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13  Attempts to explain the origin and diversification of vertebrates have commonly invoked the

14  evolution of feeding ecology, contrasting the passive suspension feeding of invertebrate chordates
15  and larval lampreys with active predation in living jawed vertebrates. Of the extinct jawless

16  vertebrates that phylogenetically intercalate these living groups, the feeding apparatus is preserved
17  onlyin the early diverging stem-gnathostome heterostracans and its anatomy remains poorly

18 understood. Here we use X-ray microtomography to characterise the feeding apparatus of the

19 pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). We show that the apparatus is
20 composed of thirteen plates arranged approximately bilaterally, the majority of which articulate
21  from the postoral plate. Our reconstruction of the apparatus shows that the oral plates would have
22  been capable of movement within the dorso-ventral plane, but their degree of movement was

23  limited. The functional morphology of the apparatus in Rhinopteraspis precludes all proposed

24 interpretations of feeding except for suspension/deposit feeding and we interpret the apparatus as
25  having served primarily to moderate the oral gape. This is consistent with evidence that at least

26  some early jawless gnathostomes were suspension feeders and runs contrary to macroecological
27  scenarios that envisage early vertebrate evolution as characterised by a directional trend towards
28  increasingly active food acquisition.

29
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32  1.Introduction

33

34  Feeding figures prominently in attempts to understand the evolutionary origins of vertebrates

35 (Janvier 1996, Anderson et al. 2011). In contrast to invertebrate chordates, which exclusively

36  suspension feed with either a ciliated pharynx or a mucus net (1), the dorso-ventrally closing jaws of
37 living jawed vertebrates ( crown-gnathostomes plus ‘placoderms’) (2—4) or antero-posteriorly

38  moving system of cartilages (in cyclostomes, hagfishes and lampreys) (5—8) allow for a far broader
39  range of feeding strategies. The evolution of these unique vertebrate feeding modes plays a major
40  rolein attempts to explain the evolution of vertebrate anatomy and the origins of its modern

41  diversity (9,10). Prominently, the New Head Hypothesis (11-15), argues that the shift from

42  suspension feeding to predation accompanied the emergence of neural crest, neurogenic placodes,
43  and the accompanying evolution of a prechordal head. This hypothesis predicts the earliest

44  vertebrates with a prechordal head, i.e. parts formed from trabecular elements of the neurocranium
45  anterior to the notochord(16), had a predatory feeding mode.

46

47  The fossil record of Palaeozoic vertebrates provides a means of testing such hypotheses, but current
48  interpretations of that record are far from decisive. In particular, heterostracans, an extinct group of
49  jawless stem-gnathostomes, have been the focus of much of the debate over feeding in early

50 vertebrates. This is because their oral region is more commonly and completely preserved than in
51  any other such group, and they are often interpreted as one of the earliest diverging lineages of

52  stem-gnathostomes. As such, heterostracans have the potential to inform on the feeding ecology of
53  the earliest members of the gnathostome lineage (17). The heterostracan feeding apparatus is best
54 known in pteraspids, where the oral region is characterised by distinctive macromeric dermal plates
55  (18-22). The function of these plates has been much debated, variously interpreted as biting (19) or
56  slicing (23) ‘jaws’, a cyclostome-like feeding apparatus (24-27), a sediment scoop (22), or a filtering
57  structure (28-32). Equally varied are the inferred ecologies, with heterostracans interpreted as

58  active predators (19), macrophagous selective predators (12,33) , hagfish-like scavengers (24-27),
59  herbivores (23), detritivores (22,34), or suspension feeders (including filter feeding) (10,20,35—

60  38). The most recent investigation suggests that heterostracans were suspension feeders because
61  theanalysed oral plates exhibited no evidence of the wear anticipated of a ‘tooth-like” function (20).
62

63  The difficulty in studying the articulated heterostracan oral apparatus in situ contributes to this lack
64  of consensus. In the rare cases where they are preserved, articulated heterostracan oral apparatuses
65  consist of small plates suspended in encasing sediment. As a result, previous reconstructions of the
66 oral apparatus have focused either on the gross arrangement of the apparatus, in which the

67  morphology and detailed arrangement of the individual plates are not characterised (22,24,26,27),
68  or describe isolated elements with little or no reference to articulated apparatuses (22,39,40).

69  Evidently, the feeding ecology of heterostracans remains in its infancy and so we sought to advance
70  understanding through a detailed characterization and reconstruction of the heterostracan oral

71 apparatus. We used X-Ray microtomography to characterise the three-dimensionally (3D) articulated
72  oral apparatus of an exceptionally well-preserved specimen of the pteraspid heterostracan

73  Rhinopteraspis dunensis (Roemer, 1855). Using computed tomography, we generated volumetric

74  models of the components of the oral apparatus and used these models to reconstruct their three
75  dimensional arrangement in vivo. We use this reconstruction to assess competing hypotheses of

76  heterostracan feeding.
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78 2. Materials & Methods

79

80  (a) Specimens and locality

81  Rhinopteraspis dunensis (Roemer, 1855) NHMUK PV P 73217 is housed in the collections of the

82  Natural History Museum, London (NHMUK). In the museum catalogue the specimen is listed as being
83  collected from “Odenspiel Quarry”, likely corresponding to Jaeger Steinbruch, a quarry near the

84  village of Odenspiel, Reichshof, North-Rhine Westphalia, Germany or, possibly, outcrops in the local
85 area(41,42). The Jaeger Quarry and surrounding outcrops expose sandstones and mudstones

86  belonging to the Siegenian (?upper Pragian or lower Emsian, Lower Devonian) Odenspiel Formation
87  (43,44), deposited on the northern margin of the Rhenohercynian Basin, which was a marginal

88  transgressive and regressive delta-dominated setting (45). The Odenspiel Formation falls within the
89  ‘Pararhenotypics subfacies’ of Jansen (46), representing a marginal marine, intertidal lagoonal

90  setting preserving a restricted fauna of fish, bivalve molluscs, lingulid and terebratulid brachiopods,
91  and eurypterids (41,42,47-49).

92  (b) Terminology

93  Various terminologies have been applied to the pteraspid oral region. Here we follow the

94  terminology of Randle and Sansom (50) and, where that is not possible, that of Blieck (51). We

95  extend existing terminology to describe the nature and arrangement of the oral plates (Fig. 1G). For

96 the anatomical axes of the animal as a whole we use dorsal/ventral in the dorsoventral axis,

97 rostral/caudal for the sagittal axis, and dextral/sinistral for the transverse axis. When describing the

98  oral apparatus itself we also use lateral/medial to describe lateral positions relative to the sagittal

99 axis, ad/aboral to describe the surfaces of plates relative to the mouth (i.e. adoral is the surface of a
100  plate facing the mouth, aboral the surface facing away), and proximal/distal to refer to positions on
101  the oral plates relative to their articulation with the postoral plate with oral plate tips being distal.

102  (c) Computed tomography

103  Rhinopteraspis dunensis NHMUK PV P 73217 (Figs 1,51) was scanned using a Nikon Metrology XTH
104  225ST X-ray tomography instrument based in Bristol Palaeobiology, University of Bristol. Two scans
105  were undertaken, each composed of two stacked scans. The first scan included the whole headshield
106  atavoltage of 223 kV and a current of 193 pA, with 3141 projections, and with a 1 mm Sn filter,
107  obtaining a dataset with 63.41 um voxel resolution (Fig. 1A,B). The second scan targeted the oral
108 region specifically, including the posterior third of the rostrum, the orbital, oral, and pineal parts of
109 the headshield, and the anterior quarter of the dorsal and ventral discs, at a voltage of 180 kV and a
110  current of 178 pA, with 3141 projections of 8 frames and 708 ms each, and with a 0.5 mm Cu filter,
111  achieving a voxel resolution of 22.91 um (Figs 1D-H,2).The resulting tomographic datasets were
112  segmented in Mimics v.25 (materialise) to create 3D models. All 3D models were visualised in

113  Blender 3.5 (blender.org).

114  (d) Reconstruction and animation

115 3D models of the higher resolution scan set of Rhinopteraspis were imported into Blender for

116  retrodeformation (Fig. 3). Use of Blender tools for retrodeformation followed the recommendations
117  and techniques set out by Herbst et al. (52). Initial retrodeformation focused on the best preserved
118  plates and those with clearly delineated articulations (53), including the rostral, orbital, supraoral
119  and paraoral plates. After rearticulating and repairing deformation (see Supplementary Information),
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120 these elements provided a framework to delimit the dorsal and lateral extent of the oral plate array.
121  The oral plates were aligned, maintaining their preserved order, within this delimited area by placing
122  their dorsal tips close to the margin of the mouth and rotating the plates caudoventrally to match
123  the angle of the surrounding plates. The postoral plates were then fitted to the proximal ends of the
124  oral plates. The proximal ends of the oral plates were then readjusted into articulation with the

125  sulcus preserved in the postoral plates (Fig. 2C), while maintaining alignment with the closely

126  articulated lateral oral- and paraoral plates and each other. Finally the ventral disc was

127  retrodeformed and articulated with the postoral plate. The reconstructed specimen was animated in
128  Blender to simulate the movement of the oral plates Fig. S3). Empties (single geometry-less points
129  that act as handles for object transformation without interfering in the render process) were placed
130  between each oral plate and the postoral plate below, so that the local x-axis of each was aligned
131  with the approximate outer boundary of the postoral plate. Each oral plate was then parented

132  (=linked) to the empty below it. These empties were then animated to rotate around their local x-
133  axes, causing the parented oral plate to also rotate around that axis.

134

135 3. Description

136  NHMUK PV P 73217 comprises an almost-complete three-dimensional specimen of Rhinopteraspis
137  dunensis, preserving the entire headshield and articulated body scales (Fig. 1A,B,51). The specimen
138  has been crushed laterally, with the oral region and ventral shield displaced rostro-dorsally (Fig. 1).
139  Otherwise, the specimen is complete and individual oral elements appear to have maintained their
140 original shape and relative location, as evidenced by their approximately symmetrical arrangement.
141  The dermal skeletal anatomy of pteraspid heterostracans is well-characterised in numerous taxa
142  (18,54) to which that of Rhinopteraspis dunensis NHMUK PV P 73217 conforms (32,55,56). The
143  headshield is composed of large dorsal and ventral shields separated by paired cornual and branchial
144  plates, with a dorsal spine set into the posterior margin of the dorsal shield (Fig. 1A,B,S1). Anterior to
145  the dorsal shield is an elongate rostrum that is separated from the dorsal shield by paired orbital
146  plates (Figs 1A,B,S1). The anterior length of the rostrum is broken off from the rest of the specimen
147  (Figs 1A,B,S1). The unpaired pineal plate is indistinguishable from the top of the orbital plates in the
148  scan data.

149

150 The oral region is bordered dorsally by the supraoral plate, laterally by paired paraoral plates, and
151  caudally by the postoral plate (Fig. 1). In previous descriptions of pteraspids, including

152  Rhinopteraspis, the subrostral lamella and ascending postrostral lamella have been characterised as
153 part of the rostral plate (51,57), although Friman & Bardenheuer described paired plates in this

154  position they termed the ‘subrostral plates’ (32). In NHMUK PV P 73217 they comprise a separate
155  structure, broken into three parts (postmortem), which we term the supraoral plate (Figs 1D,G,H,
156 2A,B). The supraoral plate is trapezoidal in shape, narrowing rostrally. A pronounced furrow runs
157  around its lateral and rostral margins, which is overlapped by the paraoral,


https://doi.org/10.1101/2023.08.22.554283
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.22.554283; this version posted October 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

158  Figure 1. Rhinopteraspis dunensis NHMUK PV P 73217. A-C, Rendering of head shield based
159  on computed tomographic data in (A) sinistral, (B) dextral view, and (C) transparent with
160 scheme of anatomical axes. D-H, renders based on higher resolution data showing the oral
161 apparatus in more detail in D, ventral view; E, sinistral view; F, dextral view; G rostral view;
162 H, Rostro-ventral view. Green and blue parts of 3D renders represent oral region.

163  Abbreviations: S, sinistral (left), D, dextral (right). Scale bars represent 5 cm in panels A,B, 1
164  cmin panels D-H.
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165  orbital, and rostral plates; the margins of the plate sweep ventro-caudally to form two latero-ventral
166  arms (Fig. 2B). The rostral half of the ventral surface of the supraoral plate (the subrostral lamella) is
167  surmounted by a superficial layer of ornament and made convex by a prominent median crest,

168  aligned rostro-caudally (Fig. 2B). The caudalmost half (the ascending postrostral lamella) curves
169  upwardsinto the mouth and lacks dentine ornament (as in Rhinopteraspis cornubica Tarlo, 1961, p.
170  373), the rostral border of this area presumably represents the position of the oral opening. This
171  border is marked by a row of tubercles, comprising one large medial tubercle and two pairs of

172 smaller tubercles on either side (Fig. 2B). The paired paraoral plates are elongate, taper rostrally, and
173  overlie large rostro-lateral overlap surfaces on the orbital plates, rostral to the orbits (Figs 1D-F, 2A).
174  We interpret the ‘olfactory grooves’ identified in Rhinopteraspis cornubica by Tarlo (1961, fig. 1) as
175  the overlap surfaces between the paraoral plates and supraoral plate (Fig. 2A) (32).

176

177  The postoral plate is bow-shaped and originally symmetrical, although the right process is damaged
178  (Fig. 2A,C). The ventral surface is smoothly convex. The inner surface has a caudal overlap surface
179 that is concave to curve around the anterior rim of the ventral shield, and a dorsal surface that forms
180 the ventral margin of the oral opening, bearing paired sulci for the oral plates that are interrupted
181  medially by a raised area (Fig. 2C). Paired lateral plates and lateral postoral plates lie between the
182  postoral plate and the orbital plates (Figs 1,2). The extensive overlap between the plates

183  surrounding the mouth and the larger head shield plates strongly suggests that they comprised an
184  integrated structural unit with little or no movement relative to each other.

185

186  The oral apparatus itself is composed of thirteen imbricated oral plates and one pair of lateral oral
187 plates (Figs 1,2,52). The aboral, mediolateral surfaces of each oral plate, as well at the lateral

188  surfaces of the hook, are all faced with tuberculated ornament (Fig. 2F-1). However, the lateral and
189  adoral surfaces of the oral plates, as well as the ventral side of the hook and the proximal end of the
190 plates, are all unornamented, instead exhibiting a porous surface texture reflecting open vascular
191  canals. The plates are arranged bilaterally about the midline into sinistral and dextral series.

192  Although plate pairs that occur in equivalent positions on either side of the midline are similar, they
193 do not exhibit mirror-image symmetry. In particular, the unpaired medial plate is not symmetrical
194  but, rather, is continuous with the sinistral series (Fig. 2E,S2). Each oral plate has the same general
195  morphology of a main limb with a rhomboidal cross-section, a distal hook (except for the most

196 laterally placed plates), and a proximal articulation surface for the postoral plate (Figs 2,52). There
197  are six oral plates in the sinistral series (S1-6) and six in the dextral series (D1-6), each preserved
198 inclined at varying degrees (maximum about 45 deg) to each other along their coronal axis. The

199  more medially placed the plate, the more inclined it is along its long axis to provide a fit with the
200  adjacent oral plate; the lateral and medial faces of the plates overlap and imbricate, inclined at

201 increasing angles relative to the sagittal plane, from medial to lateral. The distal hooks of the oral
202  plates curve adorally, while the proximal ends of the plates are notched, reflecting the ventral limit
203  of the external dermal ornament, serving as articulation with the postoral plate (except for the

204  medial plate M).

205
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206  Figure 2. Rhinopteraspis dunensis NHMUK PV P 73217 oral region. A, oral apparatus and
207  surrounding plates as preserved, in ventral view; B, ventral view of supraoral plate with
208 three fragments rearticulated; C, postoral plate in dorsal view; D, oral apparatus as

209 preserved with ventral plates removed; E, dorsal view of oral plates as preserved; F-I, oral
210 plate R4 in aboral {F), lateral (G), adoral (H), and medial {I) views, alongside drawings

211  depicting the inferred extent of dermal ornament in grey, based on comparison with

212  isolated plates of Loricopteraspis dairydinglensis(20,40,58). Abbreviations: S, sinistral (left),
213 D, dextral (right). Scale bars represent 1 cm in panels A-E, 0.5 cm in panels F-I.
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215  Although the oral plates have similar morphologies, individually they vary in relative proportion
216  depending on their position within the apparatus (Figs 2,52). The hook of the unpaired medial oral
217 plate M is as long as the main limb. This plate is preserved overlying the lateral two oral plates D1
218  and S1. The lateral side of its proximal end is notched to fit with the left medial face of D1. Plate M
219  curves dextrally such that it fits the curvature of the dextral face of the adjacent oral plate S1. The
220  main limb of oral plates D1 and S1 are twice as long that of M, with a narrow base; similarly, it may
221  not have articulated with the postoral plate, but the hooks in D1 and S1 are as large and very similar
222 in shape. These plates fit around oral plates S2 and D2, which fit around S3 and D3, etc.; these pairs
223  have narrow bases and slightly smaller hooks than S1 and D1. Plates S4 and D4 have a slightly

224 broader base and proportionally shorter hook. This trend continues laterally, with increasingly

225  shorter hooks and wider bases in S5 and D5. Finally S6 and D6 have no perceptible hook and a very
226  broad base. The lateral edges of plates S6 and D6 is concave, fitting the medial edge of the lateral
227  oral plates.

228

229  The lateral oral plates are morphologically distinct from the oral plates (Fig. 2,52), approximately
230  triangular, tapering rostrally with a curved medial margin that matches the lateral profile of the
231 lateral-most oral plates (Figs 2A,S2). The better preserved sinistral lateral oral plate appears to have
232 a distinct notch in its posterior side (Fig. S2A,C), although this is difficult to corroborate from the
233  dextral lateral oral plate.

234

235  4.Reconstruction

236

237  The combined width of the bases of the oral plates, when aligned perpendicular to a sagittal plane,
238  matches the length of the sulcus on the postoral plate (Fig. 3) and the complementary symmetry
239  exhibited by adjacent plates indicates that they were capable of almost completely filling the width
240  of the oral opening. In this position, the lateral-facing surface of each oral plate overlaps the adoral
241  surface of its outer neighbour (Fig. 3). The lateral surfaces of the outermost oral plates fit closely
242  with the lateral oral plates (Figs. 3C,D). M, S1 and D1 appear to lie on top of the neighbouring oral
243  plates rather than contacting the postoral plate. When viewed caudally, this brings the hooks of the
244  plates into alignment, forming a plane above the posterior unornamented surface of the plates (Fig.
245  3d). This reconstruction also suggests that the oral apparatus fits together such that the tops of the
246  oral plates extend to the top of the mouth to almost meet the supraoral plate. The medial crest of
247  the supraoral plate creates a convex dorsal margin of the mouth, and the increasing length of the
248  oral plates in lateral positions means that their dorsal tips also follow this convex line. Thus, when
249  fully closed, there would have remained a narrow “letterbox-shaped” opening (cf. (59)) into which
250  projected the dorsal tips of the oral plates and the medial crest and associated tubercles of the

251  dorsal oral plate. Indeed, the medial crest of the supraoral plate would have effectively divided the
252 residual opening into two. There is no evidence that the plates intercalated with the tubercles

253  demarcating the dorsal margin of the mouth at the rostral margin of the ascending postrostral

254 lamella, Fig. 2B). When modelled to open around the axis of the sulcus on the postoral plate

255  synchronously, the oral plates do not overlap as they rotate (Fig. S3). Instead, their placement along
256  the curved axis of the postoral plate sulcus causes them to splay outwards (Fig. S3).

257

258
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259  Figure 3. Reconstruction of Rhinopteraspis dunensis based on NHMUK PV P 73217, anterior
260  section of rostrum not shown. A, rostrolateral view; B, ventral view; C, rostral view; D,

261 caudal view of articulated oral plates; E, sagittal cross-section through centre of the head; F,
262  close up cross-section lateral to E, showing junction between base of oral plate and the

263  postoral plate.
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265 5. Discussion

266  Based upon our 3D reconstruction of the oral region in Rhinopteraspis, we are able to consider the
267  oral plates as an integrated apparatus and test hypotheses of its form and function. The

268  endoskeleton of heterostracans is completely unknown beyond what can be inferred from the

269  dermal skeleton (60). Hence, we attempt to consider the constraints imposed by the dermal

270  skeleton, without speculating as to endoskeletal structure.

271

272 (i) Interpretation of the oral apparatus of Rhinopteraspis

273

274  Most previous hypotheses of function in heterostracan feeding assume significant movement and a
275  degree of rotation of the oral apparatus, often following a cyclostome-like mode (19,22,24). In many
276  of these the postoral plate(s) is assumed to move significantly, either inwards (24) or outwards

277  (22,59). The large, curved overlap surface at a 45° angle between the postoral plate and the ventral
278  plate in Rhinopteraspis (Fig. 2C) suggests that this movement would not have been possible and that
279  the postoral plate was static during feeding. In contrast, the imbricated nature of the oral plates
280  strongly suggests that they were mobile relative to the postoral plate. Any movement requires

281  rotation around the point of their attachment to the postoral plate. The rhomboid cross-section and
282  the complementary symmetry of the oral plates would have prevented them either moving

283  independently, or moving in an entirely sagittal plane (Fig. S3). Rather, they must have moved as an
284  integrated unit, splaying ventro-laterally as the plates rotated aborally on the sulcus of the postoral
285 plate. The medial plates (M, S1, D1) that do not articulate with the postoral plate are the exceptions:
286  their cross-sectional shape and ab/adoral overlap would have precluded their movement relative to
287  the other plates.

288

289  The morphologies of individual oral plates are closely comparable to those observed in acid-

290  prepared isolated oral plates of Loricopteraspis dairydinglensis recovered through acid digestion of
291  limestone (20,40,58). The open vasculature on the lateral surfaces and adoral surfaces, as well as the
292  ventral side of the hook and the proximal end of each plate, is significant. This indicates that these
293  parts of the plates were embedded in soft tissue, the upper limit of which would have been the

294  proximal surface of the large projecting hooks on the adoral side of the oral plates. The medial plates
295  would have been supported entirely by this soft tissue which must have provided the basis of any
296  movement of the plates and so may have included unmineralized cartilage, muscles or tendons.

297

298  Our reconstruction indicates that, even when the mouth was fully closed by occlusion of the oral
299  plates, there would have remained a short but wide gape that was effectively divided in two by the
300  median crest of the supraoral plate. The associated tubercles of the supraoral plate and tips of the
301  oral plate would have projected into this space, further occluding it. This oral morphology precludes
302  interpretation as a hagfish-like prenasal sinus (26,27) because the opening is too small. There is also
303  no evidence for separate upper oral plates as inferred by Stensio (26,27). Assuming the presence of
304  forward pointing denticles on the lateral surfaces of the oral plate hooks, as in Loricopteraspis and
305  Pteraspis (20,58), these structures would not have bordered the oral opening but, rather, the

306  junction between each plate and its neighbour, linked by soft tissue. Rather than being involved in
307  food capture or processing, this ornamentation may have helped to prevent particles from becoming
308 lodged in the spaces between the plates (58) and their associated soft tissue, preventing fouling of
309  the oral apparatus (cf. Hamann and Blanke (1)). Any movement seems unlikely to have been great in
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310  magnitude due to the weak joint between the oral plates and the postoral plate, as well as the

311  suspension of the small median oral plates in soft tissue. A structural analogue in a living vertebrate
312  for heterostracan oral plates might be the branchiostegal plates in osteichthyans, which support the
313 branchiostegal membrane, and make limited, coordinated movements to aid the suction pump (61).
314

315  The oral apparatus of Rhinopteraspis could only have been moved from the adoral side with rostro-
316  caudal movements, as the aboral surfaces of the oral plates lack any kind of attachment surfaces.
317  Thisis inconsistent with a gnathostome-like organisation of paired mandibular adductor muscles.
318  However, living cyclostomes both operate the oral apparatus by moving cartilages rostrally and

319  caudally along the floor of the pharynx. In hagfishes, keratinous toothlets are mounted on a

320  cartilaginous dental plate that is pulled anteriorly along a basal plate to evert the lingual apparatus,
321  and posteriorly to return it to resting position (5,6,8). In lampreys, a medial piston cartilage is

322  protracted rostrally, moving a medial apical cartilage, the action of which brings keratinous toothlets
323  infront of the apical cartilage into contact with other toothlets in a rasping action (7,62,63). A

324  medial groove along the visceral surface of the ventral shield in some pteraspids has been cited as
325  evidence for a cyclostome-like medial structure of the oral mechanism (60).

326

327  (ii) Comparison of oral anatomy with other heterostracans

328

329  The anatomy of the oral apparatus of Rhinopteraspis is comparable to that of other pteraspids.

330 Individually, the shape of the oral plates conforms closely to the morphologies of isolated plates acid
331  prepared from an articulated specimen of Loricopteraspis dairydinglensis ((40), pl. 37; (58)). The
332  arrangement of these plates is similar to articulated specimens of Protopteraspis (19) and Errivaspis
333  (22). Importantly, the posterior alignment of the hooks in Rhinopteraspis (Fig. 3) can also be seen in
334  other pteraspids where the adoral side of an articulated oral apparatus is visible: Mylopteraspidella
335  (Stensig, (27), Fig. 44, p. 197) and Protopteraspis (19), as well as in Errivaspis (White, (22)figs 41-44).
336  Together, these indicate that our interpretation of the feeding apparatus of Rhinopteraspis is more
337 broadly applicable within pteraspids. However, varied body shapes and positions of the oral opening
338 indicate some diversity in feeding ecology (e.g. Doryaspis (64), Drepanaspis (65)).

339

340  Athenaegis, the oldest articulated heterostracan (66), is often assumed to be an outgroup to all
341  other macromeric heterostracans (21,50,67,68), and its oral apparatus appears broadly

342  anatomically consistent with Rhinopteraspis. By contrast, cyathaspids, a likely paraphyletic grade of
343  heterostracans (21), have arrangements of plates that are difficult to rationalise with the oral

344  apparatuses of Athenaegis and pteraspids (e.g. Anglaspis (37), Poraspis (69), Capitaspis (70), and
345  Allocryptaspis (29)). In amphiaspids, the oral aperture occurs at the end of a tube in a single, fused
346  headshield (71). Meanwhile the oral apparatuses of the “tessellate heterostracan” taxa are

347  completely unknown (34) and what is known of their anatomy is difficult to reconcile with the

348  pteraspids, including Rhinopteraspis. Thus, while the oral apparatus of Rhinopteraspis may be

349 representative of pteraspids, Athenaegis and, by implication, macromeric heterostracans primitively,
350 it may not be representative of heterostracans more generally, which may have exhibited greater
351 diversity in terms of feeding ecology. Further investigation is required to assess the ubiquity of

352  suspension-feeding within the group, and the position in the water column at which they fed.

353

354  {(iii) Implications for feeding in pteraspids and ancestral heterostracans
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355

356  Our articulated oral apparatus model can be used to consider the various feeding strategies that
357 have been proposed for pteraspid heterostracans. These strategies can be roughly divided into

358  macrophagy, predation, deposit/detritus feeding, and microphagy or suspension feeding (72).

359

360  Hypotheses of macrophagous and predatory heterostracan feeding are based on analogy between
361  heterostracan oral plates and the gnathostome mandible (e.g. (19)), or more rarely the hagfish oral
362  apparatus (e.g. (24)). However, the oral apparatus in Rhinopteraspis is poorly constructed for biting
363  orgrasping. Although the ascending lamella bears tubercles that have been interpreted as the upper
364  ‘jaw’ analogue in such a scenario (57), they do not occlude with the tips of the oral plates. Moreover,
365  the angle of approach of the plates to the preoral plate during closing is oblique, with a low

366  mechanical advantage, and would have been poorly suited to generating force. Finally, the oral

367  plates themselves would not have formed a firm biting surface, with a poorly developed joint with
368  the postoral plate even in the broad based lateral oral plates (e.g. plates S/D4-6), and the medial oral
369  plates (e.g. plates M, S1, D1) suspended in soft tissue or with very narrow-based articulations with
370  the postoral plate. Scenarios that envisage see the oral plates as elements analogous to hagfish-like
371  toothlets (24) can be similarly rejected because the junction between the proximal tips of the oral
372  plates and the sulcus in the postoral plate, and the fixed position of the postoral plate, would all
373  have acted to dramatically restrict the movement of the oral plates.

374

375 Deposit or detritus feeding interpretations typically envisages the oral apparatus as a ‘scoop’ that
376  would have been used to acquire sediment from the bottom of the water body (22). This requires
377  the plates to evert substantially from their resting position, with some reconstructions also require
378  movement of the postoral plate (22 figs 49,50). We can reject this based on our reconstruction of
379  Rhinopteraspis, where significant movement of the oral plates is limited by the joint between the
380  postoral and ventral plates. However, we cannot rule out the burial of the snout/mouth in the

381  substrate as a means of deposit feeding. The presence or absence of wear, which is often used as a
382 line of evidence in discussion of deposit feeding (20,73), are not visible in Rhinopteraspis at the

383  resolution of our scan data. We note though that the long-snout in pteraspids such as

384  Rhinopteraspis, along with the strongly convex ventral abdomen, would have restricted the ability of
385 the animal to place its mouth in contact with the substrates.

386

387  In either suspension feeding or deposit feeding modes, rostral rotation of the oral plates would have
388 resulted in a greater area of gape, increasing intake. The occluded oral apparatus leaves a restricted
389  opening with digitate margins defined by the tips of the oral plates and the tubercles of the dorsal
390  oral plate that would have served to prevent fouling (cf. (1,58)) while facilitating inflow in a manner
391  analogous to straining functions seen in animals as diverse as flamingos, brachiopods, oysters and
392  gastropods (74). It is possible that the exposed tips of the oral plates in Rhinopteraspis acted as an
393  analogous structure along with the tubercles on the supraoral plate. The limited movement acted to
394  control the entry of larger particles into the mouth and may also have served to provide a means to
395  expel larger particles trapped between the plates (1).

396

397  (iv) Implications for early vertebrate evolution

398 The New Head and New Mouth hypotheses (9,12) have argued for a long term shift towards

399  increasingly active food acquisition, from the filter-feeding of invertebrate chordates to
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400  macrophagous predation in living jawed vertebrates. The feeding ecology of the extinct

401  heterostracans is key since this group represents one of the earliest diverging members of the

402  gnathostome stem-lineage. A diversity of feeding ecologies have been attributed to heterostracans,
403 from macrophagous predation, through scavenging and herbivory, to deposit and filter feeding. Our
404  three-dimensional reconstruction of the feeding apparatus of Rhinopteraspis dunensis suggests its
405 finger-like oral plates were limited to only a small degree of concerted rotation, precluding all

406  proposed feeding strategies bar suspension feeding or deposit feeding by burial of the mouth in the
407  substrate. Comparison to other heterostracans suggests that while this condition may be

408  unrepresentative of the clade generally, it is representative of pteraspids and the oldest and earliest
409  well-known heterostracan; as such it may be plesiomorphic for the clade. Given macrophagy in

410  earlier diverging lampreys, hagfish and conodonts (72), it is clear that early vertebrates and stem-
411  gnathostomes had already established a diversity of feeding ecologies, long before the origin of
412  jaws. This finding is consistent with recent challenges to the predictions of New Head Hypothesis,
413  demonstrating that vertebrate innovations and elaborations cannot be characterised by a directional
414  trend towards increasingly active food acquisition (75—77), but, rather, increasing ecological

415  diversity.

416

417 6. Conclusion

418  Alack of knowledge of the 3D anatomy of early vertebrate feeding apparatuses has obscured their
419  feeding ecology, and in turn hindered testing macroecological scenarios seeking to explain early
420  vertebrate evolution. Using X-Ray microtomography and computed tomography we have

421 reconstructed the oral apparatus of the pteraspid heterostracan Rhinopteraspis dunensis. The oral
422  apparatus in Rhinopteraspis is composed of one medial and six pairs of bilaterally arranged oral
423  plates, plus a pair of lateral oral plates. Inferred articulation of these plates indicates that range of
424  motion was limited; the oral plates could only move in concert and could not rotate far. When

425  occluded, the oral plates left a short wide gape to the mouth, closed partially by a convex crest

426  extending from the supraoral plate and the distal tips of the oral plates. The reconstructed anatomy
427  precludes all proposed feeding modes bar suspension or deposit feeding in Rhinopteraspis.

428 Heterostracans more generally show a far wider range of oral anatomies and body shapes than in
429  pteraspids (29), and a diversity of feeding ecologies was established early in vertebrate evolution,
430 long before the origin of jaws. Given the existence of contemporary macrophagous vertebrate

431  predators and scavengers, the presence of suspension feeding heterostracans is incompatible with
432  the directional trend towards increasingly active food acquisition envisaged by the New Head

433 hypotheses.
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640

641  Supplementary Material Captions

642

643  Supplementary Figure 1. Rhinopteraspis dunensis NHMUK PV P 73217. A-D, photographs of
644  complete specimen in (A) left lateral view with full length of preserved rostrum, (B) right
645 lateral view, (C) close-up of front of head in left lateral view, and (D) close-up of oral region
646  inventral view; E-G, Abbreviations: S, sinistral (left), D, dextral (right). Scale bars represent
647 5cminpanels A,B, 2.5 cm in panel C, 1 cm in panel D.
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650 Supplementary Figure 2. Rhinopteraspis dunensis NHMUK PV P 73217 oral and lateral oral
651 platesin aboral (a), lateral (b), adoral (c), and medial (d) views. Dotted line intersects

652  unpaired oral plate M. Abbreviations: lop, lateral oral plate, S, sinistral {left), D, dextral
653  (right). Scale bar represents 1 cm.
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Supplementary Figure 3. Reconstruction of Rhinopteraspis dunensis based on NHMUK PV P
73217 with oral plates animated to open to 30 degrees. A-D, lateral view; E-H, anterior
view; I-L, dorsal view (with surrounding plates removed). A,E,|, resting position; B,F,J, open
to 10 degrees; C,G,K, open to 20 degrees; D,H,L, open to 30 degrees.
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