

1 Mechanistic and evolutionary insights into isoform-specific 2 'supercharging' in DCLK family kinases

3
4
5 Aarya Venkat¹⁺, Grace Watterson¹⁺, Dominic P. Byrne²⁺, Brady O'Boyle¹, Safal Shrestha³, Nathan
6 Gravel³, Emma E. Fairweather², Leonard A. Daly^{2,4}, Claire Bunn¹, Wayland Yeung³, Ishan Aggarwal¹,
7 Samiksha Katiyar¹, Claire E. Evers^{2,4}, Patrick A. Evers^{2*}, and Natarajan Kannan^{1,3*}

8
9 **Affiliations:**

10
11 ¹Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA

12 ²Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative
13 Biology, University of Liverpool, Liverpool, L69 7ZB, UK

14 ³Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA

15 ⁴Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems,
16 Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK

17
18 + equal contributions

19 *Correspondence to: Natarajan Kannan, Email: nkannan@uga.edu or Patrick Evers, Email:
20 patrick.evers@liverpool.ac.uk

21 **Abstract**

22 Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural
23 mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the
24 conserved catalytic domain. The Doublecortin Like Kinases (DCLKs) are a family of microtubule-associated
25 proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the
26 various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations
27 contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of
28 statistical sequence analysis, molecular dynamics simulations and *in vitro* mutational analysis to define
29 hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1
30 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential
31 of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other Calcium
32 Calmodulin Kinases (CAMKs), and a 'Swiss-army' assembly of distinct motifs that tether the C-terminal tail
33 to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for auto-
34 regulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or
35 interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability,
36 nucleotide/inhibitor-binding, and catalytic activity, suggesting isoform-specific regulation of activity through
37 alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of
38 catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new
39 avenues for the design of mechanistically-divergent DCLK1 modulators, stabilizers or degraders.

40 **Introduction**

41
42 Protein kinases are one of the largest druggable protein families comprising 1.7% of the human genome
43 and play essential roles in regulating diverse eukaryotic cell signaling pathways (1). The Doublecortin-like
44 kinases (DCLKs) are understudied members of the calcium/calmodulin-dependent kinase (CAMK) clade of
45 serine-threonine kinases (2–4). There are three distinct paralogs of DCLK (1, 2, and 3), the last of which is
46 annotated as a “dark” kinase due to the lack of information pertaining to its function (5). Human DCLK1
47 (also known as DCAMKL1) was initially identified in 1999 (6), followed by the cloning of human DCLK2 and
48 3 paralogs (7). Full-length DCLK proteins contain N-terminal Doublecortin-like (DCX) domains, microtubule-
49 binding elements that play a role in microtubule dynamics, neurogenesis, and neuronal migration (8,9).
50 DCLKs have garnered much interest as disease biomarkers, since they are upregulated in a variety of
51 cancer pathologies (10–12), as well as neurodegenerative disorders such as Huntington’s Disease (13).
52 However, the mechanisms by which DCLK activity is auto-regulated, and how and why they have diverged
53 from other protein kinases is not well understood.

54

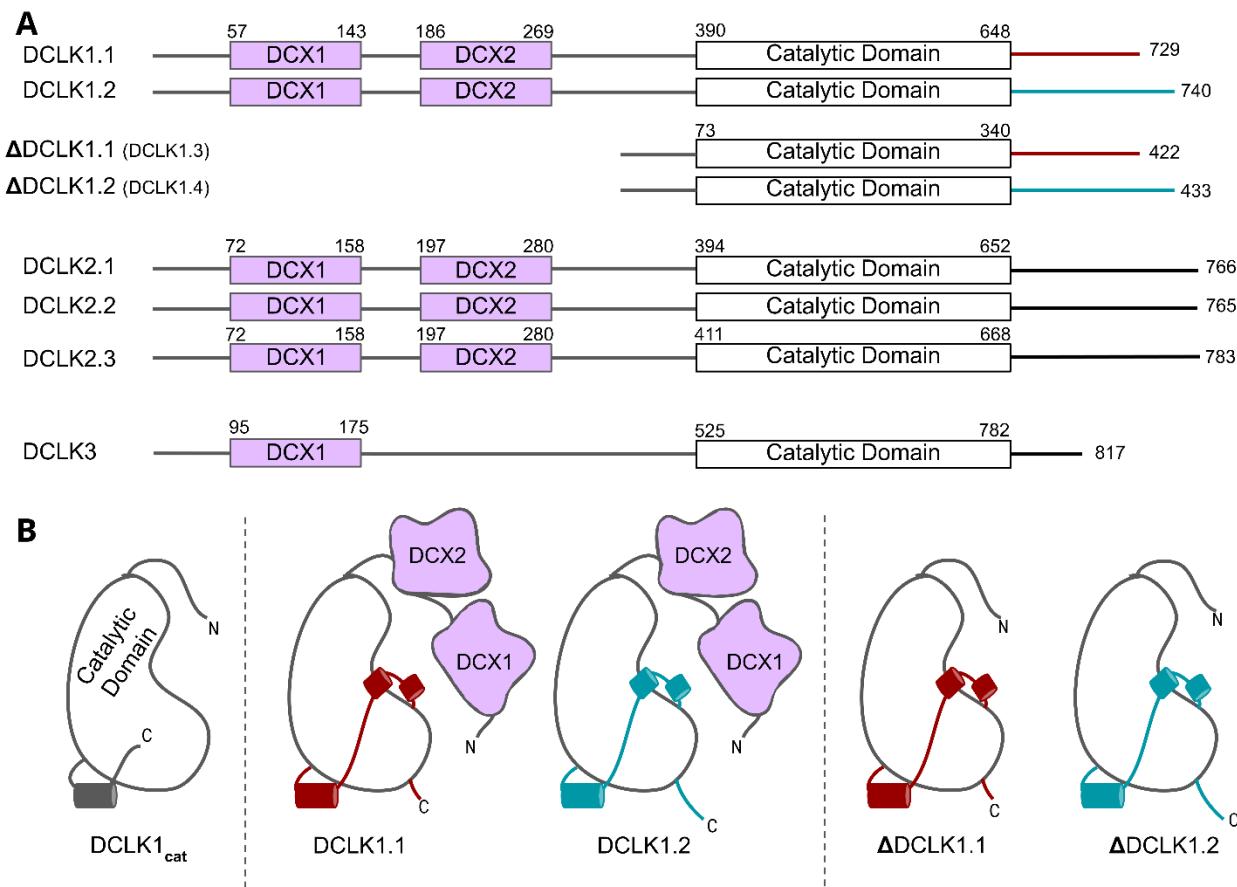
55 Like all protein kinases, the catalytic domain of DCLKs adopts a bi-lobial fold (4), with an N-terminal ATP
56 binding lobe and C-terminal substrate binding region. Canonical elements within the two lobes include the
57 DFG motif, a Lys-Glu salt bridge that is associated with the active conformation, Gly-rich loop, and ATP-
58 binding pocket, which are all critical elements for catalysis. Many protein kinases, including CAMKs,
59 Tyrosine Kinases (TKs) and AGCs, elaborate on these core elements with unique N-terminal and C-terminal
60 extensions that flank these catalytic lobes (14–18), allowing them to function as allosteric regulators of
61 catalytic activity (4). Indeed, CAMKs are archetypal examples of kinases that can exist in an active-like
62 structural conformation, yet still remain catalytically inactive (4). This is in large part due to the presence of
63 unique C-terminal tails that are capable of blocking ATP or substrate binding in well-studied kinases such
64 as CAMK1 and CAMKII. In canonical CAMKs, autoinhibition may be released upon Ca^{2+} /Calmodulin (CaM)
65 interaction with the CAMK C-tail, which makes the substrate-binding pocket and enzyme active-site
66 accessible (19). In CAMKII, the N and C-terminal segments flanking the kinase domain are variable in
67 length across different isoforms and the level of kinase autoinhibition or autoactivation has been reported
68 to be dependent on the linker length (20). The CAMKII C-tail can be organized into an autoregulatory

69 domain and an intrinsically disordered association domain. The autoregulatory domain also serves as a
70 pseudosubstrate, which physically blocks the substrate binding pocket until it is competed away by CaM
71 (21). Notably, this autoregulatory pseudosubstrate can be phosphorylated (19), and phosphorylation of the
72 C-tail makes CAMKII insensitive to CaM binding. Across the CAMK group, several other kinases share
73 autoinhibitory activity via interactions between Ca²⁺/CaM binding domains and the C-terminal tail (22,23),
74 and a major feature of these kinases is variation in the tail length across the distinct genetic isoforms.

75 *Table 1:*

Name (This Study)	Isoform number	UniProt ID	Alternate names
DCLK1.1	1	O15075-2	DCAMKL1 alpha
DCLK1.2	2	O15075-1	DCAMKL1 beta
ΔDCLK1.1	3	O15075-3	
ΔDCLK1.2	4	O15075-4	

Table 1: Names of DCLK isoforms discussed in this paper, along with their respective isoform number, UniProt identification, and alternate names that have been used.


76
77 The human genome encodes four distinct DCLK1 isoforms, termed DCLK1.1-1.4 in UniProt (**Table 1**,
78 **Figure 1**, (24)), which display differential activity- and tissue-specific expression profiles. Human DCLK1.1
79 (also known as DCLK1 alpha) is expressed in a variety of tissues, but is enriched in cells derived from the
80 fetal and adult brain, whereas DCLK1.2 (also known as DCLK1 beta) is expressed exclusively in the
81 embryonic brain (25). DCLK1.3 and 1.4, which lack tandem microtubule-binding DCX domains (**Figure 1**)
82 but are otherwise identical to DCLK1.1 and DCLK1.2, respectively, are also highly expressed in the brain.
83 To aid with clarity, the names of the human DCLK1 genes and their isoforms used in this paper are
84 summarized in **Table 1**. Recent structural and cellular analyses have begun to clarify the mechanisms by
85 which the DCLK1.2 isoform is regulated by the C-tail (2,26,27). Mechanistically, autophosphorylation of Thr
86 688, which is present only in the C-tail of DCLK1.2 (and DCLK1.4), blunts kinase activity and subsequently
87 inhibits phosphorylation of the N-terminal DCX domain and thus drives DCLK microtubule association in
88 cells (2). Consistently, deletion of the C-tail or mutation of Thr 688 restores DCLK1.2 kinase activity,
89 subsequently leading to DCX domain phosphorylation and the abolition of microtubule binding. The length

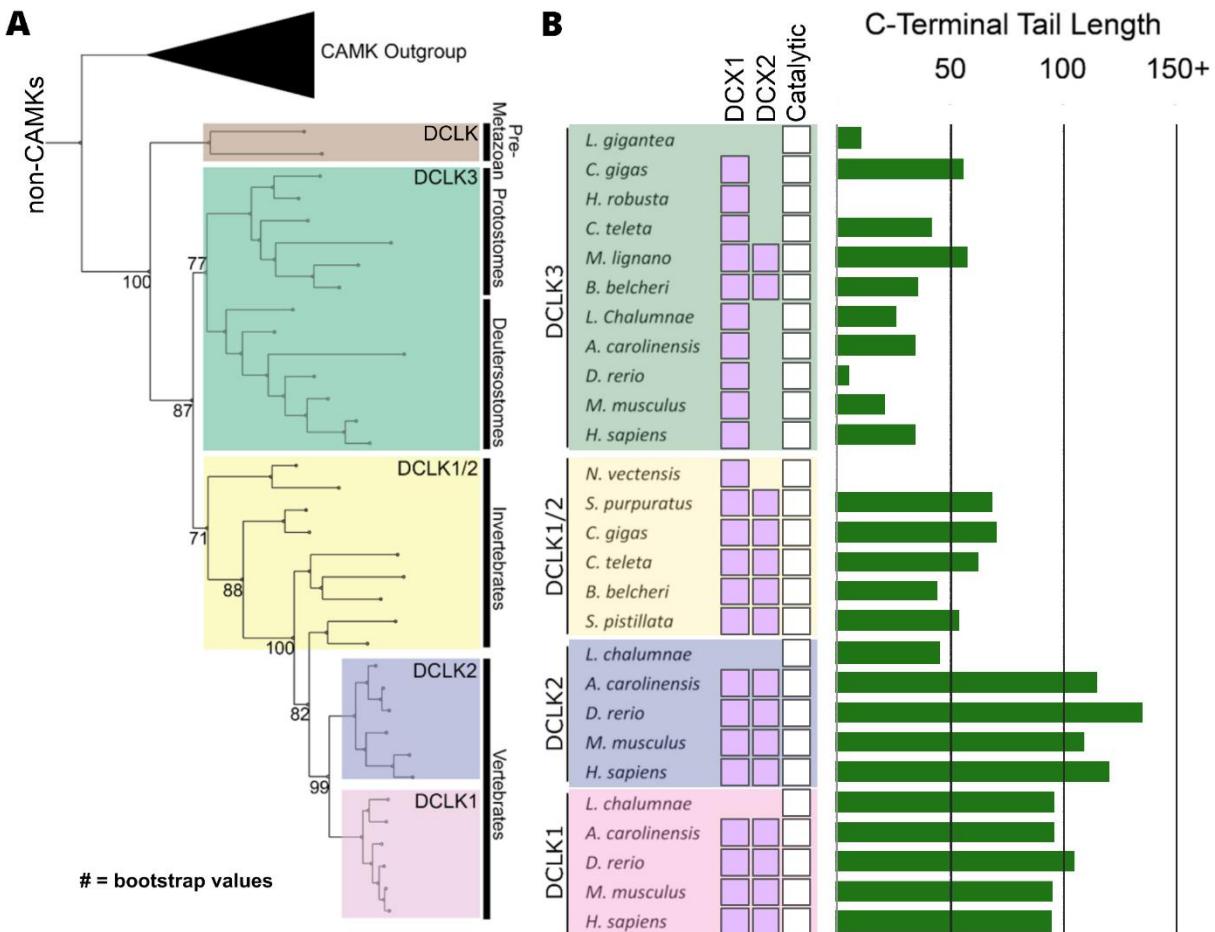
90 and sequence of the C-tail varies across the DCLK1 isoforms; however, how these variations contribute to
91 isoform-specific functions and how they emerged during the course of evolution is not known.

92

93 In this paper, we employ an evolutionary systems approach that combines statistical sequence analysis
94 with experimental studies to generate new models of DCLK evolutionary divergence and functional
95 specialization. We identify the C-terminal tail as the hallmark of DCLK functional specialization across the
96 kingdoms of life and propose a refined model in which this regulated tail functions as a highly adaptable
97 'Swiss-Army knife' that can 'supercharge' multiple aspects of DCLK signaling output. Notably, a conserved
98 segment of the C-tail functions as an isoform-specific autoinhibitory motif, which mimics ATP functions
99 through direct tail docking to the nucleotide-binding pocket, where it forms an ordered set of interactions
100 that aligns the catalytic (C) spine of the kinase in the absence of ATP binding. Furthermore, molecular
101 modelling demonstrates that a phosphorylated threonine in the C-tail of DCLK1.2, which is absent in
102 DCLK1.1, is positionally-poised to competitively mimic the gamma phosphate of ATP, perhaps in a
103 regulated manner. Other segments of the tail function as a pseudosubstrate by occluding the substrate-
104 binding pocket and tethering to key functional regions of the catalytic domain. Thermostability analysis of
105 purified DCLK1 proteins, combined with molecular dynamics simulations, confirms major differences in
106 thermal and dynamic profiles of the DCLK1 isoforms, while catalytic activity assays reveal how specific
107 variations in the G-loop and C-tail can rescue DCLK1.2 from the autoinhibited conformation. Together,
108 these studies demonstrate that isoform-specific variations in the C-terminal tail co-evolved with residues in
109 the DCLK kinase domain, contributing to regulatory diversification and functional specialization.

110 *Figure 1:*

111


Figure 1: A) Schematic representation of domain organization for the known isoforms of the three human DCLK paralogs. Domain boundaries are annotated according to the representative amino acid sequences derived from UniProt. **B)** DCLK1 isoforms visualized as cartoons, showing key structural differences between the four human DCLK1 isoforms and a DCLK1 catalytic domain with artificially short linker regions (DCLK1_{cat}).

112

113 **Results**

114 **Origin and evolutionary divergence of DCLK family members.**

115 *Figure 2:*

116 **Figure 2: Evolution of the DCLK family. A)** Phylogenetic tree showing the divergence and grouping of DCLK sub-families in different taxonomic groups. Bootstrap values are provided for each clade. **B)** Shows domain annotations for sequences included in the phylogenetic tree. The length of C-terminal tail segment for these sequences is shown as a histogram (green). The original tree generated using IQTREE is provided in **Figure 2-source data 1**.

117

118 The human DCLKs repertoire is composed of three genes, termed DCLK1, 2 and 3 (**Figure 1A, Table 1**).

119 The experimental model employed in this study, DCLK1, is composed of multiple spliced variants in human

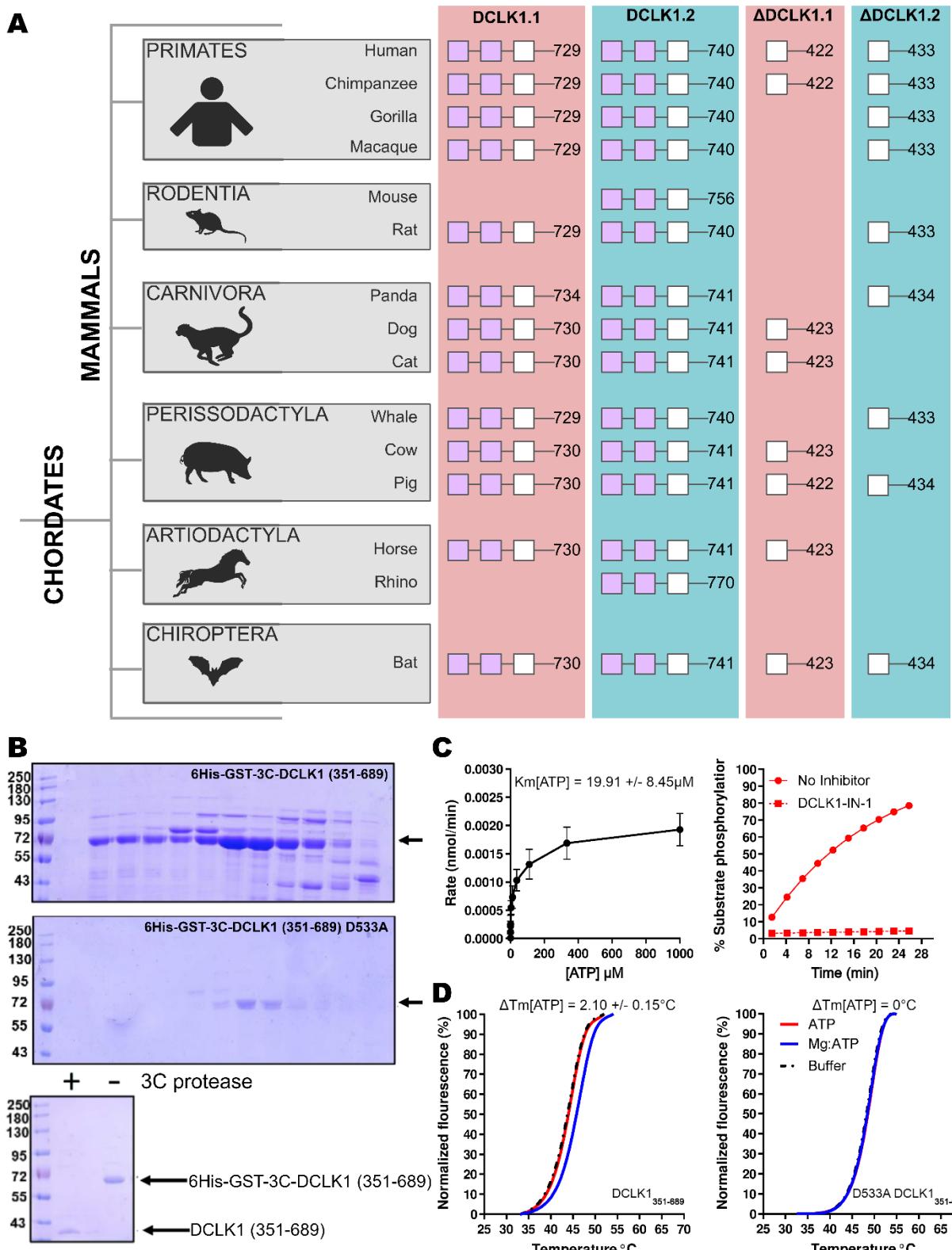
120 cells. Those full-length proteins that contain N-terminal DCX domains are usually referred to as DCLK1.1

121 or DCLK1.2 and the variants that lack the DCX domains are termed here (for simplicity) Δ DCLK 1.1 and

122 Δ DCLK1.2 (also referred to as DCLK1.3 and DCLK1.4). The core catalytic domain with minimal flanking

123 regions (DCLK1_{cat}, **Figure 1B**) is identical in all DCLK1 proteins, whereas the length of the tail, or the

124 presence of the DCX domains, generates considerable diversity from the single human DCLK1 gene
125 (**Figure 1B, Figure 1-figure supplement 1**). To infer evolutionary relationships of DCLK paralogs, and
126 especially the evolution of the C-terminal tail regions that lie adjacent to the kinase domain (**Figure 1**), we
127 performed phylogenetic analysis of 36 DCLK sequences with an outgroup of closely related CAMK
128 sequences (**Figure 2A, Figure 2-source data 1**). These DCLK sequences are from a representative group
129 of holozoans, which consist of multicellular eukaryotes (metazoans) and closely related unicellular
130 eukaryotes (pre-metazoans). The analysis generated four distinct clades: pre-metazoan DCLK, metazoan
131 DCLK3, vertebrate DCLK2 and vertebrate DCLK1. Interestingly, DCLK genes demonstrated significant
132 expansion and diversification within metazoan taxa. The pre-metazoan DCLK sequences were the most
133 ancestral and showed no DCLK diversity, suggesting the DCLK expansion and diversification correlated
134 with the evolution of multicellular organisms. Within the metazoan expansion of DCLK, DCLK3 is the most
135 ancestral and can be broken down into two sub-clades: protostome DCLK3 and deuterostome DCLK3.
136 Within invertebrates, only two DCLK paralogs were present, one that was identified as a DCLK3 ortholog
137 and another that was not clearly defined as either DCLK1 or DCLK2. This suggests that the diversification
138 into DCLK1 and DCLK2 paralogs from an ancestral DCLK1/2-like paralog occurred after the divergence of
139 invertebrates and vertebrates, which is further supported by the monophyletic DCLK1 and DCLK2 clades
140 in vertebrates (bootstrap value: 99).


141
142 Interestingly, the expansion of DCLK in metazoans and the diversification of DCLK1 and DCLK2 within
143 vertebrates correlates well with the length and sequence similarity of the C-terminal tail, which also varies
144 between the different DCLK1 splice variants (**Figure 1A, Figure 1-figure supplement 1 and 2**). Within
145 both protostome and deuterostome DCLK3, the length of the C-terminal tail is ~50 residues or less. This is
146 in marked contrast to the tail lengths of vertebrate DCLK1 and DCLK2, which are ~100 residues long. In
147 addition to the C-terminal tail, an analysis of the domain organization of these DCLKs reveals that DCLK3
148 predominantly contains only a single N-terminal Doublecortin domain (DCX), whereas invertebrate DCLKs,
149 and vertebrate DCLK1 and DCLK2 predominantly contain two DCX domains at the N-terminus of the long
150 isoforms (**Figure 2B**). In addition, we identified a putative active site-binding motif, VSVI, and a
151 phosphorylatable threonine conserved within vertebrate DCLK1 and DCLK2, which is absent in all other

152 DCLK sequences, including invertebrate DCLK1/2. This raises the possibility that the DCLK1/2 tail
153 extensions are employed for vertebrate-specific regulatory functions.

154 Next, we compared the type of DCLK1 protein sequence encoded by a range of chordate mammalian
155 genomes. The domain organization of each DCLK1 isoform was compared based on annotated sequences
156 from UniProt, demonstrating the presence of at least one DCLK1 protein that lacks the DCX domains in
157 every species examined, with a mixture of Δ DCLK1.1 and Δ DCLK1.2 splice variants. Interestingly, it was
158 only in the human DCLK1 gene that definitive evidence for Δ DCLK1.1 and Δ DCLK1.2 variants were
159 found (**Figure 3A**). To establish a model for DCLK1 biophysical analysis, we constructed a recombinant
160 hybrid human DCLK1 catalytic domain with a short C-tail sequence that is equivalent to DCLK1.1 amino
161 acids 351-689, containing the catalytic domain with a short C-tail region. As shown in **Figure 3B**, incubation
162 of size-exclusion chromatography (SEC) purified GST-tagged DCLK1 with 3C protease generated the
163 mature untagged DCLK1 protein for biophysical analysis. Analytical SEC revealed that purified DCLK1.1
164 and DCLK1.2 isoforms are monomeric in solution (**Figure 3-figure supplements 1-3**). We evaluated
165 catalytic activity for DCLK1.1₃₅₁₋₆₈₉ using a validated peptide phosphorylation assay (**Figure 3C**), which
166 revealed efficient phosphorylation of a DCLK1 substrate peptide. The $K_{M[ATP]}$ for peptide phosphorylation
167 was close to 20 μ M in the presence of Mg²⁺ ions (**Figure 3C**, left panel), similar to values measured for
168 other Ser/Thr kinases that are autophosphorylated and active after expression from bacteria (28). DCLK-
169 dependent peptide phosphorylation was completely blocked (**Figure 3C**, right panel) by prior incubation of
170 the reaction mixture (containing 1mM ATP) with the chemical inhibitor DCLK1-IN-1, as expected (29). In
171 addition to enzyme activity, we monitored thermal denaturation of purified, folded, DCLK1₃₅₁₋₆₈₉ protein in
172 the presence of ATP, either alone or as a Mg:ATP complex, which is required for catalysis. As shown in
173 **Figure 3D**, DCLK1 was stabilized by 2.1°C upon incubation with an excess of Mg:ATP, and this protective
174 effect was completely blocked by mutation of Asp 533 (of the conserved DFG motif) to Ala, consistent with
175 canonical ATP interaction in the nucleotide-binding site. Finally, we assessed the thermal effects of a panel
176 of DCLK1 inhibitors on the model DCLK1.1₃₅₁₋₆₈₉ protein. Prior incubation with DCLK1-IN-1, LRRK2-IN-1,
177 the benzopyrimidodiazepinones XMD8-92 and XMD8-85, which have been reported to potently (though not
178 specifically) inhibit DCLK1 activity (26), led to marked protection from thermal unfolding (**Figure 3-figure**

179 **supplement 4).** Consistently, the negative control compound DCLK1-Neg (29) was ineffective in stabilizing
180 DCLK1.

181 Figure 3:

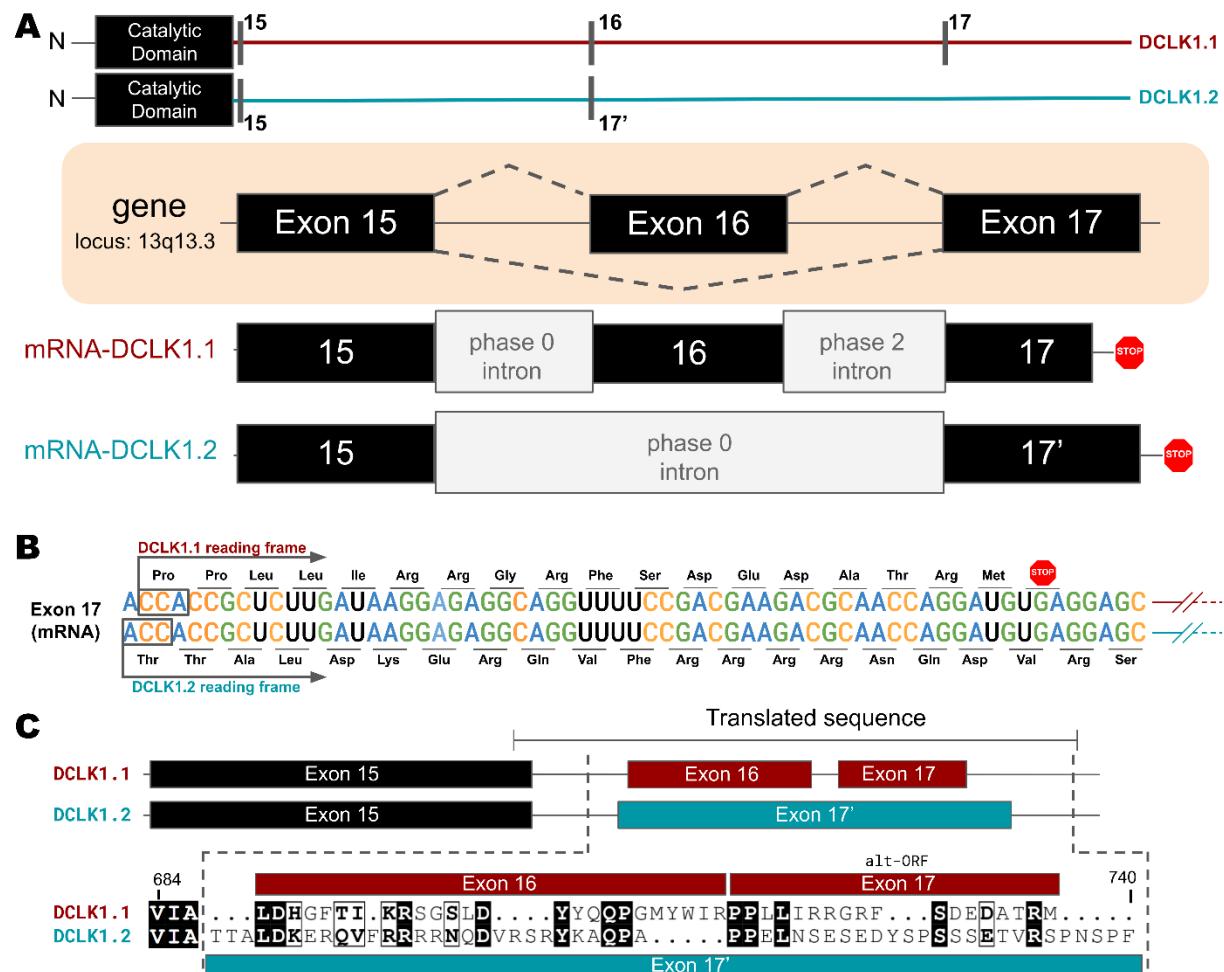

182

Figure 3: A) Cartoon cladogram of mammalian species showing the domain organization of each DCLK1 isoform from representative annotated sequences from UniProt. UniProt IDs for each sequence are provided in **Figure 3-Source File 1**. **B)** SDS-PAGE of 6His-GST-3C-DCLK1.1 (351-689, Top) or a D533A mutant in which the DFG Asp is mutated to Ala (Middle). Proteins were separated by size exclusion chromatography, and high-purity fractions were pooled. The affinity tag was removed prior to analysis by incubation with 3C protease, leading to a demonstrable shift in mobility (bottom) **C)** Evaluation of catalytic activity towards DCLK1 peptide. DCLK1.1 351-689 possesses a $K_{M[ATP]}$ ~20 μ M in vitro (left) and real-time substrate phosphorylation was inhibited by prior incubation with the small molecule DCLK1-IN-1, (right). **D)** Thermal shift assay demonstrating a 2.1°C increase in the stability of DCLK1 351-689 in the presence of Mg:ATP (left), which was absent in the D533A protein (right). Raw data are provided in **Figure 3-Source File 2**.

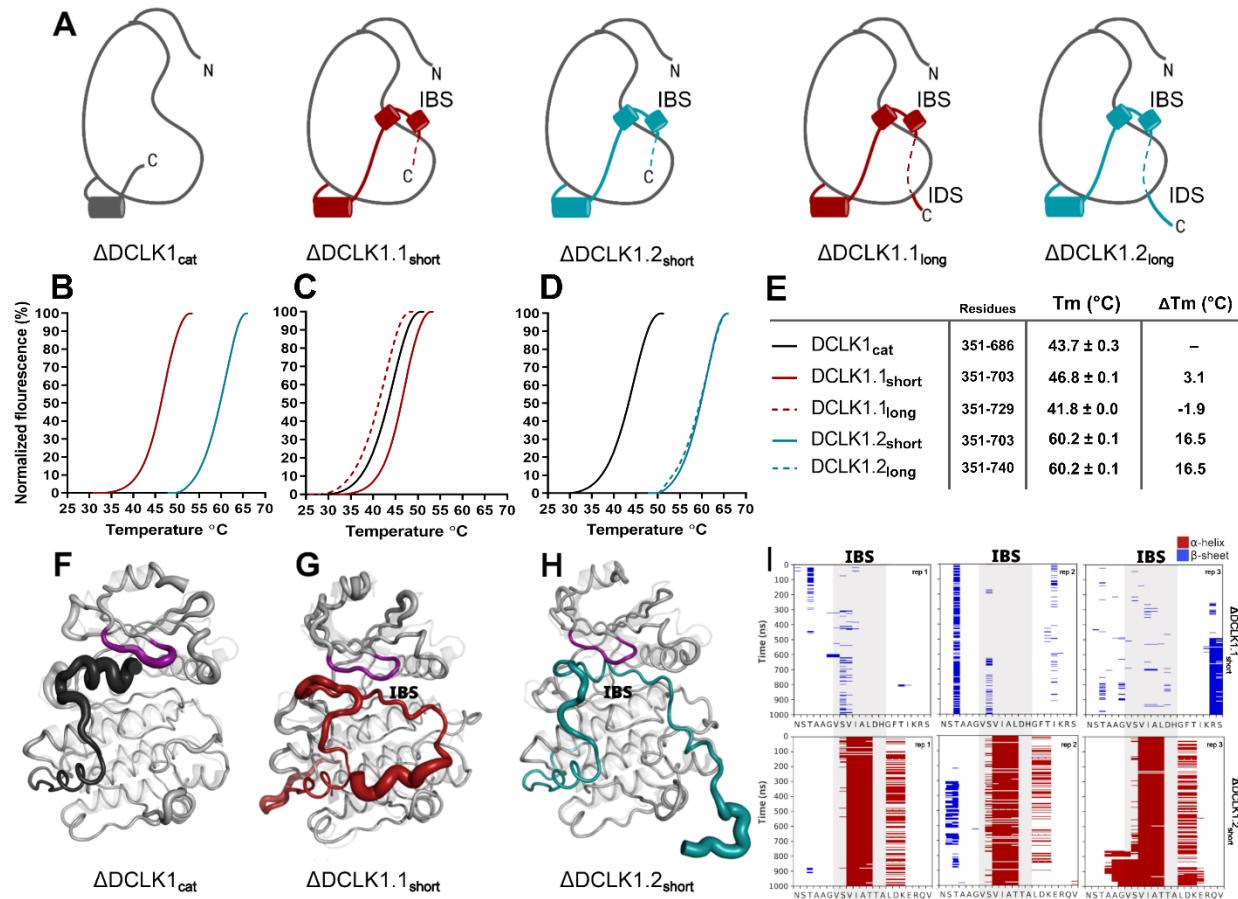
183

184 **Key differences between isoforms in the C-tail of DCLK1 arise from alternative-splicing and**
185 **different open-reading frames**

186 *Figure 4:*

187

Figure 4: A) Gene and intron-exon organization of DCLK1 human isoforms in the C-terminal tail. The DCLK1 gene is present on locus 13q13.3, and isoforms 1 and 3, contain an additional exon (exon 16), in the C-terminal tail that is absent in DCLK1.2. **B)** A phase 2 intron results in the alternative transcript of exon 17 in isoform 1, translating a different open-reading frame and early stop codon, resulting in the


shorter sequence. **C**) Cartoon organization of the C-tail exons (exon 15, 16, and 17) of the DCLK1 isoforms, comparing the translated protein sequence alignment.

188
189 Higher-order vertebrates have multiple isoforms of DCLK1 and DCLK2, where sequence variations occur
190 in either or both the N and C terminal regions attached to the kinase domain. Human DCLK1, for example,
191 has four unique isoforms. Isoforms 1 and 2 differ in C-terminal tail length due to variations in exon splicing
192 (**Figure 4A**). Further examination of the intron and exon boundaries indicates that human DCLK1.1 contains
193 an additional exon (exon 16) that is not spliced in DCLK1.2. Exon 16 is spliced with exon 17 with a phase
194 2 intron, which introduces a shift in the reading frame and an earlier translated stop codon (UGA) in exon
195 17 (**Figure 4B**). In DCLK1.2, exon 15 is spliced with exon 17, with a non-disruptive phase 0 intron, resulting
196 in the full translation of exon 17. These changes introduce multiple indels (insertions and deletions) and
197 result in the insertion of a phosphorylatable threonine (T688) (2) in DCLK1.2 that is absent in the DCLK1.1
198 variant (**Figure 4B-C**), suggesting a possible exon duplication for adaptive regulation of DCLK1 function by
199 phosphorylation. DCLK1.2 is the best-characterized isoform in terms of structure and function (27), and to
200 compare it with DCLK1.1, we generated a series of C-terminal tail deletion mutants to evaluate how
201 variations in the C-terminal tail contribute to isoform specific DCLK1 functions.

202

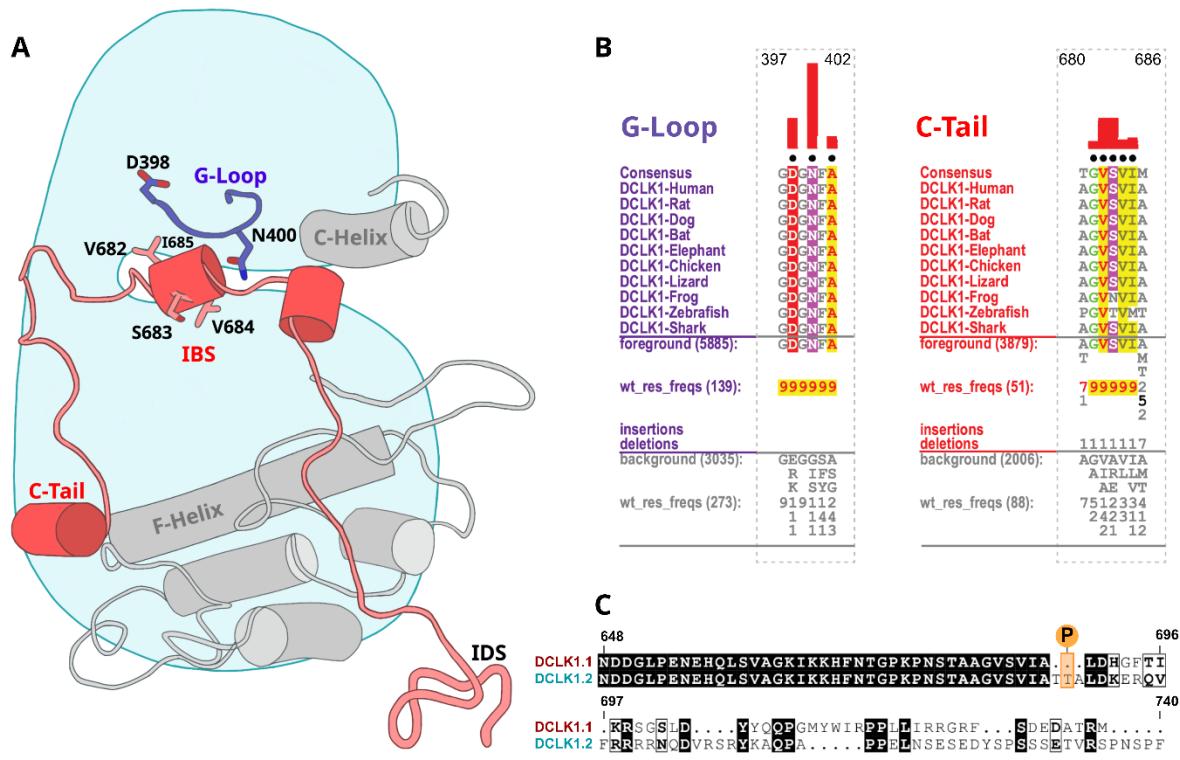
203
204

Isoform-specific variations encode changes in molecular dynamics, thermostability and catalytic activity in DCLK1

Figure 5: A) Cartoons of DCLK1 construct used in our assays, portraying the locations of the Inhibitory Binding Segment (IBS) and the Intrinsically Disordered Segment (IDS). **B-E)** DSF thermal denaturation profiling of the purified DCLK1 core catalytic domain, or tail-matched DCLK1.1 and DCLK1.2 proteins. Unfolding curves and changes in Tm values (ΔTm) for each protein relative to WT DCLK1_{cat} are indicated. **F-H)** B-factor structural representations of DCLK1_{short} proteins shown in A). The width of the region indicates the extent of flexibility based on averaged RMSF data from three one microsecond MD replicates. **I)** DSSP analysis of three replicates of one microsecond MD simulations showing the residues surrounding the IBS in the C-tail of DCLK1.1_{short} and DCLK1.2_{short}. Blue indicates the presence of a Beta-sheet or Beta-bridge secondary structures and red indicates the presence of alpha-helical structures.

205

206


To study isoform specific differences in the C-tail, we employed experimental techniques to compare protein stability and catalytic activity between purified DCLK1 proteins alongside molecular dynamics simulations for DCLK1.1 and DCLK1.2 with different tail lengths. Isoforms 1.1 and 1.2 share identical sequences across the kinase domain and within the first 38 residues of the C-tail, and we used this information to design a new recombinant protein, termed DCLK1_{cat} (residues 351-686). C-terminal to this totally conserved region, both isoforms possess extended tail segments, which includes the putative inhibitory binding segment (IBS; residues 682-688) and an additional intrinsically-disordered segment (IDS; residues 703-end). To study the

214 role of the C-tail in modulating kinase stability and activity, we purified the DCLK1_{cat}, and C-tail containing
215 (long and short) variants of each isoform, each of which lack the N-terminal DCX domains (**Figure 5A**).
216 SDS-PAGE demonstrated that protein preparations were essentially homogenous after affinity and gel
217 filtration chromatography (**Figure 5-figure supplement 1**). The short forms of the recombinant proteins
218 (DCLK1.1₃₅₁₋₇₀₃ and DCLK1.2₃₅₁₋₇₀₃) possess a partially truncated C-tail and were designed to match the
219 amino acid sequence previously used to solve the structure of DCLK1.2 protein (27). Notably, these
220 proteins exclude the IDS. The long forms of the DCLK1 proteins include the full-length C-tail for each
221 isoform (DCLK1.1₃₅₁₋₇₂₉ and DCLK1.2₃₅₁₋₇₄₀) and incorporate IDS domains. We first performed comparative
222 thermal shift analyses to quantify variance in thermal stability between the different purified proteins. When
223 contrasting DCLK1.1_{short} and DCLK1.2_{short} which do not differ in size or tail length but encode unique sets
224 of amino acids in their partially truncated C-tail as a result of alternative splicing (**Figure 4**), we observed
225 that DCLK1.2 was some 14°C more stable than DCLK1.1 (**Figure 5B**). When compared with DCLK1_{cat},
226 both DCLK1.1 short and long exhibited only subtle changes in thermal stability (**Figure 5C & E**), whereas
227 both DCLK1.2 proteins (DCLK1.2_{short} and DCLK1.2_{long}) were significantly stabilized (relative $\Delta T_m > 16^\circ\text{C}$,
228 **Figure 5D & E**).

229
230 We next performed MD simulations to study the dynamics within the distinct DCLK1 C-tails that might
231 explain the observed difference in protein stability. The crystal structure of DCLK1.2 (PDB: 6KYQ) was
232 employed for the DCLK1.2_{short} model and AlphaFold2 was used to model the other proteins (DCLK1_{cat} and
233 DCLK1.1_{short}). Comparison of the root mean square fluctuations (RMSF) of the two isoforms in three
234 different replicates of molecular dynamics simulations indicates strikingly different thermal fluctuations in
235 the C-terminal tails and catalytic domains (**Figure 5-source data 1**). In particular, the IBS segment
236 (between 682-688) is stably docked in the ATP binding pocket in DCLK1.2 and an alpha helical
237 conformation is maintained during the microsecond time scale across different replicates (**Figure 5I**,
238 bottom). In contrast, the IBS is more unstable in DCLK1.1, as indicated by high thermal fluctuations and a
239 lack of secondary structure propensity (**Figure 5I**, top). A caveat to bear in mind is that DCLK1.1 is an
240 AlphaFold2 model, which will also account for increased RMSF. Analysis of sequence variations and
241 structural interactions provides additional insights into the differential dynamics of the two isoforms. The

242 helical conformation of the IDS in DCK1.2 is maintained during the simulation due, in part, to a capping
243 interaction with Thr 687, which is absent in DCLK1.1 due to the alternative splicing event detailed above.
244 Likewise, another key residue in DCLK1.2, Lys 692, anchors the tail to the catalytic domain through
245 directional salt bridges with the conserved aspartates (Asp 511 and Asp 533) in the HRD and DFG motifs
246 (**Figure 5, figure-supplement 2A**). These interactions are not observed in DCLK1.1 simulations because
247 Lys 692 is substituted to a histidine (His 689), which is unable to form a corresponding interaction with the
248 catalytic domain (**Figure 5, figure-supplement 2B**). We also evaluated the effects of T688A (non-
249 phosphorylated) or T688E (phosphomimetic) mutations through DCLK1 MD simulations and found that the
250 two mutations slightly destabilize the tail relative to WT. Three replicates of the two mutants show increased
251 RMSF of the tail region relative to WT DCLK1.1 (**Figure 5, figure-supplement 3**). Either mutation was not
252 sufficiently destabilizing on its own to unlatch the C-tail, and we hypothesize that other residues in addition
253 to T688 are also likely to be important for contributing to conformational regulation of the kinase domain by
254 the C-terminal tail. The variable docking of the C-tail within the kinase domains of the two DCLK1 isoforms,
255 and the extent to which this contributes to more transient or stable autoinhibited states are explored in more
256 detail in the next section.

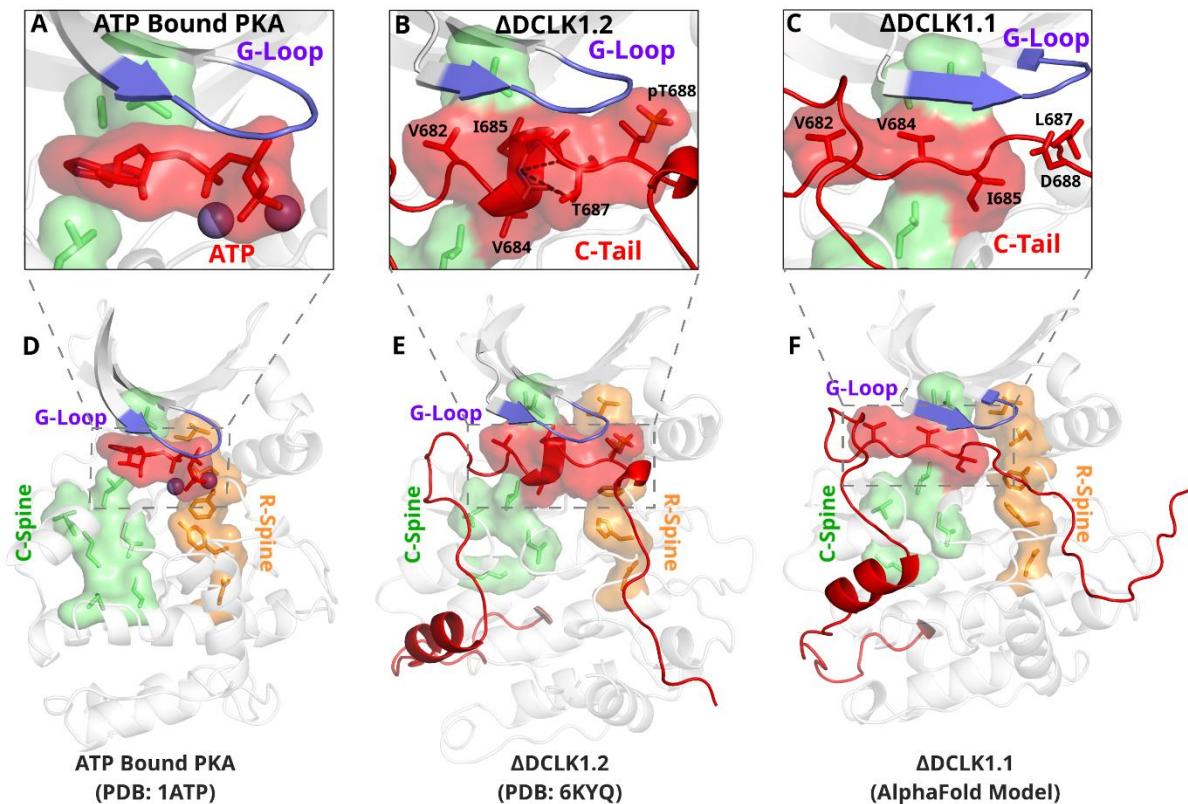
257 Figure 6:

258

Figure 6: Identification of DCLK specific constraints. A) Cartoon of DCLK1.2 and the intrinsically disordered segment (IDS) with evolutionary constraints mapped to the kinase domain and C-tail. **B)** Sequence constraints that distinguish DCLK1/2/3 sequences from closely related CAMK sequences are shown in a contrast hierarchical alignment (CHA). The CHA shows DCLK1/2/3 sequences from diverse organisms as the display alignment. The foreground consists of DCLK sequences while the background alignment contains related CAMK sequences. The foreground and background alignments are shown as residue frequencies below the display alignment in integer tenths (1–9). The histogram (red) indicates the extent to which distinguishing residues in the foreground diverge from the corresponding position in the background alignment. Black dots indicate the alignment positions used by the BPPS (Neuwald, 2014) procedure when classifying DCLK sequences from related CAMK sequences. Alignment number is based on the human DCLK1.2 sequence (UniProt ID: O15075-2). **C)** Sequence alignment of human DCLK1 isoforms.

259

260 **Residues contributing to the co-evolution and unique tethering of the C-terminal tail to the DCLK**
261 **catalytic domain.**


262

263 To identify specific residues that contribute to the unique modes of DCLK regulation by the C-terminal tail,
264 we performed statistical analysis of the evolutionary constraints acting on DCLK and related CAMK family
265 sequences. We aligned the catalytic domain of DCLK and related CAMK sequences from diverse
266 organisms and employed the Bayesian Partitioning with Pattern Selection (BPPS) method (30) to identify
267 residues that most distinguish DCLK sequences (foreground alignment in **Figure 6B**) from CAMK
268 sequences (background alignment). Beyond the catalytic domain, DCLKs share sequence and structural

269 similarities in the first helix of the tail (αR1 in CAMK1) (31,32), with other CAMKs but share no detectable
270 sequence similarity beyond this helical segment. DCLKs also share a CAMK-specific insert segment
271 located between F and G helices in the catalytic domain, although the nature of residues conserved within
272 the insert is unique to individual CAMK families (**Figure 6-figure supplement 1**). BPPS analysis revealed
273 DCLK-specific constraints in different regions of the kinase domain, most notably, the ATP binding G-loop,
274 N terminus of the C-helix, the activation loop, and C-terminus of the F-helix (**Figure 6-figure supplement**
275 **2**).
276 Some of the most significant DCLK specific residue constraints map to the ATP binding G-loop (GDGNFA
277 motif) (Figure 6A-B). In particular, Asp 398, Asn 400 and Ala 402 are unique to DCLKs as the corresponding
278 residues are strikingly different in other CAMKs. Asp 398 is typically a charged residue (K/R) in other
279 CAMKs while Asn 400 and Ala 402 are typically hydrophobic and polar residues, respectively (see residue
280 frequencies in background alignment; **Figure 6B**). Notably, both Asn 400 and Asp 398 make direct
281 interactions with residues in the C-tail either in the crystal structure or molecular dynamics simulations (see
282 below). Likewise, DCLK conserved residues in the C-helix and activation loop tether the C-terminal tail to
283 functional regions of the kinase core, suggesting co-option of the DCLK catalytic domain to uniquely interact
284 with the flanking cis regulatory tail.

285

286 Figure 7:

287

Figure 7: The DCLK1 C-tail 'completes' the regulatory C-spine (green). **A**) PKA crystal structure (PDB: 1ATP) with bound ATP in red and Mg²⁺ in purple. The C-spine is completed by the adenine ring of ATP. The gamma phosphate of ATP hydrogen bonds with the second glycine of the G-loop. **B**) DCLK1.2 crystal structure (PDB: 6KYQ) showing how the C-tail (red) docks underneath the pocket and mimics the ATP structure. The C-spine is completed by V682 and V684 in the C-tail and helical segments defined using DSSP are shown. T687 is also depicted making multiple hydrogen bonds with the backbone of V684 and I685 (dashed lines). **C**) DCLK1.1 AlphaFold2 model showing an unstructured loop in the C-tail docking into the ATP binding pocket, where V684 and I685 are predicted to complete the C-spine. The average per-residue confidence of the C-tail is 49%. **D-F**) Zoomed out versions of A-C, demonstrating how the DCLK1 C-tail docks into the ATP binding cleft, akin to ATP in PKA.

288

289 An autoinhibitory ATP-mimic completes the C-spine and mimics the gamma phosphate of ATP.

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

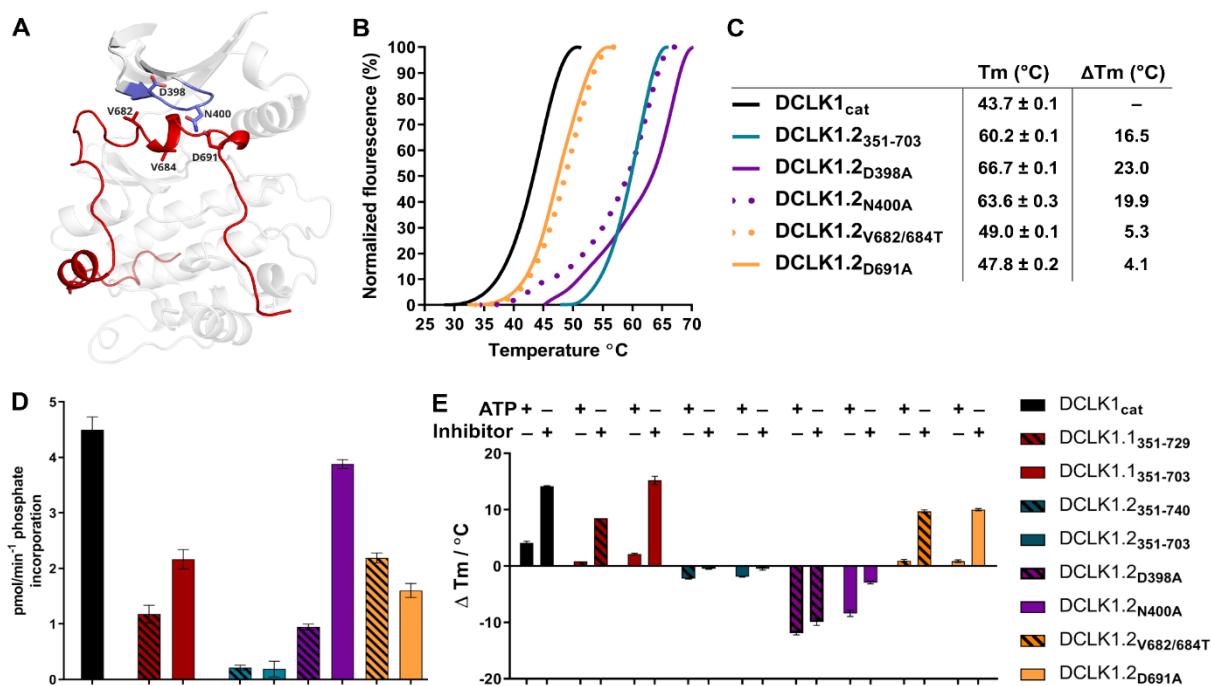
569

570

571

572

57


298 constraints. At the tail end of this α -helix are two Thr residues, Thr 687 and Thr 688. As previously noted,
299 these Thr residues mark the beginning of exon 17, and are one of the key variations between human DCLK1
300 isoforms, found only in DCLK1.2 variants.

301

302 Structural analysis and MD simulations reveal that Thr 687 in DCLK1.2 caps the stable α -helix that extends
303 the C-spine (**Figure 7B, Figure 7-figure supplement 1B**). In comparison, the same region in DCLK1.1,
304 which lacks Thr 687, is predicted to be unstructured. Upon phosphorylation, Thr 688 in DCLK1.2 can mimic
305 the gamma phosphate of ATP by maintaining a stable hydrogen bonding distance with the backbone of the
306 second glycine of the G-loop (G399) (**Figure 7B, Figure 7-figure supplement 1C**). We additionally
307 observe that the sidechain of Asn 400, a DCLK-specific G-loop constraint, further stabilizes the phosphate
308 group in pThr 688 through hydrogen bonding. As previously described, Thr 688 is unique to DCLK1.2. The
309 lack of this functional site in DCK1.1 is correlated with increased RMSF and instability of the ATP-mimic
310 segment in isoform 1 MDs (**Figure 5C-D, Figure 7-figure supplement 1B**). Comparatively, MD analysis
311 of DCLK1.2 and a phosphothreonine-containing DCLK1.2 demonstrates reduced C-tail fluctuations,
312 suggesting the potential regulatory involvement of Thr 688 phosphorylation for further modulation of the
313 autoinhibited conformation (**Figure 7-figure supplement 1C**), consistent with previous findings (2).

314

315 *Figure 8:*

316

Figure 8: A) Structural depiction of DCLK1.2 (PDB: 6KYQ) showing the location of modified DCLK1 amino acids on the G-loop (purple) or C-tail (red). **B-C)** Differential Scanning Fluorimetry assays depicting thermal denaturation profiles of each protein along with the calculated Tm value. **D)** Kinase assays. DCLK1-dependent phosphate incorporation (pmol/min⁻¹) into the DCLK1 peptide substrate was calculated for DCLK1_{cat}, long and short DCLK1.1 and the indicated DCLK1.2 variants. **E)** Thermal stability analysis in the presence of ATP or DCLK1-IN-1 for DCLK1 proteins. For DCLK1.2, all proteins were generated in the DCLK1.2 short background.

317

318 **Mutational analysis support isoform-specific allosteric control of catalytic activity by the C- 319 terminal tail.**

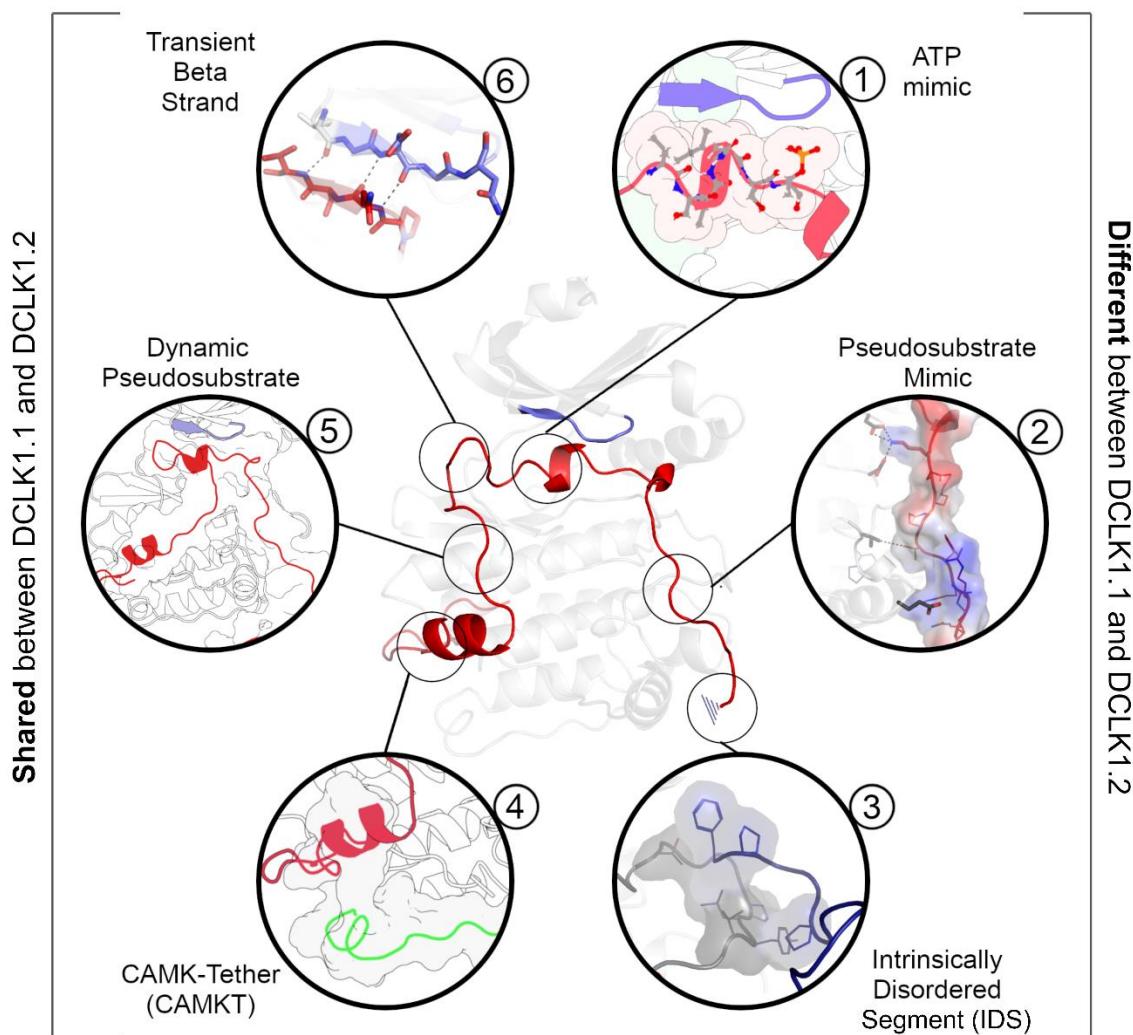
320

321 To evaluate how sequence differences between DCLK1.1 and DCLK1.2 affected both thermal stability and
322 catalytic potential, we generated targeted mutations at contact residues within the Gly-rich loop and C-tail
323 of DCK1.1 and DCLK1.2 (at the indicated residues depicted in **Figure 8A**) which we predicted would disrupt
324 or destabilize C-tail docking within the domain. All proteins were purified to near homogeneity by IMAC and
325 size exclusion chromatography (**Figure 5-figure supplement 1**), and the thermal stability of a panel of
326 DCLK1.2 mutant and WT proteins were compared side-by-side with the DCLK1_{cat} (**Figure 8B**). The ΔTm
327 values obtained (**Figure 8C**) demonstrate that mutation of Asp 398 or Asn 400 in the Gly-rich loop are by
328 themselves insufficient to destabilize DCLK1.2. In marked contrast, dual mutation of the hydrophobic pair
329 of Val 682 and Val 684 residues to Thr, or mutation of the acidic tail residue Asp 691, resulted in a
330 pronounced reduction in DCLK1.2 thermal stability. Moreover, the recorded Tm values for these latter two

331 mutations quite closely resembled the Tm of DCLK1_{cat} (which lacks the C-tail entirely), which is consistent
332 with the uncoupling of the C-tail and a commensurate decrease in thermal stability associated with loss of
333 this interaction. We next determined the catalytic activity of our recombinant DCLK1.1 and DCLK1.2
334 proteins side-by-side (**Figure 8D, Figure 8-figure supplement 1**). Although partially diminished in relation
335 to DCLK1_{cat}, both DCLK1.1_{short} (351-703) and DCLK1.1_{long} (351-729) variants possess robust catalytic
336 activity. This suggested ineffective ATP-competitive auto-inhibition mediated by the C-tail segment of
337 DCLK1.1 and is consistent with their closely matched Tm values to DCLK1_{cat} (**Figure 5C**). Interestingly,
338 both C-tail containing variants of DCLK1.1 (and particularly DCLK1.1³⁵¹⁻⁷²⁹) exhibited lower affinity for ATP
339 (inferred from $K_{M[ATP]}$ for peptide phosphorylation), which is consistent with partial-occlusion of the ATP
340 binding pocket (**Figure 8-figure supplement 1**). In marked contrast, the detectable kinase activity for short
341 (351-703) or long (351-740) DCLK1.2 proteins was significantly blunted compared to DCLK1_{cat}, exhibiting
342 just ~5% of the activity of the catalytic domain alone, and consistently, the calculated $K_{M[ATP]}$ was ~ 4 fold
343 higher compared to the catalytic domain lacking the C-tail. We also utilized autophosphorylation as a proxy
344 for overall kinase activity. Quantitative tandem mass spectrometry (MS/MS) analysis of site-specific
345 autophosphorylation within DCLK1.1_{short} and DCLK1.2_{short} demonstrate a marked reduction in the site-
346 specific abundance of phosphate in DCLK1.2 when compared to DCLK1.1 at two separate sites that could
347 be directly and accurately quantified by MS (S438 and S660, DCLK1.1 relative abundance set to 1, **Figure**
348 **8-figure supplement 2**). LC-MS/MS also indicated that several autophosphorylation sites identified in
349 isoform 1 were absent in DCLK1.2 (Ser 683 and Thr 692, the latter of which is an amino acid that is unique
350 to the C-tail of DCLK1.1, **Figure 8-figure supplement 2**). Interestingly, amino acid substitutions in the G
351 loop or the C-tail of DCLK1.2 designed to subvert C-tail and ATP site interactions also had major effects on
352 DCLK1.2 phosphorylation and catalytic activity. DCLK1.2 D398A was activated some 5-fold when
353 compared to the WT form, whereas DCLK1.2 N400A was almost as active as the DCLK1_{cat}. Consistently,
354 DCLK1.2 V682T/V684T and D691A proteins were also much more active than the WT form of DCLK1.2.
355 Kinetic analysis also confirmed higher V_{max} (but broadly similar $K_{M[ATP]}$) values for DCLK1.2 D398A and
356 V682T/V684T relative to the WT protein (**Figure 8-figure supplement 1**). Moreover, comprehensive LC-
357 MS/MS phosphosite mapping revealed a marked increase in the total number of phosphorylated amino
358 acids in all of the mutant DCLK1.2 proteins, consistent with the enhanced catalytic activity of these proteins

359 when compared to WT DCLK1.2 (**Figure 8-figure supplement 2**). Together, these observations confirm
360 that targeted mutations are sufficient to relieve ATP-competitive C-tail autoinhibition by physical tail
361 uncoupling; this model is also strongly supported by marked changes in the biophysical stability of the
362 mutant proteins, particularly for V682/684T and D691A (**Figure 8B**).

363
364 To expand on this finding, we investigated the interaction of Mg:ATP or DCLK1-IN-1 to our panel of
365 DCLK1.1 and 1.2 proteins (**Figure 8E**), using changes in thermal stability as a reporter of ligand binding.
366 DCLK1_{cat} (351-686), DCLK1.1_{short} (351-703) and DCLK1.1_{long} (351-729) proteins all behaved similarly in
367 the presence of either Mg:ATP or DCLK1-IN-1, inducing marked stabilization. In contrast, DCLK1.2_{short}
368 (351-703) or DCLK1.2_{long} (351-740) proteins registered negligible thermal shifts in the presence of the same
369 concentration of either ligand, which is in-line with the C-tail tightly occupying the ATP-binding site and
370 obstructing their binding. Remarkably, D398A and N400A DCLK1.2, whose high basal Tm values
371 (compared to DCLK1_{cat}) are consistent with stabilization by docking of the C-tail within the kinase domain,
372 were markedly destabilized in the presence of either ligand. This suggests that incorporation of these G-
373 loop mutations in isolation is insufficient to dislodge the C-tail, but rather that the stability of the interaction
374 is compromised to the extent that either ATP or DCLK-IN-1 can competitively dislodge the bound tail from
375 the ATP active site, resulting in a net destabilization caused by lack of tail engagement. This observation
376 is corroborated by the results of our kinase assays, where both D398A and N400A mutants were more
377 active than WT DCLK1.2, confirming appropriate ATP binding (a pre-requisite for catalysis). Finally,
378 DCLK1.2 V682T/V684T and D691A, which exhibit lower basal Tm values than the WT protein (indicating a
379 loss of tail interaction), were both stabilized in a ligand-dependent manner to a similar degree to that
380 observed for DCLK1_{cat} and DCLK1.1 proteins (**Figure 8E**). Collectively, these observations clearly
381 demonstrate that the C-tail section of DCLK1.2 can both stabilize the canonical DCLK kinase domain and
382 inhibit kinase activity (by impeding the binding and structural coordination of Mg:ATP) much more effectively
383 than that of DCLK1.1. Our targeted mutational analysis of key contact residues in DCLK1.2 also clearly
384 shows that this is a consequence of specific amino acid interactions that are absent in DCLK1.1 due to
385 alternative-splicing and subsequent sequence variation.


386

387 **Classification of DCLK regulatory segments.**

388 We synthesized our experimental findings by classifying the DCLK C-tail into six functional segments,
389 based on interactions with different regions of the catalytic domain and their conservation between the C-
390 tail splice variants in our analysis (**Figure 9**): First is an ATP-mimetic peptide segment (residues 682-688
391 in DCLK1.2) that readily mimics physiological ATP binding by completing the C-spine in the nucleotide-
392 binding site. The inhibitory peptide also contains a phosphorylatable Thr residue, which sits adjacent to the
393 highly characteristic Gly-rich loop (GDGNFA, residues 396-402). Second, we define a pseudosubstrate
394 mimic (PSM, residues 692-701), which interacts with the acidic HRD and DFG Asp side-chains and docks
395 in the substrate pocket occluding substrate access. Third, at the C-terminus of the tail, lies an intrinsically
396 disordered segment (IDS, residues 702-749, **Figure 9-figure supplement 1**), which packs dynamically
397 against DCLK conserved residues in the kinase activation loop. Fourth, at the beginning of the C-tail lies a
398 CAMK-tether (residues 654-664), a set of residues that pack against a CAMK-specific insert in the C-lobe.
399 In many CAMK crystal structures, this insert makes multiple contacts with the F-helix and C-tail (**Figure 6-**
400 **figure supplement 1**). Fifth, this is followed by a highly dynamic pseudosubstrate region (residues 672-
401 678) that occludes the substrate pocket and will thus interfere with substrate phosphorylation. Sixth, a
402 transient beta-strand is formed in DCLK1.2 through amino acid specific sequences that help modulate and
403 potentially strengthen binding of the C-tail in this isoform (**Figure 7-figure supplement 1A-B**). Collectively,
404 these segments and their associated interaction sites demonstrate that co-evolution of the unique C-tail
405 with the catalytic domain is the central hallmark of DCLK functional divergence, and that changes in these
406 segments possess the ability to ‘supercharge’ catalytic output of the kinase. In particular, the variable C-
407 terminal segments of the tail might contribute to isoform-specific functional specialization. The combinatorial
408 diversity of events that modulate C-tail function may allow DCLKs to nimbly coordinate various tasks
409 including ATP-binding, substrate-based phosphorylation, regulation of DCX domain phosphorylation and
410 structural disposition, kinase autoinhibition and allosteric regulation. Isoform-specific variability provides
411 additional nuance to regulatory and catalytic signaling events and may even contribute to differences in
412 cellular localization (e.g. cytoplasm or nucleoplasm) and tissue-specific activity, enabling contextual DCLK
413 regulation through these modular sequence segments.

414

415 Figure 9:

416

Figure 9: A DCLK1 C-tail can act as a multi-functional Swiss Army Knife, using six distinct segments for a variety of regulatory functions including mimicking ATP binding/association, stabilizing the G-loop, occluding the substrate binding pocket, and packing against the kinase activation loop.

417

418 **Discussion**

419

420 The kinase domain is a conserved switch for phosphorylation-based catalytic regulation. Yet the complexity
421 of cell signaling pathways demands other nuanced forms of regulation beyond binary “on” or “off” switch-
422 based mechanisms. For many Ser/Thr kinases, including AGC and CAMK families, these distinct regulatory
423 functions come from segments which flank the kinase domain, N- and C-terminal regions, which serve to
424 modulate activity through allosteric activation, inhibition, or rheostatic behaviors that change based on
425 environmental conditions (4). In this study, we expand on our knowledge of allosteric diversity in the human
426 kinome by revealing how alternative splicing of the DCLK1 C-tail contributes to isoform-specific behaviors,
427 coupling regulation of catalytic output, phosphorylation, protein dynamics and stability, substrate binding,
428 and protein-protein interactions. Our “Swiss Army Knife” model for DCLK1 expands our view of allosteric
429 regulation as not just a dynamic process facilitated by proteins, but one where adaptive genetic
430 mechanisms, like differential splicing, dexterously tune isoform-specific functions for specific cellular
431 signaling roles; in the case of DCLK1.1, this allows ‘supercharging’ of catalysis between splice variants due
432 to key amino acid differences in the C-tail that are lacking in the DCLK1.2 isoform.

433

434 Multiple members of the human kinome have independently evolved C-tail regions that dock to the N or C-
435 lobe of the kinase domain *in cis*. In the case of the AGC kinases, the C-terminal tail is a very well-studied
436 *in-cis* modulatory element that serves to explain a variety of regulatory properties in this kinase sub-family
437 (14,34–36). Classical deletion studies with members of the CAMK family, have also revealed a *cis*-acting
438 inhibitory element lying C-terminal to the catalytic domain of both CAMK1 (37) and CAMK2 (38). More
439 recent examples of C-tail functional diversity in CAMK family members are presented by the human
440 pseudokinases TRIB1 and TRIB2, which employ C-tail sequences to either latch (and structurally restrict)
441 the atypical kinase domain or to bind competitively to the Ubiquitin E3 ligase COP1 (39,40). Functional
442 disengagement of the TRIB1 or TRIB2 tail through deletion, mutagenesis or small molecule binding has
443 marked effects on pseudokinase conformation, intrinsic stability and cellular transformation (41–44).

444

445

446 **A novel pseudosubstrate region encoded by DCLK1.**

447 In addition to the marked differences between DCLK1 splice variants relevant to nucleotide binding, small
448 molecule interactions and catalysis, our work also reveals two unique pseudosubstrate segments present
449 before and after the IBS. Before the IBS segment, we observe the formation of an anti-parallel transient
450 beta sheet with the beta1 strand in the catalytic domain (**Figure 5I, Figure 7-figure supplement 1A-B**).
451 During the formation of this transient structure, the C-tail dynamically occludes part of the substrate binding
452 pocket. A beta-sheet is observed in all three MD replicates of DCLK1.1, but only in a single replicate of
453 DCLK1.2 dynamic analysis. At the other end of the IBS is another pseudosubstrate segment whose
454 structure and dynamics change as a result of alternative exon splicing. In DCLK1.2, the pseudosubstrate
455 segment is stable, with an average RMSF of 1.8 Angstroms, facilitated by key interactions from Lys 692,
456 which coordinates acidic residues in the HRD and DFG motifs (**Figure 5-figure supplement 2A**). In
457 DCLK1.1, Lys 692 is replaced by a His, which weakly coordinates with the HRD and DFG motifs, resulting
458 in increased dynamics of the segment and an RMSF of 3.1 Å (**Figure 5, Figure 5-figure supplement 2B**).
459 Together, residue variation between isoforms contribute to differences in stability and alteration of dynamics
460 of the tail. HPCAL1 was recently proposed as a possible substrate that activates DCLK1 in a calcium-
461 dependent manner, but it is unclear how it may bind DCLK1 (26). Because only exon 15 of the C-tail is
462 conserved between the isoforms, it is possible the location of binding occurs in this dynamic
463 pseudosubstrate segment prior to the IBS, where increased flexibility and occlusion of the substrate pocket
464 is reflective of the absence of HPCAL1, or a similar calmodulin-like substrate.

465

466 **Discovery of the DCLK1 ATP-Mimic region; a splice-variant specific regulatory module.**

467 Our structural analysis of DCLK1 reveals a remarkable structural mimic of ATP located in the C-tail, which
468 differs markedly between DCLK1.1 and DCLK1.2 splice variants. We note for the first time that a set of
469 three residues in the ATP-mimic, Val 682, Val 684, and Ile 685, are conserved across all isoforms of DCLK1
470 and DCLK2 (Figure 1C) and serve to extend the kinase C-spine. Mutation of these residues in DCLK1.2
471 uncouples tail binding and activates the kinase. Proximal to these residues are two Thr residues (Thr 687
472 and Thr 688), which are present in DCLK1.2, but absent in DCLK1.1. Based on published
473 phosphoproteomics data, both Thr residues can be phosphorylated (2) and are thus likely to be regulatory

474 in DCLK1.2. Although we could not detect phosphorylation of either of these predicted regulatory sites in
475 the WT form of DCLK1.2, we consistently observed pThr 688 in activated mutant DCLK1.2 variants (**Figure**
476 **8-figure supplement 2**). By analyzing DCLK1 dynamics using MD simulations, we observed multiple key
477 interactions between the G-loop and the C-tail in DCLK1, such as dipole interactions with the second glycine
478 in the G-loop by the phosphothreonine. In addition, Thr 687 contributes to increased stabilization of
479 DCLK1.2 tail by forming a C-cap with the helical ATP-mimic segment. We aligned the intensively-studied
480 protein kinase (PKA, PDB: 1ATP), a DCLK1.2 structure (PDB: 6KYQ), and frames of our MD trajectory,
481 which demonstrate remarkable overlap of the ATP gamma phosphate and C-tail phosphothreonine, which
482 seemingly acts as a mimic for the ATP co-factor. As phosphorylation is reported to lead to DCLK1 inhibition,
483 this suggests a complex mechanism of regulation, in which the DCLK-specific constraints in the G-loop, the
484 intrinsic flexibility of the C-tail, and threonine phosphorylation, by cis or trans-mediated modification,
485 systematically prevent hyperphosphorylation of the doublecortin domains and cellular effects. Somewhat
486 paradoxically, we could only identify phosphorylated Thr 688 in activated DCLK1.2 mutants, but not in the
487 autoinhibited (WT) version. This suggests that the selected mutations exhibit a regulatory hierachal
488 dominance over inhibitory Thr 688 phosphorylation and are sufficient to liberate DCLK1.2 from its auto-
489 inhibited, C-tail bound state. This also implies that phosphorylation of Thr 688 may only be minimally-
490 required for autoinhibition, especially given its association with the hyperactive variants obtained by
491 mutagenesis (**Figure 8-figure supplement 1-2**).
492

493 Finally, we have evaluated the terminal residues in the DCLK1 C-tail, which are predicted to be intrinsically
494 disordered. Side-by-side analysis of DCLK1.1 and DCLK1.2 in which this region is added from a common
495 core terminating at residue 703, shows that increasing the length of the tail in both DCLK1.1 and DCLK1.2
496 has little additional effect on the inhibitory or stabilizing effects driven by the highly ordered tail regions that
497 precede it. Kinase domains are regulated by IDRs in a multitude of ways, but the CAMK family is specifically
498 enriched for adapted C-terminal extensions that, as we show here, can block the ATP and substrate
499 binding, and enzymatically inactivate the kinase domain by occlusion of the activation loop through a flexible
500 helical IDS on their C-tail (4). We note that the DCLK1.2 kinase domain crystallizes in an ‘active’ closed
501 conformation, despite binding of the C-tail in an autoinhibitory manner (27). Repeated packing motions of

502 the IDS against the activation loop in all replicates of DCLK1.1 MD simulations, suggest that tail may
503 occlude the activation loop, similar to other CAMKs, possibly pointing to a mode of *cis* autoregulation.
504 Conversely, AlphaFold2 predicts the placement of the DCX domains as adjacent to the IDS in both
505 DCLK1.1 and DCLK1.2 (Figure S1). It is possible, like other CAMKs, the IDS facilitates protein binding,
506 whether to the DCX domains, calcium-modulated proteins, or other kinases.

507 **Evolutionary divergence and functional specialization of DCLKs**

508 For the DCLK family as a whole, we discovered phylogenetic divergence between DCLK1 and 2 as a
509 relatively recent event, (Figure 1A) in which metazoan DCLK3 is the more ancestral DCLK gene from which
510 DCLK1 and 2 emerged after duplication. Because of shared evolutionary constraints and the recent
511 divergence between DCLK1 and 2, we surmise the functional specialization of the DCLK1 tail is shared
512 between these paralogs. Moreover, we quantify key differences between human DCLK1.1 and 1.2 activity
513 that are impacted by amino acid changes that contribute to the function of the C-tail. The differences
514 between DCLK1 isoforms 1 and 2 are generated by variations in exon splicing, which change both the C-
515 tail protein sequence, and introduce or exclude potential phosphorylation sites. Expression of the highly
516 autoinhibitable DCLK1.2 isoform is believed to be predominant in the brain during embryogenesis, although
517 DCLK1.1 is also thought to be present in the adult brain (45). It is therefore possible that an altered ratio in
518 DCLK1.1/1.2 expression, accompanied by changes in the requirement for DCLK1 auto-regulation, are
519 relevant for early neurogenesis. The overall sequence similarity at the protein level, despite the loss of a
520 pair of putative phosphorylation sites, suggests a possible exon duplication in the C-tail, whereby
521 polymorphisms have allowed for adaptive regulation during development and proliferation. Indeed, we also
522 speculate that the induced expression of DCLK1.2 splice variants in multiple cancer subtypes (46) is likely
523 to be indicative of a survival and drug-resistance role that could be targetable with new types of small
524 molecule. Although nanomolar DCLK1 ATP-site inhibitors such as DCLK1-IN-1 have been developed that
525 can bind tightly to the DCLK1 ATP site (**Figure 3** and **Figure 3-figure supplement 1**), the 'problematic'
526 existence of human DCLK1.1 and DCLK1.2 splice variants with distinct auto-inhibitory properties may
527 present a challenge to compound engagement in the cell, where relief of auto-inhibition through C-tail
528 undocking in DCLK1.2 is likely to require a high concentration of compound in order to compete and
529 disengage interactions at the ATP site. Indeed, although potent chemical DCLK1 inhibitors such as DCLK1-

530 IN-1 are known to influence DCLK1 autophosphorylation and cell motility, they have relatively modest
531 effects in cells in terms of cytotoxicity (29,47). Therefore, we propose that the dual inhibitory effects of the
532 C-tail and the transmission of this information to adjacent DCX domains, which control adaptive cellular
533 phenotypes such as EMT in cancer cells (48), may make allosteric classes of DCLK1 inhibitor a preferred
534 therapeutic option, especially if they can be tailored specifically towards DCLK1.1 or DCLK1.2, whose
535 autoregulation is different in terms of the varied molecular details we have uncovered here.

536

537 Materials and Methods

538 **Ortholog Identification.** To identify orthologs, we used the software KinOrtho (49) to query one-to-one
539 orthologous relationships for DCLK1/2/3 across the proteome. After collation of the various orthologs, we
540 parsed the sequence data for taxonomic information and classified each sequence by family. We further
541 separated human DCLK1 into each unique isoform and aligned them.

542

543 **Phylogenetic Analysis.** We identified diverse DCLK orthologs from the UniProt database (50) using an
544 profile-based approach (51). From this dataset, we manually curated a taxonomically diverse set of DCLK
545 orthologs composed of 36 sequences spanning 16 model organisms. These sequences were used to
546 generate a maximum-likelihood phylogenetic tree using IQTREE version 1.6.12 (52). Branch support values
547 were generated using ultrafast bootstrap with 1000 resamples (53). The consensus tree was selected as
548 the final tree. The optimal substitution model for our final topology was determined to be LG (54) with
549 invariable sites and discrete gamma model (55) based on the Bayesian Information Criterion as determined
550 by ModelFinder (56). We rooted our final tree against an outgroup of 17 closely related human CAMK
551 kinases using ETE Toolkit version 3.1.2 (57).

552

553 **Sequence and Structure Analysis.** MAFFT (58) generated multiple sequence alignments were fed into
554 the Bayesian Partitioning with Pattern Selection (BPPS) tool to determine evolutionarily conserved and
555 functionally significant residues (30). Constraints mapped onto AlphaFold-predicted structures were
556 visualized in PyMOL to analyze biochemical interactions.

557

558 **Rosetta Loop Modeling.** Loop modeling was performed on the crystal structure (6KYQ) using the
559 Kinematic Loop Modeling protocol (59) to model missing residues. Following this, the structure underwent
560 five cycles of rotamer-repacking and minimization using the Rosetta Fast-relax protocol (60).

561

562 **DSSP Analysis.** To analyze changes in secondary structure over our MDs, we employed the DSSP (61)
563 command in GROMACS. This produces an output that contains an array of secondary structure values
564 against each residue. The MDAnalysis python module (62) was used to plot these values.

565

566 **Molecular Dynamics.** PDB constructs were generated by retrieving structural models RCSB and the
567 AlphaFold2 database. Post-translational modifications were performed in PyMOL using the PyTMs plugin.
568 All structures were solvated using the TIP3P water model (63). Energy minimization was run for a maximum
569 of 10,000 steps, performed using the steepest-descent algorithm, followed by the conjugate-gradient
570 algorithm. The system was heated from 0K to a temperature of 300K. After two equilibration steps that each
571 lasted 20 picoseconds, 1 microsecond long simulations were run at a two femtosecond timestep. Long-
572 range electrostatics were calculated via particle mesh Ewald (PME) algorithms using the GROMACS MD
573 engine (64). We utilized the CHARMM36 force field (65). The resulting output was visualized using VMD

574 1.9.3 (66). All molecular dynamics analysis was conducted using scripts coded in Python using the
575 MDAnalysis module (62).

576

577 **Computational Mutational Analysis.** Cartesian ddG in Rosetta (67) was utilized to predict potential
578 stabilizing and destabilizing mutations in the enzyme structure. We performed three replicates per mutation
579 and averaged the Rosetta energies. All mutant energies were then subtracted by the wt Rosetta energy to
580 generate a panel of ddG values relative to wt. Combined with our sequence analyses, we mutated kinase
581 and DCLK-specific constraints to identify destabilizing interactions in the c-tail.

582

583 **Exon-Intron Boundary Mapping.** The precise gene structure of DCLK1 isoforms were mapped onto the
584 human genome with each isoform used as a query protein sequence in order to generate exon-intron
585 borders. This was achieved using Scipio (version 1.4.1) (68) with default settings. Exons were numbered
586 based on Ensembl annotations (69). The translation of each annotated gene sequence to protein sequence
587 was provided with the output file (**Figure 4-source file 1-4**).

588

589 **DCLK1 cloning and recombinant protein expression.** 6His-DCLK1 catalytic domain (351-686),
590 DCLK1.1 351-703 (short C-tail) or 351-729 (full C-tail), DCLK1.2 351-703 (short C-tail) or 351-740 (full C-
591 tail), and DCLK1.2 351-703 containing D398A, N400A, V682T/V684T or D691A substitutions were
592 synthesized by Twist Biosciences in pET28a. 6His-GST-(3C) DCLK1.1 351-689 was amplified by PCR and
593 cloned into pOPINJ. Kinase dead, D533A 6His-GST-(3C) DCLK1.1 351-689 was generated by PCR-based
594 site directed mutagenesis (**Figure 3-source data 3**). All plasmids were sequenced prior to their use in
595 protein expression studies. All proteins, including 6His-GST-(3C) DCLK1 351-689, with a 3C-protease
596 cleavable affinity tag, were expressed in BL21(DE3)pLysS *E. coli* (Novagen) and purified by affinity and
597 size exclusion chromatography. The short N-terminal 6-His affinity tag present on all other DCLK1 proteins
598 described in this paper was left in situ on recombinant proteins, since it does not appear to interfere with
599 DSF, biochemical interactions or catalysis. For analytical SEC chromatography, 1 mg of each DCLK1
600 protein was assayed on a Superdex 200 Increase 10/300 GL (Cytiva), and the eluted fractions were also
601 analysed by SDS-PAGE and Coomassie blue staining to confirm composition. The molecular weight
602 standards were loaded in a mixture of 200 ug of Bovine Serum Albumin (BSA), Carbonic Anhydrase (CA),
603 and Alcohol Dehydrogenase (AD) each.

604

605

606 **Mass Spectrometry.** Purified DCLK1 proteins (5 µg) were diluted (~40-fold) in 100 mM ammonium
607 bicarbonate pH 8.0 and reduced (DTT) and alkylated (iodoacetamide, as previously described (70), and
608 digested with a 25:1 (w/w) trypsin gold (Promega) at 37 °C for 18 hours with gentle agitation. Digests were
609 then subjected to strong cation exchange chromatography using in-house packed stage tip clean-up (71).
610 Dried tryptic peptides were solubilized in 20 µl of 3% (v/v) acetonitrile and 0.1% (v/v) TFA in water, sonicated

611 for 10 min, and centrifuged at 13,000 \times g for 10 min at 4°C and supernatant collected. LC-MS/MS
612 separation was performed using an Ultimate 3000 nano system (Dionex), over a 60-min gradient (70).
613 Briefly, samples were loaded at a rate of 12 μ L/min onto a trapping column (PepMap100, C18, 300 μ m \times 5
614 mm) in loading buffer (3% (v/v) acetonitrile, 0.1% (v/v) TFA). Samples were then resolved on an analytical
615 column (Easy-Spray C18 75 μ m \times 500 mm, 2 μ m bead diameter column) using a gradient of 97% A (0.1%
616 (v/v) formic acid) : 3% B (80% (v/v) acetonitrile, 0.1% (v/v) formic acid) to 80% B over 30 min at a flow rate
617 of 300 nL/min. All data acquisition was performed using a Fusion Lumos Tribrid mass spectrometer
618 (Thermo Scientific). Samples were injected twice with either higher-energy C-trap dissociation (HCD)
619 fragmentation (set at 32% normalized collision energy [NCE]) or Electron transfer dissociation (ETD) with
620 supplemental 30% NCE HCD (EThcD) for 2+ to 4+ charge states using a top 3s top speed mode. MS1
621 spectra were acquired at a 120K resolution (at 200 m/z), over a range of 300 to 2000 m/z , normalised AGC
622 target = 50%, maximum injection time = 50 ms. MS2 spectra were acquired at a 30K resolution (at 200 m/z),
623 AGC target = standard, maximum injection time = dynamic. A dynamic exclusion window of 20 s was
624 applied at a 10 ppm mass tolerance. Data was analysed by Proteome Discoverer 2.4 in conjunction with
625 the MASCOT search engine using a custom database of the UniProt *Escherichia coli* reviewed database
626 (Updated January 2023) with the DCLK1 mutant variant amino acid sequences manually added, and using
627 the search parameters: fixed modification = carbamidomethylation (C), variable modifications = oxidation
628 (M) and phospho (S/T/Y), MS1 mass tolerance = 10 ppm, MS2 mass tolerance = 0.01 Da, and the *ptmRS*
629 node on; set to a score > 99.0. For HCD data, instrument type = electrospray ionization–Fourier-transform
630 ion cyclotron resonance (ESI-FTICR), for EThcD data, instrument type = EThcD. For label free relative
631 quantification of phosphopeptide abundances of the different DCLK1 variants, the minora feature detector
632 was active and set to calculate the area under the curve for peptide m/z ions. Abundance of phosphopeptide
633 ions were normalised against the total protein abundance (determine by the HI3 method (72), as in the
634 minora feature detector node) to account for potential protein load variability during analysis.

635

636 **DCLK1 DSF.** Thermal Shift Assays (TSA), were performed using Differential Scanning Fluorimetry (DSF)
637 in a StepOnePlus Real-Time PCR machine (Life Technologies) in combination with Sypro-Orange dye
638 (Invitrogen) and a thermal ramping protocol (0.3°C per minute between 25 and 94°C). Recombinant DCLK1
639 proteins were assayed at a final concentration of 5 μ M in 50 mM Tris–HCl (pH 7.4) and 100 mM NaCl in
640 the presence or absence of the indicated concentrations of ligand (ATP or Mg:ATP) or DCLK1 inhibitor
641 compounds, with final DMSO concentrations never higher than 4% (v/v). Thermal melting data were
642 processed using the Boltzmann equation to generate sigmoidal denaturation curves, and
643 average $T_m/\Delta T_m$ values were calculated as described using GraphPad Prism software, as previously
644 described, from 3 technical repeats (73).

645

646 **DCLK1 kinase assays.** DCLK1 peptide-based enzyme assays (74,75) were carried out using the LabChip
647 EZ Reader platform, which monitors and quantifies real-time phosphorylation-induced changes in the

648 mobility of the fluorescently-labelled DCLK1 peptide substrate 5-FAM-KKALRRQETVDAL-CONH₂. To
649 assess DCLK1 catalytic domains, or DCLK1.1 or DCLK1.2 variants, 100ng of purified protein were
650 incubated with a high (1 mM) concentration of ATP (to mimic cellular levels of nucleotide) and 2 μ M of the
651 fluorescent substrate in 25 mM HEPES (pH 7.4), 5 mM MgCl₂, and 0.001% (v/v) Brij 35. DCLK1-IN-1 and
652 DCLK1-NEG (kind gifts from Dr Fleur Ferguson, UCSF) enzyme inhibition was quantified under identical
653 assay conditions in the presence of 10 μ M of each compound. Assays are either reported as rates
654 (pmoles/min phosphate incorporation) during linear phosphate incorporation (e.g total substrate
655 phosphorylation limited to <20-30% to prevent ATP depletion and to ensure assay linearity), or presented
656 as time-dependent percentage substrate phosphorylation (kinetic mode). Rates of substrate
657 phosphorylation (pmol phosphate incorporation per min) were determined using a fixed amount of kinase
658 and linear regression analysis with GraphPad Prism software; V_{max} and $K_{M[ATP]}$ values were calculated at 2
659 μ M substrate peptide concentration, as previously described (76). Rates are normalized to enzyme
660 concentration and all enzyme rate and kinetic data are presented as mean and SD of 4 technical replicates.
661

662 **Author Contributions.** N.K. conceptualization; A.V., G.W., D.P.B., C.E.E., P.A.E., and N.K. methodology;
663 A.V., G.W., D.P.B., B.O., S.S., N.G., E.E.F., and L.A.D. investigation; A.V., G.W., and B.O., W.Y. data
664 curation; A.V., G.W., D.P.B., B.O., and S.S. formal analysis; A.V., G.W., D.P.B., and N.G. validation; A.V.,
665 G.W., D.P.B., P.A.E., and N.K. writing – original draft; A.V., G.W., D.P.B., B.O., S.S., N.G., E.E.F., L.A.D.,
666 C.B., W.Y., I.A., S.K., C.E.E., P.A.E., and N.K. writing – review and editing; A.V., G.W., D.P.B., B.O., and
667 S.S. visualization; P.A.E. and N.K. supervision; A.V., D.P.B., E.E.F., L.A.D., C.E.E., P.A.E., and N.K.
668 funding acquisition.
669

670 **Funding and additional information.** Funding from N.K. (grant no.: R35 GM139656) is acknowledged.
671 P.A.E. acknowledges funding from a University of Liverpool BBSRC IAA award. A.V. acknowledges funding
672 from ARCS Foundation. D.P.B, L.A.D., P.A.E. and C.E.E. also acknowledge BBSRC grants BB/S018514/1,
673 BB/N021703/1 and BB/X002780/1 and North West Cancer Research (NWCR) grant CR1208. E.E.F. thanks
674 the MRC for a DiMeN DTP studentship (No. 1961582). The content is solely the responsibility of the authors
675 and does not necessarily represent the official views of the National Institutes of Health.
676

677 **Data Availability.** All data generated in this study are included within the manuscript. Source data are
678 provided for each figure. MD simulations and associated data may be accessed from
679 <https://www.dropbox.com/sh/xtiwpjgyzxy1oz0/AACK6dS3ypzYXDih3wgKp9bla?dl=0>.

680
681 **Competing Interest Statement.** The authors claim no competing interest.
682

683 **References**

- 684 1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the
685 human genome. *Science*. 2002 Dec 6;298(5600):1912–34.
- 686 2. Agluto RL, Rogers MM, Tan TC, Ramkumar A, Downing AM, Bodin H, et al. Autoregulatory control of
687 microtubule binding in doublecortin-like kinase 1. Carter AP, Sengupta P, editors. *eLife*. 2021 Jul
688 26;10:e60126.
- 689 3. Bayer KU, Schulman H. CaM Kinase: Still Inspiring at 40. *Neuron*. 2019 Aug 7;103(3):380–94.
- 690 4. Gógl G, Kornev AP, Reményi A, Taylor SS. Disordered Protein Kinase Regions in Regulation of
691 Kinase Domain Cores. *Trends Biochem Sci*. 2019 Apr;44(4):300–11.
- 692 5. Berginski ME, Moret N, Liu C, Goldfarb D, Sorger PK, Gomez SM. The Dark Kinase Knowledgebase:
693 an online compendium of knowledge and experimental results of understudied kinases. *Nucleic Acids
694 Res*. 2021 Jan 8;49(D1):D529–35.
- 695 6. Sossey-Alaoui K, Srivastava AK. DCAMKL1, a brain-specific transmembrane protein on 13q12.3 that
696 is similar to doublecortin (DCX). *Genomics*. 1999 Feb 15;56(1):121–6.
- 697 7. Ohmae S, Takemoto-Kimura S, Okamura M, Adachi-Morishima A, Nonaka M, Fuse T, et al.
698 Molecular identification and characterization of a family of kinases with homology to
699 Ca²⁺/calmodulin-dependent protein kinases I/IV. *J Biol Chem*. 2006 Jul 21;281(29):20427–39.
- 700 8. Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, et al. Doublecortin
701 expression levels in adult brain reflect neurogenesis. *European Journal of Neuroscience*.
702 2005;21(1):1–14.
- 703 9. Horesh D, Sapir T, Francis F, Grayer Wolf S, Caspi M, Elbaum M, et al. Doublecortin, a Stabilizer of
704 Microtubules. *Human Molecular Genetics*. 1999 Sep 1;8(9):1599–610.
- 705 10. Cheng L, Huang S, Chen L, Dong X, Zhang L, Wu C, et al. Research Progress of DCLK1 Inhibitors
706 as Cancer Therapeutics. *Curr Med Chem*. 2022;29(13):2261–73.
- 707 11. Gao T, Wang M, Xu L, Wen T, Liu J, An G. DCLK1 is up-regulated and associated with metastasis
708 and prognosis in colorectal cancer. *J Cancer Res Clin Oncol*. 2016 Oct 1;142(10):2131–40.
- 709 12. Westphalen CB, Quante M, Wang TC. Functional implication of Dclk1 and Dclk1-expressing cells in
710 cancer. *Small GTPases*. 2017 Jul 3;8(3):164–71.
- 711 13. Galvan L, Francelle L, Gaillard MC, de Longprez L, Carrillo-de Sauvage MA, Liot G, et al. The striatal
712 kinase DCLK3 produces neuroprotection against mutant huntingtin. *Brain*. 2018 May 1;141(5):1434–
713 54.
- 714 14. Kannan N, Haste N, Taylor SS, Neuwald AF. The hallmark of AGC kinase functional divergence is its
715 C-terminal tail, a cis-acting regulatory module. *Proc Natl Acad Sci U S A*. 2007 Jan 23;104(4):1272–
716 7.
- 717 15. Yeon JH, Heinkel F, Sung M, Na D, Gsponer J. Systems-wide Identification of cis-Regulatory
718 Elements in Proteins. *Cell Syst*. 2016 Feb 24;2(2):89–100.
- 719 16. Nguyen T, Ruan Z, Oruganty K, Kannan N. Co-conserved MAPK features couple D-domain docking
720 groove to distal allosteric sites via the C-terminal flanking tail. *PLoS One*. 2015;10(3):e0119636.

721 17. Yeung W, Kwon A, Tujale R, Bunn C, Venkat A, Kannan N. Evolution of Functional Diversity in the
722 Holozoan Tyrosine Kinome. *Mol Biol Evol*. 2021 Dec 9;38(12):5625–39.

723 18. Kwon A, John M, Ruan Z, Kannan N. Coupled regulation by the juxtamembrane and sterile α motif
724 (SAM) linker is a hallmark of ephrin tyrosine kinase evolution. *J Biol Chem*. 2018 Apr
725 6;293(14):5102–16.

726 19. Rellos P, Pike ACW, Niesen FH, Salah E, Lee WH, von Delft F, et al. Structure of the
727 CaMKIIdelta/calmodulin complex reveals the molecular mechanism of CaMKII kinase activation.
728 *PLoS Biol*. 2010 Jul 27;8(7):e1000426.

729 20. Bhattacharyya M, Lee YK, Muratcioglu S, Qiu B, Nyayapati P, Schulman H, et al. Flexible linkers in
730 CaMKII control the balance between activating and inhibitory autophosphorylation. *Elife*. 2020 Mar
731 9;9:e53670.

732 21. Hudmon A, Schulman H. Structure-function of the multifunctional Ca²⁺/calmodulin-dependent protein
733 kinase II. *Biochem J*. 2002 Jun 15;364(Pt 3):593–611.

734 22. Huse M, Kuriyan J. The conformational plasticity of protein kinases. *Cell*. 2002 May 3;109(3):275–82.

735 23. Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR. Calmodulin-kinases: modulators of
736 neuronal development and plasticity. *Neuron*. 2008 Sep 25;59(6):914–31.

737 24. Omori Y, Suzuki M, Ozaki K, Harada Y, Nakamura Y, Takahashi E, et al. Expression and
738 chromosomal localization of KIAA0369, a putative kinase structurally related to Doublecortin. *J Hum
739 Genet*. 1998;43(3):169–77.

740 25. Matsumoto N, Pilz DT, Ledbetter DH. Genomic structure, chromosomal mapping, and expression
741 pattern of human DCAMKL1 (KIAA0369), a homologue of DCX (XLIS). *Genomics*. 1999 Mar
742 1;56(2):179–83.

743 26. Patel O, Roy MJ, Kropp A, Hardy JM, Dai W, Lucet IS. Structural basis for small molecule targeting of
744 Doublecortin Like Kinase 1 with DCLK1-IN-1. *Commun Biol*. 2021 Sep 20;4(1):1105.

745 27. Cheng L, Yang Z, Guo W, Wu C, Liang S, Tong A, et al. DCLK1 autoinhibition and activation in
746 tumorigenesis. *Innovation (Camb)*. 2022 Jan 25;3(1):100191.

747 28. Byrne DP, Shrestha S, Galler M, Cao M, Daly LA, Campbell AE, et al. Aurora A regulation by
748 reversible cysteine oxidation reveals evolutionarily conserved redox control of Ser/Thr protein kinase
749 activity. *Sci Signal*. 2020 Jul 7;13(639):eaax2713.

750 29. Ferguson FM, Nabet B, Raghavan S, Liu Y, Leggett AL, Kuljanin M, et al. Discovery of a selective
751 inhibitor of doublecortin like kinase 1. *Nat Chem Biol*. 2020 Jun;16(6):635–43.

752 30. Neuwald AF. A Bayesian Sampler for Optimization of Protein Domain Hierarchies. *Journal of
753 Computational Biology*. 2014 Feb 4;21(3):269–86.

754 31. Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J. Structure of the autoinhibited kinase domain
755 of CaMKII and SAXS analysis of the holoenzyme. *Cell*. 2005 Dec 2;123(5):849–60.

756 32. Goldberg J, Nairn AC, Kuriyan J. Structural basis for the autoinhibition of calcium/calmodulin-
757 dependent protein kinase I. *Cell*. 1996 Mar 22;84(6):875–87.

758 33. Zheng J, Trafny EA, Knighton DR, Xuong NH, Taylor SS, Ten Eyck LF, et al. 2.2 A refined crystal
759 structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a
760 peptide inhibitor. *Acta Crystallogr D Biol Crystallogr*. 1993 May 1;49(Pt 3):362–5.

761 34. Romano RA, Kannan N, Kornev AP, Allison CJ, Taylor SS. A chimeric mechanism for polyvalent
762 trans-phosphorylation of PKA by PDK1. *Protein Science*. 2009;18(7):1486–97.

763 35. Baffi TR, Newton AC. mTOR Regulation of AGC Kinases: New Twist to an Old Tail. *Mol Pharmacol*.
764 2022 Apr 1;101(4):213–8.

765 36. Taylor SS, Kornev AP. Protein kinases: evolution of dynamic regulatory proteins. *Trends Biochem
766 Sci*. 2011 Feb;36(2):65–77.

767 37. Yokokura H, Picciotto MR, Nairn AC, Hidaka H. The regulatory region of calcium/calmodulin-
768 dependent protein kinase I contains closely associated autoinhibitory and calmodulin-binding
769 domains. *J Biol Chem*. 1995 Oct 6;270(40):23851–9.

770 38. Yang E, Schulman H. Structural examination of autoregulation of multifunctional calcium/calmodulin-
771 dependent protein kinase II. *J Biol Chem*. 1999 Sep 10;274(37):26199–208.

772 39. Eyers PA. TRIBBLES: A Twist in the Pseudokinase Tail. *Structure*. 2015 Nov 3;23(11):1974–6.

773 40. Eyers PA, Keeshan K, Kannan N. Tribbles in the 21st Century: The Evolving Roles of Tribbles
774 Pseudokinases in Biology and Disease. *Trends Cell Biol*. 2017 Apr;27(4):284–98.

775 41. Foulkes DM, Byrne DP, Yeung W, Shrestha S, Bailey FP, Ferries S, et al. Covalent inhibitors of
776 EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in
777 cancer cells. *Sci Signal*. 2018 Sep 25;11(549):eaat7951.

778 42. Harris JA, Fairweather E, Byrne DP, Eyers PA. Analysis of human Tribbles 2 (TRIB2) pseudokinase.
779 *Methods Enzymol*. 2022;667:79–99.

780 43. Keeshan K, Bailis W, Dedhia PH, Vega ME, Shestova O, Xu L, et al. Transformation by Tribbles
781 homolog 2 (Trib2) requires both the Trib2 kinase domain and COP1 binding. *Blood*. 2010 Dec
782 2;116(23):4948–57.

783 44. Murphy JM, Nakatani Y, Jamieson SA, Dai W, Lucet IS, Mace PD. Molecular Mechanism of CCAAT-
784 Enhancer Binding Protein Recruitment by the TRIB1 Pseudokinase. *Structure*. 2015 Nov
785 3;23(11):2111–21.

786 45. Burgess HA, Reiner O. Alternative splice variants of doublecortin-like kinase are differentially
787 expressed and have different kinase activities. *J Biol Chem*. 2002 May 17;277(20):17696–705.

788 46. Qu D, Weygant N, Yao J, Chandrakesan P, Berry WL, May R, et al. Overexpression of DCLK1-AL
789 Increases Tumor Cell Invasion, Drug Resistance, and KRAS Activation and Can Be Targeted to
790 Inhibit Tumorigenesis in Pancreatic Cancer. *J Oncol*. 2019;2019:6402925.

791 47. Ding L, Yang Y, Ge Y, Lu Q, Yan Z, Chen X, et al. Inhibition of DCLK1 with DCLK1-IN-1 Suppresses
792 Renal Cell Carcinoma Invasion and Stemness and Promotes Cytotoxic T-Cell-Mediated Anti-Tumor
793 Immunity. *Cancers (Basel)*. 2021 Nov 16;13(22):5729.

794 48. Major J, Szende B, Lapis K, Thész Z. Increased SCE inducibility by low doses of methylcholanthrene
795 in lymphocytes obtained from patients with Down's disease. *Mutat Res*. 1985 Mar;149(1):51–5.

796 49. Huang LC, Taujale R, Gravel N, Venkat A, Yeung W, Byrne DP, et al. KinOrtho: a method for
797 mapping human kinase orthologs across the tree of life and illuminating understudied kinases. *BMC*
798 *Bioinformatics*. 2021 Sep 18;22(1):446.

799 50. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids Res.* 2021
800 Jan 8;49(D1):D480–9.

801 51. Neuwald AF. Rapid detection, classification and accurate alignment of up to a million or more related
802 protein sequences. *Bioinformatics*. 2009 Aug 1;25(15):1869–75.

803 52. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic
804 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol.* 2015 Jan;32(1):268–74.

805 53. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast
806 Bootstrap Approximation. *Mol Biol Evol.* 2018 Feb 1;35(2):518–22.

807 54. Le SQ, Gascuel O. An improved general amino acid replacement matrix. *Mol Biol Evol.* 2008
808 Jul;25(7):1307–20.

809 55. Gu X, Fu YX, Li WH. Maximum likelihood estimation of the heterogeneity of substitution rate among
810 nucleotide sites. *Mol Biol Evol.* 1995 Jul;12(4):546–57.

811 56. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model
812 selection for accurate phylogenetic estimates. *Nat Methods.* 2017 Jun;14(6):587–9.

813 57. Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, Analysis, and Visualization of
814 Phylogenomic Data. *Mol Biol Evol.* 2016 Jun;33(6):1635–8.

815 58. Katoh K, Misawa K, Kuma K ichi, Miyata T. MAFFT: a novel method for rapid multiple sequence
816 alignment based on fast Fourier transform. *Nucleic Acids Res.* 2002 Jul 15;30(14):3059–66.

817 59. Mandell DJ, Coutsias EA, Kortemme T. Sub-angstrom accuracy in protein loop reconstruction by
818 robotics-inspired conformational sampling. *Nat Methods.* 2009 Aug;6(8):551–2.

819 60. Tyka MD, Keedy DA, André I, Dimaio F, Song Y, Richardson DC, et al. Alternate states of proteins
820 revealed by detailed energy landscape mapping. *J Mol Biol.* 2011 Jan 14;405(2):607–18.

821 61. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-
822 bonded and geometrical features. *Biopolymers.* 1983 Dec;22(12):2577–637.

823 62. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O. MDAnalysis: a toolkit for the analysis of
824 molecular dynamics simulations. *J Comput Chem.* 2011 Jul 30;32(10):2319–27.

825 63. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential
826 functions for simulating liquid water. *J Chem Phys.* 1983 Jul 15;79(2):926–35.

827 64. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-
828 throughput and highly parallel open source molecular simulation toolkit. *Bioinformatics.* 2013 Apr
829 1;29(7):845–54.

830 65. Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: validation based on
831 comparison to NMR data. *J Comput Chem.* 2013 Sep 30;34(25):2135–45.

832 66. Humphrey W, Dalke A, Schulter K. VMD: visual molecular dynamics. *J Mol Graph.* 1996
833 Feb;14(1):33–8, 27–8.

834 67. Park H, Bradley P, Greisen P, Liu Y, Mulligan VK, Kim DE, et al. Simultaneous Optimization of
835 Biomolecular Energy Functions on Features from Small Molecules and Macromolecules. *J Chem*
836 *Theory Comput.* 2016 Dec 13;12(12):6201–12.

837 68. Keller O, Odroritz F, Stanke M, Kollmar M, Waack S. Scipio: using protein sequences to determine
838 the precise exon/intron structures of genes and their orthologs in closely related species. *BMC*
839 *Bioinformatics.* 2008 Jun 13;9:278.

840 69. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022.
841 *Nucleic Acids Res.* 2022 Jan 7;50(D1):D988–95.

842 70. Ferries S, Perkins S, Brownridge PJ, Campbell A, Eyers PA, Jones AR, et al. Evaluation of
843 Parameters for Confident Phosphorylation Site Localization Using an Orbitrap Fusion Tribrid Mass
844 Spectrometer. *J Proteome Res.* 2017 Sep 1;16(9):3448–59.

845 71. Daly LA, Brownridge PJ, Batie M, Rocha S, Sée V, Eyers CE. Oxygen-dependent changes in binding
846 partners and post-translational modifications regulate the abundance and activity of HIF-1 α /2 α . *Sci*
847 *Signal.* 2021 Jul 20;14(692):eabf6685.

848 72. Silva JC, Gorenstein MV, Li GZ, Vissers JPC, Geromanos SJ. Absolute quantification of proteins by
849 LCMSE: a virtue of parallel MS acquisition. *Mol Cell Proteomics.* 2006 Jan;5(1):144–56.

850 73. Byrne DP, Clarke CJ, Brownridge PJ, Kalyuzhnyy A, Perkins S, Campbell A, et al. Use of the Polo-
851 like kinase 4 (PLK4) inhibitor centrinone to investigate intracellular signalling networks using SILAC-
852 based phosphoproteomics. *Biochem J.* 2020 Jul 17;477(13):2451–75.

853 74. Byrne DP, Vonderach M, Ferries S, Brownridge PJ, Eyers CE, Eyers PA. cAMP-dependent protein
854 kinase (PKA) complexes probed by complementary differential scanning fluorimetry and ion mobility-
855 mass spectrometry. *Biochem J.* 2016 Oct 1;473(19):3159–75.

856 75. Omar MH, Kihiu M, Byrne DP, Lee KS, Lakey TM, Butcher E, et al. Classification of Cushing's
857 syndrome PKAc mutants based upon their ability to bind PKI. *Biochem J.* 2023 Jun 28;480(12):875–
858 90.

859 76. McSkimming DI, Dastgheib S, Baffi TR, Byrne DP, Ferries S, Scott ST, et al. KinView: a visual
860 comparative sequence analysis tool for integrated kinome research. *Mol Biosyst.* 2016 Nov
861 15;12(12):3651–65.

862

863

864

Figure supplements for:

Mechanistic and evolutionary insights into isoform-specific 'supercharging' in DCLK family kinases

867

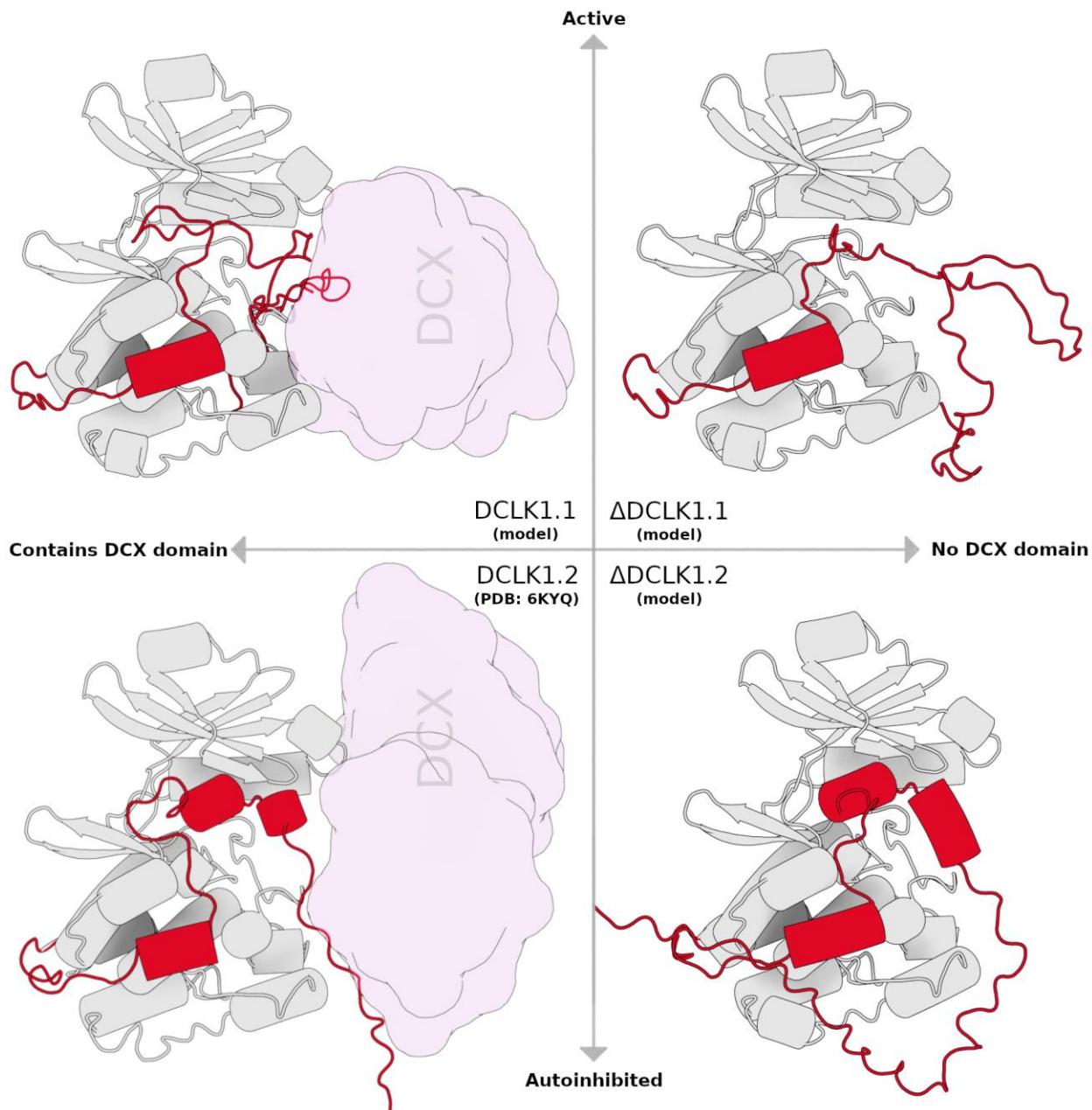
868 Aarya Venkat¹⁺, Grace Watterson¹⁺, Dominic P. Byrne²⁺, Brady O'Boyle¹, Safal Shrestha³, Nathan
869 Gravel³, Emma E. Fairweather², Leonard A. Daly^{2,4}, Claire Bunn¹, Wayland Yeung³, Ishan Aggarwal¹,
870 Samiksha Katiyar¹, Claire E. Eyers^{2,4}, Patrick A. Eyers^{2*}, and Natarajan Kannan^{1,3*}

871

872 Affiliations:

873 ¹Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA

874 ²Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative
875 Biology, University of Liverpool, Liverpool, L69 7ZB, UK


876 ³Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA

877 ⁴Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems,
878 Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK

879
880 + equal contributions

881

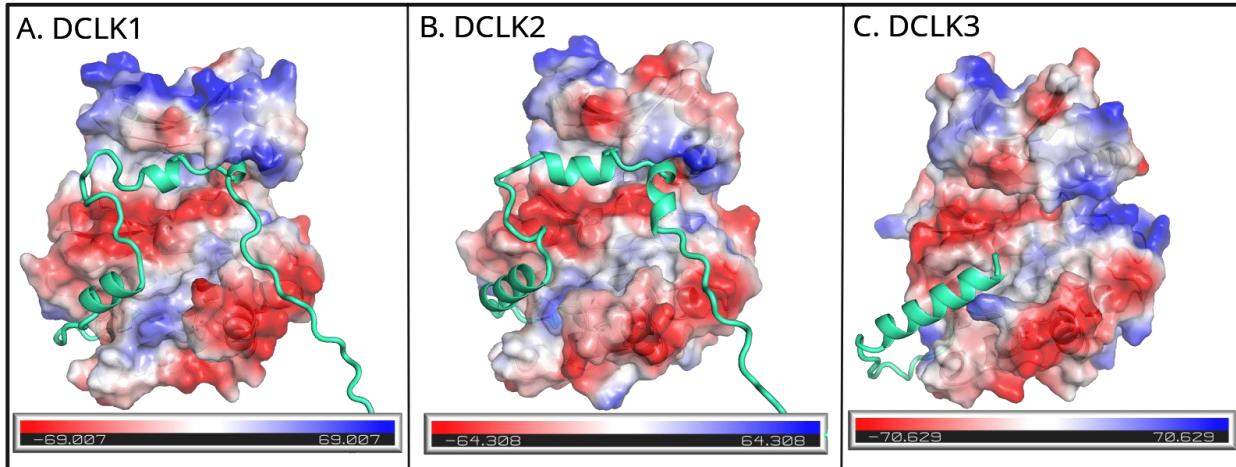
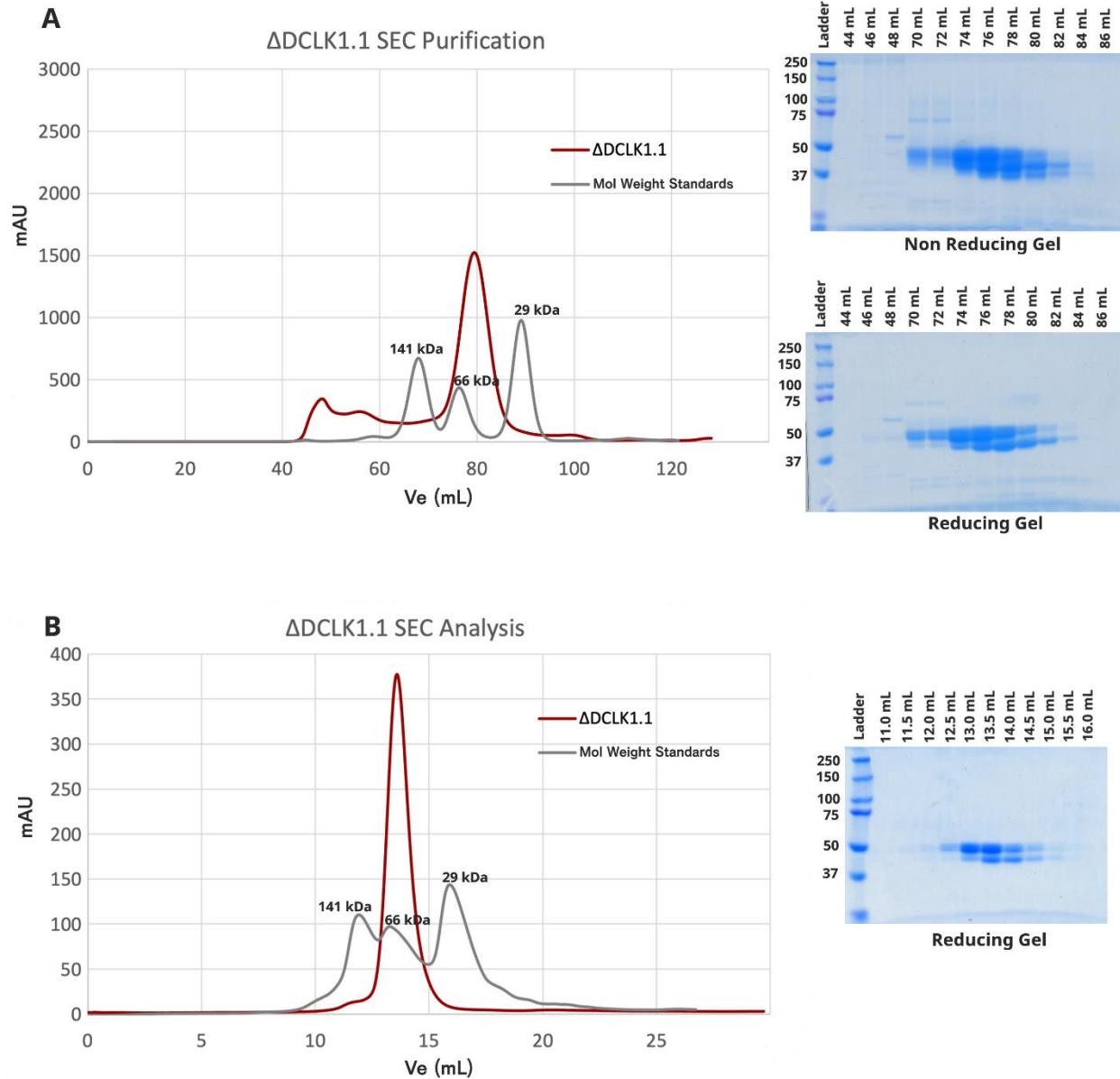

882 *Correspondence to: Natarajan Kannan, Email: nkannan@uga.edu or Patrick Eyers, Email:
883 patrick.eyers@liverpool.ac.uk

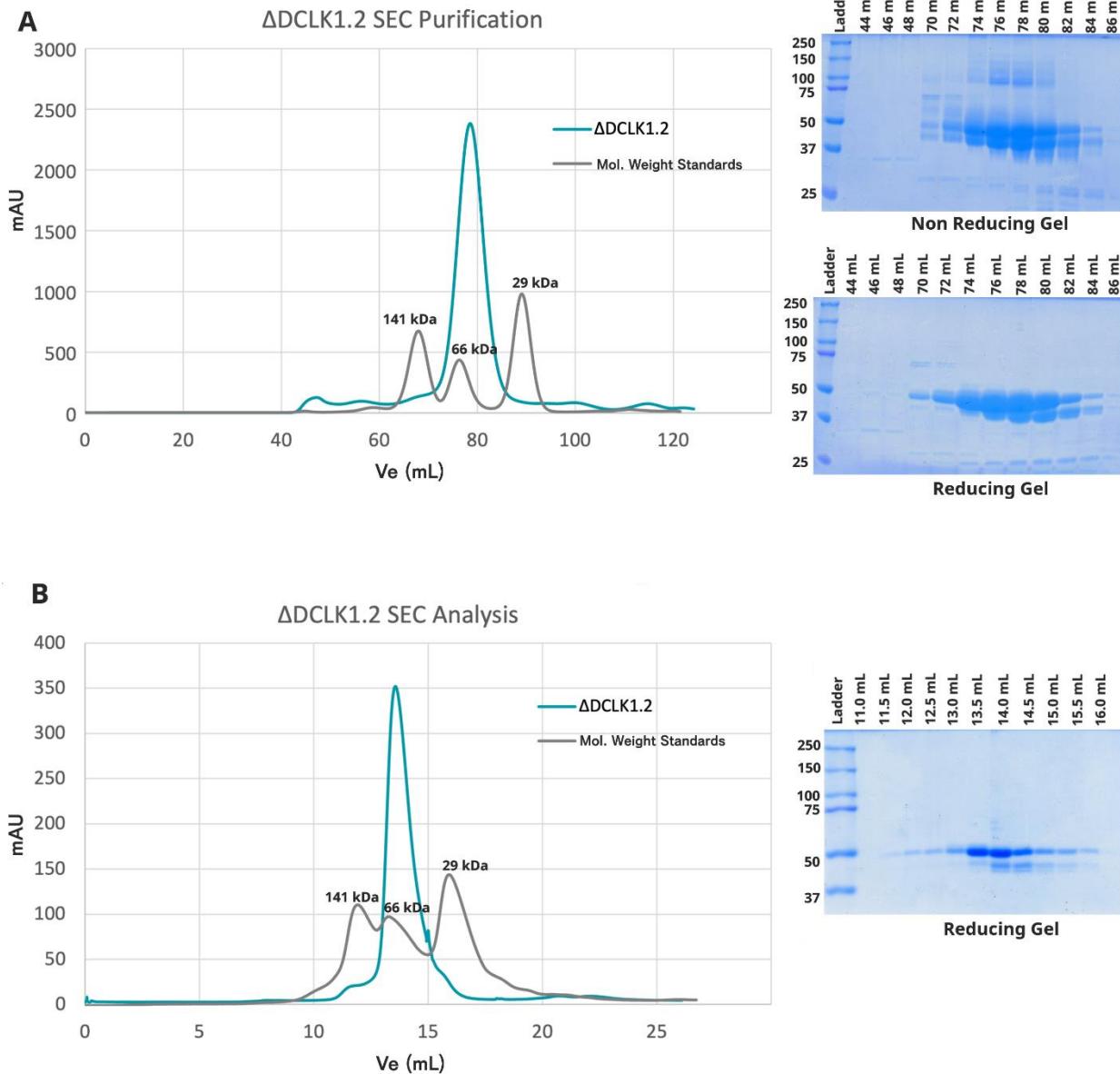
Figure 1-figure supplement 1: Structural cartoon depicting each DCLK1 isoform, categorized by the presence of DCX domain and related to enzymatic activity.

885


886
887

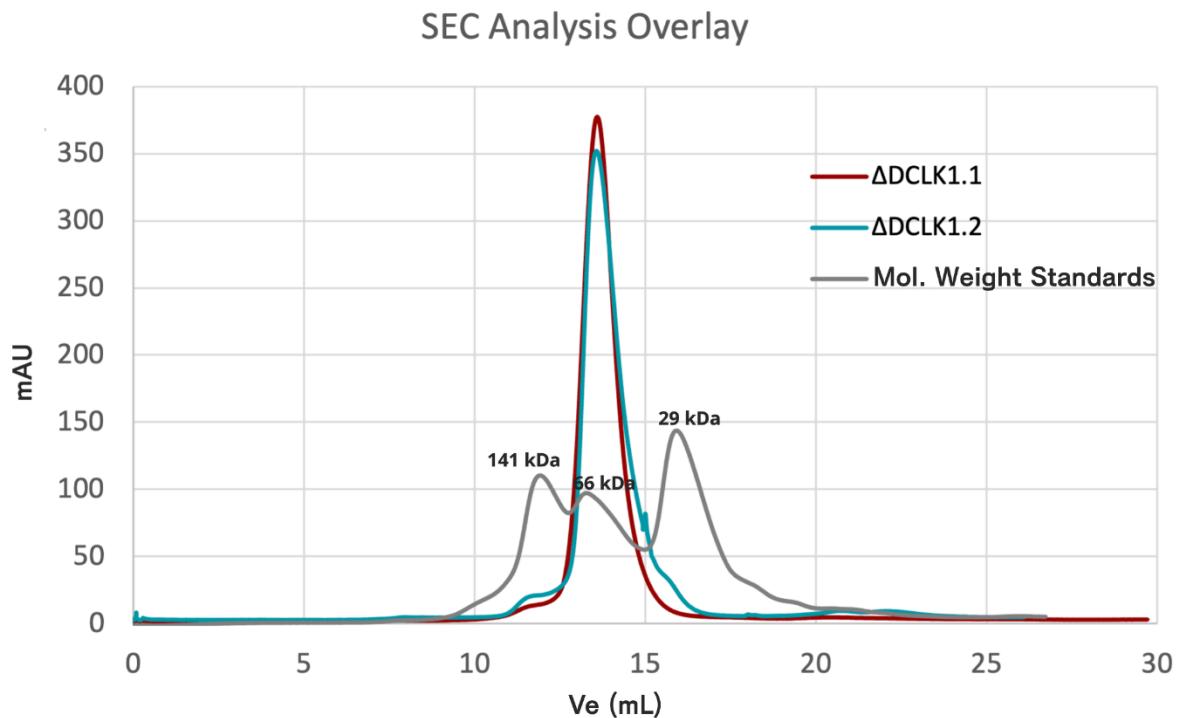
888

Figure 2-figure supplement 1: Electrostatic surface views of full-length DCLK paralog (DCLK1, DCLK2, and DCLK3) in the same orientation. These structures show how the tail packs against the substrate binding pocket of the kinase domain in each paralog. The electrostatic surface is color-coded with negative (red) and positive (blue) charges. Similarities in the distribution of charges among paralogs can influence substrate binding affinity and kinase activity.


889
890

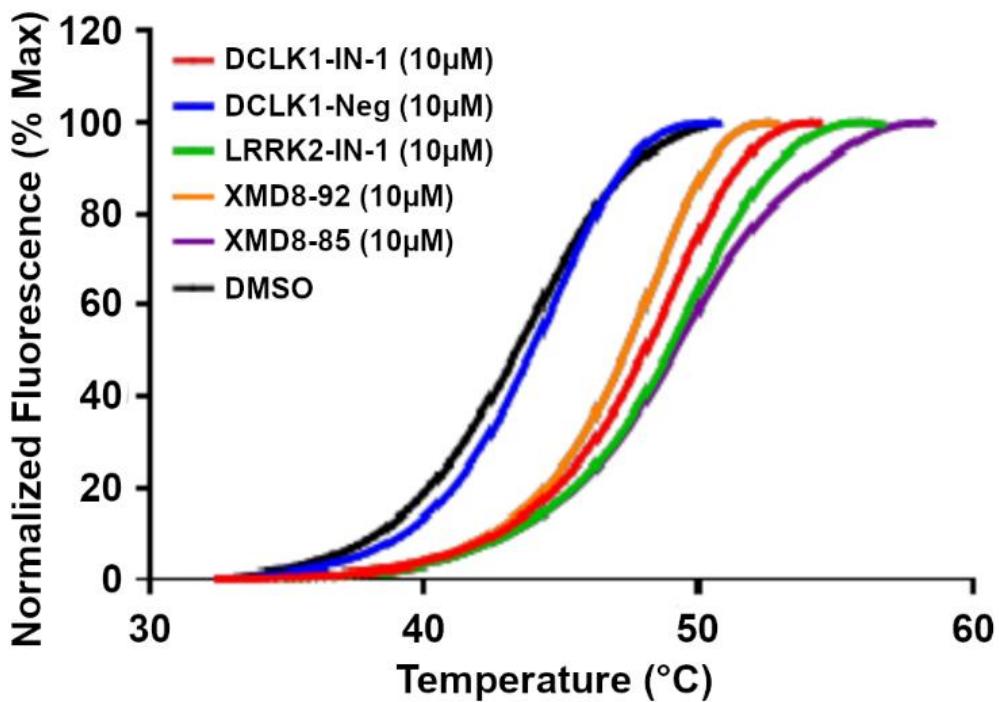
891

Figure 3-figure supplement 1: A) Purification of DCLK1.1³⁵¹⁻⁷²⁹ by SEC reveals a single peak, representing monomeric protein in solution. Reducing and non-reducing SDS-PAGE show the elution profiles of the purified species. **B)** Analytical SEC of purified DCLK1.1³⁵¹⁻⁷²⁹ (1.1 mg) confirms a single monomeric species.

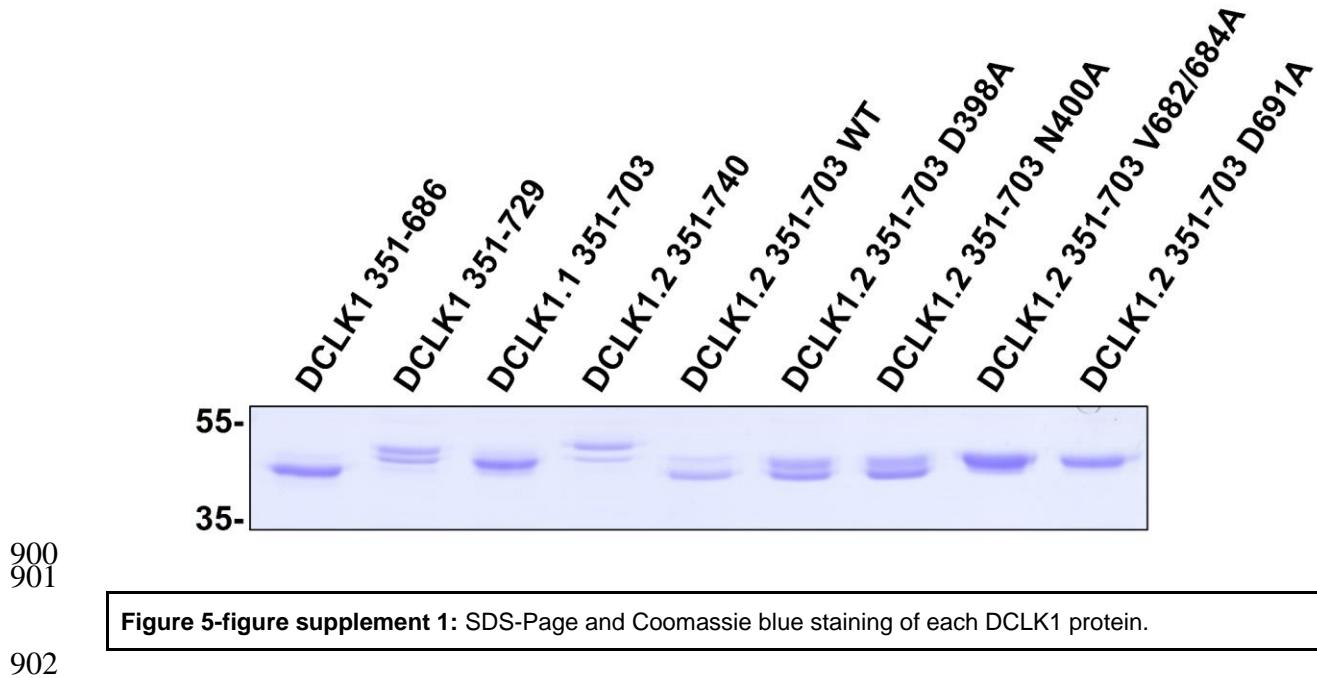

892

893

Figure 3-figure supplement 2: A) Purification of DCLK1.2³⁵¹⁻⁷⁴⁰ by SEC reveals a single peak, representing monomeric protein in solution. Reducing and non-reducing SDS-PAGE showing the elution profiles of the purified proteins. **B)** Analytical SEC of purified DCLK1.2³⁵¹⁻⁷⁴⁰ (1.1 mg) confirms a single monomeric species.


894

895


896

897

898 **Figure 3-figure supplement 4:** DSF profile of DCLK1₃₅₁₋₆₈₉ in the presence of DMSO or a panel of DCLK1 inhibitor compounds. DCLK1-Neg is a negative control.

899

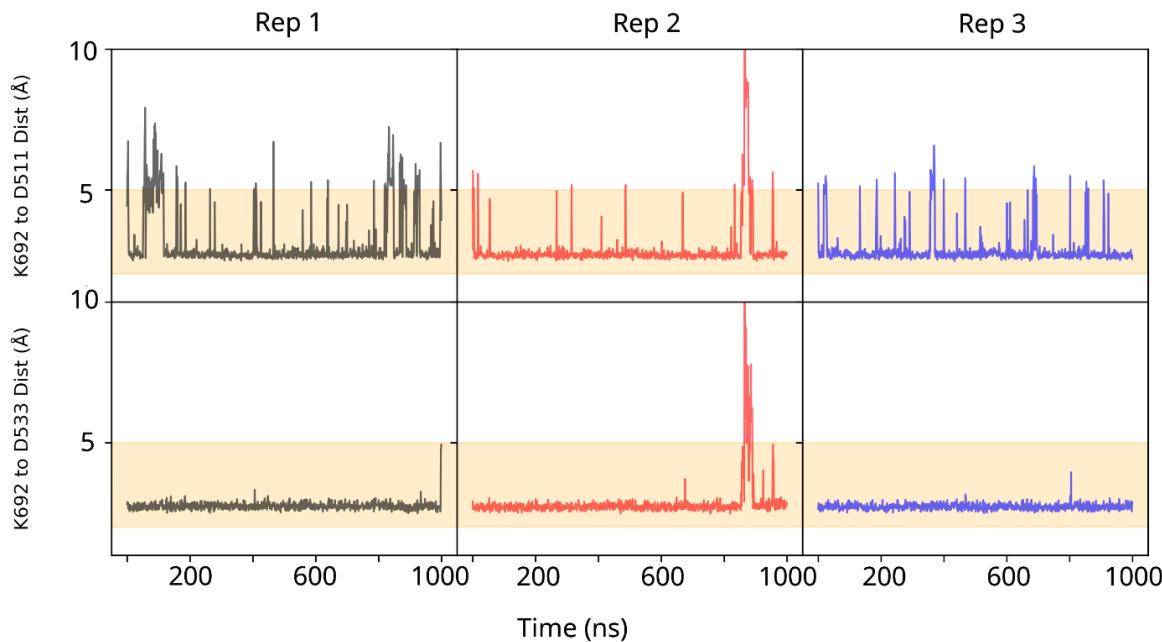
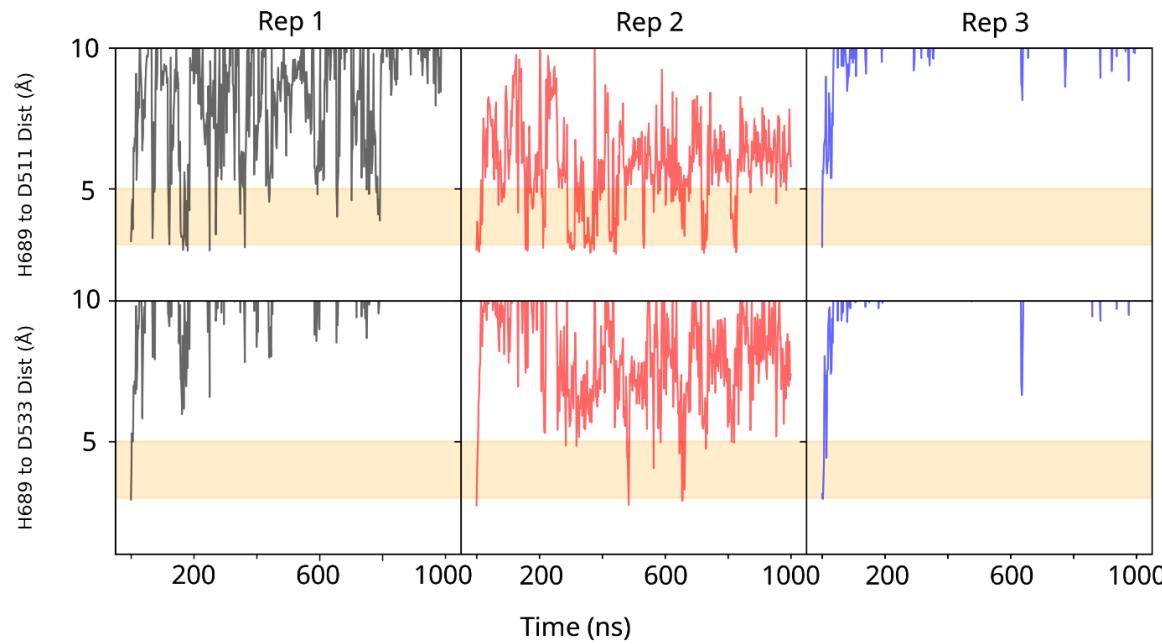
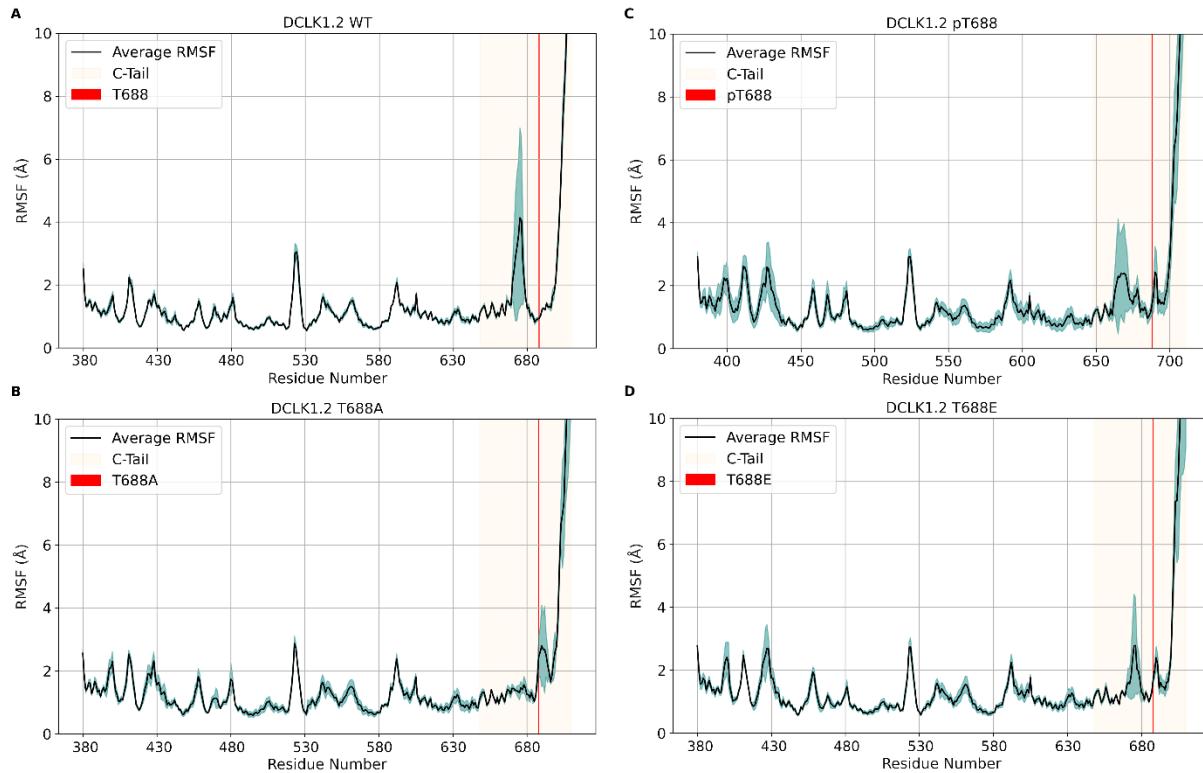


Figure 5-figure supplement 1: SDS-Page and Coomassie blue staining of each DCLK1 protein.


900
901

902

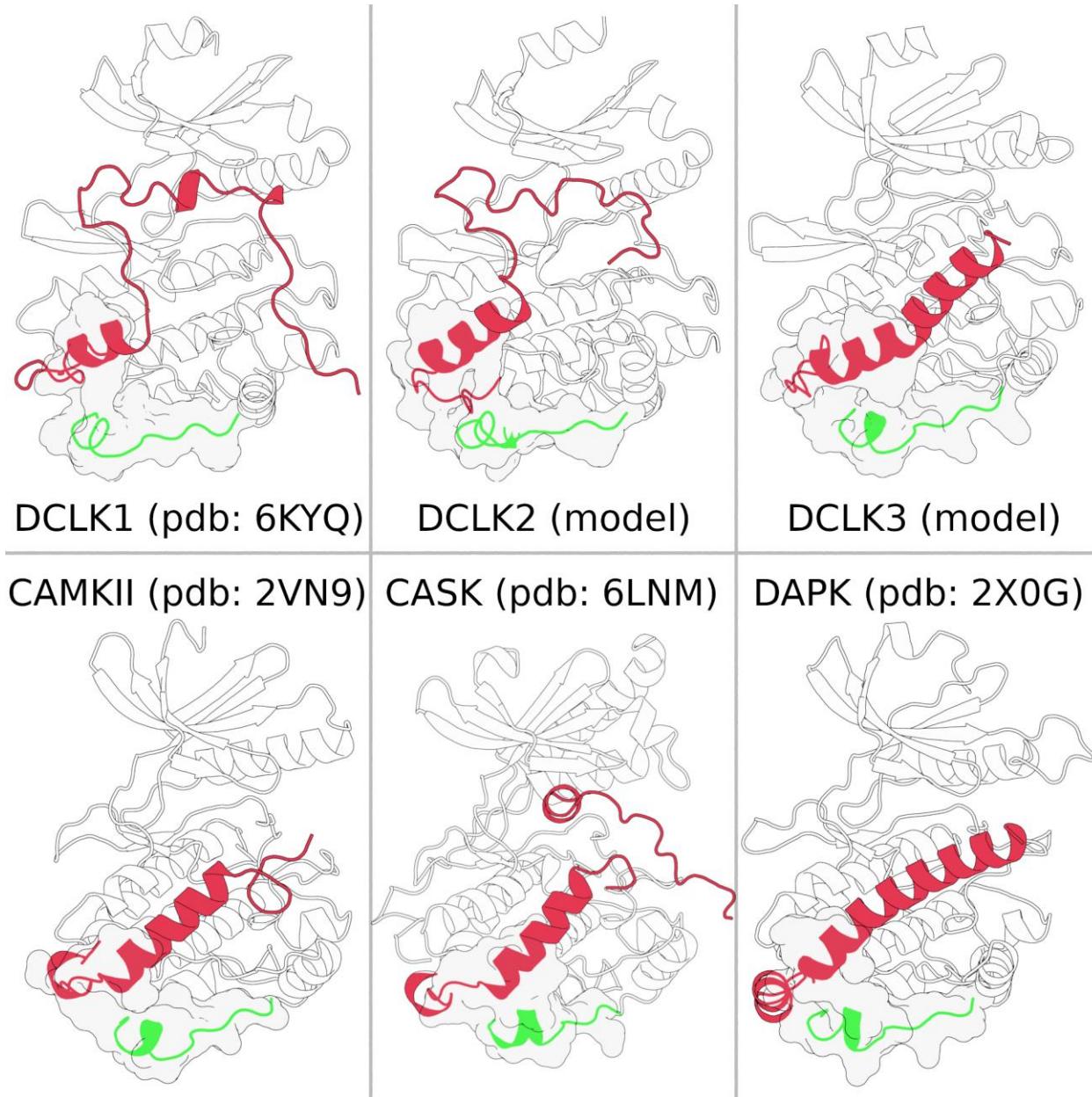
A. Isoform 2


B. Isoform 1

903

Figure 5-figure supplement 2: A) Minimum Distance of K692 in the DCLK1.2 C-tail forms significant stable interactions over microsecond replicates to the DFG and HRD aspartates. **B)** H689 in the DCLK1.1 C-tail, comparatively fails to interact with the DFG and HRD aspartates.

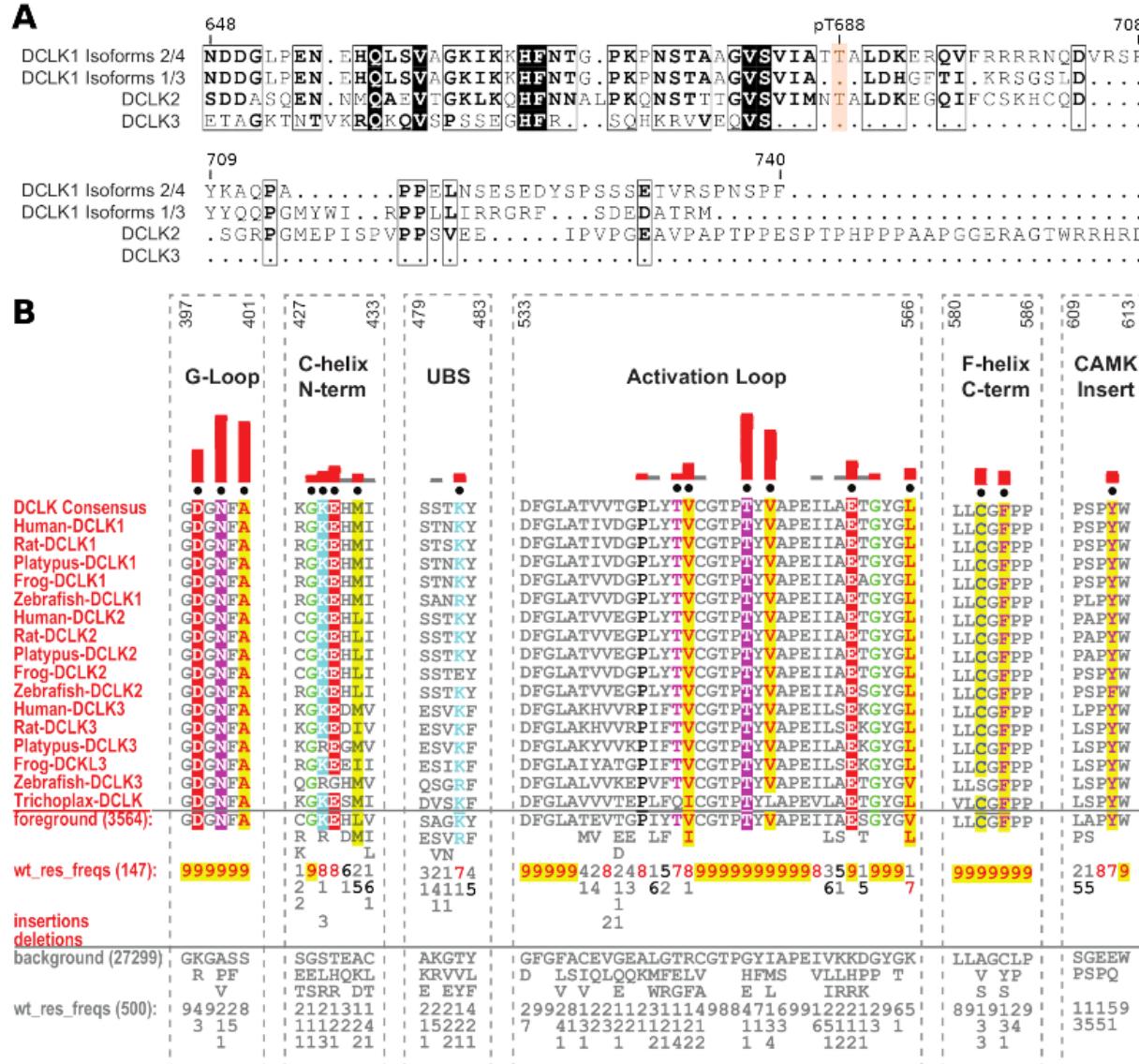
904



905

Figure 5-figure supplement 3: RMSF plots of MD simulations of Δ DCLK1.2 wt, pT688, T688A, and T688E, where T688 is demarcated by a red line and the entire Δ DCLK1.2 C-tail is highlighted in light yellow. The black line represents the average RMSF between three 500ns replicates and the blue shading represents standard deviation of the replicates, where less shading indicates convergence between replicates and increased shading indicates deviation.

906


907
908

909
910

Figure 6-figure supplement 1: CAMK-specific insert (green) consistently making structural contacts (shown in surface representation) with the C-tail (red) across multiple CAMK families.

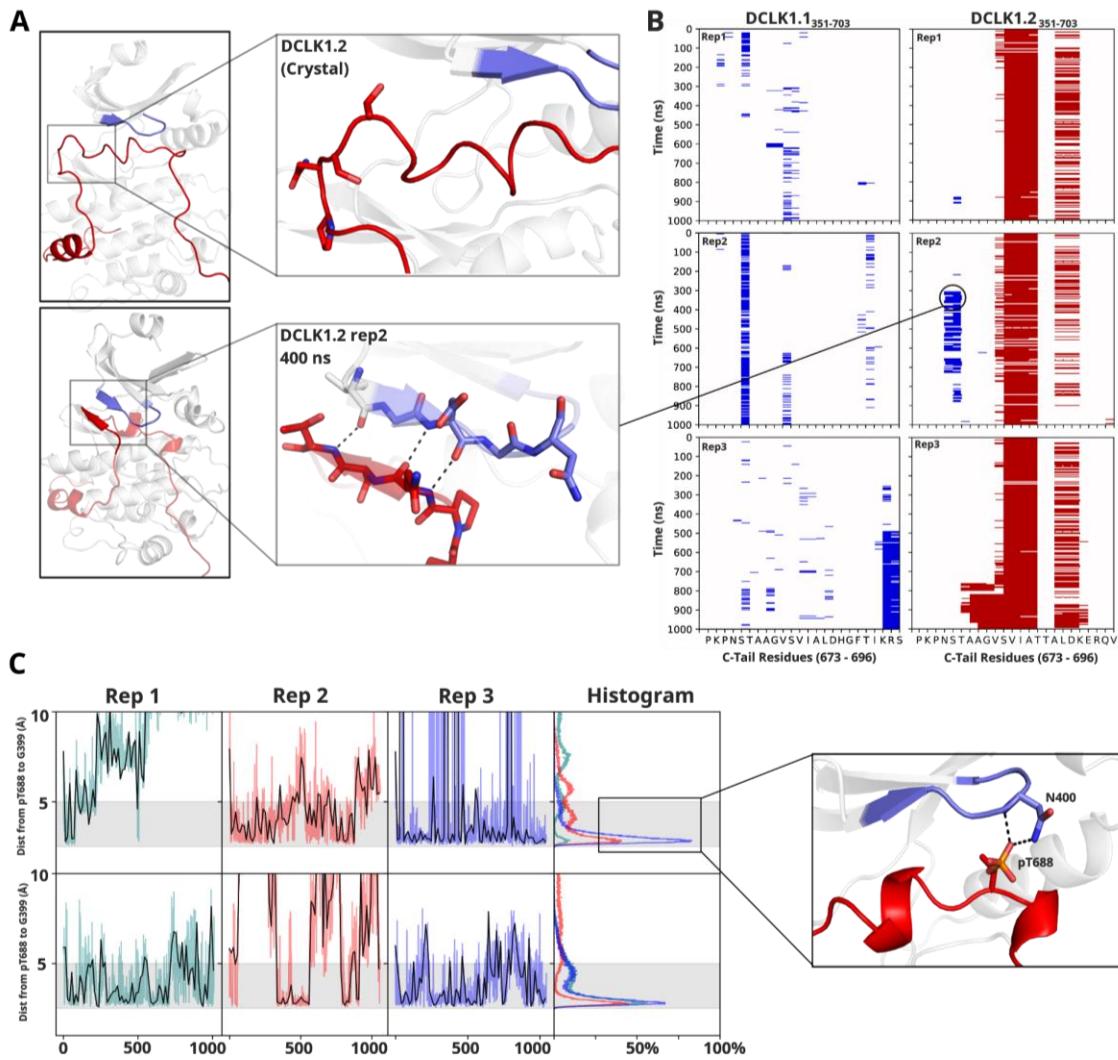
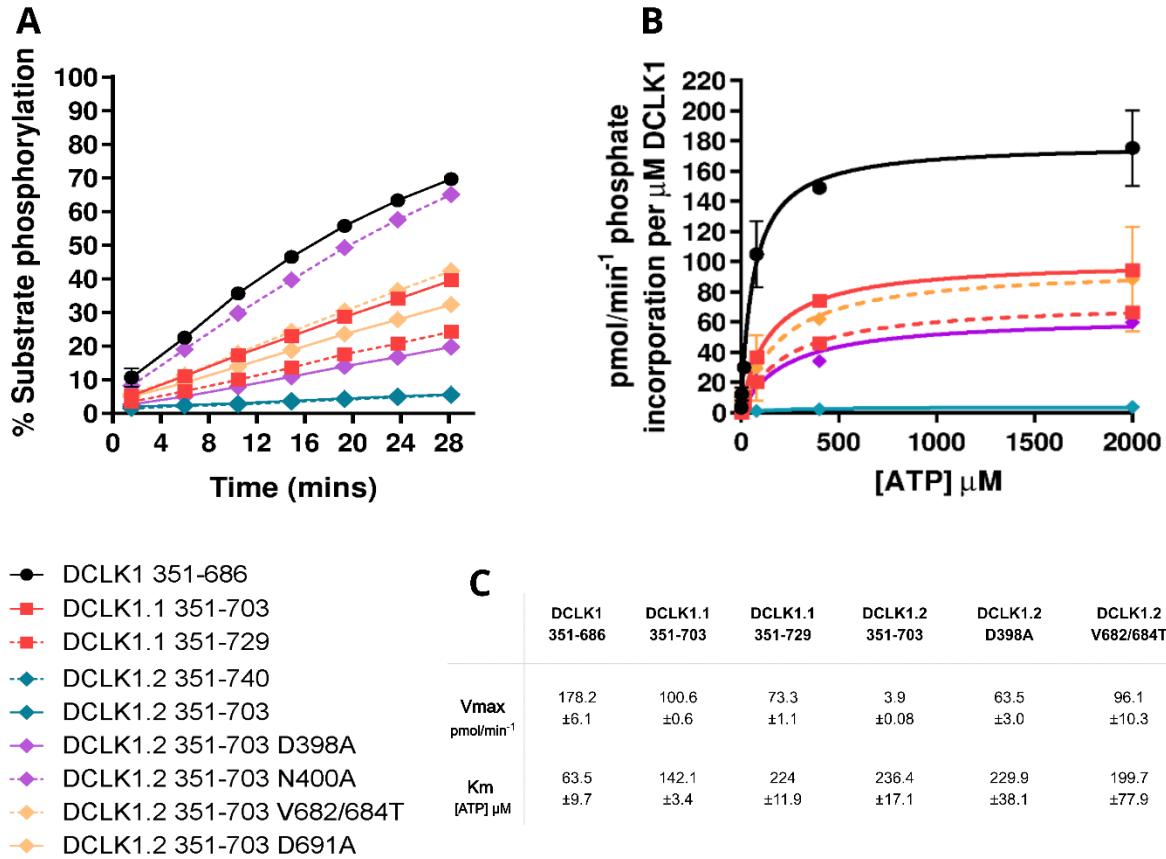

911

Figure 6-figure supplement 2: Identification of DCLK family-specific constraints. A) Sequence alignment of human DCLK paralogs including long and short isoforms of DCLK1. **B)** Sequence constraints that distinguish DCLK1/2/3 sequences from closely related CAMK sequences are shown in a contrast hierarchical alignment (CHA). The CHA shows DCLK1/2/3 sequences from diverse organisms as the display alignment. The foreground consists of 3564 DCLK sequences while the background alignment contains 27,299 related CAMK sequences. The foreground and background alignments are shown as residue frequencies below the display alignment in integer tenths (1–9). The histogram (red) indicates the extent to which distinguishing residues in the foreground diverge from the corresponding position in the background alignment. Black dots indicate the alignment positions used by the BPPS (Neuwald, 2014) procedure when classifying DCLK sequences from related CAMK sequences. Alignment number is based on the human DCLK1 sequence (Uniprot ID: O15075-1).

913
914


915

916

Figure 7-figure supplement 1: Molecular Dynamics of DCLK1 isoforms. **A-B)** Microsecond MD replicates from DCLK1.1 and DCLK1.2, showing the DSSP output plotted for the C-tail, where red lines represent alpha helices and blue lines represent beta sheets. **C)** Distance plots from MD replicates of the phosphorylated threonine highlighting the contact distance between pT688 phosphate and G399 of the G-loop.

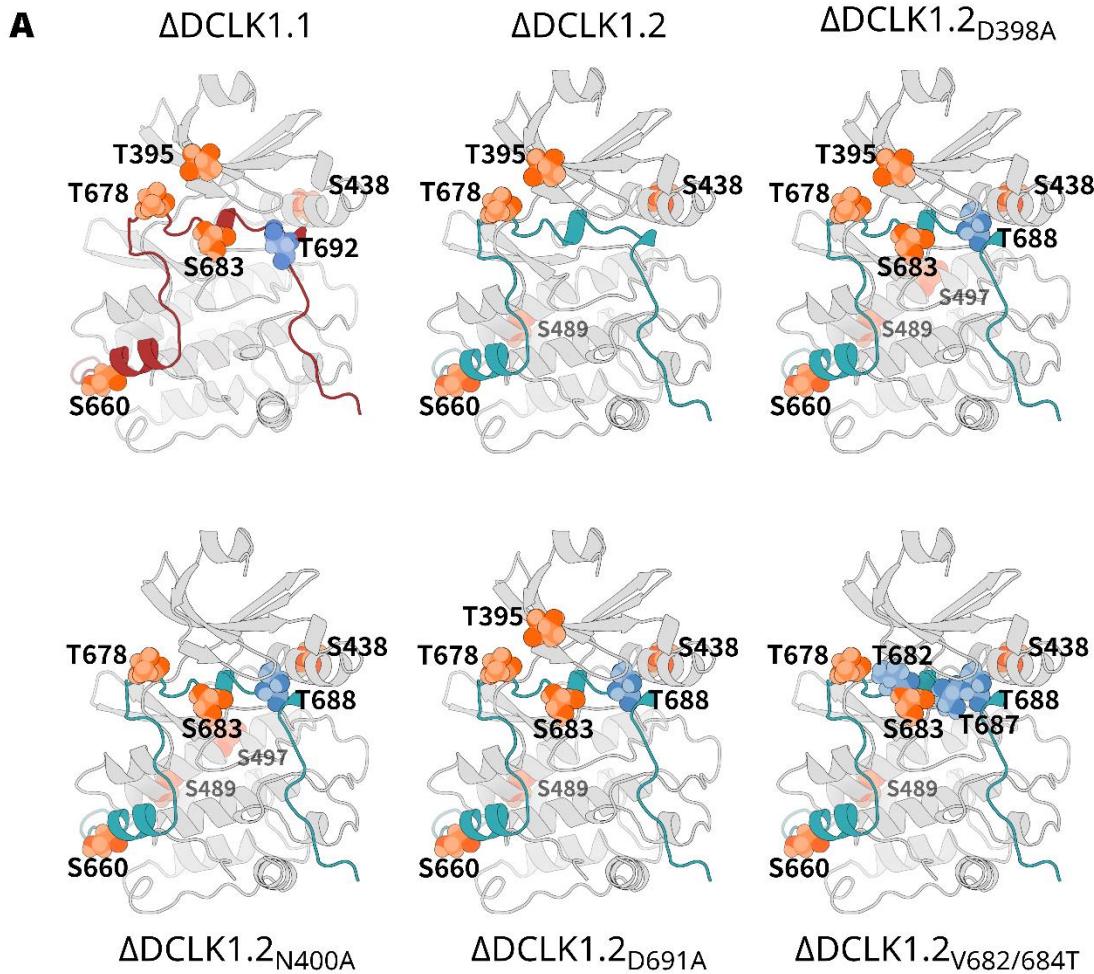
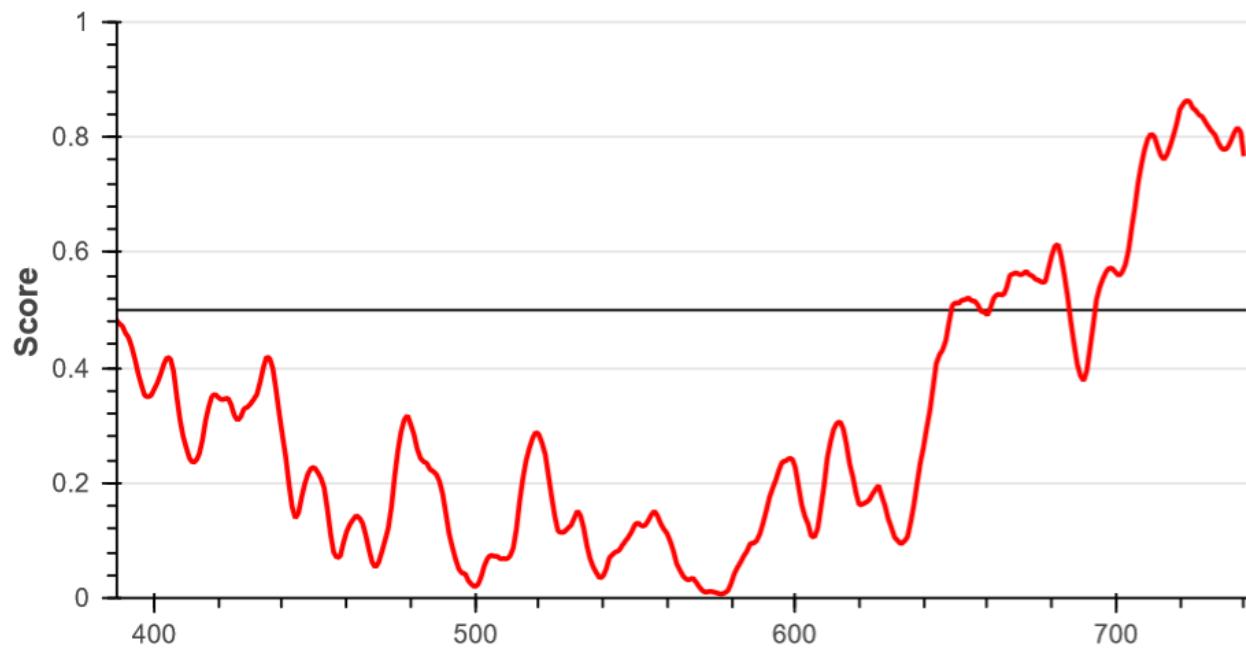

917

Figure 8-figure supplement 1: A) DCLK1 substrate phosphorylation (calculated as % total phosphopeptide) was quantified as a function of time for each of the indicated purified DCLK proteins in the presence of 1 mM ATP. Assays were performed side-by-side. Data is mean and SD from (N=4) independent experiments. **B)** Michaelis-Menten plots showing normalized DCLK1 activity in the presence of increasing concentrations of ATP, to tease apart effects of C-tail on ATP affinity. Data shown is mean and SD from (N=3) independent experiments. **C)** Table of calculated V_{max} and K_m [ATP] values obtained from (B).

918

919

B


Sequence	Phosphosite in protein (ptmRS score)	MASCOT score	DCLK1.1 (351-703)	DCLK1.2 (351-703)
GKEHMIQNEVSILR	Ser 438 (100)	68	1.00	0.15
FSAVQVLEHPWVNDDGLPENEHQLSVAGK	Ser 660 (100)	42	1.00	0.01

Sequence	Phosphosite in protein (ptmRS score)	MASCOT score	Normalised fold change			
			WT	D398A	N400A	V682/684T
TIGDGNFAVVK	Thr 395 (100)	60	1.00	ND	ND	1.41
GKEHMIQNEVSILR	Ser 438 (100)	69	1.00	6.91	4.08	1.69
DASGMLYNLASAIK	Ser 489 (100)	75	1.00	1.24	0.42	0.07
FSAVQVLEHPWVNDDGLPENEHQLSVAGK	Ser 660 (100)	50	1.00	99.01	41.43	43.76

920

Figure 8-figure supplement 2: A) All mapped DCLK phosphorylation sites derived from LC-MS/MS analysis of DCLK1.1 and DCLK 1.2 proteins. Identified sites of phosphorylation at the kinase domain are colored in orange with isoform or mutant-specific phosphorylation sites colored in blue and mapped onto the structure of each protein **B)** Quantitative LC-MS/MS data showing tryptic phosphopeptides identified from DCLK1.1 and 1.2 that were directly comparable between isoforms. Detailed are peptide sequences, identified sites of phosphorylation (red), the site of phosphorylation within the protein polypeptide and the ptmRS score relevant to confidence of phosphosite localisation, as well as the Mascot score for peptide identification. Fold-changes in the relative abundance of the two phosphopeptides in DCLK 1.2 are computed with reference to these same two phosphopeptides in DCLK1.1, normalising against 3 non-modified peptides to account for potential difference in the amount analysed. **C)** As described in B, quantitative LC-MS/MS data for sites directly comparable between DCLK1.2 and its variants. Fold change in abundance could not be calculated for the peptide containing pThr 395 given the presence of the inserted amino acid mutations and the differences in relative ionisation efficiency for the resulting tryptic peptide.

921

Figure 9-figure supplement 1: Intrinsic Disorder prediction of DCLK1.2 C-tail using IUPRED3.

922

923

924