

1 **Dissecting embryonic and extra-embryonic lineage crosstalk with stem cell co-culture**

2 Yulei Wei^{1, 2,†}, E Zhang^{3,†}, Leqian Yu^{1, 4,†}, Baiquan Ci³, Lei Guo⁶, Masahiro Sakurai¹, Shino
3 Takii⁷, Jian Liu³, Daniel A. Schmitz¹, Yi Ding¹, Linfeng Zhan³, Canbin Zheng¹, Hai-Xi Sun⁸, Lin
4 Xu⁶, Daiji Okamura⁷, Weizhi Ji³, Tao Tan^{3,*}, Jun Wu^{1,5,9,*}

5 ¹ Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas,
6 TX 75390, USA

7 ² State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China
8 Agricultural University, Beijing 100193, China

9 ³ State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational
10 Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China

11 ⁴ The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology,
12 Chinese Academy of Sciences, Beijing 100101, China

13 ⁵ Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern
14 Medical Center, Dallas, TX 75390, USA

15 ⁶ Quantitative Biomedical Research Center, Department of Population and Data Sciences, Peter
16 O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas,
17 TX 75390

18 ⁷ Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University,
19 Nakamachi, Nara 631-8505, Japan

20 ⁸ BGI-Beijing, Beijing 102601, China

21 ⁹ Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas
22 Southwestern Medical Center, Dallas, TX, USA

23 [†]These authors contributed equally to this work.

24 ^{*}Correspondence to: Tao Tan: tant@lpbr.cn

25 Jun Wu: Jun2.Wu@UTSouthwestern.edu

26

27

28 **SUMMARY**

29 Faithful embryogenesis requires precise coordination between embryonic and extraembryonic
30 tissues. Although stem cells from embryonic and extraembryonic origins have been generated for
31 several mammalian species(Bogliotti et al., 2018; Choi et al., 2019; Cui et al., 2019; Evans and
32 Kaufman, 1981; Kunath et al., 2005; Li et al., 2008; Martin, 1981; Okae et al., 2018; Tanaka et
33 al., 1998; Thomson et al., 1998; Vandervoort et al., 2007; Vilarino et al., 2020; Yu et al., 2021b;
34 Zhong et al., 2018), they are grown in different culture conditions with diverse media
35 composition, which makes it difficult to study cross-lineage communication. Here, by using the
36 same culture condition that activates FGF, TGF- β and WNT signaling pathways, we derived
37 stable embryonic stem cells (ESCs), extraembryonic endoderm stem cells (XENs) and
38 trophoblast stem cells (TSCs) from all three founding tissues of mouse and cynomolgus monkey
39 blastocysts. This allowed us to establish embryonic and extraembryonic stem cell co-cultures to
40 dissect lineage crosstalk during early mammalian development. Co-cultures of ESCs and XENs
41 uncovered a conserved and previously unrecognized growth inhibition of pluripotent cells by
42 extraembryonic endoderm cells, which is in part mediated through extracellular matrix signaling.
43 Our study unveils a more universal state of stem cell self-renewal stabilized by activation, as
44 opposed to inhibition, of developmental signaling pathways. The embryonic and extraembryonic
45 stem cell co-culture strategy developed here will open new avenues for creating more faithful
46 embryo models and developing more developmentally relevant differentiation protocols.

47 **INTRODUCTION**

48 In mammals, embryogenesis is accompanied by the establishment and loss of pluripotency, a
49 transient property enabling embryonic epiblast cells to generate all cells in an adult organism.
50 Pluripotent epiblast cells can be propagated in vitro in a spectrum of pluripotent stem cell (PSC)
51 states with different culture conditions (Pera and Rossant, 2021; Wu and Izpisua Belmonte,
52 2015). PSCs with unique molecular and functional features provide us with invaluable in vitro
53 models to study early mammalian development with great potential for regenerative medicine.
54 Despite the potential, however, PSCs exist in the artificial milieu of cell culture, which is vastly
55 different from the *in vivo* environment. One notable difference is the lack of communication with
56 extraembryonic cells in cultured PSCs. Extraembryonic tissues play crucial roles in embryo

57 patterning and size control during early embryogenesis (Rivera-Pérez and Hadjantonakis, 2015;
58 Shahbazi and Zernicka-Goetz, 2018). Consequently, PSC-only models suffer from several
59 culture artifacts that potentially limit their potential, e.g., unsynchronized and disorganized
60 differentiation, and unfettered growth.

61 To overcome these limitations, for the first time, we succeeded in the derivation of stem cells
62 from embryonic and extraembryonic tissues using the same condition from both mouse and
63 cynomolgus monkey blastocysts. This enabled the culture of embryonic and extraembryonic
64 stem cells in the same environment, and thereby opening the door for dissecting their direct
65 communication.

66 **RESULTS**

67 **A common culture for all blastocyst lineages**

68 We previously reported *de novo* derivation of intermediate embryonic stem cells (ESCs) from
69 mouse blastocysts by activating FGF, TGF- β and WNT pathways (FTW-mESCs)(Yu *et al.*,
70 2021b). To enrich the FTW-mESC population, a MEK inhibitor (PD0325901) was added to
71 suppress the proliferation of extra-embryonic cells(Yu *et al.*, 2021b). Withdrawal of PD0325901
72 during FTW-mESCs derivation resulted in the co-appearance of epiblast-like cells (ELCs),
73 trophoblast-like cells (TLCs), and extraembryonic endoderm-like cells (XLCs) in the blastocyst
74 outgrowth (Figure S1A). After manual picking, separate cultivation, and further passaging in the
75 FTW condition, stable extraembryonic endoderm stem cells (designated as FTW-mXENs),
76 trophoblast stem cells (designated as FTW-mTSCs), and FTW-mESCs could be derived from a
77 single mouse blastocyst (Figure 1A and 1B). FTW-mXENs, FTW-mTSCs and FTW-mESCs
78 expressed extraembryonic endoderm, trophoblast, and epiblast markers, respectively (Figure 1C
79 and Figure S1B to S1E). Next, we compared FTW-mXENs and FTW-mTSCs with mXENs and
80 mTSCs in conventional conditions(Chiu *et al.*, 2010; Niakan *et al.*, 2013) (Figure S1F to S1I).
81 FTW-mTSCs and FTW-mXENs expressed their respective lineage markers at comparable levels
82 to mTSCs and mXENs, respectively (Figure S1J). Although similar proliferation rates were
83 observed for mTSCs and FTW-mTSCs, FTW-mXENs exhibited a significantly shorter doubling
84 time than mXENs (Figure S1K). After random differentiation of FTW-mXENs *in vitro*, several
85 parietal endoderm (PE) and visceral endoderm (VE) related genes were upregulated(Artus *et al.*,
86 2012) (Figure S1L). Following subcutaneous injection into an immunodeficient NOD-SCID

87 mouse, FTW-mXENs formed a teratoma-like tissue mass (designated as XEN-teratoma) after 3
88 months (Figure S1M). Immunofluorescence (IF) analysis revealed that within the XEN-teratoma
89 many cells expressed alpha-fetoprotein (AFP)(Kwon et al., 2006), some cells were GATA6+,
90 and others stained positive for yolk sac markers FOXA1 and/or COL6A1 (Figure S1N and S1O).
91 We did not detect T+ (mesoderm) or PAX6+ (ectoderm) cells in the XEN-teratoma (Figure
92 S1M). For FTW-mTSCs, after random differentiation *in vitro*, multinucleated cells appeared
93 (Figure S1P) and genes related to trophoblast differentiation were upregulated(Cui et al., 2019)
94 (Figure S1R). FTW-mTSCs also formed a tissue mass (TSC-teratoma) containing multinucleated
95 trophoblast giant-cell like cells two weeks after injection into a NOD-SCID mouse (Figure S1Q).
96 Next, we performed blastocyst injections and found that GFP (green fluorescent protein) or mKO
97 (monomeric Kusabira-Orange) labeled FTW-mXENs and FTW-mTSCs contributed to chimera
98 formation in the yolk sac and placenta tissues of mouse conceptuses (E7.5 and E11.5),
99 respectively (Figure 1D to 1G, Figure S1S and Table S1).

100 In sum, we discovered a common culture condition could support *de novo* derivation and long-
101 term culture of embryonic and extraembryonic stem cells from mouse blastocysts.

102 **Transcriptome profiling**

103 We next performed bulk RNA-sequencing (RNA-seq) to examine the global transcriptional
104 profiles of FTW stem cells and compared them with published datasets from established mouse
105 embryonic and extraembryonic stem cells(Anderson et al., 2017; Bao et al., 2018; Cruz-Molina
106 et al., 2017; Cui et al., 2019; Kubaczka et al., 2015; Wu et al., 2015; Wu et al., 2011; Ye et al.,
107 2018; Zhao et al., 2015; Zhong et al., 2018). We found that FTW-mXENs, FTW-mTSCs and
108 FTW-mESCs expressed their respective lineage markers and clustered together with stem cells
109 derived from the same tissue of origin (Figure 2A and Figure S2A, S2B). Based on comparison
110 with *in vivo* datasets, we found FTW-mESCs, FTW-mTSCs and FTW-mXENs were
111 transcriptionally most closely related to E5.5 epiblast (EPI), E5.25-E5.5 extraembryonic
112 ectoderm (ExE)(Cheng et al., 2019) and E5.5 VE(Mohammed et al., 2017), respectively (Figure
113 S2C and S2D). To resolve the transcriptional states of FTW stem cells, we performed single-cell
114 RNA-sequencing (scRNA-seq) and compared with published single-cell transcriptomes derived
115 from E3.5-E6.5 mouse embryos(Nowotschin et al., 2019). Consistent with bulk RNA-seq results,
116 we found that FTW-mESCs, FTW-mTSCs and FTW-mXENs showed the highest correlation

117 with E5.5 EPI, E5.5 TE (trophectoderm) and E5.5 PrE (primitive endoderm), respectively
118 (Figure 2B). Uniform manifold approximation and projection (UMAP) analysis further revealed
119 FTW stem cells clustered closely with cells from their respective lineages in E5.5 mouse
120 conceptuses (Figure S2E). To examine the temporal steps of FTW stem cells derivation, in
121 addition to established FTW stem cell lines (passage 10), we performed scRNA-seq of
122 blastocysts (day 0) and blastocyst outgrowths (day 8). Our analysis revealed clear segregation of
123 ELCs, TLCs and ELCs in blastocyst outgrowths (Figure 2C). Slingshot(Street et al., 2018)
124 pseudotime analysis was performed to delineate differentiation trajectories during derivation.
125 Interestingly, in blastocyst outgrowths, ELCs have already acquired similar transcriptional states
126 of stable FTW-mESCs while TLCs and ELCs clustered separately from established FTW-
127 mTSCs and FTW-mXENs, respectively (Figure 2C). Next, we identified stage specific genes and
128 enriched Gene Ontology (GO) terms. Notably, several common stage-specific features across all
129 lineages emerged in our analysis, e.g. blastocysts were enriched with terms related to
130 modification of DNA, RNA and/or protein, suggesting active gene transcription and translation,
131 and dynamic signaling activities in these cells; cells in blastocyst outgrowths shared terms
132 related to actin dynamics, which implicates active cell movement and dynamic changes in cell
133 shape; established FTW stem cells, on the other hand, are characterized by terms related to
134 glycolysis and hypoxia, which is indicative of their stabilization in the FTW condition (Figure
135 2D to 2F).

136 Taken together, these transcriptomic analyses confirmed lineage identities, revealed temporal
137 properties and derivation dynamics of FTW-mESCs, FTW-mTSCs and FTW-mXENs.

138 **Cross-lineage stem cell co-cultures**

139 Having FTW-mESCs, FTW-mXENs and FTW-mTSCs derived and maintained in the same
140 condition enabled us to establish co-cultures to study intercellular communications between
141 embryonic and extraembryonic lineages (Figure 3A). To this end, we labeled FTW-mESCs with
142 GFP and subjected them to co-culture with mKO-labeled FTW-mXENs, in the presence or
143 absence of FTW-mTSCs (unlabeled). Interestingly, after 5 days of co-culture in the FTW
144 condition, many FTW-mESC colonies were surrounded by FTW-mXENs. These FTW-mESC
145 colonies appeared smaller and more “domed” when compared to standalone colonies (not in
146 contact with FTW-mXENs) and FTW-mESC colonies from separate culture (Figure 3B and

147 Video S1). Of note is that we didn't observe this phenomenon in FTW-mESCs co-cultured with
148 either FTW-mTSCs or mouse embryonic fibroblasts (Figure 3B). In consistent, we found a
149 significant reduction of the GFP signal "Area x Intensity/Colony" in FTW-mESCs co-cultured
150 with FTW-mXENs and FTW-mXENs/FTW-mTSCs (Figure 3C) but not with FTW-mTSCs and
151 fibroblasts, when compared with separately cultured FTW-mESCs. We also calculated the cell
152 density (cell number per cm²) of FTW-mESCs daily in each experimental group. On day 5, a
153 significantly lower density of FTW-mESCs was found in FTW-ESCs/TSCs/XENs and FTW-
154 ESCs/XENs groups than in control groups (Figure 3D and Figure S3A). We tested the effects of
155 different cell plating ratios and found greater reduction in FTW-mESC densities when co-
156 cultured with more FTW-mXENs in both 2D and 3D (Figure S3B to S3D). This decrease in
157 FTW-mESC density in co-culture was not due to increased cell apoptosis (Figure S3E and S3F)
158 or differentiation (Figure S3G) and was dependent on direct contact with FTW-mXENs (Figure
159 S3H, S3I and Video S1).

160 Next, we studied whether this growth inhibition phenotype manifested during differentiation. We
161 injected the same number of FTW-mESCs either alone or together with FTW-mXENs under the
162 skin of NOD-SCID mice (Figure 3E). Although in both conditions teratomas that contained
163 tissues from all three germ lineages could be generated (Figure S3J), the average size and weight
164 of teratomas generated by co-injection were smaller than FTW-mESCs alone (Figure 3F to 3H).
165 We also tested different ESC:XEN ratios and found in general the more FTW-mXENs were
166 injected, the smaller the teratomas (Figure S3K). To study whether this growth restriction also
167 exists between EPI and VE cells, we isolated E6.5-6.75 mouse conceptuses, removed ExE and
168 ectoplacental cone, and used EPI with or without VE (VE+/-) for *ex vivo* culture (Figure 3I).
169 Interestingly, the size and total cell number in the VE+ group were significantly smaller than
170 those in the VE- group (Figure 3J, 3K and Figure S3L), suggesting the proliferation of EPI is
171 also limited by the VE.

172 Collectively, we established embryonic and extra-embryonic stem cell co-cultures and identified
173 a contact-dependent growth restriction of FTW-mESCs by FTW-mXENs, which may reflect an
174 embryo size control mechanism during early development.

175 **Mechanistic insights**

176 To gain mechanistic insights into the crosstalk among co-cultured FTW stem cells, we performed
177 scRNA-seq analysis (Figure 4A). UMAP analysis showed that cells in co-cultures largely
178 overlapped with separately cultured cells (Figure S4A and S4B). We used the CellChat(Jin et al.,
179 2021) toolkit to infer cell-cell communication. As expected, both the number and strength of
180 cell-cell interactions increased in co-cultures when compared to separate cultures (Figure 4B).
181 Interestingly, a significant proportion of these interactions originated from FTW-mXENs
182 towards the other two cell types, especially FTW-mESCs (Figure 4C). CellChat analysis also
183 predicted several signaling pathways mediating these interactions, which included signaling
184 through extracellular matrix (ECM) proteins such as LAMININ and COLLAGEN (Figure 4D).
185 LAMININ and COLLAGEN are known components of the basement membrane (BM) lining the
186 basal side of the post-implantation EPI, which are in part produced by the VE in mice(Sekiguchi
187 and Yamada, 2018). We next determined whether ECM protein(s) could phenocopy the growth
188 restriction of co-cultured FTW-mESCs. We found supplementation of separately cultured FTW-
189 mESCs with Matrigel (~60% LAMININ, ~30% COLLAGEN IV), LAMININ, or COLLAGEN
190 IV, but not VITRONECTIN could inhibit FTW-mESC growth in a dosage dependent manner
191 (Figure 4E, and Figure S4C, S4D). In consistent, knockout of *Laminin γ1* (*Lamc1*) in FTW-
192 mXENs could partially rescue the growth phenotype of co-cultured FTW-mESCs (Figure 4F and
193 Figure S4E, S4F). As INTEGRIN-β1 plays an important role in ECM protein signaling and is a
194 cell surface receptor for LAMININ-γ1(Barczyk et al., 2010; Molè, 2021; Moore et al., 2014),
195 we generated *integrin β1* (*Itgb1*) knockout FTW-mESCs. We found loss-of-function of
196 *Itgb1* could also mitigate the retarded growth of co-cultured FTW-mESCs (Figure S4G and S4H).
197 In addition, we studied the transcriptomic differences between separately cultured and co-
198 cultured FTW-mESCs by bulk RNA-seq. Through comparative analysis, we identified 502
199 differentially expressed genes (DEGs) shared between FTW-mESCs in XENs/ESCs and
200 XENs/TSCs/ESCs co-cultures, when compared to separately cultured FTW-mESCs (Figure S4I
201 and Table S2). Interestingly, the majority of DEGs (492) were down-regulated genes in co-
202 cultured FTW-mESCs. Consistent with their decreased proliferation, the down-regulated DEGs
203 included genes related to cell proliferation and embryo size (e.g., several members of activator
204 protein 1[AP-1] transcription factor complex such as *Fos*, *Fosl1*, *Fosb*, *Batf* among others(Angel
205 et al., 1987; Angel and Karin, 1991; Jochum et al., 2001))(Figure S4J). GO and Bioplanet 2019
206 analyses of the down-regulated DEGs revealed top enriched terms including extracellular matrix

207 and structure organization, Interleukin-1 and TGF-beta regulation of extracellular matrix, and β 1
208 integrin cell surface interactions (Figure S4K and S4L). In addition, we found many matrix
209 metalloproteinases (MMPs) (e.g., *Mmps 2, 3, 9, 10, 12* etc.) were down-regulated in co-cultured
210 FTW-mESCs (Figure S4M). MMPs have been reported to modulate cell proliferation, migration,
211 and morphogenesis by degrading ECM proteins(Vu, 2000), and inhibition of MMPs also led to
212 reduced growth of EPI in vivo and ESCs in vitro(Kyprianou et al., 2020), which are consistent
213 with our findings.

214 In sum, these analyses helped gain insights into the crosstalk among co-cultured embryonic and
215 extraembryonic stem cells and identified ECM signaling as one of the mechanisms mediating the
216 reduced proliferation of FTW-mESCs by FTW-mXENs (Figure 4G).

217 **Stem cells from monkey blastocysts**

218 By using the FTW condition, we also succeeded in the derivation of several stable extra-
219 embryonic (FTW-cyXENs and FTW-cyTSCs) and embryonic (FTW-cyESCs, 20% KSR
220 [knockout serum replacement] was needed) stem cell lines from 7-10 d.p.f. (days post-
221 fertilization) cynomolgus monkey blastocysts (Figure 5A to 5D, and Table S3). FTW-cyESCs
222 could also be directly converted from naïve-like ESCs(Fang et al., 2014) through culture
223 adaptation (data not shown). Once established, FTW-cyXENs, FTW-cyTSCs and FTW-cyESCs
224 proliferated well, maintained stable colony morphology and normal karyotypes after long-term
225 culture, expressed hypoblast (HYP), trophoblast, and EPI related genes, respectively (Figure 5E
226 and Figure S5A to S5D, S5E to S5H, S5L, S5M). Upon random differentiation *in vitro*, FTW-
227 cyXENs could generate visceral- and yolk-sac-endoderm- (VE/YE-) ($FOXA1^+$ GATA4) like
228 cells and extra-embryonic-mesenchyme-cell- (EXMC-) ($COL6A1^+$ GATA4 $^-$) like
229 cells(Nakamura et al., 2016; Niu et al., 2019b) (Figure 5F and S5I). FTW-cyTSCs were capable
230 of differentiating into extravillous trophoblast (EVT)- like cells and multinucleated
231 syncytiotrophoblast (SCT)-like cells *in vitro* (Figure 5G and 5H). (Okae et al., 2018) and in
232 TSC-teratomas (Figure S5J and S5K).

233 Next, we performed transcriptomic profiling of cynomolgus monkey FTW stem cells. scRNA-
234 seq analysis revealed that FTW-cyESCs, FTW-cyXENs and FTW-cyTSCs segregated into three
235 distinct clusters on UMAP and expressed their respective lineage marker genes (Figure 6A and
236 6B). Bulk RNA-seq analysis helped identify DEGs among FTW-cyESCs, FTW-cyXENs and

237 FTW-cyTSCs, which were enriched in GO terms including: “Signaling pathways regulating
238 pluripotency of stem cells” and “VEGF signaling pathway” (FTW-cyESCs); “ECM-receptor
239 interaction” and “TGF-beta signaling” (FTW-cyXENs); “ECM-receptor interaction” and “Hippo
240 signaling pathway” (FTW-cyTSCs) (Figure 6C). The result of the Pearson correlation analysis
241 showed that FTW-cyESCs, FTW-cyXENs and FTW-cyTSCs shared the highest correlation
242 coefficients with their *in vivo* counterparts (Figure 6D).

243 **Cross-lineage stem cell co-cultures among monkey cells**

244 Next, we investigated whether the growth restriction of FTW-ESCs by FTW-XENs was
245 conserved in cynomolgus monkeys. To this end, we performed co-culture of FTW-cyESCs with
246 FTW-cyXENs and/or FTW-cyTSCs. Consistent with mouse findings, we found the growth of
247 FTW-cyESCs was greatly inhibited by FTW-cyXENs but marginally affected by FTW-cyTSCs
248 or fibroblasts (Figure 7A, 7B and Figure S6A) To provide mechanistic insights into embryonic
249 and extra-embryonic lineage crosstalk in cynomolgus monkeys, we performed scRNA-seq
250 analysis of co-cultures of FTW-cyESCs/FTW-cyXENs (2lines) and FTW-cyESCs/FTW-
251 cyXENs/FTW-cyTSCs (3lines) using 10x Genomics Chromium, and compared with single cell
252 transcriptomes derived from separate cultures (Table S4). Through DEG and GO analyses, we
253 identified several terms, e.g., “Focal adhesion”, “Cadherin binding”, and “Cell-cell adhesion”,
254 were enriched in co-cultured FTW-cyESCs, FTW-cyXENs and FTW-cyTSCs, respectively,
255 suggesting more active cell-cell interactions (Figure S6B to S6D). In agreement with mouse
256 results, CellChat analysis also predicted signaling through ECM proteins, e.g., LAMININ and
257 COLLAGEN, mediated crosstalk between FTW-cyXENs and FTW-cyESCs (Figure 7C, Figure
258 S6E and Table S5). To confirm the effect(s) of ECM protein(s), we supplemented Matrigel,
259 LAMININ, or COLLAGEN IV to separately cultured FTW-cyESCs, and found that each could
260 phenocopy FTW-cyXENs’ inhibitory effect on the growth of FTW-cyESCs in a dosage
261 dependent manner (Figure 7D and Figure S6F, S6G).

262 Taken together, these results extended our findings in mice to cynomolgus monkeys and revealed
263 a conserved mechanism underlying growth inhibition of FTW-ESCs by FTW-XENs.

264 **Cross species comparisons**

265 Embryonic and extraembryonic stem cells from both mice and cynomolgus monkeys derived and
266 cultured in the same condition gave us a unique opportunity to examine species-conserved and -

267 divergent features not influenced by different culture parameters. Using the single-cell regulatory
268 network inference and clustering (SCENIC) pipeline, we first studied the regulatory networks
269 underlying the maintenance of FTW-ESCs, FTW-XENs and FTW-TSCs in both species. Our
270 analysis identified several conserved and species-specific transcription factor (TF)-driven
271 regulons in each stem cell type (Figure S7A to S7C). SCENIC analysis also revealed common
272 and distinct targets of well-known lineage TFs such as NANOG, SOX17 and GATA3 (Figure
273 S7A to S7C and Table S6). We next performed cross-species comparison of
274 intercommunications between lineages, which uncovered both species-conserved (e.g., MK,
275 LAMININ, COLLAGEN and FN1) and -divergent (e.g., CDH, AGRN and HSPG [mouse]; FGF,
276 NCAM and BMP [monkey]) signaling crosstalk (Figure S7D). Collectively, these results reveal
277 interspecies transcriptomic similarities and differences in early embryonic and extraembryonic
278 cells and their intercommunications, which provide insights into evolutionary convergent and
279 divergent processes underlying epiblast, hypoblast and trophoblast development across different
280 species *in vivo*.

281 **DISCUSSION**

282 Most stem cell cultures include pathway inhibitors to suppress differentiation in favor of self-
283 renewal, e.g., ground state mouse ESC culture (Ying *et al.*, 2008), which often necessitate the
284 design of new conditions for different stem cell types and different species. By activating
285 multiple developmental signaling pathways at once, surprisingly, we found several embryonic
286 (mouse, cynomolgus monkey, and horse) and extraembryonic stem cells (mouse and cynomolgus
287 monkey) from multiple species could be derived and stably maintained in the same condition
288 (Wu *et al.*, 2017; Yu *et al.*, 2021b). This signaling “excited” state can potentially be attained in a
289 variety of stem cell types by striking a balance between differentiation and self-renewal via
290 switching on a combination of signaling pathways including but not limited to FGF, TGF- β and
291 WNT pathways used in this study.

292 The ability to grow embryonic and extraembryonic stem cells in the same culture environment
293 opens new avenues to dissect the molecular and cellular mechanisms underlying lineage
294 crosstalk during early mammalian development. Based on FTW stem cell co-cultures, we have
295 uncovered a previously unrecognized non-cell autonomous control of pluripotent cell
296 proliferation by extraembryonic endoderm cells, which is in part mediated by the ECM signaling,

297 in both mice and cynomolgus monkeys. We further revealed a similar overgrowth phenotype in
298 mouse epiblast in the absence of visceral endoderm, providing evidence supporting the *in vivo*
299 relevance of the observed proliferation restriction. Consistent with this finding, it was previously
300 reported that MMP-mediated basement membrane perforations at the posterior side of the mouse
301 embryo permitted growth and primitive-streak extension during peri-gastrulation development
302 (Kyprianou *et al.*, 2020).

303 Our study identified laminin-integrin signaling contributed to the growth restriction of FTW-
304 mESCs by FTW-mXENs (Figure 4D-4F and Figure S4C-S4F). This is likely due to irregularly
305 distributed matrix materials surrounding integrin β 1-deficient FTW-mESCs during co-culture
306 with FTW-mXENs as opposed to a continuous basement membrane layer in WT FTW-mESCs
307 (Moore *et al.*, 2014). A previous study demonstrated that integrin β 1-deficient mESCs underwent
308 massive cell death during transition from naive pluripotency toward the formative pluripotency
309 (Molè, 2021). This seemingly contrasts with integrin β 1-deficient formative FTW-mESCs
310 (Figures S4G, S4H). A possible explanation is that despite FTW-mESCs exhibited functional
311 formative features including the ability to form blastocyst chimeras and direct responsiveness to
312 primordial germ cell specification, they retain the expression of many naïve pluripotency genes
313 and are recognized as more naïve-like formative PSCs as opposed to more primed-like formative
314 stem (FS) cells (Kinoshita *et al.*, 2021; Yu *et al.*, 2021b). In consistent, the induction of apoptosis
315 of integrin β 1-deficient mESCs during differentiation was found concomitant with the
316 upregulation of OTX2, and OTX2 level was found low in FTW-mESCs (Molè, 2021).

317 The recent advancements in both extended primate (human and cynomolgus monkey) embryo
318 cultures and stem cell embryo models provide an unprecedented opportunity to study primate
319 early post-implantation development (Deglincerti *et al.*, 2016; Ma *et al.*, 2019; Moris *et al.*, 2020;
320 Niu *et al.*, 2019a; Shahbazi *et al.*, 2016; Yu *et al.*, 2022; Yu *et al.*, 2021a; Zheng *et al.*, 2019).
321 However, the dynamic nature of a developing embryo/embryo model and its cellular complexity
322 make it difficult to dissect the key cell-cell interactions. Here, the establishment of cynomolgus
323 monkey FTW-ESCs, XENs and TSCs under the same condition enables us, for the first time, to
324 delineate cell-cell interactions in a tractable and accessible manner in primates. In future studies,
325 the combination of stem cell co-culture with CRISPR screens will help uncover additional genes

326 and pathways underlying the crosstalk between extraembryonic and embryonic cells during
327 embryogenesis in primates.

328 In sum, the FTW embryonic and extraembryonic stem cells and the co-culture strategy
329 developed in this study may help provide superior starting cells for generating more robust
330 integrated stem cell embryo models (Fu et al., 2021) and developing more faithful differentiation
331 protocols for regenerative medicine.

332

333 **ACKNOWLEDGMENTS**

334 We thank Janet Rossant for providing the GFP labelled conventional mouse XEN and TSCs. We
335 thank Ling Zhang for technical support. We thank all other members of the Wu laboratory for
336 discussion and suggestions. We also acknowledge UT Southwestern Genomics and Microarray
337 Core for providing next-generation sequencing services. J.W. is a New York Stem Cell
338 Foundation–Robertson Investigator and Virginia Murchison Linthicum Scholar in Medical
339 Research and supported by CPRIT (RR170076), NIH (GM138565-01A1, HD103627-01A1,
340 R21HD105349 and OD028763), ARSM Research Institute, and Welch (854671). T. T. is
341 supported by grants from the National Natural Science Foundation of China (82192871), the
342 National Key Research and Development Program (2021YFA0805700) and the Major Basic
343 Research Project of Science and Technology of Yunnan (202001BC070001 and
344 202102AA100053). L. X. is founded by the Rally Foundation, The National Institutes of Health
345 (R21CA259771, UM1-HG011996, R01CA263079, R01DK127037, and R01HL144969), CPRIT
346 (RP220032, RP180319, RP200103, and RP180805).

347 **AUTHOR CONTRIBUTIONS**

348 J.W. T.T. Y.W. and L.Y. conceptualized the idea, designed, analyzed, interpreted the
349 experimental results. Y.W. and L.Y. performed most of the mouse cell culture experiments. E.Z.
350 performed most of the monkey cell culture experiments. B.C. L.G. J.L. H.S. L. X. and T.T.
351 performed RNA-seq analysis. S.T. and D.O. performed mouse E6.5-6.75 embryo with/remove
352 EXE in vitro culture experiment. Y.D. helped with data analysis. C.Z. helped with some mouse
353 cell culture experiments. L.Z. helped with some monkey cell culture experiments. D. S. designed
354 and prepared some DNA constructs. Y.W. and M.S. performed chimera experiments. J.W. T.T.

355 and W.J. supervised the study. Y.W. L.Y. T.T. and J.W. wrote the manuscript with inputs from
356 all authors.

357 **DECLARATION OF INTERESTS**

358 Y.W., L.Y., T.T. and J.W. are inventors on a patent application (applied through the Board of
359 Regents of The University of Texas System, application number 63/488,401) entitled “Methods
360 For the Derivation Culture Of Embryonic and Extra-Embryonic Stem Cells” arising from this
361 work. The other authors declare no competing interests.

362 **Data availability**

363 A total of thirty-one RNA-seq datasets generated in this study have been deposited in the Gene
364 Expression Omnibus (GEO) with accession code GSE178459.

365 **Code availability**

366 The sequencing data generated in this study have been deposited to the Gene Expression
367 Omnibus (GEO) under the accession (GSE178459). They will be made publicly accessible upon
368 publication.

369

370 **FIGURE LEGEND**

371 **Figure 1. Derivation and characterization of embryonic and extraembryonic stem cells
372 from mouse blastocyst.**

373 (A) Schematic of derivation of FTW embryonic and extraembryonic stem cell lines from mouse
374 blastocyst. (B) Representative bright field (BF) images of colonies of FTW-mXENs, FTW-
375 mTSCs and FTW-mESCs. Scale bar, 100 μ m. (C) Representative immunofluorescence (IF)
376 images of extraembryonic endoderm (GATA6 and SOX17), trophoblast (EOMES and CDX2),
377 and epiblast (SOX2 and OCT4) lineage markers in FTW-mXENs (top), FTW-mTSCs (middle),
378 and FTW-mESCs (bottom), respectively. Scale bar, 100 μ m. (D) and (F) Representative BF and
379 fluorescence images showing chimera contribution of GFP-labeled FTW-mXENs (D) and FTW-
380 mTSCs (F) to E11.5 mouse conceptuses. Scale bar, 1 mm. (E) IF staining of a chimeric yolk sac
381 membrane for GFP, GATA6 and GATA4. (G) IF staining of a chimeric sagittal placental section

382 for CK8 and GFP. Different layers of the placenta are delineated by dotted lines. Scale bar, 100
383 μm . See also Figure S1.

384 **Figure 2. Transcriptomic analyses of mouse FTW stem cells.**

385 (A) UMAP visualization of integrative analysis of FTW-mXENs, FTW-mTSCs, FTW-mESCs
386 and published datasets of mPSCs(Bao *et al.*, 2018; Cruz-Molina *et al.*, 2017; Wu *et al.*, 2015; Ye
387 *et al.*, 2018; Zhao *et al.*, 2015), mTSCs(Cui *et al.*, 2019; Kubaczka *et al.*, 2015; Wu *et al.*, 2011)
388 and mXENs(Anderson *et al.*, 2017; Zhong *et al.*, 2018). (B) Correlation analysis of FTW-
389 mXENs, FTW-mTSCs and FTW-mXENs with published scRNA-seq dataset of in vivo mouse
390 embryos from different stages. (C) UMAP analysis of mouse blastocysts, blastocyst outgrowths,
391 and stable (passage 10) FTW-mESCs, FTW-mXENs and FTW-mTSCs. (D) to (F) Heatmaps and
392 GO terms analysis of stage-specific (blastocyst, blastocyst outgrowth and stable FTW stem cells)
393 genes from three lineages during FTW stem cells derivation. See also Figure S2.

394 **Figure 3. Proliferation restriction of FTW-mESCs by FTW-mXENs.**

395 (A) Schematic of the establishment of FTW stem cell co-cultures to study cross-lineage
396 communications. (B) Representative fluorescence and BF merged images of day 1 to day 5
397 separately cultured FTW-mESCs (green) and FTW-mESCs co-cultured with FTW-mXENs (red)
398 and/or FTW-mTSCs (blue arrowheads), or proliferative mouse embryonic fibroblast. Scale bar,
399 100 μm . (C) Violin plot showing area multiplied by GFP intensity for each FTW-mESC colonies
400 in day 5 separate and different co-cultures. (D) Growth curves of separate (FTW-mESCs) and
401 co-cultures (mESCs/mXENs) from days 1 to 5 (mean \pm SD, day 1, n = 2, day 2-5, n = 5,
402 biological replicates). (E) Schematic of teratoma formation with FTW-mESCs only and FTW-
403 mESCs co-injected with FTW-mXENs (mESCs:mXENs = 4:1). The same number (1×10^6) of
404 FTW-mESCs were injected in each condition. (F) Images of teratomas generated from FTW-
405 mESCs injected with (bottom) and without (top) FTW-mXENs. (G) Lengths and widths of
406 teratomas generated from FTW-mESCs injected with (orange) and without (green) FTW-
407 mXENs. (H) Weight of teratomas generated from FTW-mESCs injected with (orange) and
408 without (green) FTW-mXENs. (mean \pm SD, n = 5, biological replicates). (I) Schematic of tissue
409 dissection of E6.5-6.75 mouse conceptus. (J) Representative BF images showing *ex vivo* culture
410 of EPI+VE (VE+) and EPI (VE-) tissues isolated from E6.5-6.75 mouse conceptuses at indicated

411 time points. Scale bar, 100 μ m. (K) Total cell number of VE+ and VE- tissues after 48 h *ex vivo*
412 culture (mean \pm SD, n = 10, biological replicates). N.S. not significant, ****P-value < 0.0001 ,
413 P-values were calculated using two-tailed Student's t test. See also Figure S3.

414 **Figure 4. Mechanistic insights of growth inhibition.**

415 (A) Schematic of RNA-seq experiments. (B) Bar graphs showing the number (left) and strength
416 (right) of cell-cell interactions in co-cultures and separate cultures. (C) Circle plots showing the
417 ratios of number (left) and strength (right) of cell-cell interactions between co-cultured and
418 separately cultured samples. Red lines, increased interactions; blue lines, decreased interactions.
419 (D) Heatmaps of outgoing signaling patterns (left) and incoming signaling patterns (right) in co-
420 cultured mouse FTW stem cells. (E) Violin plot showing area multiplied by GFP intensity for
421 each FTW-mESC colonies in day 5 separate and co-cultures (mESCs: mXENs = 2:1 or 1:1) as
422 well as separate cultures supplemented with different ECM proteins. Matrigel_L: 0.5% (v/v),
423 Matrigel_H: 2% (v/v), Laminin_L: 30 μ g/ml, Laminin_H: 120 μ g/ml, Collagen_L: 15 μ g/ml,
424 Collagen_H: 60 μ g/ml, Vitronectin_L: 5 μ g/ml, Vitronectin_H: 30 μ g/ml. N.S. not significant. (F)
425 Violin plot showing area multiplied by GFP intensity for each FTW-mESC colonies in different
426 conditions. (G) Schematic summary of mechanistic insights of the observed proliferation
427 inhibition of FTW-mESCs by FTW-mXENs. N.S. not significant, ****P-value < 0.0001 . P-
428 values were calculated using two-tailed Student's t test. See also Figure S4.

429 **Figure 5. Cynomolgus monkey embryonic and extraembryonic stem cells derivation**

430 (A) Schematic of derivation of FTW embryonic and extra-embryonic stem cell lines from
431 cynomolgus monkey blastocyst. (B) Representative BF images of a 10 d.p.f monkey blastocyst,
432 day 12 outgrowth and stable FTW-cyXENs (passage 14). Scale bars, 50 μ m. (C) Representative
433 BF images of a 10 d.p.f monkey blastocyst, day 12 outgrowth and stable FTW-cyTSCs (passage
434 10). Scale bars, 50 μ m. (D) Representative BF images of a 7 d.p.f monkey blastocyst, day 7
435 outgrowth, FTW-cyESCs, passage 7. Scale bars, 50 μ m. (E) Representative IF images of
436 monkey extra-embryonic endoderm (GATA6 and GATA4), trophoblast (GATA3 and CK7), and
437 epiblast (OCT4 and SOX2) lineage markers in FTW-cyXENs (top), FTW-cyTSCs (middle), and
438 FTW-cyESCs (bottom), respectively. Scale bar, 100 μ m. (F) Representative IF co-staining
439 images of COL6A1, FOXA1, and GATA4 in differentiated FTW-cyXENs at day 9. Blue, DAPI.

440 Scale bars, 100 μ m. (G) Representative IF co-staining images of GATA3 with the EVT maker
441 HLAG in SCT-like cells differentiated from FTW-cyTSCs. (H) Representative IF co-staining
442 images of GATA3 with the EVT makers HCG and HCGB in EVT-like cells differentiated from
443 FTW-cyTSCs. See also Figure S5.

444 **Figure 6. Transcriptomic analyses of cynomolgus monkey FTW stem cells.**

445 (A) UMAP analysis of FTW-cyXENs, FTW-cyTSCs and FTW-cyESCs. (B) Bubble plot
446 showing the expression patterns of lineage makers in FTW-cyXENs, FTW-cyTSCs and FTW-
447 cyESCs. (C) A heatmap showing the DEGs of FTW-cyESCs, FTW-cyXENs and FTW-cyTSCs,
448 Selected genes from the DEGs and top two enriched GO terms were shown on the right. (D)
449 Correlation analysis of FTW-cyXENs, FTW-cyTSCs, FTW-cyESCs and published datasets from
450 cynomolgus monkey conceptuses.

451 **Figure 7. Cynomolgus monkey embryonic and extraembryonic stem cells co-cultures.**

452 (A) Representative fluorescence and BF merged images of day 1 to day 5 separately cultured
453 FTW-cyESCs (green) and FTW-mESCs co-cultured with FTW-cyXENs (red arrowheads) and/or
454 FTW-cyTSCs (blue arrowheads), or proliferative fibroblast. Scale bar, 100 μ m. (B) Violin plot
455 showing area multiplied by GFP intensity for each FTW-mESC colonies in different conditions.
456 (C) Heatmaps of outgoing signaling patterns (left) and incoming signaling patterns (right) in co-
457 cultured cynomolgus FTW stem cells. (D) Violin plot showing area multiplied by GFP intensity
458 for each FTW-cyESC colonies in day 5 separate and co-cultures (cyESCs: cyXENs = 1:3.5 or
459 1:7) as well as separate cultures supplemented with different ECM proteins. Matrigel_L: 0.5%
460 (v/v), Matrigel_H: 2% (v/v), Laminin_L: 2.5 μ g/ml, Laminin_H: 10 μ g/ml, Collagen_L: 15
461 μ g/ml, Collagen_H: 60 μ g/ml. *P-value < 0.05 , ****P-value < 0.0001 . P-values were
462 calculated using two-tailed Student's t test. See also Figure S6.

463 **SUPPLEMENTAL INFORMATION**

464 **Figure S1. Derivation, characterization of FTW-mXENs, FTW-mTSCs and FTW-mESCs
465 and developmental potential of FTW-mXENs and FTW-mTSCs.**

466 **Figure S2. Transcriptomic analyses of mouse FTW stem cells.**

467 **Figure S3. Proliferation restriction of FTW-mESCs by FTW-mXENs.**
468 **Figure S4. Mechanistic insights of growth inhibition and transcriptomic analyses of co-**
469 **cultured FTW stem cells.**
470 **Figure S5. Derivation and characterization of FTW-cyXENs, FTW-cyTSCs and FTW-**
471 **cyESCs.**
472 **Figure S6. Lineage crosstalk among co-cultured cynomolgus monkey FTW stem cells.**
473 **Figure S7. Cross-species comparison.**
474
475

476 **METHOD DETAILS**

477 **Mice.**

478 C57BL/6 and CD-1 (ICR) mice were purchased from Charles River or Envigo (Harlen). NOD-
479 SCID (NOD.CB17-*Prkdc*^{scid}/J) mice were purchased from the Jackson Lab. Mice were housed in
480 12-hr light/12-hr dark cycle at 22.1–22.3°C and 33–44% humidity. All procedures related to
481 animals were performed in accordance with the ethical guidelines of the University of Texas
482 Southwestern Medical Center. The animal protocol was reviewed and approved by the UT
483 Southwestern Institutional Animal Care and Use Committee (IACUC) [Protocol #2018-102430].
484 All experiments followed the 2021 Guidelines for Stem Cell Research and Clinical Translation
485 released by the International Society for Stem Cell Research (ISSCR). Human-mouse chimeric
486 studies were reviewed and approved by the UT Southwestern Stem Cell Oversight Committee
487 (SCRO) [Registration #14].

488 **Cynomolgus Monkeys.**

489 All animals and experimental procedures were approved in 2021 by the ethical committee of the
490 LPBR and Institute of Primate Translational Medicine and Kunming University of Science and
491 Technology (IPTM, KUST) , and performed by following the guidelines of the Association for
492 Assessment and Accreditation of Laboratory Animal Care International (AAALAC) for the
493 ethical treatment of non-human primates. 2 healthy female cynomolgus monkeys (*Macaca*
494 *fascicularis*), ranging in age from 5 to 8 years with body weights of 4 to 6 kg, were selected for

495 use in this study. All animals were housed at the State Key Laboratory of Primate Biomedical
496 Research (LPBR). All cynomolgus monkey embryos related work was conducted at the State
497 Key Laboratory of Primate Biomedical Research.

498 **Harvesting and culture of mouse embryos.**

499 C57BL/6 female mice (8–10 weeks old) were super ovulated by intraperitoneal (IP) injection
500 with 5 IU of PMSG (Prospec), followed by IP injection with 5 IU of hCG (Sigma-Aldrich) 48 h
501 later. After mating with C57BL/6 male mice, embryos at 8-cell to morula stages were harvested
502 at E2.75 [the presence of a virginal plug was defined as embryonic day 0.5 (E0.5) in KSOM-
503 HEPES by flushing oviducts and uterine horns. Embryos were cultured in the mKSOMaa
504 overnight until blastocyst stage in a humidified atmosphere containing 5% (v/v) CO₂ and 5%
505 (v/v) O₂ at 37 °C. CD-1 females (8 weeks old or older) in natural estrous cycles were mated with
506 CD-1 males. Blastocysts were harvested at E3.5 by flushing uterine horns.

507 **Derivation and culture of FTW-mXENs, FTW-mTSCs and FTW-mESCs.**

508 Embryo manipulations were performed under a dissection microscope (Nikon SMZ800N). In
509 brief, zona pellucidae (ZP) were removed from E3.5 blastocysts by brief treatment with acidic
510 Tyrode's solution (Millipore MR-004-D). After removing zona pellucidae, embryos were plated
511 on MEFs in FTW medium [N2B27 basal medium supplemented with FGF2 (20 ng/mL,
512 Peprotech), Activin-A (20 ng/mL, Peprotech) and CHIR99021 (3 µM, Selleckchem)]. After 6–8
513 days in culture, blastocyst outgrowths were passaged using TrypLE and re-seeded onto newly
514 prepared MEFs. XEN, TSC, and ESC colonies were manually picked for further cultivation.
515 Established mouse XEN, TSC, and ESC lines were cultured on MEFs plates pre-coated with 0.1%
516 gelatin in FTW medium. The cells were cultured at 37 °C under 5% CO₂, with daily media
517 changes. For passaging, the cells were dissociated into single cells using TrypLE Express
518 (GIBCO) and passaged onto new MEF-coated plates at a split ratio of 1:20 (FTW-mESCs), 1:10
519 (FTW-mTSCs), and 1:50 (FTW-mXEN) every 3–4 days.

520 **Generation of fluorescent mouse FTW cells.**

521 We used pCAG-IP-mKO or pCAG-IP-eGFP to label FTW-mXENs, FTW-mTSCs, and FTW-
522 mESCs. In brief, 1–2 µg of pCAG-IP-mKO/eGFP plasmids were transfected into 1 × 10⁶–2 ×
523 10⁶ dissociated single cells using an electroporator (NEPA21, Nepa Gene) following the protocol
524 recommended by the manufacturer. Then, 0.5–1.0 µg ml⁻¹ of puromycin (Invitrogen) was added

525 to the culture medium 2–3 days after transfection. Drug-resistant colonies were manually picked
526 between 7 to 14 days and further expanded clonally.

527 ***In vitro* differentiation of FTW-mTSCs and FTW-mXENs.**

528 FTW-XENs were dissociated into single cells using TrypLE Express and seeded into a 6-well
529 plate pre-coated with 5 μ g/mL Laminin at a density of 2×10^5 cells (mouse XEN) or 5×10^5 cells
530 (monkey and human XEN) per well in XEN differentiation medium for 9 days, with medium
531 changes every other day. XEN differentiation medium was prepared using the following: 1:1 (v/v)
532 mixture of DMEM/F12 and Neurobasal medium, 1X N2 supplement, 1X B27 minus insulin
533 supplement, 1X GlutaMAX, 1X Nonessential amino acids, 0.1 mM β -mercaptoethanol, 0.5%
534 Penicillin-Streptomycin, and 10% FBS.

535 **Harvesting and culture of cynomolgus embryos.**

536 Cynomolgus monkey (*Macaca fascicularis*) ovarian stimulation, oocyte recovery and in vitro
537 fertilization were performed as previously described(Niu et al., 2014). Briefly, healthy female
538 cynomolgus monkeys were subjected to follicular stimulation by intramuscular injection of 20
539 IU of recombinant human follitropin alpha (rhFSH, Gonal F, Merck Serono) for 8 days, then
540 1,000 IU recombinant human chorionic gonadotropin alpha (rhCG, OVIDREL, Merck Serono)
541 was injected on day 9. Cumulus-oocyte complexes were collected by laparoscopic follicular
542 aspiration 32-35 hours following rhCG administration. Follicular contents were placed in
543 HEPES-buffered Tyrode's albumin lactate pyruvate (TALP) medium containing 0.3% bovine
544 serum albumin (BSA) (Sigma-Aldrich) at 37°C. Oocytes were stripped of cumulus cells by
545 pipetting after a brief exposure (<1 min) to hyaluronidase (0.5 mg/mL) in TALP-HEPES to
546 allow visual selection of nuclear maturity metaphase II (MII; first polar body present) oocytes.
547 The maturity oocytes were subjected to intracytoplasmic sperm injection (ICSI) immediately and
548 then cultured in CMRL-1066 medium (Gibco, 11530037) containing 10% FBS at 37°C in 5%
549 CO₂. Fertilization was confirmed by the presence of the second polar body and two pronuclei.
550 Zygotes were then cultured in the chemically defined hamster embryo culture medium-9
551 (HECM-9) containing 10% fetal bovine serum at 37 °C in 5% CO₂ to allow embryo
552 development. The blastocysts were collected at 7 days post fertilization (d.p.f.). The zona
553 pellucida of blastocyst was removed by exposure to hyaluronidase from bovine testes (Sigma-
554 Aldrich) about 30 seconds and embryos were cultured in vitro until 10 days post fertilization.

555 **Derivation and culture of FTW-cyXENs, FTW-cyTSCs, FTW-cyESCs.**

556 For the derivation of FTW-cyXENs and FTW-cyTSCs, 10 d.p.f. cynomolgus monkey embryos
557 were dissected with a 31-gauge syringe needle and plated into wells of 4-well dish coated with
558 0.1% gelatin and covered with mitotically inactivated MEF in FTW medium (done the same way
559 as with mouse). To promote the proliferation of hypoblast, 1% KSR (Thermo Fisher Scientific,
560 A3181502) and PDGF (10 ng/mL, R&D, 220-BB) were also added(Zhong *et al.*, 2018). After 8-
561 10 days, XEN-like and TS-like colonies appeared. Single colonies were isolated and then
562 dissociated by TrypLE (Thermo Fisher Scientific,12604021) for 3 minutes at 37 °C, and
563 passaged into a well of a 4-well dish. Established FTW-cyXENs and FTW-cyTSCs were
564 passaged by TrypLE every 6-7 days (monkey) at a split ratio of 1:10 in FTW medium under 20%
565 O₂ and 5% CO₂ at 37□. To derive FTW-cyESCs(Kang *et al.*, 2018), blastocysts (7 days p.c.)
566 were plated into a well of 4-well dish coated with 0.1% gelatin and MEFs in FTW cyESC
567 medium [N2B27 basal medium supplemented with 20% KSR, FGF2 (6 ng/mL, Peprotech),
568 Activin-A (25 ng/mL, Peprotech) and CHIR99021 (1.5 μM, Selleckchem)] under 5% O₂ and 5%
569 CO₂. After 8-10 days, the ES-like outgrowths appeared and were dissociated using TrypLE for 3
570 minutes at 37 °C. The established FTW-cyESCs were cultured in a 6-well plate pre-coated with
571 0.1% gelatin MEFs in FTW cyESC medium under 20% O₂ and 5% CO₂ at 37□.

572 ***In vitro* Differentiation of FTW-cyXENs.**

573 To induce differentiation, FTW-cyXENs were dissociated into single cells using TrypLE and
574 seeded into a 6-well plate pre-coated with 5 μg/mL Laminin at a density of 5×10^5 cells per well
575 and kept in differentiation medium for 9 days with medium changes every other day.
576 Differentiation medium was prepared as following: 1:1 (v/v) mixture of DMEM/F12 and
577 Neurobasal medium, 0.5X N2 supplement, 0.5X B27 supplement, 1% GlutaMAX, 1%
578 Nonessential amino acids, 0.1 mM β-Mercaptoethanol, 1% Penicillin-Streptomycin, and 10%
579 FBS.

580 ***In vitro* Differentiation of FTW-cyTSCs.**

581 FTW-cyTSCs were differentiated into ST and EVT as the described with human cells(Okae *et al.*,
582 2018). For the induction of EVT cells, FTW-cyTSCs were dissociated into single cells in a 6-
583 well plate pre-coated with 1 mg/ml Collagen-IV at a density of 1×10^5 cells per well and
584 cultured with 3 mL of EVT medium (DMEM/F12 supplemented with 1% Penicillin-
585 Streptomycin, 0.3% BSA, 4% KnockOut Serum Replacement ,0.1 mM β-Mercaptoethanol ,1%
586 ITS-X supplement, 100 ng/ml NRG1, 2.5 mM Y27632, 7.5 mM A83-01). 2% Matrigel was

587 added to the medium on the first day. At day 3, the medium was changed to EVT medium with
588 0.5% Matrigel, but without NRG1. At day 6, the medium was replaced with EVT medium with
589 0.5% Matrigel, but without NRG1 and KSR, and cells were cultured for an additional two days.
590 For differentiation of ST (2D) cells, FTW-cyTSCs were dissociated in a 6-well plate pre-coated
591 with 2.5 mg/ml Collagen-IV at a density of 2×10^5 cells per well and cultured in 3 mL of ST(2D)
592 medium (DMEM/F12 supplemented with 0.1 mM β -Mercaptoethanol, 1% Penicillin-
593 Streptomycin, 4% KSR, 0.3% BSA, 1% ITS-X supplement, 2.5 mM Y27632 and 2 mM
594 Forskolin). The medium was replaced on day 3, and the cells were analyzed on day 6. For the
595 differentiation of ST (3D) cells, 2×10^5 FTW-cyTSCs were seeded in a 3.5 cm Petri dish and
596 cultured with 3 mL of ST (3D) medium (DMEM/F12 supplemented with 0.1 mM β -
597 Mercaptoethanol, 1% Penicillin-Streptomycin, 4% KSR, 0.3% BSA, 1% ITS-X supplement, 2
598 mM Forskolin, 50 ng/ml EGF, and 2.5 mM Y27632]. An equal amount of fresh ST (3D) medium
599 was added at day 3. The cells were passed through a 40 μ m mesh filter to remove dead cells and
600 debris at day 6.

601 **RT-PCR and qRT-PCR Analysis.**

602 Total RNA was isolated using the RNeasy Mini Kit (QIAGEN) following the manufacturer's
603 instructions. Contaminating genomic DNA was removed by RNase-Free DNase Set (QIAGEN).
604 RNA concentrations were measured on a spectrophotometer (DS-11+, DeNovix). cDNA was
605 synthesized with iScript Reverse Transcription Supermix kit (BIO-RAD) and amplified with
606 PrimeSTAR GXL DNA Polymerase (TaKaRa) or with SYBR Green PCR Master Mix (Thermo
607 Fisher Scientific) on a Touch Thermal Cycler Real-Time PCR system (C1000, BIO-RAD).
608 GAPDH was used as an internal normalization control. All primers used in this study were listed
609 in Table S7.

610 **Cell population doubling time.**

611 The cell population doubling time was calculated using the doubling time online calculator
612 (<http://www.doubling-time.com/compute.php?lang=en>).

613 **Cell Growth Curve.**

614 FTW-cyXENs, FTW-cyTSCs and FTW-cyESCs's (1×10^5) were seeded onto 6-well plates
615 coated with MEF in FTW medium, with media changes every day. Cells were harvested by
616 TrypLE Express at the indicated time points, depleted of MEFs by plating the cell suspension

617 onto 0.5% gelatin-coated plates for 30 minutes, and growth curves were generated by manual
618 cell counting.

619 **Teratoma formation.**

620 For FTW-mTSC and FTW-mXEN teratomas, a total of 5×10^6 cells were resuspended in 100 μL
621 of DMEM-Matrigel solution (1:1) and injected subcutaneously into 10-week-old
622 immunodeficient NOD-SCID mice. After 2 weeks, FTW-mTSC teratomas were dissected and
623 fixed with PBS containing 4% formaldehyde. After 3 months, FTW-mXEN teratomas were
624 dissected and fixed with PBS containing 4% formaldehyde. For cyTSC teratomas, a total of $1 \times$
625 10^7 cells were resuspended in 100 μL of DMEM-Matrigel solution (1:1) and injected
626 subcutaneously into 10-week-old immunodeficient NOD-SCID mice. After 7 days, FTW-mTSC
627 teratomas were dissected and fixed with PBS containing 4% formaldehyde. For co-culture
628 experiments, the FTW-mESC only group was injected with 1×10^6 FTW-mESCs, and the co-
629 culture group was injected with 1×10^6 FTW-mESCs and 2.5×10^5 FTW-mXENs. After one
630 month, teratomas were dissected, weighed, and then fixed. Paraffin-embedded teratomas were
631 sliced and stained with hematoxylin and eosin. Teratomas were formed using the following cell
632 numbers: 1×10^6 FTW-mESCs only, or 1×10^6 FTW-mESCs plus 1.25×10^5 (8:1), 2.5×10^5
633 (4:1), 5×10^5 (2:1), 1×10^6 (1:1), 2×10^6 (1:2) FTW-mXENs. After one month, teratomas were
634 dissected, weighed, and fixed.

635 **Immunostaining.**

636 Samples were fixed in 4% PFA for 15 min, washed three times with PBS and permeabilized with
637 0.5% Triton X-100 in PBS for 30 min at room temperature. Cells were then blocked with
638 blocking buffer [5% (w/v) BSA; and 0.1% (v/v) Tween 20 in PBS] for 1 h and incubated with
639 the primary antibodies (Table S7) diluted in blocking buffer at room temperature for 2 h or at
640 4°C overnight. After three washes with PBST (PBS plus 0.1% Tween 20), the cells were
641 incubated with corresponding secondary antibodies (1:300 diluted, Table S7) in blocking buffer
642 at room temperature for 1 h. After additional three times PBST washes, cells were counterstained
643 with 300 nM DAPI solution at room temperature for 20 min before mounting. Samples were
644 imaged using a fluorescence (Echo Laboratories, CA) or a confocal microscope (A1R, Nikon).

645 **Flow Cytometry.**

646 Cells were dissociated with TrypLE Express at 37 °C for 5 min. Then, the cells were fixed in 4%
647 PFA at room temperature for 30 min and permeabilized with 0.5% (v/v) Triton X-100 at room

648 temperature for 30 min. The cells were then incubated in the primary antibody (Table S7)
649 solution for 30 min and then the secondary antibody solution for 30 min at room temperature.
650 Samples stained with only secondary antibodies were used as the negative controls. Between
651 each step, the samples were washed twice with PBS containing 2% FBS. Finally, the stained
652 cells were suspended in PBS containing 2% FBS and analyzed by flow cytometry (FACScalibur
653 system, BD).

654 **Blastocyst injection of FTW-mXENs and mouse FTW-mTSCs.**

655 FTW-mXEN injection into mouse blastocysts was performed as described previously(Yu *et al.*,
656 2021b) with slight modifications. Briefly, single cell suspensions of mouse and human FTW-
657 mXENs were added to a 40 μ L droplet of KSOM-HEPES containing the blastocysts and placed
658 on an inverted microscope (Nikon) fitted with micromanipulators (Narishige). Individual cells
659 were collected into a micropipette with 15–20 μ m internal diameter (ID), and a Piezo Micro
660 Manipulator (Prime Tech) was used to create a hole in the zona pellucida and trophectoderm
661 layer of mouse blastocysts. 10-12 (FTW-mXEN/ FTW-mTSCs) cells were introduced into the
662 blastocoel. After microinjection, the blastocysts were cultured in mKSOMaa. For mouse embryo
663 transfer, 8–12 weeks old ICR female mice were used as surrogates and were mated with
664 vasectomized ICR male mice to induce pseudopregnancy. Ketamine (30 mg/ml) / Xylazine (4
665 mg/mL) and Buprenorphine (1 mg/mL) were used in surgery for maintaining anesthesia and
666 relieving pain. Injected blastocysts were transferred to the surrogate uterine at E2.5. 14–30
667 blastocysts were transferred within 20–30 min per surrogate.

668 **Immunostaining and imaging of chimeric embryos.**

669 At E7.5 or E11.5, surrogates were euthanized, and embryos were isolated. Embryos were
670 dissected and checked for fluorescence using zeiss Axio Zoom.V16 fluorescence stereo zoom
671 microscope equipped with a Plan-Neofluar Z 1.0x/0.25 (FWD 56 mm) objective and Axiocam
672 503 monochromatic camera. Embryos were fixed in 4% paraformaldehyde and incubated at 4°C
673 for 30 min (E7.5 embryos) or overnight (E11.5 embryos). After overnight cryoprotection in 30%
674 sucrose solution (Fisher), the embryos were embedded in Polyfreeze Tissue freezing medium
675 (Polyscience, Inc) and frozen on dry ice. Sections (10 μ m thick) of the different embryos were
676 cut on a Leica cryostat (Leica CM1950). For immunostaining, 10 mM citrate buffer (0.05%
677 Tween 20 based) was used for antigen retrieval. The primary antibodies used were summarized
678 in Table S7. After washing with TBST three times, the cells were incubated with corresponding

679 secondary antibodies in blocking buffer at room temperature for 1 hour. Samples were
680 counterstained with 300 nM DAPI solution at room temperature for 20 min and washed with
681 PBST at least three times. Finally, slides were imaged using a fluorescence microscope (Echo
682 Laboratories, CA).

683 **Mouse cell-cell co-culture assay.**

684 FTW-mESCs-eGFP, FTW-mTSCs-WT, and FTW-mXENs-mKO/WT were seeded onto MEF-
685 coated plates either cultured separately or mixed at different ratios for co-cultures. The seeding
686 ratio and density were empirically tested and decided on the basis of cell growth rate. A starting
687 number of FTW-mESCs-eGFP (1.5×10^4 cells), FTW-mTSCs-WT (3×10^4 cells, and FTW-
688 mXENs-mKO (7.5×10^3 cells) were decided on for most of the cell-cell co-culture assays.
689 During co-culture experiments, cells were cultured in FTW medium on MEFs for 5 days and the
690 following analyses were performed. For co-culture experiments with various different cell ratios,
691 FTW-mESCs-eGFP were seeded at a fixed cell number (1.5×10^4 cells per well) and with
692 varying numbers of FTW-mTSCs-WT and/or FTW-mXENs-WT.

693 For 3D co-culture, AggreWell™800 was used to form Embryoid bodies (EBs). For separate
694 culture experiments, FTW-mESCs-eGFP were seeded into an AggreWell™800 with 2.4×10^5
695 cells per well (800 cells per microwell), and for co-culture experiments, 2.4×10^5 cells FTW-
696 mESCs-eGFP and 1.2×10^5 FTW-mXENs-WT were added per well (400 cells per microwell).
697 The next day, EBs were transferred into 6-well low-attachment plates for further culture. Media
698 was changed every day for 4 days using FTW medium. For 3D co-culture experiments with
699 different ratios, FTW-mESCs-eGFP were seeded at the fixed density of 2.4×10^5 cells per well
700 and with varying densities of FTW-mXENs-WT.

701 For the differentiation co-culture experiments, FTW-mESCs-eGFP and FTW-mXENs-mKO
702 were seeded, and the medium was switched to differentiation medium containing DMEM/F12
703 supplemented with 10% fetal bovine serum (FBS) the next day. On day 5, the number of FTW-
704 mESCs-eGFP cells was counted.

705 **Transwell culture assay.**

706 For transwell co-culture experiments, Millipore Transwell 0.4 μ m PET hanging inserts (Millicell,
707 MCH12H48) were used by placing them into 12-well plates. MEFs were coated on the top/
708 bottom well. For separate culture groups, FTW-mESCs-eGFP (5000 cells) were seeded on the
709 bottom wells, but not the top insert. For co-culture groups, FTW-mESCs-eGFP (5000 cells) and

710 FTW-mXENs-WT (2500 cells) were seeded on the bottom and top insert of the wells,
711 respectively. Half of the medium was changed every day and cell numbers were counted on day
712 5.

713 **Mouse ECM protein inhibition assay.**

714 Mouse FTW-mESC-GFP cells were passaged using TrypLE and seeded in a well of 6-well plate
715 at 1.5×10^4 cells in FTW cyESC medium under 20% O₂ and 5% CO₂ at 37°C. After 4 hours, the
716 ECM protein mixtures (Matrigel_L: 0.5% (v/v), Matrigel_H: 2% (v/v), Laminin_L: 30 µg/ml,
717 Laminin_H: 120 µg/ml, Collagen_L:15 µg/ml, Collagen_H:60 µg/ml, Vitronectin_L: 5 µg/ml,
718 Vitronectin_H: 30 µg/ml) were directly added into the culture medium every day for 5 days.
719 Medium and ECM proteins were changed every day.

720 **Monkey cell-cell co-culture assay.**

721 FTW-cyESCs-GFP, FTW-cyTSCs-WT, and FTW-cyXENs-mKO or WT were seeded onto
722 MEF-coated plates and mixed at different ratios for co-culture experiments. The seeding ratios
723 and densities were empirically tested and decided on the basis of cell growth rate. These numbers
724 were: FTW-cyESCs-GFP (5×10^4 cells), FTW-cyTSCs-WT (30×10^4 cells, and FTW-cyXENs-
725 mKO/WT (35×10^4 cells). During co-culture experiments, cells were cultured in MEF-coated
726 plates in FTW cyESC medium for 5 days.

727 **Monkey ECM protein inhibition assay.**

728 Monkey FTW-cyESC-GFP cells were passaged by treatment with TrypLE and 5×10^4 cells were
729 seeded into a well of 6-well plate in FTW medium under 20% O₂ and 5% CO₂ at 37°C. After 4
730 hours, ECM mixtures were added (Matrigel: 0.5%, 2%; Laminin: 2.5µg/ml, 10µg/ml;
731 Collagen:15 µg/ml, 60 µg/ml) directly added into the culture medium every day for 5 days.
732 Medium and ECM proteins were changed every day.

733 **Total FTW-mESCs/cyESCs number counting.**

734 For all of the co-culture experiments, total ES cell numbers were quantified in the following
735 manner. Cells were dissociated into single cells using TrypLE Express at 37 °C for 4 min, and
736 the total number of live cells were counted. Next, the relative percentage of eGFP+ FTW-ESCs-
737 eGFP were determined using an LSR II Flow Cytometer (BD Bioscience). Total ES cell number
738 (tN) for each group in both the co-cultured and separate culture conditions were determined by
739 multiplying total cell volume (V) with cell concentration (CC) and percentage of eGFP+ cells (P).

740 $tN = V \times CC \times P$. Cell density (cells cm^{-2}) was calculated by dividing the total cell number by
741 the surface area.

742 **Colony Size and intensity analysis.**

743 All of the co-culture experiments involving colony size and intensity were analyzed in the
744 following method. On day 5 of co-culture, fluorescently labeled cells were imaged with a Leica
745 Microsystem DMi8 microscope using Leica Application Suite X software for analysis. The
746 images were taken randomly by the software in a fixed area for each well and A Fiji pipeline was
747 used to quantify the size and intensity of the ESCs colonies. Briefly, images are preprocessed
748 with median filters to filter out noise and small debris, binary images are then created through
749 Otsu thresholding, and watershed was applied to separate merged clones. The quantification was
750 implemented with the Analyze Particles function of Fiji based on the binary images created
751 earlier. The average ESC colony Pixels (P) for each group in co-cultures and separate cultures
752 were determined by multiplying colony Size (A) with colony intensity (I). $P = A \times I$. For mouse
753 cell experiments, there were three independent biological replicates for each group and 3 images
754 for each sample. All of the colonies from 9 images were analyzed. For monkey cell experiments,
755 10 images were taken randomly and all of the colonies were analyzed in the 10 images.

756 **E6.5 epiblasts in-vitro cultivation assay with or without visceral endoderm.**

757 To obtain embryos, ICR females were mated with males from ICR (Charles River Laboratories)
758 in the afternoon, and the presence of vaginal plugs was checked the next morning. The day on
759 which a plug was found was considered to be E0.5. Both male and female mice were used at
760 ages between 6 to 25 weeks. All the animal experiments were performed under the ethical
761 guidelines of the Kindai University, and animal protocols were reviewed and approved by the
762 Kindai University Animal Care and Use Committee. The developmental stage of embryos is
763 critical for adapting the cultivation of isolated epiblast to an STO-conditioned medium. The
764 isolated epiblasts before the onset of gastrulation collapsed in culture, while those after at onset
765 of gastrulation were stable for growth in an STO-conditioned medium and were applicable for
766 further experiments. The embryos at E6.5-6.75 were surgically isolated in cold DMEM
767 supplemented with 10% fetal calf serum (FCS, BioWest), and whole epiblasts were isolated by
768 the mechanical removal of Reichert's membrane, extra-embryonic ectoderm as well as visceral
769 endoderm, depending on the cases, using fine forceps and a tungsten needle. The isolated
770 epiblasts with or without visceral endoderm were plated into Nunclon Sphera-treated, 96-well U-

771 shaped-bottom microplate (174925, Thermo Scientific) in STO-conditioned medium. The STO-
772 conditioned medium was prepared as follows. Dulbecco's Modified Eagle's Medium (DMEM,
773 SIGMA) supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% Penicillin-
774 Streptomycin (10,000 U/mL, Gibco) was used to culture Mitomycin-C inactivated STO feeders
775 for 2 days. After 48 hours, cultured epiblast outgrowths including visceral endoderm in the case
776 were dissociated with TrypLE (Gibco, 12604013), and the total cell number was counted.

777 **Bulk RNA-sequencing.**

778 RNA extraction was performed using an RNeasy Mini Kit (QIAGEN) using DNase treatment
779 (QIAGEN). RNA was analyzed using a 2100 Bioanalyzer (Agilent Technologies). (Transcripts
780 per Kilobase Million). For monkey cells, RNA was extracted with Trizol Reagent (15596026,
781 Invitrogen). The RNA (~50 ng) reverse transcription reaction and amplification were performed
782 using SuperScript II (18064-071, Invitrogen), and KAPA HiFi HotStart Ready Mix (KK2602,
783 KAPA). The cDNA was analyzed using a 2100 Bioanalyzer (Agilent Technologies). The RNA
784 Library was generated using TruePrep DNA Library Prep Kit V2 for Illumina (TD501, Vazyme),
785 then the library was adapted for sequencing on an Illumina NovaSeq 6000 platform (sequenced by
786 Annoroad).

787 **Pre-processing of raw RNA-seq data.**

788 All reads were mapped to the mouse (GRCm38/mm10), human (GRCh38/hg38), and rhesus
789 macaque genome (Mmul_10/rheMac10) using hisat2 (version 2.2.1) with default settings.
790 FeatureCount (version 2.0.1) was used to estimate read counts. Stringtie (version 2.1.4) was
791 used to estimate fragments per kilobase of exon per million fragments mapped (FPKM) and
792 transcripts per kilobase of exon model per million mapped reads (TPM) values according to a
793 previous report(Kovaka et al., 2019), genes with an FPKM value ≥ 3 were considered as
794 expressed.

795 **Comparison analysis with published available datasets.**

796 The previously published datasets including mouse(Bao *et al.*, 2018; Cruz-Molina *et al.*, 2017;
797 Cui *et al.*, 2019; Kubaczka *et al.*, 2015; Mohammed *et al.*, 2017; Wu *et al.*, 2015; Wu *et al.*,
798 2011; Ye *et al.*, 2018; Zhao *et al.*, 2015; Zhong *et al.*, 2018), human(Linneberg-Agerholm *et al.*,
799 2019; Xiang *et al.*, 2020; Zhou *et al.*, 2019) and monkey(Ma *et al.*, 2019; Nakamura *et al.*, 2016;
800 Niu *et al.*, 2019b) embryonic single-cell RNA sequencing and mouse cell lines (nEND)
801 microarray datasets(Anderson *et al.*, 2017) were obtained from GEO repository (NCBI) and

802 incorporated into our analysis. The expression levels of scRNA-seq data were transformed into
803 $\log_2(\text{TPM} + 1)$, and those of microarray data were transformed into $\log_2(\text{intensity})$.

804 **Principal components analysis (PCA).**

805 The principal component analysis (PCA) was performed using the prcomp function without
806 scaling. The DEGs were defined as genes exhibiting more than twofold changes between the
807 samples ($P < 0.005$) and the sum of the expression level of every gene was $\log_2(\text{TPM}+1) > 0$
808 with the variance > 0 .

809 **Similarities inference between cells.**

810 We selected the union of the top 2000 genes of highest variance for our dataset and the published
811 dataset and calculated 20 canonical correlates (CCs) with diagonal CCA. After running CCA, the
812 first 10 CCs were used for t-SNE visualization. The homology cell types were co-clustered in the
813 same CCA cluster. Then, the correlation analysis was employed to detect the correspondence of
814 cell subtype for our cells and the previous published embryonic cells by using expression matrix
815 of 200 high variable genes that contributed to the first 10 CCs.

816 **Differential expression and GO and KEGG pathway analysis.**

817 Differentially expressed genes (DEGs) among clusters were detected by the Seurat function
818 “Find All Markers”. Heatmaps showing the expression distribution of marker genes of cell
819 clusters were created by pheatmap R package. We used the functions enrichKEGG and
820 enrichGO in clusterProfiler R package(Yu et al., 2012) to perform KEGG pathways(Kanehisa et
821 al., 2019) and Gene Ontology (GO) biological processes enrichment analysis. A pathway or
822 process with a P value ≤ 0.05 was considered to be significantly enriched. The enriched
823 pathways and processes were visualized with the “ggplot” function in the ggplot2 package in R.

824 **Single cell samples preparation.**

825 Mouse blastocysts were collected at E3.5 and the zona pellucida removed by Tyler’s buffer as
826 described previously(Yu et al., 2021b). After removing the zona, blastocysts were washed in
827 PBS/PVA two times. Digestion was performed in TrypLE Express for 10 minutes at 37 $^{\circ}\text{C}$, and
828 cell clumps were cut up by mouth glass pipettes beginning with a larger size (50 μm diameter) to
829 a smaller size (20 μm diameter). The totally digestion time was around 40-50 minutes. For the
830 FTW-derive-day 8 outgrowth samples, blastocysts were collected and plated onto MEF-coated
831 plates in FTW medium for 8 days, and then the outgrowth area were picked and dissociated. For

832 the established FTW cell lines, all the cells were dissociated with TripLE Express for 3-5
833 minutes at 37 °C.

834 **scRNA-seq library preparing and sequencing.**

835 Single cell suspensions were diluted at a concentration of 1100 cells/µL in 0.04% bovine serum
836 albumin (BSA)/PBS for loading into 10X Chromium Single Cell G Chips (for mouse blastocysts,
837 all the of the cells were loaded into the chip). Single cell libraries were prepared using the
838 Chromium Single Cell 3' Reagent Kit v3.1 (10X Genomics, Pleasanton, CA) following the
839 manufacturer's protocol. Briefly, single cells were partitioned into Gel beads in EMulsion
840 (GEMs) in the GemCode instrument followed by cell lysis and barcoded reverse transcription of
841 RNA, amplification, shearing and 5' adaptor and sample index attachment. Libraries were
842 sequenced on the Illumina NovaSeq 6000 platform.

843 **scRNA-seq data analysis.**

844 Single-cell gene expression count matrix was constructed with Cell Ranger (v6.0.0). The
845 subsequent analyses were performed using the Seurat package (v4.6.0) (Hao et al., 2021). For
846 each dataset, transcription noise cells were removed by a series of criteria, including minimal
847 expression of 200 genes per cell, mitochondrial read percentage < 20%, ribosomal read
848 percentage > 5%, as well as specific minimal/maximal number of genes and maximal reads for
849 each dataset. For the monkey, after stringent quality filtering, we generated 35987 single cell
850 transcriptomes with a median unique molecular identifier (UMI) of 22277 and gene number of
851 5436. Cells passed quality control were merged and normalized using Seurat's SCT method.
852 Datasets from different sources were integrated using Seurat's CCA method. The UMAP
853 dimensional reduction was performed using the first 30 PCs from the PCA analysis. Cells were
854 then clustered using the FindClusters function in Seurat package. Cell identities were annotated
855 based on the expression of cell marker genes. To examine the correlation among cell clusters, we
856 first performed PCA analysis for each cell cluster and then carried out correlation analysis using
857 the PC1s extracted from the cell clusters.

858 **Cell clustering by nonlinear dimensional reduction.**

859 To remove the influence of different experimental conditions on the samples, batch effect
860 correction was carried out. Briefly, following the standard processing steps, including use of
861 “SelectIntegrationFeatures” function to select 2,000 feature genes, “FindIntegrationAnchors”
862 function to find a set of anchors between different samples, “IntegrateData” function to integrate

863 data, “RunPCA” and “RunUMAP” function select 30 PCs dimensionality reduction, “DimPlot”
864 function to graphs the output of a dimensional reduction technique on a 2D scatter plot. The
865 Seurat package was applied to perform cell clustering analysis based on TPM expression values,
866 and only the genes with an expression level greater than 5 were included for further analysis.
867 Then uniform manifold approximation and projection (UMAP) were applied for visualization.
868 First, “FindIntegrationAnchors” function took these objects as input with parameters as
869 “k.anchor = 5, anchor.features = 2000” and returned an anchor object. Then, “IntegrateData”
870 function used the anchor object to integrate all data- sets with the default parameter. Finally, the
871 top-10/30 principal components (PCs) were used for clustering (with a resolution of 1) by Seurat.

872 **Pseudotime trajectory analysis.**

873 Slingshot(Street *et al.*, 2018) was used to determine cell Pseudotime trajectories. First, the object
874 that determines the cell type is passed into the “SingleCellExperiment” sim object. Then use a
875 “Rtsne” function to dimensionality reduction (dims = 2, perplexity = 10, pca = TRUE, pca_scale
876 = FALSE, normalize = FALSE). Slingshot analysis was then performed on the diffusion map to
877 determine per-cell pseudotime estimates and mapped back to the UMAP embedding.

878 **Gene regulatory networks.**

879 Single cell regulatory network inference and clustering (SCENIC) (Aibar *et al.*, 2017) has been
880 used to infer gene regulatory networks based on single cell expression profiles and identify cell
881 states, providing important biological insights into the mechanism of cell heterogeneity. To
882 identify important transcriptional regulation during cell development, we used pySCENIC
883 grn/ctx/aucell of the Python module tool pySCENIC to obtain core regulatory TF. The workflow
884 first describes the input single-cell expression abundance profile matrix and applies a per-target
885 regression method (GRNBoost2) to infer co-expression modules from which indirect targets are
886 pruned based on cis-regulatory motif discovery (cisTarget). Subsequently, the activity of these
887 regulatory factors was quantified using aucells, and the regulatory factor activity score (RAS)
888 was obtained by enrichment and scoring the target genes of the regulatory factors. The regulator
889 specificity score (RSS) was calculated based on Jensen-Shannon divergence (JS) to determine
890 the cluster-specific regulators, this process is implemented through R language “calcRSS”
891 function and visualized through ggplot2.

892 **Cell-cell communication analysis.**

893 To compare the changes of the cell-cell interactions among ES, TS and XEN between the co-
894 culture and separate culture conditions, we performed cell-cell communication analysis using the
895 CellChat package(Jin *et al.*, 2021). Following the official workflow, we calculated the potential
896 ligand-receptor interactions among the three cell lineages in each condition and then compared
897 the numbers and strength of these interactions between the two conditions. Briefly, loaded the
898 normalized counts into CellChat and applied the standard preprocessing steps, including the
899 functions “identifyOverExpressedGenes”, “identifyOverExpressedInteractions”, and
900 “projectData” with a standard parameter set. We then calculated the potential ligand-receptor
901 interactions between infected and non-infected cells based on the functions
902 “computeCommunProb”, “computeCommunProbPathway”, and “aggregateNet” using standard
903 parameters, all of the above procedures use default parameters.

904 **CRISPR knockout.**

905 We used the online software Benchling CRISPR to design all single guide RNAs (sgRNAs) used
906 in this study. The sequences of sgRNAs are included in Table S7. sgRNAs were cloned into the
907 pSpCas9(BB)-2A-eGFP (Addgene, PX458) plasmid by ligating annealed oligonucleotides with
908 BbsI-digested vector. The plasmid carrying the specific sgRNA was then transfected into FTW-
909 mESCs or FTW-mXENs by using an electroporator (NEPA2, Nepa Gene 1). EGFP positive cells
910 were sorted by flow cytometry after 48 h transfection and 2000 cells were plated in one well of a
911 6 well plate. Single clones were picked and expanded. Homozygous knockout clones were
912 confirmed by Sanger sequencing.

913 **Plasmids.**

914 pSpCas9(BB)-2A-eGFP (PX458) plasmid was purchased from Addgene (plasmid 48138).
915 pCAG-IP-mKO, pCAG-IP-eGFP plasmids were obtained from T. Hishida.

916 **Statistical Analysis.**

917 All quantitative data is presented as the mean \pm SD. Experiments were repeated at least three
918 times (repeat number was indicated as “n” in figure legends). Differences between groups were
919 evaluated by Student’s t-test (two-sided). *P* values are shown in the figures. Graphic analyses
920 were done using GraphPad Prism version 7.0 and 8.0 (GraphPad Software, La Jolla, Ca) and
921 Microsoft Excel (Microsoft 365).

922

923 **REFERENCES**

924 Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G.,
925 Rambow, F., Marine, J.-C., Geurts, P., Aerts, J., et al. (2017). SCENIC: single-cell regulatory
926 network inference and clustering. *Nature Methods* *14*, 1083-1086. 10.1038/nmeth.4463.

927 Anderson, K.G.V., Hamilton, W.B., Roske, F.V., Azad, A., Knudsen, T.E., Canham, M.A.,
928 Forrester, L.M., and Brickman, J.M. (2017). Insulin fine-tunes self-renewal pathways governing
929 naive pluripotency and extra-embryonic endoderm. *Nat Cell Biol* *19*, 1164-1177.
930 10.1038/ncb3617.

931 Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R.J., Rahmsdorf, H.J., Jonat, C., Herrlich, P.,
932 and Karin, M. (1987). Phorbol ester-inducible genes contain a common cis element recognized
933 by a TPA-modulated trans-acting factor. *Cell* *49*, 729-739. 10.1016/0092-8674(87)90611-8.

934 Angel, P., and Karin, M. (1991). The role of Jun, Fos and the AP-1 complex in cell-proliferation
935 and transformation. *Biochim Biophys Acta* *1072*, 129-157. 10.1016/0304-419x(91)90011-9.

936 Artus, J., Douvaras, P., Piliszek, A., Isern, J., Baron, M.H., and Hadjantonakis, A.K. (2012).
937 BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral
938 endoderm identity. *Dev Biol* *361*, 245-262. 10.1016/j.ydbio.2011.10.015.

939 Bao, S., Tang, W.W., Wu, B., Kim, S., Li, J., Li, L., Kobayashi, T., Lee, C., Chen, Y., Wei, M.,
940 et al. (2018). Derivation of hypermethylated pluripotent embryonic stem cells with high potency.
941 *Cell Res* *28*, 22-34. 10.1038/cr.2017.134.

942 Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Integrins. *Cell and Tissue Research* *339*,
943 269-280. 10.1007/s00441-009-0834-6.

944 Bogliotti, Y.S., Wu, J., Vilarino, M., Okamura, D., Soto, D.A., Zhong, C., Sakurai, M., Sampaio,
945 R.V., Suzuki, K., Izpisua Belmonte, J.C., and Ross, P.J. (2018). Efficient derivation of stable
946 primed pluripotent embryonic stem cells from bovine blastocysts. *Proc Natl Acad Sci U S A* *115*,
947 2090-2095. 10.1073/pnas.1716161115.

948 Cheng, S., Pei, Y., He, L., Peng, G., Reinius, B., Tam, P.P.L., Jing, N., and Deng, Q. (2019).
949 Single-Cell RNA-Seq Reveals Cellular Heterogeneity of Pluripotency Transition and X
950 Chromosome Dynamics during Early Mouse Development. *Cell Reports* *26*, 2593-2607.e2593.
951 10.1016/j.celrep.2019.02.031.

952 Chiu, S.Y., Maruyama, E.O., and Hsu, W. (2010). Derivation of mouse trophoblast stem cells
953 from blastocysts. *J Vis Exp*. 10.3791/1964.

954 Choi, K.H., Lee, D.K., Kim, S.W., Woo, S.H., Kim, D.Y., and Lee, C.K. (2019). Chemically
955 Defined Media Can Maintain Pig Pluripotency Network In Vitro. *Stem Cell Reports* *13*, 221-234.
956 10.1016/j.stemcr.2019.05.028.

957 Cruz-Molina, S., Respuela, P., Tebartz, C., Kolovos, P., Nikolic, M., Fueyo, R., van Ijcken,
958 W.F.J., Grosveld, F., Frommolt, P., Bazzi, H., and Rada-Iglesias, A. (2017). PRC2 Facilitates the
959 Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell
960 Differentiation. *Cell Stem Cell* *20*, 689-705.e689. 10.1016/j.stem.2017.02.004.

961 Cui, T., Jiang, L., Li, T., Teng, F., Feng, G., Wang, X., He, Z., Guo, L., Xu, K., Mao, Y., et al.
962 (2019). Derivation of Mouse Haploid Trophoblast Stem Cells. *Cell Reports* *26*, 407-414.e405.
963 10.1016/j.celrep.2018.12.067.

964 Deglincerti, A., Croft, G.F., Pietila, L.N., Zernicka-Goetz, M., Siggia, E.D., and Brivanlou, A.H.
965 (2016). Self-organization of the in vitro attached human embryo. *Nature* *533*, 251-254.

966 Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from
967 mouse embryos. *Nature* *292*, 154-156. 10.1038/292154a0.

968 Fang, R., Liu, K., Zhao, Y., Li, H., Zhu, D., Du, Y., Xiang, C., Li, X., Liu, H., Miao, Z., et al.
969 (2014). Generation of Naive Induced Pluripotent Stem Cells from Rhesus Monkey Fibroblasts.
970 *Cell Stem Cell* 15, 488-497. 10.1016/j.stem.2014.09.004.

971 Fu, J., Warmflash, A., and Lutolf, M.P. (2021). Stem-cell-based embryo models for fundamental
972 research and translation. *Nat Mater* 20, 132-144. 10.1038/s41563-020-00829-9.

973 Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk,
974 A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. *Cell*
975 184, 3573-3587.e3529. 10.1016/j.cell.2021.04.048.

976 Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C.-H., Myung, P., Plikus,
977 M.V., and Nie, Q. (2021). Inference and analysis of cell-cell communication using CellChat.
978 *Nature Communications* 12. 10.1038/s41467-021-21246-9.

979 Jochum, W., Passegué, E., and Wagner, E.F. (2001). AP-1 in mouse development and
980 tumorigenesis. *Oncogene* 20, 2401-2412. 10.1038/sj.onc.1204389.

981 Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2019). New approach
982 for understanding genome variations in KEGG. *Nucleic Acids Res* 47, D590-d595.
983 10.1093/nar/gky962.

984 Kang, Y., Ai, Z., Duan, K., Si, C., Wang, Y., Zheng, Y., He, J., Yin, Y., Zhao, S., Niu, B., et al.
985 (2018). Improving Cell Survival in Injected Embryos Allows Primed Pluripotent Stem Cells to
986 Generate Chimeric Cynomolgus Monkeys. *Cell Reports* 25, 2563-2576.e2569.
987 10.1016/j.celrep.2018.11.001.

988 Kinoshita, M., Barber, M., Mansfield, W., Cui, Y., Spindlow, D., Stirparo, G.G., Dietmann, S.,
989 Nichols, J., and Smith, A. (2021). Capture of mouse and human stem cells with features of
990 formative pluripotency. *Cell Stem Cell* 28, 453-471. e458.

991 Kovaka, S., Zimin, A.V., Pertea, G.M., Razaghi, R., Salzberg, S.L., and Pertea, M. (2019).
992 Transcriptome assembly from long-read RNA-seq alignments with StringTie2. *Genome Biol* 20,
993 278. 10.1186/s13059-019-1910-1.

994 Kubaczka, C., Senner, C.E., Cierlitz, M., Araúzo-Bravo, M.J., Kuckenberg, P., Peitz, M.,
995 Hemberger, M., and Schorle, H. (2015). Direct Induction of Trophoblast Stem Cells from
996 Murine Fibroblasts. *Cell Stem Cell* 17, 557-568. 10.1016/j.stem.2015.08.005.

997 Kunath, T., Arnaud, D., Uy, G.D., Okamoto, I., Chureau, C., Yamanaka, Y., Heard, E., Gardner,
998 R.L., Avner, P., and Rossant, J. (2005). Imprinted X-inactivation in extra-embryonic endoderm
999 cell lines from mouse blastocysts. *Development* 132, 1649-1661. 10.1242/dev.01715.

1000 Kwon, G.S., Fraser, S.T., Eakin, G.S., Mangano, M., Isern, J., Sahr, K.E., Hadjantonakis, A.K.,
1001 and Baron, M.H. (2006). Tg(Afp-GFP) expression marks primitive and definitive endoderm
1002 lineages during mouse development. *Dev Dyn* 235, 2549-2558. 10.1002/dvdy.20843.

1003 Kyprianou, C., Christodoulou, N., Hamilton, R.S., Nahaboo, W., Boomgaard, D.S., Amadei, G.,
1004 Migeotte, I., and Zernicka-Goetz, M. (2020). Basement membrane remodelling regulates mouse
1005 embryogenesis. *Nature* 582, 253-258. 10.1038/s41586-020-2264-2.

1006 Li, P., Tong, C., Mehrian-Shai, R., Jia, L., Wu, N., Yan, Y., Maxson, R.E., Schulze, E.N., Song,
1007 H., Hsieh, C.L., et al. (2008). Germline competent embryonic stem cells derived from rat
1008 blastocysts. *Cell* 135, 1299-1310. 10.1016/j.cell.2008.12.006.

1009 Linneberg-Agerholm, M., Wong, Y.F., Romero Herrera, J.A., Monteiro, R.S., Anderson, K.G.V.,
1010 and Brickman, J.M. (2019). Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF
1011 signalling to produce expandable naïve extra-embryonic endoderm. *Development* 146.
1012 10.1242/dev.180620.

1013 Ma, H., Zhai, J., Wan, H., Jiang, X., Wang, X., Wang, L., Xiang, Y., He, X., Zhao, Z.A., Zhao,
1014 B., et al. (2019). In vitro culture of cynomolgus monkey embryos beyond early gastrulation.
1015 *Science* 366. 10.1126/science.aax7890.

1016 Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in
1017 medium conditioned by teratocarcinoma stem cells. *Proc Natl Acad Sci U S A* 78, 7634-7638.
1018 10.1073/pnas.78.12.7634.

1019 Mohammed, H., Hernando-Herraez, I., Savino, A., Scialdone, A., Macaulay, I., Mulas, C.,
1020 Chandra, T., Voet, T., Dean, W., Nichols, J., et al. (2017). Single-Cell Landscape of
1021 Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. *Cell*
1022 *Rep* 20, 1215-1228. 10.1016/j.celrep.2017.07.009.

1023 Molè, M.A., Weberling, A., Fässler, R., Campbell, A., Fishel, S., Zernicka-Goetz, M. (2021).
1024 Integrin β 1 coordinates survival and morphogenesis of the embryonic lineage upon implantation
1025 and pluripotency transition. *Cell Reports* 34, 108834. 10.1016/j.celrep.2021.108834.

1026 Moore, R., Tao, W., Smith, E.R., and Xu, X.-X. (2014). The Primitive Endoderm Segregates
1027 from the Epiblast in β 1 Integrin-Deficient Early Mouse Embryos. *Molecular and Cellular*
1028 *Biology* 34, 560-572. 10.1128/mcb.00937-13.

1029 Moris, N., Anlas, K., van den Brink, S.C., Alemany, A., Schröder, J., Ghimire, S., Balayo, T.,
1030 van Oudenaarden, A., and Martinez Arias, A. (2020). An in vitro model of early anteroposterior
1031 organization during human development. *Nature* 582, 410-415.

1032 Nakamura, T., Okamoto, I., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya, H., Seita, Y.,
1033 Nakamura, S., Yamamoto, T., and Saitou, M. (2016). A developmental coordinate of
1034 pluripotency among mice, monkeys and humans. *Nature* 537, 57-62. 10.1038/nature19096.

1035 Niakan, K.K., Schröde, N., Cho, L.T., and Hadjantonakis, A.K. (2013). Derivation of
1036 extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. *Nat*
1037 *Protoc* 8, 1028-1041. 10.1038/nprot.2013.049.

1038 Niu, Y., Shen, B., Cui, Y., Chen, Y., Wang, J., Wang, L., Kang, Y., Zhao, X., Si, W., Li, W., et
1039 al. (2014). Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene
1040 targeting in one-cell embryos. *Cell* 156, 836-843. 10.1016/j.cell.2014.01.027.

1041 Niu, Y., Sun, N., Li, C., Lei, Y., Huang, Z., Wu, J., Si, C., Dai, X., Liu, C., and Wei, J. (2019a).
1042 Dissecting primate early post-implantation development using long-term in vitro embryo culture.
1043 *Science* 366, eaaw5754.

1044 Niu, Y., Sun, N., Li, C., Lei, Y., Huang, Z., Wu, J., Si, C., Dai, X., Liu, C., Wei, J., et al. (2019b).
1045 Dissecting primate early post-implantation development using long-term in vitro embryo culture.
1046 *Science* 366. 10.1126/science.aaw5754.

1047 Nowotschin, S., Setty, M., Kuo, Y.Y., Liu, V., Garg, V., Sharma, R., Simon, C.S., Saiz, N.,
1048 Gardner, R., Boutet, S.C., et al. (2019). The emergent landscape of the mouse gut endoderm at
1049 single-cell resolution. *Nature* 569, 361-367. 10.1038/s41586-019-1127-1.

1050 Okae, H., Toh, H., Sato, T., Hiura, H., Takahashi, S., Shirane, K., Kabayama, Y., Suyama, M.,
1051 Sasaki, H., and Arima, T. (2018). Derivation of Human Trophoblast Stem Cells. *Cell Stem Cell*
1052 22, 50-63.e56. 10.1016/j.stem.2017.11.004.

1053 Pera, M.F., and Rossant, J. (2021). The exploration of pluripotency space: Charting cell state
1054 transitions in peri-implantation development. *Cell Stem Cell* 28, 1896-1906.
1055 10.1016/j.stem.2021.10.001.

1056 Rivera-Pérez, J.A., and Hadjantonakis, A.-K. (2015). The Dynamics of Morphogenesis in the
1057 Early Mouse Embryo. *Cold Spring Harbor Perspectives in Biology* 7, a015867.
1058 10.1101/cshperspect.a015867.

1059 Sekiguchi, R., and Yamada, K.M. (2018). Basement Membranes in Development and Disease. In
1060 (Elsevier), pp. 143-191. 10.1016/bs.ctdb.2018.02.005.

1061 Shahbazi, M.N., Jedrusik, A., Vuoristo, S., Recher, G., Hupalowska, A., Bolton, V., Fogarty,
1062 N.M., Campbell, A., Devito, L.G., and Ilic, D. (2016). Self-organization of the human embryo in
1063 the absence of maternal tissues. *Nature cell biology* *18*, 700-708.

1064 Shahbazi, M.N., and Zernicka-Goetz, M. (2018). Deconstructing and reconstructing the mouse
1065 and human early embryo. *Nature Cell Biology* *20*, 878-887. 10.1038/s41556-018-0144-x.

1066 Street, K., Risso, D., Fletcher, R.B., Das, D., Ngai, J., Yosef, N., Purdom, E., and Dudoit, S.
1067 (2018). Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. *BMC*
1068 *Genomics* *19*. 10.1186/s12864-018-4772-0.

1069 Tanaka, S., Kunath, T., Hadjantonakis, A.K., Nagy, A., and Rossant, J. (1998). Promotion of
1070 trophoblast stem cell proliferation by FGF4. *Science* *282*, 2072-2075.
1071 10.1126/science.282.5396.2072.

1072 Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S.,
1073 and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. *Science* *282*,
1074 1145-1147. 10.1126/science.282.5391.1145.

1075 Vandevort, C.A., Thirkill, T.L., and Douglas, G.C. (2007). Blastocyst-derived trophoblast stem
1076 cells from the rhesus monkey. *Stem Cells Dev* *16*, 779-788. 10.1089/scd.2007.0020.

1077 Vilarino, M., Alba Soto, D., Soledad Bogliotti, Y., Yu, L., Zhang, Y., Wang, C., Paulson, E.,
1078 Zhong, C., Jin, M., Carlos Izpisua Belmonte, J., et al. (2020). Derivation of sheep embryonic
1079 stem cells under optimized conditions. *Reproduction* *160*, 761-772. 10.1530/rep-19-0606.

1080 Vu, T.H. (2000). Matrix metalloproteinases: effectors of development and normal physiology.
1081 *Genes & Development* *14*, 2123-2133. 10.1101/gad.815400.

1082 Wu, J., and Izpisua Belmonte, J.C. (2015). Dynamic Pluripotent Stem Cell States and Their
1083 Applications. *Cell Stem Cell* *17*, 509-525. 10.1016/j.stem.2015.10.009.

1084 Wu, J., Okamura, D., Li, M., Suzuki, K., Luo, C., Ma, L., He, Y., Li, Z., Benner, C., Tamura, I.,
1085 et al. (2015). An alternative pluripotent state confers interspecies chimaeric competency. *Nature*
1086 *521*, 316-321. 10.1038/nature14413.

1087 Wu, J., Platero-Luengo, A., Sakurai, M., Sugawara, A., Gil, M.A., Yamauchi, T., Suzuki, K.,
1088 Bogliotti, Y.S., Cuello, C., Morales Valencia, M., et al. (2017). Interspecies Chimerism with
1089 Mammalian Pluripotent Stem Cells. *Cell* *168*, 473-486.e415. 10.1016/j.cell.2016.12.036.

1090 Wu, T., Wang, H., He, J., Kang, L., Jiang, Y., Liu, J., Zhang, Y., Kou, Z., Liu, L., Zhang, X., and
1091 Gao, S. (2011). Reprogramming of trophoblast stem cells into pluripotent stem cells by Oct4.
1092 *Stem Cells* *29*, 755-763. 10.1002/stem.617.

1093 Xiang, L., Yin, Y., Zheng, Y., Ma, Y., Li, Y., Zhao, Z., Guo, J., Ai, Z., Niu, Y., Duan, K., et al.
1094 (2020). A developmental landscape of 3D-cultured human pre-gastrulation embryos. *Nature* *577*,
1095 537-542. 10.1038/s41586-019-1875-y.

1096 Ye, B., Liu, B., Yang, L., Zhu, X., Zhang, D., Wu, W., Zhu, P., Wang, Y., Wang, S., Xia, P., et
1097 al. (2018). LncKdm2b controls self-renewal of embryonic stem cells via activating expression of
1098 transcription factor Zbtb3. *Embo j* *37*. 10.15252/embj.201797174.

1099 Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and
1100 Smith, A. (2008). The ground state of embryonic stem cell self-renewal. *Nature* *453*, 519-523.
1101 10.1038/nature06968.

1102 Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing
1103 biological themes among gene clusters. *Omics* *16*, 284-287. 10.1089/omi.2011.0118.

1104 Yu, L., Ezashi, T., Wei, Y., Duan, J., Logsdon, D., Zhan, L., Nahar, A., Arteaga, C.P., Liu, L.,
1105 and Stobbe, C. (2022). Large scale production of human blastoids amenable to modeling
1106 blastocyst development and maternal-fetal crosstalk. *bioRxiv*.

1107 Yu, L., Wei, Y., Duan, J., Schmitz, D.A., Sakurai, M., Wang, L., Wang, K., Zhao, S., Hon, G.C.,
1108 and Wu, J. (2021a). Blastocyst-like structures generated from human pluripotent stem cells.
1109 *Nature* 591, 620-626. 10.1038/s41586-021-03356-y.

1110 Yu, L., Wei, Y., Sun, H.X., Mahdi, A.K., Pinzon Arteaga, C.A., Sakurai, M., Schmitz, D.A.,
1111 Zheng, C., Ballard, E.D., Li, J., et al. (2021b). Derivation of Intermediate Pluripotent Stem Cells
1112 Amenable to Primordial Germ Cell Specification. *Cell Stem Cell* 28, 550-567.e512.
1113 10.1016/j.stem.2020.11.003.

1114 Zhao, Y., Zhao, T., Guan, J., Zhang, X., Fu, Y., Ye, J., Zhu, J., Meng, G., Ge, J., Yang, S., et al.
1115 (2015). A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical
1116 Reprogramming. *Cell* 163, 1678-1691. 10.1016/j.cell.2015.11.017.

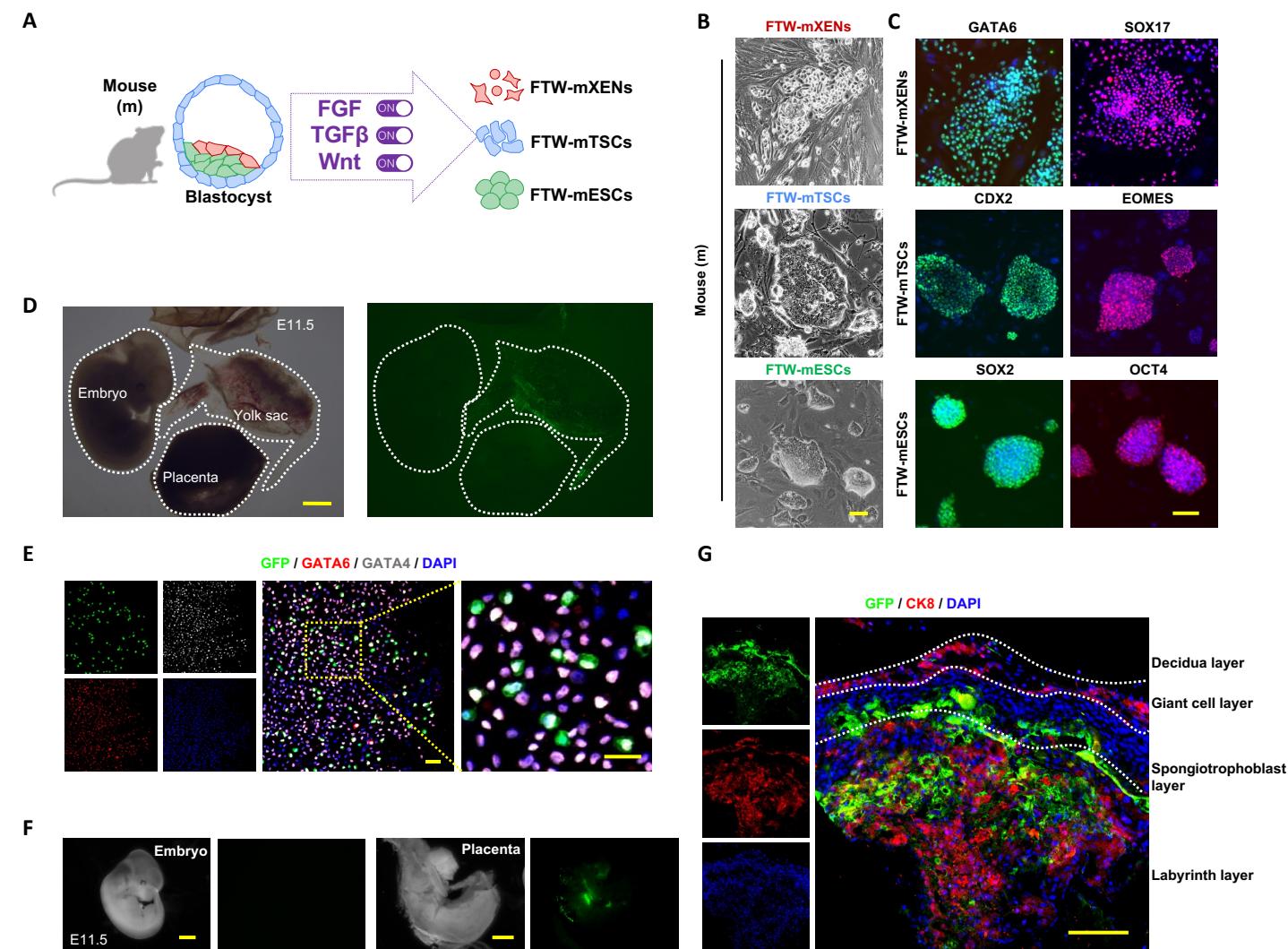
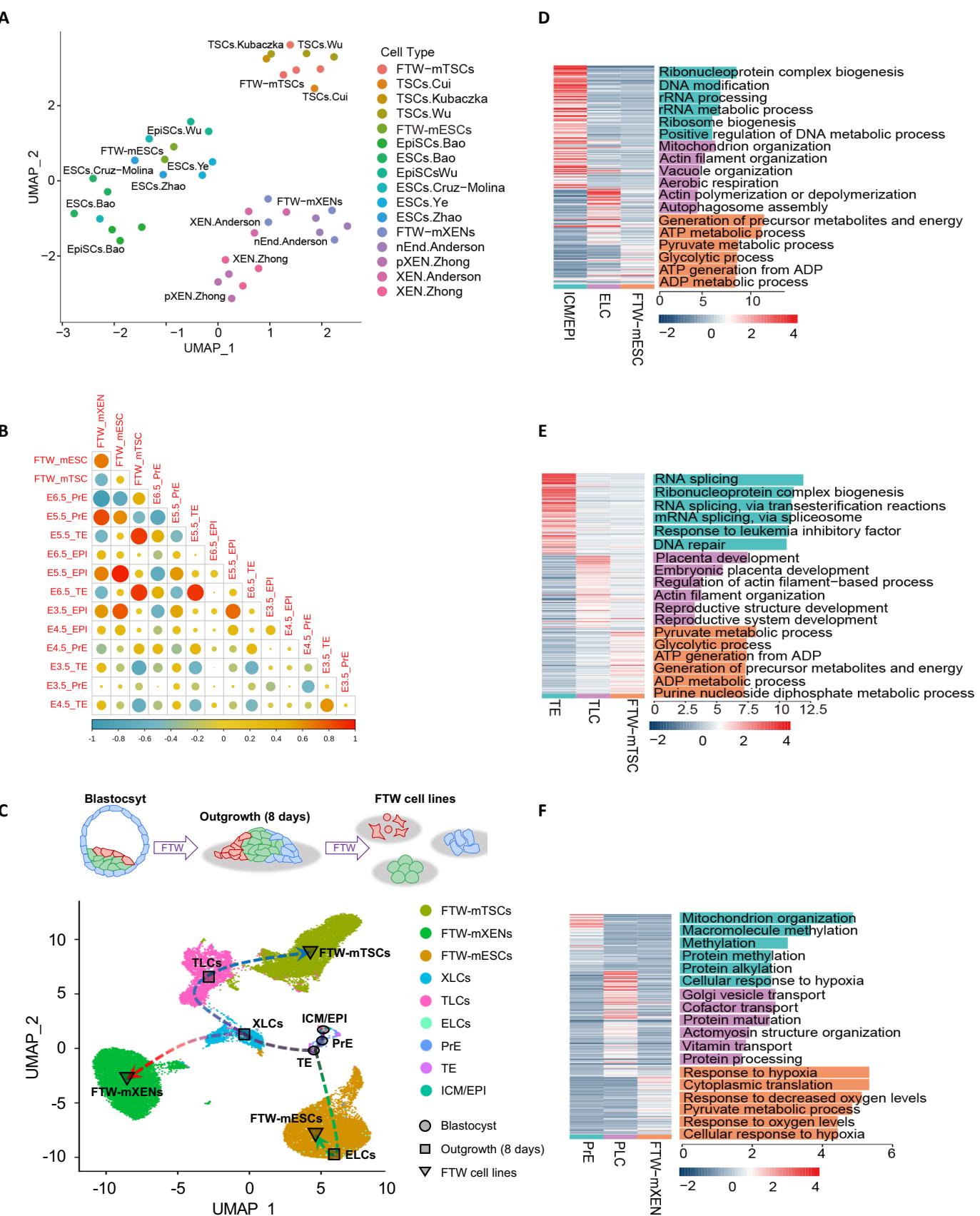
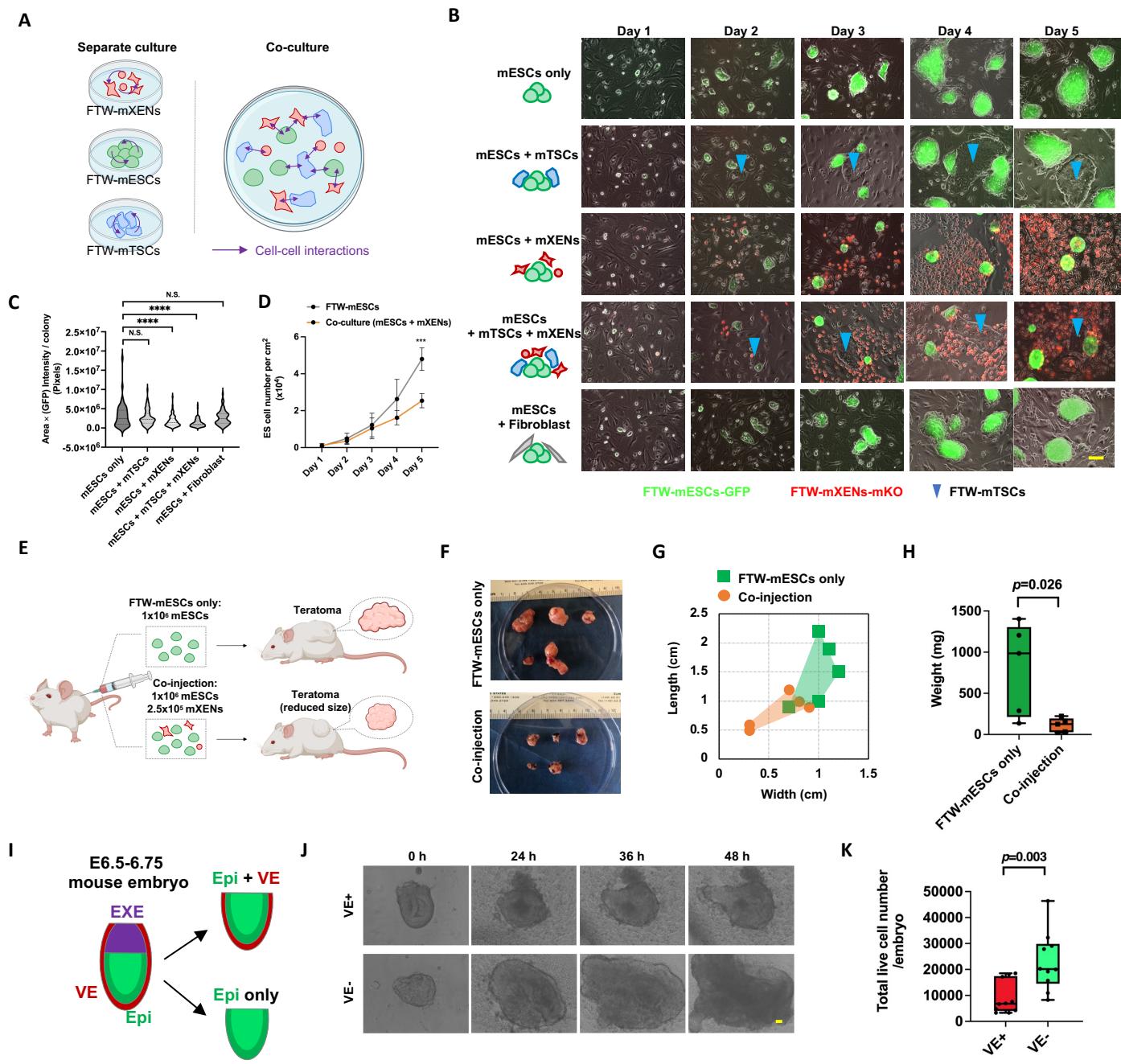
1117 Zheng, Y., Xue, X., Shao, Y., Wang, S., Esfahani, S.N., Li, Z., Muncie, J.M., Lakins, J.N.,
1118 Weaver, V.M., Gumucio, D.L., and Fu, J. (2019). Controlled modelling of human epiblast and
1119 amnion development using stem cells. *Nature* 573, 421-425. 10.1038/s41586-019-1535-2.

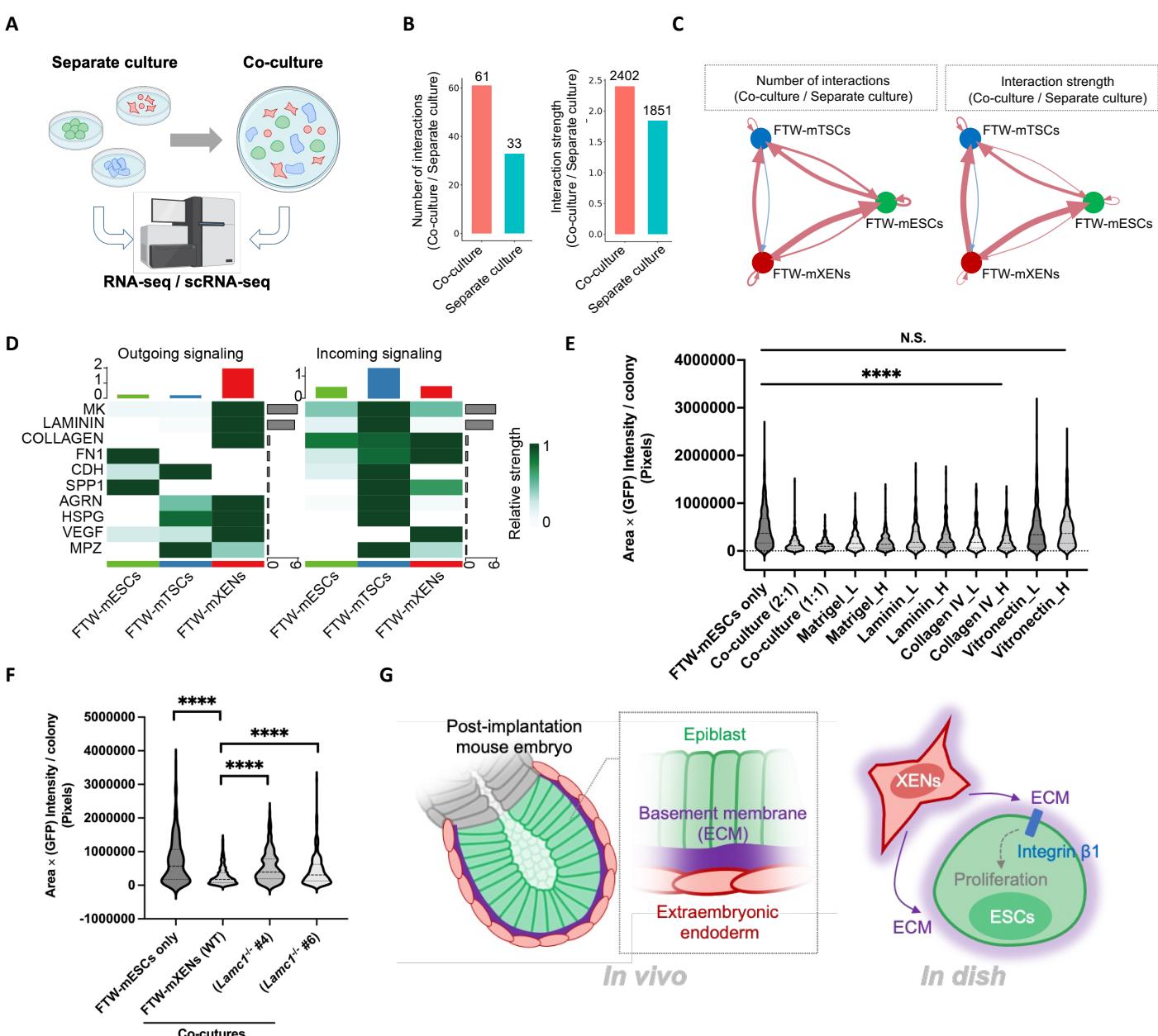
1120 Zhong, Y., Choi, T., Kim, M., Jung, K.H., Chai, Y.G., and Binas, B. (2018). Isolation of
1121 primitive mouse extraembryonic endoderm (pXEN) stem cell lines. *Stem Cell Res* 30, 100-112.
1122 10.1016/j.scr.2018.05.008.

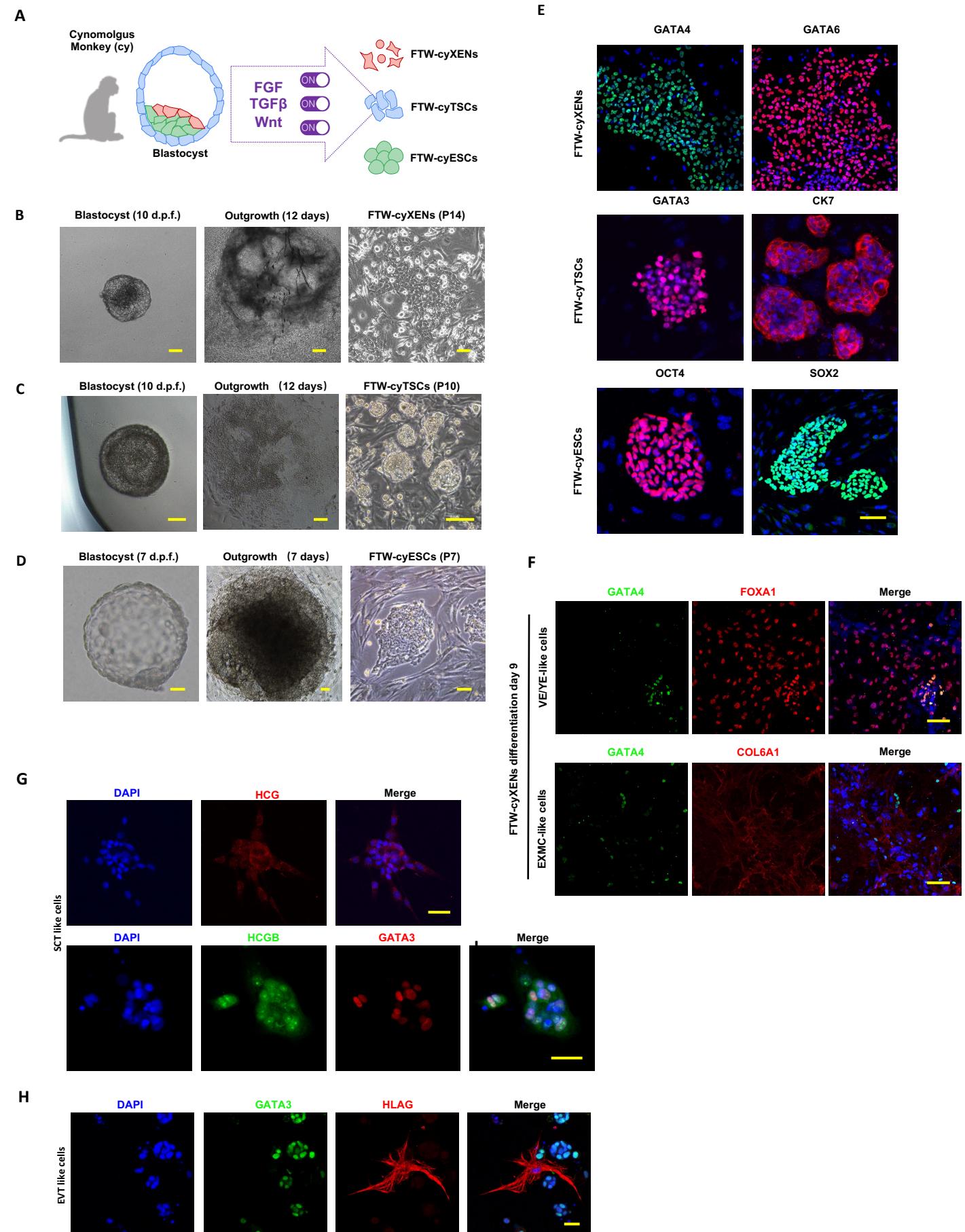
1123 Zhou, F., Wang, R., Yuan, P., Ren, Y., Mao, Y., Li, R., Lian, Y., Li, J., Wen, L., Yan, L., et al.
1124 (2019). Reconstituting the transcriptome and DNA methylome landscapes of human
1125 implantation. *Nature* 572, 660-664. 10.1038/s41586-019-1500-0.

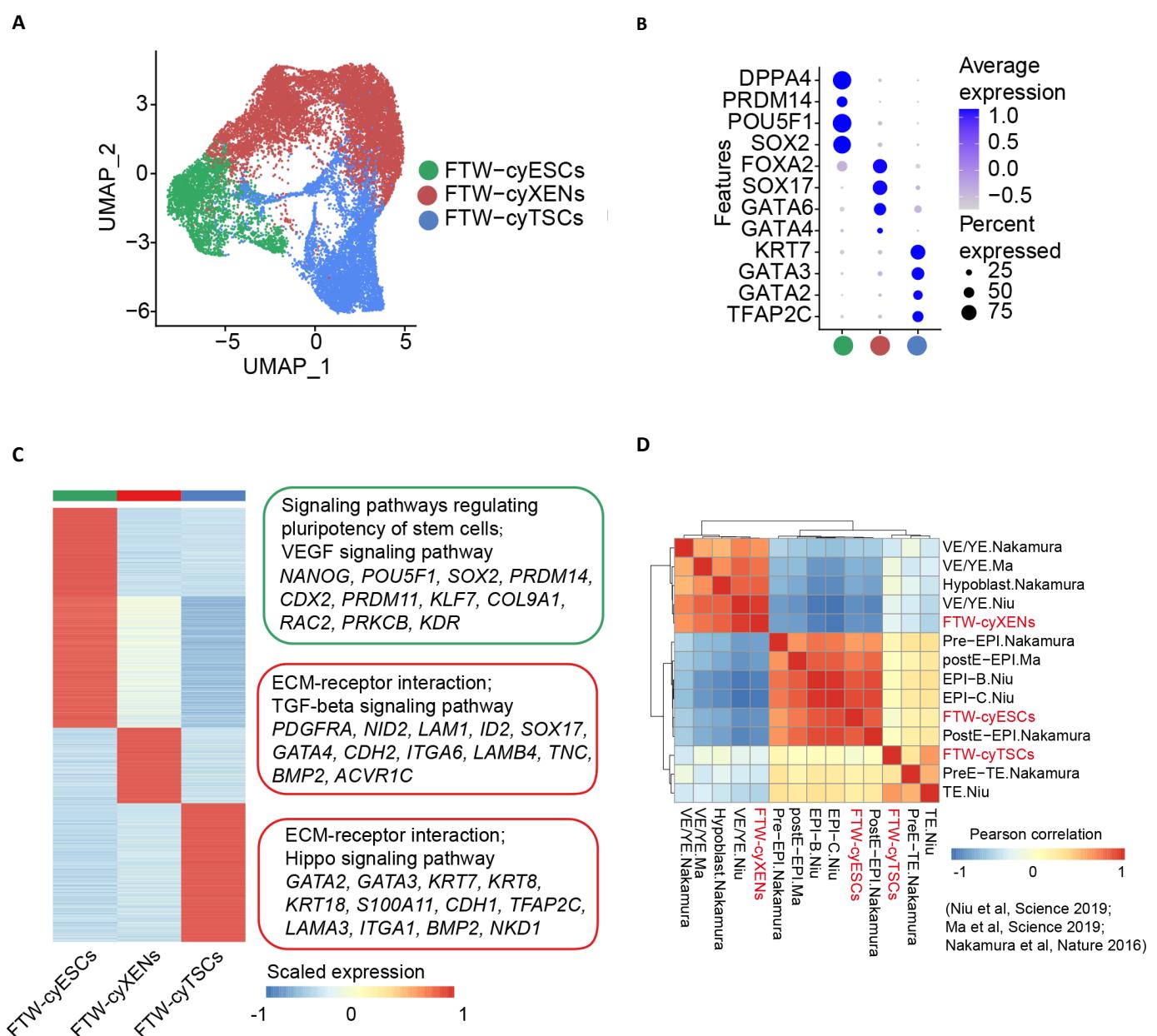
1126

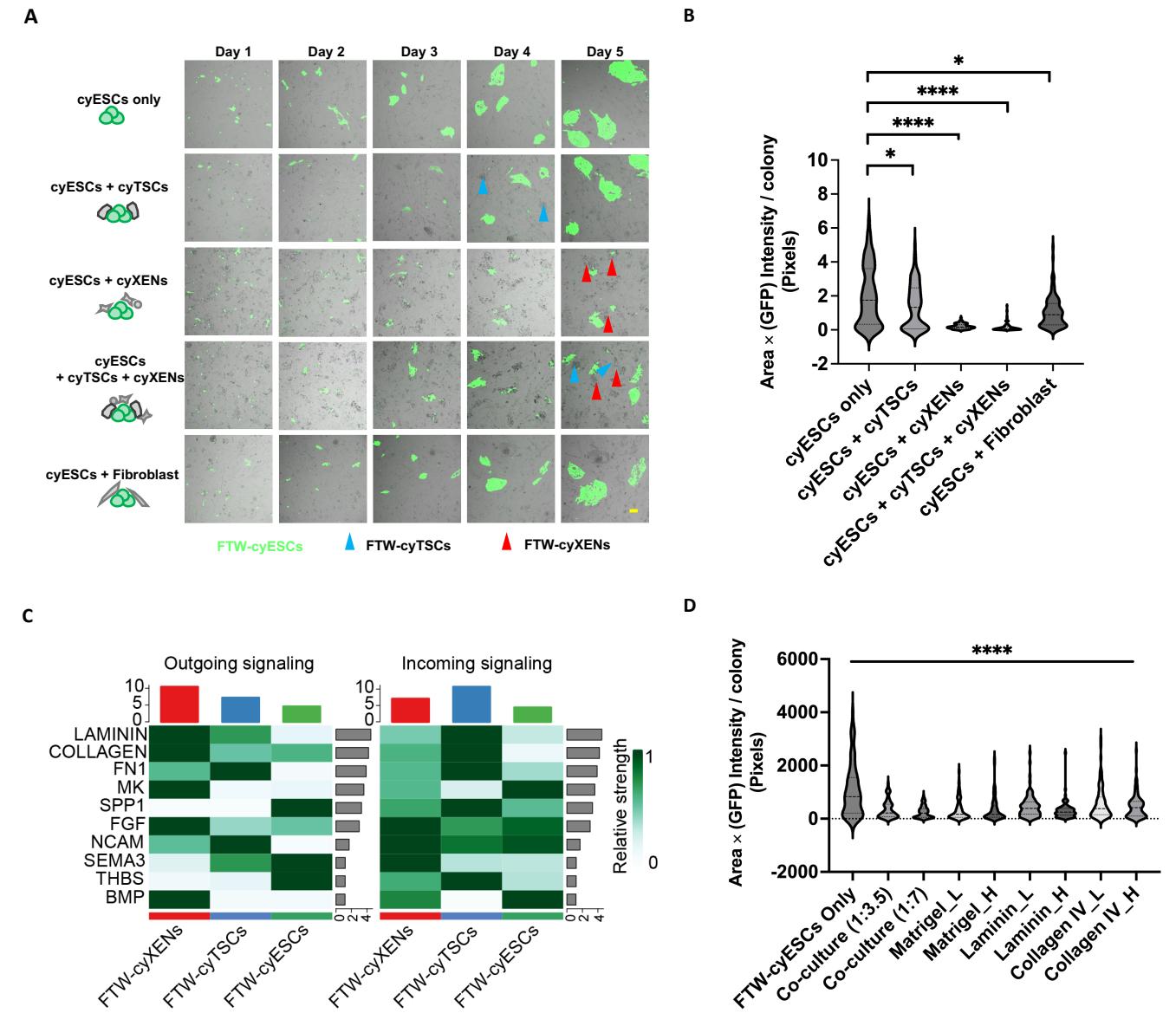
Figure. 1


Figure. 2


Figure. 3


Figure. 4


Figure. 5

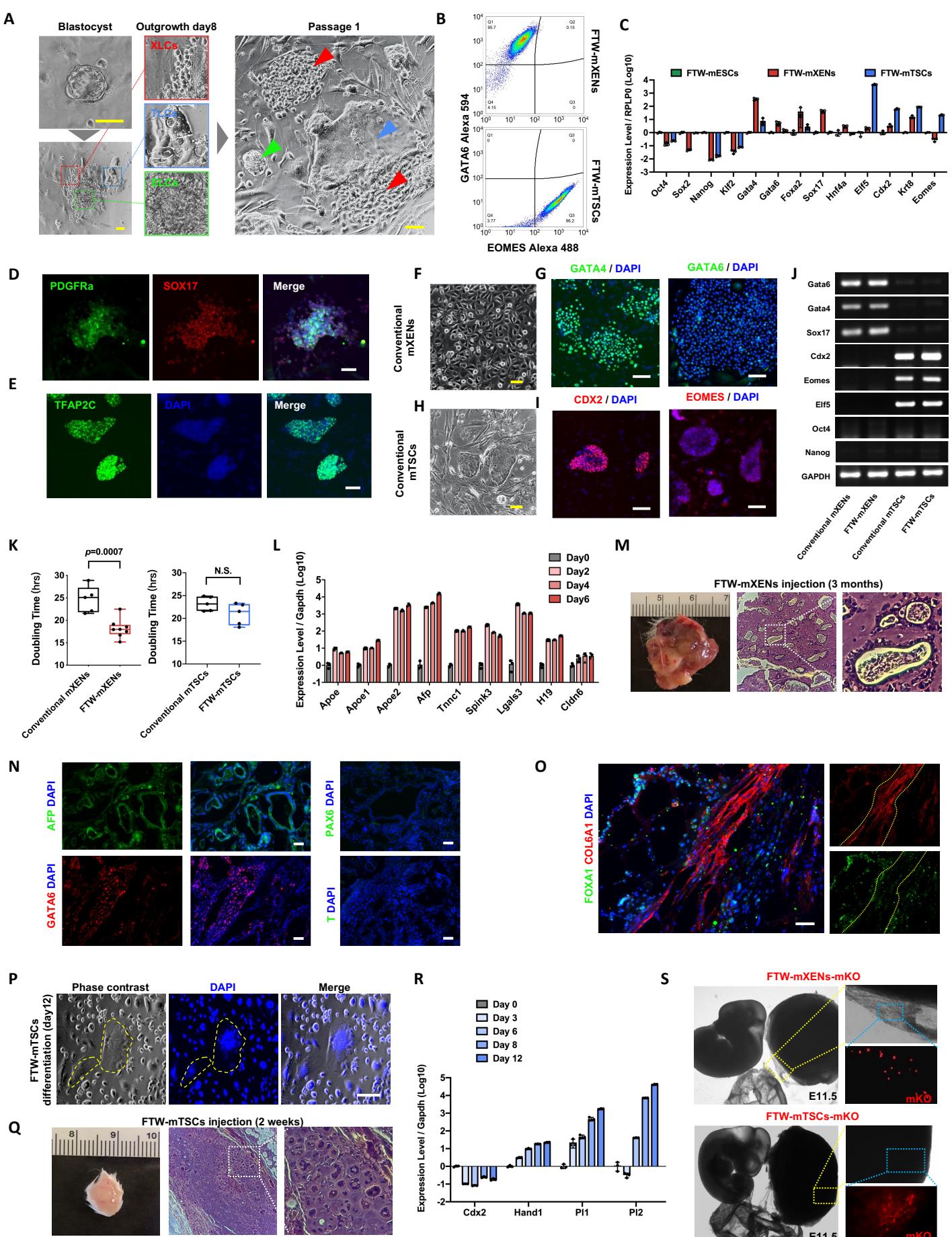

Figure. 6

Figure. 7

Figure S1

Figure S1. Derivation, characterization of FTW-mXENs, FTW-mTSCs and FTW-mESCs and developmental potential of FTW-mXENs and FTW-mTSCs.

(A) Representative BF images of an E4.5 mouse blastocyst (upper left), day 8 outgrowth (bottom left) and passage 1 (right) during FTW stem cells derivation. Higher magnification images of the boxed areas are shown in the middle panel. Scale bars, 100 μ m.

(B) Flow cytometry results showing the expression of GATA6 and EOMES in FTW-mXENs (left) and FTW-mTSCs (right).

(C) qRT-PCR results showing the relative expression levels of lineage markers in FTW-mESCs, FTW-mXENs and FTW-mTSCs. (mean \pm SD, n = 3, biological replicates).

(D) Representative IF images of PDGFR α and SOX17 of FTW-mXENs. Scale bar, 100 μ m.

(E) A representative IF image of TFAP2c of FTW-mTSCs. Scale bar, 100 μ m. (F) to (I), Representative BF (F and H) and IF images (G and I) of conventional mXENs (F and G) and mTSCs (H and I). Scale bars, 100 μ m. (J) RT-PCR results showing the expression of lineage markers in conventional mXENs and mTSCs and converted FTW-mXENs and FTW-mTSCs. GAPDH, loading control.

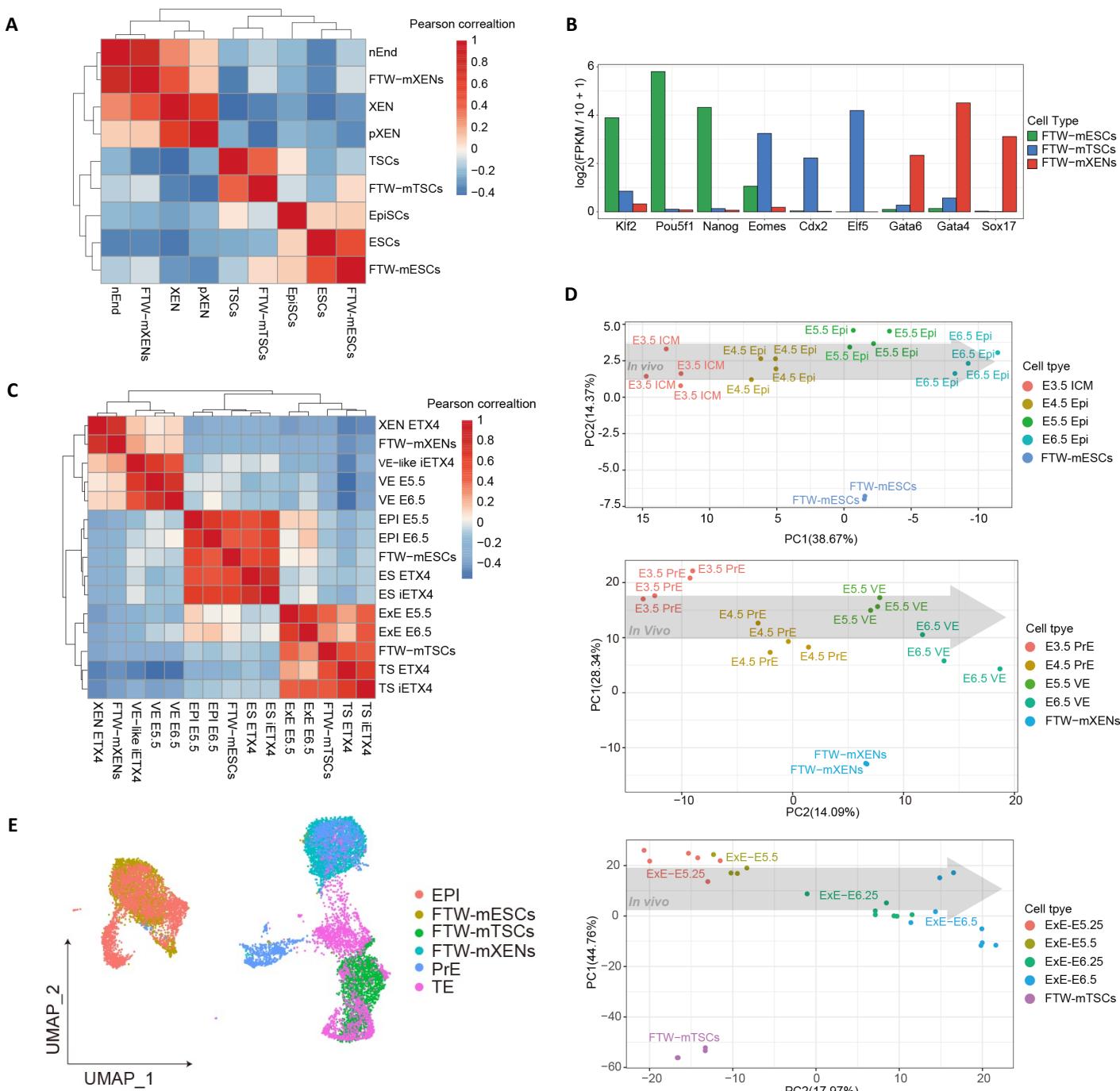
(K) Doubling time of conventional mXENs (n = 5, biological replicates), mTSCs (n = 5, biological replicates), converted FTW-mXENs (n = 8, biological replicates), and converted FTW-mTSCs (n = 5, biological replicates). Box-and-whisker plots showing the median value (bar inside box), 25th and 75th percentiles (bottom and top of box, respectively), and minimum and maximum values (bottom and top whisker, respectively).

(L) qRT-PCR results showing the relative expression levels of several PE and VE markers in randomly differentiated FTW-mXENs at indicated timepoints (mean \pm SD, n = 3, biological replicates).

(M) Representative images showing the appearance and H&E staining of a XEN-teratoma. A higher magnification image of the boxed area is shown on the right.

(N) Representative IF images of AFP, GATA6, PAX6 and T in XEN-teratoma sections. Blue, DAPI. Scale bars, 100 μ m.

(O) A representative IF image of FOXA1 and COL6A1 in a XEN-teratoma section.


(P) Representative BF and DAPI staining image of randomly differentiated FTW-mTSCs at day 12. Yellow dashed lines indicate multinucleated cells. Scale bar, 100 μ m.

(Q) Representative images showing the appearance and H&E staining of a TSC-teratoma. A higher magnification image of the boxed area is shown in the right panel.

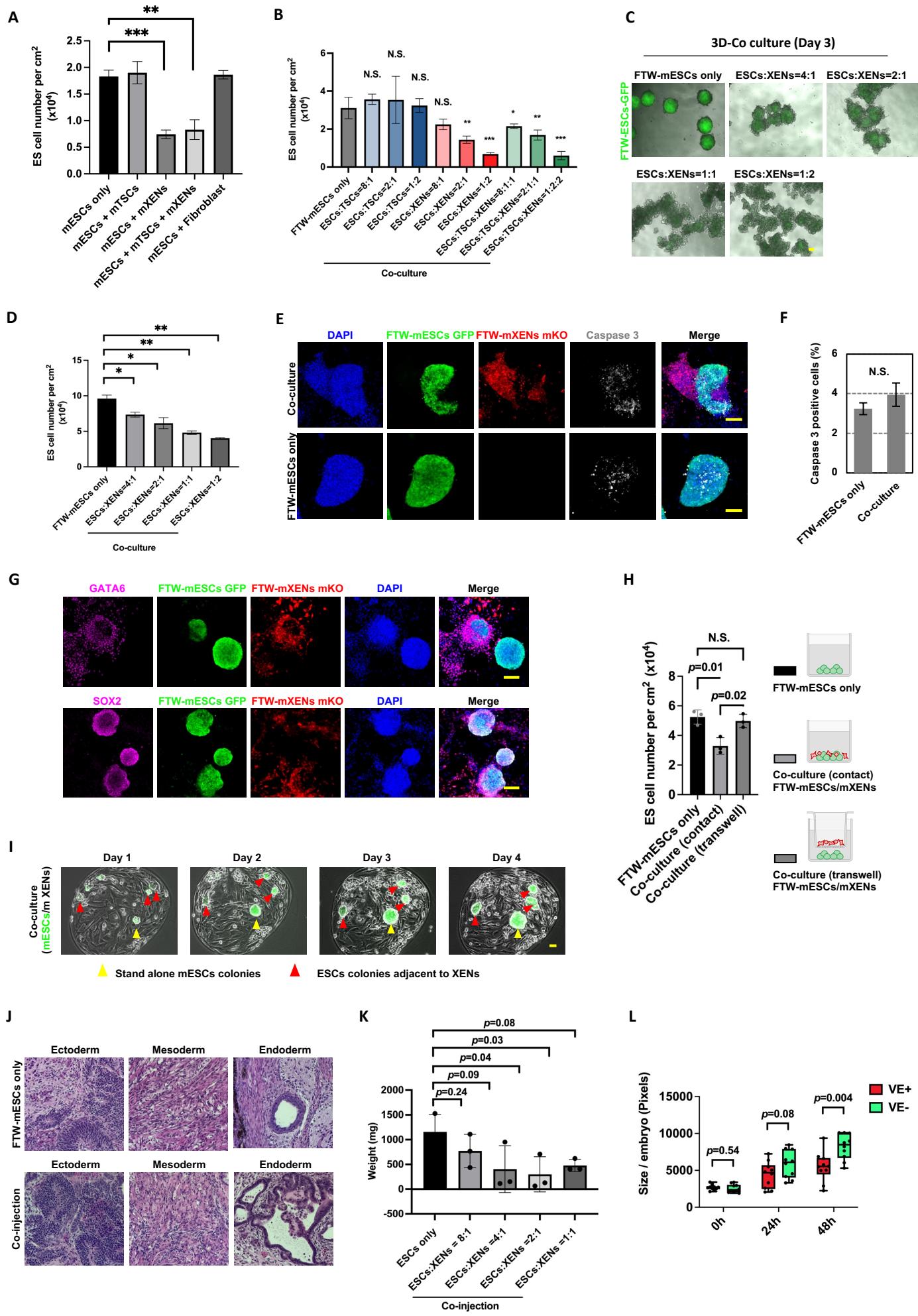
(R) qRT-PCR results showing the relative expression levels of trophoblast differentiation-associated genes in random differentiated FTW-mTSCs at indicated timepoints (mean \pm SD, n = 3, biological replicates).

(S) Representative BF and fluorescence images showing chimeric contribution of mKO-labeled FTW-mXENs (left) and FTW-mTSCs (right) to E11.5 mouse conceptuses. Scale bars, 1 mm.

Figure. S2

Figure S2. Transcriptomic analyses of mouse FTW stem cells.

(A) Correlation analysis of FTW-mXENs, FTW-mTSCs, FTW-mESCs and published datasets of mPSCs(Bao et al., 2018; Cruz-Molina et al., 2017; Wu et al., 2015; Ye et al., 2018; Zhao et al., 2015), mTSCs(Cui et al., 2019; Kubaczka et al., 2015; Wu et al., 2011) and mXENs(Anderson et al., 2017; Zhong et al., 2018).


(B) The expression levels ($\log_2 [FPKM/10+1]$) of epiblast, trophoblast and extraembryonic endoderm markers in FTW-mESCs, FTW-mTSCs, and FTW-mXENs obtained from RNA-seq datasets.

(C) Correlation analysis of FTW-mXENs, FTW-mTSCs, FTW-mESCs and published datasets from mouse embryos and stem cell embryo models.

(D) PCA plots of RNA-seq datasets from FTW-mESCs, FTW-mTSCs, and FTW-mXENs and in vivo E3.5-E6.5 mouse conceptuses. Inner cell mass (ICM), Epiblast (Epi), Primitive endoderm (PrE), Visceral endoderm (VE), Extraembryonic endoderm (ExE).

(E) UMAP analysis of scRNA-seq datasets of FTW-mESCs, FTW-mTSCs, FTW-mXENs and in vivo E5.5 mouse conceptuses (EPI, PrE and TE cells).

Figure. S3

Figure S3. Proliferation restriction of FTW-mESCs by FTW-mXENs.

(A) Bar plot showing the cell densities of FTW-mESCs in day 5 separate and different co-cultures.

(B) Bar plot showing the cell densities of FTW-mESCs in separate and co-cultures (different mESCs: mTSCs and/or mESCs:mXENs ratios)

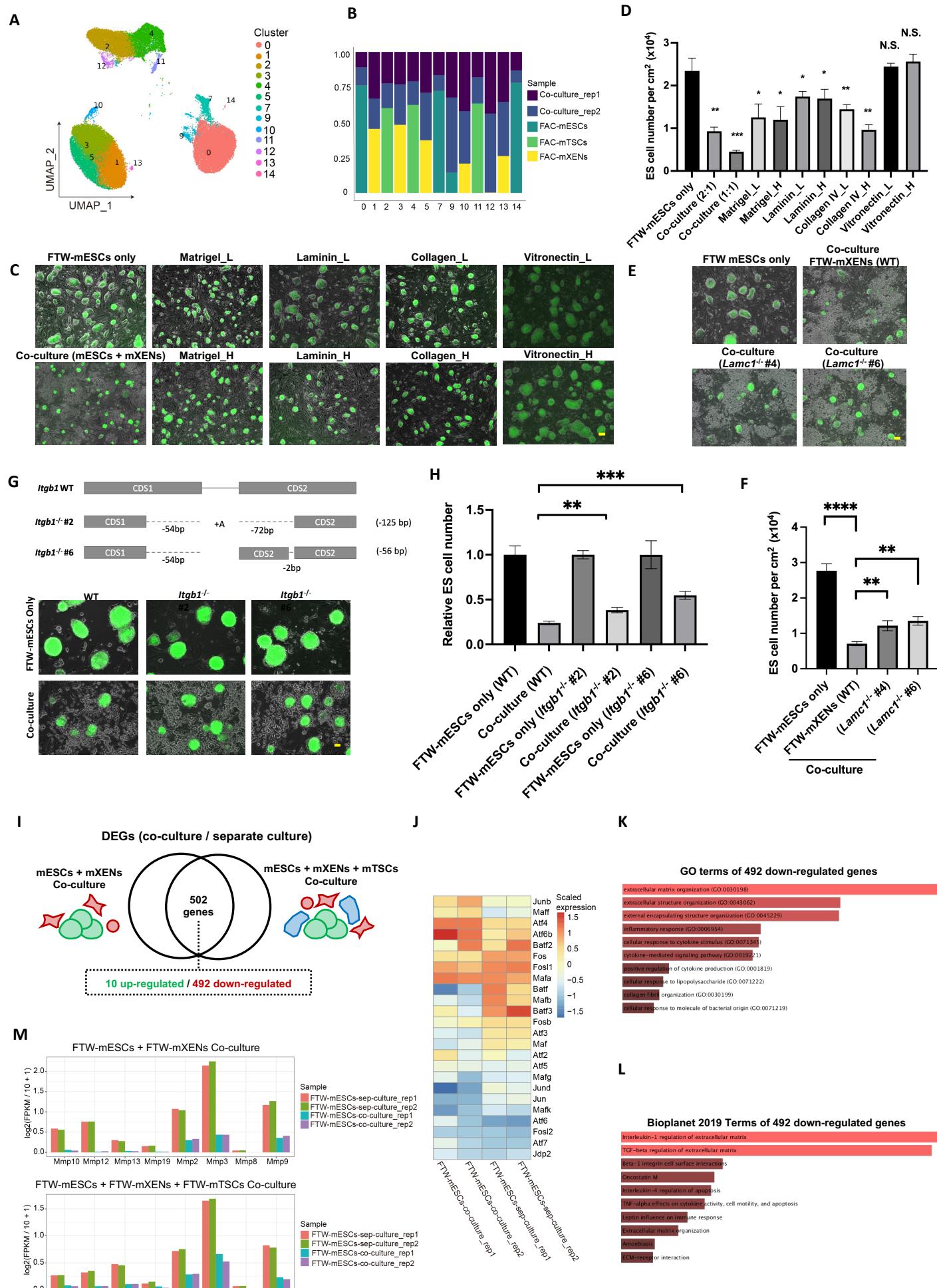
(C) Representative BF and fluorescence merged images of day 5 3D separate and co-cultures (different mESCs:mXENs ratios). Green, FTW-mESCs. Scale bar, 100 μ m.

(D) Bar plot showing the total cell number of day 5 3D separate and co-cultures (different mESCs:mXENs ratios) (mean \pm SD, n = 2, biological replicates).

(E) Representative IF images showing the expression of Activated Caspase 3 in separately cultured FTW-mESCs (bottom) and FTW-mESCs co-cultured with FTW-mXENs (top). Scale bars, 100 μ m.

(F) Bar plot showing the percentages of Caspase3+ cells in separately cultured FTW-mESCs (left) and FTW-ESCs co-cultured with FTW-mXENs (right). (mean \pm SD, n = 3, biological replicates, N.S., not significant).

(G) Representative IF images showing the expression of GATA6 and SOX2 in co-cultured FTW-mXENs (mKO) and FTW-mESCs (GFP), respectively. Scale bars, 100 μ m.


(H) Bar plot showing the cell densities of FTW-mESCs in day 5 separate, contact and non-contact (transwell) co-cultures (mean \pm SD, n = 3, biological replicates).

(I) Representative BF and fluorescence merged images of FTW-mESCs and FTW-mXENs in micropatterned co-cultures from day 1 to day 4. Scale bars, 100 μ m. Yellow arrowhead, a standalone FTW-mESCs colony. Red arrowheads, FTW-mESCs colonies adjacent to FTW-mXENs.

(J) Representative H&E staining images of a teratoma generated from FTW-mESCs alone (top) and FTW-mESCs co-injected with FTW-mXENs (bottom).

(K) Weight of teratoma formed by FTW-mESCs and FTW-mESCs co-injected with FTW-mXENs at different mix ratios (mean \pm SD, n = 3, biological replicates). (L) Bar plot showing the area of each in vitro cultured E6.5-6.75 mouse epiblast with (red) or without (green) VE (mean \pm SD, n = 10, biological replicates). *P-value < 0.01, **P-value < 0.001. P-values were calculated using two-tailed Student's t test.

Figure. S4

Figure S4. Mechanistic insights of growth inhibition and transcriptomic analyses of co-cultured FTW stem cells.

(A) Joint UMAP embedding of single-cell transcriptomes from separately- and co-cultured FTW-mESCs, FTW-mXENs or FTW-mTSCs.

(B) Percentage of cells in each cluster derived from separately and co-cultured FTW-mESCs, FTW-mXENs or FTW-mTSCs.

(C) Representative BF and fluorescence merged images of separately- and co-cultured FTW-mESCs, as well as separately cultured FTW-mESCs supplemented with different ECM proteins. Scale bar, 100 μ m.

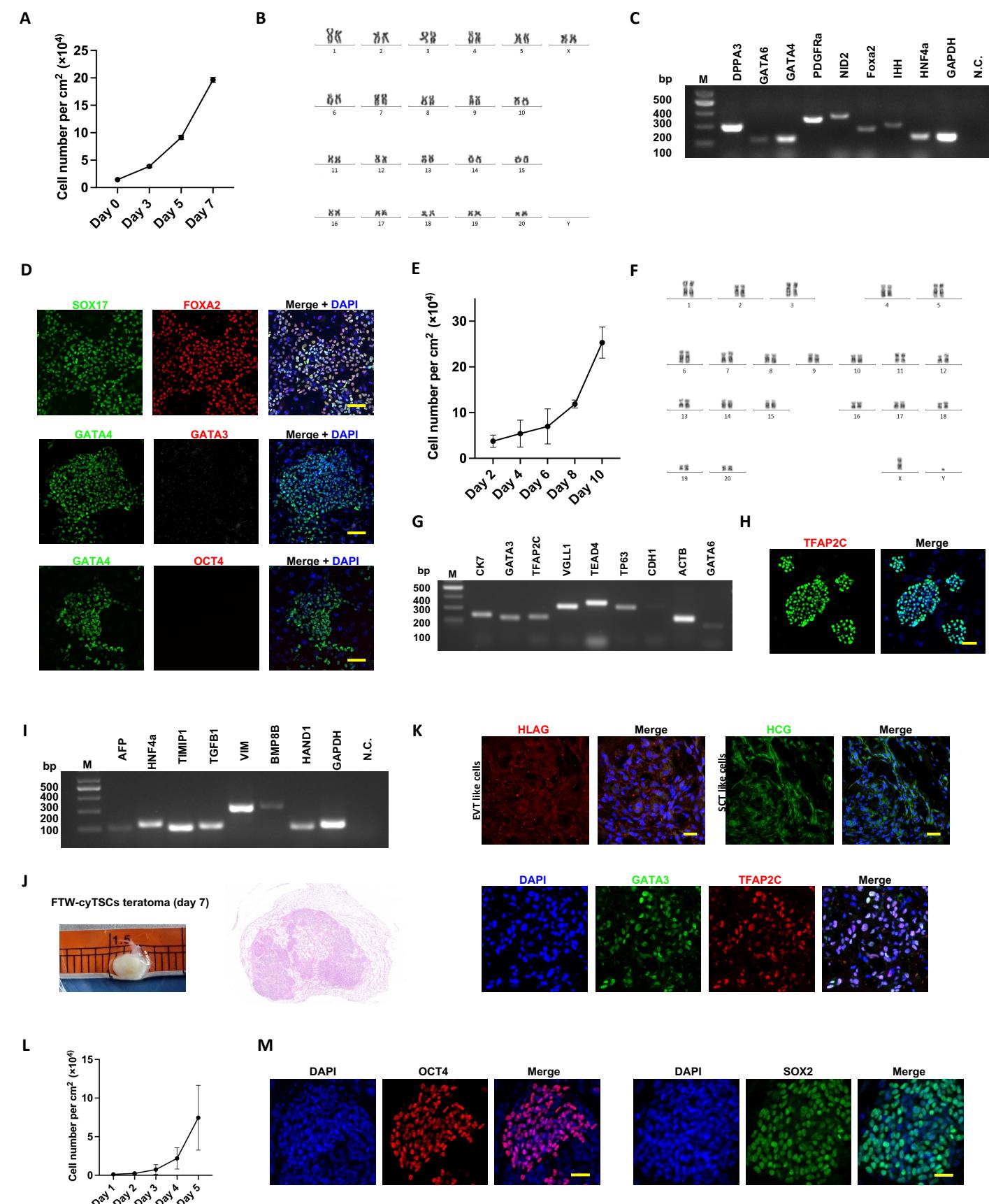
(D) Bar plot showing the cell densities of FTW-mESCs in day 5 separate and co-cultures, as well as separate cultures supplemented with different ECM proteins (mean \pm SD, n = 3, biological replicates, N.S., not significant).

(E) Representative BF and fluorescence merged images of separately- and co-cultured FTW-mESCs (with WT or *Lamc*^{-/-} FTW-mXENs [clones #4 and #6]).

(F) Bar plot showing the cell densities of FTW-mESCs in day 5 separate and co-cultures (with WT of *Laminin*^{-/-} FTW-mXENs) (mean \pm SD, n = 3, biological replicates).

(G) Representative BF and fluorescence merged images of separately and co-cultured FTW-mESCs (WT or *Itgb1*^{-/-} [clones #2 and #6]) Scale bar, 100 μ m.

(H) Bar plot showing the relative cell densities of FTW-mESCs (WT or *Integrin- β 1*^{-/-}) in day 5 separate and co-cultures (mean \pm SD, n = 3, biological replicates).


(I) A VENN diagram showing shared 502 DEGs (492 down-regulated; 10 up-regulated) between separately cultured FTW-mESCs and FTW-mESCs co-cultured with FTW-mXENs or with both FTW-mXENs and FTW-mTSCs.

(J) A heatmap showing the expression levels of AP-1 family members in separately (FTW-mESCs) and co-cultured (FTW-mESCs-co) FTW-mESCs.

(K) and (L), Enriched GO terms (K) and Bioplanet terms (L) for 492 down-regulated genes from (I).

(M) MMP expression levels (FPKM value) in separately cultured FTW-mESCs, FTW-mESCs co-cultured with FTW-mXEN (top), and FTW-mESCs co-cultured with FTW-mXENs and FTW-mTSCs (bottom).

Figure. S5

Figure S5. Derivation and characterization of FTW-cyXENs, FTW-cyTSCs and FTW-cyESCs.

(A) Growth curve of FTW-cyXENs (passage 26) (n = 9, biological replicates).

(B) Karyotype analysis of FTW-cyXENs.

(C) RT-PCR results showing the expression of several hypoblast markers in FTW-cyXENs. M, DNA ladder. N.C., non-template control.

(D) Representative IF images showing GATA4, SOX17, FOXA2, GATA3 and OCT4 expression patterns in FTW-cyXENs. Blue, DAPI. Scale bars, 50 μ m.

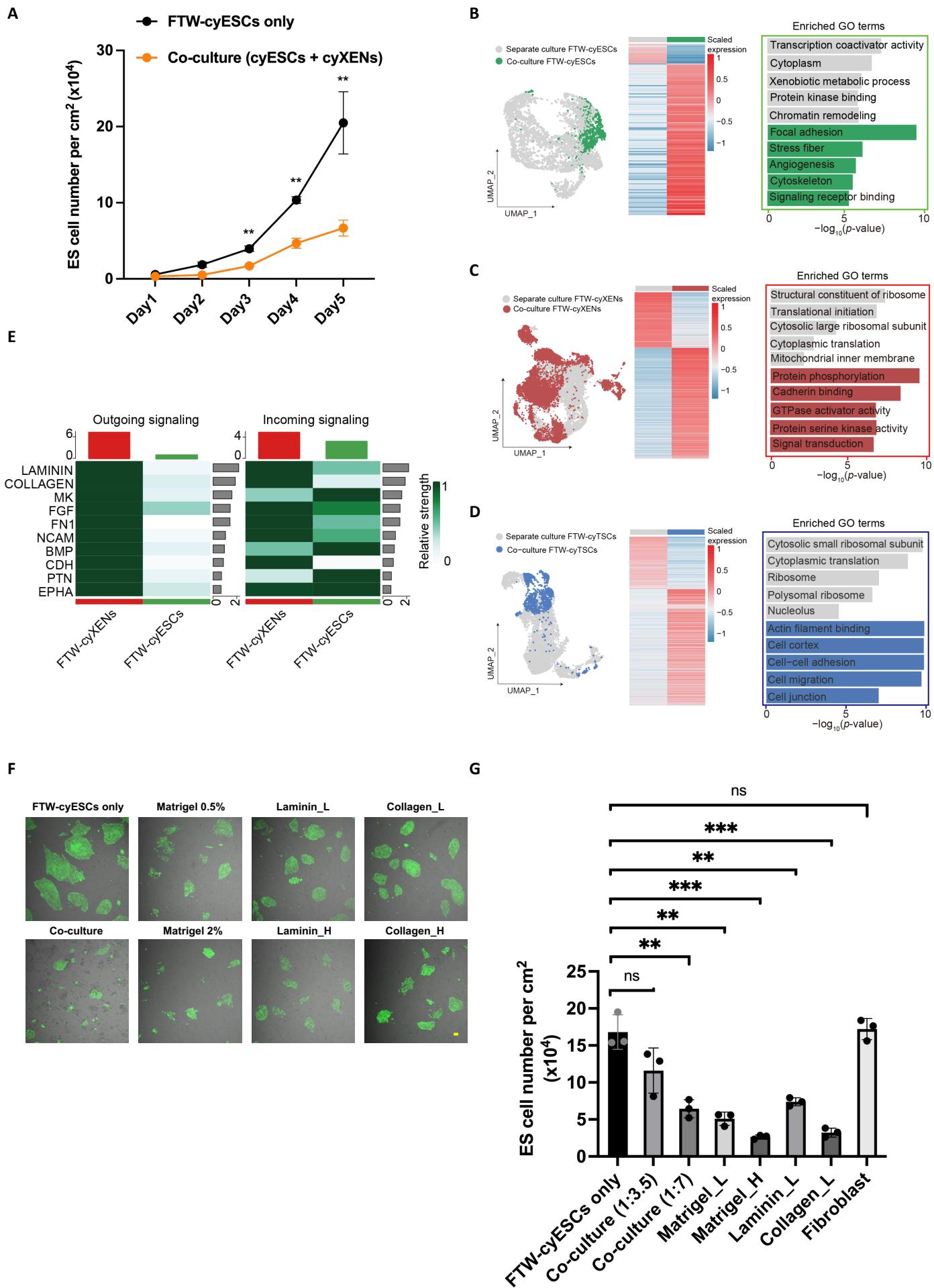
(E) Growth curve analysis of FTW-cyTSCs (passage 16) (n = 2, biological replicates).

(F) Karyotype analysis of FTW-cyTSCs.

(G) RT-PCR results showing the expression of several trophoblast markers in FTW-cyTSCs. M, DNA ladder. N.C., non-template control.

(H) Representative IF images showing TFAP2C expression in FTW-cyTSCs. Blue, DAPI. Scale bar, 50 μ m.

(I) RT-PCR results showing the expression of VE/YE and EXMC related genes in differentiated FTW-cyXENs at day 9.


(J) Representative BF and H&E staining images of a TSC-teratoma generated from FTW-cyTSCs at day 7 post-injection.

(K) Representative IF images showing the expression patterns of EVT (HLAG), SCT (HCG), and TSC (GATA3 and TFAP2C) marker genes in FTW-cyTSCs derived TSC-teratoma sections. Blue, DAPI. Scale bars, 50 μ m.

(L) Growth curve of FTW-cyESCs (passage 9) (n = 3, biological replicates).

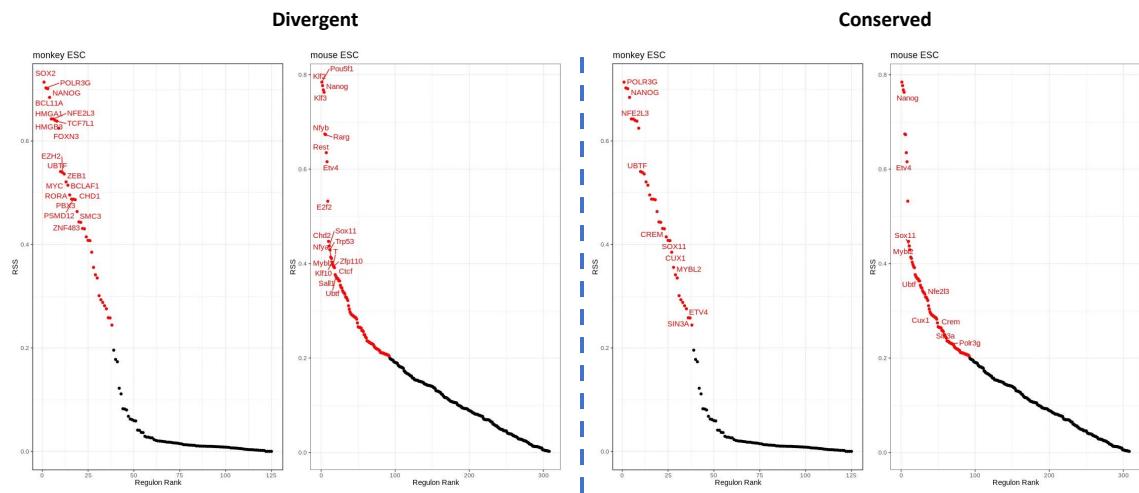
(M) Representative IF images showing the expression of OCT4 and SOX2 in FTW-cyESCs. Blue, DAPI. Scale bars, 50 μ m.

Figure. S6

Figure S6. Lineage crosstalk among co-cultured cynomolgus monkey FTW stem cells.

(A) Growth curves of separately and co-cultured (with FTW-cyXENs) tFTW-cyESCs (n=3, biological replicates).

(B) to (D), DEGs of separately cultured and co-cultured FTW-cyESCs (B), FTW-cyXENs (C), and FTW-cyTSCs (D). Top enriched GO terms were shown on the right.


(E) Heatmaps showing top 10 outgoing (left) and incoming (right) signaling in co-culture of FTW-cyESCs and FTW-cyXENs.

(F) Representative BF and fluorescence merged images of separately- and co-cultured FTW-cyESCs, as well as separately cultured FTW-cyESCs supplemented with different ECM proteins. Scale bar, 100 μ m.

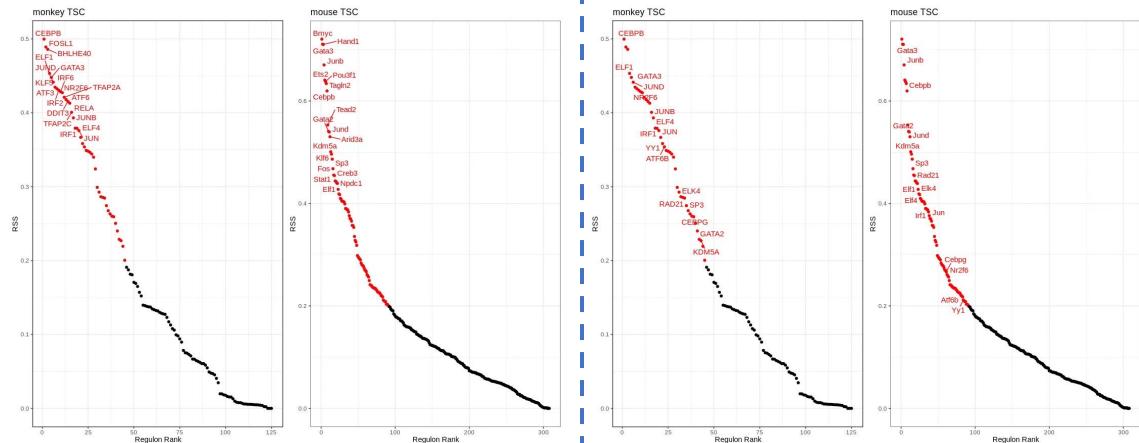
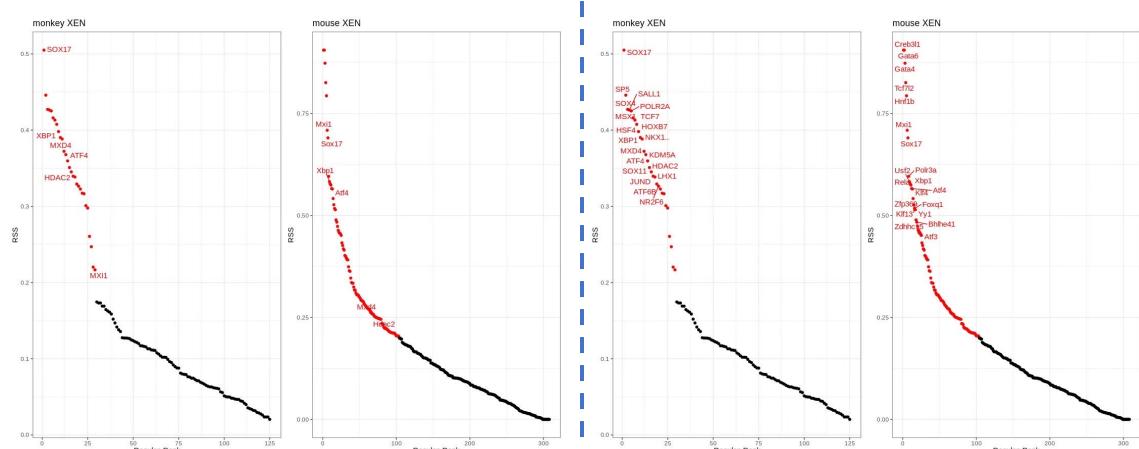
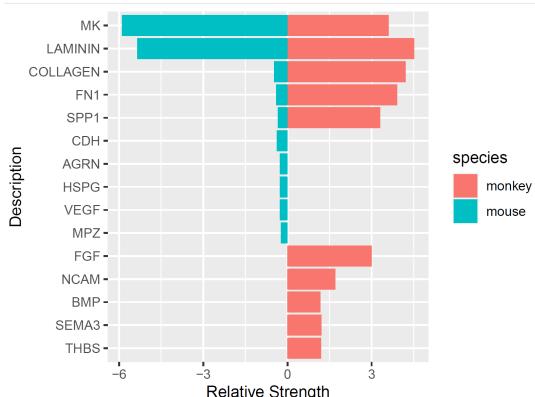

(G) Bar plot showing the cell densities of FTW-cyESCs in day 5 separate and co-cultures, as well as separate cultures supplemented with different ECM proteins (n=3, biological replicates).

Figure. S7


A


B

C

D

Figure S7. Cross-species comparison.

(A) to (C) SCENIC analysis showing divergent (left) and conserved (middle) TF-driven regulons in each mouse and monkey stem cell. Right, VENN plots showing common and distinct targets (between mice and cynomolgus monkeys) of well-known lineage TFs including NANOG, SOX17 and GATA3. See Table S6 for the all the target lists. Red dots represent the gene regulatory networks regulated by corresponding transcription factor related to the RBPS.

(D) Cross-species comparison of signaling crosstalk among embryonic and extraembryonic cells.