

1 **Title:** Library preparation method and DNA source influence endogenous DNA recovery from

2 100-year-old avian museum specimens

3 **Running title:** WGS of historical avian museum specimens

4 Amie E. Settlecowski ^{†1} asettlecowski@fieldmuseum.org

5 Ben D. Marks¹

6 Joseph D. Manthey^{†2}

7 ¹Bird Collection, Field Museum of Natural History, Chicago, Illinois, USA

8 ²Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA

9 [†]corresponding author:

10 asettlecowski@fieldmuseum.org

11 Joseph.Manthey@ttu.edu

12

13

14 **Abstract**

15 Museum specimens collected prior to cryogenic tissue storage are increasingly being used as
16 genetic resources, and though high throughput sequencing is becoming more cost-efficient,
17 whole genome sequencing (WGS) of historical DNA (hDNA) remains inefficient and costly due
18 to its short fragment sizes and high loads of exogenous DNA, among other factors. It is also
19 unclear how sequencing efficiency is influenced by DNA source. We aimed to identify the most
20 efficient method and DNA source for collecting WGS data from avian museum specimens. We
21 analyzed low-coverage WGS from 60 DNA libraries prepared from four American Robin
22 (*Turdus migratorius*) and four Abyssinian Thrush (*Turdus abyssinicus*) specimens collected in
23 the 1920s. We compared DNA source (toepad versus incision-line skin clip) and three library
24 preparation methods: 1) double-stranded, single tube (KAPA); 2) single-stranded, multi-tube
25 (IDT); and 3) single-stranded, single-tube (Claret Bioscience). We found that the multi-tube
26 ssDNA method resulted in significantly greater endogenous DNA content, average read length,
27 and sequencing efficiency than the other tested methods. We also tested whether a predigestion
28 step reduced exogenous DNA in libraries from one specimen per species and found promising
29 results that warrant further study. The ~10% increase in average sequencing efficiency of the best
30 performing method over a commonly implemented dsDNA library preparation method has the
31 potential to significantly increase WGS coverage of hDNA from bird specimens. Future work
32 should evaluate the threshold for specimen age at which these results hold and how the
33 combination of library preparation method and DNA source influence WGS in other taxa.

34

35

36

37 **Introduction**

38 Museum specimens collected prior to cryogenic tissue storage have long been used as
39 genetic resources to address questions in ecology, evolutionary biology, and conservation (Habel,
40 Husemann, Finger, Danley, & Zachos, 2014; Wandeler, Hoeck, & Keller, 2007). Genetic studies
41 using these specimens have increased with the advent of high throughput sequencing methods,
42 which in comparison to prior Sanger sequencing methods, drastically increased the data returned
43 from each destructive sampling (Burrell, Disotell, & Bergey, 2015). Now museum specimens
44 commonly facilitate genomic studies via reduced representation (Bi et al., 2013; Linck, Hanna,
45 Sellas, & Dumbacher, 2017; McCormack, Tsai, & Faircloth, 2016) and even whole genome
46 sequencing (e.g. van der Valk, Díez-del-Molino, Marques-Bonet, Guschanski, & Dalén, 2019;
47 Wu et al., 2022). Despite its increasing prevalence and dropping cost, sequencing whole genomes
48 of museum specimens remains expensive because of the degraded nature of the historical DNA
49 (hDNA).

50 Historical DNA tends to consist of short fragment lengths (McDonough, Parker,
51 McInerney, Campana, & Maldonado, 2018; Straube et al., 2021; Tsai, Schedl, Maley, &
52 McCormack, 2020) that are smaller than the recommended library sizes for the most cost-
53 efficient sequencing setups (i.e., Illumina NovaSeq 6000 S4 flowcell, 200 or 300 cycles). As a
54 result, many sequencing cycles are directly wasted by a lack of base pairs to sequence or
55 indirectly wasted on adapter read through (Straube et al., 2021). Historical DNA libraries also
56 tend to consist of low proportions of DNA from the focal specimen (hereafter endogenous DNA).
57 The rest of the library may consist of exogenous DNA from (1) microbes that have colonized the
58 museum specimen or (2) other environmental microbes, (3) contaminating DNA from researchers
59 or (4) other museum specimens, and (5) more recent DNA samples (Fulton & Shapiro, 2019).

60 Altogether, the degraded nature of hDNA results in the recovery of lower proportions of
61 endogenous DNA sequence data (Burrell et al., 2015) and necessitates increased sequencing
62 effort per specimen to recover similar WGS coverage to modern, high quality DNA libraries.
63 This inefficiency limits the use of historical DNA from museum specimens to address population
64 genomic questions that require larger sample sizes in addition to sufficient coverage to address
65 questions about selection and demography (Lou, Jacobs, Wilder, & Therkildsen, 2021).

66 Ancient DNA researchers have identified that single-stranded (Gansauge & Meyer, 2013)
67 and single-tube library preparation methods (Carøe et al., 2018), and those that ligate adapters to
68 unmodified DNA molecule ends (Kapp, Green, & Shapiro, 2021), increase the amount of
69 degraded ancient DNA molecules that are converted into genomic libraries. However, the most
70 implemented ancient library preparation methods are non-proprietary (Gansauge et al., 2017;
71 Henneberger, Barlow, & Pajjmans, 2019), thus requiring a high level of startup effort. Early
72 ssDNA methods were also more expensive to implement than double-stranded DNA (dsDNA)
73 libraries, and their improvement in sequencing efficiency did not warrant the additional effort and
74 cost to implement for all but the most degraded ancient DNA samples (Wales et al., 2015). That
75 is perhaps why only two studies to date have evaluated the influence of ssDNA versus dsDNA
76 library preparation on shotgun sequencing of historical specimens. Sproul and Maddison (2017)
77 found that ssDNA libraries—in comparison to dsDNA libraries—prepared from 16 whole beetle
78 specimens resulted in more retained reads following quality filtering, but no difference in
79 endogenous DNA content. Similarly, Hahn et al. (2022) recently found no difference in
80 endogenous DNA content or insert length between ssDNA and dsDNA libraries prepared from
81 twelve taxonomically diverse wet collection vertebrate specimens. Additional studies of the
82 influence of library preparation on WGS of museum specimens that control for taxonomy,

83 locality, and collection age of specimens will be valuable moving forward. Early ssDNA methods
84 have been modified to reduce costs and ease implementation (Gansauge et al., 2017) and ssDNA
85 methods are now commercially available as kits facilitating further study of their impact on
86 hDNA sequencing efficiency.

87 Thus far, the majority of research investigating how to maximize the recovery of genetic
88 data from non-ancient museum specimens has focused on the influence of DNA source or
89 extraction method on DNA yield (Hahn et al., 2022; Hawkins, Flores, McGowen, & Hinckley,
90 2022; McDonough et al., 2018; Pacheco et al., 2022; Straube et al., 2021; Tsai et al., 2020; Zacho
91 et al., 2021). However, DNA yield does not necessarily predict sequencing success or efficiency
92 (McDonough et al., 2018; Straube et al., 2021; Zacho et al., 2021) because it is not possible to
93 estimate the proportions of endogenous versus exogenous extracted DNA. For example, a recent
94 study of hundreds of historical genomic DNA libraries built from samples of museum bird
95 specimens found that those built from specimens of smaller species (which generally produce
96 smaller samples) unintuitively had a higher proportion of endogenous sequence data (Irestedt et
97 al., 2022). Moreover, a few studies have shotgun sequenced DNA from multiple sources on the
98 same specimen and found differences in endogenous DNA content across sampling sites in fluid-
99 preserved garter snake specimens (Zacho et al., 2021), prepared mammal skins (McDonough et
100 al., 2018), and formalin-fixed specimens of a dozen vertebrate taxa (Hahn et al., 2022). Despite
101 research indicating that differences in hDNA sourced from toepads versus incision-line clips in
102 bird specimens could influence high-throughput sequencing results, no studies have evaluated
103 their difference in endogenous DNA content and sequencing efficiency.

104 Bird study skin specimens have been an especially prolific source of hDNA research
105 (Billerman & Walsh, 2019) in part due to preservation methods (i.e., skin drying) that are not

106 catastrophic to DNA preservation relative to methods such as formalin-fixation. Bird study skins
107 have been the foci of some of the earliest studies of hDNA (Mundy, Unitt, & Woodruff, 1997),
108 the source for some of the first implementations of reduced representation, high throughput
109 sequencing methods using museum specimens (Linck et al., 2017; McCormack et al., 2016), and
110 some of the largest studies implementing WGS of hDNA to date (Irestedt et al., 2022). In this
111 study we aim to maximize the potential of hDNA from bird study skins by identifying whether
112 DNA source and library preparation method influence the endogenous DNA content and
113 sequencing efficiency of hDNA libraries, and by introducing a pre-digestion step prior to DNA
114 extraction to reduce exogenous DNA.

115 In this study we test three library preparation methods that vary in 1) the number of
116 cleanups and tube transfers that occur before the library amplification step (one vs two) and 2)
117 whether they convert single or double-stranded DNA into library molecules. Each cleanup and
118 tube transfer is an opportunity to lose DNA molecules of the target length (greater than number
119 of sequencing cycles) due to the inherent imprecision of SPRI bead cleanups in addition to
120 pipette error. Methods that are optimized with one, in comparison to two, tube transfers should
121 transform more DNA molecules of target length into library molecules, thus maximizing library
122 complexity and sequencing efficiency. Double-stranded DNA library preparation methods cannot
123 convert ssDNA into library molecules, though as described above, hDNA is expected to consist
124 in some proportion of single strand molecules due to degradation. Thus, we expect that dsDNA
125 libraries prepared from hDNA will have reduced sequencing efficiency and possibly endogenous
126 DNA content compared to that of ssDNA libraries.

127 We also test the influence of DNA source—toepads versus incision-line skin clips—on
128 endogenous DNA content and sequencing efficiency. A previous study indicated that toepads

129 consist of longer DNA fragments than skin clips (Tsai et al., 2020), another possible source of
130 hDNA from birds (Töpfer, Gamauf, & Haring, 2011). Libraries prepared from samples consisting
131 of longer DNA fragments should maximize the sequencing capacity, resulting in longer read
132 lengths on average and greater sequencing efficiency. To test these expectations, we prepared
133 shotgun DNA libraries from a toepad and skin clip from eight approximately 100-year-old bird
134 specimens via three methods: 1) double-stranded, single tube (KAPA HyperPrep Kit); 2) single-
135 stranded, multi-tube (IDT xGen™ ssDNA & Low-Input DNA Library Prep Kit); and 3) single-
136 stranded, single-tube (Claret Bioscience SRSLY® NanoPlus Kit). We sought to reduce
137 exogenous DNA by implementing a predigestion step prior to DNA extraction, to our knowledge,
138 for the first time on bird specimens. To qualitatively evaluate the influence of the predigestion we
139 also prepared libraries from replicate toepad and skin clip DNA extractions not subjected to
140 predigestion from two of the eight specimens (Figure 1).

141

142 METHODS

143 2.1. Sampling

144 We sampled eight bird specimens: four Abyssinian Thrush (*Turdus abyssinicus*; hereafter
145 thrushes) and four American Robin (*Turdus migratorius*; hereafter robins; Table 1). We chose the
146 thrush specimens based on their inclusion in another ongoing project and chose to bolster our
147 sample size for this study with the robin specimens because they are a closely related, similar
148 species that is well-represented in North American natural history collections. Moreover, the
149 thrushes were collected in the tropics and the robins were collected in a temperate region which
150 could influence the drying time of the study skins and in turn, possible degradation due to rot or

151 the microbial load within dried skin (Irestedt et al., 2022). We chose specimens collected within
152 one year of each other to control for DNA degradation due to time since specimen preparation.

153 We collected two samples from each specimen—a toepad and a “skin punch” from the
154 incision-line through the pectoral apterium (following Tsai et al., 2020)—to evaluate whether
155 tissue source differed in proportion of endogenous DNA. We also took replicate samples from
156 one specimen of each species (Table 1) to qualitatively evaluate the effect of sample predigestion
157 prior to DNA extraction on the exogenous DNA load. The experimental design is summarized in
158 Figure 1.

159 We followed stringent sampling precautions to limit the introduction of contaminant
160 DNA: We (1) wore surgical masks and gloves throughout sampling, (2) took samples in the
161 collections away from any specimen preparation laboratory, (3) did not enter any modern
162 molecular DNA or specimen preparation laboratory prior to sampling, (4) prepared the work
163 surface and all other supplies (e.g., forceps, optivisor, writing utensil) by cleaning with freshly
164 prepared 10% bleach followed by 70% isopropanol or ethanol, and (5) immediately placed
165 samples in sterile microcentrifuge tubes that were unpackaged in a sterile lab and not opened
166 prior to beginning molecular lab work. We used a fresh pair of gloves and sterile scalpel blade for
167 each sample to minimize contamination between samples.

168 **2.2. Molecular laboratory work**

169 We followed stringent ancient DNA clean lab protocols to minimize contamination
170 during molecular laboratory work (Fulton & Shapiro, 2019). We completed all pre-PCR steps in
171 an ancient DNA facility in the Department of Human Genetics at the University of Chicago in a
172 non-human specific room. We performed each step prior to PCR in a maximum batch size of 12

173 samples, introduced a negative control in each batch of extractions and library preparations, and
174 then carried these controls through the remaining steps of lab work.

175 We extracted DNA via a phenol-chloroform protocol followed by ethanol precipitation
176 with minor modifications to the protocol presented in Tsai et al. (2020). We performed an NEB
177 PreCR DNA repair treatment following the sequential reaction protocol on each DNA extraction.
178 This treatment repairs DNA damage from hydrolysis and oxidative stress, among other
179 mechanisms, that results in deaminated cytosines, nicks, and other DNA damage incurred with
180 age. A previous study found that a different NEB repair kit optimized for formalin-fixed
181 specimens increased the yields of libraries prepared from historical beetle specimens by
182 approximately 30% (Sproul & Maddison, 2017). Following the damage repair treatment, we
183 performed a Qiagen MinElute column cleanup and resuspended the DNA in 50 μ L of PCR-grade
184 water. Next, we measured the DNA yield and distribution of DNA fragment sizes using the Qubit
185 High Sensitivity dsDNA (Thermo Fisher Scientific) and Agilent Bioanalyzer High-Sensitivity
186 DNA Kit assays, respectively, following the DNA extraction and again following DNA repair
187 and cleanup. We performed the same assays for each extraction negative control to monitor for
188 contamination.

189 We prepared three shotgun sequencing libraries from each DNA extraction and negative
190 control. Each of the three libraries were prepared via a different method: 1) double-stranded,
191 single tube (KAPA HyperPrep Kit); 2) single-stranded, multi-tube (IDT xGenTM ssDNA & Low-
192 Input DNA Library Prep Kit); and 3) single-stranded, single-tube (Claret Bioscience SRSLY[®]
193 NanoPlus Kit). We largely followed manufacturer protocols with the following modifications:
194 during the KAPA adapter ligation step we ligated 25 μ M iTru Stubs (Glenn et al., 2019) to each
195 library molecule. For all cleanups we used a homebrew SPRI bead-solution (Rohland & Reich,

196 2012) and for each cleanup step in the KAPA and IDT protocols we performed 1.2x SPRI
197 concentration cleanups. We indexed each library via amplification with 2.5 μ M of a unique pair
198 of iTru5 and iTru7 indexed primers (Glenn et al., 2019) and KAPA HiFi HotStart Uracil+
199 ReadyMix. For amplification we split each adapter-ligated library into two replicates of 25 μ L
200 each and ran a nine- to twelve-cycle PCR, depending on input DNA amount and method, on the
201 first replicate; then we estimated the yield of the first replicate via a Qubit High Sensitivity
202 dsDNA assay and ran a 10- to 12-cycle PCR on the second adapter-ligated library replicate. We
203 combined amplified replicates for each library and performed a final SPRI cleanup. Finally, we
204 measured the average molecule size and calculated the concentration of adapter ligated molecules
205 for each sample library via an Agilent Bioanalyzer High-Sensitivity DNA Kit assay and qPCR
206 with the KAPA Library Quantification Kit. We submitted a final library pool to Texas Tech
207 University Center for Biotechnology & Genomics for sequencing. They first checked that
208 libraries were sequencable with an Illumina MiSeq nano run followed by 100 base pair (bp)
209 paired-end sequencing on one Illumina NovaSeq SP flowcell.

210 **2.3. Bioinformatics**

211 We received demultiplexed sequence data as raw fastq files from the sequencing facility
212 and ran FastQC (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) to assess quality
213 and adapter contamination by library preparation method. We trimmed 10 bp from the beginning
214 of every IDT library read 2 via Seqtk *trimfq* (<https://github.com/lh3/seqtk>) to remove a low-
215 complexity polynucleotide tail that facilitates adapter ligation in this method. Duplicate reads
216 resulting from PCR were identified and removed via Super Deduper
217 (<https://github.com/s4hts/HTStream>). Then we used SeqPrep
218 (<https://github.com/jstjohn/SeqPrep>) to simultaneously identify adapter contamination and

219 overlapping paired reads, and then trim adapters and merge reads as necessary. We trimmed
220 bases from both read ends via four bp sliding window to a minimum quality of 15 and then
221 removed reads that were less than 30 bp long via Trimmomatic v2.X (Bolger, Lohse, & Usadel,
222 2014). Finally, we removed any remaining reads that were comprised of more than 50% of one
223 nucleotide via remove_low_complex.py (distributed as part of the NF-Polish sequence polishing
224 pipeline described in Irestedt et al. (2022)). We aligned cleaned sequencing reads to the Rufous-
225 bellied Thrush (*T. rufiventris*) reference genome (ASM1318643v1) via BWA 0.7.17 *mem* (Li,
226 2013) and indexed mapped reads with Samtools 1.9 *index* (Danecek et al., 2021; Li et al., 2009).
227 Following sequence cleaning and alignment we evaluated adapter contamination and sequence
228 quality via FastQC. We used MapDamage 2.0 (Ginolhac, Rasmussen, Gilbert, Willerslev, &
229 Orlando, 2011; Jónsson, Ginolhac, Schubert, Johnson, & Orlando, 2013) to estimate the
230 frequency of C to T and G to A misincorporations that result from a transition to uracil during
231 DNA degradation over time through hydrolysis. For each library we output sequencing metrics
232 via Samtools 1.9 *stats*.

233 **2.4. Analyses**

234 We tested whether there were differences in DNA yield and mean DNA fragment size
235 between different sources (toepad vs. skin clip) via paired-t tests. We evaluated whether DNA
236 source, library preparation method, or an interaction between them resulted in differences in 1)
237 endogenous DNA content, 2) sequencing efficiency, and 3) mean read length via two-way,
238 repeated-measures ANOVAs. For any two-way ANOVA that resulted in a significant interaction,
239 we performed a one-way, repeated measures ANOVA for each method to evaluate whether there
240 were significant differences by DNA source. For any two-way ANOVA that resulted in a
241 significant effect of either independent variable, we performed subsequent pairwise, paired-t tests

242 between all library preparation methods. We accounted for multiple-testing in all post-hoc one-
243 way and paired-t tests by adjusting p-values via the BH method (Benjamini & Hochberg, 1995).

244 We expected that samples with larger mean DNA fragment sizes would also have longer
245 mean read lengths and as a result, greater endogenous DNA content and sequencing efficiency.

246 To test this hypothesis while controlling for any effect of DNA source and library preparation
247 method we defined two linear models for each of the following response variables: endogenous
248 DNA content, sequencing efficiency, and read length. Each null model included the library
249 preparation method and DNA source as fixed effects and sample as a random effect. The
250 alternative model also included mean DNA fragment length as a fixed effect. To test whether
251 mean DNA fragment length had a significant influence on each response variable we performed a
252 likelihood ratio test of the null and alternative model.

253 Finally, we sought to qualitatively evaluate the effect of predigestion on replicate
254 samples. To do so, we plotted the difference in each metric of interest between the replicate
255 samples. All statistical analyses were completed in R v4.1.0 (R Core Team, 2021). ANOVAs
256 and t-tests were conducted with the package *rstatix v0.7.0* (Kassambara, 2021), linear mixed
257 models were built in *lme4 v1.1-27.1* (Bates, Mächler, Bolker, & Walker, 2015), and we used the
258 suite of functions in *tidyverse v1.3.1* (Wickham et al., 2019) for data parsing, manipulation, and
259 visualization.

260

261 **RESULTS**

262 **3.1. DNA Yield and Size**

263 All 60 DNA extractions were successful in terms of producing measurable amounts of
264 DNA with an average of 589.1 nanograms (ng) per sample and a minimum of 48.6 ng in the skin

265 clip control replicate from robin specimen 162188 (Table 1). All samples retained enough DNA
266 through the DNA repair and cleanup to progress to library preparation by each of the three
267 methods. In general, the DNA repair resulted in an upshift in the distribution of DNA fragment
268 lengths (Figures S1A and S2A). There was no statistical difference in DNA yield and size
269 between toepad and skin clips immediately following extraction or after the DNA repair and
270 cleanup (Figure 2). However, the lack of statistical difference in DNA size is driven by the large
271 variance in skin clips (Table 2). The mean size of DNA extracted from the toepad sample is
272 greater than that of the skin clip sample for all but two specimens: robin specimen 83114 and
273 thrush specimen 66823 (Table 1). For example, these two specimens bias the distribution of the
274 post-repair skin clip mean size (post-repair $M = 315.63$, $Mdn = 65.49$, $SD = 651.92$) upwards, but
275 not the toepad mean size (post-repair $M = 83.94$, $Mdn = 83.94$, $SD = 7.13$).

276 **3.2. Endogenous DNA content and sequencing efficiency**

277 Sequencing returned a total of approximately 1.45 billion raw reads and, per library, an
278 average of 11.23 million raw reads ($SD = 1.84$) and 9.88 million mapped reads ($SD = 9.78$) per
279 library excluding non-predigested replicates. Detailed sequencing metrics for each library are
280 reported in the supplementary material (Table S1).

281 There was a significant difference across library-preparation methods, but not DNA
282 source in endogenous DNA content and sequencing efficiency with IDT outperforming SRSLY
283 and KAPA in both metrics (Table 3). Similar to the results described above for DNA size, the
284 toepad samples outperform the corresponding skin clip samples except for specimens 83114 and
285 66823 (Figure 3A, 3B) so we summarize the results by method and source (Table 4). The average
286 endogenous DNA content of IDT toepad and skin clip libraries is 88.7% ($SD = 0.014$) and 81.2%
287 ($SD = 0.140$) respectively, 0.06% and 1.4% greater than that of KAPA, and 2.4% and 1% greater

288 than that of SRSLY. The average sequencing efficiency of IDT toepad and skin clip libraries is
289 35.9% (SD = 0.045) and 29.8% (SD = 0.245), respectively. In comparison to IDT, KAPA toepad
290 and skin clip libraries are 11% and 1.8% less efficient, respectively, and SRSLY toepad and skin
291 clip libraries are 7.8% and 1.8% less efficient. There was also a significant difference among
292 methods in mean read length with IDT producing longer reads than KAPA and SRSLY with a
293 significant interaction between method and DNA source (Table 3, Table 4, Figure 3C). IDT
294 toepad libraries produced significantly longer reads than IDT skin clip libraries (Table 3, Table 4,
295 Figure 3C).

296 The tests of the influence of input DNA fragment size on sequencing outcomes produced
297 mixed results. Including DNA size significantly improved the fit of the linear models for
298 endogenous DNA content ($\chi^2_1 = 7.558$, $p = 0.006$), sequencing efficiency ($\chi^2_1 = 45.771$, $p <$
299 0.001), and read length ($\chi^2_1 = 25.308$, $p < 0.001$). However, in the linear models including DNA
300 size, it was only a significant predictor of endogenous DNA content and read length based on
301 confidence intervals of the coefficient estimate. In some cases, the trend for the relationship
302 between DNA size and the dependent variable are contrary to our expectations (Figure S3).

303 There was evidence of contamination in two of the 20 libraries based on the proportion of
304 base pair differences between the mapped reads and the reference genome and endogenous DNA
305 content (Figure S4, Table 1). The skin clip library of thrush specimen 83109 exhibited
306 approximately 1% more differences from the reference genome than all other samples (Table 1,
307 Figure S4) in addition to a comparatively low proportion of endogenous DNA content across
308 preparation methods (IDT = 48.0%, KAPA = 47.7%, SRSLY = 51.9%). The replicate skin clip
309 library of robin specimen 162188 that was not subjected to predigestion also had a low

310 proportion of endogenous DNA content across preparation methods (IDT = 17.4%, KAPA =
311 33.4%, SRSLY = 41.5%), but it was similar to all other libraries in the proportion of mapped
312 bases that differed from the reference (Figure S4). There was no indication of contamination in
313 the high performing skin clips samples from specimens 83114 and 66823 (Table 1, Figure S4)
314 that biased the skin clip averages of most metrics upward.

315 The influence of sample predigestion was unclear (Table 1, Figure S5). The differences in
316 DNA yield, mean DNA size, and endogenous DNA content were inconsistent between the
317 control and predigested replicates from robin 162188 and thrush 83114. The difference between
318 the replicates in sequencing efficiency and mean read length were marginal.

319

320 **4. Discussion**

321 **4.1. WGS of hDNA from 100-year-old bird study skins**

322 We have demonstrated via shallow sequencing of 60 hDNA libraries that ssDNA library
323 preparation methods outperform dsDNA methods in sequencing efficiency and, to a lesser extent,
324 in returning endogenous DNA content from WGS ~100-year-old bird specimens. In contrast to
325 our predictions, the IDT multi-tube, ssDNA method outperformed the Claret Biosciences single-
326 tube, ssDNA method and we discuss possible explanations below. We also confirm previous
327 research suggesting that toepads provide consistently larger DNA fragments and demonstrate that
328 hDNA from toepads rather than skin clips is a better source for WGS. We show that, though skin
329 clips may sometimes outperform toepads for a given specimen, toepads have less variance and
330 therefore less unexpected sequencing outcomes. Altogether, we've shown that toepads are a
331 better source of DNA and ssDNA library preparations are a better method for collecting WGS

332 from 100-year old bird specimens. Below we elaborate further on the nuances of our findings and
333 conclude with broader implications for WGS of historical DNA from museum specimens in
334 natural history collections.

335 **4.2. Library preparation method and DNA source influenced sequencing**

336 Library preparation method influenced all key metrics; but contrary to our predictions, the
337 SRSLY ssDNA, single-tube method did not outperform the other two methods. Instead, the IDT
338 ssDNA, multi-tube method resulted in greater endogenous DNA content, sequencing efficiency,
339 and read lengths than either of the other methods (Figure 3, Table 3). The margin of difference
340 between IDT and the other methods was much greater for sequencing efficiency and average read
341 length than endogenous DNA content (Table 4), suggesting that IDT produced more complex
342 libraries. The only other study to compare ssDNA and dsDNA methods for shotgun sequencing
343 of historical specimens prepared libraries from beetle specimens of various ages using the same
344 ssDNA, multi-tube method that we implemented and a different dsDNA, single-tube method.
345 Those results showed no difference in endogenous DNA content between methods, and that
346 ssDNA libraries maintained more sequencing reads through quality filtering and trimming
347 (Sproul & Maddison, 2017). We find this consistent with our results and suspect that controlling
348 for taxonomy and specimen age in our experimental design facilitated detecting the small
349 difference that library preparation method made in endogenous DNA content. That IDT
350 outperformed SRSLY makes some sense given that SRSLY was originally developed for cell-
351 free DNA which averages 30 bp long (Troll et al., 2019); though, the commercial kit provides
352 several versions of the protocol optimized for different purposes, and we implemented the
353 version for moderate length DNA inserts, less than 200 bp. That protocol for moderate length
354 DNA inserts includes two-sided SPRI cleanups following adapter ligation and indexing PCR, as

355 compared to the IDT ssDNA method which uses single-sided cleanups. We suspect that the two-
356 sided cleanups in SRSLY limited conversion of DNA molecules on the larger end of the DNA
357 size distribution into library molecules (Figures S1, S2). This is consistent with SRSLY
358 producing shorter average read lengths than IDT. Still, SRSLY outperformed the KAPA dsDNA
359 method overall in sequencing efficiency and outperformed IDT in sequencing efficiency for skin
360 clips in a few specimens (Figure 3A). It is possible that SRSLY may be the better method for
361 samples that are more degraded as a result of age or DNA source. More recently another ssDNA
362 single-tube method that builds upon SRSLY was developed specifically for ancient DNA
363 samples (Kapp et al., 2021); though the nonproprietary status limits ease of implementation. It
364 may be worthwhile to optimize the SRSLY clean up steps to maximize conversion of the largest
365 DNA fragments as the IDT method costs 1.89× more than SRSLY per reaction.

366 Most statistical tests of the effect of DNA source on our metrics of interest were not
367 significant, though toepads seem to perform better for WGS when considering the influence of
368 the large variance in the skin clip metrics. Toepads had much smaller variance in DNA yield,
369 DNA size, endogenous DNA content, sequencing efficiency, and average read length than skin
370 clips. For six of the eight specimens, toepads clearly provided greater endogenous DNA content,
371 sequencing efficiency, and average read length than the corresponding skin clip. In general, this
372 result is reflected by the mean, and more so the median values, of these metrics for toepads as
373 compared to skin clips (Table 2, Table 4). That phenol chloroform extraction of toepads does not
374 yield more DNA but does result in longer DNA fragments than that of skin clips supports
375 previous research (Tsai et al., 2020). Our results are also in line with previous studies based on
376 five fluid-preserved garter snake specimens (Zacho et al., 2021) and three dried mammal skins
377 from different species (McDonough et al., 2018) that showed that different DNA sources have

378 differences in endogenous DNA content. It is possible that hDNA sampled from bird specimen
379 toepads produces better WGS data than that of skin clips because of their different structural
380 makeups. The keratinized, scaly skin of bird feet may provide a better environmental barrier to
381 water—which promotes DNA degradation via hydrolysis and also overall tissue degradation—
382 and to invading microbes that would increase exogenous DNA. Toepad cells may also have lower
383 innate water content due to desiccation during keratinization (Bengtsson et al., 2012). The role of
384 the keratin structure in maintaining better DNA for WGS is supported by the work of
385 McDonough and colleagues (2018) which showed that of bone, skin, and claw samples from
386 dried mammal specimens, claw samples had the highest or near highest proportion of endogenous
387 DNA and in a qPCR analysis, the highest copy number of nuclear genomic markers.

388 **4.3. Predigestion, high performing samples, and potential contamination**

389 Interpretation of the effect of predigestion on reducing exogenous DNA content and
390 increasing sequencing efficiency is limited by the small sample size for which we sequenced
391 replicate predigested and control samples. The lack of clear signal of predigestion effect in DNA
392 yield and size is unsurprising given the variation across all samples (Figure 2). Moreover, the
393 lack of any potential signal is unsurprising given that of the eight samples included as replicates
394 to evaluate predigestion, three were exceptions to the general trends identified by the larger
395 study. Both skin clips from thrush 83114 were among the few skin clip samples that performed
396 uncharacteristically better than all other samples and the control skin clip replicate from robin
397 from 162188 resulted in the low endogenous DNA content of all libraries (Table 1) indicating
398 high levels of exogenous DNA or contamination. Notably, the predigested skin clip replicate
399 sample from robin 162188 did not show signs of contamination suggesting that predigestion may
400 have reduced exogenous DNA in only two minutes of predigestion time. In contrast, the skin clip

401 from thrush specimen 83109 was one of four samples with the shortest, one-minute predigestion
402 and also showed a clearer signal of contamination based on low endogenous DNA content and a
403 larger genetic distance from the reference than other samples (Table 1, Figure S4). Finally, it is
404 likely that predigestion reduced total DNA yield, though enough DNA remained for all 20
405 samples to prepare three successfully sequenced libraries. Altogether we suggest this preliminary
406 investigation is a promising avenue to maximize endogenous hDNA from museum bird
407 specimens for WGS and warrants further research.

408 The primary source of the larger variance in most metrics for skin clips were two
409 specimens for which the skin clips not only outperformed the corresponding toepad from the
410 same specimen but all other samples. Robin 66823 and thrush 83114 returned the first and second
411 largest DNA yield, DNA size, endogenous DNA content, average read length, and highest
412 sequencing efficiency. Notably, thrush 83114 was one of the two specimens included in the
413 predigestion study, and both the predigested and non-predigested skin clips were high performing
414 samples and had consistent values across metrics. There are multiple explanations for why the
415 samples outperformed all others, the first being contamination. However, neither of these samples
416 show clear signs of contamination like the lower endogenous DNA content or large genetic
417 distance from the reference genome mentioned for the skin clip from thrush 83109. The only
418 explanation of contamination we consider plausible is contamination by modern DNA from the
419 same or a closely related species, perhaps from a more recently collected specimen in the same
420 drawer. This possibility highlights the need for stringent sampling procedures during sample
421 collection from museum specimens for hDNA purposes. Importantly, a population genomics
422 study involving deeper sequencing of these samples would allow assembly of mitochondrial
423 genomes that would enable identification of multiple individuals within one sequencing library.

424 Another possible explanation for the higher performance of these skin clips is that these
425 specimens received different treatments at the time of collection than the other specimens in the
426 study. At the time of collection it was common practice to treat bird (and mammal) skins with
427 arsenic-containing solutions for tanning as well as protection from pests (Marte, Péquignot, &
428 Von Endt, 2006), and arsenic has been demonstrated as a DNA polymerase inhibitor (Töpfer et
429 al., 2011). It is possible that the specimens with high performing skin clips were accidentally
430 skipped in some treatment that ultimately promoted DNA damage in the other skins. The last
431 and, in our opinion, most likely possibility is that this variation represents real variation in DNA
432 quality between specimens. Such large variations are not uncommon when working with hDNA
433 (e.g. McDonough et al., 2018) and ancient DNA (e.g. Wales et al., 2015) and highlights the value
434 of identifying methods and DNA sources that can consistently return an expected amount of
435 WGS data like we have found for toepads and the IDT ssDNA, single-tube method.

436

437 **5. Conclusion**

438 We have shown that for 100-year old museum bird study skin specimens, of those
439 combinations we tested, the combination of toepads and ssDNA library preparation, in this case
440 the IDT xGen™ ssDNA & Low-Input DNA Library Prep Kit, provide the best WGS data. Our
441 results regarding toepads, in combination with previous studies of endogenous DNA content in
442 other taxa, can be reasonably extended beyond birds to suggest that keratinous sources of hDNA
443 may be the best source for WGS and should motivate additional investigations of this hypothesis.
444 We also have shown that when comparing WGS from ssDNA and dsDNA methods, ssDNA
445 methods provide a larger increase in sequencing efficiency than endogenous DNA content,
446 suggesting that they successfully convert more hDNA molecules into sequenceable library

447 molecules and likely lead to more complex libraries better suited for WGS at the depth required
448 for population genomic studies. Further study of the impact of library preparation method on
449 sequencing efficiency that controls for variation among specimens and also evaluates the role of
450 age of the specimen is necessary to identify the threshold at which an ssDNA method is or is not
451 warranted. Also, it may be worthwhile to attempt to further optimize SRSLY cleanups to
452 minimize bias against converting larger fragment hDNA molecules into library molecules as
453 SRSLY is currently ~89% less expensive per reaction than the IDT method. Finally, our
454 inclusion of a predigestion step to reduce external exogenous DNA did not yield straightforward
455 results, though it did provide some evidence that it limited contamination in one of four samples
456 for which we made a direct comparison. Importantly we showed that a brief (less than 15
457 minute), gentle (37C° incubation) predigestion step does not preclude successful library
458 construction, and thus we will cautiously include this step in our own protocols moving forward.
459 Altogether this study identifies how to maximize WGS data collected from 100-year old bird
460 specimens and provides some general insights on how to increase the quality and quantity of
461 WGS data recovered from hDNA of museum specimens overall.

462

463 **Acknowledgments**

464 This work was supported by NSF Grant No. 1953796 to JDM and BDM. We would like to thank
465 Dr. Manaasa Raghavan for providing access to the ancient DNA facility at the University of
466 Chicago and the Raghavan Genoscape Lab, especially Dr. Constanza de la Fuentes, for
467 facilitating our pre-PCR lab work. Mohamed Fokar at the TTU Center for Biotechnology &
468 Genomics provided sequencing support. The TTU Center for Biotechnology & Genomics
469 acquisition of the NovaSeq6000 was supported by NIH grant 1S10OD025115-01. We

470 acknowledge the High Performance Computing Center (HPCC) at Texas Tech University
471 (<http://www.hpcc.ttu.edu>) and the Pritzker DNA Lab at Field Museum of Natural History for
472 providing computational and molecular resources, respectively, that have contributed to the
473 research results reported within this paper.

474

475 **Conflict of interest statement**

476 IDT has been a corporate sponsor of the Field Museum of Natural History as recently as 2020,
477 but no funds from IDT were used to directly support the research that is the subject of the
478 publication.

479

480 **References**

481 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models
482 using lme4. *Journal of Statistical Software*, 67(1), 1-48. doi:10.18637/jss.v067.i01
483 Bengtsson, C. F., Olsen, M. E., Brandt, L. Ø., Bertelsen, M. F., Willerslev, E., Tobin, D. J., . . .
484 Gilbert, M. T. P. (2012). DNA from keratinous tissue. Part I: Hair and nail. *Annals of
485 Anatomy*, 194(1), 17-25. doi:10.1016/j.aanat.2011.03.013
486 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and
487 Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society: Series B
488 (Methodological)*, 57(1), 289-300. doi:10.1111/j.2517-6161.1995.tb02031.x
489 Bi, K., Linderth, T., Vanderpool, D., Good, J. M., Nielsen, R., & Moritz, C. (2013). Unlocking
490 the vault: next-generation museum population genomics. *Molecular Ecology*, 22(24),
491 6018-6032. doi:10.1111/mec.12516
492 Billerman, S. M., & Walsh, J. (2019). Historical DNA as a tool to address key questions in avian
493 biology and evolution: a review of methods, challenges, applications, and future
494 directions. *Molecular Ecology Resources*, 19(5), 1115-1130. doi:10.1111/1755-
495 0998.13066
496 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
497 sequence data. *Bioinformatics*, 30(15), 2114-2120. doi:doi:10.1093/bioinformatics/btu170
498 Burrell, A. S., Disotell, T. R., & Bergey, C. M. (2015). The use of museum specimens with high-
499 throughput DNA sequencers. *Journal of Human Evolution*, 79, 35-44.
500 doi:10.1016/j.jhevol.2014.10.015
501 Carøe, C., Gopalakrishnan, S., Vinner, L., Mak, S. S. T., Sinding, M. H. S., Samaniego, J. A., . . .
502 Gilbert, M. T. P. (2018). Single-tube library preparation for degraded DNA. *Methods in
503 Ecology and Evolution*, 9(2), 410-419. doi:10.1111/2041-210X.12871

504 Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., . . . Li, H. (2021).
505 Twelve years of SAMtools and BCFtools. *GigaScience*, 10(2).
506 doi:10.1093/gigascience/giab008

507 Fulton, T. L., & Shapiro, B. (2019). Setting up an Ancient DNA Laboratory. In B. Shapiro, A.
508 Barlow, P. D. Heintzman, M. Hofreiter, J. L. A. Pajmans, & A. E. R. Soares (Eds.),
509 Ancient DNA: Methods and Protocols. Methods in Molecular Biology (Vol. 1963, pp. 1-
510 15). doi:10.1007/978-1-4939-9176-1_1

511 Gansauge, M.-T., Gerber, T., Glocke, I., Korlević, P., Lippik, L., Nagel, S., . . . Meyer, M.
512 (2017). Single-stranded DNA library preparation from highly degraded DNA using T4
513 DNA ligase. *Nucleic Acids Research*, 45(10), e79. doi:10.1093/nar/gkx033

514 Gansauge, M.-T., & Meyer, M. (2013). Single-stranded DNA library preparation for the
515 sequencing of ancient or damaged DNA. *Nature Protocols*, 8(4), 737-748.
516 doi:10.1038/nprot.2013.038

517 Ginolhac, A., Rasmussen, M., Gilbert, M. T. P., Willerslev, E., & Orlando, L. (2011).
518 mapDamage: testing for damage patterns in ancient DNA sequences. *Bioinformatics*,
519 27(15), 2153-2155. doi:10.1093/bioinformatics/btr347

520 Glenn, T. C., Nilsen, R. A., Kieran, T. J., Sanders, J. G., Bayona-Vásquez, N. J., Finger, J. W., . . .
521 Faircloth, B. C. (2019). Adapterama I: universal stubs and primers for 384 unique dual-
522 indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). *PeerJ*, 7,
523 e7755. doi:10.7717/peerj.7755

524 Habel, J. C., Husemann, M., Finger, A., Danley, P. D., & Zachos, F. E. (2014). The relevance of
525 time series in molecular ecology and conservation biology. *Biological Reviews*, 89(2),
526 484-492. doi:10.1111/brv.12068

527 Hahn, E. E., Alexander, M. R., Grealy, A., Stiller, J., Gardiner, D. M., & Holleley, C. E. (2022).
528 Unlocking inaccessible historical genomes preserved in formalin. *Molecular Ecology
529 Resources*, 22(6), 2130-2147. doi:10.1111/1755-0998.13505

530 Hawkins, M. T. R., Flores, M. F. C., McGowen, M., & Hinckley, A. (2022). A comparative
531 analysis of extraction protocol performance on degraded mammalian museum specimens.
532 *Frontiers in Ecology and Evolution*, 10, 984056. doi:10.3389/fevo.2022.984056

533 Henneberger, K., Barlow, A., & Pajmans, J. L. A. (2019). Double-Stranded Library Preparation
534 for Ancient and Other Degraded Samples. In B. Shapiro, A. Barlow, P. D. Heintzman, M.
535 Hofreiter, J. L. A. Pajmans, & A. E. R. Soares (Eds.), Ancient DNA: Methods and
536 Protocols. Methods in Molecular Biology (Vol. 1963, pp. 65-73). New York, NY:
537 Springer New York. doi:10.1007/978-1-4939-9176-1_8

538 Irestedt, M., Thörn, F., Müller, I. A., Jónsson, K. A., Ericson, P. G. P., & Blom, M. P. K. (2022).
539 A guide to avian museomics: Insights gained from resequencing hundreds of avian study
540 skins. *Molecular Ecology Resources*. doi:10.1111/1755-0998.13660

541 Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F., & Orlando, L. (2013).
542 mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage
543 parameters. *Bioinformatics*, 29(13), 1682-1684. doi:10.1093/bioinformatics/btt193

544 Kapp, J. D., Green, R. E., & Shapiro, B. (2021). A fast and efficient single-stranded genomic
545 library preparation method optimized for ancient DNA. *Journal of Heredity*, 112(3), 241-
546 249. doi:10.1093/jhered/esab012

547 Kassambara, A. (2021). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. In: R
548 package version 0.7.0. <https://CRAN.R-project.org/package=rstatix>.

549 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
550 *arXiv: Quantitative Biology*, 1303.3997. doi:arXiv:1303.3997

551 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Subgroup, G. P. D. P.
552 (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16),
553 2078-2079. doi:10.1093/bioinformatics/btp352

554 Linck, E. B., Hanna, Z. R., Sellas, A., & Dumbacher, J. P. (2017). Evaluating hybridization
555 capture with RAD probes as a tool for museum genomics with historical bird specimens.
556 *Ecology and Evolution*, 7(13), 4755-4767. doi:10.1002/ece3.3065

557 Lou, R. N., Jacobs, A., Wilder, A. P., & Therkildsen, N. O. (2021). A beginner's guide to low-
558 coverage whole genome sequencing for population genomics. *Molecular Ecology*, 30(23),
559 5966-5993. doi:10.1111/mec.16077

560 Marte, F., Péquignot, A., & Von Endt, D. W. (2006). *Arsenic in taxidermy collections: history,*
561 *detection, and management*. Paper presented at the Collection Forum.

562 McCormack, J. E., Tsai, W. L., & Faircloth, B. C. (2016). Sequence capture of ultraconserved
563 elements from bird museum specimens. *Molecular Ecology Resources*, 16(5), 1189-1203.

564 McDonough, M. M., Parker, L. D., McInerney, N. R., Campana, M. G., & Maldonado, J. E.
565 (2018). Performance of commonly requested destructive museum samples for mammalian
566 genomic studies. *Journal of Mammalogy*, 99(4), 789-802. doi:10.1093/jmammal/gyy080

567 Mundy, N. I., Unitt, P., & Woodruff, D. S. (1997). Skin from feet of museum specimens as a
568 non-destructive source of DNA for avian genotyping. *The Auk*, 114(1), 126-129.

569 Pacheco, C., Lobo, D., Silva, P., Álvares, F., García, E. J., Castro, D., . . . Godinho, R. (2022).
570 Assessing the performance of historical skins and bones for museomics using wolf
571 specimens as a case study. *Frontiers in Ecology and Evolution*, 10, 970249.
572 doi:10.3389/fevo.2022.970249

573 Rohland, N., & Reich, D. (2012). Cost-effective, high-throughput DNA sequencing libraries for
574 multiplexed target capture. *Genome Research*, 22(5), 939-946.
575 doi:10.1101/gr.128124.111

576 Settlecowski, A., E., Marks, B. D., & Manthey, J. D. (2022). WGS of historical avian museum
577 specimens shotgun sequencing data. National Center for Biotechnology Information
578 Sequence Read Archive (SRA). TBD

579 Sproul, J. S., & Maddison, D. R. (2017). Sequencing historical specimens: successful preparation
580 of small specimens with low amounts of degraded DNA. *Molecular Ecology Resources*,
581 17(6), 1183-1201. doi:10.1111/1755-0998.12660

582 Straube, N., Lyra, M. L., Pajjmans, J. L. A., Preick, M., Basler, N., Penner, J., . . . Hofreiter, M.
583 (2021). Successful application of ancient DNA extraction and library construction
584 protocols to museum wet collection specimens. *Molecular Ecology Resources*, 21(7),
585 2299-2315. doi:10.1111/1755-0998.13433

586 Team, R. C. (2021). R: A language and environment for statistical computing. In. R Foundation
587 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

588 Töpfer, T., Gamauf, A., & Haring, E. (2011). Utility of arsenic-treated bird skins for DNA
589 extraction. *BMC research notes*, 4(1), 197. doi:10.1186/1756-0500-4-197

590 Troll, C. J., Kapp, J., Rao, V., Harkins, K. M., Cole, C., Naughton, C., . . . Green, R. E. (2019). A
591 ligation-based single-stranded library preparation method to analyze cell-free DNA and
592 synthetic oligos. *Bmc Genomics*, 20(1). doi:10.1186/s12864-019-6355-0

593 Tsai, W. L. E., Schedl, M. E., Maley, J. M., & McCormack, J. E. (2020). More than skin and
594 bones: Comparing extraction methods and alternative sources of DNA from avian
595 museum specimens. *Molecular Ecology Resources*, 20(5), 1220-1227. doi:10.1111/1755-
596 0998.13077

597 van der Valk, T., Díez-del-Molino, D., Marques-Bonet, T., Guschanski, K., & Dalén, L. (2019).
598 Historical Genomes Reveal the Genomic Consequences of Recent Population Decline in
599 Eastern Gorillas. *Current Biology*, 29(1), 165-170.e166.
600 doi:<https://doi.org/10.1016/j.cub.2018.11.055>

601 Wales, N., Carøe, C., Sandoval-Velasco, M., Gamba, C., Barnett, R., Samaniego, J. A., . . .
602 Gilbert, M. T. P. (2015). New insights on single-stranded versus double-stranded DNA
603 library preparation for ancient DNA. *BioTechniques*, 59(6), 368-371.
604 doi:10.2144/000114364

605 Wandeler, P., Hoeck, P. E., & Keller, L. F. (2007). Back to the future: museum specimens in
606 population genetics. *Trends in Ecology & Evolution*, 22(12), 634-642.
607 doi:10.1016/j.tree.2007.08.017

608 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., . . . Yutani,
609 H. (2019). Welcome to the tidyverse. *Journal of open source software*, 4(43), 01686.
610 doi:10.21105/joss.01686

611 Wu, M. Y., Lau, C. J., Ng, E. Y. X., Baveja, P., Gwee, C. Y., Sadanandan, K., . . . Rheindt, F. E.
612 (2022). Genomes from historic DNA unveil massive hidden extinction and terminal
613 endangerment in a tropical Asian songbird radiation. *Molecular Biology and Evolution*.
614 doi:10.1093/molbev/msac189

615 Zacho, C. M., Bager, M. A., Margaryan, A., Gravlund, P., Galatius, A., Rasmussen, A. R., &
616 Allentoft, M. E. (2021). Uncovering the genomic and metagenomic research potential in
617 old ethanol-preserved snakes. *PLOS ONE*, 16(8), e0256353.
618 doi:10.1371/journal.pone.0256353

619

620 **Data Accessibility and Benefit-Sharing**

621 Raw sequence reads will be deposited in NCBI Sequence Read Archive (SRA) (Settlecowski et
622 al. 2022). Code used in data analysis is available at: github.com/amiesett/WGS-hDNA-birds.
623 Benefit sharing: We are sharing all research benefits of this project by providing raw data,
624 bioinformatic scripts, and results in public databases. No monetary benefits are expected from
625 these research results.

626

627 **Author Contributions**

628 All authors contributed to project design and manuscript completion. JDM and BDM acquired
629 funding. AES performed lab work and data analysis, with support from JDM, and wrote the first
630 draft of the manuscript.

Table 1. Summary of extracted DNA and sequencing results for each sample.

Species	Sample	Post-extraction		Post-repair		Method	Type	Raw reads (millions)	Clean reads (millions)	Mapped reads (millions)	Mean read length	Dist.to ref.	Endog. DNA content	Seq. eff.
		Yield (ng/mg)	Mean DNA size (bp)	Yield (ng/mg)	Mean DNA size (bp)									
<i>T. abyssinicus</i>	83107					IDT	skin	10.54	3.38	2.96	71.99	0.018	0.851	0.193
<i>T. abyssinicus</i>	83107	400.03	57.36	136.10	68.02	KAPA	skin	60.29	15.17	12.45	59.75	0.014	0.820	0.119
<i>T. abyssinicus</i>	83107					SRSLY	skin	12.85	5.23	4.64	75.14	0.015	0.822	0.267
<i>T. abyssinicus</i>	83107					IDT	toepad	12.62	5.51	5.12	97.84	0.017	0.900	0.382
<i>T. abyssinicus</i>	83107	698.97	65.75	332.89	83.90	KAPA	toepad	85.06	28.05	25.05	78.48	0.012	0.889	0.224
<i>T. abyssinicus</i>	83107					SRSLY	toepad	8.81	3.36	2.89	67.02	0.017	0.853	0.213
<i>T. abyssinicus</i>	83109					IDT	skin	11.26	3.29	1.69	62.71	0.035	0.480	0.086
<i>T. abyssinicus</i>	83109	376.78	57.93	73.28	61.74	KAPA	skin	50.69	12.09	5.77	53.49	0.027	0.477	0.057
<i>T. abyssinicus</i>	83109					SRSLY	skin	10.08	3.74	2.13	65.56	0.030	0.519	0.119
<i>T. abyssinicus</i>	83109					IDT	toepad	10.95	4.56	4.18	88.02	0.018	0.896	0.323
<i>T. abyssinicus</i>	83109	858.85	66.68	338.13	85.08	KAPA	toepad	63.05	21.06	18.86	79.73	0.013	0.890	0.232
<i>T. abyssinicus</i>	83109					SRSLY	toepad	9.29	3.46	2.97	66.34	0.017	0.853	0.206
<i>T. abyssinicus</i>	83114					IDT	skin	46.55	32.78	30.90	100.17	0.009	0.916	0.640
<i>T. abyssinicus</i>	83114	1350.36	78.71	576.64	218.79	KAPA	skin	32.03	15.21	14.27	109.38	0.013	0.919	0.472
<i>T. abyssinicus</i>	83114					SRSLY	skin	9.56	5.06	4.69	104.24	0.017	0.903	0.503
<i>T. abyssinicus</i>	83114					IDT	toepad	24.48	10.02	8.80	89.44	0.016	0.856	0.309
<i>T. abyssinicus</i>	83114	800.00	53.96	55.17	98.74	KAPA	toepad	45.38	15.44	13.93	83.94	0.015	0.889	0.250
<i>T. abyssinicus</i>	83114					SRSLY	toepad	7.62	3.34	3.01	85.32	0.018	0.874	0.332
<i>T. abyssinicus</i>	83114 [†]					IDT	skin	42.34	28.30	26.73	101.24	0.009	0.917	0.615
<i>T. abyssinicus</i>	83114 [†]	4254.55	96.90	1872.73	211.98	KAPA	skin	34.26	15.74	14.75	107.05	0.013	0.919	0.447
<i>T. abyssinicus</i>	83114 [†]					SRSLY	skin	9.35	4.80	4.44	101.67	0.017	0.902	0.474
<i>T. abyssinicus</i>	83114 [†]					IDT	toepad	28.09	11.70	10.77	99.56	0.015	0.891	0.368
<i>T. abyssinicus</i>	83114 [†]	1901.96	56.07	202.94	107.53	KAPA	toepad	62.51	22.23	20.22	84.52	0.013	0.899	0.266
<i>T. abyssinicus</i>	83114 [†]					SRSLY	toepad	14.23	6.31	5.75	85.21	0.016	0.876	0.344

Species	Sample	Post-extraction		Post-repair		Method	Type	Raw reads (millions)	Clean reads (millions)	Mapped reads (millions)	Mean read length	Dist.to ref.	Endog. DNA content	Seq. eff.
		Yield (ng/mg)	Mean DNA size (bp)	Yield (ng/mg)	Mean DNA size (bp)									
<i>T. abyssinicus</i>	83115					IDT	skin	14.52	4.28	3.80	78.74	0.017	0.858	0.197
<i>T. abyssinicus</i>	83115	942.98	56.71	526.94	69.01	KAPA	skin	80.02	19.29	16.20	59.36	0.014	0.843	0.117
<i>T. abyssinicus</i>	83115					SRSLY	skin	11.55	3.30	2.65	54.80	0.015	0.803	0.120
<i>T. abyssinicus</i>	83115					IDT	toepad	43.02	17.60	16.22	94.73	0.013	0.893	0.345
<i>T. abyssinicus</i>	83115	564.00	59.43	217.47	83.13	KAPA	toepad	14.25	4.92	4.37	78.08	0.018	0.881	0.232
<i>T. abyssinicus</i>	83115					SRSLY	toepad	12.70	5.55	5.02	81.83	0.015	0.862	0.324
<i>T. migratorius</i>	162188					IDT	skin	15.77	4.77	3.97	60.97	0.018	0.822	0.146
<i>T. migratorius</i>	162188	375.19	52.58	597.41	58.71	KAPA	skin	2.14	0.74	0.60	60.52	0.018	0.803	0.162
<i>T. migratorius</i>	162188					SRSLY	skin	9.77	3.52	2.94	61.09	0.018	0.823	0.176
<i>T. migratorius</i>	162188					IDT	toepad	21.99	9.50	8.58	95.19	0.016	0.879	0.354
<i>T. migratorius</i>	162188	501.80	57.60	436.09	76.70	KAPA	toepad	10.85	4.53	3.96	78.38	0.019	0.866	0.275
<i>T. migratorius</i>	162188					SRSLY	toepad	8.36	3.60	3.15	76.19	0.019	0.868	0.279
<i>T. migratorius</i>	162188 [†]					IDT	skin	6.56	4.11	0.86	80.05	0.020	0.174	0.100
<i>T. migratorius</i>	162188 [†]	173.57	54.16	47.37	62.90	KAPA	skin	14.98	6.38	2.90	59.05	0.018	0.334	0.110
<i>T. migratorius</i>	162188 [†]					SRSLY	skin	8.85	3.79	2.07	63.26	0.017	0.415	0.135
<i>T. migratorius</i>	162188 [†]					IDT	toepad	9.14	3.95	3.55	89.65	0.019	0.875	0.333
<i>T. migratorius</i>	162188 [†]	231.03	59.13	98.59	77.89	KAPA	toepad	31.17	12.31	10.86	78.33	0.017	0.873	0.263
<i>T. migratorius</i>	162188 [†]					SRSLY	toepad	10.20	4.42	3.92	78.11	0.019	0.870	0.293
<i>T. migratorius</i>	175413					IDT	skin	8.18	2.72	2.31	78.30	0.019	0.807	0.208
<i>T. migratorius</i>	175413	197.25	50.97	59.33	62.37	KAPA	skin	15.67	4.99	3.86	60.91	0.018	0.770	0.144
<i>T. migratorius</i>	175413					SRSLY	skin	11.30	4.57	3.84	70.22	0.017	0.792	0.227
<i>T. migratorius</i>	175413					IDT	toepad	12.34	6.03	5.66	100.66	0.017	0.894	0.442
<i>T. migratorius</i>	175413	501.09	56.22	219.23	86.23	KAPA	toepad	32.87	13.07	11.71	81.68	0.016	0.882	0.280
<i>T. migratorius</i>	175413					SRSLY	toepad	7.51	3.53	3.24	86.20	0.017	0.868	0.372

Species	Sample	Post-extraction		Post-repair		Method	Type	Raw reads (millions)	Clean reads (millions)	Mapped reads (millions)	Mean read length	Dist.to ref.	Endog. DNA content	Seq. eff.
		Yield (ng/mg)	Mean DNA size (bp)	Yield (ng/mg)	Mean DNA size (bp)									
<i>T. migratorius</i>	175421					IDT	skin	6.68	2.31	1.97	64.10	0.019	0.840	0.180
<i>T. migratorius</i>	175421	463.63	52.32	111.02	62.95	KAPA	skin	56.18	17.57	14.70	63.39	0.015	0.833	0.159
<i>T. migratorius</i>	175421					SRSLY	skin	14.82	5.83	5.05	67.82	0.017	0.838	0.222
<i>T. migratorius</i>	175421					IDT	toepad	21.44	9.64	8.98	98.88	0.016	0.891	0.398
<i>T. migratorius</i>	175421	838.10	60.18	234.00	82.44	KAPA	toepad	51.02	19.65	17.51	78.30	0.015	0.879	0.259
<i>T. migratorius</i>	175421					SRSLY	toepad	7.29	3.33	3.03	83.03	0.018	0.868	0.343
<i>T. migratorius</i>	66823					IDT	skin	60.98	51.78	49.16	95.45	0.007	0.920	0.736
<i>T. migratorius</i>	66823	1150.86	387.24	950.45	1923.43	KAPA	skin	35.56	24.12	22.91	106.55	0.010	0.921	0.659
<i>T. migratorius</i>	66823					SRSLY	skin	9.88	6.23	5.87	105.58	0.017	0.917	0.605
<i>T. migratorius</i>	66823					IDT	toepad	5.13	2.24	2.03	85.15	0.020	0.885	0.321
<i>T. migratorius</i>	66823	223.70	53.26	47.36	75.28	KAPA	toepad	50.77	19.75	17.26	73.40	0.015	0.871	0.241
<i>T. migratorius</i>	66823					SRSLY	toepad	11.86	4.31	3.63	61.16	0.018	0.855	0.182

[†]Extraction replicate not subjected to predigestion

632
633
634

Table 2. Summary (median, mean, standard deviation) of DNA yield and mean DNA size for predigested toepads and skin clips.

Source	Yield (ng/mg)				Mean size (bp)			
	Post-extraction		Post-repair		Post-extraction		Post-repair	
	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)
toepad (n=8)	631.49	623.314 (217.606)	226.62	235.042 (135.626)	58.52	59.136 (4.985)	83.51	83.937 (7.132)
skin (n=8)	431.83	657.135 (427.479)	331.52	378.896 (329.864)	57.04	99.227 (116.707)	65.49	315.628 (651.918)

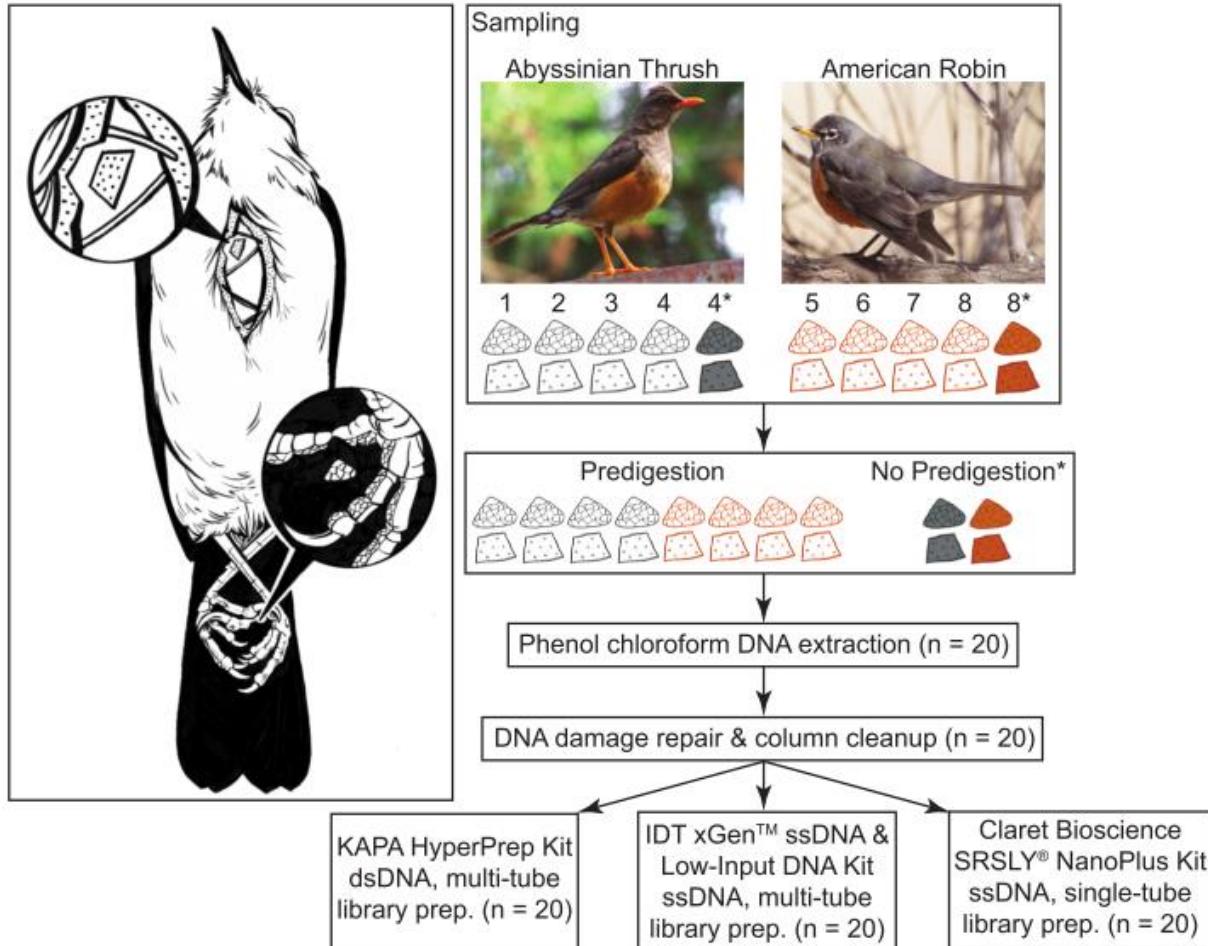

635

Table 3. Summary of the statistical analyses of endogenous DNA content, sequencing efficiency, and mean read length, and their results. All the p-values presented for t-tests are corrected for multiple testing via the Benjamini and Hochberg (1995) method.

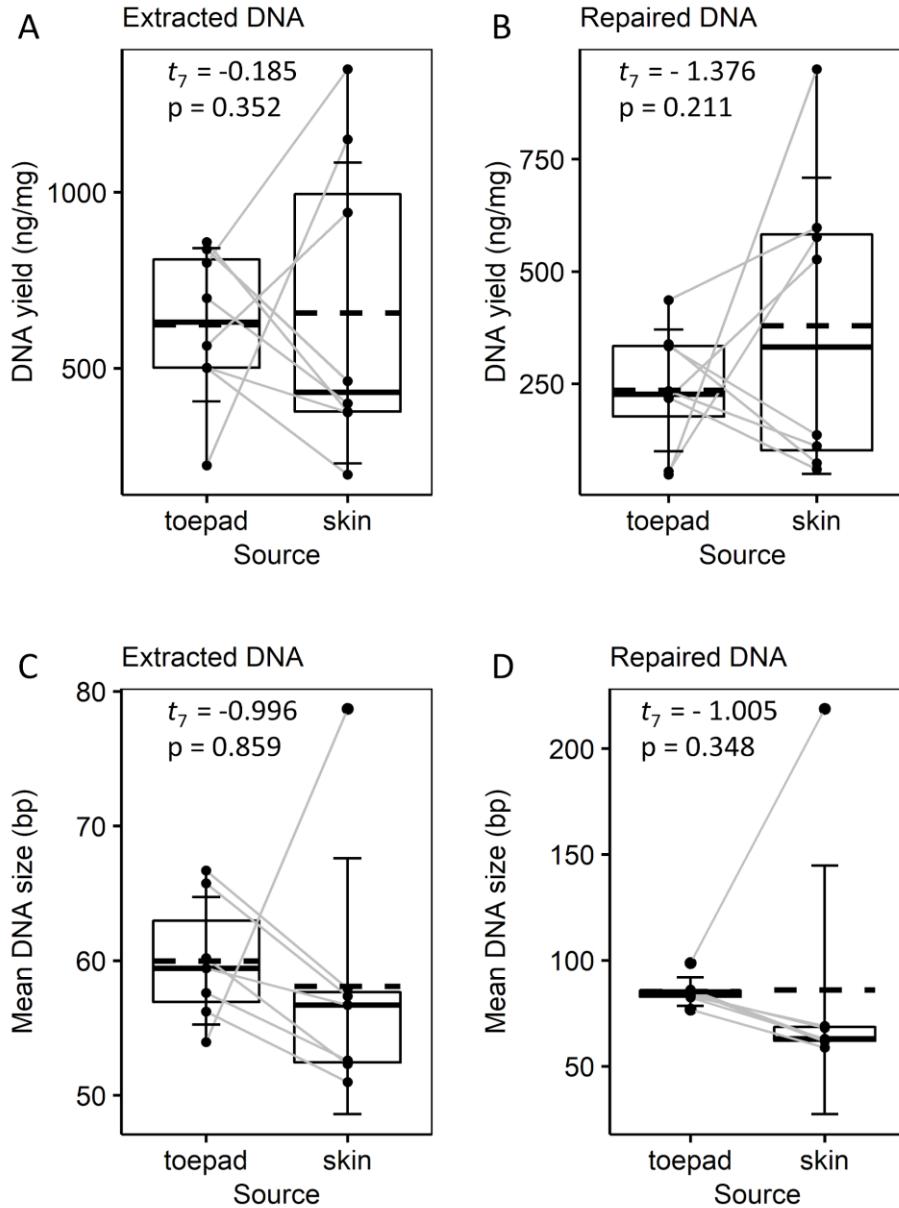

Response variable	Test	DF	Test-statistic	p-value
Endogenous DNA content	ANOVA - source	1,7	0.066	0.805
	ANOVA - method	2,14	6.241	0.012
	ANOVA - source:method	2,14	0.739	0.496
	T-test - IDT vs. KAPA	15	6.631	< 0.001
	T-test - IDT vs. SRSLY	15	2.476	0.026
	T-test - KAPA vs. SRSLY	15	-2.570	0.026
Sequencing efficiency	ANOVA - source	1,7	0.066	0.805
	ANOVA - method	2,14	6.241	0.012
	ANOVA - source:method	2,14	0.739	0.496
	T-test - IDT vs. KAPA	15	2.492	0.037
	T-test - IDT vs. SRSLY	15	2.765	0.037
	T-test - KAPA vs. SRSLY	15	1.283	0.219
Mean read length (bp)	ANOVA - source	1,7	1.333	0.286
	ANOVA - method	2,14	14.181	< 0.001
	ANOVA - source:method	2,14	6.778	0.009
	T-test - IDT vs. KAPA	15	3.879	0.004
	T-test - IDT vs. SRSLY	15	3.001	0.013
	T-test - KAPA vs. SRSLY	15	-0.184	0.856
Mean read length (bp) - IDT	ANOVA - source	1,7	7.179	0.096
Mean read length (bp) - KAPA	ANOVA - source	1,7	0.818	1.0000
Mean read length (bp) - SRSLY	ANOVA - source	1,7	0.002	1.0000

Table 4. Summary (median, mean, standard deviation) of sequencing metrics for predigested toepads and skin clips.

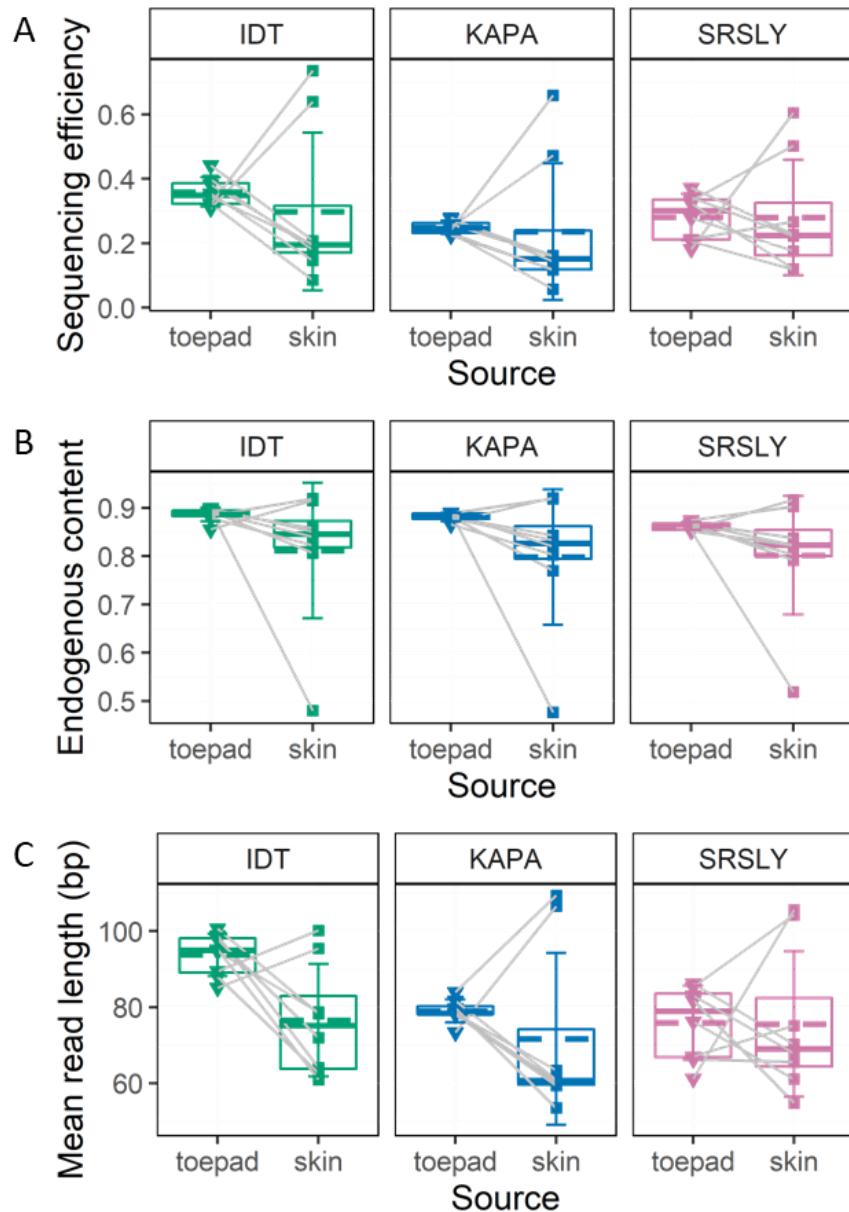

Source	Mean read length (bp)				Endogenous DNA content				Sequencing efficiency									
	IDT		KAPA		SRSLY		IDT		KAPA		SRSLY		IDT		KAPA		SRSLY	
	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)	Mdn	M (SD)
toepad (n=8)	94.959	93.74 (5.598)	78.428	78.998 (3.059)	79.005	75.883 (9.771)	0.892	0.887 (0.014)	0.882	0.881 (0.009)	0.865	0.863 (0.008)	0.35	0.359 (0.045)	0.245	0.249 (0.021)	0.302	0.281 (0.072)
skin (n=8)	75.145	76.554 (14.799)	60.717	71.669 (22.587)	69.018	75.557 (19.097)	0.846	0.812 (0.14)	0.827	0.798 (0.14)	0.823	0.802 (0.123)	0.195	0.298 (0.245)	0.151	0.236 (0.212)	0.225	0.28 (0.179)

Figure 1. Study sampling design. The illustration on the left shows where incision-line skin clips and toe pads are sampled from the specimens. The flowchart on the right is an overview of the experimental design and the laboratory procedures. Toe pads and skin clips are depicted as triangular and trapezoidal shapes, respectively. Photographs by JDM and illustrations by L. Nassef.

Figure 2. Source tissue impacts on DNA quantity and quality. For each sample, DNA yield (ng/mg) measured A) following DNA extraction and B) following DNA repair and cleanup is plotted by DNA source (toepad or skin clip). For each sample, mean DNA fragment size (bp) C) following DNA extraction and D) following DNA repair are plotted by DNA source. Samples from robin specimen 66823 are not plotted in C and D because the mean DNA size of its skin clip (Table 1) limits visualization of the variation in the size of the other samples. Gray lines connect toepad and skin clip data points from the same specimen. Summary statistics are also plotted by source: the mean and median are represented by dashed and solid lines, respectively, the upper and lower limits of the boxes represent the 75% and 25% quantiles, and the error bars represent the standard deviation.

Figure 3. Association of sequencing library type and sequence data characteristics. For each library, A) sequencing efficiency, or the proportion of raw bases that uniquely mapped to the reference genome, B), endogenous DNA content, or the proportion of cleaned bases that uniquely mapped to the reference genome, and C) the mean read length (bp) is plotted by DNA source (toepad or skin clip). Gray lines connect toepad and skin clip data points from the same specimen. Summary statistics are also plotted by method and source: the mean and median are represented by dashed and solid lines, respectively, the upper and lower limits of the boxes represent the 75% and 25% quantiles, and the error bars represent the standard deviation.