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Abstract 

Resting-state functional connectivity (RSFC) has been proposed as a potential indicator of 

repetitive negative thinking (RNT) in depression. However, identifying the specific functional 

process associated with RSFC alterations is challenging, and it remains unclear whether 

alterations in RSFC for depressed individuals are directly related to the RNT process or to 

individual characteristics distinct from the negative thinking process per se. To investigate the 

relationship between RSFC alterations and the RNT process in individuals with major 

depressive disorder (MDD), we compared RSFC with functional connectivity during an induced 

negative-thinking state (NTFC) in terms of their predictability of RNT traits and associated 

whole-brain connectivity patterns using connectome-based predictive modeling (CPM) and 

connectome-wide association (CWA) analyses. Thirty-six MDD participants and twenty-six 

healthy control participants underwent both resting state and induced negative thinking state 

fMRI scans. Both RSFC and NTFC distinguished between healthy and depressed individuals 

with CPM. However, trait RNT in depressed individuals, as measured by the Ruminative 

Responses Scale-Brooding subscale, was only predictable from NTFC, not from RSFC. CWA 

analysis revealed that negative thinking in depression was associated with higher functional 

connectivity between the default mode and executive control regions, which was not observed 

in RSFC. These findings suggest that RNT in depression involves an active mental process 

encompassing multiple brain regions across functional networks, which is not represented in the 

resting state. Although RSFC indicates brain functional alterations in MDD, they may not directly 

reflect the negative thinking process. 
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Introduction 1 

Repetitive negative thinking (RNT) is defined as a perseverative thought process that 2 

focuses on one’s problems or negative experiences in the present, past, and future (Ehring, 3 

2021; Ehring and Watkins, 2008). Rumination and worry are the two main clinical types of RNT, 4 

with rumination referring to a passive, repetitive and evaluative focus on the symptoms of 5 

distress, whereas worry is a chain of thoughts focused on possible future negative outcomes 6 

(Nolen-Hoeksema et al., 2008). Rumination is often seen in individuals with Major Depressive 7 

Disorder (MDD) and has a moderate genetic correlation with MDD (Johnson et al., 2014). RNT 8 

predicts the onset of new episodes and the maintenance of existing symptoms of depression 9 

and is associated with reduced treatment response (Nolen-Hoeksema et al., 2008; Watkins and 10 

Roberts, 2020). The increased morbidity and treatment resistance of MDD individuals with RNT 11 

create a forceful impetus to identify the neurobiological underpinnings of RNT. 12 

The neural correlates of RNT have been investigated using fMRI resting-state functional 13 

connectivity (RSFC), with the assumption that the resting state may indicate intrinsic brain 14 

functional alterationss in depression (Hamilton et al., 2015; Zhang et al., 2021). Given that RNT 15 

involves the process of perseverative thinking of self-referential negative thoughts (Ehring, 16 

2021), many studies have focused on the default mode network (DMN) areas that have been 17 

implicated in self-referential thinking (Hamilton et al., 2015). For example, increased RSFC in 18 

DMN regions has been frequently reported to be associated with high RNT in depression 19 

(Bessette et al., 2018; Hamilton et al., 2015; Jacob et al., 2020; Makovac et al., 2020; Misaki et 20 

al., 2020; Stern et al., 2022; Wise et al., 2017; Yang et al., 2022; Zhu et al., 2017). RNT has 21 

also been associated with altered RSFC between the DMN and other regions, including the 22 

dorsolateral prefrontal cortex (Ichikawa et al., 2020; Peters et al., 2016), the amygdala (Connolly 23 

et al., 2013; Peters et al., 2016; Satyshur et al., 2018), and other executive control network 24 

nodes (Connolly et al., 2013; Feurer et al., 2021; Satyshur et al., 2018). 25 
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While these findings suggest that RSFC reflects brain functional alterations associated with 26 

rumination in depression, it is inherently difficult to identify the specific functional process 27 

associated with RSFC alterations. It remains unclear whether the RSFC associated with 28 

rumination in depression is directly related to the RNT process or to individual characteristics 29 

distinct from the negative thinking process itself. Resting-state fMRI does not necessarily reflect 30 

the true resting state of the brain, but rather a state that is not constrained by a specific task 31 

(Finn, 2021; Gonzalez-Castillo et al., 2021) and can vary over time (Greene et al., 2018; Lurie et 32 

al., 2020). Thus, RSFC can be an unstable and functionally unconstrained measure as an 33 

indicator of individual traits. Indeed, a study with large datasets including the ABCD study, 34 

Huma Connectome Project (HCP), and UK Biobank showed that the reproducibility of RSFC 35 

associations with individual traits could be low with a small sample size in a mass-univariate 36 

analysis (Marek et al., 2022). Meta- and mega-analysis studies of large cohort data of 37 

participants with MDD have also reported inconsistent RSFC alterations in the depressed group 38 

compared to previous studies (Goldstein-Piekarski et al., 2022; Tozzi et al., 2021; Yan et al., 39 

2019; Zhang et al., 2020). These studies indicated either decreased or no difference in DMN 40 

RSFC in depressed individuals, while previous reports showed increased DMN RSFC in 41 

depression (for review: (Kaiser et al., 2015; Mulders et al., 2015; Williams, 2016)).  42 

Several studies have also suggested that task-active states provide more informative insights 43 

into the neurophysiological associations of individual cognitive traits compared to the resting 44 

state (Greene et al., 2020; McCormick et al., 2022). For example, Finn and Bandettini (2021) 45 

demonstrated that FC patterns during movie-watching were more predictive of individual 46 

cognitive scores, specifically the principal component of the scores in the cognitive domain test, 47 

using data from the HCP. Similarly, Greene et al. (2018) found that FC during task-active states 48 

outperformed RSFC in predicting individual fluid intelligence scores. Considering these findings, 49 

it is plausible to suggest that brain functional changes associated with RNT in depression may 50 

exhibit more prominent effects during task-active states compared to the resting state. Indeed, 51 
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task-based studies using a rumination-inducing task have also found differences in brain activity 52 

between individuals with high and low levels of RNT in depression. For example, a study 53 

focusing on the DMN found decreased connectivity within DMN subsystems during rumination 54 

(Chen et al., 2020). Functional changes related to RNT in a task-active state have also been 55 

observed in regions other than the DMN. These include connectivity between the salience and 56 

anterior parietal networks, where low connectivity between these networks was associated with 57 

high RNT following a sad event (Lydon-Staley et al., 2019). Additionally, reward-related regions 58 

showed a positive correlation between ventral striatum response and rumination (Erdman et al., 59 

2020; Jones et al., 2017). Furthermore, increased connectivity between the angular gyrus and 60 

the rostrolateral prefrontal cortex region was associated with high rumination in the DMN and 61 

executive control regions (Jones et al., 2017). These findings suggest that the rumination 62 

induction task engages not only the DMN, but also regions of the salience and executive control 63 

networks that are not active during the resting state. 64 

Although altered brain function associated with RNT in depression has been studied both at 65 

rest and during negative thinking (NT), it remains unclear which brain state better characterizes 66 

clinical RNT, and whether findings in these states reflect the same or independent functional 67 

changes. One could argue that functional changes during an NT task may better elucidate the 68 

pathology of depression because RNT is characterized by a negative thinking style (Nolen-69 

Hoeksema et al., 2008). However, asking participants to engage in negative thinking may 70 

reduce the differences in brain states between individuals with and without RNT, and the 71 

induced negative thinking may not reflect the trait RNT. As such, the sensitivity for detecting 72 

RNT-related changes in brain function may be lower in the NT state than in the resting state. In 73 

fact, previous resting-state studies have often assumed that RSFC changes in MDD may reflect 74 

frequent spontaneous rumination at rest (Bessette et al., 2018; Connolly et al., 2013; Feurer et 75 

al., 2021; Hamilton et al., 2015; Jacob et al., 2020; Lois and Wessa, 2016; Nejad et al., 2013; 76 

Satyshur et al., 2018; Zhang et al., 2020; Zhang et al., 2022; Zhu et al., 2017). If this 77 
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assumption is true, then resting and NT states should show similar changes in FC in depressed 78 

individuals, and FC in both states may be indicative of the severity of RNT in depression. 79 

However, if the resting and NT states reflect separate functional changes in depression, we 80 

should consider the implications of each state separately and which state better reflects the 81 

clinical trait of RNT. 82 

The present study aims to investigate whether the resting state or the NT state is more 83 

associated with trait RNT in depression, and whether their changes reflect the same or different 84 

pathology. To achieve these goals, we utilized connectome-based predictive modeling (CPM) 85 

(Shen et al., 2017) and connectome-wide association (CWA) analysis (Shehzad et al., 2014). 86 

CPM is a machine learning approach used to create a predictive model of the brain-behavior 87 

relationship from whole-brain FC patterns. Multivariate predictive modeling approaches like 88 

CPM can overcome the small effect size problem of brain-behavior associations in mass-89 

univariate analyses (Marek et al., 2022; Rosenberg and Finn, 2022) because they can 90 

aggregate univariate features to improve both sensitivity and robustness (Finn and Rosenberg, 91 

2021; Rosenberg and Finn, 2022; Taxali et al., 2021). We applied CPM to whole-brain 92 

functional connectivity patterns in the resting and NT states to (1) discriminate individuals with 93 

MDD from healthy controls (HC) and (2) predict individual differences in trait RNT score, as 94 

measured by the Ruminative Response Scale (RRS) (Nolen-Hoeksema and Morrow, 1991). 95 

The RRS can be divided into three subscales: depressive, brooding, and reflective (Treynor et 96 

al., 2003). Because the brooding subscale most closely reflects the trait RNT, we focused on 97 

this subscale (RRS-B) in the present analysis. By comparing CPM performance between the 98 

resting and NT states, we could examine which state was more informative for characterizing 99 

depression and trait RNT. 100 

Furthermore, we employed a connectome-wide association (CWA) approach (Shehzad et al., 101 

2014) using longitudinal multivariate distance matrix regression (MDMR) analysis (Misaki et al., 102 
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2018) to comprehensively investigate FC changes in depression during both resting and NT 103 

states. MDMR (Anderson, 2001) is a multivariate analysis that examines associations between 104 

brain activity patterns and behavior across the entire brain. Like the CPM approach, CWA is a 105 

multivariate method that overcomes the limitations of mass-univariate analyses and provides a 106 

valuable complement to the CPM results. While CPM selects FCs that are sufficient for 107 

improved classification and prediction, potentially missing the comprehensive FC patterns 108 

associated with depression and RNT, CWA with MDMR quantifies the entire connectivity 109 

associated with depression and RNT in the voxel-to-voxel connectivity patterns of the whole 110 

brain. By combining these approaches, we evaluated the functional implications of FC changes 111 

in MDD during both resting and NT states, as well as their association with individual RNT traits. 112 

METHODS 113 

Participants 114 

Twenty-eight medically and psychiatrically healthy (HC) individuals and forty-two individuals 115 

with MDD participated in the study. Each participant performed resting and rumination-inducing 116 

negative thinking (NT) tasks, which followed by other task runs including neurofeedback training 117 

(Tsuchiyagaito et al., 2023; Tsuchiyagaito et al., 2021). The present study analyzed their fMRI 118 

data during the resting-state and NT tasks. MDD participants met the DSM-5  (American 119 

Psychiatric Association, 2013) criteria for unipolar MDD based on the Mini-International 120 

Neuropsychiatric Interview 7.0.2 (Sheehan et al., 1998), and had current depressive symptoms 121 

with Montgomery-Åsberg Depression Rating Scale (MADRS) score > 6 (Montgomery and 122 

Åsberg, 1979). See Tsuchiyagaito et al. (2021) and Tsuchiyagaito et al. (2023) for detailed 123 

inclusion and exclusion criteria. The study protocols were approved by the Western Institutional 124 

Review Board, and all participants gave informed consent to participate in the study. 125 

Two HC and six MDD participants were excluded from the analysis due to excessive head 126 

motion (more than 30% of time points (TR) censored with > 0.2 mm frame-wise displacement 127 

threshold in image processing) in either the resting or NT task. As a result, data from 26 HC 128 
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participants (20 females, mean age = 23 years) and 36 MDD participants (28 females, mean 129 

age = 34 years) were included in the analysis. Supplemental Material Table S1 presents 130 

participant demographics and rumination and depression symptom scores. 131 

Scanning sessions and imaging parameters 132 

The scanning session began with an anatomical scan, followed by a 6m50s resting state 133 

session and a 6m50s rumination-inducing NT task. In the resting state session, participants 134 

were instructed to clear their minds and not think about anything in particular while looking at 135 

the cross sign on the screen. In the NT task, participants were instructed to think of a recent 136 

time when they felt rejected by someone who meant a lot to them while looking at the cross sign 137 

on the screen. The instruction provided for the NT task aimed to elicit a typical rumination 138 

process by focusing on common triggers of rumination such as personal relationships, past 139 

mistakes, negative experiences, and social interactions (Joubert et al., 2022). Participants 140 

completed these scans before any other task sessions so that no effect of other tasks 141 

confounded the resting state and NT sessions. Also, the resting state session always preceded 142 

the NT task so that no effect of the NT task was confounded with the resting state scan. 143 

MRI scans were performed using a GE 3 Tesla MR750 Discovery scanner (GE Healthcare, 144 

Milwaukee WI, USA). The anatomical scan acquired a T1-weighted image with the MPRAGE 145 

sequence of TR/TE = 5/2 ms, SENSE acceleration R = 2, flip angle = 8, delay/inversion time 146 

TD/TI = 1400/725 ms, sampling bandwidth = 31.2 kHz, FOV = 240 x 192 mm, 124 axial slices, 147 

slice thickness = 1.2 mm, and scan time = 4 min 59 s. The resting and NT session functional 148 

scans acquired T2*-weighted images with a gradient echo planar sequence of TR/TE = 2000/25 149 

ms, flip angle = 90, SENSE acceleration R = 2, acquisition matrix = 96 x 96, FOV/slice = 240/2.9 150 

mm, and scan time = 6m50s (205 TRs). 151 

MRI image processing 152 
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Analysis of Functional NeuroImages package (AFNI; http://afni.nimh.nih.gov/) (Cox, 1996) 153 

was used for MRI image processing. The same processing pipeline was used for both resting 154 

and NT state data. The first three volumes of functional images were excluded from the 155 

analysis. Processing included despiking, RETROICOR (Glover et al., 2000) and respiratory 156 

volume per time (Birn et al., 2008) physiological noise corrections, slice timing alignment, 157 

motion alignment, nonlinear warping to the MNI template brain with resampling to 2mm3 voxel 158 

volume using the ANTs (https://picsl.upenn.edu/software/ants/) (Avants et al., 2008), spatial 159 

smoothing with a 6mm-FWHM Gaussian kernel within the brain mask, and scaling of the signal 160 

to the percent change relative to the mean in each voxel. General linear model (GLM) analysis 161 

was then applied with censoring volumes with > 0.2mm frame-wise displacement and 162 

regressors of Legendre polynomial models of slow signal fluctuations, 12 motion parameters (3 163 

shifts, 3 rotations, and their temporal derivatives), three principal components of ventricular 164 

signals, and local white matter average signal (ANATICOR) (Jo et al., 2010). The residual of the 165 

GLM analysis was used as the processed fMRI data for the calculation of functional 166 

connectivity. 167 

Brain parcellation for functional connectivity matrix calculation 168 

The Shen 268-node atlas (Finn et al., 2015; Shen et al., 2013) was used to parcellate brain 169 

regions. We excluded 38 regions around the orbitofrontal, ventricles, and in the lower part of the 170 

brain from the analysis, because they were not covered by functional images or showed 171 

significant signal loss in many participants. The map of the excluded regions and their region 172 

indices in the Shen 268-node atlas are shown in Supplemental Material Figure S1. 173 

Functional connectivity between the 230 regions was calculated for the mean signals in the 174 

regions using Pearson's correlation followed by Fisher's z-transformation. The upper triangular 175 

part of the connectivity matrix, 26335 values, was the input for the connectome-based predictive 176 

modeling (CPM) analysis. 177 
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Connectome-based Predictive Modeling (CPM) 178 

CPM analysis was conducted for two distinct tasks: the classification of individuals with MDD 179 

and HC, and the prediction of RRS-B scores. Separate models were constructed for each task. 180 

The effects of age, sex, and average motion (frame-wise displacement) were regressed and 181 

eliminated from the connectivity values in both resting-state functional connectivity (RSFC) and 182 

negative thinking functional connectivity (NTFC) data. These covariate effects were also 183 

removed from the RRS-B scores in the RRS-B prediction task. 184 

For the MDD-HC classification task, CPM constructed a prediction model using the following 185 

steps: 1) selecting connectivity values with a large absolute t-value for the difference between 186 

the MDD and HC groups (the t-value threshold was optimized using nested cross-validation), 2) 187 

summing the selected connectivity values for each positive and negative t-value in each 188 

participant, and 3) fitting a logistic regression model to classify MDD and HC individuals based 189 

on the summed scores of positive and negative connectivities, respectively (Shen et al., 2017). 190 

The performance of the classification model was assessed using the Area Under the Curve 191 

(AUC) of the receiver operating characteristic (ROC) curve. 192 

For the RRS-B prediction task, the same procedure was employed to construct a prediction 193 

model as in the classification task, except that connectivity values with a high absolute 194 

Pearson's correlation (r) with the RRS-B scores were selected at step 2). Then, a linear 195 

regression model was fitted to predict the RRS-B scores at step 3), following the same 196 

procedure described above. The performance of the RRS-B prediction was evaluated using 197 

Spearman's correlation coefficient to measure the association between the true and predicted 198 

RRS-B scores. The RRS-B prediction was performed only for the MDD group because 199 

prediction for all participants, including both MDD and HC, could be confounded by significant 200 

group differences in RRS-B scores. 201 
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The classification and prediction performances were assessed using 5-fold cross-validation, 202 

where participants were randomly divided into training (80%) and test (20%) sets. The model 203 

hyperparameters, such as the absolute t-value and absolute correlation thresholds for 204 

connectivity selection, were optimized through a nested 4-fold cross-validation within the 205 

training set. The training set was further divided into a training subset (75%) and a validation 206 

subset (25%) for this purpose. Grid search was employed to explore different values for the 207 

hyperparameters: t-values ranging from 1.0 to 5.0 with intervals of 0.5 for MDD-HC 208 

classification, and correlation values (r) ranging from 0.1 to 0.5 with intervals of 0.05 for RRS-B 209 

prediction. The entire process of 5-fold cross-validation was repeated 100 times to obtain a 210 

reliable estimate of predictive performance. 211 

A permutation test was performed to assess the statistical significance of the results. The 212 

output values were randomly permuted 1000 times, and in each permutation iteration, 5-fold 213 

cross-validation was repeated 20 times with different random splits. The same hyperparameter 214 

optimization procedure with nested cross-validation was also applied during the permutation 215 

test. The median of 20 repeats was obtained in each iteration to create a null distribution. 216 

Connectome-wide association analysis 217 

For a comprehensive functional connectivity investigation of the differences between rest and 218 

NT states, between HC and MDD, and the RRS-B association, we performed multivariate 219 

distance matrix regression (MDMR) analysis on whole-brain voxel-to-voxel connectivity 220 

(Shehzad et al., 2014). MDMR is a variant of MANOVA that uses nonparametric statistics 221 

(Anderson, 2001). The analysis computes connectivity maps for a seed voxel, and the distance 222 

matrix of the whole-brain connectivity maps across samples (i.e., participant x run) is used as 223 

the multivariate dependent variable for the linear model with multiple explanatory factors. These 224 

procedures are repeated for each voxel as a seed, and the regression statistic is assigned to 225 

the seed voxel. 226 
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The processed fMRI images were resampled into 4mm3 voxels, and the seed and its 227 

connectivity map were constrained in the gray matter voxels. The distance matrix between the 228 

resting-state and NT-state connectivity maps for all participants, calculated by Euclid distance, 229 

was the dependent variable in the MDMR. We used the longitudinal design introduced by Misaki 230 

et al. (2018) to account for the within-subject factor of resting and NT runs. The model included 231 

state (rest, NT), group (MDD, HC), RRS-B score, interactions of these three factors (including 232 

all two-ways and three-way), age, sex, motion size (mean FD), and subject-specific factor 233 

variables (Misaki et al., 2018; Winkler et al., 2014). The significance of the MDMR statistic of the 234 

pseudo-F value (Anderson, 2001) was assessed by permutation test with 10,000 repeats. The 235 

map was thresholded by voxel-wise p < 0.001 and family-wise error correction by cluster-extent 236 

p < 0.05. The cluster-extent threshold was also evaluated by permutation test. 237 

The regions showing a significant effect in the sum of the factors of interest (state [resting, 238 

NT], group [MDD, HC], RRS-B, and their interaction) were selected for post-hoc seed-based 239 

connectivity analysis. We opted to calculate the sum of the effects of interest in our approach 240 

because analyzing individual factors with interaction terms and evaluating pseudo F-values and 241 

p-values for each of them would require a complex and time-consuming process (Fox, 2015; 242 

Langsrud, 2003). Instead, the effect of each factor was delineated in the post-hoc seed-based 243 

analysis using a linear mixed-effect model. 244 

The post-hoc analysis was performed in the original image resolution. Seed regions were 245 

placed at peak locations of the significant cluster in the MDMR statistical map for the sum of the 246 

effects of interest by extracting peak coordinates separated by at least 30mm in a cluster. The 247 

seed region was defined by a sphere of 6mm radius centered on the peak coordinates. The 248 

mean signal time course of the seed region was used as a reference signal to calculate 249 

connectivity with other voxels in the whole brain. For the statistical testing of the post hoc 250 

analysis, we used linear mixed effect (LME) model analysis with the same linear model 251 
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specification as the MDMR, except that the subject factor was entered as a random effect on 252 

the intercept. We used the lme4 package (Bates et al., 2015) with the lmerTest package 253 

(Kuznetsova et al., 2017) in the R language and statistical computing (R Core Team, 2022) for 254 

the LME analysis. 255 

We note that the post-hoc analysis was performed to elucidate the connectivity map 256 

associated with the MDMR result, and the MDMR is the test for the global connectivity pattern, 257 

not for individual voxel-wise connectivity. Therefore, we used a lenient voxel-wise threshold (p < 258 

0.05) in the post-hoc evaluation to illustrate the global connectivity pattern for the seed with 259 

significant MDMR statistics. Nevertheless, we evaluated the cluster size threshold with this 260 

voxel-wise threshold using cluster size simulation with 3dClustSim in AFNI (Cox et al., 2017), so 261 

the result complies with the corrected p < 0.05 threshold. The map of each contrast (i.e., MDD-262 

HC in each state, rest-NT in each group, and RRS-B association in each group and state) was 263 

calculated using the R emmeans package (Lenth, 2022). 264 

Results 265 

CPM prediction of HC and MDD groups 266 

Figure 1A shows the distributions of AUC for the MDD-HC classification over 100 iterations of 267 

5-fold cross-validation with different random splits. The median AUCs were 0.826 (p < 0.001) for 268 

the RSFC and 0.794 (p < 0.001) for the NTFC. The difference in performance between RSFC 269 

and NTFC was not significant (p = 0.686). Connectivity included in the prediction model is 270 

plotted on the glass brain (Fig. 1B) and with a circle plot (Fig. 1C). These plots show the 271 

connectivity selected more than 50% of the time in multiple (100 x 5) cross-validation iterations. 272 

The line color indicates the mean connectivity difference (z-value) between MDD and HC 273 

groups (warm color indicates higher connectivity for MDD). In Figure 1C, the network labels are 274 

adapted from Drysdale et al. (2017). Note that these maps are presented only to illustrate the 275 

FC patterns used by CPM as a whole, and not to evaluate the individual FC association with the 276 
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classification. As CPM is a multivariate pattern analysis, it is not appropriate to evaluate 277 

individual FC associations independently. Therefore, we did not conduct a strict statistical test to 278 

evaluate the independent effect of each FC. 279 

In the resting state, CPM classified participants as MDD based on high connectivity within 280 

visual cortex and cerebellar regions and their connectivity to DMN regions. In the circle plot (Fig. 281 

1C), the one cool-colored line (represented by the bilateral LIMB [default mode/limbic] 282 

connection) indicated the reduced functional connectivity between the bilateral subgenual 283 

anterior cingulate cortex (sgACC) regions in MDD compared to HC. In the NT state, the CPM 284 

used FCs in similar areas as in the resting state, while the number of FCs consistently selected 285 

across the cross-validation iterations was fewer than in the resting state (Figs. 1B and 1C). 286 
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 287 

Figure 1. A. CPM prediction performance distributions for MDD-HC classification. Each point 288 

indicates one iteration of the 5-fold cross-validation result (100 iterations with different random 289 

splits were performed). The violin plot and horizontal lines indicate the distribution curve and 290 

quartile positions, respectively. B. Connectivity selected by the CPM model. The connectivities 291 

selected by more than 50% cross-validation iterations were plotted on the glass brain. The line 292 

color indicates the connectivity difference (z-value) between the MDD and HC groups. C. Circle 293 

plots of the same connectivities as in B summarized for each network region. Network labels are 294 

adapted from (Drysdale et al., 2017). DMN: Default Mode Network, FPTC: Fronto-Parietal Task 295 

Control, SN: Salience Network, COTC: Cingulo-Opperculum Task Control, D/VAN: Doral Visual 296 
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Attention Network, MR: Memory Retrieval, LIMB: default mode/limbic, SubC: Subcortical, SSM: 297 

Sensory SomatoMotor, AV: Auditory-Visual, CBL: Cerebellum. 298 

CPM prediction of individual RRS-B score 299 

Figure 2A displays the distributions of Spearman’s correlations between true and predicted 300 

RRS-B scores for MDD over 100 iterations of 5-fold cross-validation with different random splits 301 

(Supplemental Material Fig. S2 shows CPM prediction results including both groups). The 302 

median Spearman’s correlations were -0.049 (p = 0.447) for RSFC and 0.279 (p = 0.041) for 303 

NTFC. The difference in performance between the resting and NT states was significant (p = 304 

0.043). Figures 2B and 2C show the connectivity included in the prediction model that was 305 

selected more than 85% of the time in the cross-validation iterations (plots with 50% threshold 306 

are shown in Supplemental Material Fig. S3). Line color indicates FC correlation with RRS-B (z-307 

transformed, warm color indicates positive correlation). 308 

In the NT state, connectivity associated with RRS-B prediction was distributed over broad 309 

brain areas with high consistency across participants (across cross-validation). The higher 310 

connectivity from the thalamus regions (SubC nodes with dense, warm lines in Fig. 2C) in the 311 

NT state characterizes high RRS-B individuals in the MDD group. In contrast, in the resting 312 

state, many connectivities consistently selected by CPM were negatively correlated with RRS-B 313 

(Fig. 2B and Supplemental Material Fig. S3B). 314 
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 315 

Figure 2. A. Distributions of the CPM prediction performance for individual RRS-B scores in the 316 

MDD group. Each point indicates one iteration of the 5-fold cross-validation result (100 iterations 317 

with different random splits were performed). The violin plot and horizontal lines indicate the 318 

distribution curve and quartile positions. B. Plots of the connectivity selected by the CPM model 319 

in more than 85% of the cross-validation iterations. Line color indicates the connectivity correlation 320 

with RRS-B (z-transformed). C. Circle plots of the same connectivities as in B, summarized for 321 

each network region. Network labels are adapted from Drysdale et al. (2017) (see Fig. 1 for the 322 

network label abbreviations). 323 

MDMR connectome-wide association analysis 324 
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Figure 3 shows the regions with significant effects of interest (sum of the effects of state, 325 

group, RRS-B, and their interactions) with voxel-wise p < 0.001 and cluster-extent corrected p < 326 

0.05 in the MDMR analysis. Significant clusters were found in DMN regions (i.e., precuneus, 327 

posterior cingulate cortex [PCC], medial prefrontal cortex [MPFC]), executive control regions 328 

(i.e., supplementary motor area [SMA] and lateral frontal regions including inferior frontal gyrus 329 

[IFG]), the caudate region, and the cerebellum. Post-hoc seed-based connectivity analysis was 330 

performed on the peak areas in these significant clusters. Table 1 shows the seed points used 331 

for the post-hoc analysis. 332 

 333 

Figure 3. Significant regions with the MDMR statistics for the sum of the effects of interest (state, 334 

group, RRS-B, and their interactions) with voxel-wise p < 0.001 and cluster-extent corrected p < 335 

0.05. 336 

Table 1. The seed points in the significant clusters of the MDMR statistics. 337 

Seed index x y z Peak F-value Area 

1 -6 -78 56 3.036 Left Precuneus 

2 6 -42 24 2.825 Right Posterior Cingulate Cortex (PCC) 

3 -2 14 56 2.664 Left Supplementary Motor Area (SMA) 

4 6 50 8 2.53 Right Medial Prefrontal Cortex (MPFC) 

5 50 38 12 2.714 Right Inferior Frontal Gyrus (IFG) 

6 18 18 4 2.067 Right Caudate 

7 -46 6 44 2.811 Left Middle Frontal Gyrus 

8 -10 38 56 3.12 Left Superior Frontal Gyrus 

9 42 6 36 3.082 Right Inferior Frontal Gyrus (IFG) 
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10 -18 18 4 2.143 Left Caudate 

11 -34 -66 -24 2.322 Left cerebellum (Crus I) 

12 6 34 32 2.249 Right Cingulate Gyrus 

13 62 -42 -8 2.445 Right Middle Temporal Gyrus 

14 -50 34 -8 2.488 Left Inferior Frontal Gyrus 

15 22 26 60 2.098 Right Superior Frontal Gyrus 

16 2 26 56 2.056 Right Superior Frontal Gyrus 

17 -50 42 16 2.203 Left Inferior Frontal Gyrus 

18 -58 6 40 1.968 Left Middle Frontal Gyrus 

 338 

Figure 4 summarizes the representative MDD-HC contrast in the post-hoc analysis for the 339 

two seeds at the DMN hub nodes; PCC (seed 2; seed index corresponds to Table 1) and MPFC 340 

(seed 4). Significant FC maps of all seeds are shown in Supplemental Material Figures S4 and 341 

S5 for the resting and NT states, respectively. In the resting state, MDD had higher connectivity 342 

than HC from these DMN seeds to the visual cortex regions (Figs. 4A and 4B). Other seeds also 343 

showed higher connectivity for MDD than HC in the occipital areas (Supplemental Material Fig. 344 

S4), which was consistent with the CPM results. In the NT state, higher connectivity was also 345 

seen in the occipital regions (Figs. 4C and 4D), although the lower connectivity areas for MDD 346 

than HC of these seeds seen in the resting state (cool color regions in Figs. 4A and 4B) were 347 

not seen in the NT state (Figs. 4C and 4D), indicating that the MDD-HC contrast decreased in 348 

the NT state compared to the resting state. Notably, PCC seed connectivity in the precuneus 349 

regions was higher for HC than MDD in the resting state (cool color regions in Figs. 4A), 350 

indicating that posterior DMN FC was higher for HC than MDD in the resting state. In addition, 351 

MDD group had higher connectivity between these DMN seeds and the IFG region in the NT 352 

state (Figs. 4C and 4D), which was not seen in the resting state. 353 
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 354 

Figure 4. MDD-HC contrast connectivity maps in the MDMR post-hoc analysis with the PCC 355 

(seed 2) and MPFC (seed 4) seeds (top row) for the resting (A, B) and negative-thinking (NT; C, 356 
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D) states. The map shows the t-value for the MDD-HC contrast. The seed index corresponds to 357 

Table 1. PCC: posterior cingulate cortex, MPFC: medial prefrontal cortex. 358 

Figure 5 summarizes the representative NT-Rest contrast in the post-hoc analysis for three 359 

seeds, PCC (seed 2), SMA (seed 3), and right IFG (seed 9). Significant FC maps of all seeds 360 

are shown in Supplemental Material Figures S6 and S7 for HC and MDD, respectively. The 361 

PCC seed, a DMN hub region, had higher connectivity with regions in the executive control 362 

areas, including the lateral premotor and prefrontal regions, and the anterior insula in the NT 363 

state than in the resting state in MDD (Fig. 5D). The SMA and IFG seeds had higher 364 

connectivity with the precuneus area in the NT state than in the resting state in MDD (Figs. 5E 365 

and 5F). These indicate that connectivity between posterior DMN regions (precuneus and PCC) 366 

and executive control regions was increased in the NT state in MDD. This increased 367 

connectivity was not observed in HC (Figs. 5A, 5B and 5C). Connectivity between the SMA and 368 

precuneus showed an opposite pattern between HC and MDD (Figs. 5B and 5E); it was higher 369 

in rest than in NT for HC, but higher in NT than in rest for MDD. Connectivity within the posterior 370 

DMN regions was higher in the resting state than in the NT state in both HC and MDD (Figs. 5A 371 

and 5D). 372 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2023. ; https://doi.org/10.1101/2023.03.23.533932doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.533932
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

 373 

Figure 5. NT (negative thinking)-Rest contrast connectivity maps in the MDMR post-hoc analysis 374 

with the PCC (seed 2), SMA (seed 3), and right IFG (seed 9) seeds (top row) for the HC (A, B, C) 375 
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and MDD (D, E, F) groups. The map shows the t-value for the NT-Rest contrast. The seed index 376 

corresponds to Table 1. PCC: posterior cingulate cortex, SMA: supplementary motor area, IFG: 377 

inferior frontal gyrus. 378 

Figure 6 shows the RRS-B associations in the post hoc analysis for MDD. Significant FC 379 

maps of all seeds are shown in Supplemental Material Figs. S8 and S9 for resting and NT 380 

states, respectively. We did not examine the RRS-B association in HC because the score in HC 381 

did not have enough variance to assess the association robustly. The most striking observation 382 

was the connectivity of the cerebellum (seed 11). In the NT state, the connectivity of this 383 

cerebellar seed showed a positive correlation with the RRS-B in broad cortical areas, including 384 

DMN regions (i.e., PCC and MPFC, Fig, 6D). In contrast, in the resting state, cerebellar 385 

connectivity associated with the RRS-B was restricted to motor and premotor cortex and did not 386 

extend to the DMN (Fig. 6B). The negative RRS-B association with the FC between the 387 

precuneus and thalamus was also observed for the resting state in MDD (Fig 6A). 388 
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 389 

Figure 6. RRS-B association connectivity maps in the MDMR post-hoc analysis for seeds with 390 

the significant RRS-B association in the MDD group for the resting (A, B) and negative-thinking 391 
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(NT; C, D) states. The map shows the t-value for the RRS-B association. The seed index 392 

corresponds to Table 1. 393 

Discussion 394 

The primary findings of the present study are as follows: 1) CPM analysis demonstrated that 395 

both RSFC and NTFC were capable of distinguishing between HC and MDD individuals, 2) 396 

NTFC demonstrated predictive capability for trait RNT in individuals with depression, whereas 397 

RSFC did not show such predictive ability, and 3) CWA analysis indicated that the negative 398 

thinking process in MDD was associated with increased functional connectivity (FC) between 399 

regions of the default mode network and executive control regions, which was not observed in 400 

RSFC or in the HC group. 401 

As both RSFC and NTFC were effective in differentiating individuals with MDD from HC, it is 402 

warranted to investigate functional brain alterations in MDD using resting-state measures. 403 

However, RSFC did not predict trait RNT in depression, suggesting that RSFC alterations in 404 

depression may not directly reflect the ongoing RNT process. This finding contradicts the 405 

assumption that modifications in RSFC in MDD arise from heightened spontaneous rumination 406 

during the resting state in these individuals. While RSFC indicates alterations in brain 407 

connectivity, further investigations are needed to understand the specific processes underlying 408 

the relationship between RSFC and RNT in depression. 409 

 Investigations of FC patterns associated with CPM prediction and complementary CWA 410 

analysis further revealed the significant difference between resting and NT states in depressed 411 

individuals. FCs distinguishing MDD from HC were found in areas of the visual cortex and 412 

cerebellum and their connections with DMN regions in both CPM and CWA analyses. Reduced 413 

FC between bilateral sgACC areas was also used by CPM to classify MDD. Altered sgACC 414 

function in depression has been reported for MDD (Brakowski et al., 2017; Drevets et al., 2008), 415 

and disrupted sgACC activity could reduce its bilateral functional coupling. While increased 416 
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visual cortex activation during rumination has been reported in adolescents with remitted MDD 417 

(Burkhouse et al., 2017), a negative correlation between a trait rumination score (RRS) and 418 

visual cortex activation in both resting and task (face classification) conditions has also been 419 

reported (Piguet et al., 2014). Thus, while the increased FC in visual cortex in MDD may at least 420 

reflect higher visual imagery than HC at rest, it may not be specifically associated with negative 421 

thinking. 422 

Interestingly, DMN connectivity was not selected in the CPM classification, and MDMR 423 

analysis revealed decreased posterior DMN connectivity in MDD compared to HC in the resting 424 

state. This is consistent with the meta- and mega-analysis studies of large cohort data that 425 

reported decreased or no difference in resting-state DMN FC in depressed individuals 426 

(Goldstein-Piekarski et al., 2022; Tozzi et al., 2021; Yan et al., 2019; Zhang et al., 2020). 427 

In contrast to the MDD-HC classification, RRS-B prediction was well performed with NTFC, 428 

but not with RSFC. The FCs that were informative for predicting RRS-B in MDD in the CPM 429 

analysis were distributed over large areas of the brain (Supplemental Material Fig. S3). The 430 

involvement of many cortical regions, including the limbic and medial and dorsolateral prefrontal 431 

regions, has also been reported in the rumination induction task (Cooney et al., 2010). These 432 

suggest that RNT is associated with large-scale network and inter-network interactions (Lydon-433 

Staley et al., 2019; Zhang et al., 2020) rather than a focal processing abnormality. MDMR 434 

results showing significant FC differences between resting and NT states in MDD support the 435 

perspective of multi-network involvement in the RNT process. Connectivity between the 436 

precuneus and executive control regions (i.e., SMA, IFG) and the salience network region (i.e., 437 

anterior insula) was increased in the NT state compared to the resting state in MDD participants 438 

(Fig. 5). Also, the FC between the DMN seeds and IFG in the NT state was significantly higher 439 

in MDD than in HC (Figs. 4C and 4D), suggesting that such an increase in the NT state is 440 

specific to depressed individuals. 441 
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When we used a strict threshold for plotting the FCs informative for predicting RRS-B, the 442 

dense connection was seen in the right thalamus area, which had a positive correlation with 443 

RRS-B (Fig. 2C). The significant RRS-B association with FC between thalamus and precuneus 444 

was also observed in the resting state in MDD (Fig. 6A), but in a negative direction, highlighting 445 

that the resting state in MDD had a significantly different FC pattern than the NT state. The 446 

involvement of the thalamus in RNT has been demonstrated in a 7T fMRI study (Steward et al., 447 

2022), suggesting that the thalamus, with its extensive cortical pathways, may act to increase 448 

synchrony between cortical regions to maintain complex mental representations, including RNT. 449 

In addition, emerging clinical evidence suggests a role for right thalamic-cortical circuitry in the 450 

amelioration of depression in neuromodulation treatments (Lippitz et al., 1999; Riestra et al., 451 

2011; Scangos et al., 2021), highlighting the potential clinical implications of this particular 452 

finding to help refine neuromodulatory procedures for MDD. 453 

The RRS-B association in the CWA analysis was seen for the cerebellum seed connectivity 454 

with broad cortical regions. This cerebellar region (crus I) is functionally related to executive 455 

control network areas (Habas et al., 2009). A report of a blunted response of this region to 456 

reward anticipation in depressed individuals with high RNT (Park et al., 2022) also suggests that 457 

trait RNT may influence activation of this region. The associations of RRS-B with this seed to 458 

broad cortical regions, not limited to the executive control region but including the DMN regions 459 

in the NT state, suggest that the RNT is an active process involving multiple networks, not 460 

limited to the DMN. The increased FC between the SMA, a region that monitors and evaluates 461 

an active process (Bonini et al., 2014), and the precuneus, a region involved in self-referential 462 

thinking (Fig. 5E), also supports the idea that RNT in depression is an active process. The 463 

involvement of many cortical areas in the RNT process has also been reported in previous 464 

studies, including increased FC from the PCC to many cortical areas in the NT state compared 465 

to the resting state (Berman et al., 2014). 466 
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Discussing the limitations of the current study is warranted. The significant age difference 467 

between the MDD and HC groups may have biased the present results concerning the MDD-HC 468 

difference. To mitigate this, we excluded the age effect from the FCs in the CPM analysis, and 469 

age was included as a covariate factor in the MDMR analysis. However, excluding the age 470 

effect may have also removed the association between FC and depression if it interacted with 471 

age. Indeed, Andreescu et al. (2014) found an interaction between age and anxiety on DMN 472 

connectivity, where the effect of anxiety on FC was greater in older participants. Therefore, we 473 

acknowledge that the present findings of FCs associated with MDD (MDD-HC contrast) may not 474 

be comprehensive, as age-interacted FC associations may have been missed. Nonetheless, the 475 

prediction of RRS-B was made only for MDD, and age differences between groups did not affect 476 

this prediction. Another limitation is that we focused on the rumination portion of the RNT in 477 

MDD, neglecting the association with worry, another form of RNT that has been extensively 478 

discussed in anxiety disorders. Thus, the current FC findings concerning trait RNT are limited to 479 

rumination aspects in MDD. Additionally, it is important to acknowledge the limitation of the 480 

sample size in the current study. Despite implementing rigorous statistical evaluations, such as 481 

cross-validation and permutation tests, and employing multivariate approaches that can partially 482 

overcome the limitations of effect size, our sample may not be fully representative of the 483 

heterogeneous nature of the depressed population. Further investigations with larger samples 484 

are needed to draw more definitive conclusions about the association between RNT and RSFC 485 

and NTFC. 486 

In conclusion, the results of the present study challenge the assumption that the resting state 487 

is equivalent to the negative thinking state in individuals with depression. While the resting state 488 

is often considered a proxy for the ruminative state, the results of this study suggest that resting 489 

state and negative thinking are not synonymous in depressed individuals. It is important to 490 

recognize that the functional implications of the resting state cannot be fully understood on the 491 

basis of resting state results alone. The value of resting state studies in depression should not 492 
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be discounted; however, it is crucial to consider that interpretation of their functional implications 493 

requires additional information. Resting state, as an experimental procedure, does not 494 

necessarily reflect intrinsic functional activations (Finn, 2021), and the functional implications of 495 

resting state cannot be clarified without obtaining participants' introspective reports (Gonzalez-496 

Castillo et al., 2021). While the resting state may indicate abnormal brain activity in MDD, it may 497 

not fully capture the complexity of the rumination process. Negative thinking in depression 498 

involves dynamic interactions across multiple functional networks rather than being restricted to 499 

a specific brain network, which is not represented in the resting state. 500 

 501 
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