

1 **A novel HERC4-dependent glue degrader targeting STING**

2

3 **Authors:**

4 Merve Mutlu¹, Isabel Schmidt¹, Andrew I. Morrison¹⁺, Benedikt Goretzki¹, Felix Freuler¹, Damien Begue¹, Nicolas
5 Pythoud¹, Erik Ahrne¹, Sandra Kapps¹, Susan Roest¹, Debora Bonenfant¹⁺⁺, Delphine Jeanpierre¹, Thi-Thanh-Thao
6 Tran¹, Rob Maher², Shaojian An², Amandine Rietsch¹, Florian Nigsch¹, Andreas Hofmann¹, John Reece-Hoyes²⁺⁺⁺,
7 Christian N. Parker^{1*}, Danilo Guerini^{1*}

8 ¹Novartis Institutes for BioMedical Research, Basel, Switzerland

9 ²Novartis Institutes for BioMedical Research, Cambridge, MA, USA

10 ⁺ Current position: Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology,
11 Amsterdam institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, The Netherlands

12 ⁺⁺ Current position: Monte Rosa Therapeutics, Basel, Switzerland

13 ⁺⁺⁺Current position: Vector Biolog, Cambridge, MA, USA

14 *Corresponding authors

15 **Abstract**

16 Stimulator of interferon genes (STING) is a central component of the pathway sensing the presence of cytosolic
17 nucleic acids, having a key role in type I interferon innate immune response. Localized at the endoplasmic reticulum
18 (ER), STING becomes activated by cGAMP, which is generated by the intracellular DNA sensor cyclic GMP-AMP
19 synthase (cGAS). Due to its critical role in physiological function and its' involvement in a variety of diseases, STING
20 has been a notable focus for drug discovery. Recent advances in drug discovery allow the targeting of proteins
21 previously considered “un-druggable” by novel mechanism of actions. Molecular glue degraders are defined as the
22 compounds leading targeted protein degradation (TPD) by creating novel ligase-substrate interactions. Here, we
23 identified AK59 as a novel molecular glue degrader for STING. A genome-wide, CRISPR/Cas9 knockout screen
24 showed that the compound-mediated degradation of STING by AK59 is compromised by the loss of HECT and RLD
25 domain containing E3 ubiquitin protein ligase 4 (HERC4), ubiquitin-like modifier activating enzyme 5 (UBA5) and
26 ubiquitin like modifier activating enzyme 6 (UBA6). While UBA5 and UBA6 could be the auxiliary factors for AK59
27 activity, our results indicate that HERC4 is the main E3 ligase for the observed degradation mechanism. Validation
28 by individual CRISPR knockouts, co-immunoprecipitations, as well as proximity mediated reporter assays suggested
29 that AK59 functions as a glue degrader by forming a novel interaction between STING and HERC4. Furthermore, our
30 data reveals that AK59 was effective on the most common pathological STING mutations that cause STING-
31 associated vasculopathy with onset in infancy (SAVI), suggesting a potential clinical application of this mechanism.
32 Thus, these findings not only reveal a novel mechanism for compound-induced degradation of STING but also utilize
33 HERC4 as potential E3 ligase that for TPD, enabling novel therapeutic applications.

34 Words: 289

35 **Key words:** STING, targeted protein degradation, TPD, glue degrader, HERC4

36 **Introduction**

37 The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon genes (STING) pathway is an important element of
38 the innate immune system for the detection of, and the response to aberrant intracellular DNA molecules. The pathway
39 is activated by the binding of cGAS protein to cytosolic double-stranded (DNA); this interaction initiates the
40 production of 2'3' cyclic GMP–AMP (cGAMP) which binds to STING (previously known as TMEM173 or STING1).
41 Located on the endoplasmic reticulum (ER) membrane in its' naive state, STING then dimerizes in the presence of
42 cGAMP; it is translocated from the ER membrane and eventually triggers downstream interferon signaling by a
43 cascade initiated by TANK binding kinase (TBK) phosphorylation ¹. The presence of double-stranded DNA in the
44 cytoplasm is associated with viral/bacterial infection, retroviral replication and cellular stress (which could be caused
45 by the release of mitochondrial DNA) and so the production of cGAMP, and activation of STING, acts as an innate
46 immune response to such stimuli ².

47 Aberrant activation of cGAS/STING has been associated with numerous autoimmune diseases ³. Ataxia-telangiectasia
48 (AT), a genetic disorder linked to ATM kinase loss of function, as well as Aicardi-Goutieres syndrome (AGS), a
49 relatively rare inflammatory disease, are among the diseases that were linked to cGAS/STING pathway activity ^{4,5}.
50 Furthermore, individual point mutations of the STING protein are causative of STING-associated yasculopathy with
51 onset in infancy (SAVI disease) which causes skin lesions, rashes and interstitial lung disease ⁶. The links between
52 the cGAS/STING pathway to multiple autoinflammatory diseases justify efforts to pharmacologically target members
53 of this pathway ^{3,7}. As one of the main elements of this pathway, STING has been a prominent target of such efforts
54 ^{8,9}. While a straight forward approach to STING inhibition could be targeting the cGAMP binding pocket ¹⁰, which is
55 the domain responsible for activation, there are many other mechanisms to antagonize a target protein, such as
56 targeting post-translational modifications ⁸.

57 Ubiquitin signaling is an important posttranslational modification (PTM) of proteins that regulates numerous signaling
58 pathways in eukaryotic cells ¹¹. The main elements of the ubiquitin-proteosome system (UPS) consist of ubiquitin-
59 activating enzymes (E1), ubiquitin-conjugating enzymes (E2) and ubiquitin ligases (E3). As their names suggest, the
60 chain reaction linking ubiquitination of substrate proteins starts with ubiquitin activation via an E1 enzyme,
61 subsequently the ubiquitin is transferred, by an E2 enzyme, from the E1 component to an E3 ligase which links
62 ubiquitin to the target protein. The function of the E3 ligase is to create a scaffold for both the E2 and substrate for
63 transfer of the ubiquitin to the target protein ¹². There are four major E3 ligase families clustered according to their
64 functional domains and mechanism of action. A major cluster of E3 ligases, which include representatives such as
65 APC, SCF complex or DCX complex, are members of the RING (Really Interesting New Gene)-finger containing
66 family ^{13,14}. While RING-finger-containing E3 ligases function as scaffolds mediating close proximity between E2
67 and the target protein, the HECT-domain-containing E3 ligases interact with ubiquitin directly, utilizing an
68 intermediate step before ubiquitination of target protein ¹⁵. HERC4 belongs to the HECT-domain containing E3 ligase
69 family and is relatively less well characterized than the RING domain family of E3 ligases. HERC4 expression has
70 been associated with several cancer types including breast cancer, hepatocellular carcinomas and lung tumors ^{16–18}.
71 Additionally, only a few target substrates of HERC4 have been identified; such as Smoothened protein (SMO) ^{19,20},

72 Salvador (SAV) protein²¹, c-Maf²² and progesterone receptor (PGR)²³. The structure and the mechanism of action
73 of HERC4 has not yet been fully defined.

74 Interest in E3 ligases has increased tremendously over the last 20 years due the discovery of compounds that can bring
75 about novel protein interactions with E3 ligases. Molecular glue degraders and proteolysis-targeting chimera
76 (PROTACs) defined as compounds that mediate association of an E3 ligase to a target protein that is usually not a
77 natural substrate of that E3 ligase. This chemically mediated protein-protein interaction (PPI) brought completely new
78 perspective to the field of drug discovery, allowing proteins to be targeted for proteasomal degradation (TPD).

79 Our study leveraged genome-wide CRISPR/Cas9 knockout screening to enumerate the genes involved in a novel
80 compound-directed STING degradation mechanism. This report describes the identification of the novel compound
81 (AK59-51TB, in short AK59) that inhibits the cGAS/STING pathway via targeted proteasomal degradation of STING.
82 A genome-wide CRISPR-Cas9 screen was conducted to identify genes inhibiting the compound-mediated STING
83 degradation. Subsequently, the function of AK59 was shown to be dependent on HERC4, UBA5 and UBA6, each of
84 which reduces AK59 activity when individually knocked out. Moreover, immunoprecipitation assays and a novel PPI
85 assay revealed that the interaction between STING and HERC4 only occurs in the presence of the compound. These
86 results identify AK59 as a glue degrader of STING and demonstrate a novel regulatory mechanism of the
87 cGAS/STING pathway, unveiling the potential of HERC4 as an E3 ligase that has not previously been exploited for
88 known TPD mechanisms.

89 **Results**

90 **AK59 is a selective inhibitor of STING**

91 Due to its' significance in various autoimmune diseases and cancer, the regulation of the cGAS/STING pathway is of
92 interest to pharmaceutical companies and society³. STING is one of the main elements of this pathway and a key
93 regulator of interferon regulatory factors (IRFs), thus regulation of STING expression may have a high potential
94 therapeutic value in the field of immunology⁹. Due to this potential therapeutic application, a portion of the Novartis
95 compound collection was screened to identify compounds that inhibit the type 1 interferon response upon expose to
96 exogenous DNA (data not shown). THP1 human monocytic cells were chosen as a suitable cell model with detectable
97 and relevant cGAS/STING pathway activity. Among the compounds screened, AK59 showed significant inhibitory
98 effect on STING activity. Western blot analysis of THP1 cells showed that 16 hours of compound incubation caused
99 a drastic decrease of STING protein levels (Figure 1A). While AK59 showed significant decrease in STING protein
100 levels, QK50-66NB (in short QK50) treatment, a close structural analog of AK59, did not affect STING levels in
101 treated THP1 cells (Figure 1A), highlighting the specificity of AK59. To demonstrate that STING degradation
102 translated to downstream inhibition of the pathway, commercially available Dual-THP1-Cas9 cells (that have a Lucia
103 luciferase reporter linked to IRF responsive promoter) were used to monitor compound effects on activation of the
104 interferon response pathway. Upon stimulation with 30 μ M of cGAMP, Dual-THP1-Cas9 cells showed an increased
105 luminescence signal that was significantly inhibited by treatment with 10 μ M AK59 (Figure 1B). Dual-THP1-Cas9
106 cells in which STING had been knocked out²⁴ were used as a negative control to show the specificity of the pathway

107 activation via cGAMP stimulation. Additionally, dose response of these two related compounds showed that QK50
108 treatment of cGAMP stimulated Dual-THP1-Cas9 cells did not show the same decrease in IRF pathway signaling
109 (Supplementary Figure S1A). Both western blot as well as reporter assay results showed that AK59 was specifically
110 inhibiting STING-mediated activation of the IRF pathway.

111 To further characterize the effect of AK59 on THP1 cells, an unbiased proteomics approach used. THP1 cells treated
112 with either DMSO (vehicle), 10 μ M AK59 or 10 μ M QK50 for 16 hours and tryptic digests of total cell lysates were
113 analyzed by LC-MS/MS (Supplementary Figure S1B). The treatment conditions were compared to the vehicle control
114 group and fold changes were calculated accordingly. The proteomics analysis revealed significantly downregulated
115 proteins with a < -1 Log2 fold decrease and a false discovery rate p-value (q value) of less than 0.01 (Figure 1C,
116 Supplementary Table S1). Protein expression levels of STING was found to be significantly downregulated upon
117 AK59 treatment compared to vehicle control. Furthermore, STING expression levels remained unaltered in the
118 presence of non-functional analog of AK59, QK50 (Supplementary Figure S1C-D).

119 UPS machinery an important protein regulatory element in eukaryotic cells that plays a critical role in numerous
120 cellular pathways²⁵. To understand whether change of the protein levels of STING is due to proteasomal degradation,
121 bortezomib was added prior to the compound treatment. Changes of the proteomics profile upon 50nM bortezomib
122 addition showed that the downregulation on STING protein by AK59 were rescued (Figure 1D). To validate this
123 finding, proteasomal degradation was inhibited using two different proteasome inhibitors (bortezomib and MG132).
124 In addition, a neddylation inhibitor (MLN4924) was tested on AK59 treated THP1 cells (Supplementary Figure S1E).
125 Proteasomal inhibition or neddylation inhibition was initiated 1-2 hours prior to compound treatment and maintained
126 during the 16 hours of AK59 incubation. Interestingly, neddylation inhibition did not rescue AK59-mediated STING
127 downregulation. While the proteasomal inhibitors were highly toxic to the cells, bortezomib showed the best rescue
128 of the compound mediated STING degradation. Additionally, two concentrations of bortezomib treatment (25 and 50
129 nM) were selected as having the largest effect on proteasomal inhibition without causing excessive cell death when
130 combined with various doses of AK59. The STING protein levels in THP1 cells that measured by FACS (Figure 1E)
131 showed that proteasomal inhibition via bortezomib rescues compound-derived STING degradation to a certain extend
132 in a dose dependent manner. Furthermore, ubiquitination pulldown assays showed STING ubiquitination upon AK59
133 (Figure 1F). These findings corroborated an inhibitory effect of AK59 on STING and therefore cGAS/STING
134 signaling, via induced UPS.

135 **Lysine 150 of STING is essential for AK59-mediated STING degradation**

136 To dissect the functional domain(s) of STING essential for novel AK59-mediated degradation, GFP tagged STING
137 expression vectors were constructed and expressed in HEK293T cells (which do not express endogenous STING).
138 The expression plasmids constructed were focused on the cytosolic domain of STING to avoid the complexity the
139 transmembrane domains might introduce in folding or localization. Several constructs that contain the cytosolic
140 domain of STING differing on the connector helix domain were created (Supplementary Figure S2). STING
141 degradation was tracked in live cells by following GFP fluorescence after 10 μ M AK59 treatment. STING expression
142 on STING¹⁴¹⁻³⁴¹-GFP (construct #1) expressing HEK293T cells was significantly reduced while the shorter STING¹⁵⁵⁻

143 ³⁴¹-GFP(construct #4) expressing HEK293T cells seemed not to be influenced by compound treatment (Figure 2A).
144 This indicated that the connector helix domain of STING protein (141-155aa) appears to be involved in the function
145 of AK59. To understand whether this domain is important in the binding or the ubiquitination of the STING protein,
146 lysine residues at the connector helix domain were further investigated. The K150 lysine residue, located within the
147 connector helix domain, has been linked to PTMs such as ubiquitination of STING and its degradation ^{26,27}. In order
148 to dissect the two functions of AK59 on STING (interaction vs. ubiquitination), mutation of K150 to arginine (K150R)
149 on non-GFP tagged STING¹⁴¹⁻³⁴¹ construct (STING^{141-341_K150R}, construct #6) was introduced. Together with non-
150 GFP tagged STING¹⁴¹⁻³⁴¹(construct #5) and STING¹⁵⁵⁻³⁴¹(construct #7), STING^{141-341_K150R} construct transiently
151 expressed in HEK293T for side-by-side comparison. Ubiquitin pulldown followed by western blot on these cell lines
152 showed that ubiquitination levels remained constant in either STING¹⁵⁵⁻³⁴¹ or STING^{141-341_K150R} expressing
153 HEK293T, whereas ubiquitination of STING has been increased in STING¹⁴¹⁻³⁴¹ expressing HEK293T cells (Figure
154 2B). These data indicated that K150 residue of STING is essential for AK59-mediated ubiquitination and therefore
155 degradation of the protein.

156 To investigate whether AK59 functions also on pathological STING variants, cGAS/STING pathway associated
157 diseases searched in the literature. STING-associated yasculopathy with onset in infancy (SAVI) is rare genetic
158 autoimmune disorder caused by single point mutations on STING protein ²⁸⁻³¹. The point mutations N154S and
159 V155M are present in the cytosolic domain of STING and are the most commonly detected causative mutations in
160 SAVI patients ³². In order to observe the effect of AK59 on SAVI mutant STING proteins, these two mutations were
161 introduced into the STING¹⁴¹⁻³⁴¹-GFP constructs (constructs #1-4, Supplementary Figure S2). After transient
162 transfection of the wild type and mutant STING constructs, GFP signal in live cells were tracked in vehicle treated or
163 10 μ M AK59 treated cells. Tracking of live cells revealed that, similar to STING¹⁴¹⁻³⁴¹-GFP construct, both STING
164 variants were partially degraded in the presence of AK59 treatment (Figure 2C and Figure 2D). Our data indicate that
165 AK59 is still functional against SAVI mutants to a certain extent, and this paves the way for future translational
166 implications of AK59.

167 AK59 function relies on HERC4, UBA5 and UBA6

168 While identifying the necessary domains and lysine ubiquitination's for AK59-mediated STING degradation, the
169 mechanism of action of the compound remained unknown. To investigate the mechanism of action of AK59, a pooled,
170 genome-wide, CRISPR-Cas9, knockout screen was conducted ³³. The aim was to identify genes that when knocked
171 out, significantly abrogate the effect of AK59 in reducing the levels of STING protein in THP1-Cas9 cells.

172 A FACS-based assay to monitor the levels of STING protein was developed and used as a phenotypic readout for the
173 CRISPR-Cas9 screen. Compound concentration and incubation time were optimized according to the median fold-
174 difference on STING staining (Figure 3A). This identified 10 μ M AK59 and a 16-hour incubation as giving a
175 distinctive 5-to-6-fold separation in the STING protein levels in our FACS assay. After establishing the FACS-based
176 STING assay, the CRISPR/Cas9 genome-wide screen was conducted (Figure 3B). Screening subjected cells to either
177 DMSO (vehicle) control or 10 μ M of AK59 for 16 hours and cells were sorted according to their STING expression.
178 “high” and “low” STING groups were assigned as the higher and lower 25% quartile of the sorted cells. Enriched

179 and depleted sgRNAs in the comparison of high vs. low STING protein levels following treatment, as well as the
180 control group, were presented as a plot displaying RSA p-value (significance of the hits) for guides targeting each
181 gene as well as the magnitude of this effect compared to the other genes (Q3 values) (Figure 3C, Supplementary Figure
182 S3A-C, Supplementary Table S2). To distinguish the genes that are significantly enriched in AK59 high vs. low
183 STING comparison and stable in DMSO high vs. low comparison, the Euclidean distance between the two sets of (Q,
184 RSA) coordinates was calculated (Supplementary Table S2). By ranking the distances, candidate hits that are altered
185 only in the AK59 low vs. high comparison identified. Figure 3D represents the ranked order of the genes, where their
186 knockout resulted in higher STING protein expression in the AK59 treatment group. Among these highly ranked
187 genes, HERC4, UBA5 and UBA6 attracted our attention. HERC4 is a HECT domain containing E3 ligase, however
188 few of its targets have been identified and reported in the literature¹⁹⁻²³. UBA5 and UBA6 are ubiquitin-like modifier
189 activating E1 proteins. Individual sgRNAs targeting these three genes show that most of them indeed enriched in the
190 AK59 treatment group with high STING expression compared to the control group (Figure 3E). Additionally,
191 STRING analysis (Version 11.5)³⁴ revealed that interactions between UBA5, UBA6 and HERC4 had been reported
192 in *Homo sapiens*. Importantly, none of these candidates have not been previously linked to STING (Figure 3F). These
193 results increased our confidence on the mechanism of AK59 on STING regulation is through UPS involving HERC4,
194 UBA5 and UBA6 as regulatory factors.

195 To validate the CRISPR genome-wide screen results, individual knockout cell lines constructed. Two best-performing
196 sgRNAs per candidate from the genome library selected and introduced to THP1-Cas9 cells with lentiviral particles.
197 After the third passaging of the cells following lentiviral transduction, cells were collected to check the CRISPR
198 editing efficiency. Modification-rate on the cut-site assessed by PCR followed by tracking of indels by decomposition
199 (TIDE) analysis³⁵ (Figure 4A, 4D and 4G). To show that the modifications on the cut sites on each gene resulted in
200 depletion (or decrease) in protein levels these were assessed (Figure 4B, 4E, 4H and Supplementary Figure S4).
201 ACTIN or VINCULIN proteins were used as a loading control. After confirming the loss-of-function (LoF) of each
202 gene, the FACS based assay monitoring STING protein levels was used to further validate our screen results. HERC4,
203 UBA5 and UBA6 sgRNA transduced THP1-Cas9 lines showed higher levels of STING protein in the presence of 10
204 μ M AK59 treatment compared to control (Ctrl) sgRNA transduced THP1-Cas9 cells. While AK59 treatment resulted
205 in up to 70% decreased of STING protein in the Ctrl cell line, in the HERC4, UBA5 and UBA6 LoF lines this was
206 decrease to 50-60% (Figure 4C, 4F, 4I and Supplementary Figure S4). Furthermore, HERC4 as the second top rated
207 hit in the CRISPR screen showed the highest rescue phenotype of AK59 treatment regarding STING expression
208 (Figure 4J). All these data indicated that we could replicate the results of the genome-wide screen with individual LoF
209 lines and that HERC4, UBA5 and UBA6 loss interrupts the effect of AK59 on reduction of STING protein levels.

210 **AK59 act as a glue degrader modulating novel interaction between STING and HERC4**

211 UBA5 and UBA6 are E1 enzymes suggesting that they may act as accessory elements for AK59-mediated STING
212 degradation. HERC4 was one of the top hits from the CRISPR genome-wide screen and as an E3 ligase became
213 prioritized as having an important role in AK59 function. Furthermore, as HERC4 is an E3 ligase this offered the
214 hypothesis that AK59 is acting as a molecular glue degrader creating a novel interaction between HERC4 and STING,

215 allowing STING to be ubiquitinated and degraded. To test this hypothesis, we first wanted to make sure not only
216 compound-mediated STING degradation, but also cGAS/STING pathway activity was reversed by HERC4 LoF. It
217 was previously demonstrated that the inhibitory effect of AK59 on STING protein was translated to downstream the
218 IRF pathway (Figure 1B). To link HERC4 to AK59 functioning as a mechanism of action, HERC4 sgRNA was
219 introduced to the Dual-THP1-Cas9²⁴ cell line to create HERC4 LoF. Validation of LoF was shown both by TIDE
220 analysis on the cut site as well as western blot on protein level (Supplementary Figure S5A and S5B). As expected,
221 luminescence due to cGAMP stimulation, indicating activation of the IRF pathway, gradually decreased with
222 increasing concentrations of AK59 in the Ctrl cell line (Supplementary Figure S5C). In contrast to the control cell
223 line, the HERC4 knockout Dual-THP1-Cas9 cell line showed higher luciferase activity in the presence of AK59
224 indicating that the compound's inhibitory activity on IRF pathway is compromised in the absence of HERC4. Thus,
225 absence of HERC4 interrupted the function of AK59 on STING protein levels and downstream on activation of the
226 IRF pathway.

227 To observe the changes in the inhibition of cytosolic STING via AK59 in the absence of HERC4, the link between
228 HERC4 and the ubiquitination of STING through AK59 were investigated. First, HERC4 was knocked out in
229 HEK293-JumpIN-Cas9 cell line to test the HERC4 dependent AK59 activity on various STING constructs. Knockout
230 efficiency was shown both by TIDE analysis and western blot (Supplementary Figure S5D and S5E). Furthermore,
231 LoF cell lines were used to transiently expressed GFP-fused cytosolic domain for STING (Supplementary Figure S2).
232 GFP signal tracking on live HERC4 LoF cells that transfected with STING-GFP constructs showed that HERC4 LoF
233 ablates the differences in the degradation of different STING constructs (Figure 5A). In other words, degradation of
234 cytosolic STING via AK59 has been blocked in the absence of HERC4. These results solidified the link HERC4, an
235 E3 ligase, to compound-mediated STING degradation suggesting that AK59 could be functioning as a glue degrader.
236 To further support this data, protein levels known substrates of HERC4 such as SMO and PGR^{19,20,23} were measured
237 in the presence of AK59 (Figure 5B). Both in the wildtype THP1-Cas9 cells as well as STING KO THP1-Cas9 cells,
238 protein levels of SMO as well as PGR remained unchanged or even stabilized upon treatment suggesting that AK59
239 function on HERC4 is STING-specific. This data is supported by the ubiquitin pulldown in STING¹⁴¹⁻³⁴¹ expressing
240 HEK293T cells. As expected transiently expressed STING construct shows increased ubiquitination levels in the
241 presence of the AK59 while ubiquitination of SMO remained stable (Figure 5C). Additionally, HERC4, as a HECT
242 domain containing E3 ligase shown to be also degraded in the presence of AK59 (Figure 5B and 5C) which could be
243 due to its' self-ubiquitination during the transfer of the ubiquitin domain from E2 enzyme to substrate.

244 For AK59 to act as a glue degrader, physical interaction between E3 ligase and its' novel substrate needed to be shown.
245 In order to demonstrate that, experiments were conducted to investigate compound-dependent PPI between HERC4
246 and STING protein. Co-immunoprecipitation of STING followed by western blot was performed on transiently
247 STING¹⁴¹⁻³⁴¹ expressing HEK293T cells. HEK293T cells were treated with DMSO or AK59, 48 hours after
248 transfection with either empty vector or STING¹⁴¹⁻³⁴¹ construct. Co-immunoprecipitation followed by western blots
249 showed that only in the presence of AK59 was STING pulled down together with HERC4 (Figure 5D, 3rd lane).
250 Consecutively, HERC4-interacting SMO protein levels are decreased supporting that AK59 alters substrate

251 recognition of HERC4. DMSO treated STING¹⁴¹⁻³⁴¹ expressing HEK293T lysate (Figure 5D, 2nd lane) did not show
252 any band on the STING blot and showed no change in SMO levels indicating that the interaction between HERC4
253 and STING is a novel interaction and depends on the presence of the compound. Additionally, STING¹⁴¹⁻³⁴¹,
254 STING¹⁵⁵⁻³⁴¹ and STING¹⁴¹⁻³⁴¹ K150R expressing HEK293T cells were used to check the interaction of STING with
255 HERC4. Interestingly, all the STING forms were found to still be interacting shown by co-immunoprecipitation upon
256 compound incubation, which is further validating that connector helix sequence and the K150 residue of STING is
257 only essential for the ubiquitination of the substrate but not for the interaction of the tripartite complex formed in the
258 presence of AK59 (Supplementary Figure S6A).

259 To support the pulldown data indicating the AK59-mediated novel interaction of HERC4 and STING, by
260 demonstrating compound-dependent proximity, a NanoBiT® complementation assay (Promega) was developed. The
261 Nanobit complementation assay consists of a small (SmBiT) and large (LgBiT) piece of the Nanoluciferase protein,
262 which have low affinity for each other. Only in the presence of a direct interaction of the conjugated proteins domains,
263 can the SmBiT and LgBiT form a functional Nanoluc and produce a luminescence signal³⁶. Expression constructs
264 where the STING 141-341aa cytosolic domain was C-terminally conjugated with the LgBiT domain and full length
265 HERC4, N-terminally linked to the SmBiT were created (Supplementary Figure S6B). These constructs were then
266 transiently transfected into HEK293T cells and expression of the constructs were validated with western blot
267 (Supplementary Figure S6B, below). 48 hours post-transfection; cells were treated with either DMSO or AK59. Time
268 course (Figure 5E) as well as the dose-dependent (Supplementary Figure S6D) measurements showed that LgBiT and
269 SmBiT interaction and therefore the nano luminescence signal is detected only in the presence of AK59. QK50 a non-
270 functional analog of AK59 (Supplementary Figure S1A), was used as a negative control. Furthermore, cGAMP
271 supplementation did not compete with AK59 (Supplementary S6B) indicating that cGAMP is not competing with
272 AK59 or in other words AK59 is not binding to the cGAMP binding site. Specificity of the luminescence signal, only
273 in the presence of AK59 but not in DMSO or QK50 treated groups supports the hypothesis that AK59 induces a novel
274 PPI between STING and HERC4, consistent with the pulldown results.

275 These results are consistent with activity of AK59 as a novel STING glue degrader. Overall, these findings shows that
276 AK59 is a novel degrader and causes a novel interaction between STING and HERC4. AK59 interacts with HERC4,
277 a HECT domain containing E3 ligase, causing a novel interaction with STING, which results in proteasomal
278 degradation of STING protein. This interaction results in not only the degradation of STING but also HERC4 leading
279 to stabilization of known substrates of HERC4 (Figure 5F). Furthermore, AK59-mediated ubiquitination of STING
280 K150 and subsequent STING degradation results in the inhibition of IRF pathway activation. Additionally, these
281 results showed that AK59 not only degrades wild-type STING but also SAVI mutant STING proteins, with
282 implications for translational applications of the AK59 mechanism of action for chronic STING activation.

283 Discussion

284 This study identified the mechanism of action of a novel glue degrader AK59, which mediates interactions between
285 HERC4, a HECT domain E3 ligase, and a novel substrate, STING. Molecular glue degraders and bi-functional
286 PROTACS have attracted significant interest as a means to use small-molecule-derived changes in intracellular protein

287 interactions for application to drug discovery ³⁷. Recently, Liu et al. showed the usage of a known small molecule
288 inhibitor against STING (C-170) combined with pomalidomide to achieve a PROTAC approach on STING
289 degradation ³⁸. While designing PROTACs from known inhibitors seemed to be a straightforward approach, specific
290 glue degraders have significant advantages over PROTACs due to their size and therefore the easy conformity to
291 Lipinski's rule of five. Moreover, while CBN-based degradation has been the focus of the field, this study is the first
292 showing HERC4 as a potential E3 ligase for targeted protein degradation. This may be the first report of a compound
293 directing a HECT domain containing E3 ligase to bring about targeted protein degradation.

294 Proteomics and genome-wide CRISPR/Cas9 screening techniques were then used to explore the mechanism of action
295 of AK59 in an unbiased manner. By using a non-functional analog of AK59, QK50, both in proteomics as well as
296 one-by-one interaction assays, it has been demonstrated that the chemical structure is unique and restrained in its
297 ability for formation of the novel tripartite complex. While the ability of the compound to form this tripartite complex
298 (STING, HERC4 and AK59) was validated using orthogonal assays, a number of questions remained. One of which
299 is whether by creating a novel pocket, AK59 interacts at an interface between STING and HERC4 (so called proximal
300 mechanism of action) or if by binding only one of the proteins, AK59 results in a conformational change which creates
301 a novel PPI (so called distal mechanism of action) (see Figure 5F). Additionally, we managed to isolate the interaction
302 site of STING to the cytosolic domain. In addition, it appears that AK59 was not competing with cGAMP binding but
303 the specific degron sequence needed to be further investigated. Lastly, HERC4 binding site of AK59 still remains
304 uncertain. To investigate these issues, compound structural-activity-relationship and protein structures needs to be
305 further investigated with carefully selected assay readouts.

306 In dissecting AK59's function, the proteomics data showed at distinct cluster of proteins that are downregulated upon
307 compound treatment (Supplementary Table S1). Among these proteins TMEM173 (STING) showed significant
308 decrease in AK59 treatment sample compared to DMSO control and this significant decrease diminished in
309 bortezomib-treated samples, indicating that the degradation of STING through AK59 is dependent on the proteasome
310 (Supplementary Table S1). This observation was further supported by observation of K150 residue ubiquitination of
311 STING in the presence of compound (Figure 2C). While we are mainly interested in the compound-mediated STING
312 degradation, the proteomics data also shows a number of proteins additional to STING have been downregulated by
313 AK59 treatment. While these proteins can be further investigated, the structure of AK59 could be optimized for
314 specificity to STING recognition/degradation. Additionally, few proteins such as heme oxygenase 1 (HMOX1),
315 members of heat shock protein Hsp70 family (HSPA1A, HSPA6) and members of heat shock protein Hsp40 family
316 (DNAJA4, DNAJB4) are upregulated in the proteomics data. Elevated levels of these protein could indicate that the
317 compound causes elevated ER stress, activation of proteolysis and protein quality control system ^{39,40}.

318 This study reports the discovery of the first molecular glue degrader targeting STING, leading to inhibition of the
319 cGAMP-activated IRF pathway. There has been numerous attempts to inhibit cGAS/STING pathway through
320 targeting STING either via small molecule inhibitors, cGAMP derivatives or with PROTACs ^{3,8,41}. To our knowledge,
321 there has not previously been a report describing inhibitors, or degraders of STING, shown to be functional on SAVI
322 mutants. While, the AK59 showed lower degradation of STING protein in the SAVI mutant lines, its novel mechanism

323 as a molecular glue degrader using HERC4 as a novel E3 ligase opens new horizons for the regulation of STING in
324 the context of autoimmune disorders.

325 **Material and Methods**

326 **Cell culture**

327 THP1 cells were cultured using Gibco RPMI-1640-Glutamax1 25mM Hepes medium (Life Technologies)
328 supplemented with 10% FBS (PAA Laboratories), 1mM sodium pyruvate (Life Technologies) and 50 μ M
329 mercaptoethanol (Life Technologies). Cells were passaged every 4-5 days by dilution to 0.2-0.3 million cells/ml.

330 Dual-THP1 cells were cultured using Gibco RPMI-1640-Glutamax1 medium (Life Technologies) supplemented with
331 10% FBS (Life Technologies), 2mM L-glutamine (Life Technologies), 10mM Hepes (Life Technologies), 1mM
332 sodium pyruvate (Life Technologies) and 50U/ml penicillin-streptomycin (Life Technologies). Cells were passaged
333 to 0.2-0.3 million cells/ml every 4-5 days.

334 HEK293T or HEK293-JumpIN cells were cultured with Gibco DMEM with Glutamax (Life Technologies)
335 supplemented with 10% FBS (Life Technologies), 10mM Hepes (Life Technologies) and 50U/ml penicillin-
336 streptomycin (Life Technologies). Cells were passaged every 3-4 days, by diluting the cells 1 to 5, after releasing the
337 attached cells using TrypLE (Life technologies).

338 For transfection studies, TransIT-LT1 transfection reagent (Mirus) was used according to the manufacturer's protocol.
339 For 6-well format, 1 million HEK293T cells were seeded one day before transfection. For each well, 2.5 μ g of DNA
340 in 7.5 μ l of TransIT-LT1 transfection reagent diluted in 250 μ l optiMEM (Invitrogen). After 15 minutes of incubation
341 of transfection reagent with DNA, mix was added dropwise on the cells. Then 48h after transfection, cells were treated
342 with the compound of interest.

343 For lentiviral particle production, 1x10⁷ HEK293T cells were seeded on collagen coated T75 flasks (Thermo Fisher)
344 and then 24 hours later, the cells were transfected with 1.84 μ g of DNA of interest with 2.24 μ g of ready-to-use
345 lentiviral packaging plasmid mix (Collecta) using Trans-IT transfection reagent (Mirus) according to the
346 manufacturers' protocol. Subsequently, the media was changed 24 hours after transfection and lentivirus-containing
347 supernatants collected after 72 hours. Finally, lentivirus particles were filtered using a 0.45 μ m filter (Millipore),
348 before being concentrated 10-fold using the Lenti-X concentrator (Takara) according to the manufacturers' protocol.

349 **Proteomics and analysis**

350 THP1-Cas9 cells (2 x10⁶ per well in a 6-well plate) were seeded, and treated, on the same day either with 0.1% (final)
351 DMSO, 10 μ M AK59 or 10 μ M QK50 (0.1% DMSO final) for 16 hours. Cells were collected and washed with 1x
352 DPBS (Gibco) after compound incubation. Before proteomics analysis of the samples the conditions were checked
353 using western blot (for more details, see western blot) to confirm targeting effects on STING.

354 TMT-labeled peptides were generated with the iST-NHS kit (PreOmics) and TMT16plex reagent (Thermo Fisher
355 Scientific). Equal amounts of labeled peptides were pooled and separated on a high pH fractionation system with a

356 water-acetonitrile gradient containing 20 mM ammonium formate, pH 10 ⁴². Alternating rows of the resulting 72
357 fractions were pooled into 24 samples, dried and resuspended in water containing 0.1% formic acid.

358 The LC-MS analysis was carried out on an EASY-nLC 1200 system coupled to an Orbitrap Fusion Lumos Tribrid
359 mass spectrometer (Thermo Fisher Scientific). Peptides were separated over 180 min with a water-acetonitrile gradient
360 containing 0.1% formic acid on a 25 cm long Aurora Series UHPLC column (Ion Opticks) with 75 μ m inner diameter.
361 MS1 spectra were acquired at 120k resolution in the Orbitrap, MS2 spectra were acquired after CID activation in the
362 ion trap and MS3 spectra were acquired after HCD activation with a synchronous precursor selection approach ⁴³
363 using 8 notches and 50k resolution in the Orbitrap. LC-MS raw files were analyzed with Proteome Discoverer 2.4
364 (Thermo Fisher Scientific). Briefly, spectra were searched with Sequest HT against the *Homo sapiens* UniProt protein
365 database and common contaminants (Sep 2019, 21494 entries). The database search criteria included: 10 ppm
366 precursor mass tolerance, 0.6 Da fragment mass tolerance, maximum three missed cleavage sites, dynamic
367 modification of 15.995 Da for methionines, static modifications of 113.084 Da for cysteines and 304.207 Da for
368 peptide N-termini and lysines. The Percolator algorithm was applied to the Sequest HT results. The peptide false
369 discovery rate was set to 1% and the protein false discovery rate was set to around 5%. TMT reporter ions of the MS3
370 spectra were integrated with a 20 ppm tolerance and the reporter ion intensities were used for quantification. All LC-
371 MS raw files were deposited to the ProteomeXchange Consortium ⁴⁴ via the PRIDE partner repository with the dataset
372 identifier PXD00000. Protein relative quantification was performed using an in-house developed R (v.3.6) script. This
373 analysis included multiple steps; global data normalization by equalizing the total reporter ion intensities across all
374 channels, summation of reporter ion intensities per protein and channel, calculation of protein abundance log2 fold
375 changes (L2FC) and testing for differential abundance using moderated t-statistics ⁴⁵ where the resulting false rate
376 discovery (FDR) p values (or q values) reflect the probability of detecting a given L2FC across sample conditions by
377 chance alone. Raw data are available via ProteomeXchange with identifier PXD040291.

378 **Western blotting and co-immunoprecipitation**

379 Cells were pelleted and washed with PBS (Gibco) before lysis. For western blot analysis, cell pellets were lysed with
380 5x extraction buffer (from co-immunoprecipitation kit, Thermo), diluted to 1x with 1xPBS (Gibco) and supplemented
381 with cComplete protease inhibitor (Roche) for 30 minutes on ice with pulse-vortexing every five minutes. To remove
382 cell debris, lysate was spun at 15000 g at 4°C for 15 minutes. Supernatant, containing proteins were collected in a
383 fresh tube and protein quantification was done using Pierce BCA assay (Thermo Fisher) according to the
384 manufacturer's protocol. Samples were prepared with NuPAGE LDS sample buffer (Invitrogen) and NuPAGE sample
385 reducing agent (Invitrogen), boiled in 70°C for 10 minutes, loaded on pre-cast 10 well, 12 well or 15 well NuPAGE™
386 4 to 12% Bis-Tris 1.5mm mini protein gel (Thermo Fisher) and run in 1x MES buffer (Invitrogen) for 45-50 minutes
387 in 200V. Semi-dry transfer was done using Trans-blot turbo transfer (Biorad) with ready-made PVDF membrane-
388 containing transfer packs according to the manufacturer's protocol. Primary antibodies used in this study were all anti-
389 human: STING (1:1000, CST, #13647 or 1:500, Thermo Fisher, MA526030), UBIQUITIN (1:500, CST, Cat#3936),
390 HERC4 (1:500, abcam, Cat#ab856732), UBA6 (1:1000, CST, Cat#13386), UBA5 (1:500, abcam, Cat#ab177478),
391 SMO (1:500, abcam, Cat#ab236465) and PGR (1:250, CST, Cat#8757). As loading control ACTIN (1:500, Sigma,

392 Cat#A5441), TUBULIN (1:500, CST, Cat#2146) and VINCULIN (1:500, CST, Cat#13901) were used, as described
393 in figure legends. HRP conjugated anti-mouse (1:2500, CST, Cat#7076) and anti-rabbit (1:2500, CST, Cat#7074)
394 antibodies and Amersham ECL prime western blotting detection reagent (Cytiva Life Sciences) was used to detect
395 protein levels. The ECL signal was visualized using Bio-rad ChemiDoc XRS+ and quantified using Image Lab
396 program (Bio-rad).

397 Co-immunoprecipitation was performed using Dynabeads™ Co-Immunoprecipitation Kit (Thermo Fisher) according
398 to the manufacturer's protocol followed by western blot, which is described above. 50ul of HERC4 antibody (abcam,
399 Cat# ab856732) conjugated with 10mg dynabeads and for each pulldown sample 1.5mg of antibody-conjugated
400 dynabeads were used with 50ug of protein.

401 Co-immunoprecipitation for ubiquitin pulldown was performed using Ubiqapture-Q kit (Enzo Life Sciences)
402 according to manufacturer's protocols. To detect captured UBIQUITIN levels, instead of provided antibody from the
403 kit, UBIQUITIN antibody from CST (mentioned above) was used.

404 **IRF pathway reporter assay**

405 In order to measure IRF pathway activity, IRF-Lucia luciferase reporter system containing Dual-THP1-Cas9 cells
406 (InvivoGen) were used. IRF pathway reporter assay was performed in clear bottom 96-well plates (TPP) where Dual-
407 THP1-Cas9 cell line derivative cells were seeded at a cell density of 0.4 million cells/ well and stimulated with 30 μ M
408 cGAMP immediately. After three hours stimulation, cells were treated with the indicated compounds and the luciferase
409 measurement was performed 16-hours after compound incubation. To detect the luciferase activity, QUANTI-Luc™
410 (Invivogen) was prepared according to the instructions on the data sheet. The reagent (50 μ l) was added to a black
411 with clear bottom 96-well plates (Greiner, Cat#655090) where the bottom of the plate was sealed (PerkinElmer,
412 Cat#6005199). 20 μ l of the Dual-THP1 cells from each condition pipetted on to the luminescence reagent in 96-well
413 plate and luminescence was measured for 0.1 second with EnVision® Multimode plate reader. Fold increase in
414 luminescence was calculated by dividing each read to its matching control group (DMSO treated) and results were
415 plotted using Graphpad Prism 9.

416 **CRISPR genome-wide screening**

417 For genome-wide CRISPR knockout screening, THP1 cells constitutively expressing Cas9 were generated by
418 lentiviral delivery of Cas9 protein gene in pNGx-LV-c004 and selected with 5 μ g/ml blasticidin S HCl (Thermo
419 Fisher) as previously described ⁴⁶. sgRNA library targeting 18,360 protein-coding genes with 5 sgRNA/gene, as
420 previously described ⁴⁷. The sgRNA library was packaged into lentiviral particles using HEK293T cells as previously
421 described ^{47,48}. Briefly, 2.1x10⁷ HEK293T cells were seeded into CellSTACK (Corning) cell culture chambers and
422 transfected with the sgRNA library plasmid mix together with lentiviral packaging mix (Celllecta, containing psPAX2
423 and pMD2 plasmids that encode Gag/Pol and VSV-G, respectively) using Trans-IT transfection reagent (Mirus) 24
424 hours after seeding. Viral particles were harvested 72 hours post-transfection and quantified using LentiX qPCR kit
425 (Clonetech).

426 THP1-Cas9 cells were expand for library transduction. On day 0, the cells were seeded and transfected to achieve a
427 coverage of the library of at least 1000 cells/sgRNA with a multiplicity of infection (MOI) of 0.5. 5 µg/ml polybrene
428 was used in transfection of THP1-Cas9 cells (Millipore). Transduced cells were selected with 4 µg/ml puromycin for
429 three days and on the 4th day, cells were analyzed for RFP expression using the FACS Aria for determining
430 transduction efficiency. After sparing the day-4 samples, the rest of the library-transduced cells were seeded for the
431 screen with two biological replicates per condition. At day 10, cells were treated with either DMSO or 10 µM AK59
432 and incubated for 16 hours. After compound incubation, cells were harvested, fixed, and stained for STING expression
433 (described in detail below). Then the fraction of cells with the 25% high and 25% low level of staining for STING, in
434 each treatment group the sorted samples were processed for genomic DNA isolation using the QIAamp DNA blood
435 maxi kit (Qiagen) according to the manufacturer's protocol. Genomic DNA was quantified using the Quant-iT
436 PicoGreen assay (Invitrogen) according to manufacturer's recommendations and proceeded with Illumina sequencing.

437 **Illumina sequencing of the library**

438 The integrated gRNA sequences were PCR amplified using primers specific to the integrated lentiviral vector sequence
439 and sequenced using the Illumina sequencing technology. Illumina library construction was performed as previously
440 described⁴⁷. Briefly, a total of 96 µg of DNA per sample was split into 24 PCR reactions each with the volume of 100
441 µl, containing a final concentration of 0.5 µM of each of the following primers (Integrated DNA Technologies, 5644

442 5'-AATGATAACGGCGACCACCGAGATCTACACTCGATTCTGGCTTATATCTTGTGGAAAGGA-3'

443 and INDEX 5'-

444 CAAGCAGAAGACGGCATACGAGATXXXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTCCGATC-
445 3', where the Xs denote a 10 base PCR-sample specific barcode used for data demultiplexing following sequencing).

446 PCR samples were purified using 1.8x SPRI AMPure XL beads (Beckman Coulter) according to manufacturer's
447 recommended protocol and the qPCR products quantified using primers specific to the Illumina sequences using
448 standard methods. Amplified libraries then pooled and sequenced with HiSeq 2500 instrument (Illumina) with 1x 30b
449 reads, using a custom read 1 sequencing primer: 5645 (5'-TCGATTCTTGGCTTATATCTTGTGGAAAGGAC
450 GAAACACCG-3'), and a 1x 11b index read, using the standard Illumina indexing primer (5'-
451 GATCGGAAGAGCACACGTCTGAACCTCCAGTCAC-3'), according to the manufacturer's recommendations.

452 **Analysis of the CRISPR screen**

453 Sequencing analysis was performed as previously described⁴⁷. In short, raw sequencing reads were converted to
454 FASTQ format using bcl2fastq2 (version 2.17.1.14, retrieved from <http://support.illumina.com/downloads/bcl2fastq->
455 conversion-software-v217.html); trimmed to the guide sequence with the fastx-toolkit (version 0.0.13, retrieved from
456 http://hannonlab.cshl.edu/fastx_toolkit/index.html) and aligned to the sgRNA sequences in the library using bowtie⁴⁹
457 with no mismatches allowed. Differential expression of sgRNAs was calculated using DESeq2⁵⁰ and gene-level
458 results were obtained using the redundant siRNA activity (RSA) algorithm⁵¹. In RSA, the rank distribution of
459 individual sgRNAs is examined to calculate a hypergeometric enrichment score for the concerted action of each gene's

460 set of guides. This results in a gene-level p-value for significance, and we also use the lower (Q1) or upper (Q3)
461 quartile of the guide's fold changes to represent effect size at the gene level.

462 Due to the pooled analysis approach in RSA algorithm, range of RSA and Q values in each comparison is in the similar
463 magnitude which allow us to do further comparisons. In order to rank the hits, RSA and Q values from two different
464 comparisons (in this case DMSO high vs. low STING and AK59 high vs. low STING) were taken as point coordinates.
465 Between two coordinates (aka RSA and Q values of each comparison) the Euclidean distance were calculated as the
466 magnitude of the vector and the direction of the vector was assigned by the increase/decrease of RSA and Q values
467 between two points (Bioconductor 4.0.2). Then, hits were ranked according to the magnitude and the direction of
468 their vector.

469 STRING analysis was performed only between 3 selected hits (HERC4, UBA5 and UBA6) and STING to represent
470 the relation of the genes with each other (STRING version 11.5) ³⁴.

471 **STING quantification by flow cytometry**

472 THP1-Cas9 cells were seeded at a density of 1x10⁶ cells/ml in 24 well plates with the media containing the indicated
473 compound. Compound incubation time varied between 5-16 hours and bortezomib treatments were always 1 hour
474 prior to any additional compound treatment. Cells were always seeded together with the initial treatment. After the
475 compound incubation, cells were collected and fixed using 2.5% paraformaldehyde (stock 32%; # 15714-S; Electron
476 Microscopy Sciences) at 37°C for 10 minutes. Cells were then washed using FACS Wash Buffer containing 1x D-
477 PBS + 0.5% FBS + 2mM EDTA and permeabilized at room temperature for 20 minutes using 100µL of Perm/Wash
478 I (BD # 557885), diluted 1:10 with 1x D-PBS. Cell washing was performed again and then samples were stained with
479 150µL/sample anti STING Alexa488; 1:200 (anti TMEM173; Abcam # ab198950) diluted in Robosep Buffer, which
480 contained PBS + 2.0% FBS + 1mM EDTA (Stemcell; # 20104) at 4°C for 1-2 hours. After antibody incubation, cells
481 were washed with Wash Buffer three times then cell pellets were resuspended in FACS Wash Buffer and flow
482 cytometry acquisition on Fortessa was then performed. Analysis was performed using FlowJo software (version
483 10.6.1)

484 **Individual CRISPR knockouts and TIDE analysis**

485 THP1-Cas9, Dual-THP1-Cas9 ²⁴ and HEK293-JumpIN-Cas9 cells were generated by lentiviral delivery of Cas9
486 protein gene in pNGx-LV-c004 ⁴⁶ and selected with 5 µg/ml blasticidin S HCl (Thermo Fisher). Individual knockouts
487 were generated by lentiviral delivery of sgRNAs in the pNGx-LV-g003 backbone. SgRNA transduced cells were
488 selected with 3.5 µg/ml puromycin (Thermo Fisher). sgRNA sequences targeting the gene of interests are listed below.
489 Knockout efficiency checked by both Tracking of Indels by Decomposition (TIDE) analysis ³⁵ and western blot.

490 To check the rate of Indel formation at the CRISPR cut site, TIDE analysis ³⁵ was used as previously described ⁵².
491 Briefly, genomic DNA was extracted from approximately 1 million cells per condition using DNA extraction kit
492 (Qiagen) according to the manufacturer's recommendations. DNA concentration is measured with Nanodrop (Thermo
493 Fisher), and PCR reaction was performed with 2x Phusion polymerase master mix (Thermo Fisher), 5% DMSO, 100ng

494 of DNA and final concentration of 1 μ M forward and reverse primer. PCR primers for each gene listed below.
495 Amplification run was initial denaturation in 98°C 30 seconds, 30 cycles of 98°C 5 seconds, 61°C 10 seconds, 72°C
496 15 second and final extension of 72°C for 2 minutes. PCR samples were cleaned up using PCR and Gel extraction kit
497 (Qiagen) according to the manufacturer's protocol and Sanger sequenced.

<i>Name</i>	<i>Sequence</i>
<i>Ctrl sgRNA</i>	5'-GTAGCGAACGTGTCCGGCGT-3'
<i>HERC4 sgRNA 1</i>	5'-CCAGTCATGAAATAAACCCA-3'
<i>HERC4 sgRNA 2</i>	5'- GTAGACACTGCCATTATAG-3'
<i>UBA6 sgRNA 1</i>	5'- GCTGAAATGCTGACAAGATG -3'
<i>UBA6 sgRNA 2</i>	5'-GCTGAAATGCTGACAAGATG -3'
<i>UBA5 sgRNA 1</i>	5'- GAGGCGTCCTGTTCTCCTG-3'
<i>UBA5 sgRNA 2</i>	5'- AGACACAGCAATGCAGAAGA-3'
<i>HERC4 sgRNA 1 TIDE forward primer</i>	5'-GCCATCTGTCTGTTAAATTGTGA-3'
<i>HERC4 sgRNA 1 TIDE reverse primer</i>	5'-TCTCCTGTTACTATGACTCCTCA-3'
<i>HERC4 sgRNA 2 TIDE forward primer</i>	5'-ACTCTAGGCAGCACACTTCT-3'
<i>HERC4 sgRNA 2 TIDE reverse primer</i>	5'-CCTCCCACTGGTATGTAGCC-3'
<i>UBA6 sgRNA 1 TIDE forward primer</i>	5'-GCCCTTCCACCTTCCAG-3'
<i>UBA6 sgRNA 1 TIDE reverse primer</i>	5'-GCCAGAACTGAGAAAGCCCT-3'
<i>UBA6 sgRNA 2 TIDE forward primer</i>	5'-TTGTGGCAAATCTGGACAC-3'
<i>UBA6 sgRNA 2 TIDE reverse primer</i>	5'-TGCATAATCACAAACACCAAGAG-3'
<i>UBA5 sgRNA 1&2 TIDE forward primer</i>	5'-GCATTGAAACGAATGGGAAT-3'
<i>UBA5 sgRNA 1&2 TIDE reverse primer</i>	5'-TGGGTGGGGATATGTCTCA-3'

498

499 **STING-GFP construct design and tracking with live cell imaging**

500 Cytosolic domains for STING (consisting of either the C-terminal 141-341aa or 155-341aa) were cloned into the
501 pcDNA3.1(+) (Thermo Fisher) vector backbone with a C terminal GFP tagging. HEK293T cells were seeded on 6-
502 well plates (TPP) with a cell density of 1 million cells/well. One day after seeding, cells were transfected with the
503 STING-GFP expression constructs using the Trans-IT transfection reagent (Mirus). After transfection, cells were
504 placed into an Incucyte® (Sartorius) live cell imager. 48-hour after transfection, cells were treated with either DMSO
505 or 10 μ M AK59. Cells were treated with compound for 16 hours. Live cell analysis was performed using Incucyte
506 software where 10x phase contrast and GFP images were taken of each well every 30-45 minutes; 16 frames were set
507 on each well for even quantification and data is normalized to start of the treatment. For the HERC4 knockout and
508 Ctrl sgRNA comparison, all the wells were treated with the AK59 and the GFP signal difference between STING¹⁵⁵⁻
509 ³⁴¹ and STING¹⁴¹⁻³⁴¹ was measured.

510 **Nanobit complementation assay**

511 Full length human HERC4 (CCDS41533) was cloned into the pFN35K SmBiT TK-neo Flexi® Vector, N-terminal
512 small bit (SmBiT) tagged construct (Promega), with the native HSV-TK promoter swapped out for a CMV promoter.
513 Cytosolic domain of human STING (141-341aa) was cloned in pFC34K LgBiT TK-neo Flexi® Vector, C-terminal
514 large bit (LgBiT) tagged construct (Promega) which is transcribed under control of the HSV-TK promoter.

515 Next, 4x10⁴ HEK293T cells were seeded into of 96-well plates (TPP). On the same day, cells were transiently
516 transfected with both of the constructs using Trans-IT transfection reagent (Mirus) according to the manufacturer's
517 recommended protocol. Then 48 hours after transfection, cells were treated indicated doses of with either DMSO,
518 AK59 or YJX209. Luminescence activity was the measured 30 minutes, 5 hours, 8 hours and 12 hours after compound
519 incubation. For the dose response, all samples were measured at 16-hour post compound treatment. For the cGAMP
520 competition with AK59, cGAMP stimulation was initiated by the addition of 30 μ M of cGAMP three hours prior to
521 the 16-hour compound treatment. To detect the luciferase activity, Nano-Glo® luciferase assay system (Promega) was
522 used according to manufacturer's protocol and luminescence was measured for 0.1 second with EnVision® Multimode
523 plate reader. Fold increase in luminescence was calculated by dividing each read to its matching control group (DMSO
524 treated) and results were plotted using Graphpad Prism 9.

525 **Statistics**

526 Statistical analysis of the indicated data was performed using Graphpad Prism 9. Data points were represented as the
527 mean \pm standard deviation (SD). Appropriate statistical test for each data indicated in the figure legends.

528 **Acknowledgments**

529 This work was supported by Discovery Postdoc Program in Novartis Institutes of BioMedical Research (NIBR)
530 Postdoc Office.

531 **Author information**

532 **Authors and affiliations**

533 **Novartis Institutes for BioMedical Research, Basel, Switzerland**

534 Merve Mutlu, Isabel Schmidt, Benedikt Goretzki, Felix Freuler, Damien Begue, Nicolas Pythoud, Erik Ahrne, Sandra
535 Kapps, Susan Roest, Delphine Jeanpierre, Thi-Thanh-Thao Tran, Amandine Rietsch, Florian Nigsch, Andreas
536 Hofmann, Christian N. Parker, Danilo Guerini

537 **Novartis Institutes for BioMedical Research, Cambridge, MA, USA**

538 Rob Maher, Shaojian An,

539 **Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, Amsterdam**
540 **institute for Infection and Immunity, De Boelelaan 1117, Amsterdam, The Netherlands**

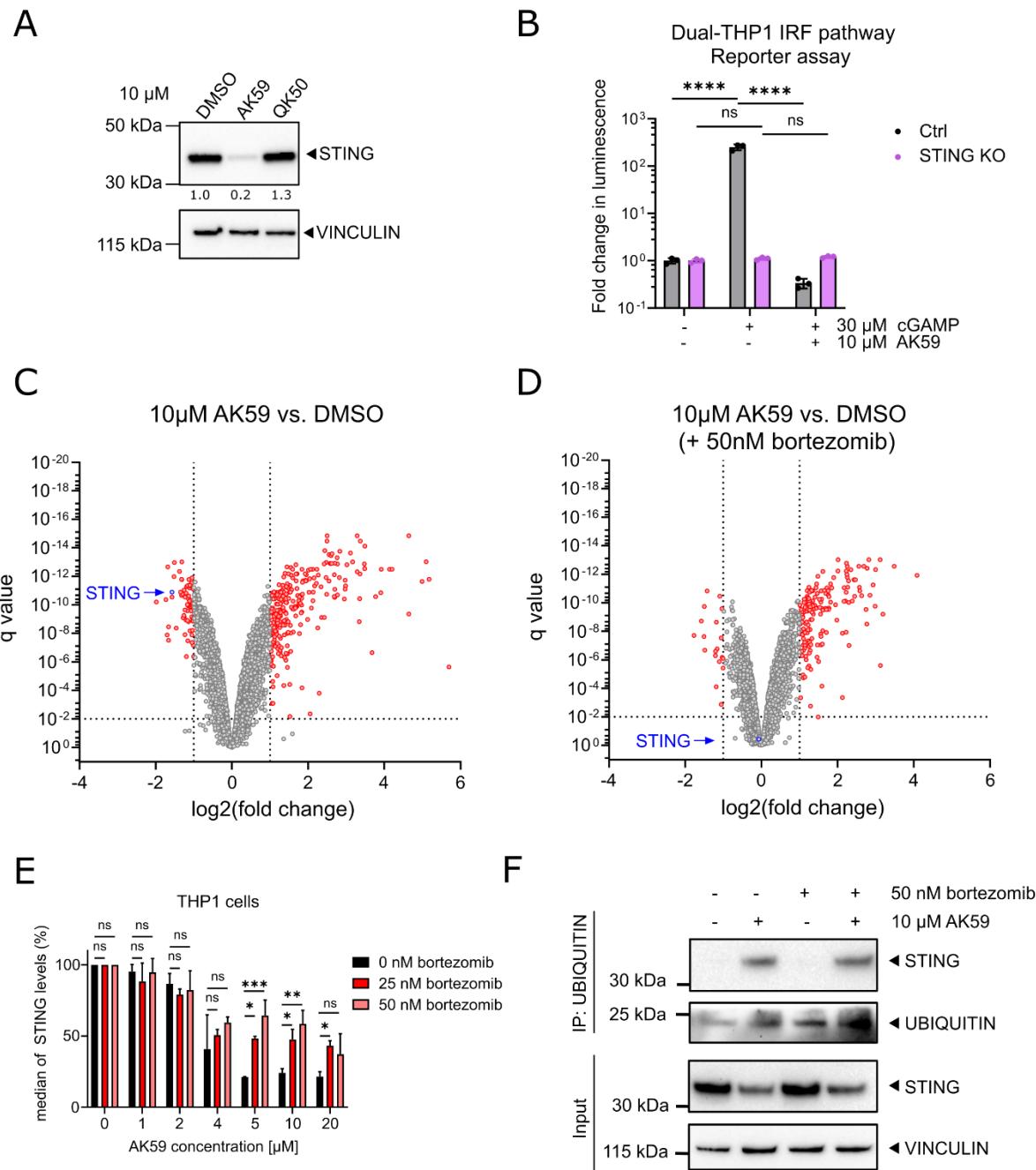
541 Andrew I. Morrison

542 **Monte Rosa Therapeutics, Basel, Switzerland**

543 Debora Bonenfant

544 **Current position: Vector Biolog, Cambridge, MA, USA**

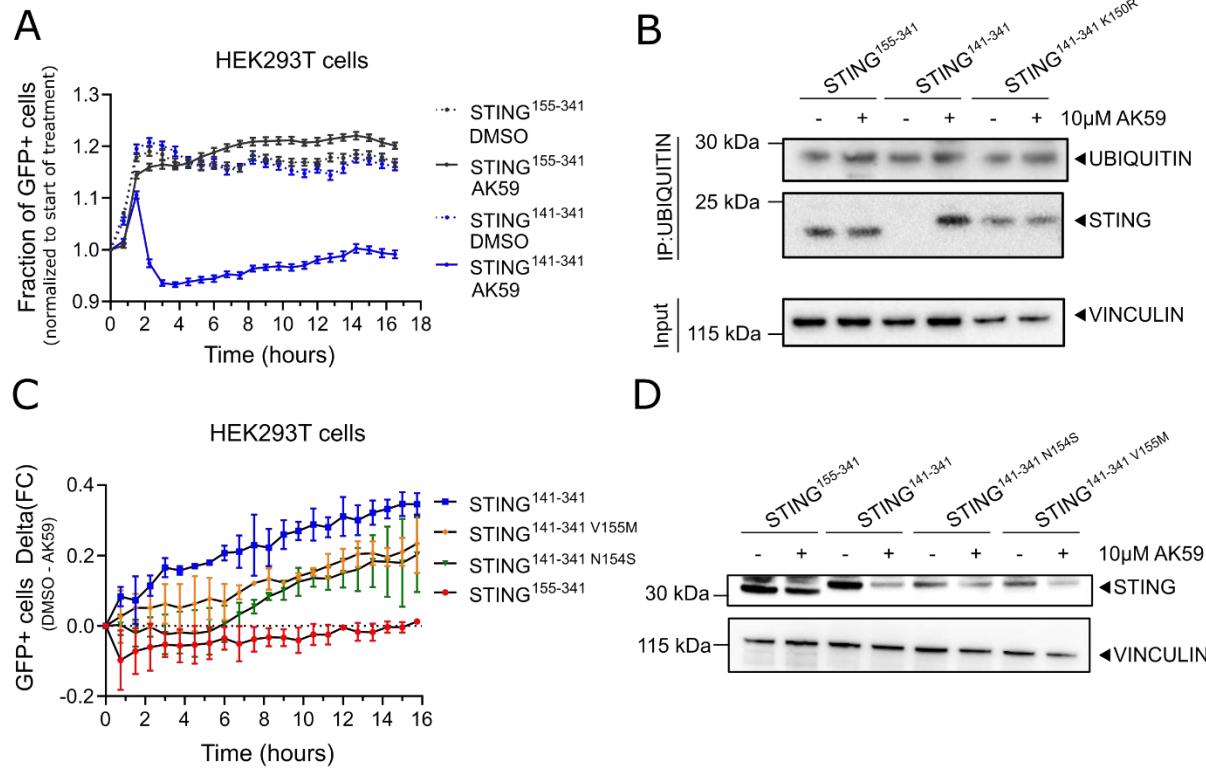
545 John Reece-Hoyes


546 **Contributions**

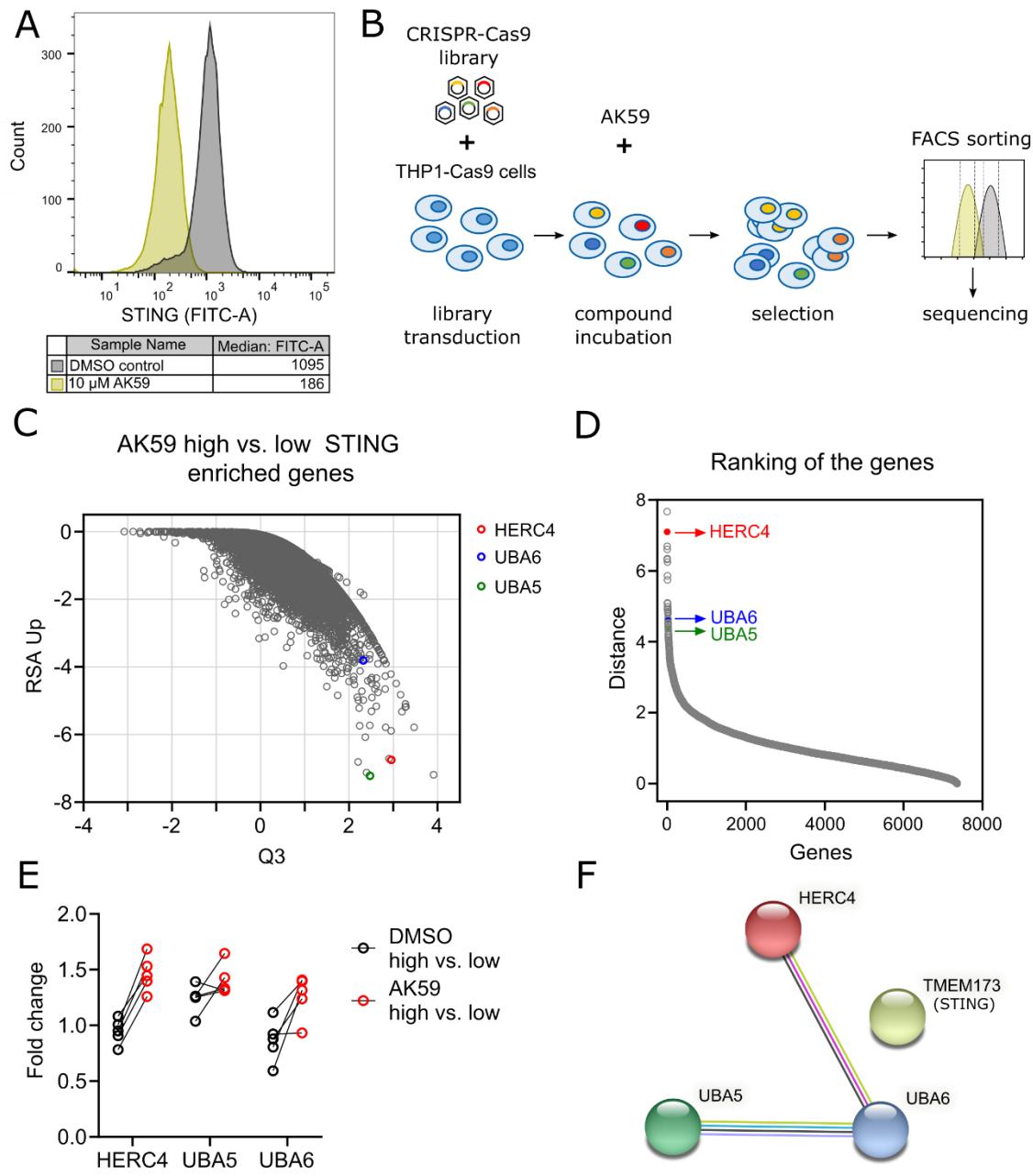
547 M.M., I.S., A.H., C.N.P. and D.G. designed the research. M.M., I.S., A.I.M., B.G., F.F., D.B., S.K., S.R., D.B., D.J.,
548 T.T., R.M., S.A. and A.R. performed research. M.M., N.P., E.A. and A.H. analyzed data. M.M., F.N., A.H., J.R.H.,
549 C.N.P. and D.G. wrote and edited paper.

550 **Competing Interest Statement**

551 The authors have declared no competing interest.

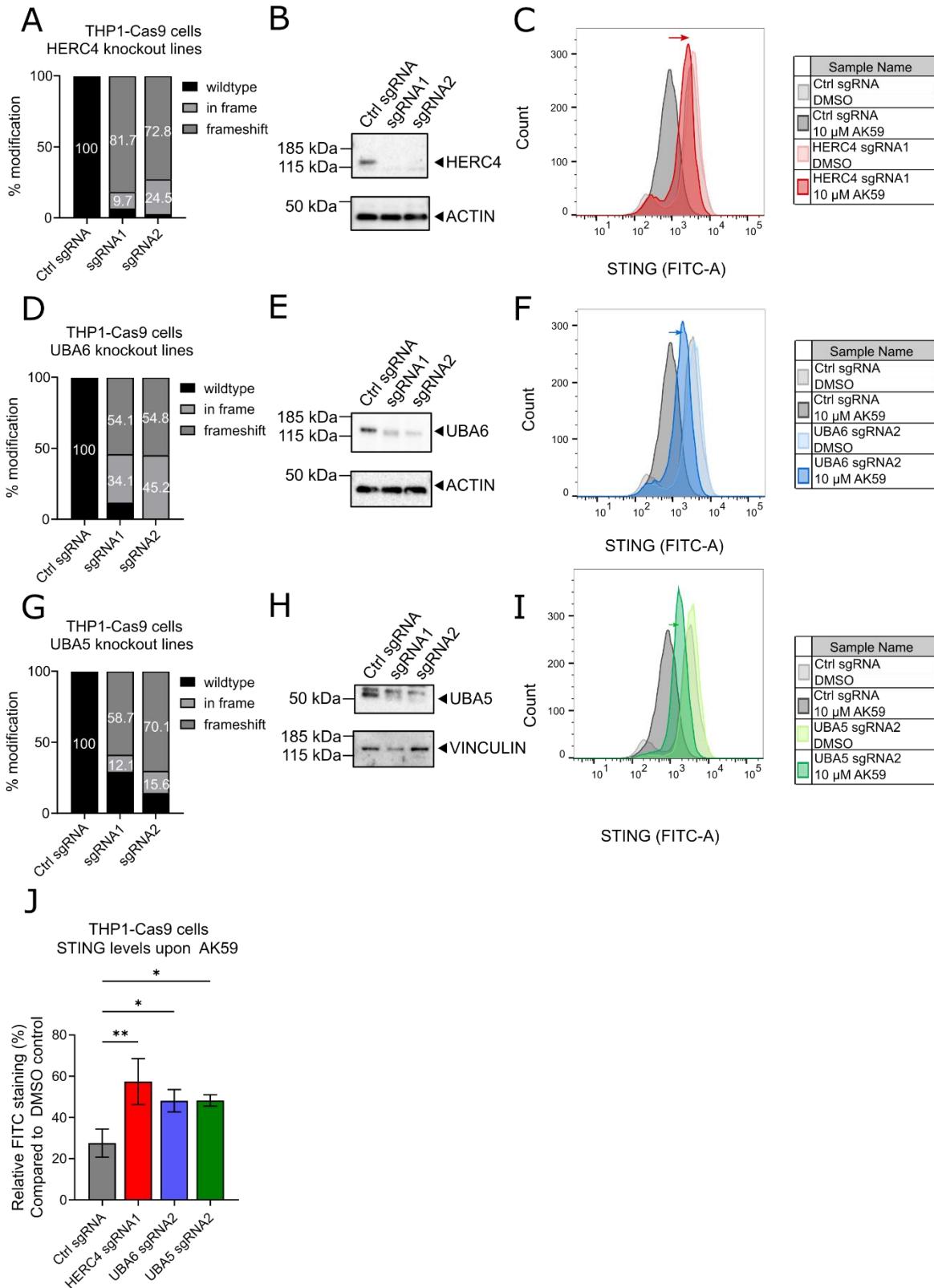

552 **Figures**

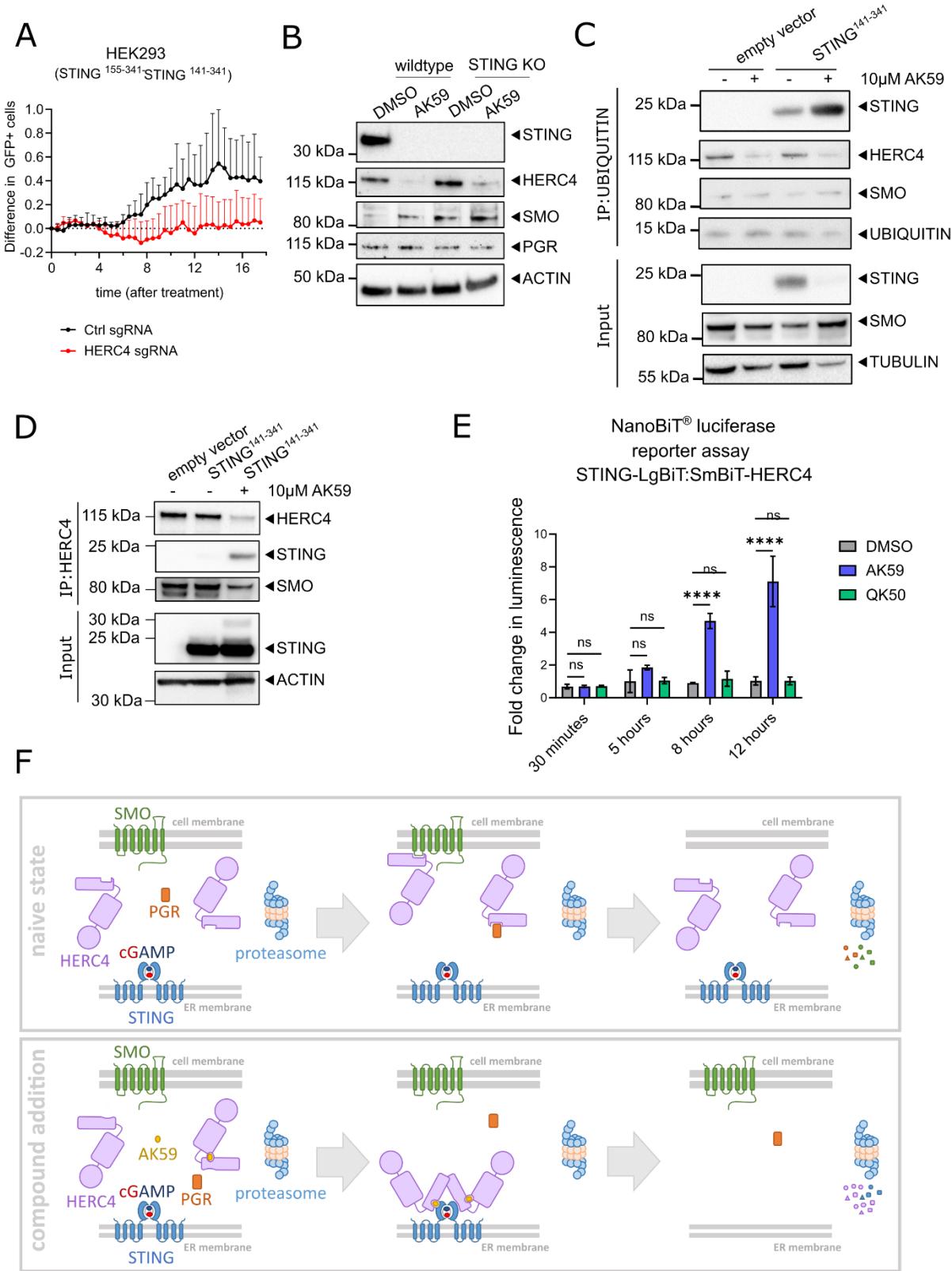
553


554 **Figure 1. AK59 decreases STING protein on THP1 cells through proteasomal degradation.** (a) Western blot
555 showing STING protein levels in THP1 cells treated with either AK59 or QK50 for 16 hours. VINCULIN was used
556 as a loading control. The STING expression quantified by first normalizing to its respective loading control and ratio
557 to DMSO control. (b) IRF pathway reporter assay on wild type or STING knockout Dual-THP1-Cas9 cells. Cells
558 were stimulated with 30 μ M cGAMP 3 hours prior to 16 hours 10 μ M AK59 incubation. Luminescence reads were
559 normalized to the control (unstimulated) sample for each cell line. Statistical significance was calculated using two-

560 way ANOVA followed by Šidák's correction. Data plotted as mean \pm SD of three individual biological replicates in
561 Graphpad Prism (Version 9). **(c-d)** Volcano plots of results from the proteomics analysis. THP1 cells were for 16
562 hours with 10 μ M AK59 compared to control DMSO treated samples. Significantly altered protein abundances are
563 shown with a log₂ fold change < -1 or > 1 and a q value of less than 0.01. **(e)** STING expression of THP1 cells treated
564 with AK59 in the presence of 25nM or 50nM prior bortezomib treatment. STING expression was detected with FACS
565 analysis on fixed cells. Bortezomib treatment was 1 hour prior to AK59 treatments. Each treatment group normalized
566 to its individual vehicle control and represented in percentage. Three biological replicates were plotted as mean \pm SD
567 using in Graphpad Prism (Version 9). Statistical significance was calculated using two-way ANOVA followed by
568 Šidák's correction. **(f)** Ubiquitin pulldown followed by western blot on THP1 cells treated either 10 μ M AK59 or 50
569 nM bortezomib or both. VINCULIN was used as a loading and pulldown control.

570


571 **Figure 2. K150 is essential for STING ubiquitination upon AK59 treatment.** (a) Live GFP positive cell tracking
 572 of indicated STING¹⁴¹⁻³⁴¹-GFP or STING¹⁵⁵⁻³⁴¹-GFP constructs transfected HEK293T cells upon 10 μM AK59
 573 treatment. Data points were normalized to the start of the treatment. For each data point 16 pictures/well was taken.
 574 Data from biological replicates were plotted as mean ± SD using in Graphpad Prism (Version 9). (b) Ubiquitin
 575 pulldown followed by western blot on HEK293T cells transfected with the indicated STING expression constructs
 576 and treated either 10 μM AK59 or vehicle control. VINCULIN was used as a loading and pulldown control. (c) Live
 577 cell tracking of indicated STING-GFP constructs that harbors SAVI mutations transfected HEK293T cells after 10
 578 μM AK59 treatment. Data points were normalized to the start of the treatment. For each data point 16 pictures/well
 579 were taken. Data from biological replicates were plotted as mean ± SD using in Graphpad Prism (Version 9). (d)
 580 Western blot representing the changes in STING protein levels upon AK59 treatment in SAVI mutations harboring
 581 STING-GFP expressing HEK293T cells. Indicated constructs were transiently expressed on the cells. VINCULIN
 582 used as a loading control.


583

584 **Figure 3. CRISPR/Cas9 genome-wide screening unveiled genes responsible in AK59 activity on STING**
 585 **expression.** (a) FACS analysis of THP1-Cas9 cells that are treated either with vehicle (green) or 10 μM AK59 (black).
 586 Experiment treated at least in three biological replicates and representative FACS reads plotted using FlowJo (Version
 587 10.6.1). (b) Schematic representation of the layout of CRISPR/Cas9 genome-wide knockout screen. (c) Comparison
 588 of RSA Up values with Q3 values from CRISPR/Cas9 screen of 10 μM treated THP1 cells represented in a dot plot.
 589 The comparison represented in the blot is high STING expression to low STING expression in the AK59 treatment
 590 group. Each dot represents a gene from the CRISPR/Cas9 library. (d) Ranking of genes that has enriched sgRNAs in
 591 the high STING expression group compared to low. Ranking distance calculated by the change of RSA and Q values

592 between treatment groups. Each gene represented with a dot on the graph. **(e)** Individual fold changes of each sgRNA
593 targeting HERC4, UBA5 and UBA6 in the high vs. low STING expression comparison groups in the compound
594 treated and untreated samples. **(f)** STRING analysis representing the interaction between HERC4, UBA5, UBA6 and
595 STING (STRING version 11.5) ³⁴.

597 **Figure 4. HERC4, UBA5 and UBA6 were validated as genes responsible for AK59 activity on STING levels. (a)**
598 TIDE analysis of either Ctrl sgRNA, HERC4 sgRNA1 or HERC4 sgRNA2 transduced THP1-Cas9 cells. Modification
599 rates were checked at the third passage after the initial transduction. Undefined sequencing reads were excluded. **(b)**
600 Western blot to detect HERC4 protein levels of either Ctrl sgRNA, HERC4 sgRNA1 or HERC4 sgRNA2 transduced
601 THP1 cells. Proteins from each cell line collected at the third passage after the initial transduction. **(c)** FACS analysis
602 of STING expression on Ctrl sgRNA or HERC4 sgRNA1 transduces THP1-Cas9 cells that were treated either with
603 vehicle (gray and pink) or 10 μ M AK59 (black and red). The effect of the knockout indicated with a red arrow.
604 Experiment repeated at least in three biological replicates and representative FACS reads plotted using FlowJo
605 (Version 10.6.1). **(d)** TIDE analysis from either Ctrl sgRNA, UBA6 sgRNA1 or UBA6 sgRNA2 transduced THP1-
606 Cas9 cells. Modification rates were check at the third passage after the initial transduction. Undefined sequencing
607 reads were excluded. **(e)** Western blot to detect UBA6 protein levels on either Ctrl sgRNA, UBA6 sgRNA1 or UBA6
608 sgRNA2 transduced THP1-Cas9 cells. Proteins from each cell line collected at the third passage after the initial
609 transduction. **(f)** FACS analysis of STING expression on Ctrl sgRNA or UBA6 sgRNA2 transduces THP1 cells that
610 are treated either with vehicle (gray and light blue) or 10 μ M AK59 (black and dark blue). The effect of the knockout
611 indicated with a blue arrow. Experiment repeated at least in three biological replicates and representative FACS reads
612 plotted using FlowJo (Version 10.6.1). **(g)** TIDE analysis from either Ctrl sgRNA, UBA5 sgRNA1 or UBA5 sgRNA2
613 transduced THP1-Cas9 cells. Modification rates were check at the third passage after the initial transduction.
614 Undefined sequencing reads were excluded. **(h)** Western blot to detect UBA5 protein levels on either Ctrl sgRNA,
615 UBA5 sgRNA1 or UBA5 sgRNA2 transduced THP1-Cas9 cells. Proteins from each cell line collected at the third
616 passage after the initial transduction. **(i)** FACS analysis of STING expression on Ctrl sgRNA or UBA5 sgRNA2
617 transduces THP1-Cas9 cells that were treated either with vehicle (gray and light green) or 10 μ M AK59 (black and
618 dark green). The effect of the knockout indicated with a green arrow. Experiment repeated at least in three biological
619 replicates and representative FACS reads plotted using FlowJo (Version 10.6.1). **(j)** Relative STING expressions in
620 indicated THP1-Cas9 cell lines. Data is normalized vehicle treated group and three biological replicates were plotted
621 as mean \pm SD using in Graphpad Prism (Version 9). Statistical significance was calculated using one-way ANOVA
622 followed by Dunnett's multiple comparison test.

624 **Figure 5. AK59 acts as a glue degrader targeting STING.** (a) Live cell tracking of wildtype or HERC4 knockout
625 HEK293-JumpIN-Cas9 cells after 10 μ M AK59 treatment. Data points were normalized to the moment of AK59
626 treatment and to their corresponding vehicle control group. For each data point 16 pictures/well were taken. Data from
627 biological replicates were plotted as mean \pm SD using in Graphpad Prism (Version 9). (b) Western blot showing
628 STING, HERC4, SMO and PGR protein levels in THP1 cells treated with either AK59 or vehicle control for 16 hours.
629 ACTIN was used as a loading control. (c) Ubiquitin pulldown followed by western blot on HEK293T cells transfected
630 with the indicated STING expression constructs and treated either 10 μ M AK59 or vehicle control. TUBULIN was
631 used as a loading and pulldown control. (d) Co-immunoprecipitation followed by western blot on HEK293T cells
632 transiently expressing indicated STING expression constructs and treated either with 10 μ M AK59 or vehicle control.
633 ACTIN was used as a loading and pulldown control. (e) Nanobit complementation assay on STING-LgBiT and
634 SmBiT-HERC4 expressing HEK293T cells treated with either 10 μ M AK59, 10 μ M QK50 or vehicle control.
635 Luminescence detected at the indicated time points after the start of the compound treatment. Luminescence reads
636 were normalized to corresponding DMSO control. Three biological replicates were plotted as mean \pm SD using in
637 Graphpad Prism (Version 9). Statistical significance was calculated using two-way ANOVA followed by Šidák's
638 correction. (f) Graphical representation of naive and compound added state of the cells and the suggested new protein-
639 protein interactions in the presence of AK59.

640 **References**

- 641 1. Kato, Y., Kumanogoh, A., Takamatsu, H. & Park, J. 25 Stimulator of interferon genes (sting) plays a crucial
642 role in type-i ifn production induced by the sera from sle patients. in (2017). doi:10.1136/lupus-2017-
643 000215.25.
- 644 2. Wan, D., Jiang, W. & Hao, J. Research Advances in How the cGAS-STING Pathway Controls the Cellular
645 Inflammatory Response. *Frontiers in Immunology* (2020) doi:10.3389/fimmu.2020.00615.
- 646 3. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target
647 in inflammatory diseases. *Nature Reviews Immunology* (2021) doi:10.1038/s41577-021-00524-z.
- 648 4. Yan, N. Immune diseases associated with TREX1 and STING dysfunction. *J. Interf. Cytokine Res.* (2017)
649 doi:10.1089/jir.2016.0086.
- 650 5. Aguado, J. *et al.* Inhibition of the cGAS-STING pathway ameliorates the premature senescence hallmarks of
651 Ataxia-Telangiectasia brain organoids. *Aging Cell* (2021) doi:10.1111/acel.13468.
- 652 6. Wang, Y., Wang, F. & Zhang, X. STING-associated vasculopathy with onset in infancy: a familial case
653 series report and literature review. *Ann. Transl. Med.* (2021) doi:10.21037/atm-20-6198.
- 654 7. Motwani, M., Pesiridis, S. & Fitzgerald, K. A. DNA sensing by the cGAS-STING pathway in health and
655 disease. *Nature Reviews Genetics* (2019) doi:10.1038/s41576-019-0151-1.
- 656 8. Haag, S. M. *et al.* Targeting STING with covalent small-molecule inhibitors. *Nature* **559**, 269–273 (2018).
- 657 9. Sheridan, C. Drug developers switch gears to inhibit STING. *Nature biotechnology* (2019)
658 doi:10.1038/s41587-019-0060-z.
- 659 10. Hong, Z. *et al.* STING inhibitors target the cyclic dinucleotide binding pocket. *Proc. Natl. Acad. Sci. U. S.*
660 A. (2021) doi:10.1073/pnas.2105465118.
- 661 11. Komander, D. & Rape, M. The ubiquitin code. *Annu. Rev. Biochem.* (2012) doi:10.1146/annurev-biochem-
662 060310-170328.
- 663 12. Maupin-Furlow, J. Proteasomes and protein conjugation across domains of life. *Nature Reviews*
664 *Microbiology* (2012) doi:10.1038/nrmicro2696.
- 665 13. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: Cell-cycle control and cancer. *Nature Reviews Cancer*
666 (2006) doi:10.1038/nrc1881.
- 667 14. Deshaies, R. J. & Joazeiro, C. A. P. RING domain E3 ubiquitin ligases. *Annual Review of Biochemistry*
668 (2009) doi:10.1146/annurev.biochem.78.101807.093809.
- 669 15. Lorenz, S. Structural mechanisms of HECT-type ubiquitin ligases. *Biological Chemistry* (2018)

- 670 doi:10.1515/hsz-2017-0184.

671 16. Zheng, Y. *et al.* HERC4 Is Overexpressed in Hepatocellular Carcinoma and Contributes to the Proliferation
672 and Migration of Hepatocellular Carcinoma Cells. *DNA Cell Biol.* (2017) doi:10.1089/dna.2016.3626.

673 17. Zeng, W. L. *et al.* Expression of HERC4 in lung cancer and its correlation with clinicopathological
674 parameters. *Asian Pacific J. Cancer Prev.* (2015) doi:10.7314/APJCP.2015.16.2.513.

675 18. Zhou, H. *et al.* The expression and clinical significance of HERC4 in breast cancer. *Cancer Cell Int.* (2013)
676 doi:10.1186/1475-2867-13-113.

677 19. Jiang, W. *et al.* E3 ligase Herc4 regulates Hedgehog signalling through promoting Smoothened degradation.
678 *J. Mol. Cell Biol.* (2019) doi:10.1093/jmcb/mjz024.

679 20. Sun, X., Sun, B., Cui, M. & Zhou, Z. HERC4 exerts an anti-tumor role through destabilizing the oncoprotein
680 Smo. *Biochem. Biophys. Res. Commun.* (2019) doi:10.1016/j.bbrc.2019.04.113.

681 21. Aerne, B. L., Gailite, I., Sims, D. & Tapon, N. Hippo stabilises its adaptor Salvador by antagonising the
682 HECT ubiquitin ligase Herc4. *PLoS One* (2015) doi:10.1371/journal.pone.0131113.

683 22. Zhang, Z. *et al.* The ubiquitin ligase HERC4 mediates c-Maf ubiquitination and delays the growth of
684 multiple myeloma xenografts in nude mice. *Blood* (2016) doi:10.1182/blood-2015-07-658203.

685 23. Huang, P. *et al.* SOX4 facilitates PGR protein stability and FOXO1 expression conducive for human
686 endometrial decidualization. *eLife* (2022) doi:10.7554/eLife.72073.

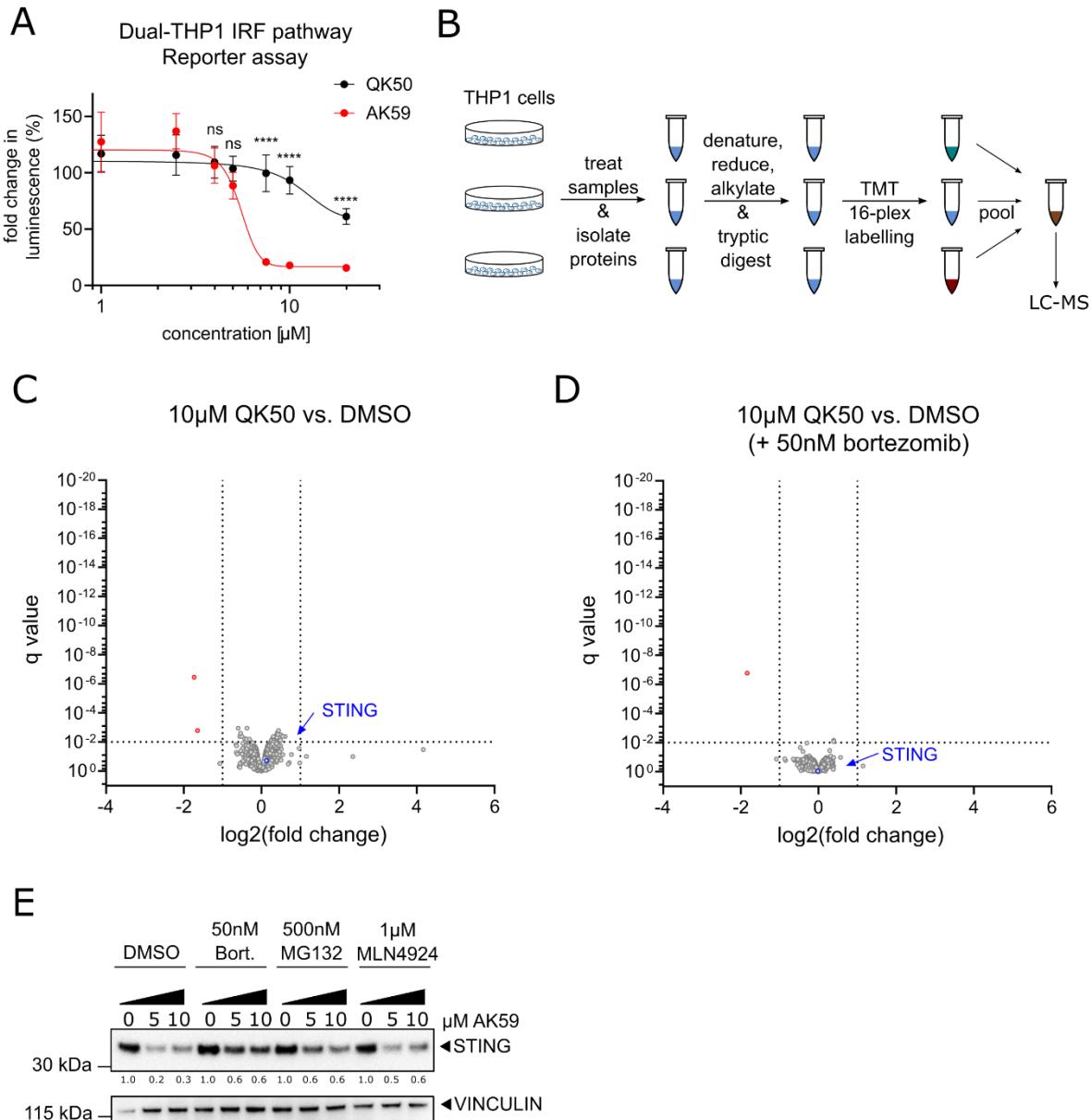
687 24. Willemse, J. *et al.* TNF leads to mtDNA release and cGAS/STING-dependent interferon responses that
688 support inflammatory arthritis. *Cell Rep.* (2021) doi:10.1016/j.celrep.2021.109977.

689 25. Eldridge, A. G. & O'Brien, T. Therapeutic strategies within the ubiquitin proteasome system. *Cell Death
690 and Differentiation* (2010) doi:10.1038/cdd.2009.82.

691 26. Zhong, B. *et al.* The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of
692 the Adaptor Protein MITA. *Immunity* (2009) doi:10.1016/j.jimmuni.2009.01.008.

693 27. Tsuchida, T. *et al.* The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-
694 stranded DNA. *Immunity* (2010) doi:10.1016/j.jimmuni.2010.10.013.

695 28. Dai, Y. F., Liu, X. Y., Zhao, Z. P., He, J. X. & Yin, Q. Q. Stimulator of Interferon Genes-Associated
696 Vasculopathy With Onset in Infancy: A Systematic Review of Case Reports. *Frontiers in Pediatrics* (2020)
697 doi:10.3389/fped.2020.577918.

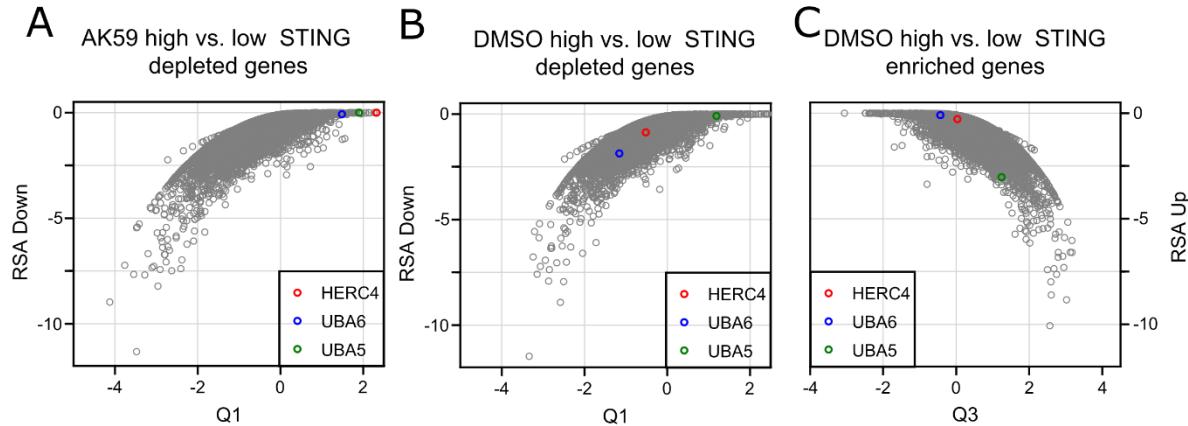

698 29. Liu, Y. *et al.* Activated STING in a Vascular and Pulmonary Syndrome. *N. Engl. J. Med.* (2014)
699 doi:10.1056/nejmoa1312625.

- 700 30. Motwani, M. *et al.* Hierarchy of clinical manifestations in SAVI N153S and V154M mouse models. *Proc.*
701 *Natl. Acad. Sci. U. S. A.* (2019) doi:10.1073/pnas.1818281116.
- 702 31. Martin, G. R. *et al.* Expression of a constitutively active human STING mutant in hematopoietic cells
703 produces an Ifnar1-dependent vasculopathy in mice. *Life Sci. Alliance* (2019) doi:10.26508/lsa.201800215.
- 704 32. Frémond, M. L. *et al.* Overview of STING-Associated Vasculopathy with Onset in Infancy (SAVI) Among
705 21 Patients. *J. Allergy Clin. Immunol. Pract.* (2021) doi:10.1016/j.jaip.2020.11.007.
- 706 33. Luo, J. CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery. *Trends in Cancer* (2016)
707 doi:10.1016/j.trecan.2016.05.001.
- 708 34. Szklarczyk, D. *et al.* The STRING database in 2021: Customizable protein-protein networks, and functional
709 characterization of user-uploaded gene/measurement sets. *Nucleic Acids Res.* (2021)
710 doi:10.1093/nar/gkaa1074.
- 711 35. Brinkman, E. K., Chen, T., Amendola, M. & Van Steensel, B. Easy quantitative assessment of genome
712 editing by sequence trace decomposition. *Nucleic Acids Res.* (2014) doi:10.1093/nar/gku936.
- 713 36. Cooley, R. *et al.* Development of a cell-free split-luciferase biochemical assay as a tool for screening for
714 inhibitors of challenging protein-protein interaction targets. *Wellcome Open Res.* (2020)
715 doi:10.12688/wellcomeopenres.15675.1.
- 716 37. Kozicka, Z. & Thomä, N. H. Haven't got a glue: Protein surface variation for the design of molecular glue
717 degraders. *Cell Chemical Biology* (2021) doi:10.1016/j.chembiol.2021.04.009.
- 718 38. Liu, J. *et al.* Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of
719 Interferon Genes with In Vivo Anti-Inflammatory Efficacy. *J. Med. Chem.* **65**, 6593–6611 (2022).
- 720 39. Liu, X. M. *et al.* Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular
721 smooth muscle: Role in cell survival. *J. Biol. Chem.* (2005) doi:10.1074/jbc.M410413200.
- 722 40. Ran, R., Lu, A., Xu, H., Tang, Y. & Sharp, F. R. Heat-shock protein regulation of protein folding, protein
723 degradation, protein function, and apoptosis. in *Handbook of Neurochemistry and Molecular Neurobiology:*
724 *Acute Ischemic Injury and Repair in the Nervous System* (2007). doi:10.1007/978-0-387-30383-3_6.
- 725 41. Liu, J. *et al.* Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of
726 Interferon Genes with in Vivo Anti-Inflammatory Efficacy. *J. Med. Chem.* **65**, 6593–6611 (2022).
- 727 42. Wang, Y. *et al.* Reversed-phase chromatography with multiple fraction concatenation strategy for proteome
728 profiling of human MCF10A cells. *Proteomics* (2011) doi:10.1002/pmic.201000722.
- 729 43. McAlister, G. C. *et al.* MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential
730 expression across cancer cell line proteomes. *Anal. Chem.* (2014) doi:10.1021/ac502040v.

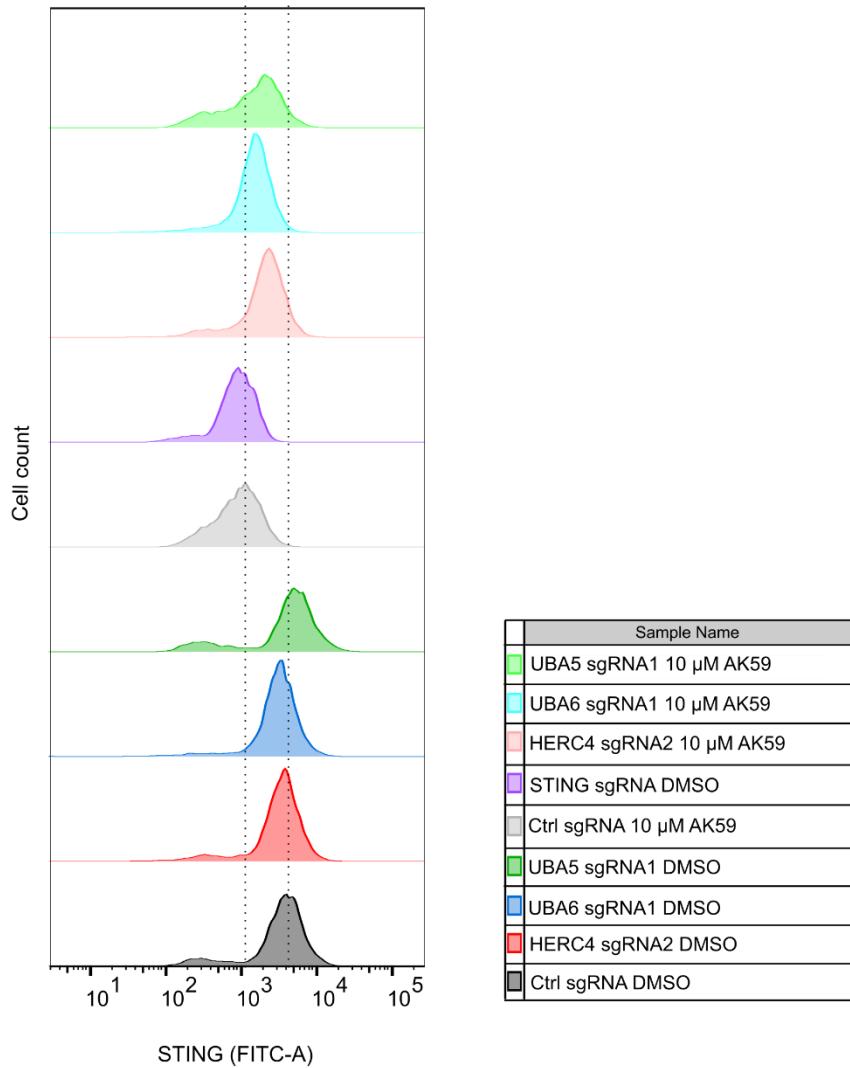
- 731 44. Vizcaíno, J. A. *et al.* ProteomeXchange provides globally coordinated proteomics data submission and
732 dissemination. *Nature Biotechnology* (2014) doi:10.1038/nbt.2839.
- 733 45. Ritchie, M. E. *et al.* Limma powers differential expression analyses for RNA-sequencing and microarray
734 studies. *Nucleic Acids Res.* (2015) doi:10.1093/nar/gkv007.
- 735 46. Dejesus, R. *et al.* Functional CRISPR screening identifies the ufmylation pathway as a regulator of
736 SQSTM1/p62. *Elife* (2016) doi:10.7554/elife.17290.
- 737 47. Estoppey, D. *et al.* Genome-wide CRISPR-Cas9 screens identify mechanisms of BET bromodomain
738 inhibitor sensitivity. *iScience* (2021) doi:10.1016/j.isci.2021.103323.
- 739 48. Hoffman, G. R. *et al.* Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic
740 lethal target in BRG1-deficient cancers. *Proc. Natl. Acad. Sci. U. S. A.* (2014)
741 doi:10.1073/pnas.1316793111.
- 742 49. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short
743 DNA sequences to the human genome. *Genome Biol.* (2009) doi:10.1186/gb-2009-10-3-r25.
- 744 50. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data
745 with DESeq2. *Genome Biol.* (2014) doi:10.1186/s13059-014-0550-8.
- 746 51. König, R. *et al.* A probability-based approach for the analysis of large-scale RNAi screens. *Nat. Methods* **4**,
747 847–849 (2007).
- 748 52. Francica, P. *et al.* Functional Radiogenetic Profiling Implicates ERCC6L2 in Non-homologous End Joining.
749 *Cell Rep.* (2020) doi:10.1016/j.celrep.2020.108068.
- 750

751 **Supplementary Materials**

- 752 Supplementary Figure 1. Compound characterization of AK59 and QK50.
- 753 Supplementary Figure 2. STING constructs.
- 754 Supplementary Figure 3. CRISPR/Cas9 genome-wide screening results.
- 755 Supplementary Figure 4. HERC4, UBA5 and UBA6 are validated as genes responsible in AK59 activity on STING
756 expression.
- 757 Supplementary Figure 5. Confirmation HERC4 knockouts in HEK293T and Dual-THP1 cells.
- 758 Supplementary Figure 6. Interaction of HERC4 and STING in the presence of AK59 treatment.
- 759 Supplementary Table S1. Proteomics results from either AK59 or QK50 treated THP1 cells.
- 760 Supplementary Table S2. CRISPR/Cas9 knockout screen RSA to Q values of hits.

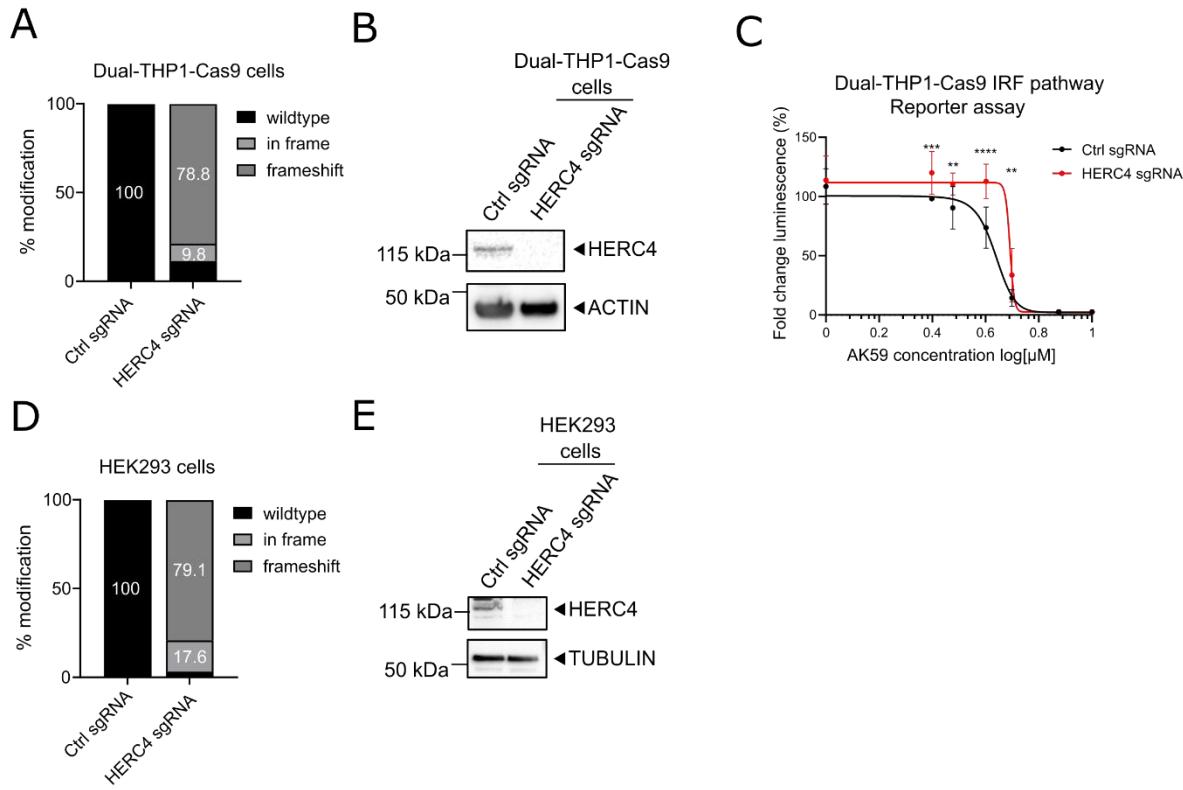

762 **Supplementary Figure 1. Compound characterization of AK59 and QK50.** (a) IRF pathway reporter assay on
763 wild type Dual-THP1 cells treated with either AK59 or QK50 for 16 hours. Cells were stimulated with 30 μM cGAMP
764 3 hours prior to compound incubation. Luminescence reads were normalized to the control unstimulated sample for
765 each cell line. Data plotted as mean \pm SD of three individual biological replicates in Graphpad Prism (Version 9).
766 Statistical significance was calculated using two-way ANOVA followed by Šidák's correction. (b) Schematic
767 representation of proteomics on THP1 cells treated with either DMSO, AK59 or QK50. (c-d) Volcano plots of the
768 proteomics analysis of THP1 cells treated for 16 hours with 10 μM QK50 and with or without 50nM of bortezomib
769 treatment compared to matching DMSO control samples. Significantly altered protein abundances are shown with a
770 log2 fold change < -1 or > 1 and a q value of less than 0.01. (e) Western blot representing the changes in STING
771 expression upon AK59 and/or proteasomal inhibition (bortezomib or MG132) or neddylation inhibition (MLN4924)

772 in THP1 cells. VINCULIN used as a loading control. The STING expression quantified by first normalizing to its
773 respective loading control and ratio to DMSO control.

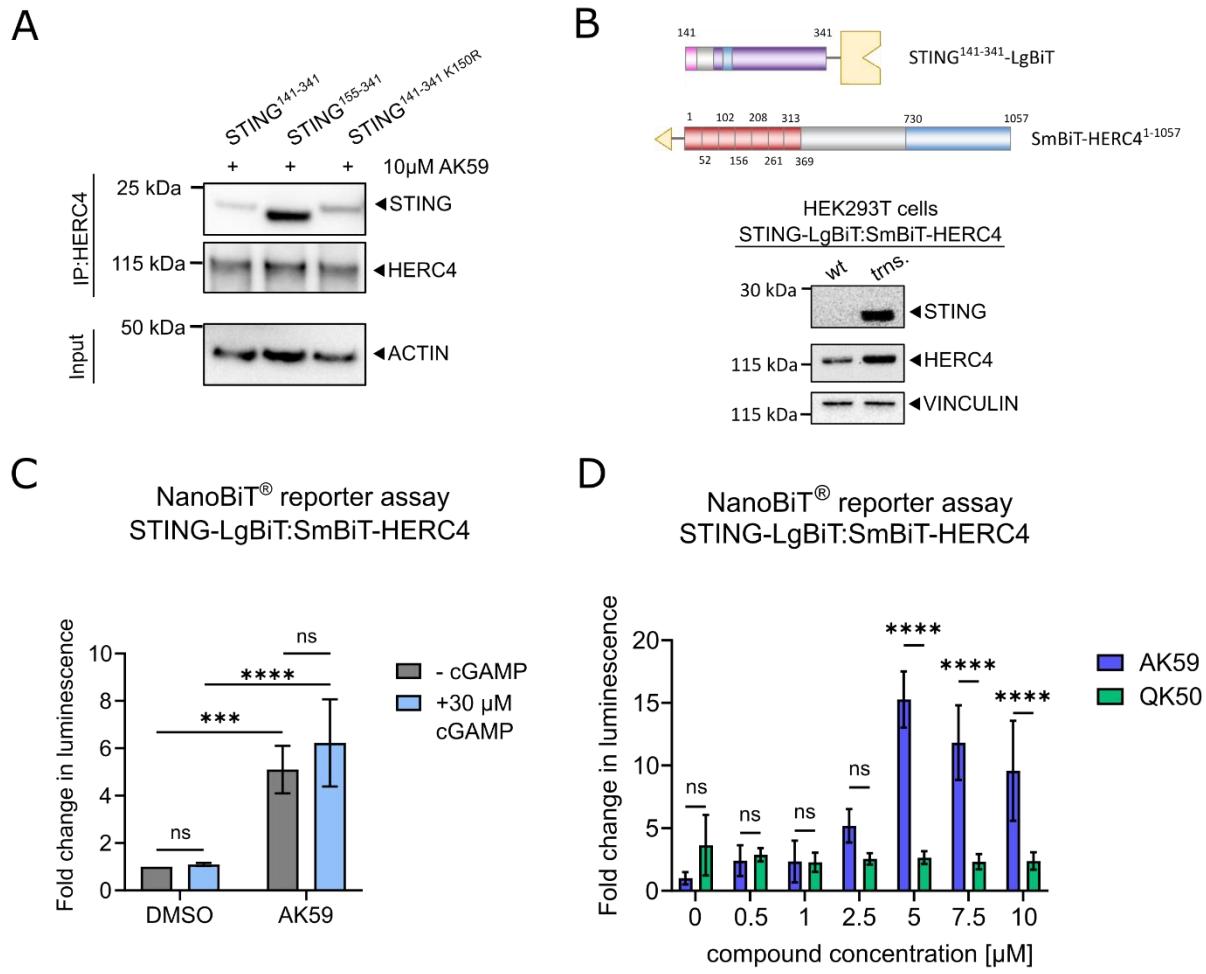


774

775 **Supplementary Figure 2. STING constructs.** Schematic representation of the STING constructs that are transiently
776 expressed in HEK293T cells.



778 **Supplementary Figure 3. CRISPR/Cas9 genome-wide screening results.** (a) RSA down to Q1 values from
779 CRISPR/Cas9 screen of 10 μ M AK59 treated THP1-Cas9 cells represented in a mustache plot. The comparison
780 represented in the blot is high STING expression to low STING expression in the AK59 treatment group. Each dot
781 represents a gene from the CRISPR/Cas9 library. (b) RSA up to Q3 values from CRISPR/Cas9 screen of DMSO
782 treated THP1-Cas9 cells represented in a mustache plot. The comparison represented in the blot is high STING
783 expression to low STING expression in the DMSO treated group. Each dot represents a gene from the CRISPR/Cas9
784 library. (c) RSA down to Q1 values from CRISPR/Cas9 screen of DMSO treated THP1-Cas9 cells represented in a
785 mustache plot. The comparison represented in the blot is high STING expression to low STING expression in the
786 DMSO treated group. Each dot represents a gene from the CRISPR/Cas9 library.


787

788 **Supplementary Figure 4. HERC4, UBA5 and UBA6 are validated as genes responsible in AK59 activity on**
789 **STING expression.** FACS analysis of STING expression on Ctrl sgRNA, HERC4 sgRNA2, UBA6 sgRNA1 or
790 UBA5 sgRNA1 transduces THP1-Cas9 cells that are treated either with DMSO or 10 μ M AK59. STING knockout
791 line was taken along as a negative control (purple). Experiment treated at least in three biological replicates and
792 representative FACS reads plotted using FlowJo (Version 10.6.1).

793

794 **Supplementary Figure 5. Confirmation HERC4 knockouts in HEK293T and Dual-THP1 cells. (a)** TIDE analysis
 795 from either Ctrl sgRNA or HERC4 sgRNA1 transduced Dual-THP1-Cas9 cells. Modification rates were checked at
 796 the third passage after the initial transduction. Undefined sequencing reads were excluded. **(b)** Western blot to detect
 797 HERC4 protein levels on either Ctrl sgRNA or HERC4 sgRNA1 transduced Dual-THP1-Cas9 cells. Proteins from
 798 each cell line collected at the third passage after the initial transduction. **(c)** IRF pathway reporter assay on wild type
 799 or HERC4 knockout Dual-THP1-Cas9 cells. Cells were stimulated with 30 μM cGAMP 3 hours prior to 16 hours
 800 AK59 incubation. Luminescence reads were normalized to the control unstimulated sample for each cell line. Data
 801 plotted as mean ± SD of three individual biological replicates in Graphpad Prism (Version 9). Statistical significance
 802 was calculated using two-way ANOVA followed by Šidák's correction. **(d)** TIDE analysis from either Ctrl sgRNA or
 803 HERC4 sgRNA1 transduced HEK293-JumpIN-Cas9 cells. Modification rates were check at the third passage after
 804 the initial transduction. Not defined sequencing reads were excluded. **(e)** Western blot to detect HERC4 protein levels
 805 on either Ctrl sgRNA or HERC4 sgRNA1 transduced HEK293-JumpIN-Cas9 cells. Proteins from each cell line
 806 collected at the third passage after the initial transduction.

807

808 **Supplementary Figure 6. Interaction of HERC4 and STING in the presence of AK59 treatment.** (a) HERC4
809 pulldown followed by western blot on HEK293T cells transfected with the indicated STING expression constructs
810 and treated with 10 μ M AK59. ACTIN was used as a loading and pulldown control. (b) Schematic representation of
811 the Nanobit constructs that were transiently expressed in HEK293T cells. Western blot showing the expression of
812 STING-LgBiT and SmBiT-HERC4 constructs in HEK293T cells. Comparison of wildtype (wt.) and transfected (trns.)
813 HEK293T cells. VINCULIN was used as a loading control. (c) Nanobit complementation assay on STING-LgBiT
814 and SmBiT-HERC4 expressing HEK293T cells in the presence of AK59 and/or cGAMP. 30 μ M of cGAMP
815 stimulation was done 3 hours prior to indicated compound treatments. DMSO were used as a negative control and
816 luminescence reads were normalized to corresponding DMSO control. Three biological replicates were plotted as
817 mean \pm SD using in Graphpad Prism (Version 9). Statistical significance was calculated using two-way ANOVA
818 followed by Šidák's correction. (d) Nanobit complementation assay on STING-LgBiT and SmBiT-HERC4 expressing
819 HEK293T cells in the presence of increasing concentration of either AK59 or QK50. Biological replicates were plotted
820 as mean \pm SD using in Graphpad Prism (Version 9). Statistical significance was calculated using two-way ANOVA
821 followed by Šidák's correction.