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Abstract.
Objective: Most existing machine learning models for myoelectric control

require a large amount of data to learn user-specific characteristics of the
electromyographic (EMG) signals, which is burdensome. Our objective is to
develop an approach to enable the calibration of a pre-trained model with minimal
data from a new myoelectric user. Approach: We trained a random forest model
with EMG data from 20 people collected during the performance of multiple
hand grips. To adapt the decision rules for a new user, first, the branches of the
pre-trained decision trees were pruned using the validation data from the new user.
Then new decision trees trained merely with data from the new user were appended
to the pruned pre-trained model. Results: Real-time myoelectric experiments
with 18 participants over two days demonstrated the improved accuracy of the
proposed approach when compared to benchmark user-specific random forest and
the linear discriminant analysis models. Furthermore, the random forest model
that was calibrated on day one for a new participant yielded significantly higher
accuracy on day two, when compared to the benchmark approaches, which reflects
the robustness of the proposed approach. Significance: The proposed model
calibration procedure is completely source-free, that is, once the base model is pre-
trained, no access to the source data from the original 20 people is required. Our
work promotes the use of efficient, explainable, and simple models for myoelectric
control.
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1. Introduction

Many myoelectric control systems use machine learning
to map the electromyographic (EMG) signals [1, 2, 3, 4,
5] to control commands for human-machine interfaces,
e.g. prosthesis [6, 7, 8, 9, 10, 11, 12] and virtual
keyboards [13, 14]. Most modern myoelectric control
machine learning models require a large amount of
data from a user to learn a bespoke and user-specific
map [7, 15, 16]. In real-life settings, machine learning
models that are flexible and require minimal data
from a new user are preferable [17]. Additionally,
such models are expected to be robust in long-term
(multi-day) applications without the need for frequent
re-calibration.

Domain adaptation minimises the distribution
mismatch between training data (source domain) and
testing data (target domain) [18]. In myoelectric control
applications, this technique can be used for a model
to learn extra knowledge from source data collected
from other subjects, so that the demand for data
collection from a new target user is reduced. For
instance, Vidovic et al. [19] employed a covariate shift
adaptation algorithm to align the statistical metrics
(e.g., the mean value and covariance) of source and
target domains. These statistical metrics informed the
training of a linear discriminant analysis (LDA) model.
Wang et al. [20] developed a multi-user myoelectric
control model using discriminative canonical correlation
analysis (CCA) by jointly projecting the feature sets
for source and target domains into a low-dimensional,
uniform-style subspace. Xue et al. [21] integrated
CCA and the optimal transport (OT) mechanism,
termed CCA-OT, to further reduce the distribution
discrepancies between the source and target domains.
Jiang et al. [22] proposed a correlation-based data
weighting (CORW) scheme to measure the level of
feature distribution shift between the target testing user
and each training user and then assign different weights
to data from different training subjects accordingly.
One common disadvantage of the above approaches is
the need to access the data in the source domain. EMG
data contain diverse private and sometimes sensitive
information, e.g., the status of neurological diseases [23]
or personal identity [24]. Therefore, in most practical
cases, the source EMG data should be strictly protected,
due to regulations such as the European General Data
Protection Regulation (GDPR) and user concerns.

Large pre-trained models have proven effective

in many machine learning tasks and shown their
impressively strong generalisation capability, e.g., the
Generative Pre-trained Transformer 4 (GPT-4) [25] and
the segment anything model (SAM) [26] in computer
vision (CV). However, such large pre-trained models are
mainly built on differentiable and parameterised deep
neural networks. The pre-training of such large models
with back-propagation relies heavily on extremely
large datasets and significant computing infrastructure.
Despite their excellent performance, such pre-trained
models have a highly complex architecture and are
used as a black-box module. In myoelectric control
applications, large pre-trained models are not available
up to date in the academic and clinical sectors, mainly
because collecting an extremely large and labelled
dataset is expensive and time-consuming. Additionally,
for most applications of myoelectric control, the model
should be implemented in a portable and wearable
system with limited computing and battery resources.
Moreover, the employed model is expected to be
explainable [27, 28, 29]. Therefore, we asked: “Is it
possible to create a pre-trained myoelectric control
model that can be tuned using a small dataset for
a new user, is explainable, and can classify the EMG
signals in real-time with limited computing resources,
e.g., memory?”

Standard, off-the-shelf random forest (RF) models
have not been generally viewed as the most powerful
model for myoelectric control [30]. However, RF models
have proved effective in dealing with problems with
small sample sizes [31]. They can capture complex
nonlinear relations between samples. They exhibit
robustness on outliers and they can be easily parallelised
for computational efficiency [32, 33]. Additionally, the
decision tree model, which is the base learner in RF,
is recognised as one of the most explainable models
[34, 29]. The above merits motivated us to explore
new possibilities with RF models and its potentials for
myoelectric control applications.

We propose a myoelectric control model with a user-
generic RF model that is pre-trained using data from
20 users. When a new (i.e., 21st) user is introduced,
we use new EMG data with only 1s signal duration for
each gesture to fine-tune the pre-trained RF model,
upon a series of tree pruning [35], branch grafting
[36, 37], and tree appending procedures. We show that
our approach improves model accuracy and across-day
generalisability significantly. Crucially, the proposed
model tuning is completely source-free, that is we do not
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need the source data (from the original 20 participants)
to tune the pre-trained model for a new user. Both
offline validations and the real-time implementation
demonstrated the superiority of our method compared
with the standard user-specific RF and the benchmark
LDA models. Overall, the contributions of our work
are summarised below:

1) We provide a transfer learning mechanism
in EMG pattern recognition using simple, easily
parallelisable, computationally efficient, and explainable
RF, which is a practical alternative solution in mobile
applications with limited computation resources.

2) The proposed RF calibration method also
achieves better across-day generalisability compared
with efficient standard LDA and RF models.

3) The proposed RF calibration method is source-
free, satisfying the data privacy regulations in practice.

4) This is also the first attempt in myoelectric
control area to develop one-shot calibration methods on
simple and efficient RF models. The promising results
can inspire more follow-up studies in the new research
track.

2. Methods

2.1. Ethical approval

All subjects signed an informed consent form which was
approved by the local ethics committee at the University
of Edinburgh (reference number: 2019/89177). We
conducted two experiments.

2.2. Experiment 1

Experiment 1 was offline. We collected EMG data from
20 able-bodied subjects (12 males, 8 females, age range:
22–43). Eight electrodes were equally spaced across the
circumference of the forearm, as presented in Figure
1. The EMG data were collected using Delsys Trigno
sensors (Delsys, Inc.), with a sampling rate of 2000
Hz and bandpass filter of 10–500 Hz. Each subject
performed six hand gestures, as presented in Figure
1. For each gesture, 10 repetitions were performed
in 10 successive trials, each six seconds long. In each
trial, subjects were required to mimic an instructed
target hand gesture and then hold the gesture until the
trial ended. Signals recorded in the first two seconds
of each trial were removed to get rid of the transient
period. The EMG signals within the last four seconds
were retained. There was a five-second resting period
between trials. Data from Experiment 1 was used to
pre-train the RF model.

2.3. Experiment 2

Experiment 2 was a real-time myoelectric control
experiment. We recruited 18 new able-bodied subjects

Figure 1: Electrode positions and involved gestures in
our experiment.

(11 males, 7 females, age range: 22–28). Experiment
2 was conducted on two successive days. On the first
day, the experiment consisted of two sections, namely,
calibration and testing. In the calibration section,
subjects were asked to perform each hand gesture only
once in a 2s trial. Each two-second trial afforded the
participants one second to shape their hand so that they
could hold the gesture reliably during the second one-
second period. Only the data during the latter period
was used for model tuning, or training a user-specific
model from scratch (as a benchmark).

The testing section comprised five blocks. In each
block, five repetitions of each gesture were instructed in
a pseudo-randomised way. Subject had two seconds and
five minutes for rest between trials and between blocks,
respectively. On the second day, subjects started the
testing section without any further tuning. Electrodes
were replaced on day 2 according to the electrode
positions marked on day 1.

2.4. Feature Extraction

In both experiments, we used a window of 200 ms,
sliding at 100 ms, for feature extraction. Ten features
were extracted, which described the EMG data from
three complementary aspects. First, the mean absolute
value (MAV), waveform length (WL), zero crossings
(ZC) and slope sign changes (SSC) of the EMG signals,
combined with root mean square (RMS), were used as
energy descriptors [38, 39, 40]. Second, the skewness
[41, 42, 43] of the EMG signals was extracted as a
distribution descriptor. Third, the mean frequency
(MNF), median frequency (MDF), peak frequency
(PKF), and variance of central frequency (VCF) were
extracted as spectrum descriptors [44]. We will
demonstrate the complementary roles of these features
through an ablation experiment in the Results Section.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2023. ; https://doi.org/10.1101/2023.07.21.550033doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.550033
http://creativecommons.org/licenses/by/4.0/


One-Shot Random Forest Model Calibration 4

Algorithm 1 Decision Tree Pruning

Input: Tree,Starget

1: dmax=maxDepth(Tree)
2: dinspect = dmax %inspect the deepest nodes

%Repeat
3: while dinspect > 0 do
4: nodes=findNodes(d = dinspect)
5: parentNodes=findParents(nodes)
6: for each ui ∈ parentNodes do
7: if Error(Prune(Tree, ui),Starget)
8: <Error(Tree,Starget) then
9: Tree =Prune(Tree, ui)

10: else
11: continue
12: end if
13: end for
14: dinspect = dinspect − 1 %inspect shallower nodes
15: end while%Until hinspect = 0
Output: Tree

2.5. The Proposed RF Model

2.5.1. Pre-training the RF model
Data from Experiment 1 was used for pre-training an
RF model. The model had 200 decision trees. A subject-
wise feature normalisation was performed on the pre-
training dataset. Specifically, the extracted features
from each subject were normalised separately to a mean
value of zero and a standard deviation of one to align
the basic statistical metrics of feature distributions from
different subjects. The allocation of pre-training and
testing subjects varies with different validation settings
and will be described later.

2.5.2. Pruning and Grafting Decision Trees
Given a pre-trained RF model, the follow-up calibration
procedure involved three strategies, namely, pruning,
grafting, and appending decision trees, as presented in
Figure 2. Pruning is a widely used strategy to simplify a
model and at the same time improve its generalisability
[45]. Grafting, that is, growing new branches on a leaf
node to further specify the decision rule. Compared to
pruning, grafting has attracted less attention in previous
studies, but both the pruning [35], grafting [46, 37] or
the combination of both [36] have been proven effective
in fine-tuning a decision tree in different application
scenarios. In this work, we applied both strategies and
compared their performances in myoelectric control
applications to provide a comprehensive benchmark
for future research. Either pruning or grafting can
contribute to a satisfactory performance.

For pruning, we applied a bottom-up strategy.
Let’s assume a pre-trained decision tree Tree with
a node ui at depth di, where the depth of the root

Algorithm 2 Decision Tree Grafting

Input: Tree,Starget

1: leafNodes=findLeaves(Tree)
2: for each ui ∈ leafNodes do
3: % find samples falling into each node ui

4: Si=findSampleInNode(Tree, ui,Starget)
5: % get the set of ground truth labels of Si

6: Li=unique(label(Si)) %Li={l1i , . . . , lmi }
7: if length(Li)> 1 then
8: %further purify labels via an additional tree
9: Ssubset = {sk ∈ Starget, if label(sk)∈ Li}

10: TreeGraft=train(Ssubset,label(Ssubset))
11: Tree =Graft(Tree, TreeGraft, ui)

12: else if length(Li)==1 && l1i ̸= lpredicti then
13: %flipping the prediction label of the node ui

14: lpredicti = l1i
15: else
16: continue
17: end if
18: end for
Output: Tree

node is zero and the depth of a leaf node with the
longest decision path is dmax. Using samples from
a target new user (Starget) as the validation dataset,
the error rate of a decision tree was estimated and
denoted as Error(Tree,Starget). When performing the
pruning operation on a node, all its children nodes
(and children of children, if any) were removed from
the tree. All samples falling into the removed children
nodes now fall into their parent nodes, which are the
new leaf nodes. The prediction label of the new leaf
node after decision tree pruning was defined as the
mode of ground truth labels of all validation samples
falling into this node. In our bottom-up strategy, we
first found the parent nodes of the deepest leaf nodes
(denoted as parentNodes = {u1, . . . , ui, . . . , un}) with
their depth equal to dmax. Only if the estimated error
rate decreased after pruning these deepest nodes, the
pruning operation was performed. The same inspection
procedure was repeated on nodes at lower depths until
the root node was inspected. The pseudo-code of our
pruning strategy is presented in Algorithm 1.

As for grafting, given a set of leaf nodes,
leafNodes = {u1, ..., ui, ..., un}, we first constructed
a set of validation samples from the new target
subject falling into each leaf node ui, denoted as
Si = {s1i , . . . , ski , . . . , sKi }. The set of involved ground
truth labels of the sample set Si was defined as Li =
{l1i , . . . , lmi },m ≤ Nclass = 6. The predicted label of a

leaf node ui was defined as lpredicti . If m > 1 (that is,
validation samples with more than one label fell into
a leaf node ui) or m = 1 but l1i ̸= lpredicti , then the
decision rule related to the leaf node ui is not reliable
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Figure 2: Tree grafting, tree pruning, and tree appending for RF model tuning.

and therefore should be fine-tuned. Concretely, the
decision rule related to a leaf node was fine-tuned either
by grafting a new decision tree to the leaf node to
further purify the sample labels (in the case of m > 1),
or by directly flipping the predicted label (in the case

of m = 1 but l1i ̸= lpredicti ). The pseudo-code for our
grafting strategy is presented in Algorithm 2.

The decision tree pruning and grafting are opposite
operations. Performing either operation is the first
step of our model calibration method, and their
performances will be compared in our analyses.

2.5.3. Appending Decision Trees
After performing either pruning or grafting on the pre-
trained model, we appended an additional 200 decision
trees trained merely on data from the new target user.
This constructed an RF model with 400 trees. By
appending new decision trees, the decision rules of the
calibrated RF model consider both the generalised data
distribution from a large number of pre-training users
and the specific data distribution from the new user.

2.6. Baseline Machine Learning Models

Two other machine learning models were implemented
to provide baseline performances. First, a user-specific

LDA model was trained using data from the new target
user. LDA was selected in our work because it is
considered as a gold standard for the state-of-the-art
EMG pattern recognition models [47, 48, 49]. Second,
a user-specific standard RF model was also trained
using data from the new target user. The baseline user-
specific RF model also consisted of 400 decision trees,
the same as the proposed model.

2.7. Validation Methods

For the data collected from 20 subjects in experiment
1, we performed an offline leave-one-subject-out cross-
validation. For each subject, data from the other 19
subjects were allocated into the pre-training dataset
to pre-train an RF model. For the 6 gestures × 10
trials/gesture = 60 trials from the testing subject, only
data in the first trial of each gesture were used to
calibrate the pre-trained model. To simulate the most
challenging validation using minimal calibration data
from the testing subject, only data within a 1s duration
(randomly segmented out of the total 4s valid duration)
of a trial were allocated into the calibration dataset to
fine-tune the pre-trained RF. The choice of using only
1s duration of a trial in the calibration dataset is also
the same as the counterpart in our subsequent online
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Table 1: Data allocation for different methods. In offline validations, leave-one-subject-out cross-validation was
applied, with data from all 20 subjects in experiment 1 used to test all models one by one. In real time experiment,
18 new subjects were used to test all models one by one.

Pre-Training User-Specific Calibration

Number
of

Subjects

Number of
Repetitions
per Gesture
per Subject

Signal
Duration per
Repetition (s)

Number
of

Subjects

Number of
Repetitions
per Gesture
per Subject

Signal
Duration per
Repetition (s)

Offline
Validation

LDA - - - 1 1 1
RF - - - 1 1 1

Graft +
Append

19 10 4 1 1 1

Prune +
Append

19 10 4 1 1 1

Real-Time
Experiment

LDA - - - 1 1 1
RF - - - 1 1 1

Prune +
Append

20 10 4 1 1 1

experiment - experiment 2, where only data within a
1s holding period were available in each calibration
trial. For the other two baseline user-specific RF
and LDA models, the same calibration dataset was
used to train a brand-new user-specific model, and all
other configurations were the same. Overall, in our
offline validations, we compared the performances of
four models, namely, RF calibrated via grafting and
appending decision trees, RF calibrated via pruning and
appending decision trees, standard RF, and standard
LDA.

For our real-time study in experiment 2, an RF
model was first pre-trained using all offline data from all
20 subjects of experiment 1. When a new user started
the experiment on the first day, data in the 1s holding
duration of one trial for each gesture was collected in
the calibration session, and used to calibrate the pre-
trained RF model. Standard user-specific RF and LDA
models were also trained using the same calibration
dataset (1 trial per gesture from the new user). In the
testing part of experiment 2, the three models, namely
RF calibrated via pruning and appending decision
trees, the user-specific RF and the user-specific LDA,
were implemented and gave their three predictions in
each sliding window. Accuracy was evaluated on all
predictions in 10 windows within the 1s holding period
of a testing trial. On the second day of experiment 2,
no model calibration was performed, and the testing
section directly started using the same three models
trained/calibrated on the first day. A summary of data
allocation strategies in both experiments for all models
is presented in Table 1.

Experiment 2 was conducted in an open-loop mode,
that is the participants did not see the outcome of the
decoders. As such any observed differences between

the three decoders is wholly because of the decoding
capacity of the model. The experiment was run on a
laptop (CPU: 11th Gen Intel(R) Core(TM) i5-1145G7
@ 2.60GHz).

2.8. Ablation Experiment

Considering many key components were included in our
method, we performed an ablation experiment with each
component removed from the processing pipeline, to
show the necessity and contribution of each individual
component. These key components are: (1) energy
descriptors, (2) distribution descriptors, (3) spectrum
descriptors, (4) subject-wise feature normalization, (5)
pruned decision trees, and (6) appended decision trees.
Note that when removing pruned decision trees or
appended decision trees, we always keep the same
number of total decision trees, namely 400 trees, by
doubling the other types of decision trees.

2.9. Statistical Analyses

To compare the performances of different models (≥ 3
groups), the Friedman test was first performed. The
Nemenyi post-hoc test, a multi-comparison test to
identify pair-wise group differences, was then applied.
Significant differences were claimed if p < 0.05 was
obtained.

3. Results

3.1. Experiment 1

Results of the first experiment are presented in Figure 3.
RF with pruning and appending strategies and RF with
grafting and appending strategies yielded an accuracy of
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Figure 3: Results in offline validations. Symbol ∗
denotes a significant difference between the two groups.

Figure 4: Results in offline ablation experiments.
Symbol ∗ denotes a significant difference between the
two groups.

88.3% and 88.2%, respectively, both significantly higher
than the outcome of LDA. By definition, pruning leads
to smaller models with fewer parameters. Therefore,
we selected decision tree pruning rather than grafting
in our real-time implementation.

Additionally, considering the final fine-tuned RF
model involves many components, we ran an offline
ablation experiment to examine the effect of removing
each individual component. Results were presented in

Figure 4. Removing each individual component from
the overall framework would lead to lower accuracy,
indicating the necessity of all these components in
the whole framework. Significance was observed when
removing the energy features, pruned decision trees, or
appended decision trees, demonstrating the important
roles of these components.

3.2. Experiment 2

Results of our real-time implementations are presented
in Figure 5. On the first day, RF calibrated with
pruning and appending decision trees achieved the
highest average accuracy of 81.5% but the accuracy
improvement over the standard LDA (75.5%) and
standard RF (77.6%) is not significant. On the second
day, RF calibrated via pruning and appending decision
trees significantly outperformed both the standard LDA
and the standard RF. This results verifies the the
superiority of our method in an inter-day application.

The final pre-trained and then fine-tuned RF model
involves two groups of decision trees, i.e., the pruned
decision trees and the appended decision trees. For the
pruned decision trees, because they were pre-trained
on a large dataset from a large number of subjects,
each decision tree consists of ∼ 925 nodes. For the
appended decision trees trained on a small dataset
from a new subject, each decision tree comprised ∼
15 nodes. Accordingly, the whole model consists of
925×200+15×200 = 188, 000 nodes. Four parameters
were saved in each node, i.e., the index of the left child
(2 bytes), the index of the right child (2 bytes), the
index of the selected feature in a node (1 byte) and the
threshold of the selected feature (2 bytes), with a size
of 7 bytes each node. Therefore, the size of the whole
model is 188,000 nodes × 7 bytes/node = 1.26 MB.
Other memory usage in the whole processing pipeline
is 190.1± 19.2 KB (peak memory).

4. Discussions

We proposed a source-free calibration method for an RF-
based myoelectric control model based on pruning and
appending decision trees, which outperformed standard
LDA and RF models especially in an inter-day study,
as presented in Figure 5. The improved performance
of RF by pruning and appending decision trees can be
explained from two aspects:

• aspect 1: improving the average accuracy of
individual decision trees and

• aspect 2: improving the ambiguity (or, diversity)
among all decision trees,

which are two important factors determining the overall
performance of an ensemble model [50, 51]. In other
words, to achieve an excellent ensemble performance,
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Figure 5: Results in real-time implementation in
experiment 2. Symbol ∗ denotes a statistical
significance.

the base learners should be (1) accurate, and (2)
different. Accordingly, we evaluated the average
accuracy of each individual decision tree and the
distribution of their predictions, presented in Figure
6 and Figure 7, respectively. First, as shown in
Figure 6, by pruning each pre-trained decision tree,
the average accuracy of the pruned decision trees
was significantly higher than the pre-trained decision
trees, demonstrating that the decision tree pruning
operation mainly improves the performance of RF
from the above listed aspect 1. Second, as shown
in Figure 7, the predictions of the pre-trained trees
and pruned trees were similar so their predictions
were distributed near each other. This is due to the
fact that, the pruning operation was performed on
top of each pre-trained tree, so the predictions of
pruned trees are more accurate but also quite similar
as pre-trained trees. However, the predictions of the
appended decision trees were far from the other trees
in Figure 7, demonstrating that the appended decision
trees could provide different complementary information
with the other types of decision trees. The appended
trees improve the ambiguity between all decision trees,
improving the overall performance from the above
listed aspect 2. A high average accuracy and a high
ambiguity of decision trees together improve the overall
performance of the RF model.

We also compared the effectiveness of the grafting
and pruning operations on decision trees. Decision tree
grafting could further specify the decision rules of a pre-
trained decision tree based on the feature distribution
of a new user; so that the new decision rules can be
better adapted to the new user. By using data from

Figure 6: Average accuracy of different decision trees.
Results were obtained from each individual decision tree
without an ensemble. Symbol ∗ denotes a significant
difference between the two groups.
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Figure 7: Visualization of predictions of different
decision trees in a 2-dimensional space via t-
Distributed Stochastic Neighbor Embedding (t-SNE)
[52]. Predictions in this figure were drawn from a
representative subject on the second day. Predictions on
testing samples were used as visualization variables and
all decision trees were used as visualization data points.
Data from other subjects follow a similar pattern. A
single data point represents a decision tree.

a new user as the validation dataset, pruning could
simplify the decision rules. Both grafting and pruning
were effective and did not show significantly different
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performance. We selected decision tree pruning in
our real-time implementation because it led to smaller
models.

All hyper-parameters were tuned and determined
in our offline validations on data collected in experiment
1 and directly used in our real-time implementation
in experiment 2 without additional hyper-parameter
tuning. One important hyper-parameter is the number
of decision trees in the pre-trained RF (200 trees) and
appended RF (200 trees). We selected these values
because further increasing the number of trees did not
contribute to a substantial performance improvement
but reduced the computational efficiency. Another
hyper-parameter is the number of samples to draw
from the pre-training dataset to pre-train each decision
tree. Considering the pre-training dataset from multiple
subjects is relatively large, drawing the same number of
bootstrap samples as the total size of the pre-training
dataset would lead to a large decision tree with over-
complex decision rules. Therefore, in our work, only
7% samples were randomly drawn from the pre-training
dataset via bootstrap to pre-train each decision tree.
For user-specific decision trees, considering the size
of the calibration dataset from the new target user
is small, the number of bootstrap samples to train
each user-specific decision tree was the same as the
size of the calibration dataset. The tuning of model
hyper-parameters in our real-time implementation is
pre-determined and completely independent of the data
collected in our online experiment.

The significant performance improvement of our
method on the second day is another important finding.
In inter-day applications of myoelectric control models,
the model performance would normally degrade due to
the joint effects of multiple factors, e.g. the electrode
shift, skin-electrode impedance, etc. By training a new
model merely on data from the new user, the model
is prone to overfitting on the small dataset from the
new user on the first day and degraded performance
on the second day. By first pre-training a model and
then fine-tuning the model on the new user, the model
could adapt to the data of the new user and at the same
time retain the generalisation capability learned from
a large pre-training dataset. Additionally, the above
finding may make even broader contributions, because
the pre-training mechanism is expected to improve the
inter-day generalisation capability for most machine
learning models.

We evaluated the memory requirements and
computational efficiency of our method. For memory
requirements, we evaluated the size of model parameters
and other memory usage in computing (the peak
memory). For computational efficiency, we evaluated
the computation time of feature extraction and decision-
making, respectively. The whole processing pipeline can

Table 2: Computation time in each processing step. No
parallel computing was employed.

Processing Step Computation Time

Feature Extraction 2.8±0.2 ms
Classification 6.2±0.6 ms
Total 9.0±0.7 ms

be divided into two steps, namely, the feature extraction
step and the classification step. The computation time
in each processing step is presented in Table 2. The
feature extraction and classification steps require 2.82
ms and 6.27 ms processing time, respectively, with
a total of 9.08 ms for the whole processing pipeline.
The processing time of 9.08 ms is short enough for
online processing of an EMG segment with a 200 ms
window length and 100 ms sliding step. Furthermore,
the average model size is 1.26 MB with an additional
average memory of 190.1 KB for computations in the
whole processing pipeline. These metrics demonstrate
the potential of our method for mobile computing
scenarios with low-cost computational resources. The
computation speed is evaluated using a single CPU
without any parallel computing. RF is a model highly
suitable for parallel computing because the processing
procedures of different decision trees are independent
of each other. This property increases the flexibility of
the RF model in real-world applications with different
computational platforms. The computation speed can
be further largely reduced in practice by parallelising
different decision trees.

Previous studies on transfer learning in myoelectric
control mainly focused on deep neural networks [53, 54,
55]. Hoshino et al. [53] achieved a high accuracy of
∼ 95% on 8 hand-wrist gestures, in offline analyses
by pre-training and fine-tuning a deep neural network.
Côté-Allard et al. [54] achieved a high accuracy of
94.69% on 7 hand-wrist gestures using a similar pre-
training and fine-tuning mechanism on deep neural
networks. The signal duration for each gesture used
in training/validation during the fine-tuning stage in
[53] and [54] is 3× and 5×, respectively, of that used
in our work. Additionally, the gestures selected in
[53, 54] mainly include gross wrist-hand gestures (e.g.,
wrist extension/flexion) without dexterous control of
individual fingers. A very recent work [55] developed
a deep convolutional neural network and achieved a
high accuracy of 94.94% on 8 hand gestures, using
5 trials (15s signal duration) per gesture for model
calibration. The accuracy was substantially dropped
to 75.34% using only 1 trial (3s signal duration) per
gesture, demonstrating the challenge in achieving a
high accuracy with a reduced duration of calibration
signals. Additionally, the above accuracy was evaluated
on predictions of the whole 3s trials in [55] via majority
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voting of different windows, while the accuracy reported
in our work was evaluated on predictions of 200ms
sliding windows facilitating real time hand gesture
recognition. In our offline analyses, we achieved an
accuracy of 88% on 6 hand gestures using a simple
RF model with only 1s calibration data per gesture.
Overall, the proposed calibration method provide a
brand new transfer learning solution for EMG-based
hand gesture recognition using simple, explainable and
easily parallelisable RF models.

In our work, we evaluated the effectiveness of RF
model calibration on EMG data collected from subjects
with intact upper-limbs, proving the high potentials
of our method in general human-machine interaction
applications. As for applications such as prosthetic
control, despite of the variability between EMG of
limb-intact subjects and amputees, certain common
EMG patterns still remain. A previous study has
demonstrated that machine learning models can still
learn useful knowledge from sEMG signals of intact
subjects, and then help improve model performances on
amputees via transfer learning [56]. A very recent study
[57] likewise achieved improved performance (improved
from 73.4% to 78.1%) on amputees by leveraging
knowledge learned from intact subjects. Therefore, the
proposed RF-based transfer learning method may also
contribute to more applications related to myoelectric
control in follow-up studies.

Our work is an initial attempt to demonstrate
the superiority of pre-trained and fine-tuned RF over
the standard RF in myoelectric control applications.
RF has not been considered as one of the most
powerful models in myoelectric control. Therefore, little
attention has been paid to RF models and there are very
few attempts on advanced algorithms for improved RF
models [30]. Here we demonstrated the high potential of
RF models empowered by several key components such
as decision tree pre-training, pruning and appending.
Our very recent study [29] also demonstrated the
high explainability and robustness of decision tree-
based models in myoelectric control. We hope these
attempts can attract renewed attention on the efficient,
explainable, and powerful decision tree-based models
within the myoelectric control community, and expect
more interesting and inspiring properties of RF to be
discovered in follow-up studies.

5. Conclusions

We proposed a myoelectric control model based on
random forest, using only 1s of EMG data per gesture
from the new user to fine-tune a pre-trained model.
Both offline and real-time experiments showed the
superiority of our method compared to the standard
RF and LDA models. In our inter-day study, our

model trained with the data from the first day yielded a
significantly higher accuracy compared to other models,
without any calibration needed on the second day.
Further evaluations also demonstrate the low memory
requirements and high computational efficiency of our
method.
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Björkman, and Christian Antfolk. Learning
regularized representations of categorically labelled
surface emg enables simultaneous and proportional
myoelectric control. Journal of NeuroEngineering
and Rehabilitation, 18(1):35, Feb 2021.

[50] Anders Krogh and Jesper Vedelsby. Neural network
ensembles, cross validation, and active learning. In
G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems,
volume 7. MIT Press, 1994.

[51] Zhi-Hua Zhou and Ji Feng. Deep forest. National
Science Review, 6(1):74–86, 10 2018.

[52] Laurens van der Maaten and Geoffrey Hinton.
Visualizing Data using t-SNE. Journal of Machine
Learning Research, 9(Nov):2579–2605, 2008.

[53] Takayuki Hoshino, Suguru Kanoga, Masashi Tsubaki,

and Atsushi Aoyama. Comparing subject-to-subject
transfer learning methods in surface electromyogram-
based motion recognition with shallow and deep
classifiers. Neurocomputing, 489:599–612, 2022.
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