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24 Abstract

25  Detection noise significantly degrades the quality of structured illumination microscopy (SIM)
26 images, especially under low-light conditions. Although supervised learning based denoising
27  methods have shown prominent advances in eliminating the noise-induced artifacts, the requirement
28  ofalarge amount of high-quality training data severely limits their applications. Here we developed
29  apixel-realignment-based self-supervised denoising framework for SIM (PRS-SIM) that trains an
30  SIM image denoiser with only noisy data and substantially removes the reconstruction artifacts. We
31  demonstrated that PRS-SIM generates artifact-free images with 10-fold less fluorescence than
32  ordinary imaging conditions while achieving comparable super-resolution capability to the ground
33 truth (GT). Moreover, the proposed method is compatible with multiple SIM modalities such as
34  total internal reflective fluorescence SIM (TIRF-SIM), three-dimensional SIM (3D-SIM), lattice
35  light-sheet SIM (LLS-SIM), and non-linear SIM (NL-SIM). With PRS-SIM, we achieved long-term
36  super-resolution live-cell imaging of various bioprocesses, revealing the clustered distribution of
37  clathrin coated pits and detailed interaction dynamics of multiple organelles and the cytoskeleton.

38  Introduction

39  Studying biological dynamics and functions in live cells requires imaging with high spatiotemporal
40  resolution and low optical invasiveness. Structured illumination microscopy (SIM) is commonly
41  recognized as a well suitable tool for live imaging because of its ability to acquire a super-resolution
42 (SR) image from only a small number of illumination pattern-modulated images' 2. However,
43  conventional SIM reconstruction algorithm is prone to generate photon noise-induced artifacts
44 especially under low light conditions, which substantially degrades the image quality and
45  overwhelms useful structural information, thereby inhibiting us from fully exploring the underlying
46 biological processs™*. To alleviate the reconstruction noise, a long camera exposure time and high
47  excitation power are usually applied in SIM imaging experiments, which reduce the image
48  acquisition speed and introduce considerable photobleaching and phototoxicity. This tradeoff
49  severely limits the application of SIM in live-cell imaging.

50 Accompanied with the development of SIM instruments>”’, many techniques and algorithms
51  aiming to reconstruct high-quality SR-SIM images with low signal-to-noise ratio (SNR) inputs have
52 been proposed. Some algorithms have been developed to analytically improve the estimation
53  precision of the illumination pattern® ® or iteratively denoise the reconstructed SR images under
54  certain optical models and assumptions'®!2, However, since the imaging process is complex and the
55  image restoration/denoising problem is theoretically ill-posed, these algorithms cannot fully address
56  the statistical complexity and have limited noise suppression capability'3. Recently, deep neural
57  networks (DNNSs) have shown outstanding performance in image restoration tasks'*. Various deep-
58  learning-based SIM algorithms have demonstrated great potential in reconstructing high-quality SR
59  images, even under extreme imaging conditions. Nevertheless, existing methods still face several

60  challenges. First, some existing techniques employ “end-to-end” schemes!>-'®

, which directly
61  transform wide-filed or raw SIM images into the SR-SIM image without fully exploiting the high-
62  frequency information modulated by the illumination pattern, i.e., the Moore fringes. As a result,
63  the entire framework degrades to an SR inference task (termed “image super-resolution”!® 20)
64  instead of analytical SR reconstruction’!. Second, a large number of well-matched low- and high-
65  SNR image pairs are necessary to construct the training dataset?> 23, which is laborious and even
66  infeasible for biological specimens of low fluorescent efficiency or high dynamic. Third, the

67  generalizability of the neural network is limited because in the supervised training scheme, a pre-
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68  trained denoising model cannot be reliably transferred to unseen domain with only noisy data, which
69  inhibits the discovery of unprecedented biological structures and bioprocesses.

70 Here we proposed a pixel-realignment-based self-supervised method for structured illumination
71  microscopy (PRS-SIM), which employs a deep neural network to achieve artifact-free
72  reconstruction with ~10 fold fewer collected photons than that used for conventional SIM
73 algorithms’. The proposed PRS-SIM framework has several key advantages: first, because the
74 analytical SIM reconstruction principle is embedded in the training and inference framework, the
75  resolution enhancement is physically guaranteed by the SIM configuration rather than
76  computationally achieved via data-driven supervised learning'®- 2426, Second, the PRS-SIM models
77  aretrained on low-SNR raw images only, without the requirement for either high-SNR ground-truth
78  data or repeated acquisition of the same sample, resulting in a more feasible data acquisition process.
79  Third, for time-lapse imaging, PRS-SIM can be implemented in an adaptive training mode, in which
80  the collected low-SNR data are used to train a new customized model or fine-tune a pretrained
81  model. Finally, PRS-SIM is compatible with multimodal SIM configurations, including total
82  internal reflective fluorescence SIM (TIRF-SIM)°, grazing incidence SIM (GI-SIM)’, three
83  dimensional SIM (3D-SIM)?, lattice light-sheet SIM (LLS-SIM)?’, and non-linear SIM (NL-SIM)?®
84 %, Benefiting from these advances, PRS-SIM instantly enables long-term volumetric SR imaging
85  oflive cells with extremely low photo-damage to the biological samples.

86  Results
87  The principle of PRS-SIM
88  The principle of PRS-SIM is schematized in Fig. 1. The PRS-SIM framework involves self-
89  supervised neural network training (Fig. 1a) and the corresponding inference phase from raw SIM
90  images (Fig. 1b). Specifically, the training dataset is constructed with noisy raw images based on a
91  pixel realignment strategy, whose underlying mechanism is to utilize the similarity between adjacent
92  pixels*® 3! For each noisy raw SIM image stack, we firstly applied pixel realignment strategy, which
93  includes three operations of pixel extraction, up-sampling and sub-pixel registration (Method), to
94  generate four raw image stacks of the same scene. Then by applying conventional SIM algorithm,
95  four matched raw SR images are reconstructed, which are subsequently arranged as the input and
96  target reciprocally for network training. By iteratively optimizing the L2-norm loss function, the
97  neural network is able to transform noisy SIM images into their corresponding clean counterparts.
98  Notably, we theoretically proved the convergence of adopting these SIM images in the loss
99  calculation (Supplementary Note 1). In the inference phase, the raw images are firstly reconstructed
100  into the noisy SR images via the conventional SIM algorithm, then the well-trained PRS-SIM model
101  takes these noisy SIM images as inputs and outputs the final noise-free SR images.
102 We first systematically evaluated PRS-SIM on the publicly available biological image dataset
103 BioSR'®. To quantify the performance of PRS-SIM, we calculated the peak signal-to-noise ratio
104  (PSNR) and structural similarity (SSIM) using ground-truth (GT) SIM images as the criteria
105  (Methods). Three individual neural networks were trained separately for clathrin-coated pits (CCPs),
106  endoplasmic reticulum (ER), and microtubules (MTs), as representative examples of hollow,
107  reticular, and filament structures, respectively. The training dataset was augmented with raw data
108  from signal level 1 to signal level 4 in BioSR, and the average effective photon counts of these
109  samples are ~10-fold less than those used in artifact-free GT-SIM images. We compared PRS-SIM
110  with conventional SIM (conv. SIM) and sparse-deconvolution SIM (Sparse-SIM) (Fig. 2a) and
111 found that the detailed information can hardly be distinguished in conv. SIM and Sparse-SIM due
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112 to severe reconstruction artifacts. In contrast, PRS-SIM can clearly super-resolve ring-shaped CCPs
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114  Fig. 1 | Schematic of PRS-SIM. a, Self-supervised training strategy of PRS-SIM. Four matched image

115 groups ¥4, ¥p» Yc, and yp are generated by applying pixel realignment operation to a noisy low-
116 resolution (LR) raw SIM image group y. Then with conventional SIM algorithm, four super-resolution
117 (SR) images are reconstructed, which are further randomly arranged as the input and target for neural
118  network training. b, Inference pipeline of PRS-SIM. The noisy raw SIM image group are firstly
119 reconstructed into a noisy SR image by conventional SIM algorithm. Then by inputting this noisy SR
120  image into the pre-trained PRS-SIM model, the corresponding noise-free SR SIM image will be
121  generated. Scale bar, 2 um.

122 and densely interlaced MTs, resulting in an image quality comparable to GT-SIM. The statistical
123 results in terms of the PSNR and SSIM of 40 individual cells for each sample demonstrated that
124 PRS-SIM achieves substantially improved denoising results for various types of specimens (Fig.
125  2b). The intensity profiles shown in Fig. 2¢ indicated that PRS-SIM successfully distinguishes
126 several adjacent microtubules as clearly as GT-SIM, which are indistinguishable with the other
127  methods. Furthermore, we validated the robustness of PRS-SIM on both synthetic (Supplementary
128  Note 2) and experimental data with different signal levels and demonstrated that PRS-SIM is
129  applicable with a wide range of input SNRs (Extended Data Figs. 1 and 2).

130 Next, we compared PRS-SIM with the classical noise2noise (N2N) method?*?, which requires
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131  two independently captured images of the same scene to train a denoiser (Methods). This
132  requirement is impractical when the biological samples are highly dynamic or the total number of
133  frames is limited due to photobleaching and phototoxicity. Resorting to the self-supervised training
134 scheme, a single SIM capture for each scene is enough to train a PRS-SIM model. We compared
135  PRS-SIM and N2N-SIM using synthetic structure with different moving speeds (Extended Data Fig.
136  3)and noted that as the moving speed increased, N2N-SIM generated considerably deteriorated SIM
137  images and was prone to oversmoothing the details of subcellular structures. Compared with N2N-
138  SIM, the proposed PRS-SIM maintained a steady denoising performance regardless of the sample
139  moving speed, indicating the superb live-cell imaging capability especially for samples of high
140  dynamics.
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142 Fig. 2 | PRS-SIM on multimodal SIM systems. a, TIRF-SIM images of CCPs, MTs, and ER
143 reconstructed and processed with Conv. SIM, Sparse-SIM, and PRS-SIM. WF and GT-SIM images are
144 provided for reference. Scale bar, 2 um. b, Quantitative comparison among PRS-SIM, Conv. SIM and
145 Sparse-SIM. The PSNR and SSIM values are calculated referring to GT-SIM images (N=40 for each data
146  point). ¢, Intensity profiles of Conv. SIM (blue), Sparse-SIM (green), PRS-SIM (red), and GT-SIM
147 (brown) along the line indicated by the yellow arrowheads in a. d, 3D-SIM images of MTs and Lyso in
148 fixed COS7 cells reconstructed with Conv. SIM and PRS-SIM. WF and GT-SIM images are provided for
149 comparison. Scale bar: 1 um, 0.5 pm (zoom-in regions) e, LLS-SIM images of ER and mitochondria in
150 fixed COS7 cells reconstructed with Conv. SIM and PRS-SIM. The maximum intensity projection (MIP)
151 of XY view and the sectioned view in XZ plane (indicated by white dashed lines in XY-views) are shown

152  indand e. Scale bar, 5 pm, 1 um (zoom-in regions).

153 In addition to PRS-SIM, many other self-supervised denoising methods for fluorescence
154  microscopy have been developed in recent years, and the blind spot-based denoising algoritm3? is
155  one of the most representative approaches. Nevertheless, although these methods have shown great
156  denoising performance for natural and microscopic images, they are not applicable to SIM images
157  for two critical reasons. First, if the denoising algorithms are applied to raw SIM images (Extended
158  Data Fig. 4a), i.e., images that are captured directly by the sensor, the algorithms have difficulty
159  recognizing the illumination patterns and restoring the subtle Moiré fringes, thereby missing high-
160  frequency information and generating reconstructed images with riddling artifacts (Extended Data
161  Fig. 4c). Second, if these algorithms are employed in the post-reconstruction procedure (Extended
162  Data Fig. 4b), the strongly self-correlated noise patterns in the reconstructed SIM images are
163  inconsistent with the blind-spot principle, leading to poor denoising performance. The proposed
164  PRS-SIM scheme addresses these issues by leveraging the intrinsic linearity of SIM reconstruction
165  and integrating this physical property into the objective function design, thereby yielding superior
166  restoration capability for SIM images. We experimentally compared PRS-SIM models with two
167  representative self-supervised denoising approaches: noise2void (N2V)3* and hierarchical diverse
168  denoising (HDN)**. Both the perceptual comparisons and the quantitative analysis showed that PRS-
169  SIM can generate SR images with considerably fewer artifacts, outperforming other self-supervised
170  denoising methods by a large margin (Extended Data Fig. 5).

171 Due to the internal similarity of the post-processing pipeline for various SIM modalities, besides
172 TIRF/GI-SIM, PRS-SIM is compatible with other SIM configurations such as NL-SIM (Extended
173  Data Fig. 6), 3D-SIM, and LLS-SIM for higher resolution or volumetric SR imaging under low-
174 light conditions. For 3D-SIM, we evaluated the performance of PRS-SIM by processing the images
175  of microtubules labelled with 3xmEmerald-Ensconsin and lysosomes (Lyso) labelled with Lamp1-
176  mEmerald in fixed COS7 cells (Fig. 2d and Extended Data Fig. 7). For each sample, ~20 individual
177  cells were imaged under low and high illumination conditions to acquire noisy data and the
178  corresponding high SNR reference, respectively. The raw SIM data were first reconstructed into 3D
179 SR volumes via the conventional 3D-SIM algorithm and then denoised with 3D PRS-SIM models,
180  which were modified into 3D U-net*® architectures from the original 2D version (Methods) and
181  trained with the noisy data only.

182 The orthogonal view of the representative PRS-SIM images indicated that most of the noise-
183  induced artifacts in the conventional 3D-SIM results were removed by PRS-SIM, and the
184  reconstruction quality of PRS-SIM is comparable to that of GT-SIM in both the XY plane and Z-
185  axis (Fig. 2d). For the LLS-SIM configuration, we employed our home-built LLS-SIM system to
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186  acquire raw images of mitochondria (Mito) labelled with TOMM20-2xmEmerald and endoplasmic
187  reticulum labelled with calnexin-mEmerald following a similar procedure as 3D-SIM. For both
188  structures, PRS-SIM achieved a substantial improvement in both perceptual quality and statistical
189  metrics (Fig. 2e and Extended Data Fig. 8) across a field-of-view (FOV) of 70pum X 47pm X
190  27um (after de-skewing). These results suggest that PRS-SIM shows a great potential for extending
191  the application scope of multimodal SIM to low-light conditions without the need to acquire
192  abundant training data.

193 Observation of bioprocesses sensitive to phototoxicity

194  One major limitation of SIM is the requirement of high-intensity illumination, resulting in
195  substantial phototoxic side effects. This phototoxicity largely limits the SR imaging duration for live
196  specimens, particularly when imaging molecules with low expression levels or processes that are
197  vulnerable to high-dose illumination. To demonstrate the potential of our method in reducing the
198  required light dose, we first applied PRS-SIM to visualize clathrin-mediated endocytosis in gene-
199  edited SUM159 cells expressing clathrin-EGFP at endogenous levels. The limited fluorescence of
200  these cells prevents conventional TIRF-SIM (conv. TIRF-SIM) imaging from more than 150 frames,
201  corresponding to an imaging time of ~3 minutes®, because under low SNR conditions, conv. TIRF-
202  SIM image contained substantial reconstruction artifacts (Fig. 3a). Although the fluorescence
203  intensity of each raw image was 30-fold less than that of the high-SNR GT-SIM image, PRS-SIM
204 was still able to reconstruct high-fidelity SR information of the hollow, ring-like structure of CCPs
205  (Fig. 3a). Therefore, PRS-SIM allowed us to characterize clathrin-mediated endocytosis at high
206  spatiotemporal resolution for an unprecedented imaging duration of more than 5,000 frames,
207  corresponding to an imaging time of more than 45 minutes. Previous studies have reported that
208  clathrin-mediated endocytosis is initiated randomly based on analyses of the distribution of all CCP
209  nucleation events over the limited observation window of ~7 minutes*® ¥7. By imaging the same
210  process over 45 minutes, we found that most CCP nucleation sites tended to be spatially clustered
211 (Fig. 3b, c, z-score > 20, n = 7 cells; Methods), with many events occurring in confined regions,
212 possibly at stable clathrin coated plaques’®. Moreover, after tracking the CCP trajectories from their
213  initiation to their detachment from the plasma membrane, we noted that the displacement of most
214  CCPs was relatively small (Fig. 3d, Median = 0.180 um). This finding is consistent with clathrin
215  uncoating occurring near the site of invagination of the coated pit.

216 We also utilized PRS-SIM to investigate dynamic interactions between subcellular organelles
217  and the cytoskeleton in SUM159 cells. Since the growing cells are light-sensitive and fragile, we
218  decreased the illumination power to 10% of that used for usual experiments to image the entire
219  adhesion process after dropping a SUM159 cell onto a coverslip. Under the low excitation intensity
220  conditions, we successfully recorded the detailed interactions between CCPs and F-actin during the
221  cell adhesion and migration for ~8 minutes with more than 170 SR-SIM frames (Fig. 3¢). As shown
222 in Fig. 3f, the hollow structure of CCPs (green) and the densely interlaced F-actin (orange) cannot
223 be resolved in wide-field (WF) and conventional SIM (conv. SIM) images due to the diffraction
224 limitation in WF microscopy and noise-induced artifacts in conv. SIM images. In contrast, the fine
225  structures of CCPs and F-actin were both clearly distinguished by PRS-SIM, enabling further study
226  of their detailed interactions. We next applied the Weka segmentation algorithm to extract the
227  filament skeleton and calculated the Mander’s overlap coefficient (MOC) between the two
228  structures in each frame (Methods; Extended Data Fig. 9). We found that the MOC remained in a
229  relatively small value during the whole adhesion process, indicating that most CCPs stayed at the
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230  interspace of actin filaments and were intensively regulated by the cytoskeleton throughout the
231  adhesion process.
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233  Fig. 3 | Long-term observation of the bioprocesses sensitive to phototoxicity via PRS-SIM under
234 low excitation power. a, Representative PRS-SIM image (bottom right) of clathrin coated pits (CCPs)
235 whose raw images (top left) were acquired at 30-fold lower fluorescence than those of GT-SIM (bottom
236 left), but conveys high-fidelity ring-like structure and prevents reconstruction artifacts fulfilled in
237 conventional TIRF-SIM image (top right). b, Spatial distribution of CCP nucleation events across the
238 plasma membrane of a SUM-159 cell over 5000 frames. ¢, z-score of CCP nucleation calculated from 7
239 cells rapidly increases as extending the observation window. z-score gets larger than 4.95 when
240 observation window is longer than 4 minutes, indicating that there is a less than 1% likelihood that the
241 clustered pattern of CCPs’ nucleation could be the result of random occurrence. d, Histogram of mean
242 square displacement (MSD) of 3572 CCP tracks from 3 cells. e, Representative frames of the dual-color
243  time-lapse imaging of CCPs (green) and F-actin (red) in a live SUM159 cell during the growth process
244 via PRS-SIM. The whole imaging duration is ~8 minutes with more than 170 SR-SIM frames. f, Zoom-
245 in regions (indicated by the white square in e) demonstrating the interaction between CCPs and F-actin.
246 PRS-SIM (bottom) enhanced the resolution of both structures compared to WF images (top), and
247 removed most artifacts in Conv. SIM (middle), enabling a clear visualization of the ring-like CCPs and
248 interlaced actin filaments. Scale bar, 0.5 um (a), 5 um (b, e), 1 pum (f).

249  Long-term volumetric SR imaging of subcellular dynamics with adaptive trained PRS-SIM

250  Volumetric SIM imaging, such as 3D-SIM and LLS-SIM, causes severer photo-damage to live
251  specimens than 2D-SIM (TIRF-SIM) '2, To realize long-term volumetric SR live-cell imaging, we
252  equipped our multi-SIM system with PRS-SIM and imaged a live COS7 cell expressing
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253  3xmEmerald-Ensconsin (green) and Lampl-Halo (red) in 3D-SIM mode under ~10-fold lower
254 excitation power than typical imaging conditions (Fig. 4a-c). The data were acquired over 1 hour
255 (400 two-color SIM volumes at an interval of 10 seconds). During the data acquisition process, no
256  decrease in cell activity was observed, indicating negligible phototoxicity effects. Although
257  conventional SIM reconstruction reduces the out-of-focus fluorescence and improves the axial
258  resolution, the detection noise severely degrades the image quality, preventing us from investigating
259  the underlying bioprocesses. In contrast, the PRS-SIM model, which was trained by only 30 selected
260  frames with the equal distance from the noisy time-lapse data, substantially removed the
261  reconstruction artifacts and restored the fine structures of both organelles including continuous
262  microtubule filaments and the hollow lysosomes. These advantages of PRS-SIM enable a clear
263 volumetric observation of the dynamic interaction between microtubules and lysosomes, e.g., the
264  directional movement of a lysosome along the MT filaments (Fig. 4b) and the hitchhiking
265  remodeling mechanism of MT filaments under the traction of lysosomes (Fig. 4c).
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267 Fig. 4 | Long-term volumetric super-resolution imaging of live cells with adaptively trained PRS-
268 SIM. a, Progression of resolution and quality improvement of a live COS7 cell expressing 3xmEmerald-
269  Ensconsin (green) and Lamp1-Halo (red), from wide-field, Conv. 3D-SIM, and PRS-SIM enhanced 3D-
270 SIM. b, ¢, Time-lapse PRS-SIM images of lysosomes moving along adjacent MTs (b) or deforming under
271 the traction of MTs (¢) as indicated by white arrows. d, Representative PRS-SIM enhanced LLS-SIM
272 images of a live COS7 cell expressing TOMM?20-2xmEmerald (magenta) and 3xmCherry-Ensconsin
273 (green). The comparison of WF, Conv. SIM and PRS-SIM images of a zoom-in region are displayed in
274 the top right corner. e, f, Time-lapse recordings of the fission (e) and fusion (f) processes of mitochondria
275  under the interaction with MTs as indicated by white arrows. The denoising results of N2N-SIM and
276 PRS-SIM are compared to demonstrate their performance on fast-moving samples. Both the adaptively
277  trained PRS-SIM models and N2N-SIM models were trained only with the noisy raw time-lapse data.
278 Scale bar, 5 um (a, d), 1 pm (b, c, e-f, and zoom-in regions of d).

279 We next applied the PRS-SIM enhanced LLS-SIM system to record the volumetric subcellular
280  dynamics of COS7 cells expressing TOMM?20-2xmEmerald and 3xmCherry-Ensconsin (Fig. 4d-f).
281  Two PRS-SIM models for mitochondria (Mito) and MTs were independently trained with the noisy
282  time-lapse data themselves, which consisted of ~310 two-color SIM volumes acquired at an interval
283  of 12 seconds. We demonstrated that the adaptively trained PRS-SIM models removed most noise-
284  induced artifacts and resolved the delicate structures of Mito and MTs (Fig. 4d). However, due to
285  the rapid movement and deformation of the two observed structures, the classical denoising
286  algorithm N2N32 and its derivative DeepCAD*- 4, which are based on the temporal continuity
287  between adjacent frames (Methods), generated oversmoothed images with severe motion blur (Fig.
288  4e-f, Extended Data Fig. 10). With the prolonged observation window provided by PRS-SIM, we
289  clearly identified the fission and fusion processes of Mito (Fig. 4e, ), which are some of the most
290  common yet very important bioprocesses in live cells. Moreover, we emphasized that since the
291  adaptive training mode of PRS-SIM utilizes only the noisy collected data for network training and
292  then denoises themselves, there is no domain shift problem. Thus, the adaptively trained PRS-SIM
293  models provide a high denoising fidelity and show great potential in the discovery of previously
294  unseen biological structures and phenomena.

295  Discussion

296  In summary, PRS-SIM is a novel self-supervised learning-based method for SIM image restoration,
297  which trains the denoiser with only noisy data and reconstructs artifact-free SR-SIM images with
298 10-fold less fluorescence than routine SIM imaging conditions. The proposed self-supervised
299  strategy does not require either high-SNR GT data or repeated acquisition to construct the training
300  dataset. Thus, this easy-to-implement data acquisition scheme is applicable to biological specimens
301  of high dynamics or with low fluorescence efficiency. For long-term live-cell imaging, PRS-SIM
302  canbe applied in the adaptive training mode, where the acquired noisy data are directly used to train
303  the denoising model. Therefore, no pre-trained models for the same samples are needed, and with
304  this advance, PRS-SIM can be used to discover previously unknown biological structures and
305  phenomena. Finally, we emphasize that our method is applicable to multiple SIM modalities,
306  including TIRF/GI-SIM, 3D-SIM, LLS-SIM, and even NL-SIM. With PRS-SIM, we achieved long-
307  term live observations of subcellular dynamics and diverse bioprocesses with extremely low
308  invasiveness, demonstrating the broad applicability of our method. Furthermore, to make PRS-SIM
309  more accessible for biological research, we developed an easy-to-use Fiji toolbox*! (Supplementary
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310  Note3, Supplementary Fig. 3-4), where the network training and inference can be implemented by
311  several clicks.

312 PRS-SIM can be improved in several ways. First, successful PRS-SIM reconstruction relies on
313  accurate estimations of the SIM patterns, which is challenging under extremely low-light conditions
314  for conventional SIM parameter estimation algorithm. Therefore, an additional neural network for
315  more precise parameter estimation may improve the robustness of PRS-SIM. Second, to obtain
316  volumetric images of thick samples, although the noise-induced artifacts are mitigated by PRS-SIM,
317  the image quality suffers from sample-induced optical aberrations. Incorporating PRS-SIM into an
318  adaptive optics-embedded SIM system*>* may greatly improve the fidelity of the reconstructed SR
319  images.
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414  Methods

415  Optical setup

416  All the experiments in this work were performed on our home-built multi-modality SIM system
417  (Multi-SIM) or lattice light-sheet SIM (LLS-SIM) system, which were developed based on previous
418  setups® 7. Three modes of TIRF-SIM, GI-SIM, and 3D-SIM were embedded in the Multi-SIM
419  system. Briefly, three laser beams of 488 nm (Genesis-MX-SLM, Coherent), 560 nm (2RU-VFL-
420 P-500-560, MPB Communications), and 640 nm (LBX-640-500, Oxxius) were collimated for multi-
421  channel excitation and controlled by an AOTF (AOTFnC-400.650, AA Quanta Tech) for rapid
422  switching. The structured illumination patterns were generated by a ferroelectric spatial light
423  modulator (SLM, QXGA-3DM, Forth Dimension Display) placed conjugated to the sample plane.
424 Illumination patterns of 3-phasex3-orientation for TIRF/GI-SIM mode and 3-phasex5-orientation
425  for 3D-SIM mode were generated in our experiments. The final images were collected by an sCMOS
426  camera (Hamamatsu, Orca Flash 4.0 v3).

427 For the LLS-SIM system, three laser beams of 488 nm, 560 nm and 640 nm (MPB
428  Communications) were used for multi-color excitation. The illumination pattern is displayed on the
429  SLM (the same type as used in Multi-SIM) and then filtered by an annular mask of an outer NA of
430 0.5 and inner NA of 0.375 to obtain a balanced axial and lateral resolution. A pair of galvo mirrors
431  (Cambridge Technology, 6210H) was set for x-axis and z-axis scanning. The emission fluorescence
432  was collected by a water-immersion objective (Nikon, CFI Apo LWD 25XW, 1.1NA) and captured
433  byasCMOS camera (Hamamatsu, Orca Fusion). The illumination patterns of 3-phasex 1-orientation
434  were generated for each z-slice. The oblique angle between the illumination path and the detection
435  path is 30°. All the equipment was synchronized by a DAQ card, allowing the maximum imaging
436  speed at ~1000 z-slices per second. The pixel size of the detected image is 92.6 nm and the axial
437  step size is determined by the specific scanning angle step used for each experiment.

438

439  Data acquisition

440  The experiments in this work can be categorized as fixed sample imaging and time-lapse live-cell
441  imaging. For fixed sample imaging, we utilized the data from the open-source dataset BioSR'® or
442  acquired via our home-built SIM systems. For TIRF-SIM experiments, The CCPs, ER, and MTs
443 images whose signal levels range from 1 to 4 in BioSR were used to create the training dataset. For
444  3D-SIM and LLS-SIM experiments, the dataset used for both training and inference was acquired
445  with our home-built Multi-SIM and LLS-SIM systems. Specifically, for each type of specimen, we
446  acquired more than 20 sets of raw SIM images at four escalating levels of excitation light intensity
447  to create the training dataset, and then tuned the laser power to the maximum to capture the high-
448  SNR images as the corresponding GT data. Notably, the training dataset is generated purely with
449  the low-SNR data, and the high-SNR GT data are only used as the reference for quantitative analysis.
450 For time-lapse imaging, the 2D and 3D experiments were carried out with the TIRF-SIM and
451  3D-SIM mode of the Multi-SIM system, respectively. The excitation light power used in all live
452  experiments was set to 10-fold lower than that used in common imaging conditions, corresponding
453  to an average photon count of 40~60 for each raw SIM image, to minimize the phototoxicity and
454  photobleaching effects. The specific imaging conditions for each time-lapse experiment were listed
455  in Supplementary Table 1.

456
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457  Pixel realignment strategy

458  The self-supervised training dataset was generated with the pixel realignment strategy. The raw
459  dataset consists of a series of low-SNR raw SIM image groups. Each individual image in a group is
460  a WF image under a specific illumination pattern (e.g. 3-orientation x 3-phase for 2D/TIRF-SIM
461  and 3-orientation x 5-phase x Z-slice for 3D-SIM). For each raw SIM image group, the generation
462  of the training dataset of PRS-SIM models mainly takes the following steps:

463 (i) Each raw image is divided into 4 sub-images by applyinga 2 X 2 down-sampler and formed
464  four sub-image groups.

465 (i1) The augmented four sub-image groups are re-up sampled into the original size with the
466  nearest interpolation.

467 (iii) Based on the position of the valid pixel ineach 2 X 2 cell, a sub-pixel translation is applied
468  to each raw image, which guarantees that they are well spatially calibrated with each other.

469 (iv) The generated sub-images groups are reconstructed into four noisy SIM images by applying
470  the conventional SIM algorithm.

471 (v) Then several image patched pairs are augmented by randomly selecting two out of four noisy
472  SIM images as the input and target, and applying ordinary data augmentation operations, e.g.,
473  random cropping, flipping and rotation.

474 Note that for 3D-SIM stacks, both the down-sampling, up-sampling and translation operations
475  in step (i)-(iii) are implemented in a slice-by-slice manner. By applying the pixel realignment
476  strategy to all noisy SIM image groups, the complete training dataset is generated. Typically, no
477  fewer than 10 individual image groups are adequate for training a robust PRS-SIM model
478  (Supplementary Fig. 1).

479

480  Network architecture

481  PRS-SIM employs U-net** as the backbone architecture, which has already shown superior
482  performance in denoising task elsewhere®? (Supplementary Fig. 2). The network is composed of an
483  encoder module and a decoder module. For the encoder module, the input data is firstly fed into a
484  convolutional layer with 48 kernels and then encoded by five consecutive encoding blocks. Each
485  encoding block consists of a convolutional layer followed by a non-linear activation layer and a
486  max-pooling layer for spatial down sampling. For the decoder module, five decoding blocks are
487 involved, each of which consists of two consecutive convolutional layer and a nearest interpolation
488 layer for spatial up sampling. Skip-connections were embedded between the encoding and decoding
489  blocks to prevent over-fitting. Two additional convolutional layers were placed at the end of the
490  network to transfer the final denoised image into the same shape as the input image. Concretely, the
491  kernel size of all the convolutional layersis 3 X 3 and the activation function used is Leaky-ReLU,
492  which is defined as:

493 LeakyReLU(x) = max(0,x) +y - min(0,x), (4)
494  where y denotes the negative slope coefficient (set as 0.1 in our experiments). For 3D-SIM
495  applications, all the convolutional layers and pooling layers were replaced with the corresponding
496 3D versions and the other parts remained unchanged.

497  Data processing and Network training
498  The training dataset of PRS-SIM consist of a series of image pairs generated only from the low-
499  SNR raw images as described in the previous section. For pre-trained PRS-SIM models, 20-40
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500  distinct ROIs of each type of specimens were imaged to create the training dataset. For adaptive
501  training mode of PRS-SIM, ~100 frames/volumes were randomly selected from the entire time
502  series for training. Image augmentation operations, including random cropping, rotation, and
503  flopping, were further employed to create ~100000 mini-patch pairs of 128X 128 pixels (64X64X8
504  voxels for 3D-SIM) to avoid overfitting.

505 During the network training, Adam optimizer with an initial learning rate of 10™* was adopted
506  to accelerate the convergence. A multi-step scheduler was employed to decrease the learning rate
507 by afactor of 0.5 at the designated epochs. The training processes were performed on a workstation
508  equipped with a graphics processing unit (Nvidia GeForce RTX 3090Ti, 24GB memory). The source
509  codes were written based on PyTorch v1.5 framework in Python v3.6. The typical training time for
510  a dataset of ~100000 mini-patch pairs is about 2 hours for 2D batches and 4 hours for 3D batches.
511  More training details of each experiment performed in this work were listed in Supplementary Table
512 2.

513 For the inference phase, the noisy raw SIM images were reconstructed into SR images via
514  conventional SIM algorithm, divided into several tiled patches of 256X256 pixels with 10% overlap,
515  fed into the pre-trained network, and finally stitched together to form the denoised SR images. For
516  adaptive training mode of PRS-SIM, the time-lapse data was denoised with the model trained by
517  itself, while in other experiments the data was denoised with the pre-trained network of the same
518  type of specimens.

519 For N2N-SIM training in Fig. 4e-f, Extended Data Fig.3, and Extended Data Fig.9, we randomly
520  selected two consecutive frames/volumes in the time-lapse data used as the input and target,
521  respectively. The whole training dataset are generated from ~100 independent frame/volume pairs.
522  Other operations and configurations during training and inference are the same as PRS-SIM.

523  Image assessment metrics

524 To quantitatively evaluate the denoised images output by PRS-SIM, we employed the peak signal-

525  to-noise ratio (PSNR) and structural similarity (SSIM) between the denoised image [ referring to

526  the GT image Iy as the metric. Since the signal intensity of the denoised and GT images is of

527  different dynamic range, we first applied percentile normalization to I and Iy, as:
I — prctile(I, pmin)

pretile(l, Pmax) — pretile(], pmin)’

529 igt _ . Ige — prctile(Igt,g.?mm) ’

prctlle(Igt,pmax) - prctlle(lgt, pmin)
530  where prctile(l,p) denotes the intensity of the pixel ranking at p% of image /, and [ denotes

528 I= (5)

(6)

531  the corresponding normalized image. The p,,;, and pq, are setas 0.1 and 99.5 in our analysis.
532  To further alleviate the disturbance in metric calculation, we implemented a linear transformation
533 to the normalized image I by:

534 Iiyans = al + B (7)
535  where @ and B denote the transformation coefficients to minimize the square root error between
536 the transformed image and the normalized GT image, which can be formulated as a linear regression
537  problem:

538 min [|laf + = I, (8)

539  where [|]|, is the L2-norm. The closed solution of this problem is:
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Yl (f - mean(i))

540 a4 =— =
Y 12— N-mean()?’

€)

541 g=N- Z(igt —&-D, (10)

542  where N is the pixel number of the image, Y- denotes the pixel-wise sum, @ and f denote the
543  optimal values of the transformation coefficients a and f, respectively. Then the final PSNR and
544 SSIM are calculated as:

1
11
1. N
NZ(ltrans - Igt)z
(Zuitrans‘u'igt + Cl) (Zo-itransigt + CZ)
Frams THEF Cl) (aftmns +of + Cz)

547  where y;j, ., ui, and oy, o denote the mean values and standard deviations of image
rans gt trans gt

545 PSNR(Zirans, Iye) = 10 - 1og10

546 SSIM(Zrans, Ige) = ( (12)

Itrans

548  Iyans and fgt, respectively; denotes the cross-covariance between Ip,qns and igt. The

Uitransigt
549  constant C; and C, used in this paperis 0.012 and 0.032, respectively.

550 To characterize the resolution of the images output by PRS-SIM, we employed single-image
551  based Fourier ring correlation (FRC) method*. The raw image I is split into two sub-images I;
552  and I, by interleaved pixel extraction. Then the FRC value of the central ring region with radius
553 R is calculated as:

Lr<r FUD)FU2)"

VEr<rlF U2V <rlF U]

555  where the symbol F denotes Fourier transformation. By calculating the FRC value from 0 to

554 FRC(R) = (13)

556 Ryax (the reciprocal of the pixel size), a generally declining curve is formulated. The resolution
557  can be measured as the reciprocal of the Fourier cutoff frequency R ytoff, Where FRC (Rcum ff) <
558  tsh, where tsh represents the spectral intensity threshold. In our analysis, the tsh is set as a
559  typical value of 0.25.

560  Data analysis

561  We utilized the spatial autocorrelation (i.e., Global Moran’s Index*) to evaluate whether the
562  distribution of clathrin coated pit (CCP) nucleation sites is clustered, dispersed, or random. For each
563  time-lapse dataset, we first localized the centroid positions of all CCPs at each time point, and then
564  linked them temporally in the whole time series using the ImageJ plugin TrackMate*, thus yielded
565  trajectories of all detected CCPs. To rule out the false-positive events, the trajectories of less than
566 40 time points corresponding to a duration of 20 seconds were excluded from following computation.
567  Subsequently, for each time-lapse data, the initial locations of the CCP trajectories detected in the
568  designated observation window were projected onto the same image as the CCP nucleation sites’
569  map (Fig. 3b). Then, the Moran’s Index can be calculated as:
570 I= 522?21?:1 :zi'jzizj,

0 i=1%i
571  where z; = (x; — X) is the deviation of the event count of the i** pixel from the average count;

(14)

572  d;; refers to the inverse Euclidean distance between pixel i and j; n is the total pixel number of
573  the map and S, = X, X7, d;; is the summation of d; ;. Finally, the z-score was calculated for

574  each nucleation sites map to evaluate the significance of the Moran’s Index (Fig. 3c):
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I1—E[I]
Z; = ,
575 I i

576  where E[-] and V[-] are the expectation and the variance of I, respectively. In general, the larger

(15)

577  z-score indicates the stronger tendency of clustering.

578 To quantitatively investigated the interaction of organelles during the cell growth (Fig. 3e, f,
579  Extended Data Fig. 8), we calculated the Mander’s overlapped coefficient (MOC)*’ of CCPs
580  referring to F-actin. For each frame, a binary mask (denoted as M) is firstly generated by applying
581  athreshold tshy, to the F-actin channel, which represents the F-actin skeleton:

582 M=1Ip_get > tshy (16)
583 Then the MOC value is calculated as:
I
584 moc = 2mleces a”n
Ztotal ICCPS

585  where Yy lccps and Yiorarlccps denote the intensity summation of the CCP channel within the
586  masked region and the entire image, respectively.

587 Cell culture, transfection, and stain

588  Cos7 cells were cultured in DMEM (Gibco), supplemented with 10% fetal bovine serum (Gibco)
589 and 1% penicillin-streptomycin in 37°C with 5% CO,. For live cell imaging, the coverslips were
590  pre-coated with 50ug ml-! of collagen and cells were seeded onto coverslips with about 70% density
591  before transfection. After 12h, cells were transfected with plasmids using Lipofectamine 3000
592  (Invitrogen) according to the manufacturer’s protocol. Cells were imaged 12-24 hours after
593  transfection in a stage top incubator (Okolab) to maintain condition at 37°C with 5% CO,. The
594  plasmid constructs used in this work were 3xmEmerald-Ensconsin, Lamp1-mEmerald, TOMM?20-
595 2xmEmerald, calnexin-mEmrald, and Lamp1-Halo.

596 SUM159 cells were genome edited to incorporate EGFP to the C-terminus of clathrin light chain
597 A (clathrin-EGFP) using the TALEN-based approach®®. The clathrin-EGFP expressing cells were
598  enriched by two sequential bulk sorting. The cells were cultured in DMEM/F-12 (Gibco) medium
599  supplemented with 5% fetal bovine serum (Gibco), 5 pg/ml Bovine insulin (Cell Applications), 10
600  mM HEPES (Gibco), 1 pg/mL Hydrocortisone (Sigma) and 1% Penicillin-Streptomycin (Gibco) in
601  37°C with 5% CO2. For dual-color experiments, these SUM-ki-CLAT-GFP cells were further
602  transfected with the lifeact-Halo. Before imaging, we digested the cells using 0.25% Trypsin, and
603  then dropped cell suspension onto the coverslip pre-treated with 50 pg/mL collagen.
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626  Extended Data Figures
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628 Extended Data Fig. 1 | Evaluation of PRS-SIM on experimental data with different input signal
629 levels. a,b, The SSIM (a) and PSNR (b) evaluation of PRS-SIM, Conv. SIM and Sparse-SIM referring
630  to GT-SIM over different input signal levels (level 1-8 from the publicly accessible dataset BioSR).
631 Sample size: N=40 for each data point. ¢, Representative GT-SIM image of MTs. d-f, SR images
632 reconstructed via Conv. SIM (d), Sparse-SIM (e), and PRS-SIM (f) from different input signal intensities.
633  Both the quantitative analysis and the reconstructed images demonstrated that PRS-SIM has substantially
634 better performance than Conv. SIM and Sparse-SIM, and is capable of removing the noise-induced
635  artifacts over a wide range of input signal intensities. Scale bar, 2 um (regular), 0.5 pm (zoom-in).
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Extended Data Fig. 2 | Performance validation of PRS-SIM on synthetic filaments. a,b, The SSIM
(a) and PSNR (b) comparisons of PRS-SIM and Conv. SIM referring to GT-SIM over different SNRs of
raw data. Sample size: N=50 for each data point. ¢, The representative noisy WF images and GT-SIM
images. d, The Conv. SIM (upper) and PRS-SIM (lower) images of the ground-truth (¢) under different
SNRs. Both the quantitative and visualization results demonstrated the significant quality improvement
by PRS-SIM compared to Conv. SIM. PRS-SIM is capable to achieve comparable performance as GT-
SIM even with the input SNR as low as ~1 dB. Scale bar, 1 pm.
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647 Extended Data Fig. 3 | Comparison between PRS-SIM and N2N-SIM on synthetic moving
648 microtubules. a,b, Quantitative comparison of PRS-SIM and N2N-SIM images in terms of PSNR and
649 SSIM on simulated microtubules of different moving speeds. The reconstruction fidelity of N2N-SIM

650 drops significantly as the moving speed increases, while the performance of PRS-SIM remains stable.
651 Sample size: N=50 for each data point. ¢, Representative SR images of moving microtubules generated
652 by Conv. SIM, GT-SIM, N2N-SIM, and PRS-SIM. The visualization results demonstrated that severe
653  blurring artifact emerged in N2N-SIM images when the moving speed is high, while PRS-SIM is not
654 affected since it does not rely on any temporal correlation between the adjacent frames. Scale bar, 1 um.
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657 Extended Data Fig. 4 | Comparison of different denoising strategies for SIM. a,b, The diagram of
658 two different denoising strategies, which employ the denoising network after (a, denoted as PRS-SIM)
659  and before (b, denoted as PRS-Raw) the conventional SIM reconstruction, respectively. ¢, Representative
660 SIM images reconstructed with PRS-SIM and PRS-Raw and the corresponding Fourier power spectrums.
661 The OTF cutoff frequency is annotated by dashed green circles. The PRS-Raw image contains severe
662 ringing artifacts, which is consistent with the heterogeneous regions in its Fourier power spectrum as
663  noted by red arrows. d,e, Quantitative comparison of PRS-SIM and PRS-Raw in terms of SSIM (d) and
664 PSNR (e). Both SSIM result and PSNR results indicated that PRS-SIM achieved better performance than
665  PRS-Raw. Sample size: N=40 for each method. Scale bar, 2 um.
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667

668 Extended Data Fig. 5 | Performance comparison among different self-supervised deep-learning
669 denoising methods. a-f, Representative results of the conventional SIM (a), PRS-SIM (d), noise2void
670 (b,e, denoising networks employed before/after SIM reconstruction are noted as N2V-raw/N2V-SIM),
671 hierarchical denoising network (d,f, denoising networks employed before/after SIM reconstruction are
672  noted as HDN-raw/HDN-SIM). g, The corresponding GT-SIM image. Two zoom-in regions noted by
673 yellow squares are shown for detailed comparison. h,i, Statistical comparison of the aforementioned
674 methods by calculating the SSIM (h) and PSNR(i) referring to the GT-SIM image. The quantitative
675 results inditated that PRS-SIM acquired the best denoising performance, which is consistent with lowest
676  artifact and highest fidelity shown in the reconstruction images. Sample size: N=40 for each method.
677 Scale bar, 2 um, 0.5 um (zoom-in regions).
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680 Extended Data Fig. 6 | Evaluation of PRS-SIM for non-linear-SIM (NL-SIM) data denoising. a-c,
681 Representative WF (a), conventional NL-SIM (b), and PRS-SIM (¢) under different signal levels,
682 corresponding to the same ground-truth (d). e,f, Quantitative comparison of PRS-SIM and conventional
683  NL-SIM in terms of SSIM (e) and PSNR (f) on F-actin images. The SSIM and PSNR values referring to
684 GT images under different signal levels are displayed. Sample size: N=20 for each signal level. Scale bar,
685 5 um (regular), 1 um (zoom-in regions).
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Extended Data Fig. 7 | Evaluation of PRS-SIM for 3D-SIM data denoising. a,b, Quantitative
comparison of PRS-SIM and conventional 3D-SIM in terms of SSIM (a) and PSNR (b) on Lyso images.
The SSIM and PSNR values referring to GT-SIM under different signal levels are displayed. e,
Representative images of conventional 3D-SIM, PRS-SIM, and GT SIM of different signal levels. The
MIP view in XY plane and the sectioned view in XZ plane (indicated by the green line in XY view) are
displayed. Compared to conventional 3D-SIM result, PRS-SIM is capable to remove most artifact in all
three dimensions and achieves comparable quality and resolution to GT-SIM. Sample size: N=17 for
each signal level. Scale bar, 2 um (XY and XZ views), 0.5 pm (zoom-in regions).
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699 Extended Data Fig. 8 | Evaluation of PRS-SIM for LLS-SIM data denoising. a,b, Quantitative

700 comparison of PRS-SIM and conventional LLS-SIM in terms of SSIM (a) and PSNR (b) on ER images.
701 The SSIM and PSNR values referring to GT images under different signal levels are displayed. ¢,d,
702 Representative SR images of GT-SIM (b), conventional LLS-SIM, and PRS-SIM (d) under different
703 signal levels. The MIP view in XY plane and the sectioned view in XZ plane (indicated by the green line
704 in XY view) are displayed. Sample size: N=20 for each signal level. Scale bar, 5 um (XY and XZ views),
705 1 um (zoom-in regions).

706

707


https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.05.535684; this version posted June 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

CH Conv. SIM..

—— Conv. SIM
—— PRS-SIM

=
t=7.5min W

708 : . time / minute

709 Extended Data Fig. 9 | Interaction analysis of CCPs and F-actin during the growth process of a
710 SUM159 cell via long-term PRS-SIM imaging. a,b, Weka segmentation results of F-actin filaments
711 from the conventional TIRF-SIM images (a) and PRS-SIM images (b). Zoom-in views of two
712 representative regions are displayed on the right panel. Since the experiment was performed under
713  extremely low excitation intensity, the filaments cannot hardly be distinguished in conventional SIM
714 images, while the quality of PRS-SIM result is adequate for successful segmentation. ¢, Representative
715  visualization of the interaction between CCPs (green) and F-actin (red) by PRS-SIM. d, Mander’s
716 overlapped coefficient of the CCPs referring to F-actin calculated from conv. SIM (blue) and PRS-SIM
717 (red) images, respectively, during the entire cell growth process. Low MOC values indicate that most
718 CCPs tend to locate in the interspace of actin filaments, which is consistent with the images shown in c.
719 Scale bar, 5 um (a, b), 1 pm (¢, zoom-in regions in a, b).

720


https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.05.535684; this version posted June 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

frame = 2 frame =3

-
frame = 13 frame = 14

frame =2 frame =4

frame =1

frame = 13 frame e 14

722 Extended Data Fig. 10 | Comparison between PRS-SIM and N2N-SIM on time-lapse data of
723 rapidly moving mitochondria. a-c, WF (a), N2N-SIM (b), and adaptively trained PRS-SIM (¢) images
724 of a COS7 cell expressing TOMM?20-2xmEmerald. d-f, Representative time-lapse zoom-in regions of
725 WF (d), N2N-SIM (e), and PRS-SIM (f) images. These results show that the temporal continuity-based
726 ~ N2N-SIM generates blurry artifacts because of the rapid movement of the specimen, while the proposed

721

727 PRS-SIM successfully recover the fine structure of mitochondria. Scale bar, 5 pm (a-c), 0.5 pm (d-f).
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