

1 **Self-supervised denoising for structured illumination microscopy enables**
2 **long-term super-resolution live-cell imaging**
3
4

5 Xingye Chen^{1,2,3,4,8}, Chang Qiao^{1,2,3,4,8}, Tao Jiang^{5,6,8}, Jiahao Liu^{5,7,8}, Quan Meng^{5,6},
6 Yunmin Zeng¹, Haoyu Chen^{5,6}, Hui Qiao^{1,2,3,4}, Dong Li^{5,6,*}, Jiamin Wu^{1,2,3,4,*}
7
8

9 ¹ Department of Automation, Tsinghua University, Beijing, 100084, China

10 ² Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, 100084, China

11 ³ Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography, Tsinghua
12 University, Beijing, 100084, China

13 ⁴ Beijing Laboratory of Brain and Cognitive Intelligence, Beijing Municipal Education Commission,
14 Beijing, 100010, China

15 ⁵ National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules,
16 Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China

17 ⁶ College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China

18 ⁷ Laboratory of Image Processing and Intelligent Control of Ministry of Education of China, School
19 of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan,
20 430074, China

21 ⁸ These authors contributed equally

22 * Correspondence: lidong@ibp.ac.cn (D.L.), wujiamin@tsinghua.edu.cn (J.W.)

23

24 **Abstract**

25 Detection noise significantly degrades the quality of structured illumination microscopy (SIM)
26 images, especially under low-light conditions. Although supervised learning based denoising
27 methods have shown prominent advances in eliminating the noise-induced artifacts, the requirement
28 of a large amount of high-quality training data severely limits their applications. Here we developed
29 a pixel-realignment-based self-supervised denoising framework for SIM (PRS-SIM) that trains an
30 SIM image denoiser with only noisy data and substantially removes the reconstruction artifacts. We
31 demonstrated that PRS-SIM generates artifact-free images with 10-fold less fluorescence than
32 ordinary imaging conditions while achieving comparable super-resolution capability to the ground
33 truth (GT). Moreover, the proposed method is compatible with multiple SIM modalities such as
34 total internal reflective fluorescence SIM (TIRF-SIM), three-dimensional SIM (3D-SIM), lattice
35 light-sheet SIM (LLS-SIM), and non-linear SIM (NL-SIM). With PRS-SIM, we achieved long-term
36 super-resolution live-cell imaging of various bioprocesses, revealing the clustered distribution of
37 clathrin coated pits and detailed interaction dynamics of multiple organelles and the cytoskeleton.

38 **Introduction**

39 Studying biological dynamics and functions in live cells requires imaging with high spatiotemporal
40 resolution and low optical invasiveness. Structured illumination microscopy (SIM) is commonly
41 recognized as a well suitable tool for live imaging because of its ability to acquire a super-resolution
42 (SR) image from only a small number of illumination pattern-modulated images^{1, 2}. However,
43 conventional SIM reconstruction algorithm is prone to generate photon noise-induced artifacts
44 especially under low light conditions, which substantially degrades the image quality and
45 overwhelms useful structural information, thereby inhibiting us from fully exploring the underlying
46 biological process^{3, 4}. To alleviate the reconstruction noise, a long camera exposure time and high
47 excitation power are usually applied in SIM imaging experiments, which reduce the image
48 acquisition speed and introduce considerable photobleaching and phototoxicity. This tradeoff
49 severely limits the application of SIM in live-cell imaging.

50 Accompanied with the development of SIM instruments⁵⁻⁷, many techniques and algorithms
51 aiming to reconstruct high-quality SR-SIM images with low signal-to-noise ratio (SNR) inputs have
52 been proposed. Some algorithms have been developed to analytically improve the estimation
53 precision of the illumination pattern^{8, 9} or iteratively denoise the reconstructed SR images under
54 certain optical models and assumptions¹⁰⁻¹². However, since the imaging process is complex and the
55 image restoration/denoising problem is theoretically ill-posed, these algorithms cannot fully address
56 the statistical complexity and have limited noise suppression capability¹³. Recently, deep neural
57 networks (DNNs) have shown outstanding performance in image restoration tasks¹⁴. Various deep-
58 learning-based SIM algorithms have demonstrated great potential in reconstructing high-quality SR
59 images, even under extreme imaging conditions. Nevertheless, existing methods still face several
60 challenges. First, some existing techniques employ “end-to-end” schemes¹⁵⁻¹⁸, which directly
61 transform wide-field or raw SIM images into the SR-SIM image without fully exploiting the high-
62 frequency information modulated by the illumination pattern, i.e., the Moore fringes. As a result,
63 the entire framework degrades to an SR inference task (termed “image super-resolution”^{19, 20})
64 instead of analytical SR reconstruction²¹. Second, a large number of well-matched low- and high-
65 SNR image pairs are necessary to construct the training dataset^{22, 23}, which is laborious and even
66 infeasible for biological specimens of low fluorescent efficiency or high dynamic. Third, the
67 generalizability of the neural network is limited because in the supervised training scheme, a pre-

68 trained denoising model cannot be reliably transferred to unseen domain with only noisy data, which
69 inhibits the discovery of unprecedented biological structures and bioprocesses.

70 Here we proposed a pixel-realignment-based self-supervised method for structured illumination
71 microscopy (PRS-SIM), which employs a deep neural network to achieve artifact-free
72 reconstruction with ~10 fold fewer collected photons than that used for conventional SIM
73 algorithms⁷. The proposed PRS-SIM framework has several key advantages: first, because the
74 analytical SIM reconstruction principle is embedded in the training and inference framework, the
75 resolution enhancement is physically guaranteed by the SIM configuration rather than
76 computationally achieved via data-driven supervised learning^{19, 24-26}. Second, the PRS-SIM models
77 are trained on low-SNR raw images only, without the requirement for either high-SNR ground-truth
78 data or repeated acquisition of the same sample, resulting in a more feasible data acquisition process.
79 Third, for time-lapse imaging, PRS-SIM can be implemented in an adaptive training mode, in which
80 the collected low-SNR data are used to train a new customized model or fine-tune a pretrained
81 model. Finally, PRS-SIM is compatible with multimodal SIM configurations, including total
82 internal reflective fluorescence SIM (TIRF-SIM)⁵, grazing incidence SIM (GI-SIM)⁷, three
83 dimensional SIM (3D-SIM)², lattice light-sheet SIM (LLS-SIM)²⁷, and non-linear SIM (NL-SIM)^{28,}
84 ²⁹. Benefiting from these advances, PRS-SIM instantly enables long-term volumetric SR imaging
85 of live cells with extremely low photo-damage to the biological samples.

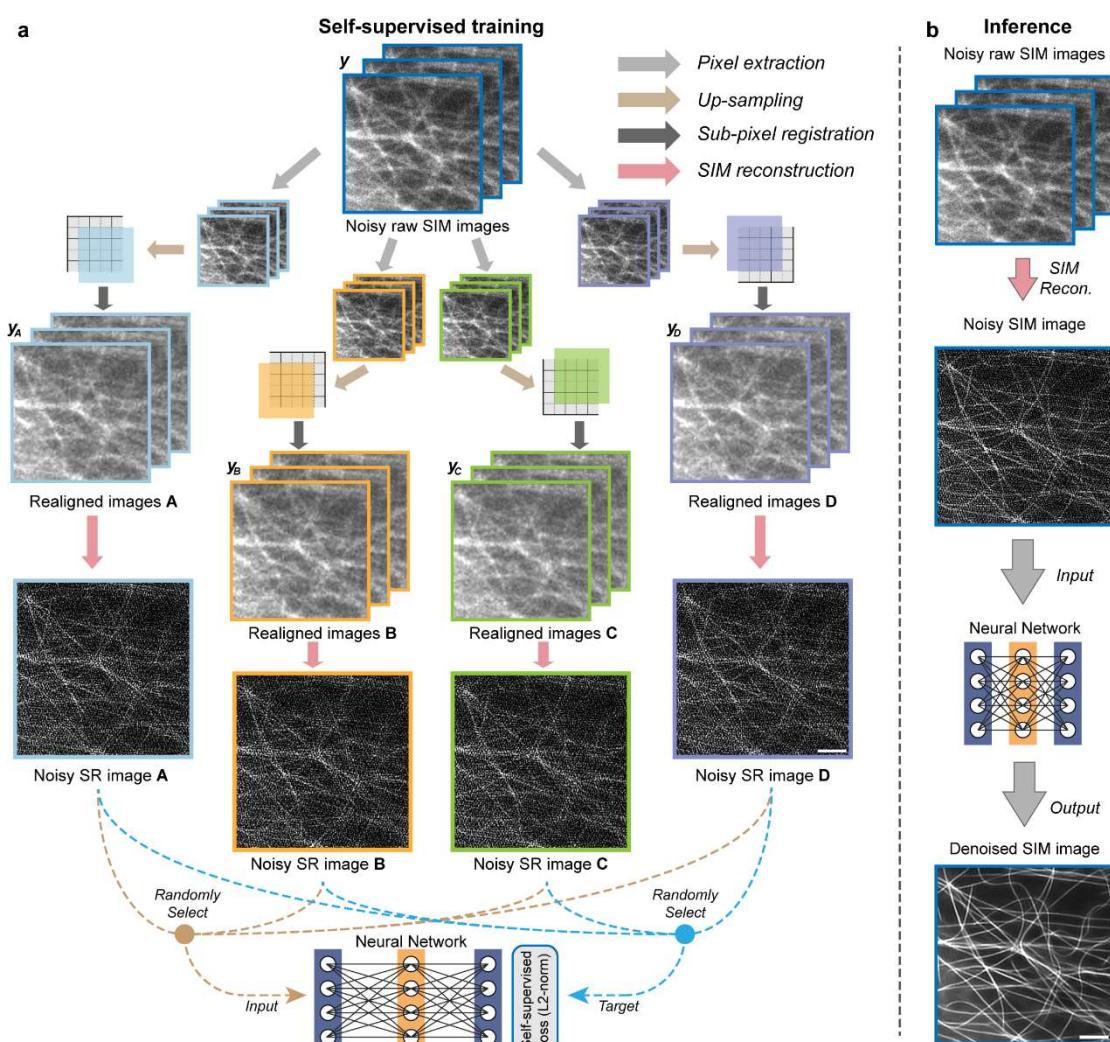
86 **Results**

87 **The principle of PRS-SIM**

88 The principle of PRS-SIM is schematized in Fig. 1. The PRS-SIM framework involves self-
89 supervised neural network training (Fig. 1a) and the corresponding inference phase from raw SIM
90 images (Fig. 1b). Specifically, the training dataset is constructed with noisy raw images based on a
91 pixel realignment strategy, whose underlying mechanism is to utilize the similarity between adjacent
92 pixels^{30, 31}. For each noisy raw SIM image stack, we firstly applied pixel realignment strategy, which
93 includes three operations of pixel extraction, up-sampling and sub-pixel registration (Method), to
94 generate four raw image stacks of the same scene. Then by applying conventional SIM algorithm,
95 four matched raw SR images are reconstructed, which are subsequently arranged as the input and
96 target reciprocally for network training. By iteratively optimizing the L2-norm loss function, the
97 neural network is able to transform noisy SIM images into their corresponding clean counterparts.
98 Notably, we theoretically proved the convergence of adopting these SIM images in the loss
99 calculation (Supplementary Note 1). In the inference phase, the raw images are firstly reconstructed
100 into the noisy SR images via the conventional SIM algorithm, then the well-trained PRS-SIM model
101 takes these noisy SIM images as inputs and outputs the final noise-free SR images.

102 We first systematically evaluated PRS-SIM on the publicly available biological image dataset
103 BioSR¹⁶. To quantify the performance of PRS-SIM, we calculated the peak signal-to-noise ratio
104 (PSNR) and structural similarity (SSIM) using ground-truth (GT) SIM images as the criteria
105 (Methods). Three individual neural networks were trained separately for clathrin-coated pits (CCPs),
106 endoplasmic reticulum (ER), and microtubules (MTs), as representative examples of hollow,
107 reticular, and filament structures, respectively. The training dataset was augmented with raw data
108 from signal level 1 to signal level 4 in BioSR, and the average effective photon counts of these
109 samples are ~10-fold less than those used in artifact-free GT-SIM images. We compared PRS-SIM
110 with conventional SIM (conv. SIM) and sparse-deconvolution SIM (Sparse-SIM) (Fig. 2a) and
111 found that the detailed information can hardly be distinguished in conv. SIM and Sparse-SIM due

112 to severe reconstruction artifacts. In contrast, PRS-SIM can clearly super-resolve ring-shaped CCPs



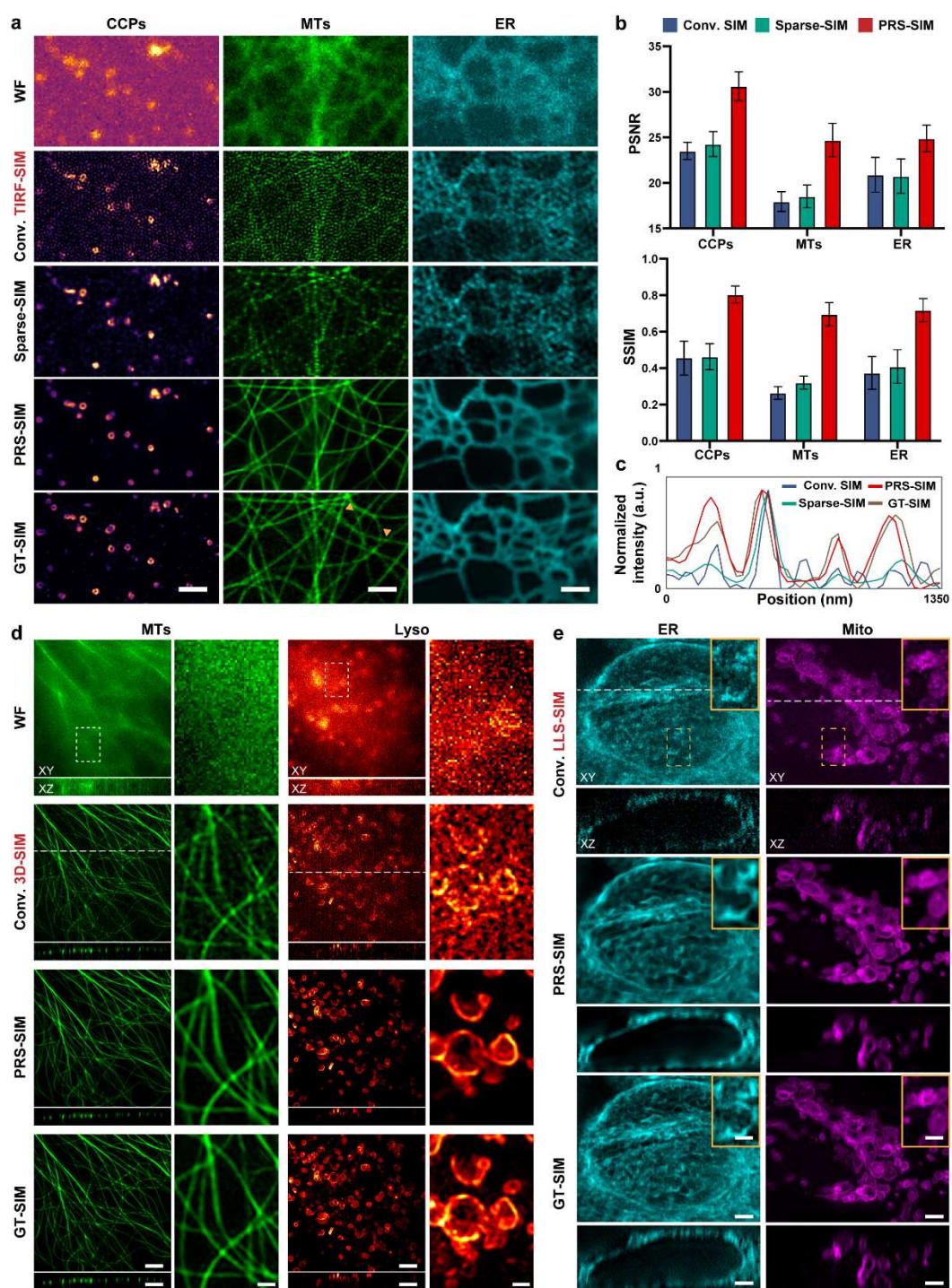
113

114 **Fig. 1 | Schematic of PRS-SIM.** **a**, Self-supervised training strategy of PRS-SIM. Four matched image groups y_A , y_B , y_C , and y_D are generated by applying pixel realignment operation to a noisy low-resolution (LR) raw SIM image group y . Then with conventional SIM algorithm, four super-resolution (SR) images are reconstructed, which are further randomly arranged as the input and target for neural network training. **b**, Inference pipeline of PRS-SIM. The noisy raw SIM image group are firstly reconstructed into a noisy SR image by conventional SIM algorithm. Then by inputting this noisy SR image into the pre-trained PRS-SIM model, the corresponding noise-free SR SIM image will be generated. Scale bar, 2 μ m.

122 and densely interlaced MTs, resulting in an image quality comparable to GT-SIM. The statistical results in terms of the PSNR and SSIM of 40 individual cells for each sample demonstrated that 123 PRS-SIM achieves substantially improved denoising results for various types of specimens (Fig. 124 2b). The intensity profiles shown in Fig. 2c indicated that PRS-SIM successfully distinguishes 125 several adjacent microtubules as clearly as GT-SIM, which are indistinguishable with the other 126 methods. Furthermore, we validated the robustness of PRS-SIM on both synthetic (Supplementary 127 Note 2) and experimental data with different signal levels and demonstrated that PRS-SIM is 128 applicable with a wide range of input SNRs (Extended Data Figs. 1 and 2).

129 Next, we compared PRS-SIM with the classical noise2noise (N2N) method³², which requires

131 two independently captured images of the same scene to train a denoiser (Methods). This
132 requirement is impractical when the biological samples are highly dynamic or the total number of
133 frames is limited due to photobleaching and phototoxicity. Resorting to the self-supervised training
134 scheme, a single SIM capture for each scene is enough to train a PRS-SIM model. We compared
135 PRS-SIM and N2N-SIM using synthetic structure with different moving speeds (Extended Data Fig.
136 3) and noted that as the moving speed increased, N2N-SIM generated considerably deteriorated SIM
137 images and was prone to oversmoothing the details of subcellular structures. Compared with N2N-
138 SIM, the proposed PRS-SIM maintained a steady denoising performance regardless of the sample
139 moving speed, indicating the superb live-cell imaging capability especially for samples of high
140 dynamics.



141

142 **Fig. 2 | PRS-SIM on multimodal SIM systems.** **a**, TIRF-SIM images of CCPs, MTs, and ER
143 reconstructed and processed with Conv. SIM, Sparse-SIM, and PRS-SIM. WF and GT-SIM images are
144 provided for reference. Scale bar, 2 μ m. **b**, Quantitative comparison among PRS-SIM, Conv. SIM and
145 Sparse-SIM. The PSNR and SSIM values are calculated referring to GT-SIM images (N=40 for each data
146 point). **c**, Intensity profiles of Conv. SIM (blue), Sparse-SIM (green), PRS-SIM (red), and GT-SIM
147 (brown) along the line indicated by the yellow arrowheads in **a**. **d**, 3D-SIM images of MTs and Lysosomes in
148 fixed COS7 cells reconstructed with Conv. SIM and PRS-SIM. WF and GT-SIM images are provided for
149 comparison. Scale bar: 1 μ m, 0.5 μ m (zoom-in regions) **e**, LLS-SIM images of ER and mitochondria in
150 fixed COS7 cells reconstructed with Conv. SIM and PRS-SIM. The maximum intensity projection (MIP)
151 of XY view and the sectioned view in XZ plane (indicated by white dashed lines in XY-views) are shown
152 in **d** and **e**. Scale bar, 5 μ m, 1 μ m (zoom-in regions).

153 In addition to PRS-SIM, many other self-supervised denoising methods for fluorescence
154 microscopy have been developed in recent years, and the blind spot-based denoising algorithm³³ is
155 one of the most representative approaches. Nevertheless, although these methods have shown great
156 denoising performance for natural and microscopic images, they are not applicable to SIM images for
157 two critical reasons. First, if the denoising algorithms are applied to raw SIM images (Extended
158 Data Fig. 4a), i.e., images that are captured directly by the sensor, the algorithms have difficulty
159 recognizing the illumination patterns and restoring the subtle Moiré fringes, thereby missing high-
160 frequency information and generating reconstructed images with riddling artifacts (Extended Data
161 Fig. 4c). Second, if these algorithms are employed in the post-reconstruction procedure (Extended
162 Data Fig. 4b), the strongly self-correlated noise patterns in the reconstructed SIM images are
163 inconsistent with the blind-spot principle, leading to poor denoising performance. The proposed
164 PRS-SIM scheme addresses these issues by leveraging the intrinsic linearity of SIM reconstruction
165 and integrating this physical property into the objective function design, thereby yielding superior
166 restoration capability for SIM images. We experimentally compared PRS-SIM models with two
167 representative self-supervised denoising approaches: noise2void (N2V)³³ and hierarchical diverse
168 denoising (HDN)³⁴. Both the perceptual comparisons and the quantitative analysis showed that PRS-
169 SIM can generate SR images with considerably fewer artifacts, outperforming other self-supervised
170 denoising methods by a large margin (Extended Data Fig. 5).

171 Due to the internal similarity of the post-processing pipeline for various SIM modalities, besides
172 TIRF/GI-SIM, PRS-SIM is compatible with other SIM configurations such as NL-SIM (Extended
173 Data Fig. 6), 3D-SIM, and LLS-SIM for higher resolution or volumetric SR imaging under low-
174 light conditions. For 3D-SIM, we evaluated the performance of PRS-SIM by processing the images
175 of microtubules labelled with 3xmEmerald-Ensconsin and lysosomes (Lysosomes) labelled with Lamp1-
176 mEmerald in fixed COS7 cells (Fig. 2d and Extended Data Fig. 7). For each sample, ~20 individual
177 cells were imaged under low and high illumination conditions to acquire noisy data and the
178 corresponding high SNR reference, respectively. The raw SIM data were first reconstructed into 3D
179 SR volumes via the conventional 3D-SIM algorithm and then denoised with 3D PRS-SIM models,
180 which were modified into 3D U-net³⁵ architectures from the original 2D version (Methods) and
181 trained with the noisy data only.

182 The orthogonal view of the representative PRS-SIM images indicated that most of the noise-
183 induced artifacts in the conventional 3D-SIM results were removed by PRS-SIM, and the
184 reconstruction quality of PRS-SIM is comparable to that of GT-SIM in both the XY plane and Z-
185 axis (Fig. 2d). For the LLS-SIM configuration, we employed our home-built LLS-SIM system to

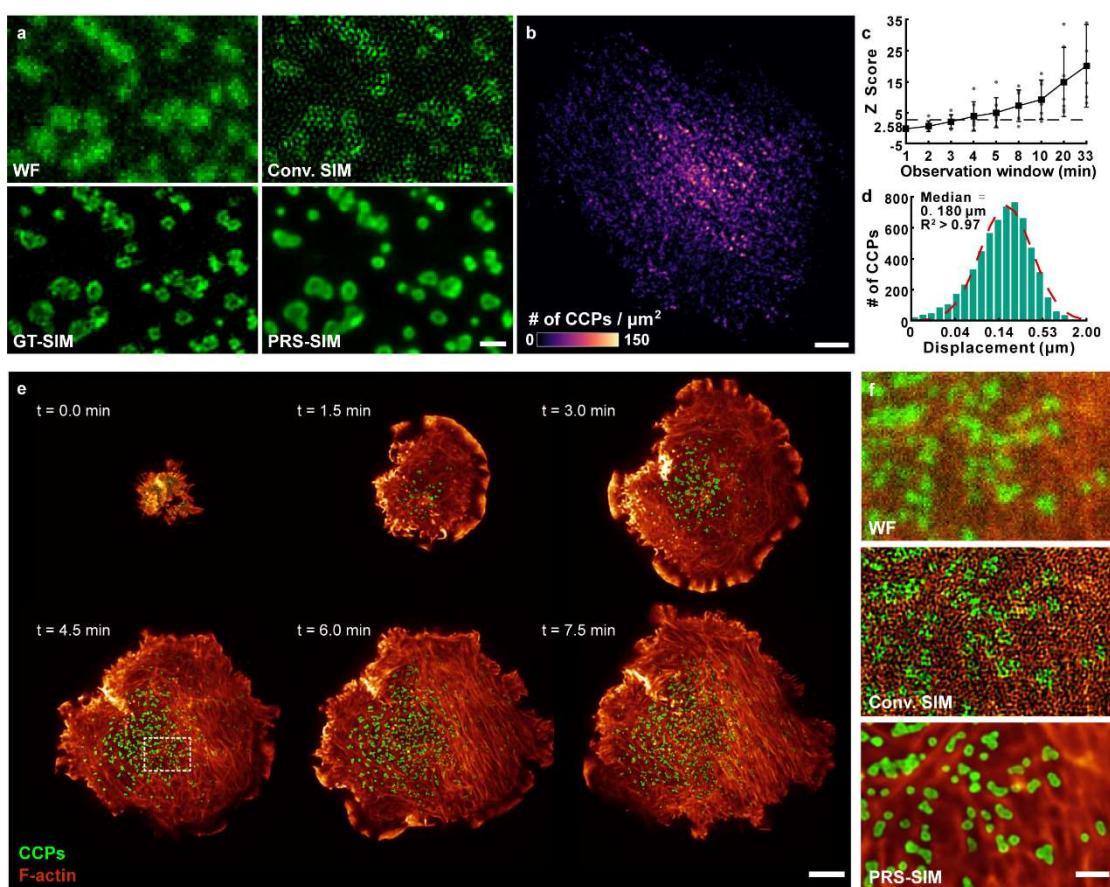
186 acquire raw images of mitochondria (Mito) labelled with TOMM20-2xmEmerald and endoplasmic
187 reticulum labelled with calnexin-mEmerald following a similar procedure as 3D-SIM. For both
188 structures, PRS-SIM achieved a substantial improvement in both perceptual quality and statistical
189 metrics (Fig. 2e and Extended Data Fig. 8) across a field-of-view (FOV) of 70 μ m \times 47 μ m \times
190 27 μ m (after de-skewing). These results suggest that PRS-SIM shows a great potential for extending
191 the application scope of multimodal SIM to low-light conditions without the need to acquire
192 abundant training data.

193 **Observation of bioprocesses sensitive to phototoxicity**

194 One major limitation of SIM is the requirement of high-intensity illumination, resulting in
195 substantial phototoxic side effects. This phototoxicity largely limits the SR imaging duration for live
196 specimens, particularly when imaging molecules with low expression levels or processes that are
197 vulnerable to high-dose illumination. To demonstrate the potential of our method in reducing the
198 required light dose, we first applied PRS-SIM to visualize clathrin-mediated endocytosis in gene-
199 edited SUM159 cells expressing clathrin-EGFP at endogenous levels. The limited fluorescence of
200 these cells prevents conventional TIRF-SIM (conv. TIRF-SIM) imaging from more than 150 frames,
201 corresponding to an imaging time of \sim 3 minutes⁶, because under low SNR conditions, conv. TIRF-
202 SIM image contained substantial reconstruction artifacts (Fig. 3a). Although the fluorescence
203 intensity of each raw image was 30-fold less than that of the high-SNR GT-SIM image, PRS-SIM
204 was still able to reconstruct high-fidelity SR information of the hollow, ring-like structure of CCPs
205 (Fig. 3a). Therefore, PRS-SIM allowed us to characterize clathrin-mediated endocytosis at high
206 spatiotemporal resolution for an unprecedented imaging duration of more than 5,000 frames,
207 corresponding to an imaging time of more than 45 minutes. Previous studies have reported that
208 clathrin-mediated endocytosis is initiated randomly based on analyses of the distribution of all CCP
209 nucleation events over the limited observation window of \sim 7 minutes^{36, 37}. By imaging the same
210 process over 45 minutes, we found that most CCP nucleation sites tended to be spatially clustered
211 (Fig. 3b, c, z-score $>$ 20, n = 7 cells; Methods), with many events occurring in confined regions,
212 possibly at stable clathrin coated plaques³⁸. Moreover, after tracking the CCP trajectories from their
213 initiation to their detachment from the plasma membrane, we noted that the displacement of most
214 CCPs was relatively small (Fig. 3d, Median = 0.180 μ m). This finding is consistent with clathrin
215 uncoating occurring near the site of invagination of the coated pit.

216 We also utilized PRS-SIM to investigate dynamic interactions between subcellular organelles
217 and the cytoskeleton in SUM159 cells. Since the growing cells are light-sensitive and fragile, we
218 decreased the illumination power to 10% of that used for usual experiments to image the entire
219 adhesion process after dropping a SUM159 cell onto a coverslip. Under the low excitation intensity
220 conditions, we successfully recorded the detailed interactions between CCPs and F-actin during the
221 cell adhesion and migration for \sim 8 minutes with more than 170 SR-SIM frames (Fig. 3e). As shown
222 in Fig. 3f, the hollow structure of CCPs (green) and the densely interlaced F-actin (orange) cannot
223 be resolved in wide-field (WF) and conventional SIM (conv. SIM) images due to the diffraction
224 limitation in WF microscopy and noise-induced artifacts in conv. SIM images. In contrast, the fine
225 structures of CCPs and F-actin were both clearly distinguished by PRS-SIM, enabling further study
226 of their detailed interactions. We next applied the Weka segmentation algorithm to extract the
227 filament skeleton and calculated the Mander's overlap coefficient (MOC) between the two
228 structures in each frame (Methods; Extended Data Fig. 9). We found that the MOC remained in a
229 relatively small value during the whole adhesion process, indicating that most CCPs stayed at the

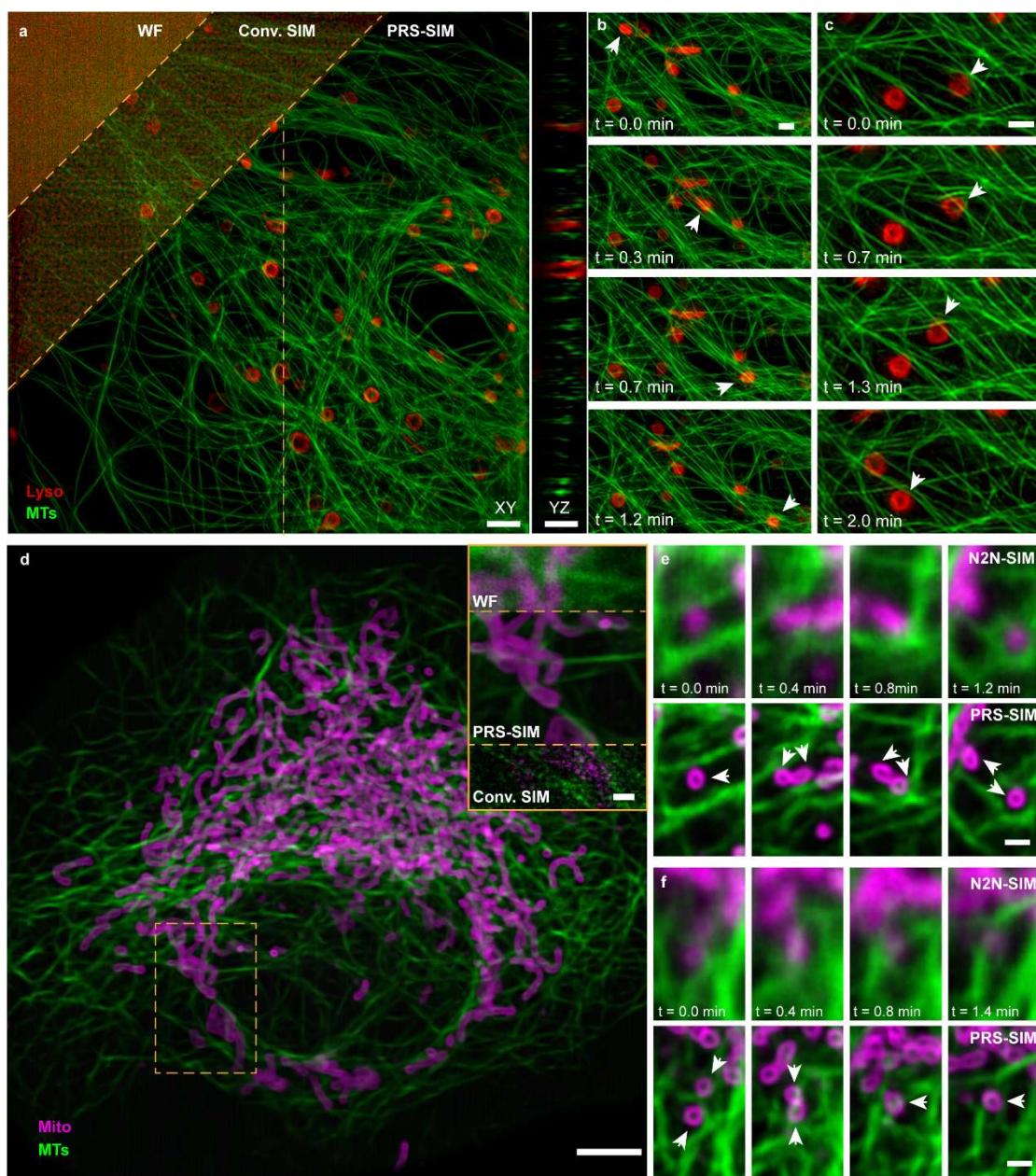
230 interspace of actin filaments and were intensively regulated by the cytoskeleton throughout the
231 adhesion process.



232
233 **Fig. 3 | Long-term observation of the bioprocesses sensitive to phototoxicity via PRS-SIM under**
234 **low excitation power.** **a**, Representative PRS-SIM image (bottom right) of clathrin coated pits (CCPs)
235 whose raw images (top left) were acquired at 30-fold lower fluorescence than those of GT-SIM (bottom
236 left), but conveys high-fidelity ring-like structure and prevents reconstruction artifacts fulfilled in
237 conventional TIRF-SIM image (top right). **b**, Spatial distribution of CCP nucleation events across the
238 plasma membrane of a SUM-159 cell over 5000 frames. **c**, z-score of CCP nucleation calculated from 7
239 cells rapidly increases as extending the observation window. z-score gets larger than 4.95 when
240 observation window is longer than 4 minutes, indicating that there is a less than 1% likelihood that the
241 clustered pattern of CCPs' nucleation could be the result of random occurrence. **d**, Histogram of mean
242 square displacement (MSD) of 3572 CCP tracks from 3 cells. **e**, Representative frames of the dual-color
243 time-lapse imaging of CCPs (green) and F-actin (red) in a live SUM159 cell during the growth process
244 via PRS-SIM. The whole imaging duration is ~8 minutes with more than 170 SR-SIM frames. **f**, Zoom-
245 in regions (indicated by the white square in e) demonstrating the interaction between CCPs and F-actin.
246 PRS-SIM (bottom) enhanced the resolution of both structures compared to WF images (top), and
247 removed most artifacts in Conv. SIM (middle), enabling a clear visualization of the ring-like CCPs and
248 interlaced actin filaments. Scale bar, 0.5 μm (a), 5 μm (b, e), 1 μm (f).

249 **Long-term volumetric SR imaging of subcellular dynamics with adaptive trained PRS-SIM**
250 Volumetric SIM imaging, such as 3D-SIM and LLS-SIM, causes severer photo-damage to live
251 specimens than 2D-SIM (TIRF-SIM)¹². To realize long-term volumetric SR live-cell imaging, we
252 equipped our multi-SIM system with PRS-SIM and imaged a live COS7 cell expressing

253 3xmEmerald-Ensconsin (green) and Lamp1-Halo (red) in 3D-SIM mode under ~10-fold lower
254 excitation power than typical imaging conditions (Fig. 4a-c). The data were acquired over 1 hour
255 (400 two-color SIM volumes at an interval of 10 seconds). During the data acquisition process, no
256 decrease in cell activity was observed, indicating negligible phototoxicity effects. Although
257 conventional SIM reconstruction reduces the out-of-focus fluorescence and improves the axial
258 resolution, the detection noise severely degrades the image quality, preventing us from investigating
259 the underlying bioprocesses. In contrast, the PRS-SIM model, which was trained by only 30 selected
260 frames with the equal distance from the noisy time-lapse data, substantially removed the
261 reconstruction artifacts and restored the fine structures of both organelles including continuous
262 microtubule filaments and the hollow lysosomes. These advantages of PRS-SIM enable a clear
263 volumetric observation of the dynamic interaction between microtubules and lysosomes, e.g., the
264 directional movement of a lysosome along the MT filaments (Fig. 4b) and the hitchhiking
265 remodeling mechanism of MT filaments under the traction of lysosomes (Fig. 4c).



266

267 **Fig. 4 | Long-term volumetric super-resolution imaging of live cells with adaptively trained PRS-
268 SIM.** **a**, Progression of resolution and quality improvement of a live COS7 cell expressing 3xmEmerald-
269 Ensconsin (green) and Lamp1-Halo (red), from wide-field, Conv. 3D-SIM, and PRS-SIM enhanced 3D-
270 SIM. **b, c**, Time-lapse PRS-SIM images of lysosomes moving along adjacent MTs (**b**) or deforming under
271 the traction of MTs (**c**) as indicated by white arrows. **d**, Representative PRS-SIM enhanced LLS-SIM
272 images of a live COS7 cell expressing TOMM20-2xmEmerald (magenta) and 3xmCherry-Ensconsin
273 (green). The comparison of WF, Conv. SIM and PRS-SIM images of a zoom-in region are displayed in
274 the top right corner. **e, f**, Time-lapse recordings of the fission (**e**) and fusion (**f**) processes of mitochondria
275 under the interaction with MTs as indicated by white arrows. The denoising results of N2N-SIM and
276 PRS-SIM are compared to demonstrate their performance on fast-moving samples. Both the adaptively
277 trained PRS-SIM models and N2N-SIM models were trained only with the noisy raw time-lapse data.
278 Scale bar, 5 μ m (a, d), 1 μ m (b, c, e-f, and zoom-in regions of d).

279 We next applied the PRS-SIM enhanced LLS-SIM system to record the volumetric subcellular
280 dynamics of COS7 cells expressing TOMM20-2xmEmerald and 3xmCherry-Ensconsin (Fig. 4d-f).
281 Two PRS-SIM models for mitochondria (Mito) and MTs were independently trained with the noisy
282 time-lapse data themselves, which consisted of ~310 two-color SIM volumes acquired at an interval
283 of 12 seconds. We demonstrated that the adaptively trained PRS-SIM models removed most noise-
284 induced artifacts and resolved the delicate structures of Mito and MTs (Fig. 4d). However, due to
285 the rapid movement and deformation of the two observed structures, the classical denoising
286 algorithm N2N³² and its derivative DeepCAD^{39, 40}, which are based on the temporal continuity
287 between adjacent frames (Methods), generated oversmoothed images with severe motion blur (Fig.
288 4e-f, Extended Data Fig. 10). With the prolonged observation window provided by PRS-SIM, we
289 clearly identified the fission and fusion processes of Mito (Fig. 4e, f), which are some of the most
290 common yet very important bioprocesses in live cells. Moreover, we emphasized that since the
291 adaptive training mode of PRS-SIM utilizes only the noisy collected data for network training and
292 then denoises themselves, there is no domain shift problem. Thus, the adaptively trained PRS-SIM
293 models provide a high denoising fidelity and show great potential in the discovery of previously
294 unseen biological structures and phenomena.

295 **Discussion**

296 In summary, PRS-SIM is a novel self-supervised learning-based method for SIM image restoration,
297 which trains the denoiser with only noisy data and reconstructs artifact-free SR-SIM images with
298 10-fold less fluorescence than routine SIM imaging conditions. The proposed self-supervised
299 strategy does not require either high-SNR GT data or repeated acquisition to construct the training
300 dataset. Thus, this easy-to-implement data acquisition scheme is applicable to biological specimens
301 of high dynamics or with low fluorescence efficiency. For long-term live-cell imaging, PRS-SIM
302 can be applied in the adaptive training mode, where the acquired noisy data are directly used to train
303 the denoising model. Therefore, no pre-trained models for the same samples are needed, and with
304 this advance, PRS-SIM can be used to discover previously unknown biological structures and
305 phenomena. Finally, we emphasize that our method is applicable to multiple SIM modalities,
306 including TIRF/GI-SIM, 3D-SIM, LLS-SIM, and even NL-SIM. With PRS-SIM, we achieved long-
307 term live observations of subcellular dynamics and diverse bioprocesses with extremely low
308 invasiveness, demonstrating the broad applicability of our method. Furthermore, to make PRS-SIM
309 more accessible for biological research, we developed an easy-to-use Fiji toolbox⁴¹ (Supplementary

310 Note 3, Supplementary Fig. 3-4), where the network training and inference can be implemented by
311 several clicks.

312 PRS-SIM can be improved in several ways. First, successful PRS-SIM reconstruction relies on
313 accurate estimations of the SIM patterns, which is challenging under extremely low-light conditions
314 for conventional SIM parameter estimation algorithm. Therefore, an additional neural network for
315 more precise parameter estimation may improve the robustness of PRS-SIM. Second, to obtain
316 volumetric images of thick samples, although the noise-induced artifacts are mitigated by PRS-SIM,
317 the image quality suffers from sample-induced optical aberrations. Incorporating PRS-SIM into an
318 adaptive optics-embedded SIM system^{42,43} may greatly improve the fidelity of the reconstructed SR
319 images.

320 **References**

- 321 1. Gustafsson, M.G. Surpassing the lateral resolution limit by a factor of two using structured
322 illumination microscopy. *Journal of microscopy* **198**, 82-87 (2000).
- 323 2. Gustafsson, M.G. et al. Three-dimensional resolution doubling in wide-field fluorescence
324 microscopy by structured illumination. *Biophysical journal* **94**, 4957-4970 (2008).
- 325 3. Karras, C. et al. Successful optimization of reconstruction parameters in structured illumination
326 microscopy—a practical guide. *Optics Communications* **436**, 69-75 (2019).
- 327 4. Demmerle, J. et al. Strategic and practical guidelines for successful structured illumination
328 microscopy. *Nature protocols* **12**, 988-1010 (2017).
- 329 5. Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. & Gustafsson, M.G. Super-resolution video
330 microscopy of live cells by structured illumination. *Nature methods* **6**, 339-342 (2009).
- 331 6. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal
332 dynamics. *Science* **349**, aab3500 (2015).
- 333 7. Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale
334 resolution on millisecond timescales. *Cell* **175**, 1430-1442. e1417 (2018).
- 335 8. Chu, K. et al. Image reconstruction for structured-illumination microscopy with low signal level.
336 *Optics express* **22**, 8687-8702 (2014).
- 337 9. Labouesse, S. et al. Joint reconstruction strategy for structured illumination microscopy with
338 unknown illuminations. *IEEE Transactions on Image Processing* **26**, 2480-2493 (2017).
- 339 10. Smith, C.S. et al. Structured illumination microscopy with noise-controlled image
340 reconstructions. *Nature methods* **18**, 821-828 (2021).
- 341 11. Wen, G. et al. High-fidelity structured illumination microscopy by point-spread-function
342 engineering. *Light: Science & Applications* **10**, 70 (2021).
- 343 12. Hagen, N., Gao, L. & Tkaczyk, T.S. Quantitative sectioning and noise analysis for structured
344 illumination microscopy. *Optics express* **20**, 403-413 (2012).
- 345 13. Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for
346 biological imaging. *Nature methods* **15**, 1011-1019 (2018).
- 347 14. Dong, W. et al. Denoising prior driven deep neural network for image restoration. *IEEE*
348 *transactions on pattern analysis and machine intelligence* **41**, 2305-2318 (2018).
- 349 15. Jin, L. et al. Deep learning enables structured illumination microscopy with low light levels and
350 enhanced speed. *Nature communications* **11**, 1-7 (2020).
- 351 16. Qiao, C. et al. Evaluation and development of deep neural networks for image super-resolution
352 in optical microscopy. *Nature Methods* **18**, 194-202 (2021).
- 353 17. Qiao, C. et al. 3D Structured illumination microscopy via channel attention generative

354 18. adversarial network. *IEEE Journal of Selected Topics in Quantum Electronics* **27**, 1-11 (2021).

355 18. Shah, Z.H. et al. Deep-learning based denoising and reconstruction of super-resolution
356 structured illumination microscopy images. *Photonics Research* **9**, B168-B181 (2021).

357 19. Yang, W. et al. Deep learning for single image super-resolution: A brief review. *IEEE
358 Transactions on Multimedia* **21**, 3106-3121 (2019).

359 20. Dong, C., Loy, C.C., He, K. & Tang, X. Image super-resolution using deep convolutional
360 networks. *IEEE transactions on pattern analysis machine intelligence* **38**, 295-307 (2015).

361 21. Qiao, C. et al. Rationalized deep learning super-resolution microscopy for sustained live
362 imaging of rapid subcellular processes. *Nature biotechnology*, 1-11 (2022).

363 22. Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a gaussian denoiser: Residual
364 learning of deep cnn for image denoising. *IEEE transactions on image processing* **26**, 3142-
365 3155 (2017).

366 23. Zhang, K., Zuo, W. & Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based
367 image denoising. *IEEE Transactions on Image Processing* **27**, 4608-4622 (2018).

368 24. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence
369 microscopy. *Nature methods* **15**, 1090-1097 (2018).

370 25. Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence
371 microscopy. *Nature methods* **16**, 103-110 (2019).

372 26. Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen
373 fluorescence microscopy image volumes. *Nature methods* **18**, 678-687 (2021).

374 27. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high
375 spatiotemporal resolution. *Science* **346**, 1257998 (2014).

376 28. Rego, E.H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein
377 reveals cellular structures at 50-nm resolution. *Proceedings of the National Academy of Sciences
378* **109**, E135-E143 (2012).

379 29. Gustafsson, M.G. Nonlinear structured-illumination microscopy: wide-field fluorescence
380 imaging with theoretically unlimited resolution. *Proceedings of the National Academy of Sciences
381* **102**, 13081-13086 (2005).

382 30. Huang, T., Li, S., Jia, X., Lu, H. & Liu, J. Neighbor2neighbor: A self-supervised framework for
383 deep image denoising. *IEEE Transactions on Image Processing* **31**, 4023-4038 (2022).

384 31. Lequyer, J., Philip, R., Sharma, A., Hsu, W.-H. & Pelletier, L. A fast blind zero-shot denoiser.
385 *Nature Machine Intelligence*, 1-11 (2022).

386 32. Lehtinen, J. et al. Noise2Noise: Learning image restoration without clean data. *arXiv preprint
387 arXiv:04189* (2018).

388 33. Krull, A., Buchholz, T.-O. & Jug, F. in *Proceedings of the IEEE/CVF conference on computer
389 vision and pattern recognition* 2129-2137 (2019).

390 34. Prakash, M., Delbracio, M., Milanfar, P. & Jug, F. in *International Conference on Learning
391 Representations* (2021).

392 35. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image
393 Segmentation. *arXiv preprint arXiv:04597* (2015).

394 36. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. *Cell*
395 **118**, 591-605 (2004).

396 37. Godlee, C. & Kaksonen, M. From uncertain beginnings: Initiation mechanisms of clathrin-
397 mediated endocytosis. *Journal of Cell Biology* **203**, 717-725 (2013).

398 38. Cureton, D.K., Massol, R.H., Saffarian, S., Kirchhausen, T.L. & Whelan, S.P. Vesicular
399 stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon
400 actin for internalization. *PLoS pathogens* **5**, e1000394 (2009).

401 39. Li, X. et al. Reinforcing neuron extraction and spike inference in calcium imaging using deep
402 self-supervised denoising. *Nature Methods* **18**, 1395-1400 (2021).

403 40. Li, X. et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging
404 beyond the shot-noise limit. *Nature Biotechnology*, 1-11 (2022).

405 41. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. *9*, 676-682
406 (2012).

407 42. Hampson, K.M. et al. Adaptive optics for high-resolution imaging. *Nature Reviews Methods
408 Primers* **1**, 1-26 (2021).

409 43. Turcotte, R. et al. Dynamic super-resolution structured illumination imaging in the living brain.
410 *Proceedings of the National Academy of Sciences* **116**, 9586-9591 (2019).

411

412

413

414 **Methods**

415 **Optical setup**

416 All the experiments in this work were performed on our home-built multi-modality SIM system
417 (Multi-SIM) or lattice light-sheet SIM (LLS-SIM) system, which were developed based on previous
418 setups^{6, 7}. Three modes of TIRF-SIM, GI-SIM, and 3D-SIM were embedded in the Multi-SIM
419 system. Briefly, three laser beams of 488 nm (Genesis-MX-SLM, Coherent), 560 nm (2RU-VFL-
420 P-500-560, MPB Communications), and 640 nm (LBX-640-500, Oxxius) were collimated for multi-
421 channel excitation and controlled by an AOTF (AOTFnC-400.650, AA Quanta Tech) for rapid
422 switching. The structured illumination patterns were generated by a ferroelectric spatial light
423 modulator (SLM, QXGA-3DM, Forth Dimension Display) placed conjugated to the sample plane.
424 Illumination patterns of 3-phase×3-orientation for TIRF/GI-SIM mode and 3-phase×5-orientation
425 for 3D-SIM mode were generated in our experiments. The final images were collected by an sCMOS
426 camera (Hamamatsu, Orca Flash 4.0 v3).

427 For the LLS-SIM system, three laser beams of 488 nm, 560 nm and 640 nm (MPB
428 Communications) were used for multi-color excitation. The illumination pattern is displayed on the
429 SLM (the same type as used in Multi-SIM) and then filtered by an annular mask of an outer NA of
430 0.5 and inner NA of 0.375 to obtain a balanced axial and lateral resolution. A pair of galvo mirrors
431 (Cambridge Technology, 6210H) was set for x-axis and z-axis scanning. The emission fluorescence
432 was collected by a water-immersion objective (Nikon, CFI Apo LWD 25XW, 1.1NA) and captured
433 by a sCMOS camera (Hamamatsu, Orca Fusion). The illumination patterns of 3-phase×1-orientation
434 were generated for each z-slice. The oblique angle between the illumination path and the detection
435 path is 30°. All the equipment was synchronized by a DAQ card, allowing the maximum imaging
436 speed at ~1000 z-slices per second. The pixel size of the detected image is 92.6 nm and the axial
437 step size is determined by the specific scanning angle step used for each experiment.

438

439 **Data acquisition**

440 The experiments in this work can be categorized as fixed sample imaging and time-lapse live-cell
441 imaging. For fixed sample imaging, we utilized the data from the open-source dataset BioSR¹⁶ or
442 acquired via our home-built SIM systems. For TIRF-SIM experiments, The CCPs, ER, and MTs
443 images whose signal levels range from 1 to 4 in BioSR were used to create the training dataset. For
444 3D-SIM and LLS-SIM experiments, the dataset used for both training and inference was acquired
445 with our home-built Multi-SIM and LLS-SIM systems. Specifically, for each type of specimen, we
446 acquired more than 20 sets of raw SIM images at four escalating levels of excitation light intensity
447 to create the training dataset, and then tuned the laser power to the maximum to capture the high-
448 SNR images as the corresponding GT data. Notably, the training dataset is generated purely with
449 the low-SNR data, and the high-SNR GT data are only used as the reference for quantitative analysis.

450 For time-lapse imaging, the 2D and 3D experiments were carried out with the TIRF-SIM and
451 3D-SIM mode of the Multi-SIM system, respectively. The excitation light power used in all live
452 experiments was set to 10-fold lower than that used in common imaging conditions, corresponding
453 to an average photon count of 40~60 for each raw SIM image, to minimize the phototoxicity and
454 photobleaching effects. The specific imaging conditions for each time-lapse experiment were listed
455 in Supplementary Table 1.

456

457 **Pixel realignment strategy**

458 The self-supervised training dataset was generated with the pixel realignment strategy. The raw
459 dataset consists of a series of low-SNR raw SIM image groups. Each individual image in a group is
460 a WF image under a specific illumination pattern (e.g. 3-orientation \times 3-phase for 2D/TIRF-SIM
461 and 3-orientation \times 5-phase \times Z-slice for 3D-SIM). For each raw SIM image group, the generation
462 of the training dataset of PRS-SIM models mainly takes the following steps:

463 (i) Each raw image is divided into 4 sub-images by applying a 2×2 down-sampler and formed
464 four sub-image groups.

465 (ii) The augmented four sub-image groups are re-up sampled into the original size with the
466 nearest interpolation.

467 (iii) Based on the position of the valid pixel in each 2×2 cell, a sub-pixel translation is applied
468 to each raw image, which guarantees that they are well spatially calibrated with each other.

469 (iv) The generated sub-images groups are reconstructed into four noisy SIM images by applying
470 the conventional SIM algorithm.

471 (v) Then several image patched pairs are augmented by randomly selecting two out of four noisy
472 SIM images as the input and target, and applying ordinary data augmentation operations, e.g.,
473 random cropping, flipping and rotation.

474 Note that for 3D-SIM stacks, both the down-sampling, up-sampling and translation operations
475 in step (i)-(iii) are implemented in a slice-by-slice manner. By applying the pixel realignment
476 strategy to all noisy SIM image groups, the complete training dataset is generated. Typically, no
477 fewer than 10 individual image groups are adequate for training a robust PRS-SIM model
478 (Supplementary Fig. 1).

479

480 **Network architecture**

481 PRS-SIM employs U-net³⁵ as the backbone architecture, which has already shown superior
482 performance in denoising task elsewhere³² (Supplementary Fig. 2). The network is composed of an
483 encoder module and a decoder module. For the encoder module, the input data is firstly fed into a
484 convolutional layer with 48 kernels and then encoded by five consecutive encoding blocks. Each
485 encoding block consists of a convolutional layer followed by a non-linear activation layer and a
486 max-pooling layer for spatial down sampling. For the decoder module, five decoding blocks are
487 involved, each of which consists of two consecutive convolutional layer and a nearest interpolation
488 layer for spatial up sampling. Skip-connections were embedded between the encoding and decoding
489 blocks to prevent over-fitting. Two additional convolutional layers were placed at the end of the
490 network to transfer the final denoised image into the same shape as the input image. Concretely, the
491 kernel size of all the convolutional layers is 3×3 and the activation function used is Leaky-ReLU,
492 which is defined as:

$$493 \text{LeakyReLU}(x) = \max(0, x) + \gamma \cdot \min(0, x), \quad (4)$$

494 where γ denotes the negative slope coefficient (set as 0.1 in our experiments). For 3D-SIM
495 applications, all the convolutional layers and pooling layers were replaced with the corresponding
496 3D versions and the other parts remained unchanged.

497 **Data processing and Network training**

498 The training dataset of PRS-SIM consist of a series of image pairs generated only from the low-
499 SNR raw images as described in the previous section. For pre-trained PRS-SIM models, 20-40

500 distinct ROIs of each type of specimens were imaged to create the training dataset. For adaptive
501 training mode of PRS-SIM, ~100 frames/volumes were randomly selected from the entire time
502 series for training. Image augmentation operations, including random cropping, rotation, and
503 flopping, were further employed to create ~100000 mini-patch pairs of 128×128 pixels (64×64×8
504 voxels for 3D-SIM) to avoid overfitting.

505 During the network training, Adam optimizer with an initial learning rate of 10^{-4} was adopted
506 to accelerate the convergence. A multi-step scheduler was employed to decrease the learning rate
507 by a factor of 0.5 at the designated epochs. The training processes were performed on a workstation
508 equipped with a graphics processing unit (Nvidia GeForce RTX 3090Ti, 24GB memory). The source
509 codes were written based on PyTorch v1.5 framework in Python v3.6. The typical training time for
510 a dataset of ~100000 mini-patch pairs is about 2 hours for 2D batches and 4 hours for 3D batches.
511 More training details of each experiment performed in this work were listed in Supplementary Table
512 2.

513 For the inference phase, the noisy raw SIM images were reconstructed into SR images via
514 conventional SIM algorithm, divided into several tiled patches of 256×256 pixels with 10% overlap,
515 fed into the pre-trained network, and finally stitched together to form the denoised SR images. For
516 adaptive training mode of PRS-SIM, the time-lapse data was denoised with the model trained by
517 itself, while in other experiments the data was denoised with the pre-trained network of the same
518 type of specimens.

519 For N2N-SIM training in Fig. 4e-f, Extended Data Fig.3, and Extended Data Fig.9, we randomly
520 selected two consecutive frames/volumes in the time-lapse data used as the input and target,
521 respectively. The whole training dataset are generated from ~100 independent frame/volume pairs.
522 Other operations and configurations during training and inference are the same as PRS-SIM.

523 **Image assessment metrics**

524 To quantitatively evaluate the denoised images output by PRS-SIM, we employed the peak signal-
525 to-noise ratio (PSNR) and structural similarity (SSIM) between the denoised image I referring to
526 the GT image I_{gt} as the metric. Since the signal intensity of the denoised and GT images is of
527 different dynamic range, we first applied percentile normalization to I and I_{gt} as:

$$528 \quad \tilde{I} = \frac{I - \text{prctile}(I, p_{min})}{\text{prctile}(I, p_{max}) - \text{prctile}(I, p_{min})}, \quad (5)$$

$$529 \quad \tilde{I}_{gt} = \frac{I_{gt} - \text{prctile}(I_{gt}, p_{min})}{\text{prctile}(I_{gt}, p_{max}) - \text{prctile}(I_{gt}, p_{min})}, \quad (6)$$

530 where $\text{prctile}(I, p)$ denotes the intensity of the pixel ranking at $p\%$ of image I , and \tilde{I} denotes
531 the corresponding normalized image. The p_{min} and p_{max} are set as 0.1 and 99.5 in our analysis.
532 To further alleviate the disturbance in metric calculation, we implemented a linear transformation
533 to the normalized image \tilde{I} by:

$$534 \quad \tilde{I}_{trans} = \alpha \tilde{I} + \beta \quad (7)$$

535 where α and β denote the transformation coefficients to minimize the square root error between
536 the transformed image and the normalized GT image, which can be formulated as a linear regression
537 problem:

$$538 \quad \min \|\alpha \tilde{I} + \beta - \tilde{I}_{gt}\|_2^2, \quad (8)$$

539 where $\|\cdot\|_2$ is the L2-norm. The closed solution of this problem is:

540

$$\hat{\alpha} = \frac{\sum \tilde{I}_{gt} \cdot (\tilde{I} - \text{mean}(\tilde{I}))}{\sum \tilde{I}^2 - N \cdot \text{mean}(\tilde{I})^2}, \quad (9)$$

541

$$\hat{\beta} = N \cdot \sum (\tilde{I}_{gt} - \hat{\alpha} \cdot \tilde{I}), \quad (10)$$

542 where N is the pixel number of the image, $\sum \cdot$ denotes the pixel-wise sum, $\hat{\alpha}$ and $\hat{\beta}$ denote the
 543 optimal values of the transformation coefficients α and β , respectively. Then the final PSNR and
 544 SSIM are calculated as:

545

$$\text{PSNR}(\tilde{I}_{trans}, \tilde{I}_{gt}) = 10 \cdot \log_{10} \left(\frac{1}{\frac{1}{N} \sum (\tilde{I}_{trans} - \tilde{I}_{gt})^2} \right) \quad (11)$$

546

$$\text{SSIM}(\tilde{I}_{trans}, \tilde{I}_{gt}) = \frac{(2\mu_{\tilde{I}_{trans}}\mu_{\tilde{I}_{gt}} + C_1)(2\sigma_{\tilde{I}_{trans}\tilde{I}_{gt}} + C_2)}{(\mu_{\tilde{I}_{trans}}^2 + \mu_{\tilde{I}_{gt}}^2 + C_1)(\sigma_{\tilde{I}_{trans}}^2 + \sigma_{\tilde{I}_{gt}}^2 + C_2)} \quad (12)$$

547 where $\mu_{\tilde{I}_{trans}}$, $\mu_{\tilde{I}_{gt}}$ and $\sigma_{\tilde{I}_{trans}}$, $\sigma_{\tilde{I}_{gt}}$ denote the mean values and standard deviations of image
 548 \tilde{I}_{trans} and \tilde{I}_{gt} , respectively; $\sigma_{\tilde{I}_{trans}\tilde{I}_{gt}}$ denotes the cross-covariance between \tilde{I}_{trans} and \tilde{I}_{gt} . The
 549 constant C_1 and C_2 used in this paper is 0.01^2 and 0.03^2 , respectively.

550 To characterize the resolution of the images output by PRS-SIM, we employed single-image
 551 based Fourier ring correlation (FRC) method⁴⁴. The raw image I is split into two sub-images I_1
 552 and I_2 by interleaved pixel extraction. Then the FRC value of the central ring region with radius
 553 R is calculated as:

554

$$\text{FRC}(R) = \frac{\sum_{r < R} \mathcal{F}(I_1) \mathcal{F}(I_2)^*}{\sqrt{\sum_{r < R} |\mathcal{F}(I_1)|^2} \cdot \sqrt{\sum_{r < R} |\mathcal{F}(I_2)|^2}}, \quad (13)$$

555 where the symbol \mathcal{F} denotes Fourier transformation. By calculating the FRC value from 0 to
 556 R_{max} (the reciprocal of the pixel size), a generally declining curve is formulated. The resolution
 557 can be measured as the reciprocal of the Fourier cutoff frequency R_{cutoff} , where $\text{FRC}(R_{cutoff}) <$
 558 tsh , where tsh represents the spectral intensity threshold. In our analysis, the tsh is set as a
 559 typical value of 0.25.

560 **Data analysis**

561 We utilized the spatial autocorrelation (*i.e.*, Global Moran's Index⁴⁵) to evaluate whether the
 562 distribution of clathrin coated pit (CCP) nucleation sites is clustered, dispersed, or random. For each
 563 time-lapse dataset, we first localized the centroid positions of all CCPs at each time point, and then
 564 linked them temporally in the whole time series using the ImageJ plugin TrackMate⁴⁶, thus yielded
 565 trajectories of all detected CCPs. To rule out the false-positive events, the trajectories of less than
 566 40 time points corresponding to a duration of 20 seconds were excluded from following computation.
 567 Subsequently, for each time-lapse data, the initial locations of the CCP trajectories detected in the
 568 designated observation window were projected onto the same image as the CCP nucleation sites'
 569 map (Fig. 3b). Then, the Moran's Index can be calculated as:

570

$$I = \frac{n}{S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n d_{i,j} z_i z_j}{\sum_{i=1}^n z_i^2}, \quad (14)$$

571 where $z_i = (x_i - \bar{X})$ is the deviation of the event count of the i^{th} pixel from the average count;
 572 $d_{i,j}$ refers to the inverse Euclidean distance between pixel i and j ; n is the total pixel number of
 573 the map and $S_0 = \sum_{i=1}^n \sum_{j=1}^n d_{i,j}$ is the summation of $d_{i,j}$. Finally, the z-score was calculated for
 574 each nucleation sites map to evaluate the significance of the Moran's Index (Fig. 3c):

575
$$z_I = \frac{I - E[I]}{\sqrt{V[I]}}, \quad (15)$$

576 where $E[\cdot]$ and $V[\cdot]$ are the expectation and the variance of I , respectively. In general, the larger
577 z -score indicates the stronger tendency of clustering.

578 To quantitatively investigated the interaction of organelles during the cell growth (Fig. 3e, f,
579 Extended Data Fig. 8), we calculated the Mander's overlapped coefficient (MOC)⁴⁷ of CCPs
580 referring to F-actin. For each frame, a binary mask (denoted as M) is firstly generated by applying
581 a threshold tsh_M to the F-actin channel, which represents the F-actin skeleton:

582
$$M = I_{F-act} > tsh_M \quad (16)$$

583 Then the MOC value is calculated as:

584
$$MOC = \frac{\sum_M I_{CCPs}}{\sum_{total} I_{CCPs}}, \quad (17)$$

585 where $\sum_M I_{CCPs}$ and $\sum_{total} I_{CCPs}$ denote the intensity summation of the CCP channel within the
586 masked region and the entire image, respectively.

587 **Cell culture, transfection, and stain**

588 Cos7 cells were cultured in DMEM (Gibco), supplemented with 10% fetal bovine serum (Gibco)
589 and 1% penicillin-streptomycin in 37°C with 5% CO₂. For live cell imaging, the coverslips were
590 pre-coated with 50μg ml⁻¹ of collagen and cells were seeded onto coverslips with about 70% density
591 before transfection. After 12h, cells were transfected with plasmids using Lipofectamine 3000
592 (Invitrogen) according to the manufacturer's protocol. Cells were imaged 12-24 hours after
593 transfection in a stage top incubator (Okolab) to maintain condition at 37°C with 5% CO₂. The
594 plasmid constructs used in this work were 3xmEmerald-Ensconsin, Lamp1-mEmerald, TOMM20-
595 2xmEmerald, calnexin-mEmerald, and Lamp1-Halo.

596 SUM159 cells were genome edited to incorporate EGFP to the C-terminus of clathrin light chain
597 A (clathrin-EGFP) using the TALEN-based approach⁴⁸. The clathrin-EGFP expressing cells were
598 enriched by two sequential bulk sorting. The cells were cultured in DMEM/F-12 (Gibco) medium
599 supplemented with 5% fetal bovine serum (Gibco), 5 μg/ml Bovine insulin (Cell Applications), 10
600 mM HEPES (Gibco), 1 μg/mL Hydrocortisone (Sigma) and 1% Penicillin-Streptomycin (Gibco) in
601 37°C with 5% CO₂. For dual-color experiments, these SUM-ki-CLAT-GFP cells were further
602 transfected with the lifeact-Halo. Before imaging, we digested the cells using 0.25% Trypsin, and
603 then dropped cell suspension onto the coverslip pre-treated with 50 μg/mL collagen.

604 **Acknowledgement**

605 This work was supported by the National Natural Science Foundation of China (31827802,
606 32125024, 31970659, 32271513, 62071271, 62088102, and 62222508); the Ministry of Science and
607 Technology (2021YFA1300303, 2020AA0105500); China Nation Postdoctoral Program for
608 Innovative Talents (BX2021159); Shuimu Tsinghua Scholar Program (2021SM039, 2022SM035),
609 China Postdoctoral Science Foundation (2022M721842); Beijing Natural Science Foundation
610 (JQ21012); the Tencent Foundation through the XPLORER PRIZE; and the Youth Innovation
611 Promotion Association of the Chinese Academy of Sciences (2020094).

612

613 **Methods Only References**

614 44. Nieuwenhuizen, R.P. et al. Measuring image resolution in optical nanoscopy. *Nature methods*
615 **10**, 557-562 (2013).

616 45. Ehlschlaeger, C.R., Shortridge, A.M. & Goodchild, M.F. Visualizing spatial data uncertainty
617 using animation. *Computers Geosciences* **23**, 387-395 (1997).

618 46. Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for single-particle tracking.
619 *Methods* **115**, 80-90 (2017).

620 47. Manders, E., Verbeek, F. & Aten, J. Measurement of co-localization of objects in dual-colour
621 confocal images. *Journal of microscopy* **169**, 375-382 (1993).

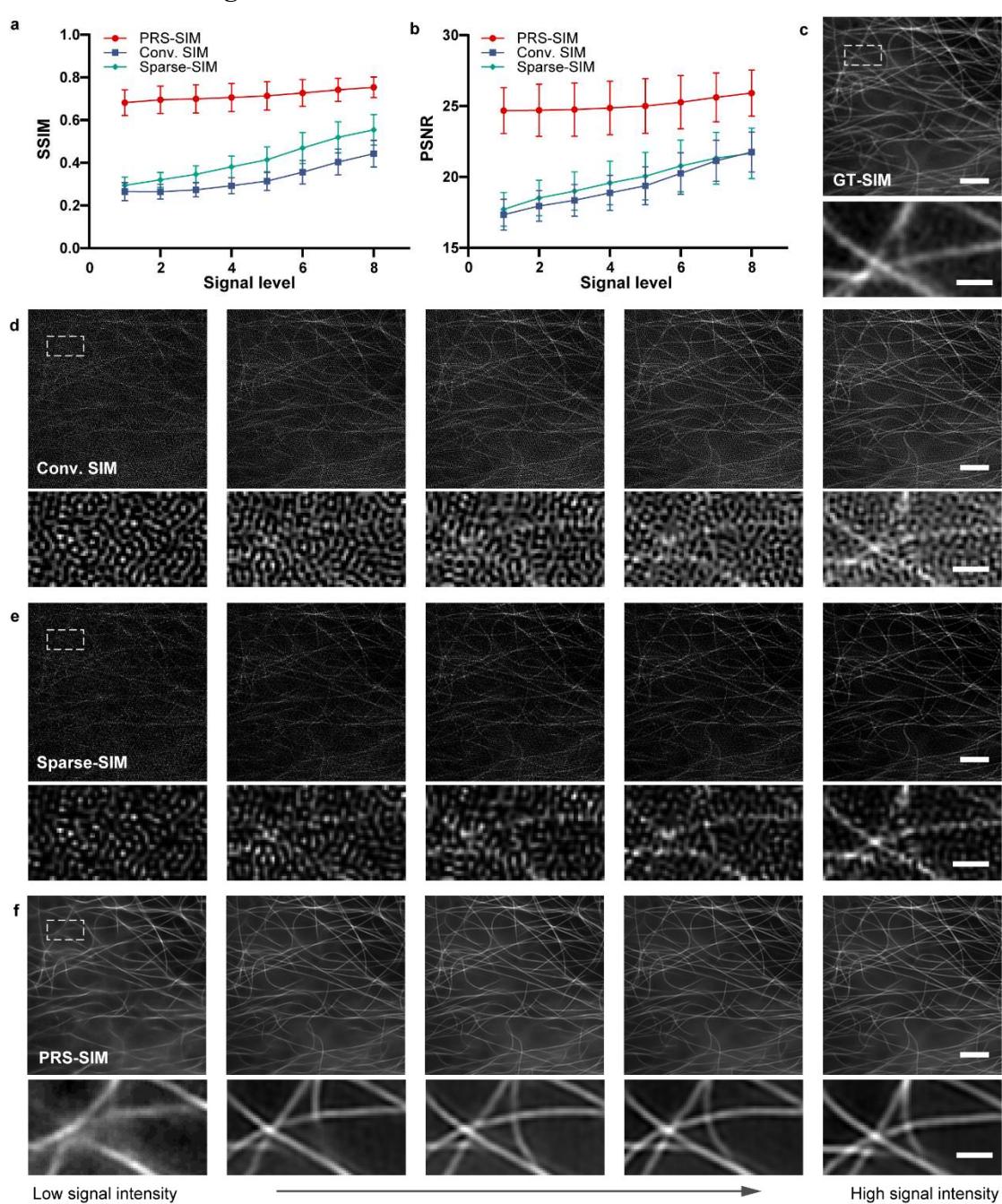
622 48. Sanjana, N.E. et al. A transcription activator-like effector toolbox for genome engineering.
623 *Nature protocols* **7**, 171-192 (2012).

624

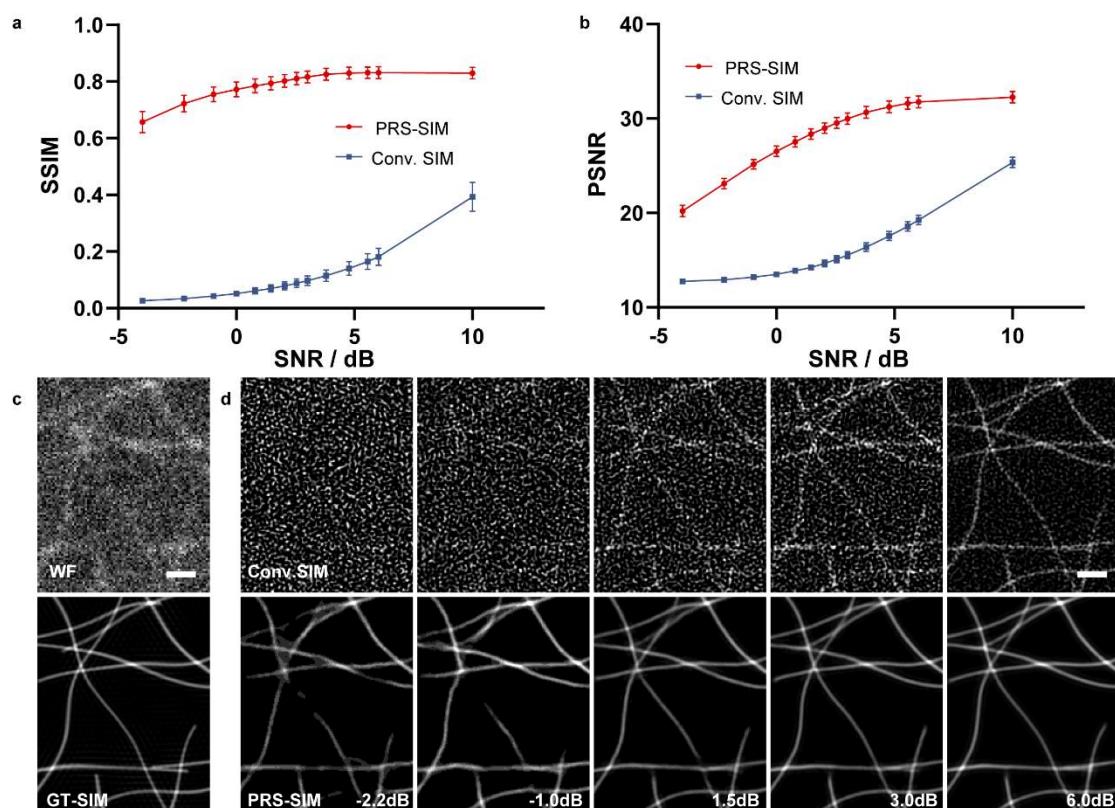
625

626

Extended Data Figures

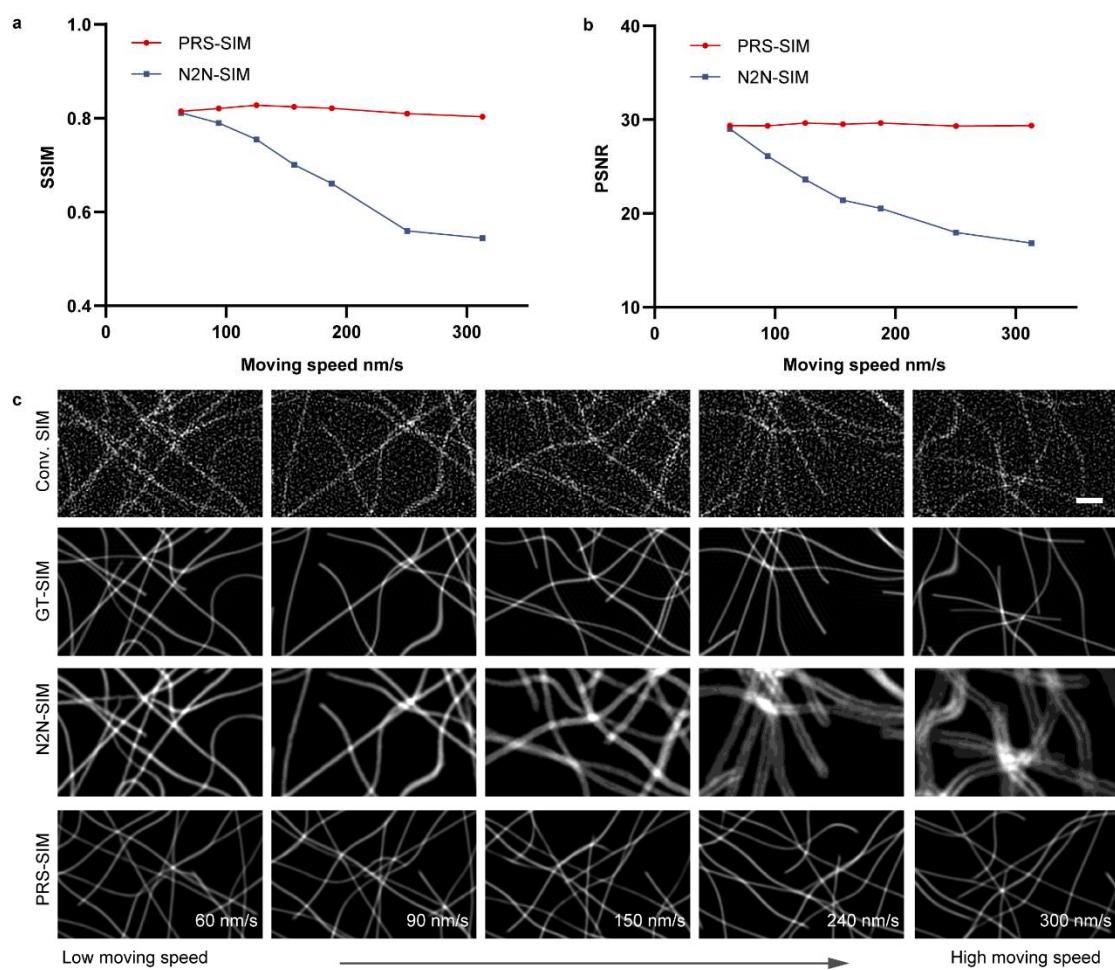


Extended Data Fig. 1 | Evaluation of PRS-SIM on experimental data with different input signal levels. **a,b**, The SSIM (a) and PSNR (b) evaluation of PRS-SIM, Conv. SIM and Sparse-SIM referring to GT-SIM over different input signal levels (level 1-8 from the publicly accessible dataset BioSR). Sample size: N=40 for each data point. **c**, Representative GT-SIM image of MTs. **d-f**, SR images reconstructed via Conv. SIM (d), Sparse-SIM (e), and PRS-SIM (f) from different input signal intensities. Both the quantitative analysis and the reconstructed images demonstrated that PRS-SIM has substantially better performance than Conv. SIM and Sparse-SIM, and is capable of removing the noise-induced artifacts over a wide range of input signal intensities. Scale bar, 2 μ m (regular), 0.5 μ m (zoom-in).

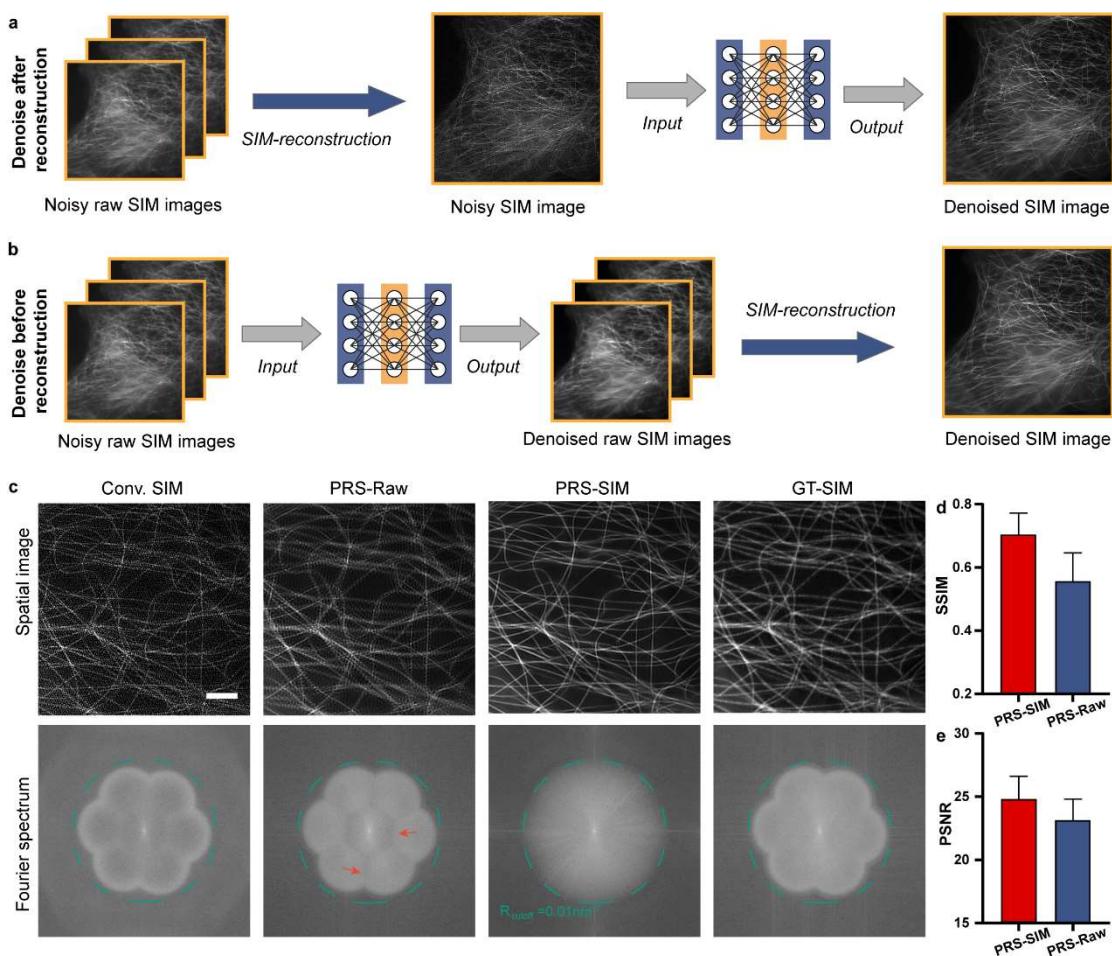


637

638 **Extended Data Fig. 2 | Performance validation of PRS-SIM on synthetic filaments.** a,b, The SSIM
639 (a) and PSNR (b) comparisons of PRS-SIM and Conv. SIM referring to GT-SIM over different SNRs of
640 raw data. Sample size: N=50 for each data point. c, The representative noisy WF images and GT-SIM
641 images. d, The Conv. SIM (upper) and PRS-SIM (lower) images of the ground-truth (c) under different
642 SNRs. Both the quantitative and visualization results demonstrated the significant quality improvement
643 by PRS-SIM compared to Conv. SIM. PRS-SIM is capable to achieve comparable performance as GT-
644 SIM even with the input SNR as low as ~1 dB. Scale bar, 1 μ m.
645



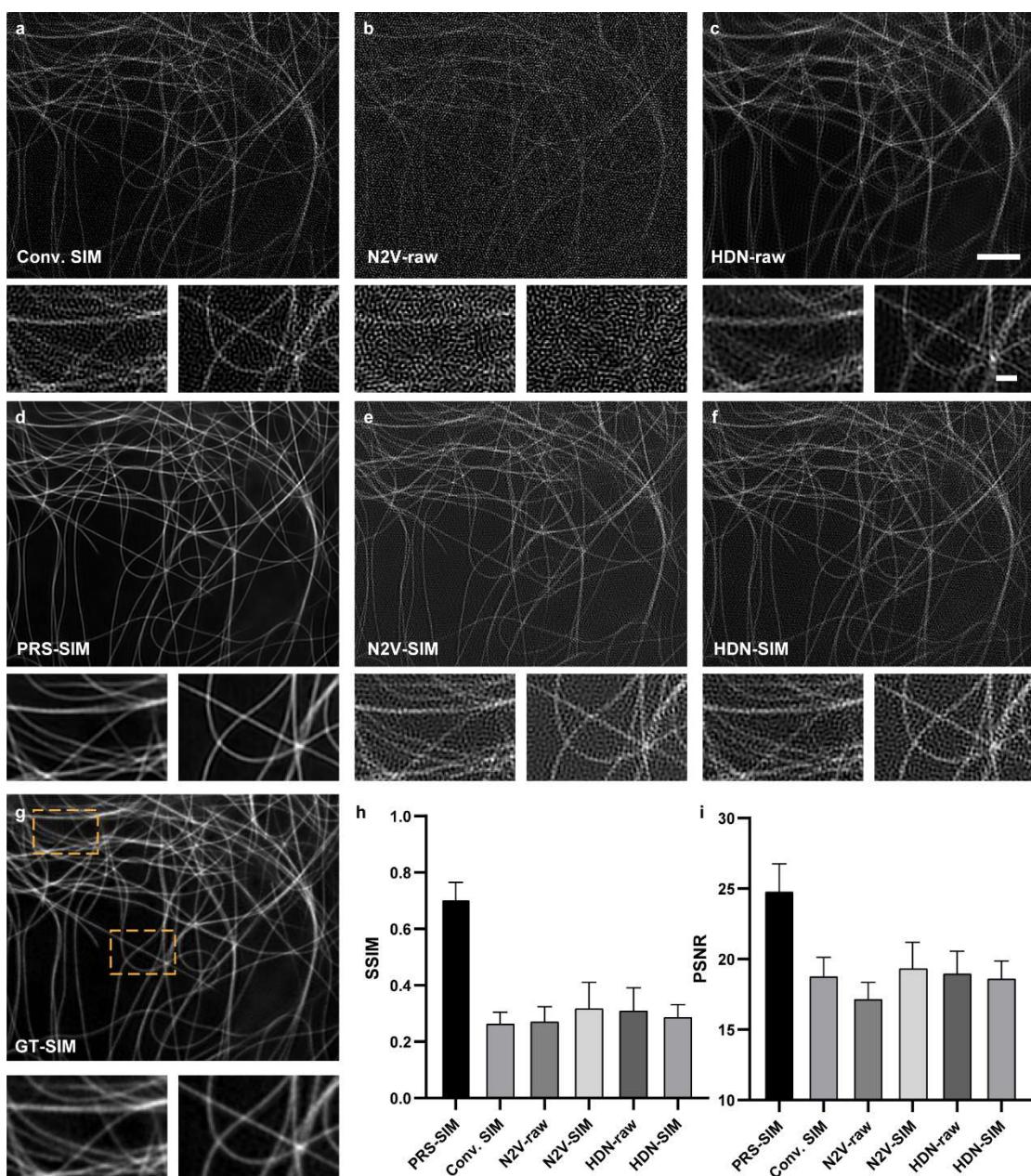
646
647 **Extended Data Fig. 3 | Comparison between PRS-SIM and N2N-SIM on synthetic moving**
648 **microtubules. a,b,** Quantitative comparison of PRS-SIM and N2N-SIM images in terms of PSNR and
649 SSIM on simulated microtubules of different moving speeds. The reconstruction fidelity of N2N-SIM
650 drops significantly as the moving speed increases, while the performance of PRS-SIM remains stable.
651 Sample size: N=50 for each data point. **c,** Representative SR images of moving microtubules generated
652 by Conv. SIM, GT-SIM, N2N-SIM, and PRS-SIM. The visualization results demonstrated that severe
653 blurring artifact emerged in N2N-SIM images when the moving speed is high, while PRS-SIM is not
654 affected since it does not rely on any temporal correlation between the adjacent frames. Scale bar, 1 μ m.
655



656

657 **Extended Data Fig. 4 | Comparison of different denoising strategies for SIM.** **a,b**, The diagram of
658 two different denoising strategies, which employ the denoising network after (**a**, denoted as PRS-SIM)
659 and before (**b**, denoted as PRS-Raw) the conventional SIM reconstruction, respectively. **c**, Representative
660 SIM images reconstructed with PRS-SIM and PRS-Raw and the corresponding Fourier power spectra.
661 The OTF cutoff frequency is annotated by dashed green circles. The PRS-Raw image contains severe
662 ringing artifacts, which is consistent with the heterogeneous regions in its Fourier power spectrum as
663 noted by red arrows. **d,e**, Quantitative comparison of PRS-SIM and PRS-Raw in terms of SSIM (**d**) and
664 PSNR (**e**). Both SSIM result and PSNR results indicated that PRS-SIM achieved better performance than
665 PRS-Raw. Sample size: N=40 for each method. Scale bar, 2 μ m.

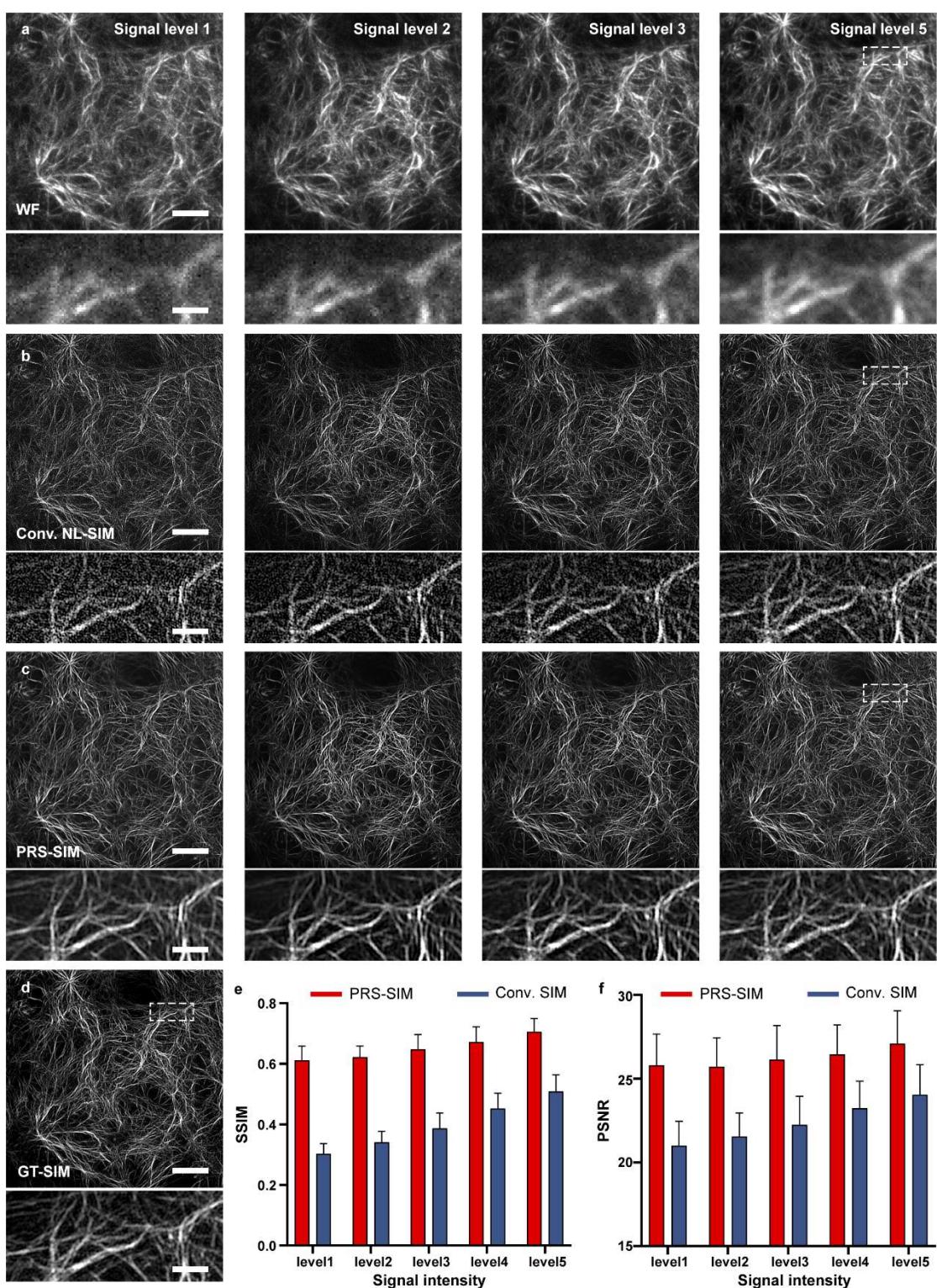
666



667

668 **Extended Data Fig. 5 | Performance comparison among different self-supervised deep-learning**
669 **denoising methods.** a-f, Representative results of the conventional SIM (a), PRS-SIM (d), noise2void
670 (b,e), denoising networks employed before/after SIM reconstruction are noted as N2V-raw/N2V-SIM),
671 hierarchical denoising network (d,f), denoising networks employed before/after SIM reconstruction are
672 noted as HDN-raw/HDN-SIM). g, The corresponding GT-SIM image. Two zoom-in regions noted by
673 yellow squares are shown for detailed comparison. h,i, Statistical comparison of the aforementioned
674 methods by calculating the SSIM (h) and PSNR(i) referring to the GT-SIM image. The quantitative
675 results indicated that PRS-SIM acquired the best denoising performance, which is consistent with lowest
676 artifact and highest fidelity shown in the reconstruction images. Sample size: N=40 for each method.
677 Scale bar, 2 μ m, 0.5 μ m (zoom-in regions).

678

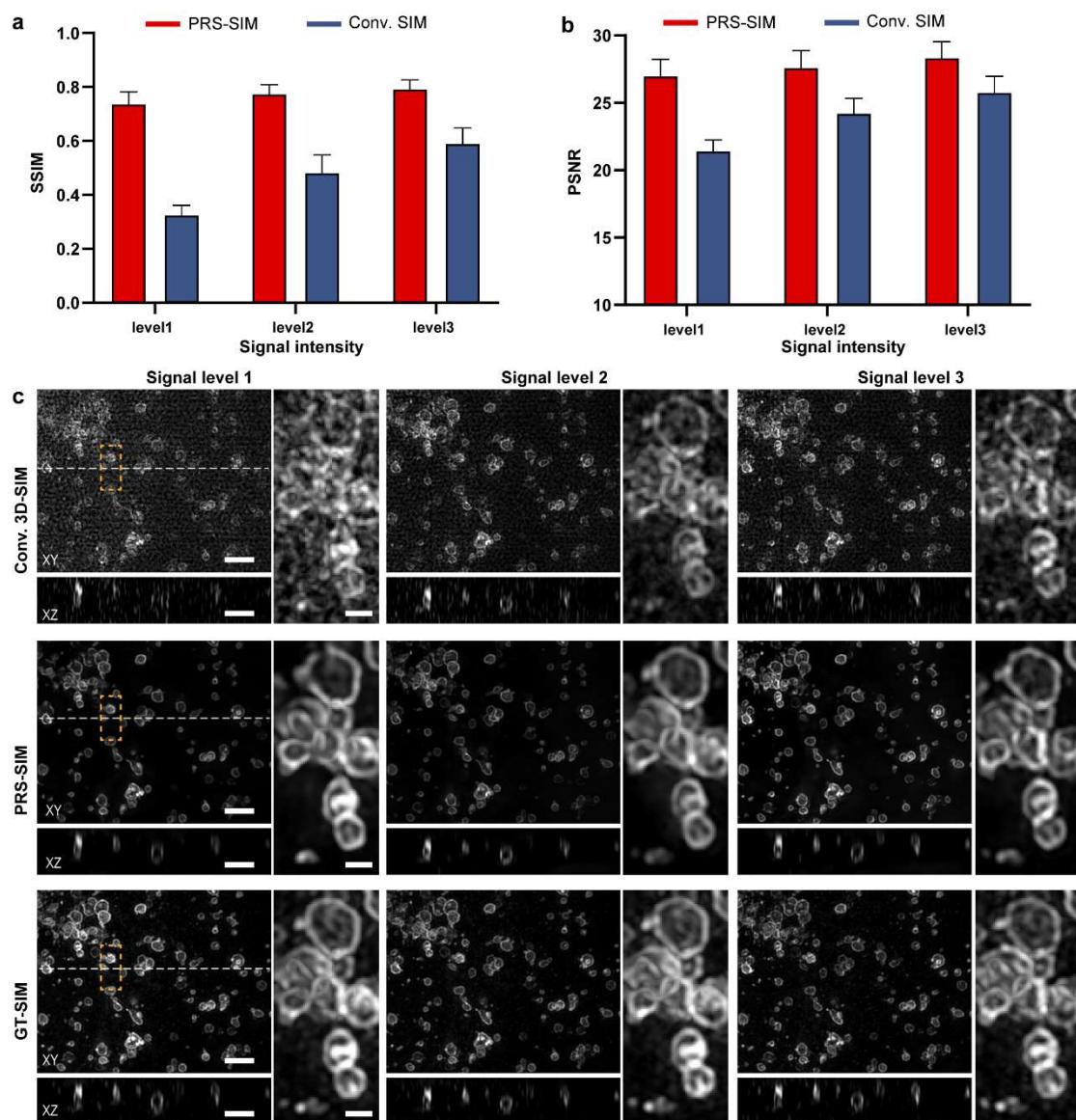


679

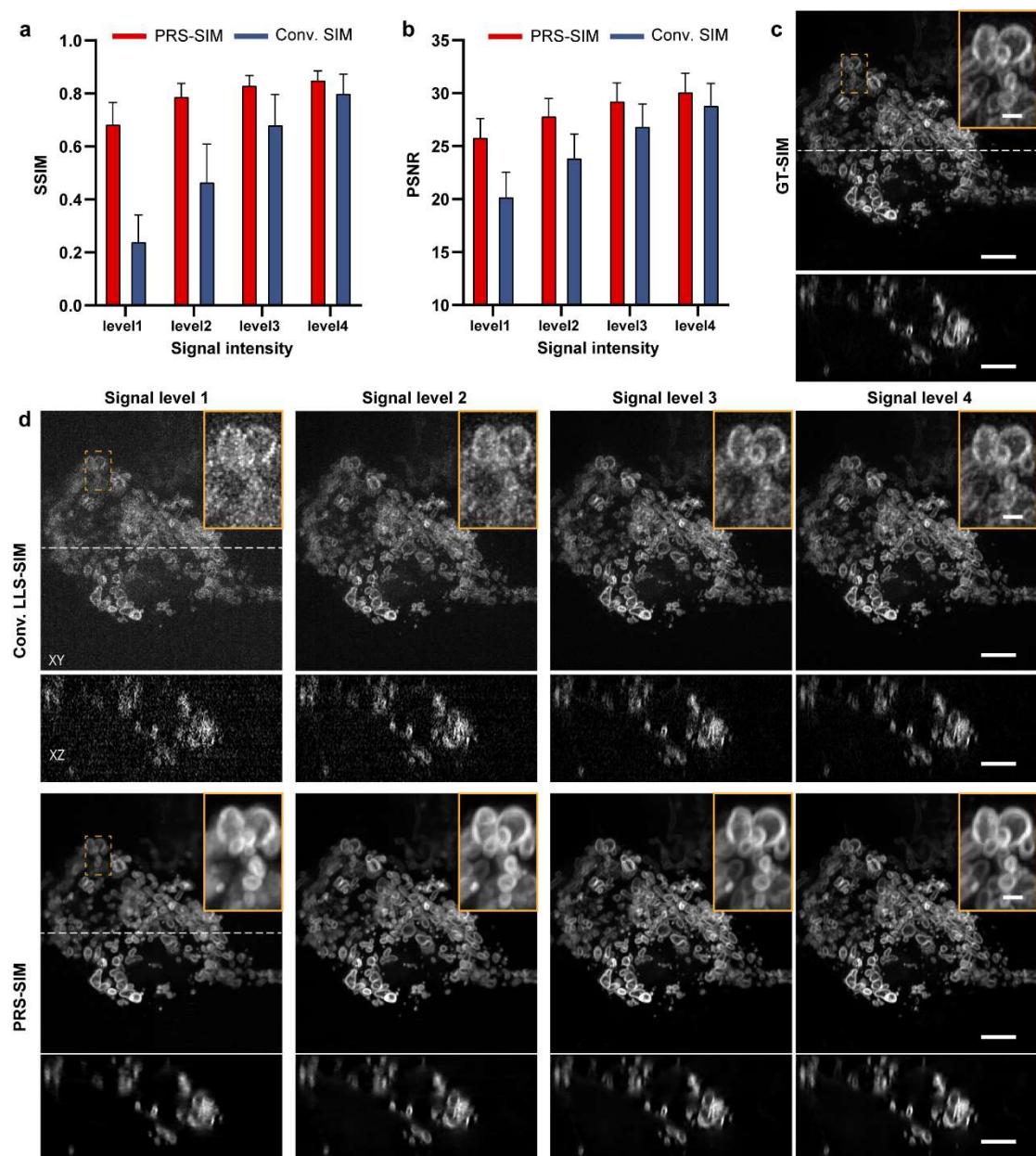
680 **Extended Data Fig. 6 | Evaluation of PRS-SIM for non-linear-SIM (NL-SIM) data denoising.** **a-c**,
681 Representative WF (**a**), conventional NL-SIM (**b**), and PRS-SIM (**c**) under different signal levels,
682 corresponding to the same ground-truth (**d**). **e,f**, Quantitative comparison of PRS-SIM and conventional
683 NL-SIM in terms of SSIM (**e**) and PSNR (**f**) on F-actin images. The SSIM and PSNR values referring to
684 GT images under different signal levels are displayed. Sample size: N=20 for each signal level. Scale bar,
685 5 μ m (regular), 1 μ m (zoom-in regions).

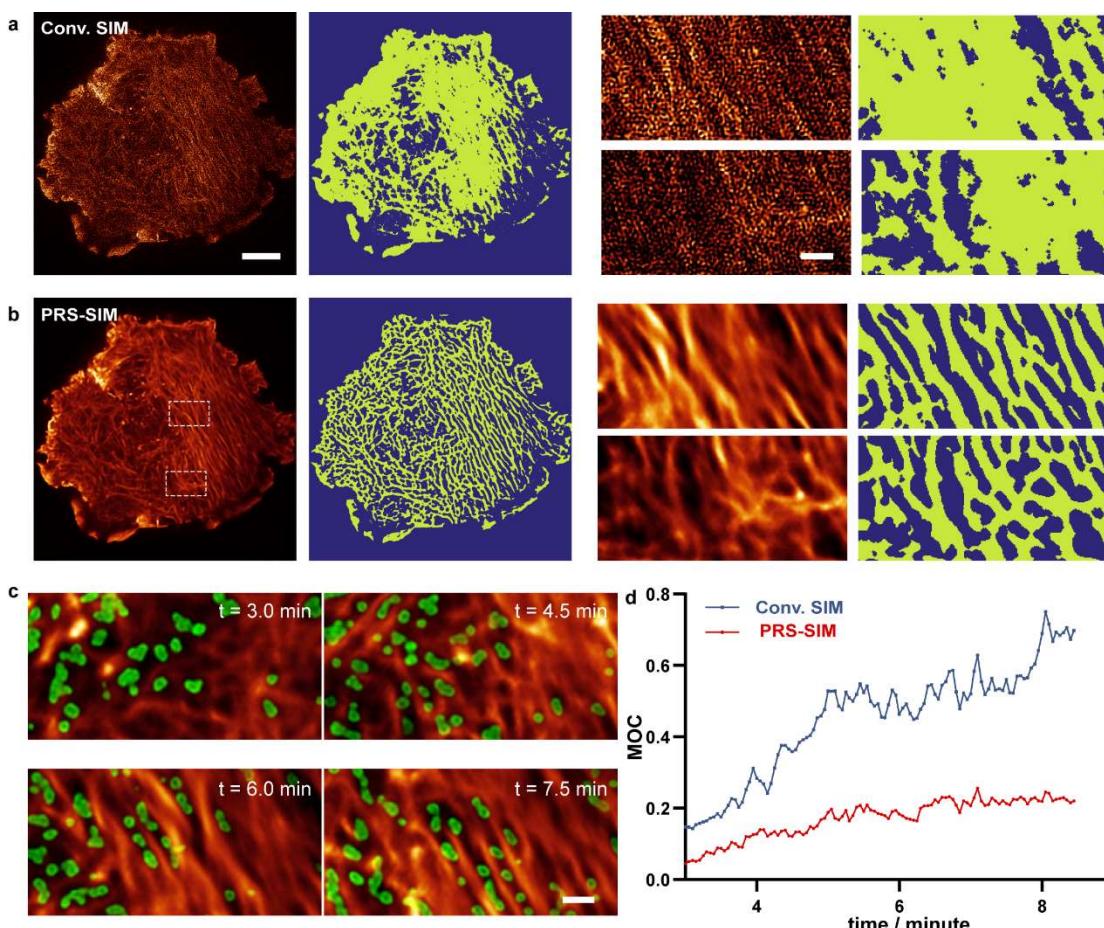
686

687



689 **Extended Data Fig. 7 | Evaluation of PRS-SIM for 3D-SIM data denoising.** **a,b,** Quantitative
690 comparison of PRS-SIM and conventional 3D-SIM in terms of SSIM (**a**) and PSNR (**b**) on Lyso images.
691 The SSIM and PSNR values referring to GT-SIM under different signal levels are displayed.
692 **c,** Representative images of conventional 3D-SIM, PRS-SIM, and GT SIM of different signal levels. The
693 MIP view in XY plane and the sectioned view in XZ plane (indicated by the green line in XY view) are
694 displayed. Compared to conventional 3D-SIM result, PRS-SIM is capable to remove most artifact in all
695 three dimensions and achieves comparable quality and resolution to GT-SIM. Sample size: N=17 for
696 each signal level. Scale bar, 2 μ m (XY and XZ views), 0.5 μ m (zoom-in regions).
697

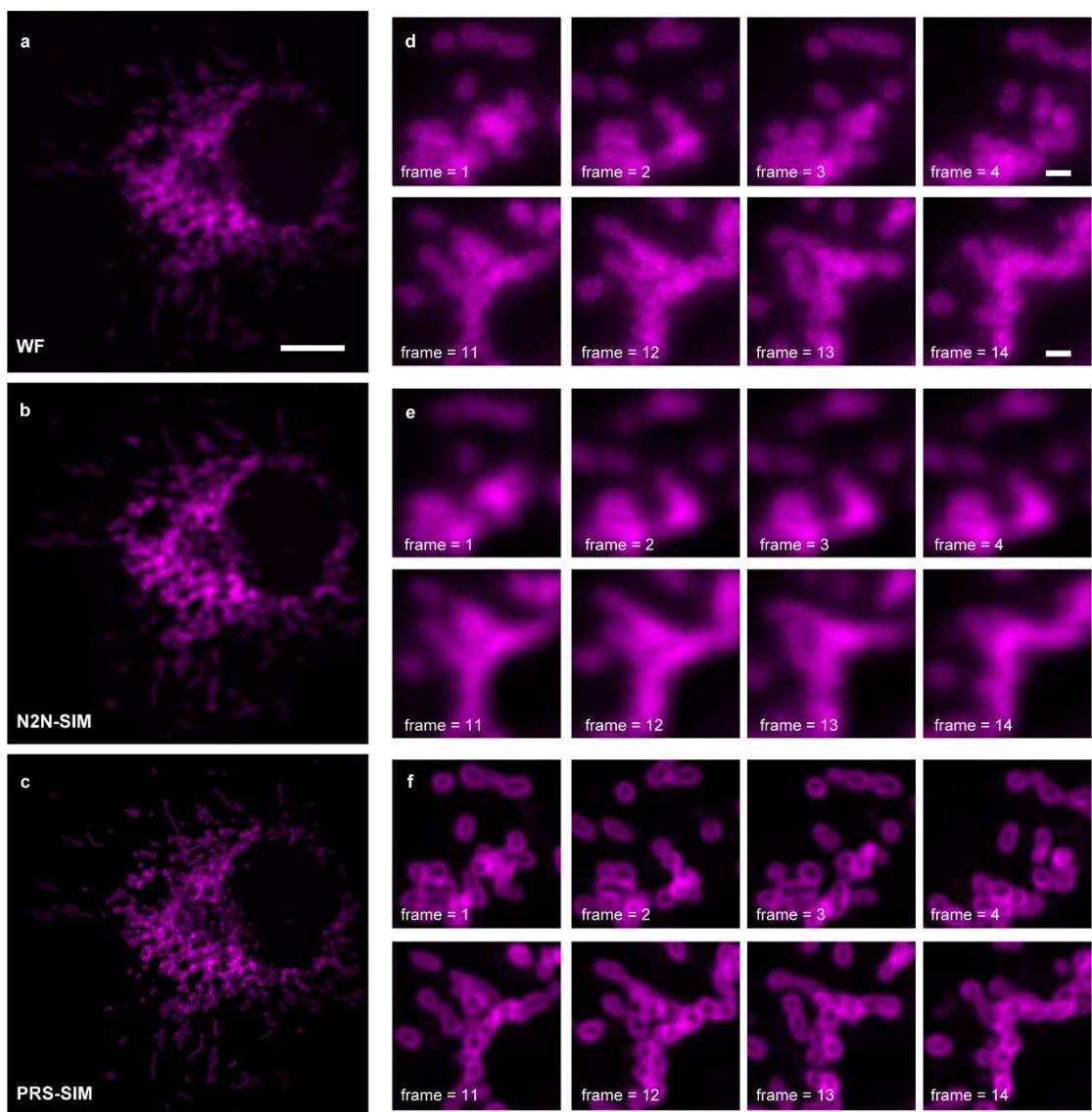




708

709 **Extended Data Fig. 9 | Interaction analysis of CCPs and F-actin during the growth process of a**
710 **SUM159 cell via long-term PRS-SIM imaging.** **a,b,** Weka segmentation results of F-actin filaments
711 from the conventional TIRF-SIM images **(a)** and PRS-SIM images **(b)**. Zoom-in views of two
712 representative regions are displayed on the right panel. Since the experiment was performed under
713 extremely low excitation intensity, the filaments cannot hardly be distinguished in conventional SIM
714 images, while the quality of PRS-SIM result is adequate for successful segmentation. **c,** Representative
715 visualization of the interaction between CCPs (green) and F-actin (red) by PRS-SIM. **d,** Mander's
716 overlapped coefficient of the CCPs referring to F-actin calculated from conv. SIM (blue) and PRS-SIM
717 (red) images, respectively, during the entire cell growth process. Low MOC values indicate that most
718 CCPs tend to locate in the interspace of actin filaments, which is consistent with the images shown in **c**.
719 Scale bar, 5 μ m (a, b), 1 μ m (c, zoom-in regions in a, b).

720



721

722 **Extended Data Fig. 10 | Comparison between PRS-SIM and N2N-SIM on time-lapse data of**
723 **rapidly moving mitochondria. a-c, WF (a), N2N-SIM (b), and adaptively trained PRS-SIM (c) images**
724 **of a COS7 cell expressing TOMM20-2xmEmerald. d-f, Representative time-lapse zoom-in regions of**
725 **WF (d), N2N-SIM (e), and PRS-SIM (f) images. These results show that the temporal continuity-based**
726 **N2N-SIM generates blurry artifacts because of the rapid movement of the specimen, while the proposed**
727 **PRS-SIM successfully recover the fine structure of mitochondria. Scale bar, 5 μ m (a-c), 0.5 μ m (d-f).**

728