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Abstract

Resting-state functional connectivity (RSFC) has been proposed as a potential indicator of
repetitive negative thinking (RNT) in depression. However, identifying the specific functional
process associated with RSFC alterations is challenging, and it remains unclear whether
alterations in RSFC for depressed individuals are directly related to the RNT process or to
individual characteristics distinct from the negative thinking process per se. To investigate the
relationship between RSFC alterations and the RNT process in individuals with major
depressive disorder (MDD), we compared RSFC with functional connectivity during an induced
negative-thinking state (NTFC) in terms of their predictability of RNT traits and associated
whole-brain connectivity patterns using connectome-based predictive modeling (CPM) and
connectome-wide association (CWA) analyses. Thirty-six MDD participants and twenty-six
healthy control participants underwent both resting state and induced negative thinking state
fMRI scans. Both RSFC and NTFC distinguished between healthy and depressed individuals
with CPM. However, trait RNT in depressed individuals, as measured by the Ruminative
Responses Scale-Brooding subscale, was only predictable from NTFC, not from RSFC. CWA
analysis revealed that negative thinking in depression was associated with higher functional
connectivity between the default mode and executive control regions, which was not observed
in RSFC. These findings suggest that RNT in depression involves an active mental process
encompassing multiple brain regions across functional networks, which is not represented in the
resting state. Although RSFC indicates brain functional alterations in MDD, they may not directly

reflect the negative thinking process.
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Introduction

Repetitive negative thinking (RNT) is defined as a perseverative thought process that
focuses on one’s problems or negative experiences in the present, past, and future (Ehring,
2021; Ehring and Watkins, 2008). Rumination and worry are the two main clinical types of RNT,
with rumination referring to a passive, repetitive and evaluative focus on the symptoms of
distress, whereas worry is a chain of thoughts focused on possible future negative outcomes
(Nolen-Hoeksema et al., 2008). Rumination is often seen in individuals with Major Depressive
Disorder (MDD) and has a moderate genetic correlation with MDD (Johnson et al., 2014). RNT
predicts the onset of new episodes and the maintenance of existing symptoms of depression
and is associated with reduced treatment response (Nolen-Hoeksema et al., 2008; Watkins and
Roberts, 2020). The increased morbidity and treatment resistance of MDD individuals with RNT

create a forceful impetus to identify the neurobiological underpinnings of RNT.

The neural correlates of RNT have been investigated using fMRI resting-state functional
connectivity (RSFC), with the assumption that the resting state may indicate intrinsic brain
functional alterationss in depression (Hamilton et al., 2015; Zhang et al., 2021). Given that RNT
involves the process of perseverative thinking of self-referential negative thoughts (Ehring,
2021), many studies have focused on the default mode network (DMN) areas that have been
implicated in self-referential thinking (Hamilton et al., 2015). For example, increased RSFC in
DMN regions has been frequently reported to be associated with high RNT in depression
(Bessette et al., 2018; Hamilton et al., 2015; Jacob et al., 2020; Makovac et al., 2020; Misaki et
al., 2020; Stern et al., 2022; Wise et al., 2017; Yang et al., 2022; Zhu et al., 2017). RNT has
also been associated with altered RSFC between the DMN and other regions, including the
dorsolateral prefrontal cortex (Ichikawa et al., 2020; Peters et al., 2016), the amygdala (Connolly
et al., 2013; Peters et al., 2016; Satyshur et al., 2018), and other executive control network

nodes (Connolly et al., 2013; Feurer et al., 2021; Satyshur et al., 2018).
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While these findings suggest that RSFC reflects brain functional alterations associated with
rumination in depression, it is inherently difficult to identify the specific functional process
associated with RSFC alterations. It remains unclear whether the RSFC associated with
rumination in depression is directly related to the RNT process or to individual characteristics
distinct from the negative thinking process itself. Resting-state fMRI does not necessarily reflect
the true resting state of the brain, but rather a state that is not constrained by a specific task
(Finn, 2021; Gonzalez-Castillo et al., 2021) and can vary over time (Greene et al., 2018; Lurie et
al., 2020). Thus, RSFC can be an unstable and functionally unconstrained measure as an
indicator of individual traits. Indeed, a study with large datasets including the ABCD study,
Huma Connectome Project (HCP), and UK Biobank showed that the reproducibility of RSFC
associations with individual traits could be low with a small sample size in a mass-univariate
analysis (Marek et al., 2022). Meta- and mega-analysis studies of large cohort data of
participants with MDD have also reported inconsistent RSFC alterations in the depressed group
compared to previous studies (Goldstein-Piekarski et al., 2022; Tozzi et al., 2021; Yan et al.,
2019; Zhang et al., 2020). These studies indicated either decreased or no difference in DMN
RSFC in depressed individuals, while previous reports showed increased DMN RSFC in

depression (for review: (Kaiser et al., 2015; Mulders et al., 2015; Williams, 2016)).

Several studies have also suggested that task-active states provide more informative insights
into the neurophysiological associations of individual cognitive traits compared to the resting
state (Greene et al., 2020; McCormick et al., 2022). For example, Finn and Bandettini (2021)
demonstrated that FC patterns during movie-watching were more predictive of individual
cognitive scores, specifically the principal component of the scores in the cognitive domain test,
using data from the HCP. Similarly, Greene et al. (2018) found that FC during task-active states
outperformed RSFC in predicting individual fluid intelligence scores. Considering these findings,
it is plausible to suggest that brain functional changes associated with RNT in depression may

exhibit more prominent effects during task-active states compared to the resting state. Indeed,
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task-based studies using a rumination-inducing task have also found differences in brain activity
between individuals with high and low levels of RNT in depression. For example, a study
focusing on the DMN found decreased connectivity within DMN subsystems during rumination
(Chen et al., 2020). Functional changes related to RNT in a task-active state have also been
observed in regions other than the DMN. These include connectivity between the salience and
anterior parietal networks, where low connectivity between these networks was associated with
high RNT following a sad event (Lydon-Staley et al., 2019). Additionally, reward-related regions
showed a positive correlation between ventral striatum response and rumination (Erdman et al.,
2020; Jones et al., 2017). Furthermore, increased connectivity between the angular gyrus and
the rostrolateral prefrontal cortex region was associated with high rumination in the DMN and
executive control regions (Jones et al., 2017). These findings suggest that the rumination
induction task engages not only the DMN, but also regions of the salience and executive control

networks that are not active during the resting state.

Although altered brain function associated with RNT in depression has been studied both at
rest and during negative thinking (NT), it remains unclear which brain state better characterizes
clinical RNT, and whether findings in these states reflect the same or independent functional
changes. One could argue that functional changes during an NT task may better elucidate the
pathology of depression because RNT is characterized by a negative thinking style (Nolen-
Hoeksema et al., 2008). However, asking participants to engage in negative thinking may
reduce the differences in brain states between individuals with and without RNT, and the
induced negative thinking may not reflect the trait RNT. As such, the sensitivity for detecting
RNT-related changes in brain function may be lower in the NT state than in the resting state. In
fact, previous resting-state studies have often assumed that RSFC changes in MDD may reflect
frequent spontaneous rumination at rest (Bessette et al., 2018; Connolly et al., 2013; Feurer et
al., 2021; Hamilton et al., 2015; Jacob et al., 2020; Lois and Wessa, 2016; Nejad et al., 2013;

Satyshur et al., 2018; Zhang et al., 2020; Zhang et al., 2022; Zhu et al., 2017). If this
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78 assumption is true, then resting and NT states should show similar changes in FC in depressed
79 individuals, and FC in both states may be indicative of the severity of RNT in depression.

80 However, if the resting and NT states reflect separate functional changes in depression, we

81  should consider the implications of each state separately and which state better reflects the

82 clinical trait of RNT.

83 The present study aims to investigate whether the resting state or the NT state is more

84  associated with trait RNT in depression, and whether their changes reflect the same or different
85 pathology. To achieve these goals, we utilized connectome-based predictive modeling (CPM)
86 (Shenetal., 2017) and connectome-wide association (CWA) analysis (Shehzad et al., 2014).
87 CPM is a machine learning approach used to create a predictive model of the brain-behavior
88 relationship from whole-brain FC patterns. Multivariate predictive modeling approaches like

89 CPM can overcome the small effect size problem of brain-behavior associations in mass-

90 univariate analyses (Marek et al., 2022; Rosenberg and Finn, 2022) because they can

91  aggregate univariate features to improve both sensitivity and robustness (Finn and Rosenberg,
92  2021; Rosenberg and Finn, 2022; Taxali et al., 2021). We applied CPM to whole-brain

93 functional connectivity patterns in the resting and NT states to (1) discriminate individuals with
94 MDD from healthy controls (HC) and (2) predict individual differences in trait RNT score, as

95 measured by the Ruminative Response Scale (RRS) (Nolen-Hoeksema and Morrow, 1991).
96 The RRS can be divided into three subscales: depressive, brooding, and reflective (Treynor et
97 al., 2003). Because the brooding subscale most closely reflects the trait RNT, we focused on
98 this subscale (RRS-B) in the present analysis. By comparing CPM performance between the
99 resting and NT states, we could examine which state was more informative for characterizing

100 depression and trait RNT.

101 Furthermore, we employed a connectome-wide association (CWA) approach (Shehzad et al.,

102  2014) using longitudinal multivariate distance matrix regression (MDMR) analysis (Misaki et al.,
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103 2018) to comprehensively investigate FC changes in depression during both resting and NT
104  states. MDMR (Anderson, 2001) is a multivariate analysis that examines associations between
105  brain activity patterns and behavior across the entire brain. Like the CPM approach, CWA is a
106  multivariate method that overcomes the limitations of mass-univariate analyses and provides a
107  valuable complement to the CPM results. While CPM selects FCs that are sufficient for

108 improved classification and prediction, potentially missing the comprehensive FC patterns

109  associated with depression and RNT, CWA with MDMR quantifies the entire connectivity

110 associated with depression and RNT in the voxel-to-voxel connectivity patterns of the whole
111  brain. By combining these approaches, we evaluated the functional implications of FC changes
112  in MDD during both resting and NT states, as well as their association with individual RNT traits.

113 METHODS

114  Participants
115 Twenty-eight medically and psychiatrically healthy (HC) individuals and forty-two individuals

116  with MDD participated in the study. Each participant performed resting and rumination-inducing
117  negative thinking (NT) tasks, which followed by other task runs including neurofeedback training
118 (Tsuchiyagaito et al., 2023; Tsuchiyagaito et al., 2021). The present study analyzed their fMRI
119 data during the resting-state and NT tasks. MDD participants met the DSM-5 (American

120  Psychiatric Association, 2013) criteria for unipolar MDD based on the Mini-International

121  Neuropsychiatric Interview 7.0.2 (Sheehan et al., 1998), and had current depressive symptoms
122  with Montgomery-Asberg Depression Rating Scale (MADRS) score > 6 (Montgomery and

123 Asberg, 1979). See Tsuchiyagaito et al. (2021) and Tsuchiyagaito et al. (2023) for detailed

124  inclusion and exclusion criteria. The study protocols were approved by the Western Institutional
125 Review Board, and all participants gave informed consent to participate in the study.

126 Two HC and six MDD participants were excluded from the analysis due to excessive head
127  motion (more than 30% of time points (TR) censored with > 0.2 mm frame-wise displacement

128 threshold in image processing) in either the resting or NT task. As a result, data from 26 HC
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129 participants (20 females, mean age = 23 years) and 36 MDD patrticipants (28 females, mean
130 age = 34 years) were included in the analysis. Supplemental Material Table S1 presents

131  participant demographics and rumination and depression symptom scores.

132 Scanning sessions and imaging parameters

133 The scanning session began with an anatomical scan, followed by a 6m50s resting state

134  session and a 6m50s rumination-inducing NT task. In the resting state session, participants

135  were instructed to clear their minds and not think about anything in particular while looking at
136 the cross sign on the screen. In the NT task, participants were instructed to think of a recent
137 time when they felt rejected by someone who meant a lot to them while looking at the cross sign
138 on the screen. The instruction provided for the NT task aimed to elicit a typical rumination

139  process by focusing on common triggers of rumination such as personal relationships, past

140 mistakes, negative experiences, and social interactions (Joubert et al., 2022). Participants

141  completed these scans before any other task sessions so that no effect of other tasks

142  confounded the resting state and NT sessions. Also, the resting state session always preceded

143  the NT task so that no effect of the NT task was confounded with the resting state scan.

144 MRI scans were performed using a GE 3 Tesla MR750 Discovery scanner (GE Healthcare,
145  Milwaukee WI, USA). The anatomical scan acquired a T1-weighted image with the MPRAGE
146  sequence of TR/TE = 5/2 ms, SENSE acceleration R = 2, flip angle = 8, delay/inversion time
147 TD/TI = 1400/725 ms, sampling bandwidth = 31.2 kHz, FOV = 240 x 192 mm, 124 axial slices,
148  slice thickness = 1.2 mm, and scan time =4 min 59 s. The resting and NT session functional
149  scans acquired T2*-weighted images with a gradient echo planar sequence of TR/TE = 2000/25
150 ms, flip angle = 90, SENSE acceleration R = 2, acquisition matrix = 96 x 96, FOV/slice = 240/2.9

151 mm, and scan time = 6m50s (205 TRS).

152 MRl image processing
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Analysis of Functional Neurolmages package (AFNI; http://afni.nimh.nih.gov/) (Cox, 1996)

was used for MRI image processing. The same processing pipeline was used for both resting
and NT state data. The first three volumes of functional images were excluded from the
analysis. Processing included despiking, RETROICOR (Glover et al., 2000) and respiratory
volume per time (Birn et al., 2008) physiological noise corrections, slice timing alignment,
motion alignment, nonlinear warping to the MNI template brain with resampling to 2mm? voxel

volume using the ANTSs (https://picsl.upenn.edu/software/ants/) (Avants et al., 2008), spatial

smoothing with a 6mm-FWHM Gaussian kernel within the brain mask, and scaling of the signal
to the percent change relative to the mean in each voxel. General linear model (GLM) analysis
was then applied with censoring volumes with > 0.2mm frame-wise displacement and
regressors of Legendre polynomial models of slow signal fluctuations, 12 motion parameters (3
shifts, 3 rotations, and their temporal derivatives), three principal components of ventricular
signals, and local white matter average signal (ANATICOR) (Jo et al., 2010). The residual of the
GLM analysis was used as the processed fMRI data for the calculation of functional

connectivity.

Brain parcellation for functional connectivity matrix calculation

The Shen 268-node atlas (Finn et al., 2015; Shen et al., 2013) was used to parcellate brain
regions. We excluded 38 regions around the orbitofrontal, ventricles, and in the lower part of the
brain from the analysis, because they were not covered by functional images or showed
significant signal loss in many participants. The map of the excluded regions and their region
indices in the Shen 268-node atlas are shown in Supplemental Material Figure S1.

Functional connectivity between the 230 regions was calculated for the mean signals in the
regions using Pearson's correlation followed by Fisher's z-transformation. The upper triangular
part of the connectivity matrix, 26335 values, was the input for the connectome-based predictive

modeling (CPM) analysis.
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Connectome-based Predictive Modeling (CPM)

CPM analysis was conducted for two distinct tasks: the classification of individuals with MDD
and HC, and the prediction of RRS-B scores. Separate models were constructed for each task.
The effects of age, sex, and average motion (frame-wise displacement) were regressed and
eliminated from the connectivity values in both resting-state functional connectivity (RSFC) and
negative thinking functional connectivity (NTFC) data. These covariate effects were also

removed from the RRS-B scores in the RRS-B prediction task.

For the MDD-HC classification task, CPM constructed a prediction model using the following
steps: 1) selecting connectivity values with a large absolute t-value for the difference between
the MDD and HC groups (the t-value threshold was optimized using nested cross-validation), 2)
summing the selected connectivity values for each positive and negative t-value in each
participant, and 3) fitting a logistic regression model to classify MDD and HC individuals based
on the summed scores of positive and negative connectivities, respectively (Shen et al., 2017).
The performance of the classification model was assessed using the Area Under the Curve

(AUC) of the receiver operating characteristic (ROC) curve.

For the RRS-B prediction task, the same procedure was employed to construct a prediction
model as in the classification task, except that connectivity values with a high absolute
Pearson's correlation (r) with the RRS-B scores were selected at step 2). Then, a linear
regression model was fitted to predict the RRS-B scores at step 3), following the same
procedure described above. The performance of the RRS-B prediction was evaluated using
Spearman's correlation coefficient to measure the association between the true and predicted
RRS-B scores. The RRS-B prediction was performed only for the MDD group because
prediction for all participants, including both MDD and HC, could be confounded by significant

group differences in RRS-B scores.

10
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The classification and prediction performances were assessed using 5-fold cross-validation,
where participants were randomly divided into training (80%) and test (20%) sets. The model
hyperparameters, such as the absolute t-value and absolute correlation thresholds for
connectivity selection, were optimized through a nested 4-fold cross-validation within the
training set. The training set was further divided into a training subset (75%) and a validation
subset (25%) for this purpose. Grid search was employed to explore different values for the
hyperparameters: t-values ranging from 1.0 to 5.0 with intervals of 0.5 for MDD-HC
classification, and correlation values (r) ranging from 0.1 to 0.5 with intervals of 0.05 for RRS-B
prediction. The entire process of 5-fold cross-validation was repeated 100 times to obtain a

reliable estimate of predictive performance.

A permutation test was performed to assess the statistical significance of the results. The
output values were randomly permuted 1000 times, and in each permutation iteration, 5-fold
cross-validation was repeated 20 times with different random splits. The same hyperparameter
optimization procedure with nested cross-validation was also applied during the permutation

test. The median of 20 repeats was obtained in each iteration to create a null distribution.

Connectome-wide association analysis

For a comprehensive functional connectivity investigation of the differences between rest and
NT states, between HC and MDD, and the RRS-B association, we performed multivariate
distance matrix regression (MDMR) analysis on whole-brain voxel-to-voxel connectivity
(Shehzad et al., 2014). MDMR is a variant of MANOVA that uses nonparametric statistics
(Anderson, 2001). The analysis computes connectivity maps for a seed voxel, and the distance
matrix of the whole-brain connectivity maps across samples (i.e., participant x run) is used as
the multivariate dependent variable for the linear model with multiple explanatory factors. These
procedures are repeated for each voxel as a seed, and the regression statistic is assigned to

the seed voxel.

11
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The processed fMRI images were resampled into 4mm? voxels, and the seed and its
connectivity map were constrained in the gray matter voxels. The distance matrix between the
resting-state and NT-state connectivity maps for all participants, calculated by Euclid distance,
was the dependent variable in the MDMR. We used the longitudinal design introduced by Misaki
et al. (2018) to account for the within-subject factor of resting and NT runs. The model included
state (rest, NT), group (MDD, HC), RRS-B score, interactions of these three factors (including
all two-ways and three-way), age, sex, motion size (mean FD), and subject-specific factor
variables (Misaki et al., 2018; Winkler et al., 2014). The significance of the MDMR statistic of the
pseudo-F value (Anderson, 2001) was assessed by permutation test with 10,000 repeats. The
map was thresholded by voxel-wise p < 0.001 and family-wise error correction by cluster-extent

p < 0.05. The cluster-extent threshold was also evaluated by permutation test.

The regions showing a significant effect in the sum of the factors of interest (state [resting,
NT], group [MDD, HC], RRS-B, and their interaction) were selected for post-hoc seed-based
connectivity analysis. We opted to calculate the sum of the effects of interest in our approach
because analyzing individual factors with interaction terms and evaluating pseudo F-values and
p-values for each of them would require a complex and time-consuming process (Fox, 2015;
Langsrud, 2003). Instead, the effect of each factor was delineated in the post-hoc seed-based
analysis using a linear mixed-effect model.

The post-hoc analysis was performed in the original image resolution. Seed regions were
placed at peak locations of the significant cluster in the MDMR statistical map for the sum of the
effects of interest by extracting peak coordinates separated by at least 30mm in a cluster. The
seed region was defined by a sphere of 6mm radius centered on the peak coordinates. The
mean signal time course of the seed region was used as a reference signal to calculate
connectivity with other voxels in the whole brain. For the statistical testing of the post hoc

analysis, we used linear mixed effect (LME) model analysis with the same linear model

12
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specification as the MDMR, except that the subject factor was entered as a random effect on
the intercept. We used the Ime4 package (Bates et al., 2015) with the ImerTest package
(Kuznetsova et al., 2017) in the R language and statistical computing (R Core Team, 2022) for

the LME analysis.

We note that the post-hoc analysis was performed to elucidate the connectivity map
associated with the MDMR result, and the MDMR is the test for the global connectivity pattern,
not for individual voxel-wise connectivity. Therefore, we used a lenient voxel-wise threshold (p <
0.05) in the post-hoc evaluation to illustrate the global connectivity pattern for the seed with
significant MDMR statistics. Nevertheless, we evaluated the cluster size threshold with this
voxel-wise threshold using cluster size simulation with 3dClustSim in AFNI (Cox et al., 2017), so
the result complies with the corrected p < 0.05 threshold. The map of each contrast (i.e., MDD-
HC in each state, rest-NT in each group, and RRS-B association in each group and state) was

calculated using the R emmeans package (Lenth, 2022).

Results

CPM prediction of HC and MDD groups

Figure 1A shows the distributions of AUC for the MDD-HC classification over 100 iterations of
5-fold cross-validation with different random splits. The median AUCs were 0.826 (p < 0.001) for
the RSFC and 0.794 (p < 0.001) for the NTFC. The difference in performance between RSFC
and NTFC was not significant (p = 0.686). Connectivity included in the prediction model is
plotted on the glass brain (Fig. 1B) and with a circle plot (Fig. 1C). These plots show the
connectivity selected more than 50% of the time in multiple (100 x 5) cross-validation iterations.
The line color indicates the mean connectivity difference (z-value) between MDD and HC
groups (warm color indicates higher connectivity for MDD). In Figure 1C, the network labels are
adapted from Drysdale et al. (2017). Note that these maps are presented only to illustrate the

FC patterns used by CPM as a whole, and not to evaluate the individual FC association with the
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277  classification. As CPM is a multivariate pattern analysis, it is not appropriate to evaluate
278 individual FC associations independently. Therefore, we did not conduct a strict statistical test to

279 evaluate the independent effect of each FC.

280 In the resting state, CPM classified participants as MDD based on high connectivity within
281  visual cortex and cerebellar regions and their connectivity to DMN regions. In the circle plot (Fig.
282  1C), the one cool-colored line (represented by the bilateral LIMB [default mode/limbic]

283  connection) indicated the reduced functional connectivity between the bilateral subgenual

284  anterior cingulate cortex (sgACC) regions in MDD compared to HC. In the NT state, the CPM
285 used FCs in similar areas as in the resting state, while the number of FCs consistently selected

286  across the cross-validation iterations was fewer than in the resting state (Figs. 1B and 1C).
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288 Figure 1. A. CPM prediction performance distributions for MDD-HC classification. Each point
289 indicates one iteration of the 5-fold cross-validation result (100 iterations with different random
290 splits were performed). The violin plot and horizontal lines indicate the distribution curve and
291  quartile positions, respectively. B. Connectivity selected by the CPM model. The connectivities
292  selected by more than 50% cross-validation iterations were plotted on the glass brain. The line
293  color indicates the connectivity difference (z-value) between the MDD and HC groups. C. Circle
294  plots of the same connectivities as in B summarized for each network region. Network labels are
295 adapted from (Drysdale et al., 2017). DMN: Default Mode Network, FPTC: Fronto-Parietal Task
296  Control, SN: Salience Network, COTC: Cingulo-Opperculum Task Control, D/VAN: Doral Visual
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Attention Network, MR: Memory Retrieval, LIMB: default mode/limbic, SubC: Subcortical, SSM:
Sensory SomatoMotor, AV: Auditory-Visual, CBL: Cerebellum.

CPM prediction of individual RRS-B score

Figure 2A displays the distributions of Spearman’s correlations between true and predicted
RRS-B scores for MDD over 100 iterations of 5-fold cross-validation with different random splits
(Supplemental Material Fig. S2 shows CPM prediction results including both groups). The
median Spearman’s correlations were -0.049 (p = 0.447) for RSFC and 0.279 (p = 0.041) for
NTFC. The difference in performance between the resting and NT states was significant (p =
0.043). Figures 2B and 2C show the connectivity included in the prediction model that was
selected more than 85% of the time in the cross-validation iterations (plots with 50% threshold
are shown in Supplemental Material Fig. S3). Line color indicates FC correlation with RRS-B (z-

transformed, warm color indicates positive correlation).

In the NT state, connectivity associated with RRS-B prediction was distributed over broad
brain areas with high consistency across participants (across cross-validation). The higher
connectivity from the thalamus regions (SubC nodes with dense, warm lines in Fig. 2C) in the
NT state characterizes high RRS-B individuals in the MDD group. In contrast, in the resting
state, many connectivities consistently selected by CPM were negatively correlated with RRS-B

(Fig. 2B and Supplemental Material Fig. S3B).

16


https://doi.org/10.1101/2023.03.23.533932
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.23.533932; this version posted June 9, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A 0.6 7
8 041
©
>
§9
T2 02 1
38
548
c 2
c
g5 00
g 2
» 2
$ —0.2 1
(]
2
(]
Q
_'04 T
Negative -1 )
Thinking RRS-B correlation (z)
C Rest Negative Thinking
2
s

C
oN I\ Ore
wr VAN

LIMB MR
LIMB

LIMB

Sube Subc

SubC

P Q = Q
8 e [ aaaa—— ] 8 2
-1 0 1
315 RRS-B correlation (z)

316  Figure 2. A. Distributions of the CPM prediction performance for individual RRS-B scores in the
317 MDD group. Each point indicates one iteration of the 5-fold cross-validation result (100 iterations
318 with different random splits were performed). The violin plot and horizontal lines indicate the
319  distribution curve and quartile positions. B. Plots of the connectivity selected by the CPM model
320 inmore than 85% of the cross-validation iterations. Line color indicates the connectivity correlation
321  with RRS-B (z-transformed). C. Circle plots of the same connectivities as in B, summarized for
322  each network region. Network labels are adapted from Drysdale et al. (2017) (see Fig. 1 for the
323  network label abbreviations).

324 MDMR connectome-wide association analysis
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Figure 3 shows the regions with significant effects of interest (sum of the effects of state,
group, RRS-B, and their interactions) with voxel-wise p < 0.001 and cluster-extent corrected p <
0.05 in the MDMR analysis. Significant clusters were found in DMN regions (i.e., precuneus,
posterior cingulate cortex [PCC], medial prefrontal cortex [MPFC]), executive control regions
(i.e., supplementary motor area [SMA] and lateral frontal regions including inferior frontal gyrus
[IFG]), the caudate region, and the cerebellum. Post-hoc seed-based connectivity analysis was

performed on the peak areas in these significant clusters. Table 1 shows the seed points used

for the post-hoc analysis.

Figure 3. Significant regions with the MDMR statistics for the sum of the effects of interest (state,
group, RRS-B, and their interactions) with voxel-wise p < 0.001 and cluster-extent corrected p <
0.05.

Table 1. The seed points in the significant clusters of the MDMR statistics.

Seed index X y z Peak F-value Area
1 -6 -78 56 3.036 Left Precuneus
2 6 -42 24 2.825 Right Posterior Cingulate Cortex (PCC)
3 -2 14 56 2.664 Left Supplementary Motor Area (SMA)
4 6 50 8 2.53 Right Medial Prefrontal Cortex (MPFC)
5 50 38 12 2.714 Right Inferior Frontal Gyrus (IFG)
6 18 18 4 2.067 Right Caudate
7 46 6 44 2.811 Left Middle Frontal Gyrus
8 -10 38 56 3.12 Left Superior Frontal Gyrus
9 42 6 36 3.082 Right Inferior Frontal Gyrus (IFG)
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10 -18 18 4 2.143 Left Caudate
11 -34 -66 -24 2.322 Left cerebellum (Crus 1)
12 6 34 32 2.249 Right Cingulate Gyrus
13 62 -42 -8 2.445 Right Middle Temporal Gyrus
14 -50 34 -8 2.488 Left Inferior Frontal Gyrus
15 22 26 60 2.098 Right Superior Frontal Gyrus
16 2 26 56 2.056 Right Superior Frontal Gyrus
17 -50 42 16 2.203 Left Inferior Frontal Gyrus
18 -58 6 40 1.968 Left Middle Frontal Gyrus
338
339 Figure 4 summarizes the representative MDD-HC contrast in the post-hoc analysis for the

340 two seeds at the DMN hub nodes; PCC (seed 2; seed index corresponds to Table 1) and MPFC
341  (seed 4). Significant FC maps of all seeds are shown in Supplemental Material Figures S4 and
342 S5 for the resting and NT states, respectively. In the resting state, MDD had higher connectivity
343  than HC from these DMN seeds to the visual cortex regions (Figs. 4A and 4B). Other seeds also
344  showed higher connectivity for MDD than HC in the occipital areas (Supplemental Material Fig.
345  S4), which was consistent with the CPM results. In the NT state, higher connectivity was also
346  seen in the occipital regions (Figs. 4C and 4D), although the lower connectivity areas for MDD
347  than HC of these seeds seen in the resting state (cool color regions in Figs. 4A and 4B) were
348 notseenin the NT state (Figs. 4C and 4D), indicating that the MDD-HC contrast decreased in
349 the NT state compared to the resting state. Notably, PCC seed connectivity in the precuneus
350 regions was higher for HC than MDD in the resting state (cool color regions in Figs. 4A),

351 indicating that posterior DMN FC was higher for HC than MDD in the resting state. In addition,
352 MDD group had higher connectivity between these DMN seeds and the IFG region in the NT

353 state (Figs. 4C and 4D), which was not seen in the resting state.
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354

355 Figure 4. MDD-HC contrast connectivity maps in the MDMR post-hoc analysis with the PCC
356 (seed 2) and MPFC (seed 4) seeds (top row) for the resting (A, B) and negative-thinking (NT; C,
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D) states. The map shows the t-value for the MDD-HC contrast. The seed index corresponds to
Table 1. PCC: posterior cingulate cortex, MPFC: medial prefrontal cortex.

Figure 5 summarizes the representative NT-Rest contrast in the post-hoc analysis for three
seeds, PCC (seed 2), SMA (seed 3), and right IFG (seed 9). Significant FC maps of all seeds
are shown in Supplemental Material Figures S6 and S7 for HC and MDD, respectively. The
PCC seed, a DMN hub region, had higher connectivity with regions in the executive control
areas, including the lateral premotor and prefrontal regions, and the anterior insula in the NT
state than in the resting state in MDD (Fig. 5D). The SMA and IFG seeds had higher
connectivity with the precuneus area in the NT state than in the resting state in MDD (Figs. 5E
and 5F). These indicate that connectivity between posterior DMN regions (precuneus and PCC)
and executive control regions was increased in the NT state in MDD. This increased
connectivity was not observed in HC (Figs. 5A, 5B and 5C). Connectivity between the SMA and
precuneus showed an opposite pattern between HC and MDD (Figs. 5B and 5E); it was higher
in rest than in NT for HC, but higher in NT than in rest for MDD. Connectivity within the posterior
DMN regions was higher in the resting state than in the NT state in both HC and MDD (Figs. 5A

and 5D).
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" Seed 3: SMA

373

374  Figure 5. NT (negative thinking)-Rest contrast connectivity maps in the MDMR post-hoc analysis
375  with the PCC (seed 2), SMA (seed 3), and right IFG (seed 9) seeds (top row) for the HC (A, B, C)
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and MDD (D, E, F) groups. The map shows the t-value for the NT-Rest contrast. The seed index
corresponds to Table 1. PCC: posterior cingulate cortex, SMA: supplementary motor area, IFG:
inferior frontal gyrus.

Figure 6 shows the RRS-B associations in the post hoc analysis for MDD. Significant FC
maps of all seeds are shown in Supplemental Material Figs. S8 and S9 for resting and NT
states, respectively. We did not examine the RRS-B association in HC because the score in HC
did not have enough variance to assess the association robustly. The most striking observation
was the connectivity of the cerebellum (seed 11). In the NT state, the connectivity of this
cerebellar seed showed a positive correlation with the RRS-B in broad cortical areas, including
DMN regions (i.e., PCC and MPFC, Fig, 6D). In contrast, in the resting state, cerebellar
connectivity associated with the RRS-B was restricted to motor and premotor cortex and did not
extend to the DMN (Fig. 6B). The negative RRS-B association with the FC between the

precuneus and thalamus was also observed for the resting state in MDD (Fig 6A).
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389

390 Figure 6. RRS-B association connectivity maps in the MDMR post-hoc analysis for seeds with

391 the significant RRS-B association in the MDD group for the resting (A, B) and negative-thinking
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(NT; C, D) states. The map shows the t-value for the RRS-B association. The seed index

corresponds to Table 1.

Discussion

The primary findings of the present study are as follows: 1) CPM analysis demonstrated that
both RSFC and NTFC were capable of distinguishing between HC and MDD individuals, 2)
NTFC demonstrated predictive capability for trait RNT in individuals with depression, whereas
RSFC did not show such predictive ability, and 3) CWA analysis indicated that the negative
thinking process in MDD was associated with increased functional connectivity (FC) between
regions of the default mode network and executive control regions, which was not observed in

RSFC or in the HC group.

As both RSFC and NTFC were effective in differentiating individuals with MDD from HC, it is
warranted to investigate functional brain alterations in MDD using resting-state measures.
However, RSFC did not predict trait RNT in depression, suggesting that RSFC alterations in
depression may not directly reflect the ongoing RNT process. This finding contradicts the
assumption that modifications in RSFC in MDD arise from heightened spontaneous rumination
during the resting state in these individuals. While RSFC indicates alterations in brain
connectivity, further investigations are needed to understand the specific processes underlying
the relationship between RSFC and RNT in depression.

Investigations of FC patterns associated with CPM prediction and complementary CWA
analysis further revealed the significant difference between resting and NT states in depressed
individuals. FCs distinguishing MDD from HC were found in areas of the visual cortex and
cerebellum and their connections with DMN regions in both CPM and CWA analyses. Reduced
FC between bilateral sgACC areas was also used by CPM to classify MDD. Altered sgACC
function in depression has been reported for MDD (Brakowski et al., 2017; Drevets et al., 2008),

and disrupted sgACC activity could reduce its bilateral functional coupling. While increased
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visual cortex activation during rumination has been reported in adolescents with remitted MDD
(Burkhouse et al., 2017), a negative correlation between a trait rumination score (RRS) and
visual cortex activation in both resting and task (face classification) conditions has also been
reported (Piguet et al., 2014). Thus, while the increased FC in visual cortex in MDD may at least
reflect higher visual imagery than HC at rest, it may not be specifically associated with negative
thinking.

Interestingly, DMN connectivity was not selected in the CPM classification, and MDMR
analysis revealed decreased posterior DMN connectivity in MDD compared to HC in the resting
state. This is consistent with the meta- and mega-analysis studies of large cohort data that
reported decreased or no difference in resting-state DMN FC in depressed individuals

(Goldstein-Piekarski et al., 2022; Tozzi et al., 2021; Yan et al., 2019; Zhang et al., 2020).

In contrast to the MDD-HC classification, RRS-B prediction was well performed with NTFC,
but not with RSFC. The FCs that were informative for predicting RRS-B in MDD in the CPM
analysis were distributed over large areas of the brain (Supplemental Material Fig. S3). The
involvement of many cortical regions, including the limbic and medial and dorsolateral prefrontal
regions, has also been reported in the rumination induction task (Cooney et al., 2010). These
suggest that RNT is associated with large-scale network and inter-network interactions (Lydon-
Staley et al., 2019; Zhang et al., 2020) rather than a focal processing abnormality. MDMR
results showing significant FC differences between resting and NT states in MDD support the
perspective of multi-network involvement in the RNT process. Connectivity between the
precuneus and executive control regions (i.e., SMA, IFG) and the salience network region (i.e.,
anterior insula) was increased in the NT state compared to the resting state in MDD patrticipants
(Fig. 5). Also, the FC between the DMN seeds and IFG in the NT state was significantly higher
in MDD than in HC (Figs. 4C and 4D), suggesting that such an increase in the NT state is

specific to depressed individuals.
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When we used a strict threshold for plotting the FCs informative for predicting RRS-B, the
dense connection was seen in the right thalamus area, which had a positive correlation with
RRS-B (Fig. 2C). The significant RRS-B association with FC between thalamus and precuneus
was also observed in the resting state in MDD (Fig. 6A), but in a negative direction, highlighting
that the resting state in MDD had a significantly different FC pattern than the NT state. The
involvement of the thalamus in RNT has been demonstrated in a 7T fMRI study (Steward et al.,
2022), suggesting that the thalamus, with its extensive cortical pathways, may act to increase
synchrony between cortical regions to maintain complex mental representations, including RNT.
In addition, emerging clinical evidence suggests a role for right thalamic-cortical circuitry in the
amelioration of depression in neuromodulation treatments (Lippitz et al., 1999; Riestra et al.,
2011; Scangos et al., 2021), highlighting the potential clinical implications of this particular

finding to help refine neuromodulatory procedures for MDD.

The RRS-B association in the CWA analysis was seen for the cerebellum seed connectivity
with broad cortical regions. This cerebellar region (crus ) is functionally related to executive
control network areas (Habas et al., 2009). A report of a blunted response of this region to
reward anticipation in depressed individuals with high RNT (Park et al., 2022) also suggests that
trait RNT may influence activation of this region. The associations of RRS-B with this seed to
broad cortical regions, not limited to the executive control region but including the DMN regions
in the NT state, suggest that the RNT is an active process involving multiple networks, not
limited to the DMN. The increased FC between the SMA, a region that monitors and evaluates
an active process (Bonini et al., 2014), and the precuneus, a region involved in self-referential
thinking (Fig. 5E), also supports the idea that RNT in depression is an active process. The
involvement of many cortical areas in the RNT process has also been reported in previous
studies, including increased FC from the PCC to many cortical areas in the NT state compared

to the resting state (Berman et al., 2014).
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Discussing the limitations of the current study is warranted. The significant age difference
between the MDD and HC groups may have biased the present results concerning the MDD-HC
difference. To mitigate this, we excluded the age effect from the FCs in the CPM analysis, and
age was included as a covariate factor in the MDMR analysis. However, excluding the age
effect may have also removed the association between FC and depression if it interacted with
age. Indeed, Andreescu et al. (2014) found an interaction between age and anxiety on DMN
connectivity, where the effect of anxiety on FC was greater in older participants. Therefore, we
acknowledge that the present findings of FCs associated with MDD (MDD-HC contrast) may not
be comprehensive, as age-interacted FC associations may have been missed. Nonetheless, the
prediction of RRS-B was made only for MDD, and age differences between groups did not affect
this prediction. Another limitation is that we focused on the rumination portion of the RNT in
MDD, neglecting the association with worry, another form of RNT that has been extensively
discussed in anxiety disorders. Thus, the current FC findings concerning trait RNT are limited to
rumination aspects in MDD. Additionally, it is important to acknowledge the limitation of the
sample size in the current study. Despite implementing rigorous statistical evaluations, such as
cross-validation and permutation tests, and employing multivariate approaches that can partially
overcome the limitations of effect size, our sample may not be fully representative of the
heterogeneous nature of the depressed population. Further investigations with larger samples
are needed to draw more definitive conclusions about the association between RNT and RSFC
and NTFC.

In conclusion, the results of the present study challenge the assumption that the resting state
is equivalent to the negative thinking state in individuals with depression. While the resting state
is often considered a proxy for the ruminative state, the results of this study suggest that resting
state and negative thinking are not synonymous in depressed individuals. It is important to
recognize that the functional implications of the resting state cannot be fully understood on the

basis of resting state results alone. The value of resting state studies in depression should not
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493 be discounted; however, it is crucial to consider that interpretation of their functional implications
494  requires additional information. Resting state, as an experimental procedure, does not

495  necessarily reflect intrinsic functional activations (Finn, 2021), and the functional implications of
496  resting state cannot be clarified without obtaining participants' introspective reports (Gonzalez-
497  Castillo et al., 2021). While the resting state may indicate abnormal brain activity in MDD, it may
498 not fully capture the complexity of the rumination process. Negative thinking in depression

499 involves dynamic interactions across multiple functional networks rather than being restricted to

500 a specific brain network, which is not represented in the resting state.

501
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