variability in studies analyzing gene
expression or DNAm.

Cell type interaction eQTLs and meQTLs in blood

Variability in cell type composition can be exploited to identify cell type interaction QTLs"#%°,

where the effect size of the regulatory variants increases (positive direction of effect) or
decreases (negative direction of effect) depending on cell type abundance, thus serving as a
proxy for cell type-specific QTLs (Figure 2A). Applying this framework, we identified cell type
interaction cis-eQTLs (ieQTLs) for 2,130 genes (out of 19,699, £1Mb of the transcription start
site (TSS)) and cell type interaction cis-meQTLs (imeQTLs) for 22,141 CpG sites (out of
747,868, £500kb of the CpG site) in at least one of the time points with false discovery rate
(FDR) < 0.05 across ancestries (Figure 2B). Given the correlation in DNAmM between proximal
CpG sites®*?5, we defined 20,099 sentinel CpG sites for imeQTLs to represent independent loci
by keeping the most significant association in a 2kb window; these were used for further
analyses described below.
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Figure 2. Discovery of cell type ieQTLs and imeQTLs. A) lllustration of the approach used to map cell
type interaction molQTLs in MESA. B) Number of significant cell type ieQTLs and imeQTLs combined
across exams (FDR < 0.05 in exam 1 or exam 5 data) stratified by direction of the iQTL effect. C)
Reproducibility of cell type iQTLs with positive or negative direction of effect using one of the exams for
discovery and the other for validation, and vice versa. The proportion of true positives (1 statistic) is used
as measure of reproducibility. D) Sharing among cell type ieQTLs and cell type imeQTLs with positive or
negative direction of effect based on exam 5 data quantified as the proportion of true positives (m1). The
size of the square represents the correlation between the two estimated cell type proportions measured
using the absolute value of the Pearson correlation coefficient (r). E) Sharing between CD4 T cell
imeQTLs (query set) and cell type ieQTLs (validation set) combined across exams, quantified as the
proportion of CD4 T cell imeQTLs with positive direction in LD (r? 2 0.5) with ieQTLs from the given
validation set by direction of effect. P-value shows the significance of the odds of CD4 T cell imeQTL with
positive direction to overlap with a cell type ieQTL with positive direction as compared to the odds of
overlapping with a cell type ieQTL with negative direction. F) Example of a cell type iQTL (rs774358)
affecting both the expression levels of a gene (C9orf72) and a nearby CpG site (cg01126010).
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Discovery of both cell type ieQTLs and imeQTLs was dominated by the most abundant cell
type, as previously observed*, with the majority of these iQTLs having positive direction of
effect (Figure 2B). A relatively small percentage of all significant cell type iQTLs (on average,
16.8% across cell type iQTLs and exams) belonged to the ‘uncertain’ group enriched for
variants with lower minor allele frequency (MAF) and higher association P-values of the
interaction effect, indicative of likely false positive results’ (Figure S6). Using one of the time
points as discovery and the other as validation, we observed high reproducibility rates for all cell
type iQTLs with either positive or negative direction of effect as an internal quality measure
(mean w1 of 0.84 and 0.96 for cell type ieQTLs and imeQTLs, respectively, Figure 2C). Cell type
iQTLs with uncertain direction had considerably lower nominal reproducibility rates (Figure S7)
and were excluded from subsequent analyses.

The MESA cohort design allowed us to investigate population-specific effects of cell type iQTLs.
By comparing allele frequency estimates for lead monocyte ieQTLs with positive direction
across self-reported race/ethnicity groups, we observed that 0%-14% of ieQTLs did not meet
the MAF > 0.01 criteria in one of the specific populations (Figure S8A). To study whether the
likely causal variants are the same across populations, we leveraged the fine-mapped eQTL
data by self-reported race/ethnicity from purified monocytes from MESA exam 5 (Supplemental
Material and Methods). First, we observed that 66.5%-74.8% of the monocyte ieGenes with
positive direction of effect were fine-mapped to likely causal eQTLs in monocytes, with an
overlap of 883 (93.1%) ieGenes fine-mapped in at least two self-reported race/ethnicity groups
(Figure S8B). Second, we calculated LD between the lead ieQTL and fine-mapped variants by
self-reported race/ethnicity. While there were considerable differences between the fraction of
ieGenes with lead ieQTLs in strong LD (r?> 0.5) with fine-mapped eQTLs by groups, these
differences were less pronounced when using a more lenient r? threshold (Figure S8C). This is
consistent with the plausible scenario that cell type ieQTLs are largely shared across major
ancestral groups when differences in LD and allele frequency are taken into account, as shown
for eQTLs".

Sharing between cell type ieQTLs and imeQTLs

Next, we sought to analyze the extent of sharing of cell type ieQTLs and imeQTLs. We noticed
that the iQTLs for highly abundant cell types - monocyte ieQTLs and neutrophil imeQTLs - with
negative direction of effect can often be found as an iQTL for another cell type with positive
direction of effect, and vice versa (Figure S9). In general, the high degree of sharing among cell
type ieQTLs and imeQTLs reflected the magnitude of (anti)correlation between estimated cell
type proportions (Figure 2D), suggesting that cell type iQTLs with specific genetic effects in one
(or more) cell types often manifest in other (anti)correlated cell types. We also discovered
indications of the same cell type iQTL affecting both expression levels of a gene and DNA
methylation levels of a nearby CpG site (Figure S10, Table S1). For example, CD4" T cell
imeQTLs with positive direction overlapped significantly more often with T cell ieQTLs with
positive direction (Figure 2E, P = 0.0013 as compared to T cell ieQTLs with negative direction).
Across 500 unique gene-CpG site pairs associated with the same iQTL (or lead iQTLs in strong
LD, r* > 0.5), where both the ieQTL and imQTL effect was positive, we observed a discordant
genotype main effect for majority of the pairs (64.4%), indicative of mostly negative correlation
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between gene expression and DNAm as described before for methylation-expression
associations (eQTMs)*".

An example of a shared cell type iQTL is rs774358 - a variant associated with the expression of
C9orfr72 gene and DNAm of the nearby CpG site cg01126010 with the molQTL effect increasing
with monocyte and neutrophil abundance, respectively (Figure 2F). rs774358 is also a NK cell
imeQTL with negative direction of effect, possibly due to negative correlation between the
proportion of neutrophils and NK cells in blood. The C90rf72 repeat expansion is one of the
genetic hallmarks of amyotrophic lateral sclerosis (ALS). The expression of C9orf72 is highest in
myeloid cells®*%?, indicative of myeloid cell-specific molQTL captured by our iQTL approach.

Cell type specificity of cell type iIQTLs

To analyze specificity of cell type ieQTLs by comparing their effects in purified cell types, we
leveraged data from the eQTL Catalogue®. This resource includes 45 eQTL datasets from
various blood cell types with and without stimulation from the lymphocyte and myeloid lineage.
We observed, in general, high replication rates for the cell type ieQTLs with positive direction in
eQTL data from the corresponding cell (sub)type (max 71 > 0.8 except for B cell ieQTLs, Figure
S$11), which further manifested as higher median effect size and concordant allelic direction
(Figure 3A, Table S2). For instance, monocyte ieQTLs with positive direction replicated well in
eQTL data from steady-state monocytes as compared to stimulated monocytes, reflecting the
need to map response QTLs to discover novel genes with molQTL specific to a cell state. We
observed the highest replication rates for T cell ieQTLs with positive direction in different CD4
memory T cell subsets, likely reflecting the shift from naive to memory T cells with age®* in the
elderly study subjects from MESA. Importantly, the broad replication patterns matched the
corresponding cell type for ieQTLs with positive but not negative direction, with replication in
other cell types mirroring the sharing of ieQTLs and (anti)correlation between cell type
proportions (Figure S11).
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Figure 3. Replication and functional enrichment analysis of cell type iQTLs. A) Replication of
ieQTLs with positive direction of effect in eQTL datasets from purified cell types from the eQTL Catalogue
based on effect size in eQTL data and allelic concordance. Highlighted are up to five datasets with
absolute median effect size (beta) > 0.15 in the eQTL dataset and proportion of QTLs with the same
allelic direction > 0.75 for B cell ieQTLs or > 0.8 for other cell type ieQTLs. Numerical results for all
reference cell types are reported in Table S2. B) Functional enrichment analysis with GoShifter showing
the delta-overlap, which is the difference between the observed proportion of loci overlapping a cCRE
and the null, for cell type ieQTLs (upper panel) overlapping cCRE with high H3K27ac and cell type
imeQTLs overlapping cCRE-dELSs. *** - significant association (adjusted P < 0.05) after correcting for
the number of target cell types with cCRE data, the number of cell types tested for interaction effect, and
the number of groups of direction of effect. Numerical results for all reference cell types are reported in
Table S3.

Cis-eQTLs and cis-meQTLs have been shown to be enriched in functional elements of the
genome’®'. We analyzed the candidate cis-regulatory elements (cCREs) from various blood cell
types produced by the ENCODE project®. After accounting for local genomic structure with
GoShifter®', we observed highly cell type-specific enrichments of cell type iQTLs with positive
direction in distal enhancer-like signatures (cCCRE-dELS) and enhancer-associated H3K27ac
marks (Figure 3B, Figure S12, Table S3), consistent with the tissue-specific nature of
enhancers®®®. As an example, monocyte ieQTLs were characterized by high H3K27ac in
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monocytes and neutrophils (the cells of the myeloid phagocyte system®’) and T cell ieQTLs and
CD4" T cell imeQTLs were enriched in T cell subtypes. When focusing on promoter-like
signatures (cCRE-PLS), we observed evidence for enrichment of the best powered cell type
iQTLs, monocyte ieQTLs and neutrophil imeQTLs with positive direction, in all the five assayed
cell types (Figure S12). cCRE-PLS was also a highly shared feature in contrast to cCRE-dELS
with 64.6% of cCCRE-PLSs being present in all and 60.9% of cCRE-dELSs found only in one of
the assayed blood cell types.

As exemplified by the results, cell type iQTLs can capture cell type specific effects rather than
overall cell type dependence with a good resolution. The interpretation of cell type iQTLs,
however, requires consideration of the direction of effect, correlation between cell types, and the
quality of the deconvolution. Together, these results support mapping cell type iQTLs as proxies
for cell type-specific QTL effects.

Environmental modifiers of molQTL effect

Next, we leveraged the variation in age, sex, and three smoking phenotypes to quantify the
impact of the selected higher-order phenotypes as modifiers of cis-QTL effects, i.e., to discover
trait iQTLs, where the regulatory variant has a context-specific effect. Compared with cell type
iQTLs, trait iQTLs were less abundant. Using a relaxed FDR < 0.25, we identified 277 genes
with either age, smoking, or sex interaction eQTLs, and 2,397 CpG sites with either age,
smoking, or sex interaction meQTLs (Figure 4A). Reproducibility rates between exams added
confidence to the robustness of these trait iQTLs (Figure S13), as independent replication data
is scarce. As an example, we discovered an eQTL for AHRR that was significant only in current
smokers (Figure 4B). Hypomethylation of AHRR is one of the most replicated biomarkers for
active smoking®®, and coordinated changes in both DNAm and gene expression across several
tissues have been reported®’.
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Figure 4. Trait iQTLs and mediated moderation. A) Number of significant trait ieQTLs and imeQTLs in
exam 1 and exam 5 (FDR < 0.25) by direction of the iQTL effect. B) Example of smoking-current ieQTL
for AHRR (upper plot) and age imeQTL for cg06953865 (lower plot). C) Inflation of GxMonocyte effect
among age ieQTLs and GxNeutrophil effect among sentinel age imeQTLs in exam 5 data by direction of
age iQTL effect. A is the inflation factor. D) Schema of the mediated moderation approach, where the
moderation effect of age on the genotype to DNAm association is mediated by changes in neutrophil
proportions. The mediated moderation effect is described by the GxAge -> GxNeutrophil -> DNAm path.
P-value histogram of average causal mediation effect (ACME) of GxNeutrophil meditating the GxAge
effect on DNAm for 32 age imeQTLs with positive or negative direction.

As observed for cell type iQTLs, a significant GXE term from the interaction model is not specific
to the environment tested and may capture effects related to factors correlated with the
environment. Across different traits available in MESA, age, sex and smoking are the main non-
genetic factors associated with cell type composition (Figure 1D, Figure S14), similarly to
previous findings®®. Indeed, we observed a strong enrichment of age iQTLs with positive or
negative direction as cell type iQTLs when compared to age iQTLs with uncertain direction of
effect as a background (A = 19.89 vs 1.56 and 17.0 vs 1.83 for GxMonocyte and GxNeutrophil
effect in exam 5, respectively, Figure 4C, Figure S15A,F), suggesting that some of the age
iQTLs may be mediated by cell type iQTLs. While some sex and smoking iQTLs were very
strong cell type iQTLs, the evidence for global inflation was weaker (median A = 2.64 and 1.52
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for GxMonocyte and GxNeutrophil interaction in exam 5, respectively, Figure $15). This is in
line with the finding that the effects of age in DNAm were largely mediated by changes in
immune cell proportions, while the effects of sex were typically independent of cellular
composition®®. However, as our cell type iQTL mapping is dominated by the most abundant cell
type, we may be underpowered to detect global inflation of interaction with rarer immune cell
types in blood.

To formally test for the effect of age iQTLs mediated by cell type iQTLs, we adapted the concept
of mediated moderation*', where the effect of a moderator (age) on the association between
genotype and molecular phenotype is transmitted through a mediator (cell type proportion)
(Figure S16A-B). We evaluated this hypothesis using neutrophil proportion as the mediator for
age imeQTLs in exam 5 as the observed inflation of GxNeutrophil effect was the strongest. As a
basis for mediated moderation, neutrophil proportion was positively correlated with age (r =
0.14, P = 4.81x10°°, Figure S16C), in line with a reported continuous increase of neutrophils
with age®'. As a result, we observed support for GxNeutrophil mediating the GxAge effect on
DNAm for 43.8% (14/32) of age imeQTLs with positive or negative direction of effect (P-value of
average causal mediation effect (ACME) < 0.05, Figure 4D, Table S4) with, on average, 15.5%
of the total effect explained by mediator (Figure $16D). Of note, the mediation signal was
driven primarily by age imeQTLs with positive direction of effect, where 50% (13/26) showed
nominal support for mediation. Interestingly, 71.4% (5 out of 7 CpG sites also present on the
450K array) of the imeSites with support for mediation have been identified as CpG sites
associated with blood cell composition*® (Figure $17). As an example, rs7258891 is an age
imeQTL for cg06953865 (Figure 4B), where we observed strong evidence for mediation (ACME
P < 0.001). This variant has mainly been associated with various cell count phenotypes,
including neutrophil percentage®, and the CpG site exhibits different average DNAm across cell
types (P = 1.33x107), suggesting that the effect of age on the meQTL is likely mediated by
changes in cell type composition differences.

Together, these results suggest that cell type composition changes may confound trait iQTLs by
mediating the moderation effect of a trait on genotype and molecular phenotype association, as
previously observed for differential expression and differential methylation analysis®®®*. Thus, an
apparent age iQTL effect may arise when a certain cell type proportion varies with age and the
regulatory variant has a cell type-specific effect on a molecular phenotype. This warrants
caution in interpreting GxE effects on molecular level.

Cell type iQTLs contribute to immune-mediated inflammatory diseases

Genetic regulatory effects can aid elucidating the tissue specificity of heritable traits and
diseases®. Given the observed cell type-specific nature of cell type iQTLs with positive
direction, we analyzed whether cell type iQTLs provide insights into cell type-specific
mechanisms of diseases. We performed colocalization analysis with coloc® of cell type iQTLs
(FDR < 0.25 for ieQTLs and FDR < 0.05 for imeQTLs) and a selection of immune diseases and
cardiometabolic traits (Figure S13, Table S5). When compared with the number of cell type
iQTLs colocalizing with height to account for widespread enrichment of QTLs among trait-
associated variants®, our data confirmed several previously observed cell type-specific

19


https://doi.org/10.1101/2023.06.26.546528
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.26.546528; this version posted June 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

enrichments for traits and diseases (Figure 5A) - monocytes with lipid traits®, B cells with
systemic lupus erythematosus®’, and many different immune cell types, including NK cells, T
cells and B cells, with inflammatory bowel disease®®. Given the varying number of cell type
iQTLs with positive direction, we had greater statistical power to detect significant associations
involving cell type imeQTLs, particularly neutrophil imeQTLs. Emerging evidence also suggests
the contribution of neutrophils in the pathogenesis of autoimmune and inflammatory
diseases®®"°.
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Figure 5. Cell type interaction QTLs and relevance for diseases. A) Relevance of cell type ieQTLs
(FDR < 0.25) and cell type imeQTLs (FDR < 0.05) for selected cardiometabolic and immune diseases
compared to height. For each of the cell type iQTLs, we calculated the odds ratio (OR) as the ratio of the
odds for an iQTL to colocalize with cardiometabolic or immune disease to the odds of an iQTL to
colocalize with height. For testing the significance of the OR, at least 10 loci tested for colocalization were
required, otherwise noted as NA (not available). Bonferroni correction was applied separately for cell type
ieQTLs and cell type imeQTLs. NS - not significant. B) Colocalization between GWAS for RA and NK cell
ieQTLs for SYNGR1 and imeQTLs for a nearby CpG site cg19713460 shown as regional association
plots. The highlighted region is depicted at the top and shows the location of the lead GWAS variant for
RA, rs909685, and the CpG site relative to the SYNGR1 gene. C) Association plot for the NK cell ieQTL
for SYNGR1 and the NK cell imeQTL for cg19713460. Dots are colored based on the genotype of
rs909685. Data in B) and C) are from exam 1, where we observed the lowest interaction P-values.

In addition to studying disease-specific enrichment, cell type iQTLs can be used to understand
the cell type specific mechanism of a disease-associated variant. For instance, the A allele of
rs909685 (T/A), located in the intron of the synaptogyrin-1 (SYNGR1) gene, has been shown to
increase the susceptibility to rheumatoid arthritis (RA) for individuals of European, Asian, and
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African ancestries®>”""?, In our data, rs909685 was associated with SYNGR1 expression, with
the effect size increasing with NK cell and T cell proportions, and decreasing with monocyte
proportion (Figure 5B, Figure S14A). rs909685 was also associated with the methylation levels
of cg19713460, located in the promoter region of SYNGR1 (400bp from the transcription start
site (TSS)), with the effect size increasing with NK cell proportion (Figure 5B). Of note,
rs909685 A allele was associated with higher expression levels of SYNGR1 and lower
methylation levels of cg19713460 (Figure 5C, Figure S14B). For the cell type iQTLs, we
observed very strong evidence for colocalization with the RA GWAS signal (PP4 > 0.99).
Interestingly, rs909685 falls into the cCRE that is characterized by high DNase and H3K27ac in
NK cells, CD8" T cells, and B cells (Figure S14C). Furthermore, the SYNGR1 knockdown
lowered the release of pro-inflammatory cytokines or chemokines (e.g., IFN-y, TNF, and
RANTES) by activated NK cells, suggesting a functional role of SYNGR1 in NK cells’.
Together, these data suggest that rs909685 influences susceptibility to RA via NK cell-specific
action, captured by our cell type iQTLs integrated with functional annotation data. As a likely
mechanism, a causal chain from methylation of the promoter of SYNGR1 to affecting mRNA
expression resulting in affected RA risk has been proposed’. This example highlights the
usefulness of incorporating cell type iQTLs and functional data into investigations of cell type-
specific mechanisms of disease-associated variants.

Discussion

We performed interaction QTL mapping with cell type abundance, age, sex, and smoking as the
environmental factors to identify regulatory variants with plasticity in effect size rather than
constant molecular effects. While a sample size of ~900 individuals of multi-ethnic background
at two time points was sufficient to map cell type iQTLs for a large number of genes and CpG
sites, discovery of molQTLs interacting with higher order physiological traits were limited. Given
the unique aspects of our study design, we were able to assess the reproducibility of the iQTLs
between time points to demonstrate the robustness of the results, and highlight the sharing
between cell type ieQTLs and imeQTLs characterized mostly by negative correlation between
gene expression and DNAm and discordant genotype main effect. Importantly, the interpretation
of cell type iQTLs depends on several factors - direction of effect, correlation between cell types
within the tissue, and resolution of the cell type deconvolution. Our results suggest that
biologically most informative results are obtained for molQTLs when the effect size is increasing
(positive direction) with the most abundant cell type in the tissue.

Even though cell type iQTLs cannot be considered cell type-specific per se, cell type iQTLs with
positive direction replicate well in eQTL datasets from purified cell types and show enrichment in
cCREs from the interacting (or similar) cell type. We demonstrated this concept in whole blood,
which had the necessary cell type-specific eQTL replication data. Our results show promise for
interaction QTL approaches for identification of cell type-specific QTLs in other tissues where
single-cell or cell type-specific data are not available or easily acquired. Moreover, cell type
iQTLs combined with functional annotations of the genome can help prioritize cell types for
functional follow-up studies.
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molQTLs with GxE interactions at the molecular level hold the promise to guide discovery of
GxE interactions in complex diseases’®®°. These loci may mark the genetic component of inter-
individual variation in response to different environments or physiological states, including
disease, thus contributing to phenotypic variation in humans. Our results with age imeQTLs,
however, suggest that cell type composition changes may partly mediate the moderation effect
of age. Similar observations have previously been made for sex-biased cis-eQTLs®', yet the
confounding effect that cell type composition has on molQTL effect size variation has not been
appreciated to the same extent as in differential expression and methylation studies, particularly
in epigenome-wide association studies*>54.

Based on our results, we propose that mediation by cell type composition is the primary starting
hypothesis for molQTLs with GxE effects, and this should be explicitly ruled out before
postulating other molecular moderation mechanisms. We further hypothesize that when trait
iIQTL and GWAS signal colocalize, only molQTLs with GXE not mediated by cell types would
have a GxE interaction at the GWAS level - whilst molQTLs with support for mediation most
likely are subject to confounding. Future studies with larger sample sizes will be needed to
properly evaluate this hypothesis.

Overall, the integration of genomic data with functional multi-omic data in large and diverse
longitudinal cohorts offers an opportunity to map genetic effects on molecular traits, and to study
its complex interplay with other environmental factors. Our study shows the value of mapping
interaction QTLs as a feasible computational approach to obtain insights into the context-
specificity of regulatory effects.
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