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Abstract 24 

Detection noise significantly degrades the quality of structured illumination microscopy (SIM) 25 

images, especially under low-light conditions. Although supervised learning based denoising 26 

methods have shown prominent advances in eliminating the noise-induced artifacts, the requirement 27 

of a large amount of high-quality training data severely limits their applications. Here we developed 28 

a pixel-realignment-based self-supervised denoising framework for SIM (PRS-SIM) that trains an 29 

SIM image denoiser with only noisy data and substantially removes the reconstruction artifacts. We 30 

demonstrated that PRS-SIM generates artifact-free images with 10-fold less fluorescence than 31 

ordinary imaging conditions while achieving comparable super-resolution capability to the ground 32 

truth (GT). Moreover, the proposed method is compatible with multiple SIM modalities such as 33 

total internal reflective fluorescence SIM (TIRF-SIM), three-dimensional SIM (3D-SIM), lattice 34 

light-sheet SIM (LLS-SIM), and non-linear SIM (NL-SIM). With PRS-SIM, we achieved long-term 35 

super-resolution live-cell imaging of various bioprocesses, revealing the clustered distribution of 36 

clathrin coated pits and detailed interaction dynamics of multiple organelles and the cytoskeleton. 37 

Introduction 38 

Studying biological dynamics and functions in live cells requires imaging with high spatiotemporal 39 

resolution and low optical invasiveness. Structured illumination microscopy (SIM) is commonly 40 

recognized as a well suitable tool for live imaging because of its ability to acquire a super-resolution 41 

(SR) image from only a small number of illumination pattern-modulated images1, 2. However, 42 

conventional SIM reconstruction algorithm is prone to generate photon noise-induced artifacts 43 

especially under low light conditions, which substantially degrades the image quality and 44 

overwhelms useful structural information, thereby inhibiting us from fully exploring the underlying 45 

biological processs3, 4. To alleviate the reconstruction noise, a long camera exposure time and high 46 

excitation power are usually applied in SIM imaging experiments, which reduce the image 47 

acquisition speed and introduce considerable photobleaching and phototoxicity. This tradeoff 48 

severely limits the application of SIM in live-cell imaging. 49 

Accompanied with the development of SIM instruments5-7, many techniques and algorithms 50 

aiming to reconstruct high-quality SR-SIM images with low signal-to-noise ratio (SNR) inputs have 51 

been proposed. Some algorithms have been developed to analytically improve the estimation 52 

precision of the illumination pattern8, 9 or iteratively denoise the reconstructed SR images under 53 

certain optical models and assumptions10-12. However, since the imaging process is complex and the 54 

image restoration/denoising problem is theoretically ill-posed, these algorithms cannot fully address 55 

the statistical complexity and have limited noise suppression capability13. Recently, deep neural 56 

networks (DNNs) have shown outstanding performance in image restoration tasks14. Various deep-57 

learning-based SIM algorithms have demonstrated great potential in reconstructing high-quality SR 58 

images, even under extreme imaging conditions. Nevertheless, existing methods still face several 59 

challenges. First, some existing techniques employ “end-to-end” schemes15-18, which directly 60 

transform wide-filed or raw SIM images into the SR-SIM image without fully exploiting the high-61 

frequency information modulated by the illumination pattern, i.e., the Moore fringes. As a result, 62 

the entire framework degrades to an SR inference task (termed “image super-resolution”19, 20) 63 

instead of analytical SR reconstruction21. Second, a large number of well-matched low- and high-64 

SNR image pairs are necessary to construct the training dataset22, 23, which is laborious and even 65 

infeasible for biological specimens of low fluorescent efficiency or high dynamic. Third, the 66 

generalizability of the neural network is limited because in the supervised training scheme, a pre-67 
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trained denoising model cannot be reliably transferred to unseen domain with only noisy data, which 68 

inhibits the discovery of unprecedented biological structures and bioprocesses. 69 

Here we proposed a pixel-realignment-based self-supervised method for structured illumination 70 

microscopy (PRS-SIM), which employs a deep neural network to achieve artifact-free 71 

reconstruction with ~10 fold fewer collected photons than that used for conventional SIM 72 

algorithms7. The proposed PRS-SIM framework has several key advantages: first, because the 73 

analytical SIM reconstruction principle is embedded in the training and inference framework, the 74 

resolution enhancement is physically guaranteed by the SIM configuration rather than 75 

computationally achieved via data-driven supervised learning19, 24-26. Second, the PRS-SIM models 76 

are trained on low-SNR raw images only, without the requirement for either high-SNR ground-truth 77 

data or repeated acquisition of the same sample, resulting in a more feasible data acquisition process. 78 

Third, for time-lapse imaging, PRS-SIM can be implemented in an adaptive training mode, in which 79 

the collected low-SNR data are used to train a new customized model or fine-tune a pretrained 80 

model. Finally, PRS-SIM is compatible with multimodal SIM configurations, including total 81 

internal reflective fluorescence SIM (TIRF-SIM)5, grazing incidence SIM (GI-SIM)7, three 82 

dimensional SIM (3D-SIM)2, lattice light-sheet SIM (LLS-SIM)27, and non-linear SIM (NL-SIM)28, 83 
29. Benefiting from these advances, PRS-SIM instantly enables long-term volumetric SR imaging 84 

of live cells with extremely low photo-damage to the biological samples. 85 

Results 86 

The principle of PRS-SIM 87 

The principle of PRS-SIM is schematized in Fig. 1. The PRS-SIM framework involves self-88 

supervised neural network training (Fig. 1a) and the corresponding inference phase from raw SIM 89 

images (Fig. 1b). Specifically, the training dataset is constructed with noisy raw images based on a 90 

pixel realignment strategy, whose underlying mechanism is to utilize the similarity between adjacent 91 

pixels30, 31. For each noisy raw SIM image stack, we firstly applied pixel realignment strategy, which 92 

includes three operations of pixel extraction, up-sampling and sub-pixel registration (Method), to 93 

generate four raw image stacks of the same scene. Then by applying conventional SIM algorithm, 94 

four matched raw SR images are reconstructed, which are subsequently arranged as the input and 95 

target reciprocally for network training. By iteratively optimizing the L2-norm loss function, the 96 

neural network is able to transform noisy SIM images into their corresponding clean counterparts. 97 

Notably, we theoretically proved the convergence of adopting these SIM images in the loss 98 

calculation (Supplementary Note 1). In the inference phase, the raw images are firstly reconstructed 99 

into the noisy SR images via the conventional SIM algorithm, then the well-trained PRS-SIM model 100 

takes these noisy SIM images as inputs and outputs the final noise-free SR images. 101 

We first systematically evaluated PRS-SIM on the publicly available biological image dataset 102 

BioSR16. To quantify the performance of PRS-SIM, we calculated the peak signal-to-noise ratio 103 

(PSNR) and structural similarity (SSIM) using ground-truth (GT) SIM images as the criteria 104 

(Methods). Three individual neural networks were trained separately for clathrin-coated pits (CCPs), 105 

endoplasmic reticulum (ER), and microtubules (MTs), as representative examples of hollow, 106 

reticular, and filament structures, respectively. The training dataset was augmented with raw data 107 

from signal level 1 to signal level 4 in BioSR, and the average effective photon counts of these 108 

samples are ~10-fold less than those used in artifact-free GT-SIM images. We compared PRS-SIM 109 

with conventional SIM (conv. SIM) and sparse-deconvolution SIM (Sparse-SIM) (Fig. 2a) and 110 

found that the detailed information can hardly be distinguished in conv. SIM and Sparse-SIM due 111 
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to severe reconstruction artifacts. In contrast, PRS-SIM can clearly super-resolve ring-shaped CCPs  112 

 113 

Fig. 1 | Schematic of PRS-SIM. a, Self-supervised training strategy of PRS-SIM. Four matched image 114 

groups 𝒚𝑨 , 𝒚𝑩 , 𝒚𝑪 , and 𝒚𝑫  are generated by applying pixel realignment operation to a noisy low-115 

resolution (LR) raw SIM image group 𝒚. Then with conventional SIM algorithm, four super-resolution 116 

(SR) images are reconstructed, which are further randomly arranged as the input and target for neural 117 

network training. b, Inference pipeline of PRS-SIM. The noisy raw SIM image group are firstly 118 

reconstructed into a noisy SR image by conventional SIM algorithm. Then by inputting this noisy SR 119 

image into the pre-trained PRS-SIM model, the corresponding noise-free SR SIM image will be 120 

generated. Scale bar, 2 μm. 121 

and densely interlaced MTs, resulting in an image quality comparable to GT-SIM. The statistical 122 

results in terms of the PSNR and SSIM of 40 individual cells for each sample demonstrated that 123 

PRS-SIM achieves substantially improved denoising results for various types of specimens (Fig. 124 

2b). The intensity profiles shown in Fig. 2c indicated that PRS-SIM successfully distinguishes 125 

several adjacent microtubules as clearly as GT-SIM, which are indistinguishable with the other 126 

methods. Furthermore, we validated the robustness of PRS-SIM on both synthetic (Supplementary 127 

Note 2) and experimental data with different signal levels and demonstrated that PRS-SIM is 128 

applicable with a wide range of input SNRs (Extended Data Figs. 1 and 2). 129 

Next, we compared PRS-SIM with the classical noise2noise (N2N) method32, which requires 130 
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two independently captured images of the same scene to train a denoiser (Methods). This 131 

requirement is impractical when the biological samples are highly dynamic or the total number of 132 

frames is limited due to photobleaching and phototoxicity. Resorting to the self-supervised training 133 

scheme, a single SIM capture for each scene is enough to train a PRS-SIM model. We compared 134 

PRS-SIM and N2N-SIM using synthetic structure with different moving speeds (Extended Data Fig. 135 

3) and noted that as the moving speed increased, N2N-SIM generated considerably deteriorated SIM 136 

images and was prone to oversmoothing the details of subcellular structures. Compared with N2N-137 

SIM, the proposed PRS-SIM maintained a steady denoising performance regardless of the sample 138 

moving speed, indicating the superb live-cell imaging capability especially for samples of high 139 

dynamics. 140 

 141 
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Fig. 2 | PRS-SIM on multimodal SIM systems. a, TIRF-SIM images of CCPs, MTs, and ER 142 

reconstructed and processed with Conv. SIM, Sparse-SIM, and PRS-SIM. WF and GT-SIM images are 143 

provided for reference. Scale bar, 2 μm. b, Quantitative comparison among PRS-SIM, Conv. SIM and 144 

Sparse-SIM. The PSNR and SSIM values are calculated referring to GT-SIM images (N=40 for each data 145 

point). c, Intensity profiles of Conv. SIM (blue), Sparse-SIM (green), PRS-SIM (red), and GT-SIM 146 

(brown) along the line indicated by the yellow arrowheads in a. d, 3D-SIM images of MTs and Lyso in 147 

fixed COS7 cells reconstructed with Conv. SIM and PRS-SIM. WF and GT-SIM images are provided for 148 

comparison. Scale bar: 1 μm, 0.5 μm (zoom-in regions) e, LLS-SIM images of ER and mitochondria in 149 

fixed COS7 cells reconstructed with Conv. SIM and PRS-SIM. The maximum intensity projection (MIP) 150 

of XY view and the sectioned view in XZ plane (indicated by white dashed lines in XY-views) are shown 151 

in d and e. Scale bar, 5 μm, 1 μm (zoom-in regions). 152 

In addition to PRS-SIM, many other self-supervised denoising methods for fluorescence 153 

microscopy have been developed in recent years, and the blind spot-based denoising algoritm33 is 154 

one of the most representative approaches. Nevertheless, although these methods have shown great 155 

denoising performance for natural and microscopic images, they are not applicable to SIM images 156 

for two critical reasons. First, if the denoising algorithms are applied to raw SIM images (Extended 157 

Data Fig. 4a), i.e., images that are captured directly by the sensor, the algorithms have difficulty 158 

recognizing the illumination patterns and restoring the subtle Moiré fringes, thereby missing high-159 

frequency information and generating reconstructed images with riddling artifacts (Extended Data 160 

Fig. 4c). Second, if these algorithms are employed in the post-reconstruction procedure (Extended 161 

Data Fig. 4b), the strongly self-correlated noise patterns in the reconstructed SIM images are 162 

inconsistent with the blind-spot principle, leading to poor denoising performance. The proposed 163 

PRS-SIM scheme addresses these issues by leveraging the intrinsic linearity of SIM reconstruction 164 

and integrating this physical property into the objective function design, thereby yielding superior 165 

restoration capability for SIM images. We experimentally compared PRS-SIM models with two 166 

representative self-supervised denoising approaches: noise2void (N2V)33 and hierarchical diverse 167 

denoising (HDN)34. Both the perceptual comparisons and the quantitative analysis showed that PRS-168 

SIM can generate SR images with considerably fewer artifacts, outperforming other self-supervised 169 

denoising methods by a large margin (Extended Data Fig. 5). 170 

Due to the internal similarity of the post-processing pipeline for various SIM modalities, besides 171 

TIRF/GI-SIM, PRS-SIM is compatible with other SIM configurations such as NL-SIM (Extended 172 

Data Fig. 6), 3D-SIM, and LLS-SIM for higher resolution or volumetric SR imaging under low-173 

light conditions. For 3D-SIM, we evaluated the performance of PRS-SIM by processing the images 174 

of microtubules labelled with 3xmEmerald-Ensconsin and lysosomes (Lyso) labelled with Lamp1-175 

mEmerald in fixed COS7 cells (Fig. 2d and Extended Data Fig. 7). For each sample, ~20 individual 176 

cells were imaged under low and high illumination conditions to acquire noisy data and the 177 

corresponding high SNR reference, respectively. The raw SIM data were first reconstructed into 3D 178 

SR volumes via the conventional 3D-SIM algorithm and then denoised with 3D PRS-SIM models, 179 

which were modified into 3D U-net35 architectures from the original 2D version (Methods) and 180 

trained with the noisy data only. 181 

The orthogonal view of the representative PRS-SIM images indicated that most of the noise-182 

induced artifacts in the conventional 3D-SIM results were removed by PRS-SIM, and the 183 

reconstruction quality of PRS-SIM is comparable to that of GT-SIM in both the XY plane and Z-184 

axis (Fig. 2d). For the LLS-SIM configuration, we employed our home-built LLS-SIM system to 185 
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acquire raw images of mitochondria (Mito) labelled with TOMM20-2xmEmerald and endoplasmic 186 

reticulum labelled with calnexin-mEmerald following a similar procedure as 3D-SIM. For both 187 

structures, PRS-SIM achieved a substantial improvement in both perceptual quality and statistical 188 

metrics (Fig. 2e and Extended Data Fig. 8) across a field-of-view (FOV) of 70μm × 47μm ×189 

27μm (after de-skewing). These results suggest that PRS-SIM shows a great potential for extending 190 

the application scope of multimodal SIM to low-light conditions without the need to acquire 191 

abundant training data. 192 

Observation of bioprocesses sensitive to phototoxicity 193 

One major limitation of SIM is the requirement of high-intensity illumination, resulting in 194 

substantial phototoxic side effects. This phototoxicity largely limits the SR imaging duration for live 195 

specimens, particularly when imaging molecules with low expression levels or processes that are 196 

vulnerable to high-dose illumination. To demonstrate the potential of our method in reducing the 197 

required light dose, we first applied PRS-SIM to visualize clathrin-mediated endocytosis in gene-198 

edited SUM159 cells expressing clathrin-EGFP at endogenous levels. The limited fluorescence of 199 

these cells prevents conventional TIRF-SIM (conv. TIRF-SIM) imaging from more than 150 frames, 200 

corresponding to an imaging time of ~3 minutes6, because under low SNR conditions, conv. TIRF-201 

SIM image contained substantial reconstruction artifacts (Fig. 3a). Although the fluorescence 202 

intensity of each raw image was 30-fold less than that of the high-SNR GT-SIM image, PRS-SIM 203 

was still able to reconstruct high-fidelity SR information of the hollow, ring-like structure of CCPs 204 

(Fig. 3a). Therefore, PRS-SIM allowed us to characterize clathrin-mediated endocytosis at high 205 

spatiotemporal resolution for an unprecedented imaging duration of more than 5,000 frames, 206 

corresponding to an imaging time of more than 45 minutes. Previous studies have reported that 207 

clathrin-mediated endocytosis is initiated randomly based on analyses of the distribution of all CCP 208 

nucleation events over the limited observation window of ~7 minutes36, 37. By imaging the same 209 

process over 45 minutes, we found that most CCP nucleation sites tended to be spatially clustered 210 

(Fig. 3b, c, z-score > 20, n = 7 cells; Methods), with many events occurring in confined regions, 211 

possibly at stable clathrin coated plaques38. Moreover, after tracking the CCP trajectories from their 212 

initiation to their detachment from the plasma membrane, we noted that the displacement of most 213 

CCPs was relatively small (Fig. 3d, Median = 0.180 μm). This finding is consistent with clathrin 214 

uncoating occurring near the site of invagination of the coated pit. 215 

We also utilized PRS-SIM to investigate dynamic interactions between subcellular organelles 216 

and the cytoskeleton in SUM159 cells. Since the growing cells are light-sensitive and fragile, we 217 

decreased the illumination power to 10% of that used for usual experiments to image the entire 218 

adhesion process after dropping a SUM159 cell onto a coverslip. Under the low excitation intensity 219 

conditions, we successfully recorded the detailed interactions between CCPs and F-actin during the 220 

cell adhesion and migration for ~8 minutes with more than 170 SR-SIM frames (Fig. 3e). As shown 221 

in Fig. 3f, the hollow structure of CCPs (green) and the densely interlaced F-actin (orange) cannot 222 

be resolved in wide-field (WF) and conventional SIM (conv. SIM) images due to the diffraction 223 

limitation in WF microscopy and noise-induced artifacts in conv. SIM images. In contrast, the fine 224 

structures of CCPs and F-actin were both clearly distinguished by PRS-SIM, enabling further study 225 

of their detailed interactions. We next applied the Weka segmentation algorithm to extract the 226 

filament skeleton and calculated the Mander’s overlap coefficient (MOC) between the two 227 

structures in each frame (Methods; Extended Data Fig. 9). We found that the MOC remained in a 228 

relatively small value during the whole adhesion process, indicating that most CCPs stayed at the 229 
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interspace of actin filaments and were intensively regulated by the cytoskeleton throughout the 230 

adhesion process.  231 

 232 

Fig. 3 | Long-term observation of the bioprocesses sensitive to phototoxicity via PRS-SIM under 233 

low excitation power. a, Representative PRS-SIM image (bottom right) of clathrin coated pits (CCPs) 234 

whose raw images (top left) were acquired at 30-fold lower fluorescence than those of GT-SIM (bottom 235 

left), but conveys high-fidelity ring-like structure and prevents reconstruction artifacts fulfilled in 236 

conventional TIRF-SIM image (top right). b, Spatial distribution of CCP nucleation events across the 237 

plasma membrane of a SUM-159 cell over 5000 frames. c, z-score of CCP nucleation calculated from 7 238 

cells rapidly increases as extending the observation window. z-score gets larger than 4.95 when 239 

observation window is longer than 4 minutes, indicating that there is a less than 1% likelihood that the 240 

clustered pattern of CCPs’ nucleation could be the result of random occurrence. d, Histogram of mean 241 

square displacement (MSD) of 3572 CCP tracks from 3 cells. e, Representative frames of the dual-color 242 

time-lapse imaging of CCPs (green) and F-actin (red) in a live SUM159 cell during the growth process 243 

via PRS-SIM. The whole imaging duration is ~8 minutes with more than 170 SR-SIM frames. f, Zoom-244 

in regions (indicated by the white square in e) demonstrating the interaction between CCPs and F-actin. 245 

PRS-SIM (bottom) enhanced the resolution of both structures compared to WF images (top), and 246 

removed most artifacts in Conv. SIM (middle), enabling a clear visualization of the ring-like CCPs and 247 

interlaced actin filaments. Scale bar, 0.5 μm (a), 5 μm (b, e), 1 μm (f). 248 

Long-term volumetric SR imaging of subcellular dynamics with adaptive trained PRS-SIM 249 

Volumetric SIM imaging, such as 3D-SIM and LLS-SIM, causes severer photo-damage to live 250 

specimens than 2D-SIM (TIRF-SIM) 12. To realize long-term volumetric SR live-cell imaging, we 251 

equipped our multi-SIM system with PRS-SIM and imaged a live COS7 cell expressing 252 
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3xmEmerald-Ensconsin (green) and Lamp1-Halo (red) in 3D-SIM mode under ~10-fold lower 253 

excitation power than typical imaging conditions (Fig. 4a-c). The data were acquired over 1 hour 254 

(400 two-color SIM volumes at an interval of 10 seconds). During the data acquisition process, no 255 

decrease in cell activity was observed, indicating negligible phototoxicity effects. Although 256 

conventional SIM reconstruction reduces the out-of-focus fluorescence and improves the axial 257 

resolution, the detection noise severely degrades the image quality, preventing us from investigating 258 

the underlying bioprocesses. In contrast, the PRS-SIM model, which was trained by only 30 selected 259 

frames with the equal distance from the noisy time-lapse data, substantially removed the 260 

reconstruction artifacts and restored the fine structures of both organelles including continuous 261 

microtubule filaments and the hollow lysosomes. These advantages of PRS-SIM enable a clear 262 

volumetric observation of the dynamic interaction between microtubules and lysosomes, e.g., the 263 

directional movement of a lysosome along the MT filaments (Fig. 4b) and the hitchhiking 264 

remodeling mechanism of MT filaments under the traction of lysosomes (Fig. 4c). 265 

 266 
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Fig. 4 | Long-term volumetric super-resolution imaging of live cells with adaptively trained PRS-267 

SIM. a, Progression of resolution and quality improvement of a live COS7 cell expressing 3xmEmerald-268 

Ensconsin (green) and Lamp1-Halo (red), from wide-field, Conv. 3D-SIM, and PRS-SIM enhanced 3D-269 

SIM. b, c, Time-lapse PRS-SIM images of lysosomes moving along adjacent MTs (b) or deforming under 270 

the traction of MTs (c) as indicated by white arrows. d, Representative PRS-SIM enhanced LLS-SIM 271 

images of a live COS7 cell expressing TOMM20-2xmEmerald (magenta) and 3xmCherry-Ensconsin 272 

(green). The comparison of WF, Conv. SIM and PRS-SIM images of a zoom-in region are displayed in 273 

the top right corner. e, f, Time-lapse recordings of the fission (e) and fusion (f) processes of mitochondria 274 

under the interaction with MTs as indicated by white arrows. The denoising results of N2N-SIM and 275 

PRS-SIM are compared to demonstrate their performance on fast-moving samples. Both the adaptively 276 

trained PRS-SIM models and N2N-SIM models were trained only with the noisy raw time-lapse data. 277 

Scale bar, 5 μm (a, d), 1 μm (b, c, e-f, and zoom-in regions of d). 278 

We next applied the PRS-SIM enhanced LLS-SIM system to record the volumetric subcellular 279 

dynamics of COS7 cells expressing TOMM20-2xmEmerald and 3xmCherry-Ensconsin (Fig. 4d-f). 280 

Two PRS-SIM models for mitochondria (Mito) and MTs were independently trained with the noisy 281 

time-lapse data themselves, which consisted of ~310 two-color SIM volumes acquired at an interval 282 

of 12 seconds. We demonstrated that the adaptively trained PRS-SIM models removed most noise-283 

induced artifacts and resolved the delicate structures of Mito and MTs (Fig. 4d). However, due to 284 

the rapid movement and deformation of the two observed structures, the classical denoising 285 

algorithm N2N32 and its derivative DeepCAD39, 40, which are based on the temporal continuity 286 

between adjacent frames (Methods), generated oversmoothed images with severe motion blur (Fig. 287 

4e-f, Extended Data Fig. 10). With the prolonged observation window provided by PRS-SIM, we 288 

clearly identified the fission and fusion processes of Mito (Fig. 4e, f), which are some of the most 289 

common yet very important bioprocesses in live cells. Moreover, we emphasized that since the 290 

adaptive training mode of PRS-SIM utilizes only the noisy collected data for network training and 291 

then denoises themselves, there is no domain shift problem. Thus, the adaptively trained PRS-SIM 292 

models provide a high denoising fidelity and show great potential in the discovery of previously 293 

unseen biological structures and phenomena. 294 

Discussion 295 

In summary, PRS-SIM is a novel self-supervised learning-based method for SIM image restoration, 296 

which trains the denoiser with only noisy data and reconstructs artifact-free SR-SIM images with 297 

10-fold less fluorescence than routine SIM imaging conditions. The proposed self-supervised 298 

strategy does not require either high-SNR GT data or repeated acquisition to construct the training 299 

dataset. Thus, this easy-to-implement data acquisition scheme is applicable to biological specimens 300 

of high dynamics or with low fluorescence efficiency. For long-term live-cell imaging, PRS-SIM 301 

can be applied in the adaptive training mode, where the acquired noisy data are directly used to train 302 

the denoising model. Therefore, no pre-trained models for the same samples are needed, and with 303 

this advance, PRS-SIM can be used to discover previously unknown biological structures and 304 

phenomena. Finally, we emphasize that our method is applicable to multiple SIM modalities, 305 

including TIRF/GI-SIM, 3D-SIM, LLS-SIM, and even NL-SIM. With PRS-SIM, we achieved long-306 

term live observations of subcellular dynamics and diverse bioprocesses with extremely low 307 

invasiveness, demonstrating the broad applicability of our method. Furthermore, to make PRS-SIM  308 

more accessible for biological research, we developed an easy-to-use Fiji toolbox41 (Supplementary 309 
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Note 3，Supplementary Fig. 3-4), where the network training and inference can be implemented by 310 

several clicks. 311 

PRS-SIM can be improved in several ways. First, successful PRS-SIM reconstruction relies on 312 

accurate estimations of the SIM patterns, which is challenging under extremely low-light conditions 313 

for conventional SIM parameter estimation algorithm. Therefore, an additional neural network for 314 

more precise parameter estimation may improve the robustness of PRS-SIM. Second, to obtain 315 

volumetric images of thick samples, although the noise-induced artifacts are mitigated by PRS-SIM, 316 

the image quality suffers from sample-induced optical aberrations. Incorporating PRS-SIM into an 317 

adaptive optics-embedded SIM system42, 43 may greatly improve the fidelity of the reconstructed SR 318 

images.  319 

References 320 

1. Gustafsson, M.G. Surpassing the lateral resolution limit by a factor of two using structured 321 

illumination microscopy. Journal of microscopy 198, 82-87 (2000). 322 

2. Gustafsson, M.G. et al. Three-dimensional resolution doubling in wide-field fluorescence 323 

microscopy by structured illumination. Biophysical journal 94, 4957-4970 (2008). 324 

3. Karras, C. et al. Successful optimization of reconstruction parameters in structured illumination 325 

microscopy–a practical guide. Optics Communications 436, 69-75 (2019). 326 

4. Demmerle, J. et al. Strategic and practical guidelines for successful structured illumination 327 

microscopy. Nature protocols 12, 988-1010 (2017). 328 

5. Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. & Gustafsson, M.G. Super-resolution video 329 

microscopy of live cells by structured illumination. Nature methods 6, 339-342 (2009). 330 

6. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal 331 

dynamics. Science 349, aab3500 (2015). 332 

7. Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale 333 

resolution on millisecond timescales. Cell 175, 1430-1442. e1417 (2018). 334 

8. Chu, K. et al. Image reconstruction for structured-illumination microscopy with low signal level. 335 

Optics express 22, 8687-8702 (2014). 336 

9. Labouesse, S. et al. Joint reconstruction strategy for structured illumination microscopy with 337 

unknown illuminations. IEEE Transactions on Image Processing 26, 2480-2493 (2017). 338 

10. Smith, C.S. et al. Structured illumination microscopy with noise-controlled image 339 

reconstructions. Nature methods 18, 821-828 (2021). 340 

11. Wen, G. et al. High-fidelity structured illumination microscopy by point-spread-function 341 

engineering. Light: Science & Applications 10, 70 (2021). 342 

12. Hagen, N., Gao, L. & Tkaczyk, T.S. Quantitative sectioning and noise analysis for structured 343 

illumination microscopy. Optics express 20, 403-413 (2012). 344 

13. Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for 345 

biological imaging. Nature methods 15, 1011-1019 (2018). 346 

14. Dong, W. et al. Denoising prior driven deep neural network for image restoration. IEEE 347 

transactions on pattern analysis and machine intelligence 41, 2305-2318 (2018). 348 

15. Jin, L. et al. Deep learning enables structured illumination microscopy with low light levels and 349 

enhanced speed. Nature communications 11, 1-7 (2020). 350 

16. Qiao, C. et al. Evaluation and development of deep neural networks for image super-resolution 351 

in optical microscopy. Nature Methods 18, 194-202 (2021). 352 

17. Qiao, C. et al. 3D Structured illumination microscopy via channel attention generative 353 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.04.05.535684doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/


adversarial network. IEEE Journal of Selected Topics in Quantum Electronics 27, 1-11 (2021). 354 

18. Shah, Z.H. et al. Deep-learning based denoising and reconstruction of super-resolution 355 

structured illumination microscopy images. Photonics Research 9, B168-B181 (2021). 356 

19. Yang, W. et al. Deep learning for single image super-resolution: A brief review. IEEE 357 

Transactions on Multimedia 21, 3106-3121 (2019). 358 

20. Dong, C., Loy, C.C., He, K. & Tang, X. Image super-resolution using deep convolutional 359 

networks. IEEE transactions on pattern analysis machine intelligence 38, 295-307 (2015). 360 

21. Qiao, C. et al. Rationalized deep learning super-resolution microscopy for sustained live 361 

imaging of rapid subcellular processes. Nature biotechnology, 1-11 (2022). 362 

22. Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a gaussian denoiser: Residual 363 

learning of deep cnn for image denoising. IEEE transactions on image processing 26, 3142-364 

3155 (2017). 365 

23. Zhang, K., Zuo, W. & Zhang, L. FFDNet: Toward a fast and flexible solution for CNN-based 366 

image denoising. IEEE Transactions on Image Processing 27, 4608-4622 (2018). 367 

24. Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence 368 

microscopy. Nature methods 15, 1090-1097 (2018). 369 

25. Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence 370 

microscopy. Nature methods 16, 103-110 (2019). 371 

26. Chen, J. et al. Three-dimensional residual channel attention networks denoise and sharpen 372 

fluorescence microscopy image volumes. Nature methods 18, 678-687 (2021). 373 

27. Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high 374 

spatiotemporal resolution. Science 346, 1257998 (2014). 375 

28. Rego, E.H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein 376 

reveals cellular structures at 50-nm resolution. Proceedings of the National Academy of Sciences 377 

109, E135-E143 (2012). 378 

29. Gustafsson, M.G. Nonlinear structured-illumination microscopy: wide-field fluorescence 379 

imaging with theoretically unlimited resolution. Proceedings of the National Academy of 380 

Sciences 102, 13081-13086 (2005). 381 

30. Huang, T., Li, S., Jia, X., Lu, H. & Liu, J. Neighbor2neighbor: A self-supervised framework for 382 

deep image denoising. IEEE Transactions on Image Processing 31, 4023-4038 (2022). 383 

31. Lequyer, J., Philip, R., Sharma, A., Hsu, W.-H. & Pelletier, L. A fast blind zero-shot denoiser. 384 

Nature Machine Intelligence, 1-11 (2022). 385 

32. Lehtinen, J. et al. Noise2Noise: Learning image restoration without clean data. arXiv preprint 386 

arXiv:.04189 (2018). 387 

33. Krull, A., Buchholz, T.-O. & Jug, F. in Proceedings of the IEEE/CVF conference on computer 388 

vision and pattern recognition 2129-2137 (2019). 389 

34. Prakash, M., Delbracio, M., Milanfar, P. & Jug, F. in International Conference on Learning 390 

Representations (2021). 391 

35. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image 392 

Segmentation. arXiv preprint arXiv:.04597 (2015). 393 

36. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 394 

118, 591-605 (2004). 395 

37. Godlee, C. & Kaksonen, M. From uncertain beginnings: Initiation mechanisms of clathrin-396 

mediated endocytosis. Journal of Cell Biology 203, 717-725 (2013). 397 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.04.05.535684doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/


38. Cureton, D.K., Massol, R.H., Saffarian, S., Kirchhausen, T.L. & Whelan, S.P. Vesicular 398 

stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon 399 

actin for internalization. PLoS pathogens 5, e1000394 (2009). 400 

39. Li, X. et al. Reinforcing neuron extraction and spike inference in calcium imaging using deep 401 

self-supervised denoising. Nature Methods 18, 1395-1400 (2021). 402 

40. Li, X. et al. Real-time denoising enables high-sensitivity fluorescence time-lapse imaging 403 

beyond the shot-noise limit. Nature Biotechnology, 1-11 (2022). 404 

41. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.  9, 676-682 405 

(2012). 406 

42. Hampson, K.M. et al. Adaptive optics for high-resolution imaging. Nature Reviews Methods 407 

Primers 1, 1-26 (2021). 408 

43. Turcotte, R. et al. Dynamic super-resolution structured illumination imaging in the living brain. 409 

Proceedings of the National Academy of Sciences 116, 9586-9591 (2019). 410 

 411 

 412 

  413 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.04.05.535684doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods 414 

Optical setup 415 

All the experiments in this work were performed on our home-built multi-modality SIM system 416 

(Multi-SIM) or lattice light-sheet SIM (LLS-SIM) system, which were developed based on previous 417 

setups6, 7. Three modes of TIRF-SIM, GI-SIM, and 3D-SIM were embedded in the Multi-SIM 418 

system. Briefly, three laser beams of 488 nm (Genesis-MX-SLM, Coherent), 560 nm (2RU-VFL-419 

P-500-560, MPB Communications), and 640 nm (LBX-640-500, Oxxius) were collimated for multi-420 

channel excitation and controlled by an AOTF (AOTFnC-400.650, AA Quanta Tech) for rapid 421 

switching. The structured illumination patterns were generated by a ferroelectric spatial light 422 

modulator (SLM, QXGA-3DM, Forth Dimension Display) placed conjugated to the sample plane. 423 

Illumination patterns of 3-phase×3-orientation for TIRF/GI-SIM mode and 3-phase×5-orientation 424 

for 3D-SIM mode were generated in our experiments. The final images were collected by an sCMOS 425 

camera (Hamamatsu, Orca Flash 4.0 v3). 426 

For the LLS-SIM system, three laser beams of 488 nm, 560 nm and 640 nm (MPB 427 

Communications) were used for multi-color excitation. The illumination pattern is displayed on the 428 

SLM (the same type as used in Multi-SIM) and then filtered by an annular mask of an outer NA of 429 

0.5 and inner NA of 0.375 to obtain a balanced axial and lateral resolution. A pair of galvo mirrors 430 

(Cambridge Technology, 6210H) was set for x-axis and z-axis scanning. The emission fluorescence 431 

was collected by a water-immersion objective (Nikon, CFI Apo LWD 25XW, 1.1NA) and captured 432 

by a sCMOS camera (Hamamatsu, Orca Fusion). The illumination patterns of 3-phase×1-orientation 433 

were generated for each z-slice. The oblique angle between the illumination path and the detection 434 

path is 30°. All the equipment was synchronized by a DAQ card, allowing the maximum imaging 435 

speed at ~1000 z-slices per second. The pixel size of the detected image is 92.6 nm and the axial 436 

step size is determined by the specific scanning angle step used for each experiment.  437 

 438 

Data acquisition 439 

The experiments in this work can be categorized as fixed sample imaging and time-lapse live-cell 440 

imaging. For fixed sample imaging, we utilized the data from the open-source dataset BioSR16 or 441 

acquired via our home-built SIM systems. For TIRF-SIM experiments, The CCPs, ER, and MTs 442 

images whose signal levels range from 1 to 4 in BioSR were used to create the training dataset. For 443 

3D-SIM and LLS-SIM experiments, the dataset used for both training and inference was acquired 444 

with our home-built Multi-SIM and LLS-SIM systems. Specifically, for each type of specimen, we 445 

acquired more than 20 sets of raw SIM images at four escalating levels of excitation light intensity 446 

to create the training dataset, and then tuned the laser power to the maximum to capture the high-447 

SNR images as the corresponding GT data. Notably, the training dataset is generated purely with 448 

the low-SNR data, and the high-SNR GT data are only used as the reference for quantitative analysis. 449 

For time-lapse imaging, the 2D and 3D experiments were carried out with the TIRF-SIM and 450 

3D-SIM mode of the Multi-SIM system, respectively. The excitation light power used in all live 451 

experiments was set to 10-fold lower than that used in common imaging conditions, corresponding 452 

to an average photon count of 40~60 for each raw SIM image, to minimize the phototoxicity and 453 

photobleaching effects. The specific imaging conditions for each time-lapse experiment were listed 454 

in Supplementary Table 1. 455 

 456 
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Pixel realignment strategy 457 

The self-supervised training dataset was generated with the pixel realignment strategy. The raw 458 

dataset consists of a series of low-SNR raw SIM image groups. Each individual image in a group is 459 

a WF image under a specific illumination pattern (e.g. 3-orientation × 3-phase for 2D/TIRF-SIM 460 

and 3-orientation × 5-phase × Z-slice for 3D-SIM). For each raw SIM image group, the generation 461 

of the training dataset of PRS-SIM models mainly takes the following steps: 462 

(i) Each raw image is divided into 4 sub-images by applying a 2 × 2 down-sampler and formed 463 

four sub-image groups. 464 

(ii) The augmented four sub-image groups are re-up sampled into the original size with the 465 

nearest interpolation. 466 

(iii) Based on the position of the valid pixel in each 2 × 2 cell, a sub-pixel translation is applied 467 

to each raw image, which guarantees that they are well spatially calibrated with each other. 468 

(iv) The generated sub-images groups are reconstructed into four noisy SIM images by applying 469 

the conventional SIM algorithm.  470 

(v) Then several image patched pairs are augmented by randomly selecting two out of four noisy 471 

SIM images as the input and target, and applying ordinary data augmentation operations, e.g., 472 

random cropping, flipping and rotation. 473 

Note that for 3D-SIM stacks, both the down-sampling, up-sampling and translation operations 474 

in step (i)-(iii) are implemented in a slice-by-slice manner. By applying the pixel realignment 475 

strategy to all noisy SIM image groups, the complete training dataset is generated. Typically, no 476 

fewer than 10 individual image groups are adequate for training a robust PRS-SIM model 477 

(Supplementary Fig. 1). 478 

 479 

Network architecture 480 

PRS-SIM employs U-net35 as the backbone architecture, which has already shown superior 481 

performance in denoising task elsewhere32 (Supplementary Fig. 2). The network is composed of an 482 

encoder module and a decoder module. For the encoder module, the input data is firstly fed into a 483 

convolutional layer with 48 kernels and then encoded by five consecutive encoding blocks. Each 484 

encoding block consists of a convolutional layer followed by a non-linear activation layer and a 485 

max-pooling layer for spatial down sampling. For the decoder module, five decoding blocks are 486 

involved, each of which consists of two consecutive convolutional layer and a nearest interpolation 487 

layer for spatial up sampling. Skip-connections were embedded between the encoding and decoding 488 

blocks to prevent over-fitting. Two additional convolutional layers were placed at the end of the 489 

network to transfer the final denoised image into the same shape as the input image. Concretely, the 490 

kernel size of all the convolutional layers is 3 × 3 and the activation function used is Leaky-ReLU, 491 

which is defined as: 492 

LeakyReLU(𝑥) = max(0, 𝑥) + 𝛾 ⋅ min(0, 𝑥) , (4) 493 

where 𝛾  denotes the negative slope coefficient (set as 0.1 in our experiments). For 3D-SIM 494 

applications, all the convolutional layers and pooling layers were replaced with the corresponding 495 

3D versions and the other parts remained unchanged.  496 

Data processing and Network training 497 

The training dataset of PRS-SIM consist of a series of image pairs generated only from the low-498 

SNR raw images as described in the previous section. For pre-trained PRS-SIM models, 20-40 499 
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distinct ROIs of each type of specimens were imaged to create the training dataset. For adaptive 500 

training mode of PRS-SIM, ~100 frames/volumes were randomly selected from the entire time 501 

series for training. Image augmentation operations, including random cropping, rotation, and 502 

flopping, were further employed to create ~100000 mini-patch pairs of 128×128 pixels (64×64×8 503 

voxels for 3D-SIM) to avoid overfitting. 504 

During the network training, Adam optimizer with an initial learning rate of 10ିସ was adopted 505 

to accelerate the convergence. A multi-step scheduler was employed to decrease the learning rate 506 

by a factor of 0.5 at the designated epochs. The training processes were performed on a workstation 507 

equipped with a graphics processing unit (Nvidia GeForce RTX 3090Ti, 24GB memory). The source 508 

codes were written based on PyTorch v1.5 framework in Python v3.6. The typical training time for 509 

a dataset of ~100000 mini-patch pairs is about 2 hours for 2D batches and 4 hours for 3D batches. 510 

More training details of each experiment performed in this work were listed in Supplementary Table 511 

2. 512 

For the inference phase, the noisy raw SIM images were reconstructed into SR images via 513 

conventional SIM algorithm, divided into several tiled patches of 256×256 pixels with 10% overlap, 514 

fed into the pre-trained network, and finally stitched together to form the denoised SR images. For 515 

adaptive training mode of PRS-SIM, the time-lapse data was denoised with the model trained by 516 

itself, while in other experiments the data was denoised with the pre-trained network of the same 517 

type of specimens. 518 

For N2N-SIM training in Fig. 4e-f, Extended Data Fig.3, and Extended Data Fig.9, we randomly 519 

selected two consecutive frames/volumes in the time-lapse data used as the input and target, 520 

respectively. The whole training dataset are generated from ~100 independent frame/volume pairs. 521 

Other operations and configurations during training and inference are the same as PRS-SIM.  522 

Image assessment metrics 523 

To quantitatively evaluate the denoised images output by PRS-SIM, we employed the peak signal-524 

to-noise ratio (PSNR) and structural similarity (SSIM) between the denoised image 𝐼 referring to 525 

the GT image 𝐼௚௧ as the metric. Since the signal intensity of the denoised and GT images is of 526 

different dynamic range, we first applied percentile normalization to 𝐼 and 𝐼௚௧ as: 527 

𝐼ሚ =
𝐼 − prctile(𝐼, 𝑝௠௜௡)

𝑝𝑟𝑐𝑡𝑖𝑙𝑒(𝐼, 𝑝௠௔௫) − 𝑝𝑟𝑐𝑡𝑖𝑙𝑒(𝐼, 𝑝௠௜௡)
, (5) 528 

𝐼ሚ௚௧ =
𝐼௚௧ − prctile൫𝐼௚௧, 𝑝௠௜௡൯

prctile൫𝐼௚௧, 𝑝௠௔௫൯ − prctile൫𝐼௚௧, 𝑝௠௜௡൯
, (6) 529 

where 𝑝𝑟𝑐𝑡𝑖𝑙𝑒(𝐼, 𝑝) denotes the intensity of the pixel ranking at 𝑝% of image I, and 𝐼ሚ denotes 530 

the corresponding normalized image. The 𝑝௠௜௡ and 𝑝௠௔௫ are set as 0.1 and 99.5 in our analysis. 531 

To further alleviate the disturbance in metric calculation, we implemented a linear transformation 532 

to the normalized image 𝐼ሚ by: 533 

𝐼ሚ௧௥௔௡௦ = 𝛼𝐼ሚ + 𝛽 (7) 534 

where 𝛼 and 𝛽 denote the transformation coefficients to minimize the square root error between 535 

the transformed image and the normalized GT image, which can be formulated as a linear regression 536 

problem: 537 

min ฮ𝛼𝐼ሚ + 𝛽 − 𝐼ሚ௚௧ฮ
ଶ

ଶ
, (8) 538 

where ‖∙‖ଶ is the L2-norm. The closed solution of this problem is: 539 
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𝛼ො =
∑ 𝐼ሚ௚௧ ∙ ቀ𝐼ሚ − mean(𝐼ሚ)ቁ

∑ 𝐼ሚଶ − 𝑁 ∙ mean(𝐼ሚ)ଶ
, (9) 540 

𝛽መ = 𝑁 ⋅ ෍(𝐼ሚ௚௧ − 𝛼ො ∙ 𝐼ሚ), (10) 541 

where 𝑁 is the pixel number of the image, ∑∙ denotes the pixel-wise sum, 𝛼ො and 𝛽መ  denote the 542 

optimal values of the transformation coefficients 𝛼 and 𝛽, respectively. Then the final PSNR and 543 

SSIM are calculated as: 544 

PSNR൫𝐼ሚ௧௥௔௡௦, 𝐼ሚ௚௧൯ = 10 ∙ log10 ቌ
1 

1
𝑁

∑൫𝐼ሚ௧௥௔௡௦ − 𝐼ሚ௚௧൯
ଶ

ቍ (11) 545 

SSIM൫𝐼ሚ௧௥௔௡௦, 𝐼ሚ௚௧൯ =
ቀ2𝜇ூሚ೟ೝೌ೙ೞ

𝜇ூሚ೒೟
+ 𝐶ଵቁ ቀ2𝜎ூሚ೟ೝೌ೙ೞூሚ೒೟

+ 𝐶ଶቁ

ቀ𝜇ூሚ೟ೝೌ೙ೞ

ଶ + 𝜇ூሚ೒೟

ଶ + 𝐶ଵቁ ቀ𝜎ூሚ೟ೝೌ೙ೞ

ଶ + 𝜎ூሚ೒೟

ଶ + 𝐶ଶቁ
(12) 546 

where 𝜇ூሚ೟ೝೌ೙ೞ
 , 𝜇ூሚ೒೟

  and 𝜎ூሚ೟ೝೌ೙ೞ
 , 𝜎ூሚ೒೟

  denote the mean values and standard deviations of image 547 

𝐼ሚ௧௥௔௡௦ and 𝐼ሚ௚௧, respectively; 𝜎ூሚ೟ೝೌ೙ೞூሚ೒೟
 denotes the cross-covariance between 𝐼ሚ௧௥௔௡௦ and 𝐼ሚ௚௧. The 548 

constant 𝐶ଵ and 𝐶ଶ used in this paper is 0.01ଶ and 0.03ଶ, respectively. 549 

To characterize the resolution of the images output by PRS-SIM, we employed single-image 550 

based Fourier ring correlation (FRC) method44. The raw image 𝐼 is split into two sub-images 𝐼ଵ 551 

and 𝐼ଶ by interleaved pixel extraction. Then the FRC value of the central ring region with radius 552 

𝑅 is calculated as:  553 

FRC(𝑅) =
∑ ℱ(𝐼ଵ)ℱ(𝐼ଶ)∗

௥ழோ

ඥ∑ |ℱ(𝐼ଵ)ଶ|௥ழோ ∙ ඥ∑ |ℱ(𝐼ଵ)ଶ|௥ழோ

, (13) 554 

where the symbol ℱ  denotes Fourier transformation. By calculating the FRC  value from 0 to 555 

𝑅௠௔௫ (the reciprocal of the pixel size), a generally declining curve is formulated. The resolution 556 

can be measured as the reciprocal of the Fourier cutoff frequency 𝑅௖௨௧௢௙௙, where FRC൫𝑅௖௨௧௢௙௙൯ <557 

𝑡𝑠ℎ , where 𝑡𝑠ℎ  represents the spectral intensity threshold. In our analysis, the 𝑡𝑠ℎ  is set as a 558 

typical value of 0.25. 559 

Data analysis 560 

We utilized the spatial autocorrelation (i.e., Global Moran’s Index45) to evaluate whether the 561 

distribution of clathrin coated pit (CCP) nucleation sites is clustered, dispersed, or random. For each 562 

time-lapse dataset, we first localized the centroid positions of all CCPs at each time point, and then 563 

linked them temporally in the whole time series using the ImageJ plugin TrackMate46, thus yielded 564 

trajectories of all detected CCPs. To rule out the false-positive events, the trajectories of less than 565 

40 time points corresponding to a duration of 20 seconds were excluded from following computation. 566 

Subsequently, for each time-lapse data, the initial locations of the CCP trajectories detected in the 567 

designated observation window were projected onto the same image as the CCP nucleation sites’ 568 

map (Fig. 3b). Then, the Moran’s Index can be calculated as: 569 

𝐼 =
𝑛

𝑆଴

∑ ∑ 𝑑௜,௝𝑧௜𝑧௝
௡
௝ୀଵ

௡
௜ୀଵ

∑ 𝑧௜
ଶ௡

௜ୀଵ

, (14) 570 

where 𝑧௜ = (𝑥௜ − 𝑋ത) is the deviation of the event count of the 𝑖௧௛ pixel from the average count; 571 

𝑑௜,௝ refers to the inverse Euclidean distance between pixel 𝑖 and 𝑗; 𝑛 is the total pixel number of 572 

the map and 𝑆଴ = ∑ ∑ 𝑑௜,௝
௡
௝ୀଵ

௡
௜ୀଵ  is the summation of 𝑑௜,௝. Finally, the z-score was calculated for 573 

each nucleation sites map to evaluate the significance of the Moran’s Index (Fig. 3c): 574 
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𝑧ூ =
𝐼 − 𝐸[𝐼]

ඥ𝑉[𝐼]
, (15) 575 

where 𝐸[∙] and 𝑉[∙] are the expectation and the variance of 𝐼, respectively. In general, the larger 576 

z-score indicates the stronger tendency of clustering. 577 

To quantitatively investigated the interaction of organelles during the cell growth (Fig. 3e, f, 578 

Extended Data Fig. 8), we calculated the Mander’s overlapped coefficient (MOC)47 of CCPs 579 

referring to F-actin. For each frame, a binary mask (denoted as 𝑀) is firstly generated by applying 580 

a threshold 𝑡𝑠ℎெ to the F-actin channel, which represents the F-actin skeleton:  581 

𝑀 = 𝐼ிି௔௖௧ > 𝑡𝑠ℎெ (16) 582 

Then the 𝑀𝑂𝐶 value is calculated as: 583 

𝑀𝑂𝐶 =
∑ 𝐼஼஼௉௦ெ

∑ 𝐼஼஼௉௦௧௢௧௔௟
, (17) 584 

where ∑ 𝐼஼஼௉௦ெ  and ∑ 𝐼஼஼௉௦௧௢௧௔௟  denote the intensity summation of the CCP channel within the 585 

masked region and the entire image, respectively. 586 

Cell culture, transfection, and stain 587 

Cos7 cells were cultured in DMEM (Gibco), supplemented with 10% fetal bovine serum (Gibco) 588 

and 1% penicillin-streptomycin in 37℃ with 5% CO2. For live cell imaging, the coverslips were 589 

pre-coated with 50μg ml-1 of collagen and cells were seeded onto coverslips with about 70% density 590 

before transfection. After 12h, cells were transfected with plasmids using Lipofectamine 3000 591 

(Invitrogen) according to the manufacturer’s protocol. Cells were imaged 12-24 hours after 592 

transfection in a stage top incubator (Okolab) to maintain condition at 37℃ with 5% CO2. The 593 

plasmid constructs used in this work were 3xmEmerald-Ensconsin, Lamp1-mEmerald, TOMM20-594 

2xmEmerald, calnexin-mEmrald, and Lamp1-Halo. 595 

SUM159 cells were genome edited to incorporate EGFP to the C-terminus of clathrin light chain 596 

A (clathrin-EGFP) using the TALEN-based approach48. The clathrin-EGFP expressing cells were 597 

enriched by two sequential bulk sorting. The cells were cultured in DMEM/F-12 (Gibco) medium 598 

supplemented with 5% fetal bovine serum (Gibco), 5 μg/ml Bovine insulin (Cell Applications), 10 599 

mM HEPES (Gibco), 1 μg/mL Hydrocortisone (Sigma) and 1% Penicillin-Streptomycin (Gibco) in 600 

37℃ with 5% CO2. For dual-color experiments, these SUM-ki-CLAT-GFP cells were further 601 

transfected with the lifeact-Halo. Before imaging, we digested the cells using 0.25% Trypsin, and 602 

then dropped cell suspension onto the coverslip pre-treated with 50 μg/mL collagen. 603 

Acknowledgement 604 

This work was supported by the National Natural Science Foundation of China (31827802, 605 

32125024, 31970659, 32271513, 62071271, 62088102, and 62222508); the Ministry of Science and 606 

Technology (2021YFA1300303, 2020AA0105500); China Nation Postdoctoral Program for 607 

Innovative Talents (BX2021159); Shuimu Tsinghua Scholar Program (2021SM039, 2022SM035), 608 

China Postdoctoral Science Foundation (2022M721842); Beijing Natural Science Foundation 609 

(JQ21012); the Tencent Foundation through the XPLORER PRIZE; and the Youth Innovation 610 

Promotion Association of the Chinese Academy of Sciences (2020094). 611 

 612 

Methods Only References 613 

44. Nieuwenhuizen, R.P. et al. Measuring image resolution in optical nanoscopy. Nature methods 614 

10, 557-562 (2013). 615 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.04.05.535684doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/


45. Ehlschlaeger, C.R., Shortridge, A.M. & Goodchild, M.F. Visualizing spatial data uncertainty 616 

using animation. Computers Geosciences 23, 387-395 (1997). 617 

46. Tinevez, J.-Y. et al. TrackMate: An open and extensible platform for single-particle tracking. 618 

Methods 115, 80-90 (2017). 619 

47. Manders, E., Verbeek, F. & Aten, J. Measurement of co‐localization of objects in dual‐colour 620 

confocal images. Journal of microscopy 169, 375-382 (1993). 621 

48. Sanjana, N.E. et al. A transcription activator-like effector toolbox for genome engineering. 622 

Nature protocols 7, 171-192 (2012). 623 

 624 

  625 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.04.05.535684doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extended Data Figures 626 

 627 
Extended Data Fig. 1 | Evaluation of PRS-SIM on experimental data with different input signal 628 

levels. a,b, The SSIM (a) and PSNR (b) evaluation of PRS-SIM, Conv. SIM and Sparse-SIM referring 629 

to GT-SIM over different input signal levels (level 1-8 from the publicly accessible dataset BioSR). 630 

Sample size: N=40 for each data point. c, Representative GT-SIM image of MTs. d-f, SR images 631 

reconstructed via Conv. SIM (d), Sparse-SIM (e), and PRS-SIM (f) from different input signal intensities. 632 

Both the quantitative analysis and the reconstructed images demonstrated that PRS-SIM has substantially 633 

better performance than Conv. SIM and Sparse-SIM, and is capable of removing the noise-induced 634 

artifacts over a wide range of input signal intensities. Scale bar, 2 μm (regular), 0.5 μm (zoom-in). 635 

  636 
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 637 

Extended Data Fig. 2 | Performance validation of PRS-SIM on synthetic filaments. a,b, The SSIM 638 

(a) and PSNR (b) comparisons of PRS-SIM and Conv. SIM referring to GT-SIM over different SNRs of 639 

raw data. Sample size: N=50 for each data point. c, The representative noisy WF images and GT-SIM 640 

images. d, The Conv. SIM (upper) and PRS-SIM (lower) images of the ground-truth (c) under different 641 

SNRs. Both the quantitative and visualization results demonstrated the significant quality improvement 642 

by PRS-SIM compared to Conv. SIM. PRS-SIM is capable to achieve comparable performance as GT-643 

SIM even with the input SNR as low as ~1 dB. Scale bar, 1 μm. 644 
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 646 
Extended Data Fig. 3 | Comparison between PRS-SIM and N2N-SIM on synthetic moving 647 

microtubules. a,b, Quantitative comparison of PRS-SIM and N2N-SIM images in terms of PSNR and 648 

SSIM on simulated microtubules of different moving speeds. The reconstruction fidelity of N2N-SIM 649 

drops significantly as the moving speed increases, while the performance of PRS-SIM remains stable. 650 

Sample size: N=50 for each data point. c, Representative SR images of moving microtubules generated 651 

by Conv. SIM, GT-SIM, N2N-SIM, and PRS-SIM. The visualization results demonstrated that severe 652 

blurring artifact emerged in N2N-SIM images when the moving speed is high, while PRS-SIM is not 653 

affected since it does not rely on any temporal correlation between the adjacent frames. Scale bar, 1 μm. 654 

  655 
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 656 
Extended Data Fig. 4 | Comparison of different denoising strategies for SIM. a,b, The diagram of 657 

two different denoising strategies, which employ the denoising network after (a, denoted as PRS-SIM) 658 

and before (b, denoted as PRS-Raw) the conventional SIM reconstruction, respectively. c, Representative 659 

SIM images reconstructed with PRS-SIM and PRS-Raw and the corresponding Fourier power spectrums. 660 

The OTF cutoff frequency is annotated by dashed green circles. The PRS-Raw image contains severe 661 

ringing artifacts, which is consistent with the heterogeneous regions in its Fourier power spectrum as 662 

noted by red arrows. d,e, Quantitative comparison of PRS-SIM and PRS-Raw in terms of SSIM (d) and 663 

PSNR (e). Both SSIM result and PSNR results indicated that PRS-SIM achieved better performance than 664 

PRS-Raw. Sample size: N=40 for each method. Scale bar, 2 μm.  665 
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 667 

Extended Data Fig. 5 | Performance comparison among different self-supervised deep-learning 668 

denoising methods. a-f, Representative results of the conventional SIM (a), PRS-SIM (d), noise2void 669 

(b,e, denoising networks employed before/after SIM reconstruction are noted as N2V-raw/N2V-SIM), 670 

hierarchical denoising network (d,f, denoising networks employed before/after SIM reconstruction are 671 

noted as HDN-raw/HDN-SIM). g, The corresponding GT-SIM image. Two zoom-in regions noted by 672 

yellow squares are shown for detailed comparison. h,i, Statistical comparison of the aforementioned 673 

methods by calculating the SSIM (h) and PSNR(i) referring to the GT-SIM image. The quantitative 674 

results inditated that PRS-SIM acquired the best denoising performance, which is consistent with lowest 675 

artifact and highest fidelity shown in the reconstruction images. Sample size: N=40 for each method. 676 

Scale bar, 2 μm, 0.5 μm (zoom-in regions). 677 

  678 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.04.05.535684doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/


 679 

Extended Data Fig. 6 | Evaluation of PRS-SIM for non-linear-SIM (NL-SIM) data denoising. a-c, 680 

Representative WF (a), conventional NL-SIM (b), and PRS-SIM (c) under different signal levels, 681 

corresponding to the same ground-truth (d). e,f, Quantitative comparison of PRS-SIM and conventional 682 

NL-SIM in terms of SSIM (e) and PSNR (f) on F-actin images. The SSIM and PSNR values referring to 683 

GT images under different signal levels are displayed. Sample size: N=20 for each signal level. Scale bar, 684 

5 μm (regular), 1 μm (zoom-in regions). 685 

 686 

  687 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.04.05.535684doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/


 688 
Extended Data Fig. 7 | Evaluation of PRS-SIM for 3D-SIM data denoising. a,b, Quantitative 689 

comparison of PRS-SIM and conventional 3D-SIM in terms of SSIM (a) and PSNR (b) on Lyso images. 690 

The SSIM and PSNR values referring to GT-SIM under different signal levels are displayed. c, 691 

Representative images of conventional 3D-SIM, PRS-SIM, and GT SIM of different signal levels. The 692 

MIP view in XY plane and the sectioned view in XZ plane (indicated by the green line in XY view) are 693 

displayed. Compared to conventional 3D-SIM result, PRS-SIM is capable to remove most artifact in all 694 

three dimensions and achieves comparable quality and resolution to GT-SIM. Sample size: N=17 for 695 

each signal level. Scale bar, 2 μm (XY and XZ views), 0.5 μm (zoom-in regions).  696 
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 698 
Extended Data Fig. 8 | Evaluation of PRS-SIM for LLS-SIM data denoising. a,b, Quantitative 699 

comparison of PRS-SIM and conventional LLS-SIM in terms of SSIM (a) and PSNR (b) on ER images. 700 

The SSIM and PSNR values referring to GT images under different signal levels are displayed. c,d, 701 

Representative SR images of GT-SIM (b), conventional LLS-SIM, and PRS-SIM (d) under different 702 

signal levels. The MIP view in XY plane and the sectioned view in XZ plane (indicated by the green line 703 

in XY view) are displayed. Sample size: N=20 for each signal level. Scale bar, 5 μm (XY and XZ views), 704 

1 μm (zoom-in regions). 705 

 706 
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 708 

Extended Data Fig. 9 | Interaction analysis of CCPs and F-actin during the growth process of a 709 

SUM159 cell via long-term PRS-SIM imaging. a,b, Weka segmentation results of F-actin filaments 710 

from the conventional TIRF-SIM images (a) and PRS-SIM images (b). Zoom-in views of two 711 

representative regions are displayed on the right panel. Since the experiment was performed under 712 

extremely low excitation intensity, the filaments cannot hardly be distinguished in conventional SIM 713 

images, while the quality of PRS-SIM result is adequate for successful segmentation. c, Representative 714 

visualization of the interaction between CCPs (green) and F-actin (red) by PRS-SIM. d, Mander’s 715 

overlapped coefficient of the CCPs referring to F-actin calculated from conv. SIM (blue) and PRS-SIM 716 

(red) images, respectively, during the entire cell growth process. Low MOC values indicate that most 717 

CCPs tend to locate in the interspace of actin filaments, which is consistent with the images shown in c. 718 

Scale bar, 5 μm (a, b), 1 μm (c, zoom-in regions in a, b). 719 
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 721 

Extended Data Fig. 10 | Comparison between PRS-SIM and N2N-SIM on time-lapse data of 722 

rapidly moving mitochondria. a-c, WF (a), N2N-SIM (b), and adaptively trained PRS-SIM (c) images 723 

of a COS7 cell expressing TOMM20-2xmEmerald. d-f, Representative time-lapse zoom-in regions of 724 

WF (d), N2N-SIM (e), and PRS-SIM (f) images. These results show that the temporal continuity-based 725 

N2N-SIM generates blurry artifacts because of the rapid movement of the specimen, while the proposed 726 

PRS-SIM successfully recover the fine structure of mitochondria. Scale bar, 5 μm (a-c), 0.5 μm (d-f). 727 

 728 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.04.05.535684doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.05.535684
http://creativecommons.org/licenses/by-nc-nd/4.0/

