

1 **Cooperative progression of colitis and leukemia modulated by clonal
2 hematopoiesis via PTX3/IL-1 β pro-inflammatory signaling**

3
4 Hang He^{1,2,#}, Yuchen Wen^{1,2,#}, Hanzhi Yu^{1,2}, Jingjing Liu^{1,2}, Qingran Huo^{1,2}, Wenyan
5 Jin^{1,2}, Zhiqin Wang^{1,2}, Guohui Du³, Jun Du⁴, Huaquan Wang⁵, Zhigang Zhao⁶,
6 Zhigang Cai^{1,2,4,5,*}

7
8 ¹The Province and Ministry Co-sponsored Collaborative Innovation Center for
9 Medical Epigenetics; Department of Pharmacology, School of Basic Medical Science,
10 Tianjin Medical University, Tianjin, China.

11 ²National Key Laboratory of Blood Science, Tianjin, China.

12 ³Department of Research and Development, Beijing SeekGene BioSciences Co. Ltd,
13 Beijing, China.

14 ⁴Department of Rheumatology and Immunology, Tianjin Medical University Tianjin
15 General Hospital, Tianjin, China.

16 ⁵Department of Hematology, Tianjin Medical University Tianjin General Hospital,
17 Tianjin, China.

18 ⁶Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine,
19 Nankai University, Tianjin, China.

20

21

22

23

24 ***Correspondence:**

25 Zhigang Cai, Professor, Ph.D.
26 Tianjin Medical University
27 No.22, Qixiangtai Road, Tianjin, China 200037
28 E-mail: US36zcai@tmu.edu.cn

29

30 [#]These authors contributed equally to this work and should be considered co-first
31 authors.

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51 **Abstract**

52 Clonal hematopoiesis (CH) is considered an important risk factor for all-cause
53 mortality and the development of multiple chronic diseases including hematological
54 neoplasms, cardiovascular diseases, and potentially a range of autoimmune or
55 immune-deficiency diseases. Mutations in *TET2* are one of the first identified, most
56 important, and prevalent genetic drivers of CH. However, cooperative factors and
57 mechanisms underlying *TET2*-deficiency related CH (TedCH) remain largely
58 unknown. Recently, it has been suggested that certain diseases occurred before
59 TedCH and promote TedCH trajectory on the contrary, indicating that diseases in
60 non-hematopoietic organs may act as environmental non-genetic drivers of CH. To
61 clarify the relationships between immune-dysfunctional diseases and CH, here we
62 tested the impact of various challenges on TedCH. We found that expedited TedCH
63 depended on establishment of an inflammatory environment. Primary or chimeric
64 *Tet2*-mutant mice spontaneously developed co-symptoms reminiscent of human
65 chronic colitis and myeloid leukemia, which was exacerbated by feeding with DSS,
66 an experimental inducer of ulcerative colitis. Single cell RNA-seq (scRNA-seq)
67 analysis reveals in depth the damage of colon in the *Tet2*-mutant mice in
68 physiological conditions or fed with DSS, along with increase of dysbacteriosis
69 indicated by gut microbiome analysis. Results from colon scRNA-seq from both
70 mouse and human highlight the important roles of PTX3/IL-1 β pro-inflammatory
71 signaling in promoting colitis or leukemia. Finally, TedCH trajectory and
72 inflammation in colon and bone marrow were ameliorated by treatment of IL-1R1
73 inhibitor Anakinra. Our study suggests that PTX3/IL-1 β signaling and clonal
74 hematopoiesis cooperate and play important roles in gut-bone marrow axis and related
75 diseases including colitis and leukemia.

76

77

78 **Key words**

79 Clonal hematopoiesis, colitis, leukemia, inflammation, *TET2*, *PTX3*, *IL-1 β* , Anakinra

80

81 **Highlights**

- 82 1. Certain environmental factors, such as Dextran Sulfate Sodium (DSS), an
83 experimental inducer of ulcerative colitis, promote TedCH
- 84 2. Colitis and leukemia are spontaneously and simultaneously developed in
85 *Tet2*-deficient primary or chimeric mice, along with increased pathogenic gut
86 microbiomes, indicating an aberrant gut-bone marrow axis in the mutant mice.
- 87 3. Single cell RNA-seq analysis reveals enhanced PTX3, a soluble pattern
88 recognition molecule and IL-1 β pro-inflammatory signaling in colitis and
89 leukemia.
- 90 4. The *In vivo* function of the PTX3/IL-1 β pro-inflammatory signaling in TedCH is
91 indicated in human colitis and validated in experimental settings.

92

93

94 **Running Title**

95 Colitis and Leukemia Co-modulated by PTX3/IL-1 β Signaling and Clonal
96 Hematopoiesis

99

100 **Introduction**

101 Clonal hematopoiesis (CH) is a phenomenon [in which](#) hematopoietic stem cells
102 (HSCs) carry genetic mutations with advantageous growth potential, resulting in
103 aberrant expansion of certain immature and mature hematopoietic cell populations
104 over time (Genovese et al., 2014; Steensma et al., 2015). Similar phenomenon,
105 somatic mutation-driven clonal expansion of certain cells, takes place in
106 non-hematopoietic organs such as skin, esophagus, and brain (Jaiswal and Ebert,
107 2019). Recent studies suggest that CH is associated with an increased risk of
108 developing hematological malignancies, including acute myeloid leukemia (AML)
109 and myelodysplastic syndrome (MDS). Scoring CH is able to stratify high-risk
110 CH-carriers (Weeks et al., 2022). Interestingly, CH is also associated with
111 non-hematological diseases, including all-cause mortality, cardiovascular disease,
112 chronic obstructive pulmonary disease, and gout (metabolic arthritis, an auto-immune
113 disease in bone juncture) (Agrawal et al., 2022; Jaiswal and Libby, 2020; Jaiswal et al.,
114 2017; Miller et al., 2022). Accordingly, World Health Organization recently
115 recognizes that CH is a precursor lesion of myeloid neoplasms (Khoury et al., 2022).
116 Therefore, characterizing drivers and consequences of CH will not only assist in
117 investigating clonal expansion of somatic cells in non-hematopoietic organs but also
118 help in understanding the etiology of numerous chronic diseases many years prior to
119 their onset (Weeks et al., 2022).

120

121 Loss-of-function heterozygous mutations in the epigenetic regulator *TET2*
122 (Ten-Eleven Translocation methyl-cytosine dioxygenase-2) were among the first
123 discovered and one of the most prevalent and important drivers of CH. Unsurprisingly
124 now, mutations in *TET2* are also the top prevalent single-gene mutations in MDS, an
125 age-related hematological disease with abnormal hematopoietic stem and progenitor
126 cells (HSPCs) (Delhommeau et al., 2009; Nazha et al., 2021). *Tet2*-deficient primary
127 or chimeric mouse models display a competitive advantage over [normal](#) HSPCs,
128 skewing myeloid differentiation, and a tendency to transform into full-blown
129 leukemia when co-operative mutations and environmental factors involved in (e.g.,
130 *Flt3^{ITD/+}* or *Nras^{G12D}*) (Moran-Crusio et al., 2011) (Cai et al., 2020a; Chu et al., 2012).
131 Loss of *TET2* results in increase of DNA methylation at various genomic sites, such
132 as promoters, enhancers, and CpG islands (Rasmussen et al., 2015). Recently, we and
133 others reported that *Tet2*-deficient HSPCs exhibit significantly increased expression of
134 the inflammatory cytokine interleukin-6 (*IL-6*) and show stronger anti-apoptotic and
135 self-renewal abilities after exposure to acute stimulus such as *IL-6* or
136 lipopolysaccharides (LPS), leading to the development of an age-dependent chronic
137 myelomonocytic leukemia (CMML)-like disease in the mutant mice over time (Cai et
138 al., 2018; Zhang et al., 2015). Microbial signals are a major source of inflammatory
139 inducer and interestingly, *Tet2* mutant mice with antibiotic treatment or raised in
140 germ-free condition developed minimal CMML-like phenotypes (Meisel et al., 2018).
141 In line with these studies, a most recent study based on *in vivo* models rather than
142 generating chimeric *Tet2*-mutant models demonstrated that interleukin-1 (*IL-1 α* and
143 *IL-1 β*), is able to act as an external factor in driving *Tet2*-deficiency related clonal
144 hematopoiesis (TedCH) over age; genetic loss of their receptor *IL1-R1* mitigated
145 *Tet2*-deficiency related abnormalities (Burns et al., 2022; Caiado et al., 2023). In
146 summary, results from several independent studies strongly suggest that *Tet2*-deficient
147 HSPCs manifest TedCH phenomenon and cooperate with intrinsic and extrinsic

148 factors to develop stronger symptoms such as full-blown AML.

149

150 However, through mathematical analysis and experimental validation, a recent
151 study of TedCH suggests that hypercholesterolemia-induced atherosclerosis took
152 place prior to clonal hematopoiesis and may act as a driver of *Tet2*-deficient HSCs
153 proliferation on the contrary. This study suggests that certain diseases or
154 environmental conditions, for example, atherosclerosis drive the onset and trajectory
155 of TedCH (Heyde et al., 2021). Atherosclerosis is a complicated and chronic disease
156 where inflammation dysregulation explains in part (if not all) the etiology:
157 mononuclear cells from the blood, including white blood cells, are recruited to the
158 vessel wall in response to tissue damage (Libby et al., 2002). To further demonstrate
159 that “diseases” *were* able to take prior to TedCH and drive TedCH, the authors
160 presented an additional experimental model, a sleep fragmentation model, and
161 demonstrated that sleep disturbance drives TedCH (Heyde et al., 2021). Nonetheless,
162 clarifying the drivers and consequences of TedCH is the most critical challenge in the
163 area. Controlling the trajectory of TedCH will also assist in developing strategies to
164 mitigate CH-related diseases.

165

166 In previous studies, we have identified LPS, an inducer of innate-immunity
167 related TLR4 signaling, and mutations in *Flt3*, *Ins2* or lncRNA *Morbid* cooperates
168 with *Tet2* deficiency to exacerbate or mitigate TedCH or leukemic phenotypes(Cai et
169 al., 2020a; Cai et al., 2018; Cai et al., 2021; Cai et al., 2020b). To *further* explore the
170 potential drivers of CH, we assessed the impact of another four different
171 environmental factors on TedCH and confirmed that accelerated TedCH depends on
172 the establishment of *an* inflammatory environment. Based on the results of single cell
173 RNA-seq in the organs of colon (mouse and human both included) and microbe
174 sequencing in gut, we propose that *the* PTX3/IL-1 β signaling pathway, a tight
175 complement/pro-inflammation cascade, plays important roles in gut-bone marrow
176 axis which in turn regulates clonal hematopoiesis. We suggest that the PTX3/IL-1 β
177 signaling *pathway* should be appreciated to mitigate TedCH trajectory and related
178 diseases including colitis and leukemia.

179

180

181 **Results**

182 **DSS but not STZ, 5-FU, or additional irradiation promotes TedCH**

183 Competitive bone marrow transplantation (cBMT) assays were developed for
184 analyzing TedCH in the chimeric mice and four different treatments were chosen for
185 testing environmental impacts on TedCH: DSS, STZ, 5-FU, and additional irradiation
186 (**Figure 1A**). 5-FU and additional irradiation are well-known direct regulators of
187 hematopoiesis while DSS induces colitis and systematic inflammation and STZ
188 induces hypoglycemia. TedCH trajectory was monitored every 3 weeks by analyzing
189 CD45.1, CD45.2 and CD45.1/CD45.2 chimerism in the peripheral blood (PB) of the
190 chimeric mice. As shown in **Figure 1B** and **C**, expedited TedCH were observed upon
191 DSS feeding compared to vehicle (Veh) feeding. Treatments with STZ or additional
192 irradiation appear to have no effect on TedCH while 5-FU has significant inhibition
193 on TedCH (**Figure 1D to F; Supplemental Figure 1A to C**). As DSS induces
194 inflammation and colitis, we conclude that inflammation and colitis positively
195 cooperate TedCH trajectory in the cBMT experimental setting.

196

197 **DSS exacerbates colitis burden and aberrant dysbacteriosis in *Tet2*^{+/−} primary
198 mice**

199 Since DSS expedited TedCH in the chimeric mice, we then asked in detail what
200 are the *underlying* biological and pathological processes and consequences during the
201 DSS challenge. We chose *Tet2*-deficient primary mice for further study since they are
202 more stable and readily monitored in a large cohort without irradiation involvement
203 (irradiation itself may damage gut histology). A previous report suggests that acute
204 DSS challenge exacerbates inflammatory bowel disease (IBD) in *Tet2*-deficient
205 primary (Zhang et al., 2015). We turned to ask about the impact of chronic colitis by
206 three cycles of low-dose DSS feeding (**Figure 2A**). Consistently, even low-dose of
207 DSS also induced exacerbated colitis in *Tet2*-deficient primary mice (*Tet2*^{+/−}_DSS vs.
208 WT_DSS, **Figure 2B-E**). Upon DSS challenge, increased disease score (based on
209 colon H&E staining) *was* observed and confirmed by expression of gut barrier
210 markers *Muc2* and *Occludin* (**Figure 2F** and **G**; and **Supplemental Figure 2A**).
211 Interestingly, *Tet2*-deficient primary mice appear to develop colitis spontaneously as
212 shown by FITC-D staining in the serum and H&E staining in colon (*Tet2*^{+/−}_Veh vs.
213 WT_Veh, **Figure 2H**; and **Supplemental Figure 2A**).

214
215 To ask to what extent *Tet2*-deficient primary mice manifest aberrant colon
216 *pathogen-host* immunity, we performed 16S rRNA sequence and compared the
217 microbial composition between WT and *Tet2*-deficient primary mice (*Tet2*^{+/−}_Veh vs.
218 WT_Veh), along with the comparison between WT and *Tet2*-deficient primary mice
219 fed with DSS (*Tet2*^{+/−}_DSS vs. WT_DSS). Results of the microbial composition data
220 calculated by principal component analysis (PCA) suggest the four groups distinguish
221 each other very well (**Figure 2I**). Although the Simpson index of operational
222 taxonomic units (OUT, measuring microbial community composition) level fails to
223 distinguish the four groups (a higher Simpson index indicates lower community
224 diversity, **Figure 2J**), the Chaos index of OUT level significantly distinguishes
225 microbial communities of *Tet2*^{+/−}_Veh mice from that of WT_Veh mice (a higher
226 Chaos index indicates higher community richness, **Figure 2K**). Upon DSS challenge,
227 the Chaos index of OUT level in *Tet2*^{+/−}_DSS and WT_DSS were decreased compared
228 to that in *Tet2*^{+/−}_Veh and WT_Veh, suggesting certain bacteria were dominant
229 expanded. Further microbial analysis suggests that: (1) at phylum level, *Tet2*_DSS
230 mice exhibited most increments in *Proteobacteria* and *Actinobacteria* (both are
231 pathogenic and toxic to the animals, **Figure 2L**, **Supplemental Figure 3A** and **B**); (2)
232 at genus level, different microbiome compositions are revealed for the comparison
233 between *Tet2*^{+/−}_Veh and WT_Veh (**Figure 2M**). Detailed comparison between
234 *Tet2*^{+/−}_Veh and WT_Veh or between *Tet2*^{+/−}_DSS and WT_DSS reveal that aberrant
235 changes in microbial composition including probiotic microbes (circled by blue
236 rectangles) or pathogenic microbes (circled by pink rectangles) (**Figure 2N** and **O**;
237 and **Supplemental Figure 2B** and **C**). Analysis combining hematological parameters
238 and microbial composition further confirm that the pathogenic microbial
239 *Proteobacteria* are involved in alteration of Hemoglobin level and neutrophil
240 percentage (**Supplemental Figure 3C** and **D**). Taken together, results from colon
241 pathology and microbial 16S rRNA sequencing suggest that without DSS feeding,
242 *Tet2*-deficient primary mice have already manifested subtle colitis and aberrant
243 microbial composition, especially increase of pathogenic microbes; upon DSS
244 challenge, *Tet2*-deficient primary mice manifest exacerbated colitis and imbalance of
245 intestinal flora.

246

247 **DSS induces aberrant hematopoiesis and skewed myelopoiesis revealed by flow**
248 **cytometry**

249 To directly clarify the DSS effect on hematopoiesis, cells from blood, spleen and
250 bone marrow were subjected to hematological cell counts, histology, and flow
251 cytometry analysis. Consistently with our previous report that *Tet2*-deficient primary
252 mice manifest skewed myelopoiesis with or without LPS treatment (Cai et al., 2018),
253 we observed similar trends in the *Tet2*-deficient primary mice compared to wild-type
254 controls (**Figure 3A to G**). Flow cytometry results revealed similar skewed
255 myelopoiesis and alterations specific to the pools of HSC and GMP in the *Tet2*^{+/−}_Veh
256 or *Tet2*^{+/−}_DSS mice compared to the respective controls.

257

258 **scRNA-seq analysis of colon tissue highlights that cell-to-cell talk between *Ptx3*⁺**
259 **fibroblasts and *Il-1β*⁺ monocytes in promoting inflammation**

260 Colon tissue from the four groups of mice was also used for scRNA-seq analysis
261 since this approach can provide a full-map of cell-to-cell talk at the single-cell
262 resolution. After quality controls, around 3000 to 6000 cells from each group were
263 included in the further annotation analysis (**Figure 4A**). A total of 5 main populations
264 including epithelial cells, stromal cells, and immune cells (myeloid cells, B cells, and
265 T cells) are annotated in the UMAP plot (**Figure 4A**). Each group has these five main
266 cell populations. However, *Tet2*^{+/−}_Veh, WT_DSS and *Tet2*^{+/−}_DSS appear to have a
267 higher percentage of stromal cells compared to the WT_Veh control (**Figure 4B** and
268 **C**). Expression density of the respective markers for the five main cell populations is
269 shown in **Figure 4D**. The overall enriched signaling pathway analysis suggests that
270 inflammatory signaling pathway is upregulated in the myeloid cells of *Tet2*^{+/−}_Veh,
271 WT_DSS and *Tet2*^{+/−}_DSS compared to the WT_Veh control (green rectangle, **Figure**
272 **4E**; and **Supplemental Figure 4A**). Importantly, cell-cycle related pathway is also
273 upregulated in the myeloid cells of *Tet2*^{+/−}_Veh compared to WT_Veh control (pink
274 rectangle, **Figure 4E**). Interestingly, we also observed upregulated
275 epithelia-mesenchymal-transition pathway (EMT) in the stromal cells of *Tet2*^{+/−}_Veh,
276 WT_DSS and *Tet2*^{+/−}_DSS compared to the WT_Veh control (blue rectangle, **Figure**
277 **4E**; and **Supplemental Figure 4C**). Overall, the pathway enrichment analysis in each
278 single cell population suggests that myeloid cells and stromal cells grossly have the
279 most alterations in the comparison between *Tet2*^{+/−}_Veh vs. WT_Veh or between
280 WT_DSS vs. WT_Veh. We then filtered out myeloid cells and stromal for further
281 cell-to-cell communication.

282 First, stromal cells and myeloid cells from the colon UMAP pool were subject to
283 further clustering to distinguish sub-populations. In total, 8 sub-populations of cells in
284 the stromal cells and 7 sub-populations of cells in the myeloid cells are annotated
285 according to the typical marker gene expression (**Figure 4F**; and **Supplemental**
286 **Figure 4B**). Expression of *Ptx3* and *Il-1β* is plotted in the UMAP space of colon
287 tissue, stromal cells, or myeloid cells as indicated (**Figure 4G**). To our surprise,
288 expression of *Ptx3* appears to be specific to stromal cells in the colon while
289 expression of *Il-1β* appears to be specific to myeloid cells in the colon in the
290 scRNA-seq dataset. Five sub-populations from the stromal cells and six
291 sub-populations from the myeloid cells had the most alterations in the percentage and
292 therefore were used for calculating cell-to-cell talk strength (**Figure 4H**). Indeed,
293 *Cx3crl1*⁺-myeloid cells appear to have stronger interaction with *Ptx3*⁺-stromal cells in
294 *Tet2*^{+/−}_Veh compared to WT_Veh (left two panels, **Figure 4H**). Myofibroblasts also

295 appear to strongly interact with many myeloid cells in *Tet2*^{+/−}_Veh compared to
296 WT_Veh (left two panels, **Figure 4H**). In summary, upon DSS feeding, interaction
297 between *Ptx3*⁺-stromal cells and several myeloid cells are dramatically activated
298 (right two panels, **Figure 4H**).

299 To dissect the detailed molecular events in the *Il-1β*⁺-myeloid cells and
300 *Ptx3*⁺-stromal cells, five of myeloid sub-populations were used for NicheNet assay
301 (Browaeys et al., 2020). As shown in **Figure 4I** to **L**, IL-1β/IL1-R1 signaling is
302 actively involved in the cell-cell interaction, associated with expression of many
303 downstream genes encoding complement protein proteins or inflammatory ligands
304 (*Clra*, *C1s1*, *C3* and *Cxcl12*). Surprisingly, *Il1r1* along with *Clra*, *C1s1*, *C3* and
305 *Cxcl12* all are dominantly expressed in the stromal cells of colon, compared with
306 other four main cell population (**Figure 4M**). Taken together, our detailed cell-cell
307 talk analysis based on the colon scRNA-seq dataset from the 4 groups of mice
308 strongly suggest that PTX3/IL-1β axis recruits inflammatory and complement cascade
309 to module colon immunity in *Tet2*-deficient mice fed with DSS or raised in normal
310 condition.

311
312 **Aberrant expression of PTX3 and IL-1β are indicated clinical samples with**
313 **leukemia or colitis.**

314 To guarantee that PTX3/IL-1β signaling involves in human colitis or leukemia,
315 we searched publicly available datasets of bulk RNA-seq or scRNA-seq and
316 compared their expression between disease group and healthy controls. Data shown in
317 **Figure 5A** to **D** suggest that increased expression of *PTX3* is detected in the myeloid
318 leukemia group (datasets with AML or MDS patients were analyzed). Interestingly,
319 mutations in *TET2* appear to have higher expression of *PTX3* also (**Figure 5A** and **D**).
320 Importantly, higher expression of *PTX3* has a worse prognosis in the TCGA-LAML
321 cohort while expression of *IL-1β* failed to stratify the cohort (**Figure 5A** and **D**).
322 Additionally, analysis of colitis samples also suggests that higher expression of *PTX3*
323 and *IL-1β* took place in some cohorts of colitis samples compared to the controls
324 (**Figure 5E** to **G**). Taken together, these results warrant that the PTX3/IL-1β bundle
325 indeed involves in human colitis or leukemia.

326 As we surprisingly observed that *Ptx3* and *Il-1r1* are dominantly (if not
327 specifically) expressed stromal cells of colon tissue in mice (**Figure 4G** and **M**; and
328 **Supplemental Figure 6A** and **B**), we want to characterize if this pattern is conserved
329 in human. We downloaded the publicly available scRNA-seq datasets of colitis and
330 re-analyzed the cells (Smillie et al., 2019). Results from **Figure 5H** to **M**, along with
331 **Supplemental Figure 5**, suggest that the percentage of *PTX3*⁺-fibroblasts indeed
332 increased according to the grade of colitis. Although partial myeloid cells express
333 *PTX3* themselves, *PTX3* is also dominantly expressed in stromal cells. Taken together,
334 results from human clinical samples suggest that PTX3/IL-1β signaling may have
335 important functions in colitis and leukemia.

336
337 **Pharmacological blockage of IL-1β signaling by Anakinra inhibits PTX3**
338 **expression and inflammation in colon and mitigates TedCH in blood**

339 PTX3 is a soluble pattern recognition molecule (PRM) and has been reported to
340 be directly involved in IL-1β signaling (Bonavita et al., 2015). We postulate that the
341 PTX3/IL-1β signaling pathway is present at the protein level in the colon of *Tet2*^{+/−}
342 mice with chronic inflammation. To validate this hypothesis, we performed western
343 blot analysis to examine the expression of Il-1β and Ptx3 (**Supplemental Figure 6C**

344 and D). Additionally, immunohistochemical (IHC) staining revealed high levels of
345 Ptx3 expression in inflammatory cells infiltrating the colonic tissues of *Tet2*^{+/−} mice
346 (**Supplemental Figure 6E and F**).

347 As inhibitors specific to PTX3/Ptx3 activity are not available, we turn to use
348 IL1R1 specific inhibitor Anakinra to assess the function of Ptx3 in the TedCH, colitis
349 and aberrant hematopoiesis. cBMT assays for TedCH were conducted along with DSS
350 and/or Anakinra treatment (**Figure 6A**). Consistent with its anti-inflammation
351 function, application of Anakinra mitigate TedCH expansion in the mice feed with
352 Vehicle or DSS (**Figure 6B**; and **Supplemental Figure 6G**). Aberrant hematopoiesis
353 also appears to be partially rescued in the TedCH_Anakinra mice compared to
354 TedCH_PBS mice (**Figure 6B**; and **Supplemental Figure 6H and K**). Importantly,
355 application of Anakinra reduced the expression of both Ptx3 and IL-1β (**Figure 6D** and
356 **E**). The reduced expression of Ptx3 upon Anakinra is also validated by
357 immunohistochemistry (IHC); pathologic index is also largely ameliorated upon
358 Anakinra treatment (**Figure 6F to I**). Taken together, results from Anakinra treatment
359 suggest that inhibition of IL-1β signaling modulated Ptx3 expression and inflammation
360 severity, along with TedCH trajectory and aberrant hematopoiesis.

361

362 Discussion

363 Since clonal hematopoiesis was for the first time recognized as a new risk medical
364 entity to broadly predict diseases and even all-cause mortality around a decade ago,
365 numerous genetic drivers or passengers of clonal hematopoiesis have been
366 characterized, along with a recent report indicating their trajectories were able to be
367 mathematically computed in human samples (Abelson et al., 2018; Fabre et al., 2022;
368 Genovese et al., 2014; Weeks et al., 2022; Weinstock et al., 2023). To understand the
369 mechanisms underlying CH, it was proposed that different genetic drivers of CH may
370 favor corresponding environmental factors to strengthen or amplify the onset and
371 consequence of CH (Caiado et al., 2021). For example, mutations in *TP53* and
372 *PPM1D*, two top-10 prevalent drivers of CH, were selected when irradiation was
373 applied in the therapy or after exposure to cisplatin and doxorubicin treatment (Wong
374 et al., 2015) (Hsu et al., 2018). Our previous studies have shown that mutations in
375 *TET2*, the first identified and one of the top-3 driver of CH, favors inflammatory
376 condition on the contrary; blocking inflammation by genetic loss of *Morrbid* or
377 administration of anti-inflammation drugs E3330 or SHP099 mitigate TedCH in
378 experimental models (Cai et al., 2020a; Cai et al., 2018; Cai et al., 2021; Cai et al.,
379 2020b). However, whether and how other environmental factors (positive, negative,
380 or neutral to TedCH), intra-cell or intra-organ or host-pathogen communications drive
381 TedCH remain incompletely understood.

382 To reach these **goals**, we first assessed the role of five different environmental
383 factors in TedCH (4 factors are included in this study; and another one based on
384 *Tet2*^{+/−} HSPCs mixed with genetically stable inflammatory HSPCs will be reported
385 elsewhere) and prioritized the impact of DSS, an inducer of infection with toxic
386 pathogens and colitis in gut. We further characterized the impact of DSS on the
387 *Tet2*-deficient chimeric or primary mice by multi-omic tools including single cell
388 RNA sequencing or gut microbe sequencing. Although administration of the other
389 three challenges, irradiation, 5-FU (depletion of immune cells and hematopoietic
390 cells), or STZ (toxic damager of pancreases and inducer of high blood glucose) failed
391 to accelerate TedCH, chronic colitis induced by three cycles of feeding with DSS or
392 mixing with IL-1β-secreting genetically stable inflammatory HSPCs expedite the

393 trajectory of TedCH. These results suggest that: 1) only certain specific environmental
394 factors play a positive role to cooperate with TedCH in experimental models; 2) these
395 “positive” factors may have a direct link to inflammation or innate immunity; 3) the
396 gut-bone marrow axis, which could be stimulated by host-pathogen axis or just by
397 dysregulated autoimmunity, play a role in TedCH and leukemogenesis.

398 These observations from us are consistent with a previous study by *Meisel* et al.
399 who directly studied the pathogen-host interaction in *Tet2*-mutation mediated
400 leukemic diseases. In the study, *Meisel* et al. studied why *Tet2*-mutant primary mice
401 did not develop MPN or CMML phenotypes with 100% penetration and proposed that
402 microbial signals cooperate to induce pre-leukemic MPN phenotype in the mice
403 (host-pathogen axis in TedCH-related diseases). Using *Tet2*-mutant mice raised in
404 germ-free conditions, the authors further validate their conclusions (Meisel et al.,
405 2018; Zeng et al., 2019). However, most of the experimental mice and our human are
406 exposed to microbial environments during life. Where the initial inflammation takes
407 place (gut, bone marrow or even other organ?) and how it triggers CH and changes its
408 trajectory remain to be elucidated.

409 Considering the importance of inflammation in *Tet2*-mutation related diseases, in
410 previous studies we integrated multiplayers and proposed a working model for
411 *Tet2*-mutation related diseases: TedCH recruits a feed-forward loop and inflammation
412 acts as an amplifier in the loop for disease progression including chronic leukemia
413 and acute leukemia (Cai et al., 2018; Cai et al., 2021). Given that DSS promotes
414 TedCH in chimeric mice, we then tested if DSS could promote *Tet2*-mediated CMML
415 to transform into full-blown AML. During the short-period of colitis, we indeed notice
416 exacerbated phenotypes in *Tet2*mutant_DSS mice in both gut permeability (worsen
417 colitis) and bone marrow hematopoiesis (malignant transformation to
418 MDS/MPN-like). Unlike that we observed full-blown AML in aged *Tet2*^{+/−}; *Flt3*^{ITD/ITD}
419 or *Tet2*^{+/−}; *Ins2*^{+/−}, we failed to observe full-blown AML in the DSS-challenged mice.
420 These results suggest that inflammation as an amplifier to induce full-blown AML
421 may depend on adequate time.

422 Furthermore, single-cell RNA-seq (scRNA-seq) today has become a very powerful
423 tool to dissect the etiology of complicated diseases at the single cell level and
424 molecular level. Both scRNA-seq and bulk RNA-seq were applied in this study to
425 delineate the widespread transcriptional changes in gut. Analysis of scRNA-seq in gut
426 of *Tet2*-mutant_Veh and *Tet2*-mutant_DSS mice helps us to reveal a previously
427 unappreciated alteration in *Ptx3*⁺-fibroblast of gut and the inferred PTX3/IL-1 β
428 signaling [note that mice were raised in specific pathogen-free (SPF) condition with
429 or without feeding with DSS]. These results make us conclude that *Tet2*-mutant mice
430 appear to develop colitis and leukemia simultaneously, very subtle if not strong,
431 reminiscent of human symptoms. Consistently, the involvement of PTX3/IL-1 β
432 inflammatory signaling is also confirmed when we re-analyzed human colitis scRNA
433 datasets.

434 Interestingly, recent clinical studies have also shown that patients with
435 inflammatory bowel disease (IBD) are associated with clonal hematopoiesis and
436 mutations in *DNMT3A* and *PPM1D* are prevalent although mutations in *TET2* are not
437 dominant in the cohort on the contrary (Feng et al., 2023; Zhang et al., 2019). The
438 colitis patients harbor mutant hematopoietic clones and often present with clinical
439 symptoms of MDS/AML (Cumbo et al., 2022). Moreover, intestinal barrier
440 dysfunction is also reported at diagnosis in patients with MDS and AML (Khan et al.,
441 2021). Based on the present study, along with these clinical observations, we may

442 conclude that *Tet2*-mutant mice manifest co-symptoms of colitis and leukemia and
443 that a molecular link, PTX3/IL-1 β signaling, modulate both diseases in the mice and
444 in human. Further clinical samples with mutations in various clonal hematopoiesis
445 drivers will help answer these questions.

446 Changes in the gut microbiome are considered a key regulator of the conversion of
447 normal hematopoiesis to diseased hematopoiesis, such as anemia and neutropenia
448 caused by IBD or long-term antibiotic use (Deshmukh et al., 2014). A study has
449 shown that an imbalance in the microbiota induced by antibiotic exposure or sterile
450 conditions can lead to dysregulation of hematopoiesis (Yan et al., 2018). Our data
451 from 16S rRNA gene sequencing indicated that *Tet2*^{+/−} mice had disturbed gut
452 microbiota with significantly reduced probiotic abundance prior to the addition of
453 inflammatory factors. For example, chronically infected *Tet2*^{+/−} mice exhibited
454 increased *Proteobacteria* and *Actinobacteria*, two toxic gut pathogens to mammals.
455 We also observed that there was a positive correlation between these microbiotas and
456 PB hematological parameters (**Supplemental Figure 3C and D**). Previous clinical
457 studies have shown that patients undergoing hematopoietic stem cell transplantation
458 (HSCT) have reduced gut microbiota diversity and increased *Proteobacteria*, which
459 correlates with the risk of patients developing bloodstream infections during HSCT
460 (Taur et al., 2012). These results suggest a potential role of microbial signaling in
461 exacerbating the disease burden of IBD in *Tet2*^{+/−} mice as well as hematologic
462 malignancy transformation. Functional analysis in the appropriate facility with
463 adequate biological protection, for example, pathogen infection or fecal microbial
464 transplantation, will offer direct evidence with regards to the interaction between
465 specific-pathogens and TedCH or *Tet2*-mutant mice (Zeng et al., 2023).

466 Consistent with previous studies (Burns et al., 2022; Caiado et al., 2023), our data
467 suggest that Anakinra eliminates the *Tet2*^{+/−} clones in neutrophil and HSPC
468 compartments, inhibits gut inflammation, restores the adaptive hematopoietic injury
469 induced by chronic inflammation, and attenuates colitis. Dissecting the role of PTX3
470 and IL1R1 in a cell-type specific deletion will assist in further understanding the
471 cellular communications, i.e., immune cells with epithelia cells and offer a new
472 knowledge for understanding gut-bone marrow axis and co-symptoms of colitis and
473 leukemia. Based on our pharmacological data using the IL-1R1 inhibitor Anakinra, it
474 is feasible to speculate that: 1) cocktails of antibiotics administration would also be
475 able to slowdown TedCH, which should be tested in future studies; 2) blocking the
476 IL-1 β /PTX3 axis may represent a promising therapeutic target for preventing and
477 treating infection-related clonal hematopoiesis and associated diseases. Since specific
478 PTX3 inhibitors, except PTX3 antibodies, are still not available in research-grade or
479 clinical-grade, developing PTX3 inhibitors or combining them with methylation drugs
480 may represent potential therapeutic approaches for targeting *TET2* mutant
481 hematopoiesis in the future.

482 In summary, the present study demonstrates that gut-bone marrow axis plays an
483 important role in the co-symptoms of colitis and leukemia in the *Tet2*-mutant chimeric
484 and primary mice. Dysbacteriosis, chronic inflammation and clonal hematopoiesis are
485 all assembled to promote the progression of the co-symptoms over time. Our
486 single-cell transcriptomic analysis highlights and appreciates the role of a population
487 of gut *Ptx3*⁺-fibroblasts in driving the entire diseases. Mitigation of inflammation by
488 IL-1R1 inhibitor Anakinra can downregulate Ptx3, repair gut barrier and slowdown
489 TedCH. The study therefore demonstrates that PTX3/IL-1 β signaling-associated
490 clonal hematopoiesis plays important roles in the gut-bone marrow axis and related

491 chronic diseases, including colitis and leukemia.

492

493

494

495

496

497

498

499

500 **STAR METHODS**

501 **Detailed methods are provided in the online version of this paper and include the**
502 **following:**

503 **KEY RESOURCES TABLE**

504 **RESOURCE AVAILABILITY**

505 Lead contact

506 Materials availability

507 Data and code availability

508 **EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS**

509 Mice

510 **METHOD DETAILS**

511 Competitive bone marrow transplantation and In vivo assays

512 Flow cytometry

513 Single cell RNA-sequencing

514 Fecal microbiota evaluation

515 H&E Staining and Immunohistochemistry Staining

516 Western blot analysis

517 List of computation & visualizing software for mouse scRNA-seq

518 **QUANTIFICATION AND STATISTICAL ANALYSIS**

519 Statistical analysis

520

521 **Acknowledgments**

522 We thank members of Cai laboratory and colleagues of Tianjin Medical University for
523 their technical and administration support, as well as for their helpful suggestions
524 improve the manuscript. We would also like to thank Drs. Mingjiang Xu, Tao Cheng,
525 Hui Cheng, Zhiqiang Liu, and Mi Deng for sharing us reagents.

526

527 **Author Contributions**

528 ZC and HH conceived and designed the study, wrote the computational scripts for
529 sequencing analysis, visualized the results, drafted, and wrote the manuscript. HH and
530 YW performed most of the experiments and analysis. HY, QH, WJ, ZW, GD and JD
531 assisted the experimental verification or validations from other database/cohorts and
532 edited the manuscript. HW and ZZ contributed critical reagents and analyzed the data.
533 All authors contributed to the editing and revision of the manuscript.

534

535

536 **DECLARATION OF INTERESTS**

537 ZC is a scientific advisor to Beijing SeekGene BioSciences Co. Ltd. GD is an
538 employee of Beijing SeekGene BioSciences Co. Ltd. Other authors declare no
539 potential conflict of interest.

540

541

542 **Funding**

543 This work was supported in part by grants from the Tianjin Medical University Talent
544 Program and from National Science Foundation of China to ZC (No.82170173, No.
545 82371789).

546

547

548

549

550 **Figure Legends**

551 **Figure 1. Assessing impacts of various treatments on TedCH trajectory.**

552 (A) Competitive bone marrow transplantation (cBMT) assays were used to search for
553 cooperative environmental factors of TedCH. See Methods for detailed cBMT
554 experimental procedures. Treatments were applied once TedCH is set up at the 3~6
555 weeks post cBMT. Results of four different treatments (DSS, STZ, 5-FU and
556 additional irradiation) were included in this study. As shown in the Figure 1A, DSS
557 accelerated TedCH. Expedited TedCH was also observed when *Tet2*^{+/−} HSPCs were
558 mixed with genetically stable inflammatory HSPCs and the detail results will be
559 reported in another study (Wen and Cai *et al.*, manuscript in preparation, 2023).
560 cBMT, competitive bone marrow transplantation; PB, peripheral blood.

561 (B and C) Representative flow profiles of PB from the chimeric mice fed with DSS or
562 normal water (vehicle, veh) (B) and the quantified trajectories of TedCH in the
563 chimeric mice (C).

564 (D-F) Quantified trajectories of TedCH in the chimeric mice treated with STZ (D), or
565 5-FU (E), or additional irradiation (F) as indicated.

566 Data are shown as means ± SEMs. Number of biological repeats (animals): n = 5~7.
567 Experiments of DSS treatment were repeated twice. Experiments of STZ or 5-FU or
568 additional irradiation treatment were performed once. *, p < 0.05; **, p < 0.01; ***, p
569 < 0.001; ****, p < 0.0001.

570 See also **Supplemental Figure 1** for representative flow profiles of PB from the
571 chimeric mice with or without STZ, 5-FU and additional irradiation treatment.

572

573 **Figure 2. *Tet2*-deficient mice manifest exacerbated colitis and aberrant 574 microbiota composition when fed with DSS.**

575 (A) Experimental scheme for induction of chronic colitis by DSS. Three cycles of
576 DSS feeding were performed during the 50-day experimental procedure. Four groups
577 of animals were included in the entire procedure: WT_Veh, *Tet2*^{+/−}_Veh, WT_DSS,
578 *Tet2*^{+/−}_DSS.

579 (B and C) Body weights and disease scores (disease activity index, DAI) were
580 monitored daily and plotted during the induction.

581 (D-F) *Tet2*-deficient mice manifest exacerbated colitis based on colon pathology.
582 Colons from the 4 groups of mice were photographed (D) and quantified based on
583 colon length (E). Damage scores of colons were monitored and plotted based on H&E
584 staining (F).

585 (G) Expression of two classic gut barrier markers *Muc2* and *Occludin* in colon were
586 quantified by qRT-PCR.

587 (H) Damage of gut barrier were quantified by FITC-dextran staining in serum of PB.

588 (I-O) Microbiota (16S rRNA) sequencing analysis of gut in mice feed with DSS or

589 vehicle. The PCA plot of the 4 groups of microbiota samples suggests obvious
590 separation in microbial composition (I). α -diversity of the microbial community based
591 on observed operational taxonomic units were quantified by Simpson or Chao index
592 (J and K). Average relative abundance of prevalent microbiota at the phylum level or
593 at the genus level among the four groups (L and M). Detailed comparison of relative
594 taxon abundance between the *Tet2*^{+/−}_Veh vs. *WT*_Veh or between *Tet2*^{+/−}_DSS vs.
595 *WT*_DSS are also shown in (N) and (O).

596 PCA, principal component analysis.

597 Data are shown as means \pm SEMs in A to H. Number of biological repeats (animals):
598 n = 3~7. Experiments of DSS treatment on primary mice were repeated three times. *,
599 p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

600 See also **Supplemental Figure 2** for representative photography of H&E staining of
601 colons and additional microbiota analysis.

602

603 **Figure 3. Chronic DSS feeding induces exacerbated myelopoiesis in *Tet2*-deficient
604 mice revealed by flow cytometry.**

605 (A) Hematological parameters of PB were monitored at the end-point of the DSS
606 induction.

607 (B and C) Photography and quantification of spleens.

608 (D and F) Gating strategies, representative flow profiles and quantifications of HSPCs
609 in BM. LSK, Lin[−];Sca1⁺;Kit⁺. HSC, hematopoietic stem cell. MPP, multiple potent
610 progenitor. CMP, common myeloid progenitor. GMP, granulocyte-monocyte
611 progenitor.

612 (E and G) Quantification of mature cells including neutrophils, T cells, and B cells in
613 bone marrow and spleen. BM, bone marrow; SP, spleen; PB, peripheral blood.

614 Data are shown as means \pm SEMs. Number of biological repeats (animals): n = 3~7.

615 Experiments of DSS treatment on primary mice were repeated three times. *, p < 0.05;
616 **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

617

618 **Figure 4. Single-cell RNA-seq analysis of colon tissue from *Tet2*-deficient mice
619 when feed with DSS or vehicle.**

620 (A) UMAP plot showing 5 main populations in colon tissues. After lysis, all cells
621 from colon tissues were subjected for scRNA-seq. A total of 18,092 high-quality cells
622 with an average of about 3000 genes per cell were included in the UMAP plot. After
623 quality control during the dataset analysis, the group of *WT*_Veh has 5589 cells;
624 *Tet2mut*_Veh has 5649 cells; *WT*_DSS has 3382 cells; *Tet2mut*_DSS has 4372 cells.
625 The 5 main populations include epithelial cells (red), stromal cells (yellow) and three
626 major types of immune cells: myeloid cells (green), B cells (blue) and T cells (dark
627 blue).

628 (B) Four individual UMAP plots are separately shown according to the sample source.

629 (C) Stacking bar plot showing the portion of the 5 main annotated populations in each
630 colon sample.

631 (D) Expression of representative annotation markers for the 5 main cell populations in
632 the UMAP plot of colons. *Dcn* for stromal cells; *Krt8* for epithelial cells; *Lyz2* for
633 myeloid cells; *Igha* for B cells; and *Trbc2* for T cells.

634 (E) Heatmap of dysregulated biological pathways in the 5 populations of colon tissues
635 from 4 groups of samples. A full version of the heatmap is shown in the

636 **Supplemental Figure 4.** Of note, Il6-Jak-Stat3 signaling, inflammatory response and
637 interferon alpha response are upregulated in *Tet2mut*_Veh, *WT*_DSS, and

638 *Tet2mut_DSS* in myeloid cell, compared to *WT_Veh* (circled by green rectangle).
639 Additionally, proliferation-related pathways appear to be upregulated in myeloid cells
640 of *Tet2mut_Veh* compared to *WT_Veh*; proliferation-related pathways appear to
641 upregulate in T cells of *WT_DSS* and *Tet2mut_DSS* compared to *WT_Veh* (circled by
642 pink rectangle). Interestingly, the epithelial mesenchymal transitional (EMT) pathway
643 appears to be dysregulated in *Tet2mut_Veh*, *WT_DSS*, and *Tet2mut_DSS* in myeloid
644 cell, compared to *WT_Veh* (circled by blue rectangle).
645 (F) Stromal cells and myeloid cells are subjected for further clustering by UMAP as
646 they have most significantly upregulated biological pathways as indicated in (E). Top
647 panel, UMAP plot of stromal cells and stacking plot showing potion of the
648 sub-population; bottom panel, UMAP plot of myeloid cells and stacking plot showing
649 potion of the sub-population. As indicated, 10 subpopulations and 7 subpopulations
650 are annotated in stromal cells and myeloid cells respectively.
651 (G) Expression of *Ptx3* and *Il-1 β* in the colon tissues (left panel) or in stromal cells
652 (up-right panel) or in myeloid cells (bottom-right panel), respectively.
653 (H) Heatmap of cell-to-cell talk strength between subpopulations of stromal cells and
654 myeloid cells.
655 (I-L) Detailed molecular events of the cell-to-cell talk between myeloid cells and
656 stromal cells. Of note, *Ptx3 $^+$* fibroblasts and *IL-1 β $^+$* monocytes appear to be most
657 involved. *IL-1 β $^+$* monocytes express numerous ligands including *IL-1 β* (I and J).
658 *IL-1 β* binds *Il1r1* in *Ptx3 $^+$* fibroblasts and stimulates a couple of downstream genes
659 (K and L).
660 (M) Expression of *IL-1 β* receptor *Il1r1* and relevant genes encoding complement
661 components or inflammation regulators (*C1ra*, *C1s1*, *C3* and *Cxcl12*) were plotted on
662 UMAP of colon tissue (top panel) or on the UMAP plot of stromal cells (bottom
663 panel).
664 See also [Supplemental Figure 4](#) for additional analysis of scRNA-seq colon dataset.
665

666 **Figure 5. Aberrant PTX3/IL-1 β signaling is indicated in human leukemia or**
667 **colitis through analysis of clinical samples.**

668 (A) Expression of *PTX3* and *IL-1 β* in unsorted AML patients (left panel) or in AML
669 patients carrying *TET2* mutation (right panel). Bulk RNA-seq datasets of bone
670 marrow were included in the analysis.
671 (B-C) Prognosis value of marker genes *PTX3* and *IL-1 β* in the TCGA-LAML cohort.
672 (D) Expression of *PTX3* and *IL-1 β* in unsorted MDS patients (left panel, bone marrow
673 samples) or in MDS patients carrying *TET2* mutation (right panel, bone marrow
674 samples).
675 (E-G) Expression of *PTX3* and *IL-1 β* in patients with ulcerative colitis and healthy
676 controls, based on three independent cohorts. Bulk RNA-seq datasets of colon tissues
677 were included in E and F; Bulk RNA-seq dataset of blood were included in G.
678 (H-M) Aberrant expression of *PTX3* and *IL-1 β* was also detected using scRNA-seq
679 dataset of human colitis samples. The dataset is downloaded from the website Broad
680 Data Use Oversight System (<https://duos.broadinstitute.org>) and re-analyzed. The
681 cohorts include two groups of human colon samples: colons from healthy controls
682 (n=10) and colons from ulcerative colitis patients (n=7). Patient samples from both
683 non-inflamed regions and inflamed regions were n=7 respectively. Inflammation
684 scores suggest the three groups has significant difference overall (H). UMAP plots of
685 the human colon scRNA-seq dataset also show five main populations as similar as
686 Figure 4A: epithelial cells, stromal cells and three immune cells (myeloid cells, B

687 cells and T cells) (I). Stromal cells were highlighted by the dotted lines (I). Stromal
688 cells were further annotated by UMAP plots and *PTX3*⁺ fibroblasts were screened out
689 by dotted lines (J). Of note, stacking plots indicate percentage of *PTX3*⁺ fibroblasts
690 was increased according to the inflammation grade of the colitis (K). Expression of
691 *PTX3* is shown in the UMAP plot of colon tissue (L) and three groups of stromal cells
692 (M) as indicated.

693 See also [Supplemental Figure 4](#) for additional analysis of human colitis scRNA-seq
694 dataset.

695

696 **Figure 6. Pharmacological blockage of IL-1 β signaling by Anakinra inhibits Ptx3
697 expression and inflammation in colon and mitigates TedCH in blood.**

698 (A) Schematic representation of Anakinra treatment on the DSS-induced expedited
699 TedCH.

700 (B) Quantification of PB chimerism in TedCH mice treated with DSS and/or
701 Anakinra.

702 (C) Quantification of HSPCs including LSK, HSC, MPP2, MPP3/4, CMP and GMP
703 in 4 groups of TedCH mice [by flow cytometry](#).

704 (D-E) The protein levels of IL-1 β and Ptx3 were measured in colon tissues [by western
705 blot](#) and quantified.

706 (F-G) Representative H&E staining of colon tissue from each group and disease
707 scores (damages in colon tissue) were quantified accordingly. Scale bar is 500 μ m.

708 (H-I) Representative immunohistochemical (IHC) staining of Ptx3 in colon (H) and
709 semi-quantitative analysis of immunohistochemistry staining of Ptx3 based on
710 integrated optical density (IOD) (I). scale bar is 100 μ m.

711 Data are shown as means \pm SEMs in A-H. Number of biological repeats (animal
712 mouse): n = 5~7. Experiments of DSS treatment combined with Anakinra on TedCH
713 mice were repeated twice. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

714 See also [Supplemental Figure 4](#) for additional analysis of Ptx3 expression in TedCH
715 colons.

716

717

718 **Figure 7. Schematic illustration for the working model about clonal
719 hematopoiesis cooperating with inflammation and dysbacteriosis in gut-bone
720 marrow axis to promote colitis and leukemia.**

721 We propose that [the gut-bone marrow axis](#) plays an important role in the co-symptoms
722 of colitis and leukemia in the *Tet2*-mutant chimeric and primary mice. Dysbacteriosis,
723 chronic inflammation and clonal hematopoiesis are all assembled to promote the
724 progression the co-symptoms over age. [The PTX3/IL-1 \$\beta\$ signaling pathway plays an
725 important role in promoting colitis and leukemia.](#) See the main text for further
726 discussion.

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749 **References**

750 Abelson, S., Collord, G., Ng, S.W.K., Weissbrod, O., Mendelson Cohen, N., Niemeyer, E., Barda, N.,
751 Zuzarte, P.C., Heisler, L., Sundaravadanam, Y., *et al.* (2018). Prediction of acute myeloid leukaemia
752 risk in healthy individuals. *Nature* *559*, 400-404.

753 Agrawal, M., Niroula, A., Cunin, P., McConkey, M., Shkolnik, V., Kim, P.G., Wong, W.J., Weeks, L.D.,
754 Lin, A.E., Miller, P.G., *et al.* (2022). TET2-mutant clonal hematopoiesis and risk of gout. *Blood* *140*,
755 1094-1103.

756 Bonavita, E., Gentile, S., Rubino, M., Maina, V., Papait, R., Kunderfranco, P., Greco, C., Feruglio, F.,
757 Molgora, M., Laface, I., *et al.* (2015). PTX3 is an extrinsic oncosuppressor regulating
758 complement-dependent inflammation in cancer. *Cell* *160*, 700-714.

759 Browaeys, R., Saelens, W., and Saeys, Y. (2020). NicheNet: modeling intercellular communication by
760 linking ligands to target genes. *Nat Methods* *17*, 159-162.

761 Burns, S.S., Kumar, R., Pasupuleti, S.K., So, K., Zhang, C., and Kapur, R. (2022). IL-1rl drives
762 leukemogenesis induced by Tet2 loss. *Leukemia* *36*, 2531-2534.

763 Cai, Z., Aguilera, F., Ramdas, B., Daulatabad, S.V., Srivastava, R., Kotzin, J.J., Carroll, M., Wertheim,
764 G., Williams, A., Janga, S.C., *et al.* (2020a). Targeting Bim via a lncRNA Morrbid Regulates the
765 Survival of Preleukemic and Leukemic Cells. *Cell Rep* *31*, 107816.

766 Cai, Z., Kotzin, J.J., Ramdas, B., Chen, S., Nelanuthala, S., Palam, L.R., Pandey, R., Mali, R.S., Liu, Y.,
767 Kelley, M.R., *et al.* (2018). Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic Cells
768 Mitigates Stress-Induced Abnormalities and Clonal Hematopoiesis. *Cell Stem Cell* *23*, 833-849.e835.

769 Cai, Z., Lu, X., Zhang, C., Nelanuthala, S., Aguilera, F., Hadley, A., Ramdas, B., Fang, F., Nephew, K.,
770 Kotzin, J.J., *et al.* (2021). Hyperglycemia cooperates with Tet2 heterozygosity to induce leukemia
771 driven by proinflammatory cytokine-induced lncRNA Morrbid. *J Clin Invest* *131*.

772 Cai, Z., Zhang, C., Kotzin, J.J., Williams, A., Henao-Mejia, J., and Kapur, R. (2020b). Role of lncRNA
773 Morrbid in PTPN11(Shp2)E76K-driven juvenile myelomonocytic leukemia. *Blood Adv* *4*, 3246-3251.

774 Caiado, F., Kovtonyuk, L.V., Gonullu, N.G., Fullin, J., Boettcher, S., and Manz, M.G. (2023). Aging
775 drives Tet2⁺⁻ clonal hematopoiesis via IL-1 signaling. *Blood* *141*, 886-903.

776 Caiado, F., Pietras, E.M., and Manz, M.G. (2021). Inflammation as a regulator of hematopoietic stem
777 cell function in disease, aging, and clonal selection. *J Exp Med* *218*.

778 Chu, S.H., Heiser, D., Li, L., Kaplan, I., Collector, M., Huso, D., Sharkis, S.J., Civin, C., and Small, D.
779 (2012). FLT3-ITD knockin impairs hematopoietic stem cell quiescence/homeostasis, leading to
780 myeloproliferative neoplasm. *Cell Stem Cell* *11*, 346-358.

781 Cumbo, C., Tarantini, F., Zagaria, A., Anelli, L., Minervini, C.F., Coccaro, N., Tota, G., Impera, L.,
782 Parciante, E., Conserva, M.R., *et al.* (2022). Clonal Hematopoiesis at the Crossroads of Inflammatory
783 Bowel Diseases and Hematological Malignancies: A Biological Link? *Front Oncol* *12*, 873896.

784 Delhommeau, F., Dupont, S., Della Valle, V., James, C., Trannoy, S., Massé, A., Kosmider, O., Le
785 Couedic, J.P., Robert, F., Alberdi, A., *et al.* (2009). Mutation in TET2 in myeloid cancers. *N Engl J
786 Med* *360*, 2289-2301.

787 Deshmukh, H.S., Liu, Y., Menkiti, O.R., Mei, J., Dai, N., O'Leary, C.E., Oliver, P.M., Kolls, J.K.,
788 Weiser, J.N., and Worthen, G.S. (2014). The microbiota regulates neutrophil homeostasis and host
789 resistance to *Escherichia coli* K1 sepsis in neonatal mice. *Nat Med* *20*, 524-530.

790 Fabre, M.A., de Almeida, J.G., Fiorillo, E., Mitchell, E., Damaskou, A., Rak, J., Orrù, V., Marongiu, M.,
791 Chapman, M.S., Vijayabaskar, M.S., *et al.* (2022). The longitudinal dynamics and natural history of
792 clonal haematopoiesis. *Nature* *606*, 335-342.

793 Feng, Y., Yuan, Q., Newsome, R.C., Robinson, T., Bowman, R.L., Zuniga, A.N., Hall, K.N., Bernsten,
794 C.M., Shabashvili, D.E., Krajcik, K.I., *et al.* (2023). Hematopoietic-specific heterozygous loss of
795 Dnmt3a exacerbates colitis-associated colon cancer. *Journal of Experimental Medicine* *220*.

796 Genovese, G., Kähler, A.K., Handsaker, R.E., Lindberg, J., Rose, S.A., Bakhoum, S.F., Chambert, K.,
797 Mick, E., Neale, B.M., Fromer, M., *et al.* (2014). Clonal hematopoiesis and blood-cancer risk inferred
798 from blood DNA sequence. *N Engl J Med* *371*, 2477-2487.

799 He, H., Wang, Z., Yu, H., Zhang, G., Wen, Y., and Cai, Z. (2022). Prioritizing risk genes as novel
800 stratification biomarkers for acute monocytic leukemia by integrative analysis. *Discov Oncol* *13*, 55.

801 Heyde, A., Rohde, D., McAlpine, C.S., Zhang, S., Hoyer, F.F., Gerold, J.M., Cheek, D., Iwamoto, Y.,
802 Schloss, M.J., Vandoorne, K., *et al.* (2021). Increased stem cell proliferation in atherosclerosis
803 accelerates clonal hematopoiesis. *Cell* *184*, 1348-1361.e1322.

804 Hsu, J.I., Dayaram, T., Tovy, A., De Braekeleer, E., Jeong, M., Wang, F., Zhang, J., Heffernan, T.P.,
805 Gera, S., Kovacs, J.J., *et al.* (2018). PPM1D Mutations Drive Clonal Hematopoiesis in Response to
806 Cytotoxic Chemotherapy. *Cell Stem Cell* *23*, 700-713.e706.

807 Jaiswal, S., and Ebert, B.L. (2019). Clonal hematopoiesis in human aging and disease. *Science* *366*.

808 Jaiswal, S., and Libby, P. (2020). Clonal haematopoiesis: connecting ageing and inflammation in
809 cardiovascular disease. *Nat Rev Cardiol* 17, 137-144.

810 Jaiswal, S., Natarajan, P., Silver, A.J., Gibson, C.J., Bick, A.G., Shvartz, E., McConkey, M., Gupta, N.,
811 Gabriel, S., Ardissino, D., *et al.* (2017). Clonal Hematopoiesis and Risk of Atherosclerotic
812 Cardiovascular Disease. *N Engl J Med* 377, 111-121.

813 Khan, N., Patel, D., Trivedi, C., Kavani, H., Pernes, T., Medvedeva, E., Lewis, J., Xie, D., and Yang,
814 Y.X. (2021). Incidence of Acute Myeloid Leukemia and Myelodysplastic Syndrome in Patients With
815 Inflammatory Bowel Disease and the Impact of Thiopurines on Their Risk. *Am J Gastroenterol* 116,
816 741-747.

817 Khoury, J.D., Solary, E., Abla, O., Akkari, Y., Alaggio, R., Apperley, J.F., Bejar, R., Berti, E., Busque,
818 L., Chan, J.K.C., *et al.* (2022). The 5th edition of the World Health Organization Classification of
819 Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. *Leukemia* 36, 1703-1719.

820 Li, Z., Cai, X., Cai, C.-L., Wang, J., Zhang, W., Petersen, B.E., Yang, F.-C., and Xu, M. (2011).
821 Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of
822 myeloid malignancies. *Blood* 118, 4509-4518.

823 Libby, P., Ridker, P.M., and Maseri, A. (2002). Inflammation and atherosclerosis. *Circulation* 105,
824 1135-1143.

825 Meisel, M., Hinterleitner, R., Pacis, A., Chen, L., Earley, Z.M., Mayassi, T., Pierre, J.F., Ernest, J.D.,
826 Galipeau, H.J., Thuille, N., *et al.* (2018). Microbial signals drive pre-leukaemic myeloproliferation in a
827 Tet2-deficient host. *Nature* 557, 580-584.

828 Miller, P.G., Qiao, D., Rojas-Quintero, J., Honigberg, M.C., Sperling, A.S., Gibson, C.J., Bick, A.G.,
829 Niroula, A., McConkey, M.E., Sandoval, B., *et al.* (2022). Association of clonal hematopoiesis with
830 chronic obstructive pulmonary disease. *Blood* 139, 357-368.

831 Moran-Crusio, K., Reavie, L., Shih, A., Abdel-Wahab, O., Ndiaye-Lobry, D., Lobry, C., Figueroa, M.E.,
832 Vasanthakumar, A., Patel, J., Zhao, X., *et al.* (2011). Tet2 loss leads to increased hematopoietic stem
833 cell self-renewal and myeloid transformation. *Cancer Cell* 20, 11-24.

834 Nazha, A., Komrokji, R., Meggendorfer, M., Jia, X., Radakovich, N., Shreve, J., Hilton, C.B., Nagata,
835 Y., Hamilton, B.K., Mukherjee, S., *et al.* (2021). Personalized Prediction Model to Risk Stratify
836 Patients With Myelodysplastic Syndromes. *J Clin Oncol* 39, 3737-3746.

837 Rasmussen, K.D., Jia, G., Johansen, J.V., Pedersen, M.T., Rapin, N., Bagger, F.O., Porse, B.T., Bernard,
838 O.A., Christensen, J., and Helin, K. (2015). Loss of TET2 in hematopoietic cells leads to DNA
839 hypermethylation of active enhancers and induction of leukemogenesis. *Genes Dev* 29, 910-922.

840 Smillie, C.S., Biton, M., Ordovas-Montanes, J., Sullivan, K.M., Burgin, G., Graham, D.B., Herbst,
841 R.H., Rogel, N., Slyper, M., Waldman, J., *et al.* (2019). Intra- and Inter-cellular Rewiring of the Human
842 Colon during Ulcerative Colitis. *Cell* 178, 714-730.e722.

843 Steensma, D.P., Bejar, R., Jaiswal, S., Lindsley, R.C., Sekeres, M.A., Hasserjian, R.P., and Ebert, B.L.
844 (2015). Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic
845 syndromes. *Blood* *126*, 9-16.

846 Taur, Y., Xavier, J.B., Lipuma, L., Ubeda, C., Goldberg, J., Gobourne, A., Lee, Y.J., Dubin, K.A., Soccia,
847 N.D., Viale, A., *et al.* (2012). Intestinal domination and the risk of bacteremia in patients undergoing
848 allogeneic hematopoietic stem cell transplantation. *Clin Infect Dis* *55*, 905-914.

849 Weeks, L.D., Niroula, A., Neuberg, D.S., Wong, W.J., Lindsley, R.C., Luskin, M.R., Berliner, N., Stone,
850 R.M., DeAngelo, D.J., Soiffer, R.J., *et al.* (2022). Prediction of Risk for Myeloid Malignancy in Clonal
851 Hematopoiesis. *Blood* *140*, 2229-2231.

852 Weinstock, J.S., Gopakumar, J., Burugula, B.B., Uddin, M.M., Jahn, N., Belk, J.A., Bouzid, H., Daniel,
853 B., Miao, Z., Ly, N., *et al.* (2023). Aberrant activation of TCL1A promotes stem cell expansion in
854 clonal haematopoiesis. *Nature* *616*, 755-763.

855 Wong, T.N., Ramsingh, G., Young, A.L., Miller, C.A., Touma, W., Welch, J.S., Lamprecht, T.L., Shen,
856 D., Hundal, J., Fulton, R.S., *et al.* (2015). Role of TP53 mutations in the origin and evolution of
857 therapy-related acute myeloid leukaemia. *Nature* *518*, 552-555.

858 Yan, H., Baldridge, M.T., and King, K.Y. (2018). Hematopoiesis and the bacterial microbiome. *Blood*
859 *132*, 559-564.

860 Zeng, H., He, H., Guo, L., Li, J., Lee, M., Han, W., Guzman, A.G., Zang, S., Zhou, Y., Zhang, X., *et al.*
861 (2019). Antibiotic treatment ameliorates Ten-eleven translocation 2 (TET2) loss-of-function associated
862 hematological malignancies. *Cancer Lett* *467*, 1-8.

863 Zeng, X., Li, X., Li, X., Wei, C., Shi, C., Hu, K., Kong, D., Luo, Q., Xu, Y., Shan, W., *et al.* (2023).
864 Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by
865 suppressing inflammation. *Blood* *141*, 1691-1707.

866 Zhang, C.R.C., Nix, D., Gregory, M., Ciorba, M.A., Ostrander, E.L., Newberry, R.D., Spencer, D.H.,
867 and Challen, G.A. (2019). Inflammatory cytokines promote clonal hematopoiesis with specific
868 mutations in ulcerative colitis patients. *Exp Hematol* *80*, 36-41.e33.

869 Zhang, Q., Zhao, K., Shen, Q., Han, Y., Gu, Y., Li, X., Zhao, D., Liu, Y., Wang, C., Zhang, X., *et al.*
870 (2015). Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6.
871 *Nature* *525*, 389-393.

872

873

874

875

876

877

878

879

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Experimental Models: Organisms/Strains		
Mouse: <i>Tet2</i> ^{+/−}	Li et al.	N/A
Mouse: BoyJ	Cyagen	N/A
Mouse: C57/B6	Cyagen	N/A
Critical Commercial Assays		
EasySep Mouse Hematopoietic Progenitor Cell Isolation Kit	StemCell	#19856
5-fluorouracil	Merck	#51-21-8
Streptozotocin	Biosharp	#BS185
Dextran sulfate sodium salt	MPbio	#9011-18-1
Trizol	GenStar	#18064014
2×Taq PCR StarMix (Dye)	GenStar	#A006-10
StarScript III RT MasterMix	GenStar	#A231-05
2×RealStar Fast SYBR qPCR Mix	GenStar	#A304-05
FITC-D	Sigma	#1407295
TruSeq TMRNA sample preparation Kit	San Diego	N/A
SuperScript double-stranded cDNA synthesis kit	Invitrogen	#11917020
E.Z.N.A.® Soil DNA Kit	Omega Bio-Tek	#D5625-00
MiSeq Reagent Kit v3	Illumina	#20011196
MACS BSA Stock Solution	Miltenyi	#130-091-376
SeekOne® MM Single Cell 3' library preparation kit	SeekGene	N/A
StarSignal Plus Chemiluminescent Assay Kit	GenStar	#E170-04
Bond Epitope Retrieval Solution 2	Leica Biosystems	N/A
Bond Polymer Refine Detection	Leica Biosystems	N/A

Bond Dewax Solution	Leica Biosystems	N/A
Hematoxylin and Eosin Staining Kit	Beyotime	#C0105S
Antibodies for Flow Cytometry		
Gr1, PE	BioLegend	#108408
TER-119, PE	BioLegend	#116208
Mac1, PE	BioLegend	#101208
B220, PE	BioLegend	#103208
CD3, PE	BioLegend	#100206
c-Kit, APC	BioLegend	#105812
Sca-1, APC/Cy7	BioLegend	#108126
CD150, PE/Cy5	BioLegend	#115912
CD48, PE/Cy7	BioLegend	#103424
CD16/32, PE/Cy7	BioLegend	#101318
CD34, FITC	eBioscience	#11-0341-85
CD45.2, PerCP/Cy5.5	BioLegend	#109928
CD45.1, PE/Cy7	BioLegend	#110730
CD19, APC	BioLegend	#115512
Antibodies for Western Blot and Immunohistochemistry		
Gapdh	Abcam	#ab263962
Ptx3	Sabbiotech	#43163
Il-1 β	SANTA	#sc-52012
HRP IgG	Epizyme	#LF 102
Oligonucleotides		
Mouse_Tet2-wt, Forward: AGCTGATGGAAAATGCAAGC	Tsingke Biotech	N/A
Mouse_Tet2-mut, Forward: GCCACTTTAGAAGCCTATTGGA	Tsingke Biotech	N/A
Mouse_Common, Reverse: TCTCAGAGCAAAGAGGAGTC	Tsingke Biotech	N/A
Mouse_Gapdh, Forward: ACATCGCTCAGACACCATG	Tsingke Biotech	N/A
Mouse_Gapdh, Reverse TGTAGTTGAGGTCAATGAAGGG	Tsingke Biotech	N/A
Mouse_Muc2, Forward: TGTAGTTGAGGTCAATGAAGGG	Tsingke Biotech	N/A
Mouse_Muc2, Reverse: GCAAATAGCCATAGTACAGTTACACAGC	Tsingke Biotech	N/A
Mouse_Occludin, Forward: ACTATGCGGAAAGAGTTGACAG	Tsingke Biotech	N/A
Mouse_Occludin, Reverse: GTCATCCACACTCAAGGTCAG	Tsingke Biotech	N/A

896

897

898

RESOURCE AVAILABILITY

899 **Lead contact example text**

900 Further information and requests for resources and reagents should be directed to and
901 will be fulfilled by the lead contact, Zhigang Cai (US36zcai@tmu.edu.cn).

902

903 **Materials availability**

904 This study did not generate new unique reagents.

905

906 **Data and code availability**

907 Any additional information required to reanalyze the data reported in this paper is
908 available from the lead contact upon request.

909 The raw sequencing data from this study have been deposited in the Genome
910 Sequence Archive in BIG Data Center (<https://bigd.big.ac.cn/>), Beijing Institute of
911 Genomics (BIG), Chinese Academy of Sciences, under the accession number:
912 PRJCA016651 (the datasets will be available to the public once the manuscript in
913 press).

914 This paper does not report any original code.

915 **EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS**

916 ***Mice***

917 We used wild-type C57BL/6 (CD45.2), C57BL/6.SJL (CD45.1, BoyJ) and *Tet2*^{+/−}
918 mice at the age of 8 weeks (Li et al., 2011). Animal experimentation was performed in
919 accordance with protocols approved by the Animal Care and Use Committee of
920 Tianjin Medical University.

921

922 **METHOD DETAILS**

923 ***Competitive bone marrow transplantation and In vivo assays***

924 Recipient animals (F1, CD45.2/ CD45.1) were lethally irradiated (7Gy plus 4Gy) one
925 day prior to transplantation (intravenous tail injection) of donor cells. For generating
926 chimeric mice mimicking hematopoietic clonal expansion, *Tet2*^{+/−} donor cells and
927 BoyJ donor cells were mixed at a ratio of 1: 5 (100K: 500K). 4 weeks after BM
928 transplantation animals were injected with 5-FU (5-fluorouracil F6627,
929 Sigma-Aldrich) at a dose of 150 mg/kg in 100ul of PBS. Mice were given a single
930 intraperitoneal injection with a dose of 180 mg/kg STZ (streptozocin, BS1485,
931 Biosharp) after fasting for more than 12 hours to establish hyperglycemia model.
932 Mice were treated with ddW with or without 2.5% DSS (dextran sulfate sodium, MP
933 Biomedicals) for 1 week, ddW for another week for three cycles. For pharmacological
934 assays, Anakinra (GC39339, GLPBIO) was injected intra-peritoneally at a dose of
935 37ug/mouse in 100ul of PBS every other day for 1 month.

936

937 ***Flow cytometry***

938 The BM cells were flushed out with FACS buffer. Single-cell suspensions were
939 treated with red blood cell lysis buffer, stained, and analyzed using FACS Canto II
940 (BD Biosciences). For mature cell analysis, staining with antibodies against B220
941 (#103208, BioLegend), CD3 (#100206, BioLegend), Gr-1 (#108408, BioLegend),
942 CD11b (#101208, BioLegend). For early hematopoietic cell analysis, cells were
943 incubated with biotinylated antibodies against the lineage (Lin) markers: CD11b,
944 Ter119 (#116208, BioLegend), Gr-1, CD3, B220, and the fluorescence-conjugated

945 antibodies: c-Kit (#105812, BioLegend), Sca-1 (#108126, BioLegend), CD34
946 (#11-0341-85, BioLegend), CD150 (#115912, BioLegend), CD48 (#103424,
947 BioLegend), and CD16/32 (#101318, BioLegend).

948

949 ***Single cell RNA-sequencing***

950 Immature hematopoietic cells (Linage-negative, Lin⁻) was collected by EasySepTM
951 cell separation kit (Stem Cell Co.). After harvested, cell count and viability of the
952 bone marrow were estimated using fluorescence Cell Analyzer (Countstar[®] Rigel S2)
953 with AO/PI reagent after removal erythrocytes (R1010, Solarbio) and then dead cells
954 removal was decided to be performed or not (130-090-101, Miltenyi). Finally fresh
955 cells were washed twice in the RPMI1640 and then resuspended at 1×10⁶ cells per ml
956 in 1×PBS and 0.04% bovine serum albumin.

957 Colon tissues were washed in ice-cold RPMI1640 and dissociated using Collagenase
958 □ (V900891-100MG, Sigma) and Collagenase □ (C5138-500MG, Sigma). DNase □
959 (9003-98-9, Sigma) treatment was optional according to the viscosity of the
960 homogenate. Cell count and viability was estimated using fluorescence Cell Analyzer
961 (Countstar[®] Rigel S2) with AO/PI reagent after removal erythrocytes (R1010,
962 Solarbio) and then dead cells removal was decided to be performed or not
963 (130-090-101, Miltenyi). Finally fresh cells were washed twice in the RPMI1640 and
964 then resuspended at 1×10⁶ cells per ml in 1×PBS and 0.04% bovine serum albumin.

965 Single-cell RNA-Seq libraries were prepared using SeekOne[®] MM Single Cell 3'
966 library preparation kit (No.K00104, SeekGene). Briefly, the appropriate number of
967 cells were loaded into the flow channel of SeekOne[®] MM chip which had 170,000
968 microwells and allowed to settle in microwells by gravity. After removing the
969 unsettled cells, sufficient Cell Barcoded Magnetic Beads (CBBs) were pipetted into
970 flow channel and also allowed to settle in microwells with the help of a magnetic field.
971 Next excess CBBs were rinsed out and cells in MM chip were lysed to release RNA
972 which was captured by the CBB in the same microwell. Then all CBBs were collected
973 and reverse transcription were performed at 37□ for 30 minutes to label cDNA with
974 cell barcode on the beads. Further Exonuclease I treatment were performed to remove
975 unused primer on CBBs. Subsequently, barcoded cDNA on the CBBs was hybridized
976 with random primer which had reads 2 SeqPrimer sequence on the 5' end and could
977 extend to form the second strand DNA with cell barcode on the 3' end. The resulting
978 second strand DNA were denatured off the CBBs, purified and amplified in PCR
979 reaction. The amplified cDNA product was then cleaned to remove unwanted
980 fragments and added to full length sequencing adapter and sample index by indexed
981 PCR. The indexed sequencing libraries were cleanup with SPRI beads, quantified by
982 quantitative PCR (KK4824, KAPA Biosystems) and then sequenced on illumina
983 NovaSeq 6000 with PE150 read length.

984

985 ***Fecal microbiota evaluation***

986 Mice were individually placed in clean cages for feces collection. Fresh fecal samples
987 were collected into sterile cryopreservation tubes, quickly frozen in liquid nitrogen

988 and stored at -80°C. Purified amplicons were pooled in equimolar and paired-end
989 sequenced on an Illumina MiSeq PE300 platform/NovaSeq PE250 platform (Illumina,
990 San Diego, USA) according to the standard protocols by Majorbio Bio-Pharm
991 Technology Co. Ltd. (Shanghai, China).

992

993 ***H&E Staining and Immunohistochemistry Staining***

994 The tissue samples were fixed in 4% paraformaldehyde. After the dehydration in
995 ethanol, the tissue was embedded in paraffin then sectioned with a thickness of 4 µm.
996 The histopathological feature was tested via H&E staining. To perform
997 immunohistochemistry staining, the tissue sections were deparaffinized, rehydrated,
998 and rinsed, followed by antigen retrieval and blocking (goat serum). Next, the tissue
999 sections were incubated with primary antibody overnight and followed by the
1000 biotinylated secondary antibodies. The DAB Horseradish Peroxidase Color
1001 Development Kit (Dako, Agilent Technologies, USA) was applied for color reaction
1002 in immunohistochemistry staining. Finally, the tissue sections were observed under
1003 the optical microscope or fluorescence microscope. The Image J software was applied
1004 for scoring the immunohistochemistry picture.

1005 Immunohistochemical (IHC) staining was using a Leica Bond RX stainer (Leica,
1006 Buffalo Grove, IL). Slides were retrieved for 20 min using Epitope Retrieval 1
1007 (Citrate; Leica) and incubated in Protein Block (Dako, Agilent, Santa Clara, CA) for 5
1008 min. Primary antibodies were diluted in Background Reducing Diluent (Dako) as
1009 follows: Ptx3 (41372, Sabbiotech, USA) at 1:900, which was diluted in Bond Diluent
1010 (Leica) at 1:200. Primary antibody was diluted in Background Reducing Diluent
1011 (Dako) and incubated for 15 min. Immunostaining visualization was achieved by
1012 incubating slides 10 min in DAB and DAB buffer from the Bond Polymer Refine
1013 Detection System. Slides were counterstained for 5 min using Schmidt hematoxylin,
1014 followed by several rinses in 1x Bond wash buffer and distilled water.

1015

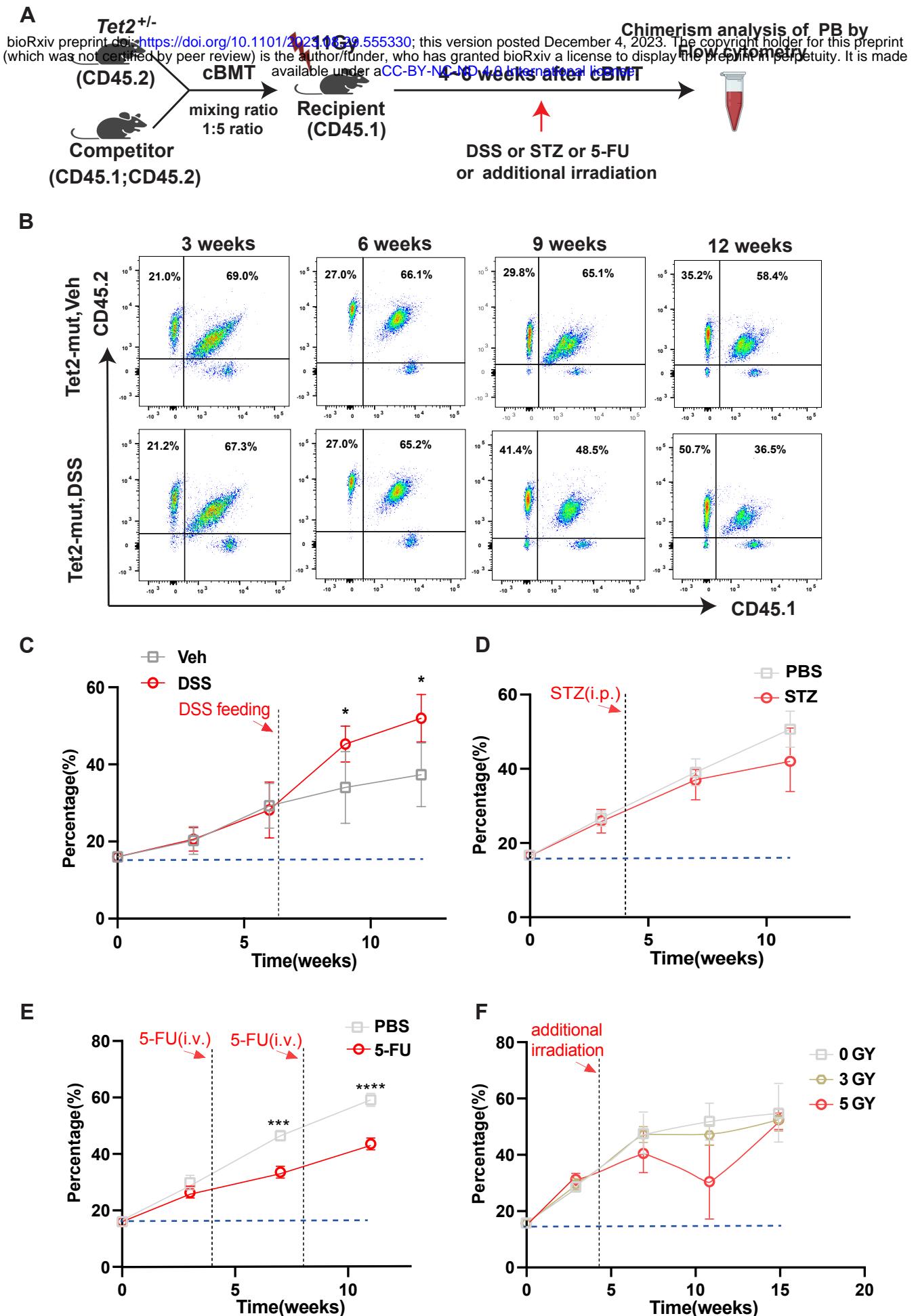
1016 ***Western blot analysis***

1017 Proteins were harvested from cells and colon tissues with RIPA Lysis Buffer
1018 (Beyotime, Jiangsu, China) supplemented with phenylmethyl sulfonyl fluoride (PMSF)
1019 protease inhibitor and phosphatase inhibitor. Total protein concentration was
1020 determined by BCA Protein Assay Kit (Beyotime, Jiangsu, China), denatured protein
1021 samples of appropriate quality of proteins were subjected to sodium dodecyl sulfate
1022 polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to PVDF
1023 membranes. Then membranes were later blocked with 5% skimmed milk, and
1024 incubated were immunodetected with specific antibodies against IL-1 β (515598;
1025 SANTA, USA), Ptx3 (41372, Sabbiotech, USA), and GAPDH (ab181620, Abcam,
1026 USA) overnight at 4 °C. Protein bands were visualized by the MINICHEMI Imaging
1027 System (Surwit, Hangzhou, China) using the commercial Pierce™ Fast Western Blot
1028 Kit and the ECL Substrate (GenStar, Beijing, China).

1029

1030 ***List of computation & visualizing software for mouse scRNA-seq***

1031 Most of the software used for computing and visualizing the scRNA-seq of both
1032 mouse and human have been described in our previous study (He et al., 2022). Coding
1033 scripts is available upon request.


1034

1035 **QUANTIFICATION AND STATISTICAL ANALYSIS**

1036 *Statistical analysis*

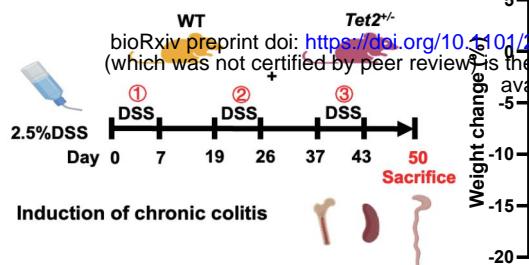

1037 Statistical analysis was conducted by using GraphPad 9. Comparisons between 2
1038 groups were determined by using a two-tail student's t-test. Comparison of multiple
1039 groups were determined by using an ANOVA analysis of variance with the Dunnett
1040 multiple comparisons test. Most of experiments in this study were repeated 2 or 3
1041 times independently and representative data was shown. Results with $p < 0.05$ were
1042 considered statistically significant.

Figure 1.

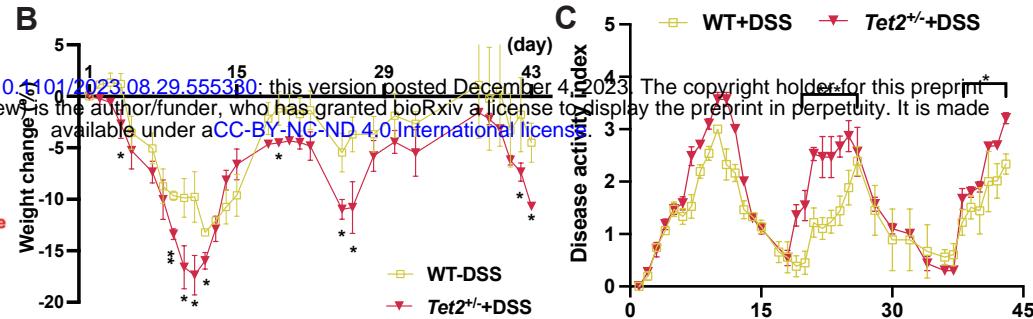
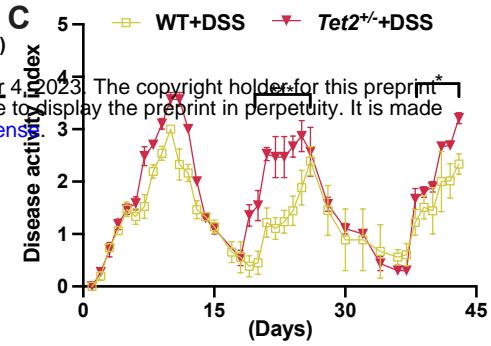
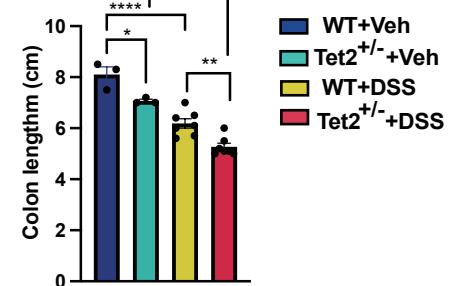
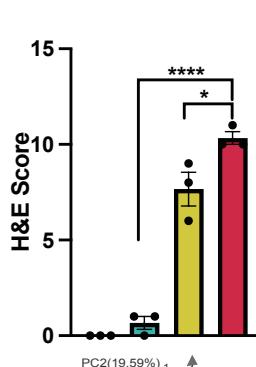


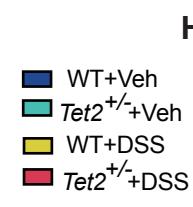
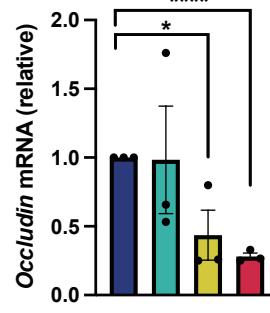
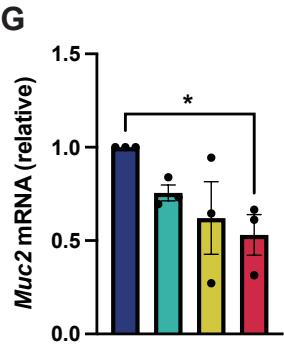
Figure 2.

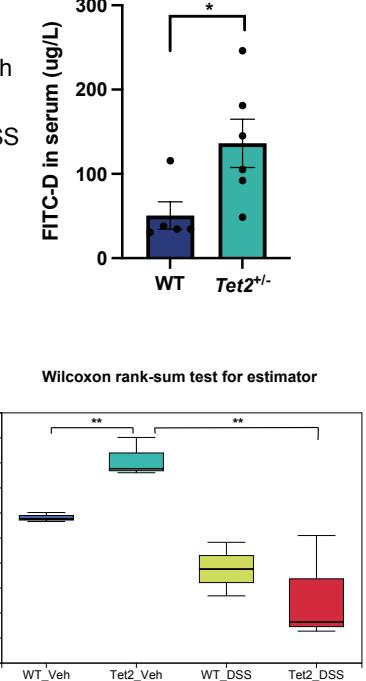

A

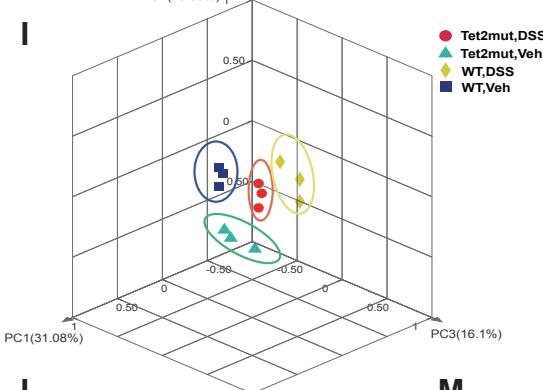
B

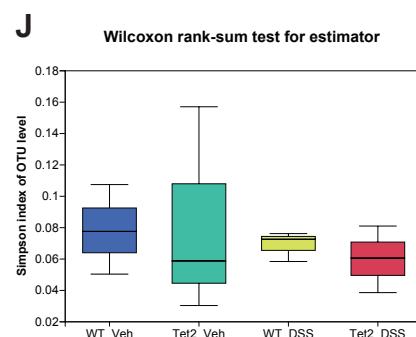

C

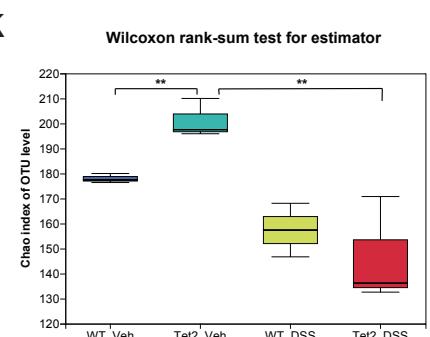

D

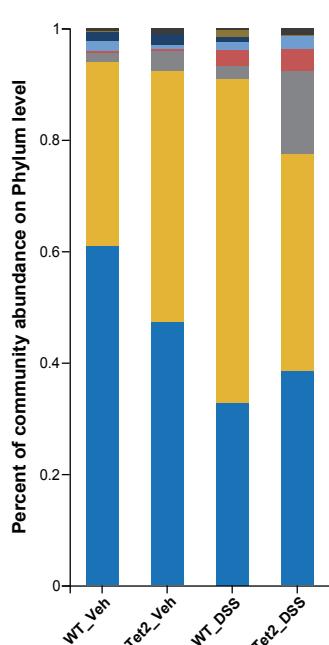



E


F

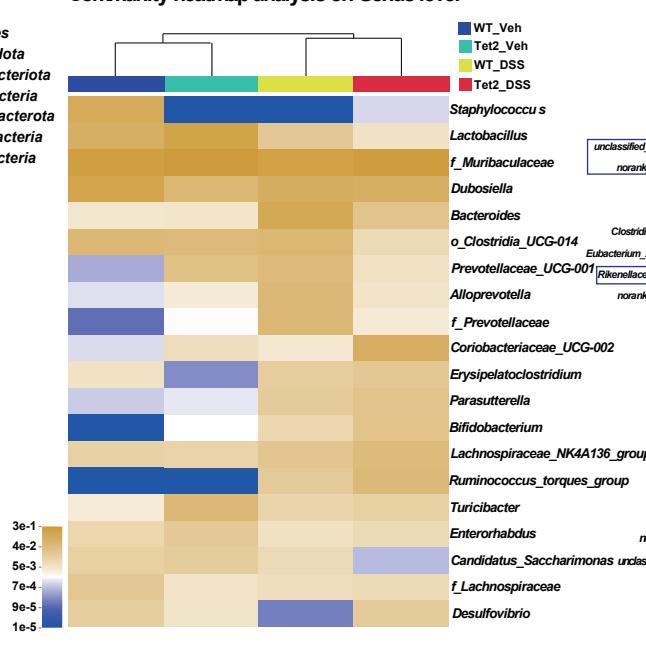

G


H

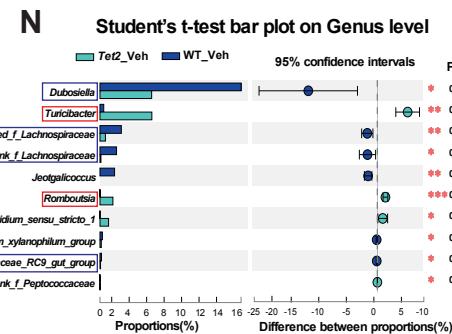

I


J

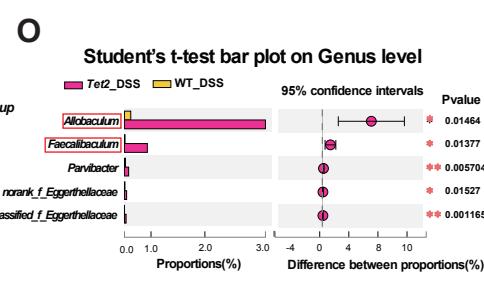
K

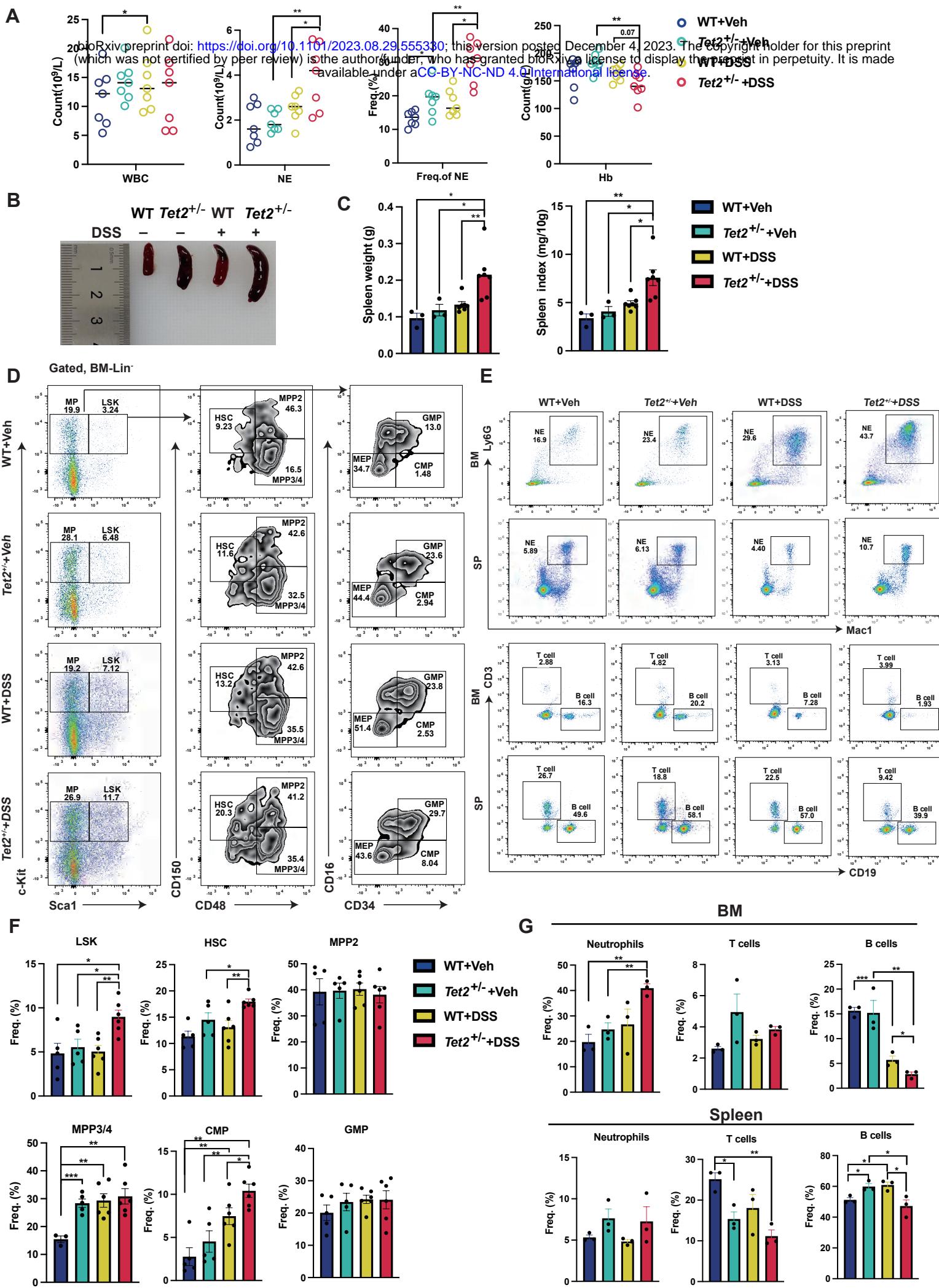


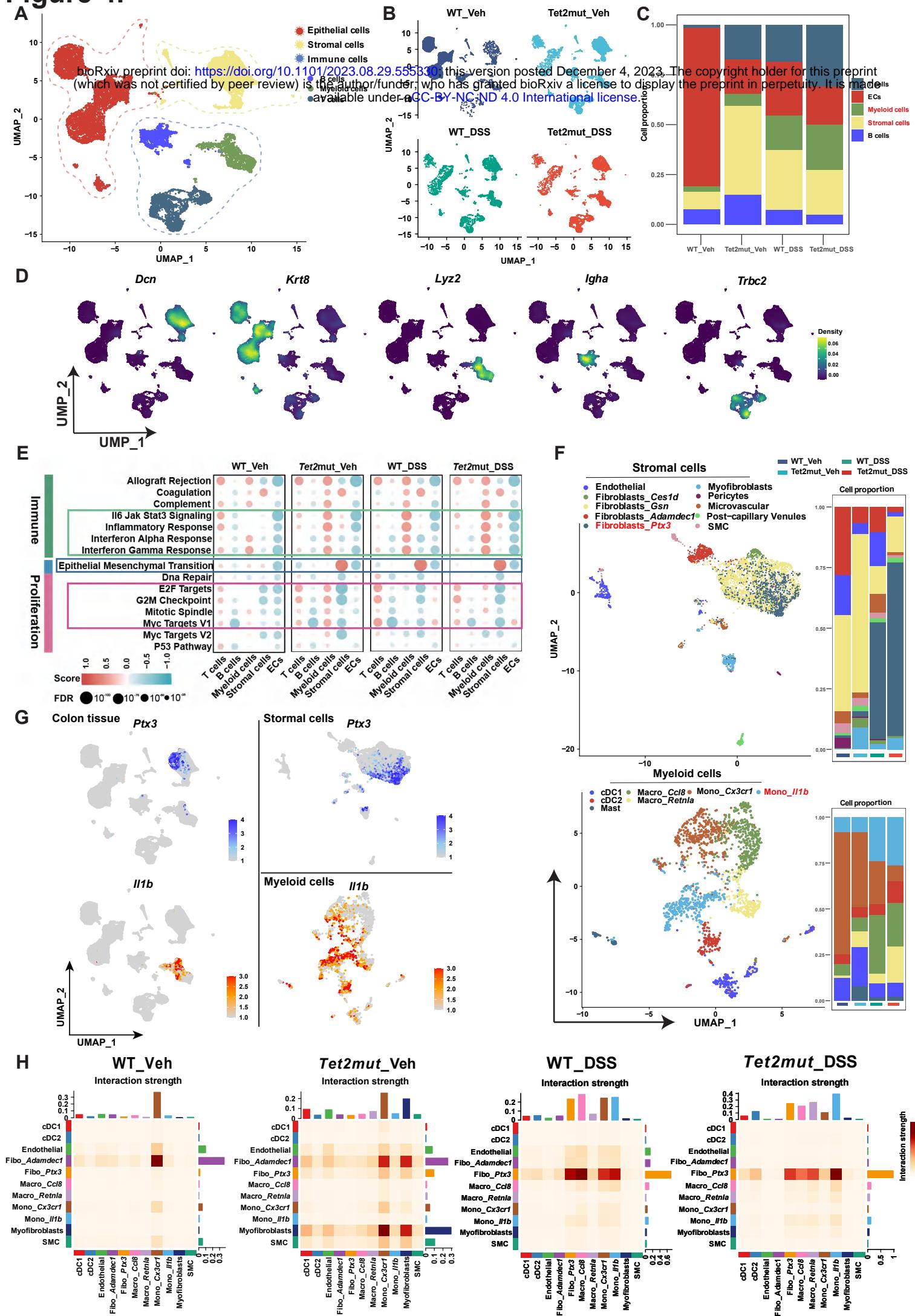
L



M


Community heatmap analysis on Genus level


N


O

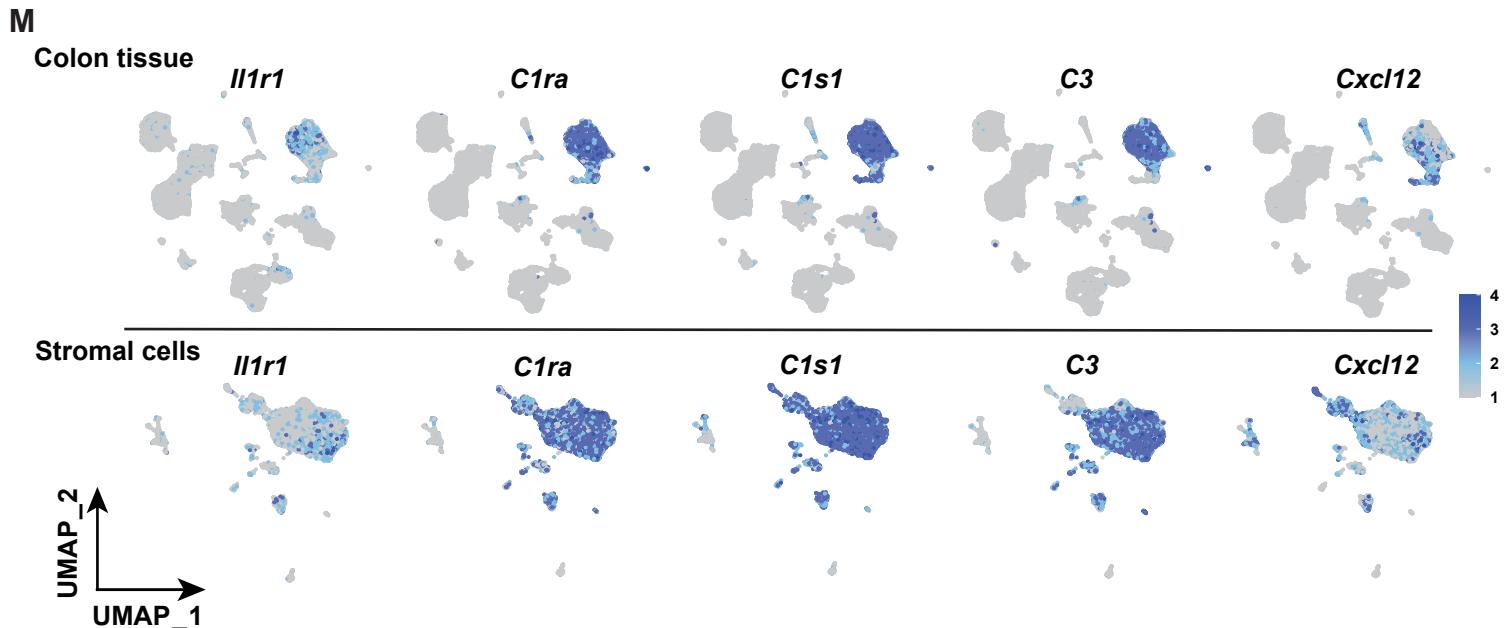
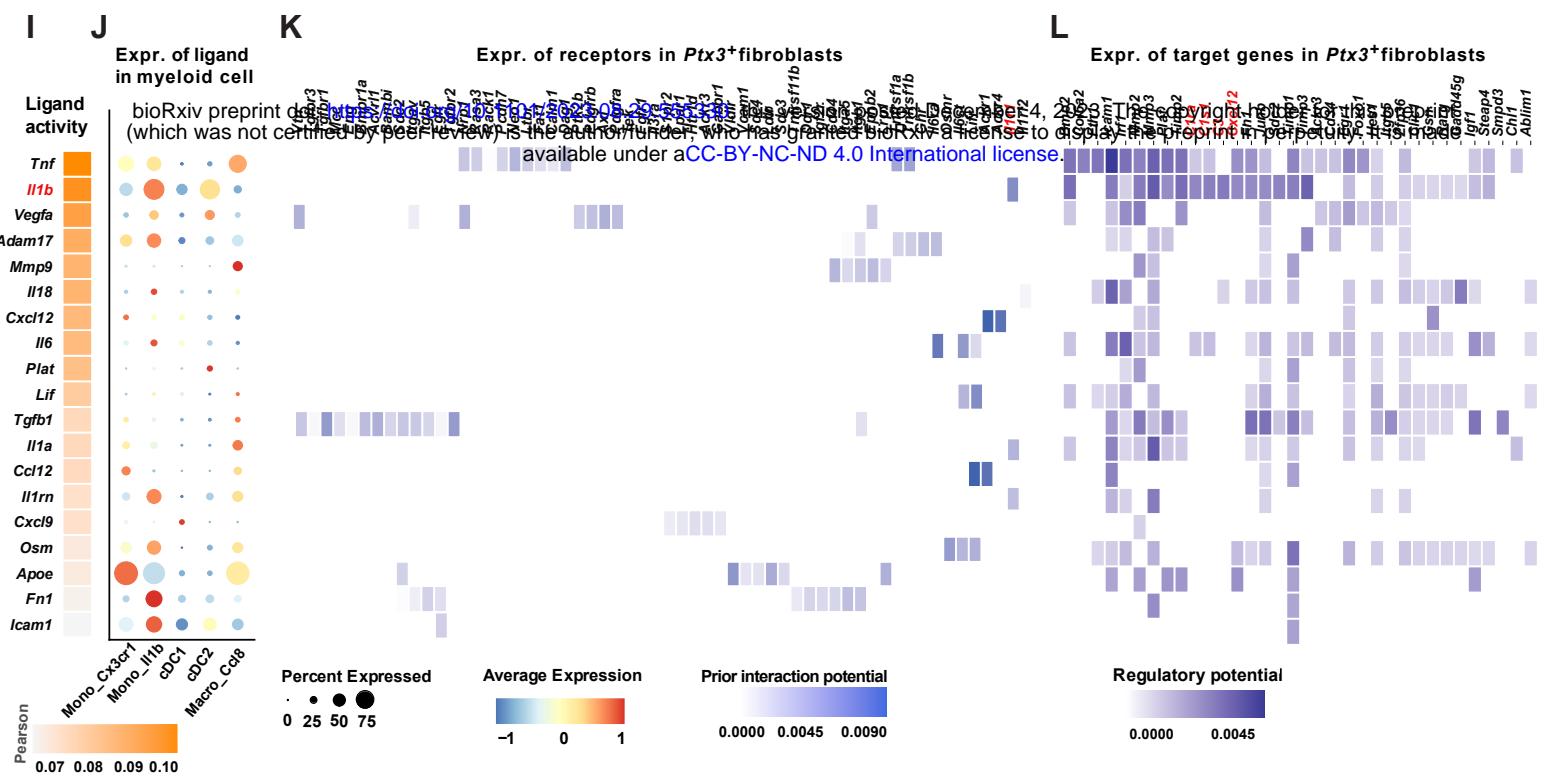



Figure 3

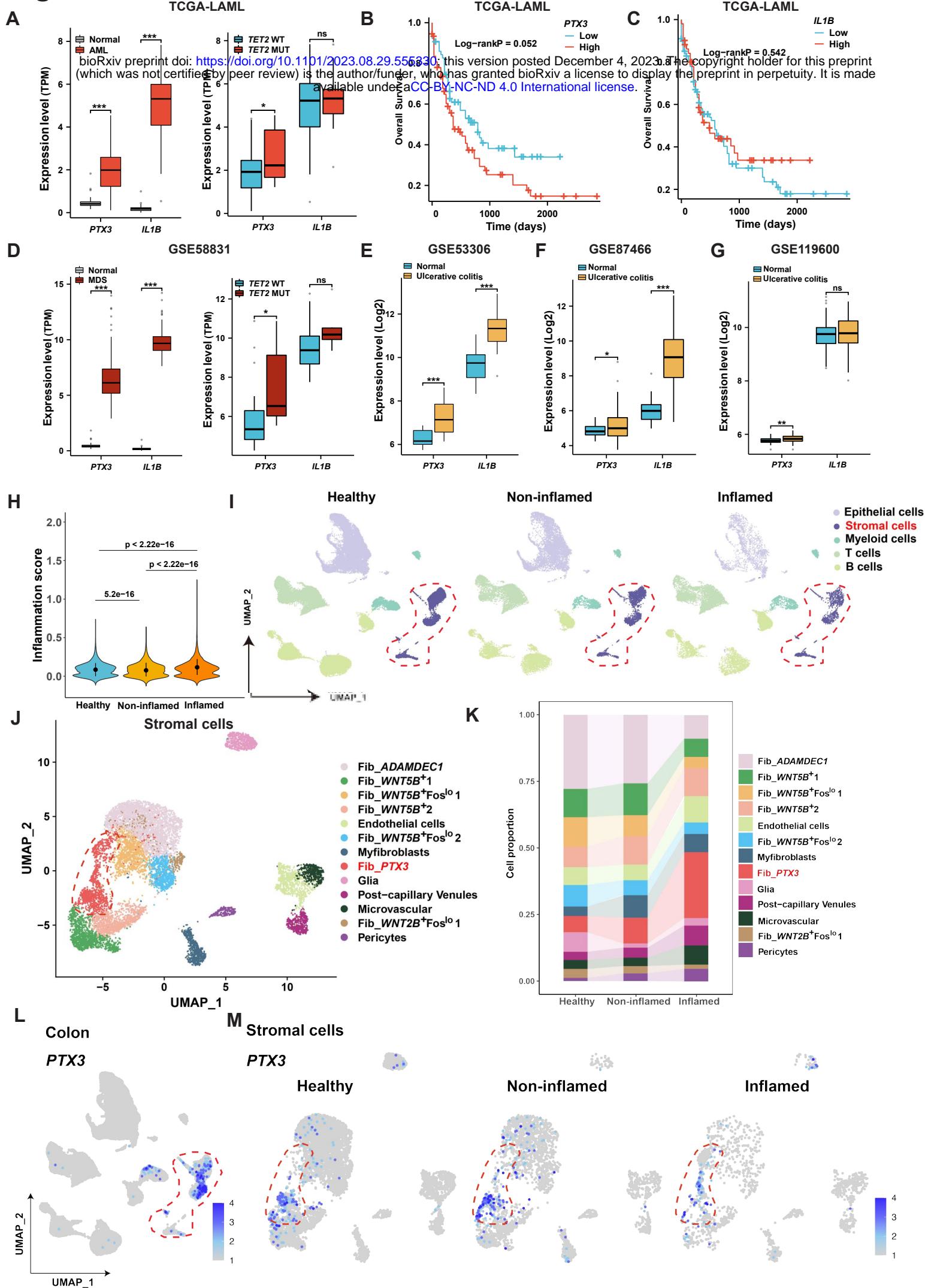


Figure 4.

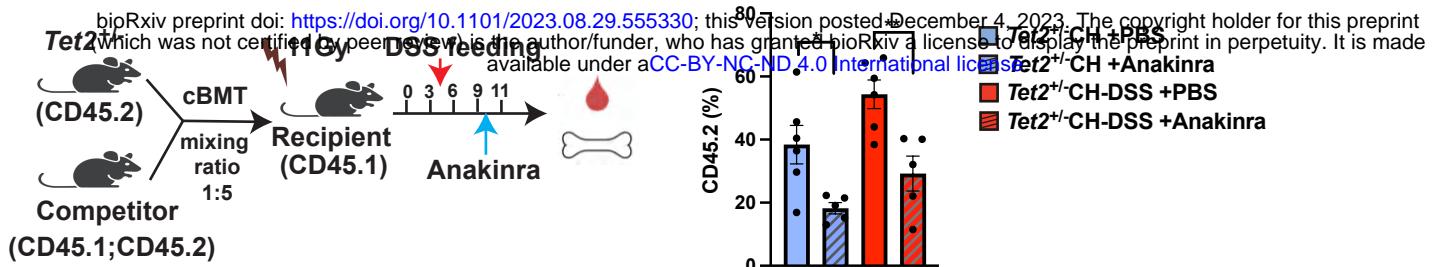


Figure 5.

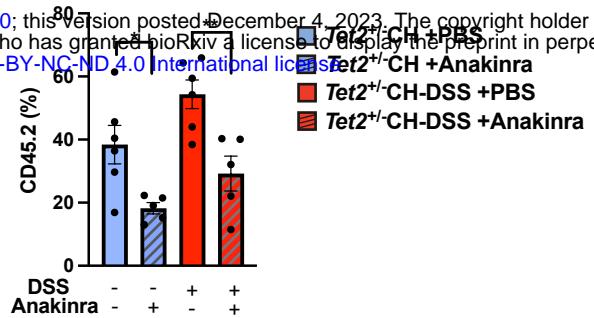
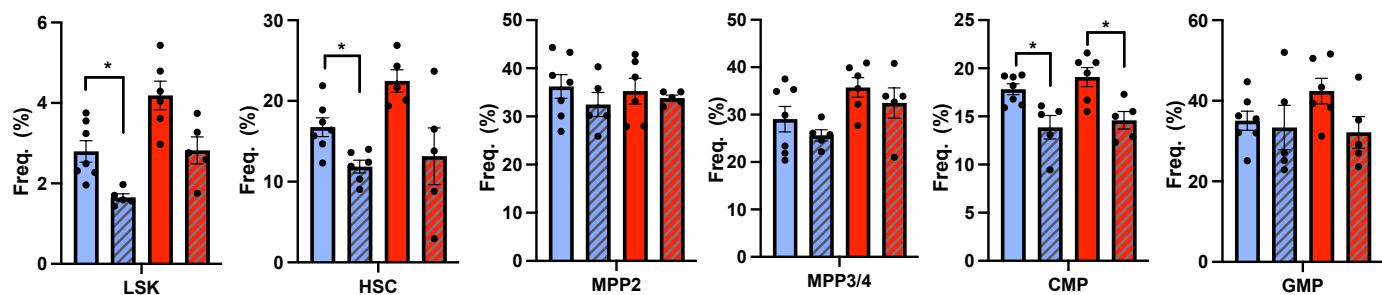
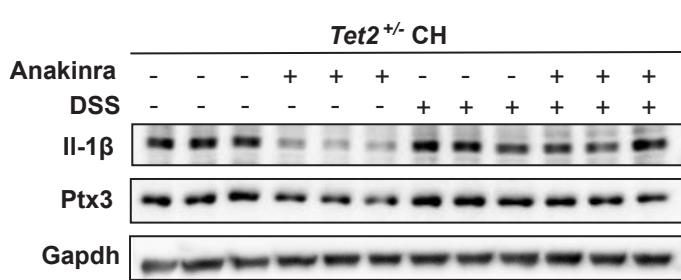
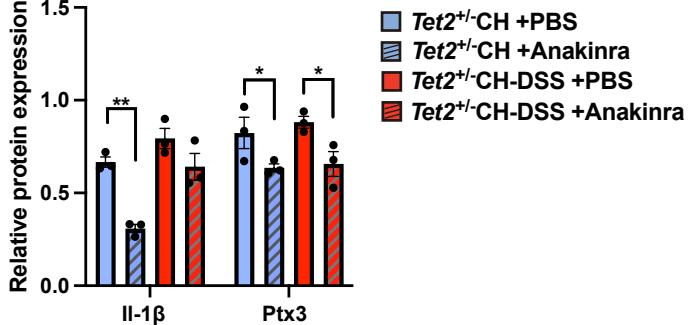
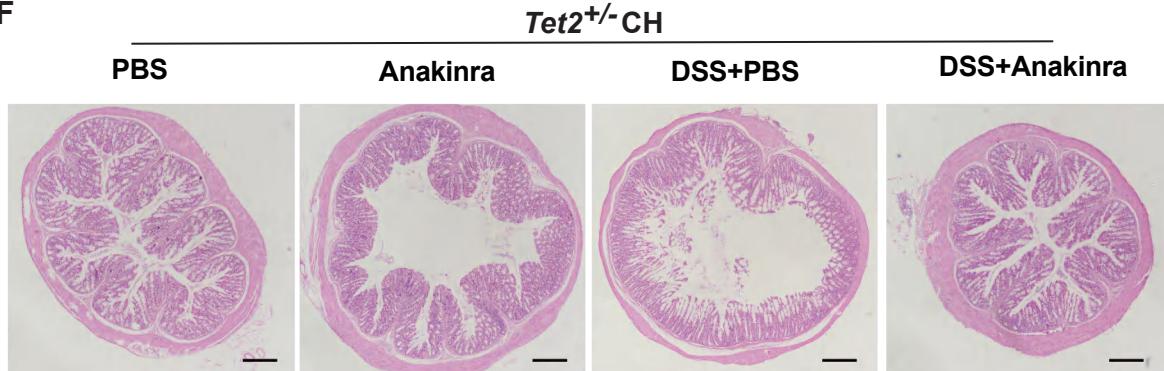


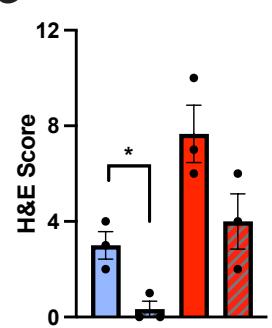
Figure 6

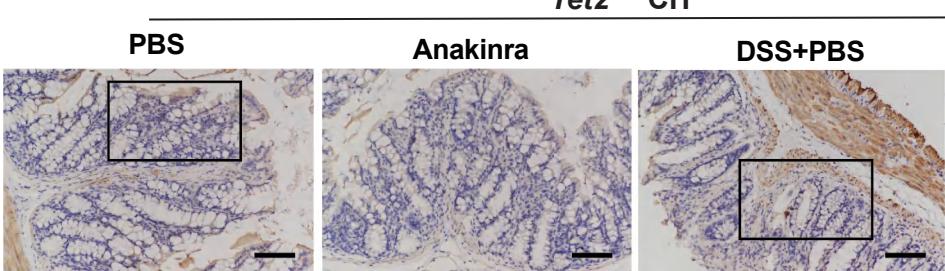

A

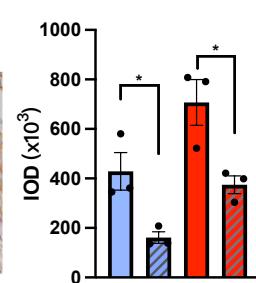

B


C


D

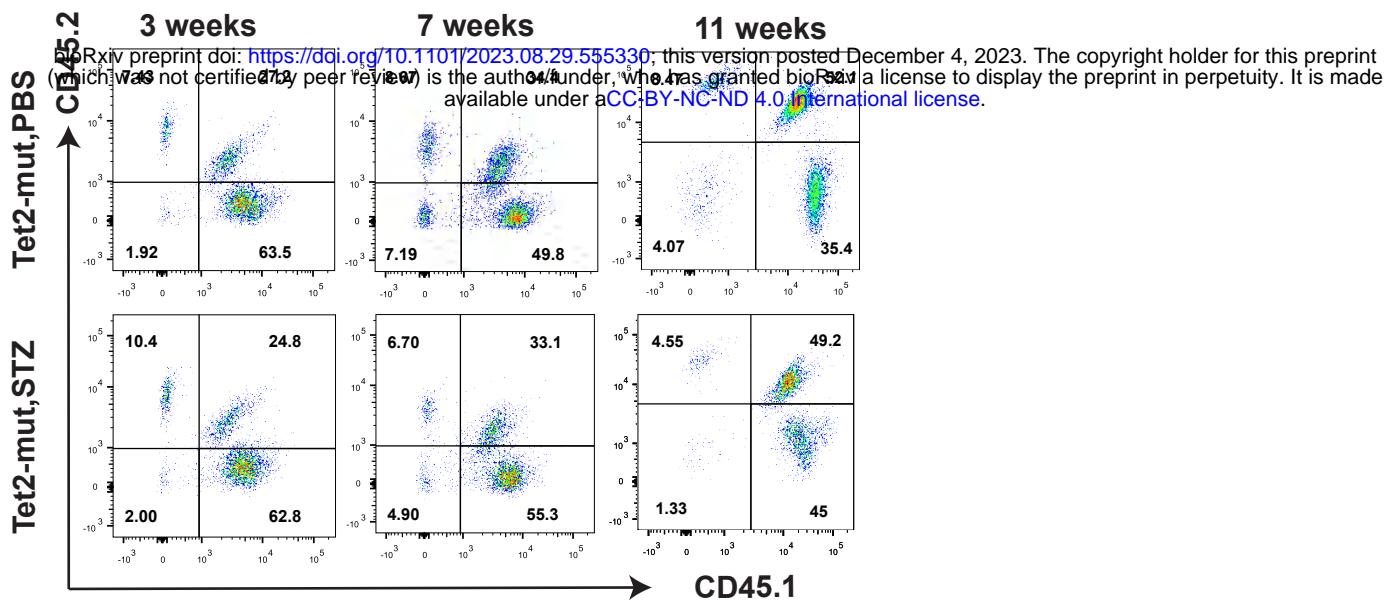

E


F

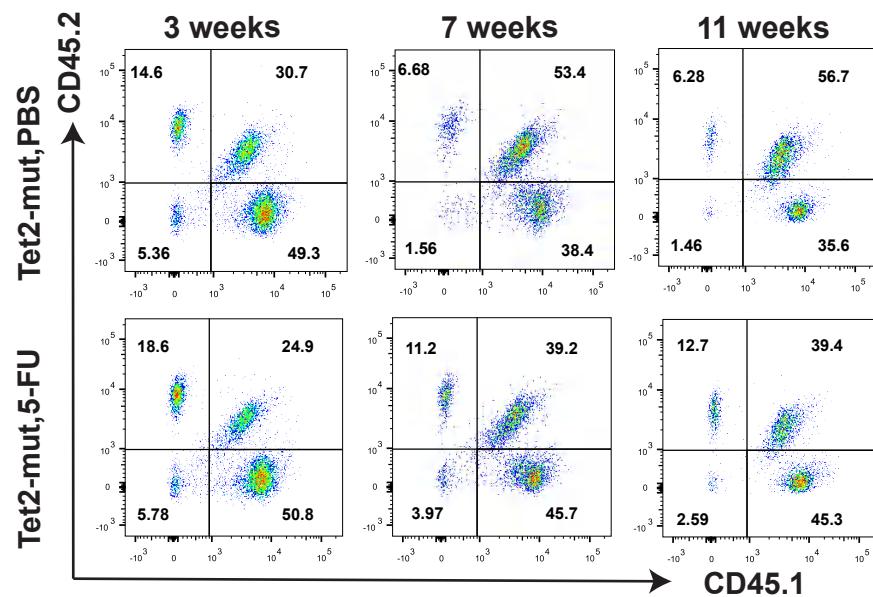

G

H

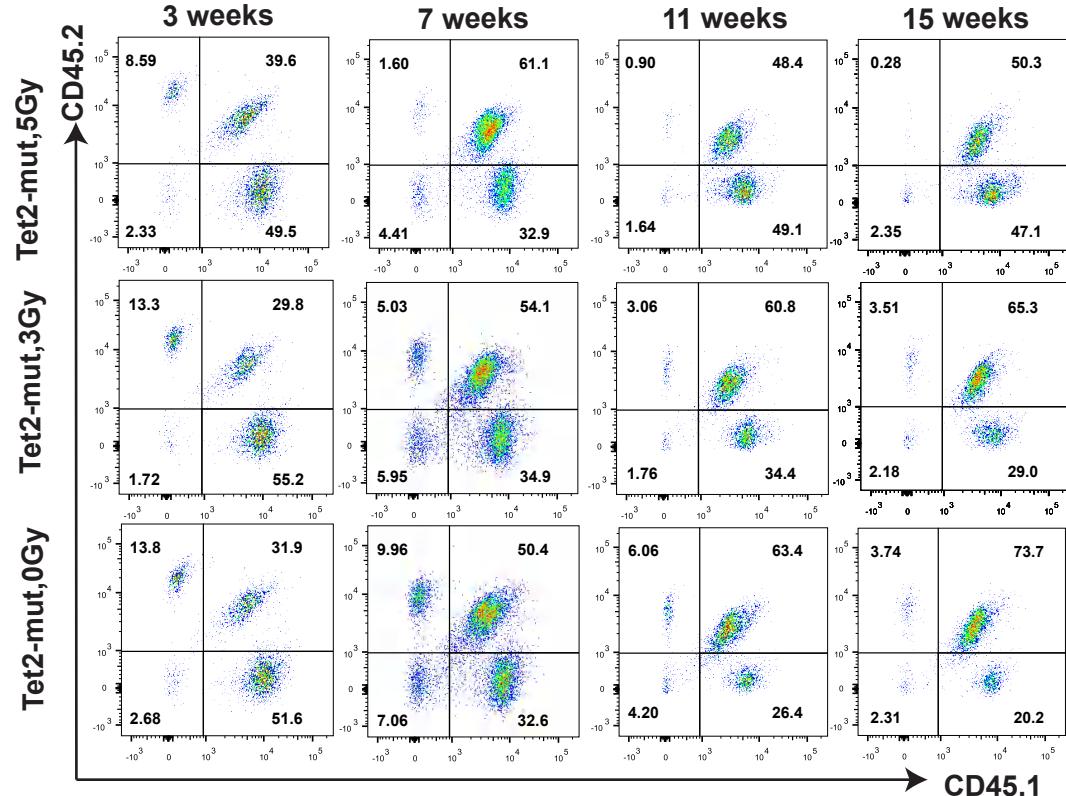
I

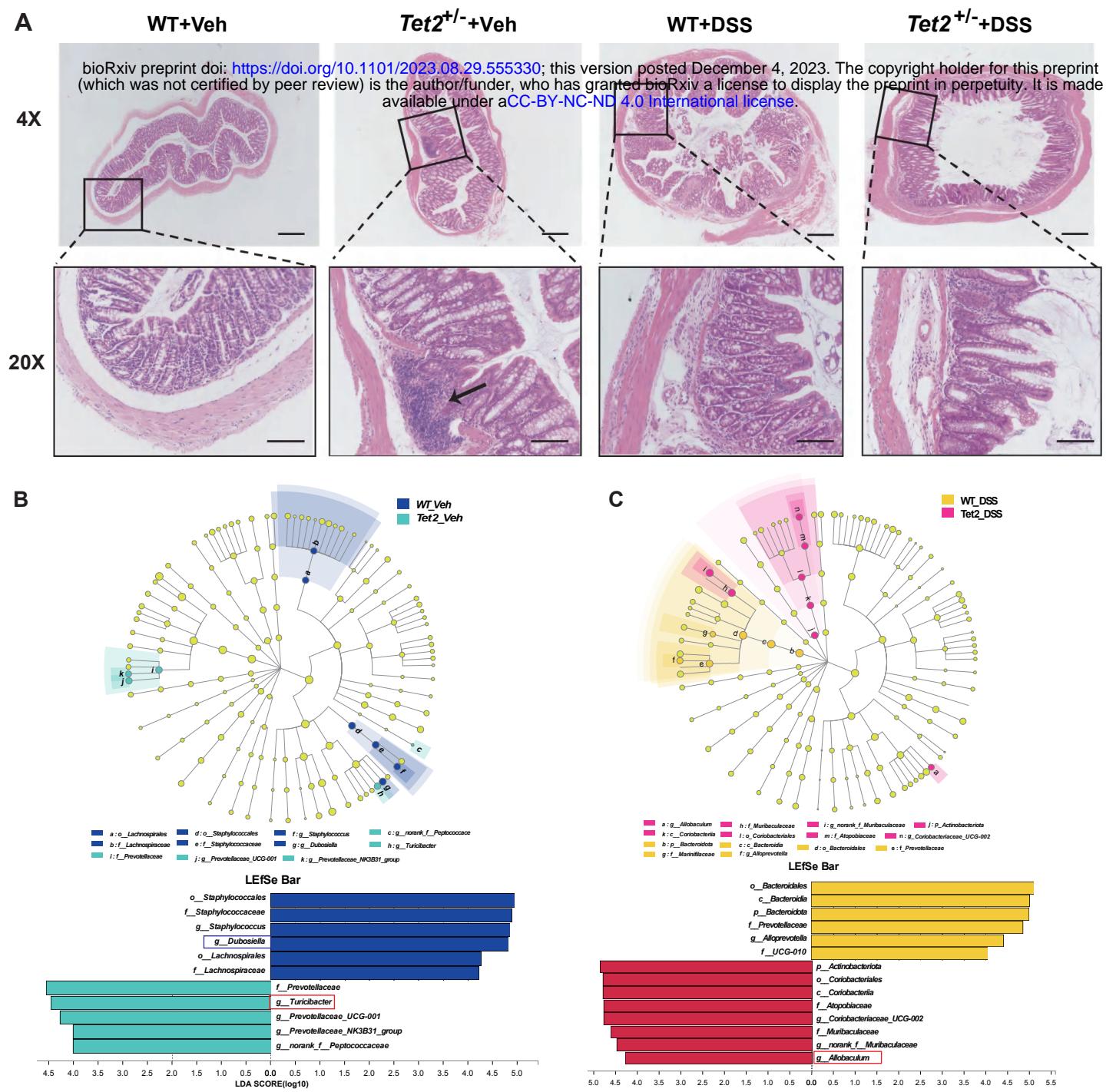

Figure 7.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.08.29.555330>; this version posted December 4, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

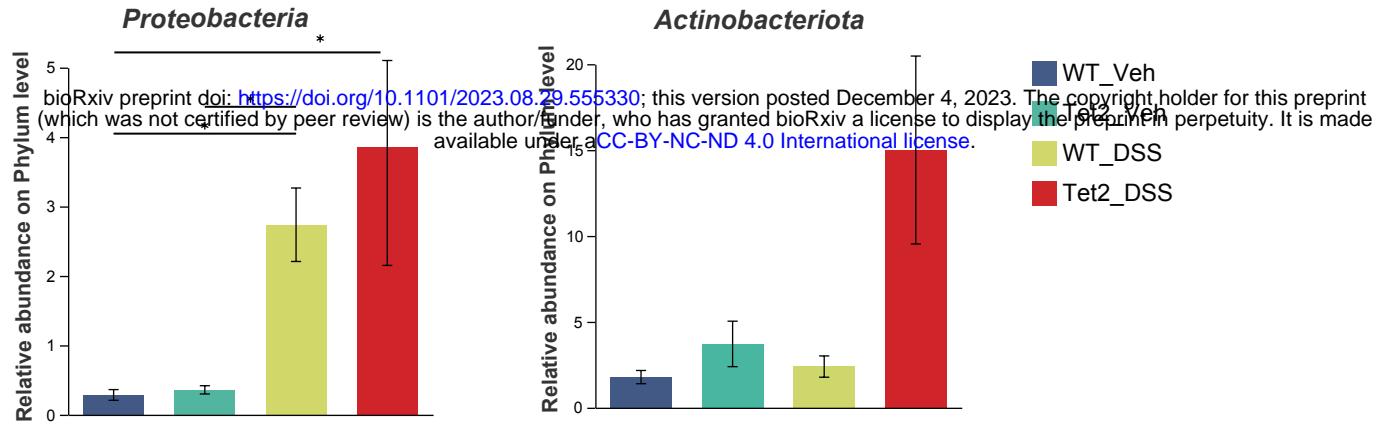


Supplemental Figure 1

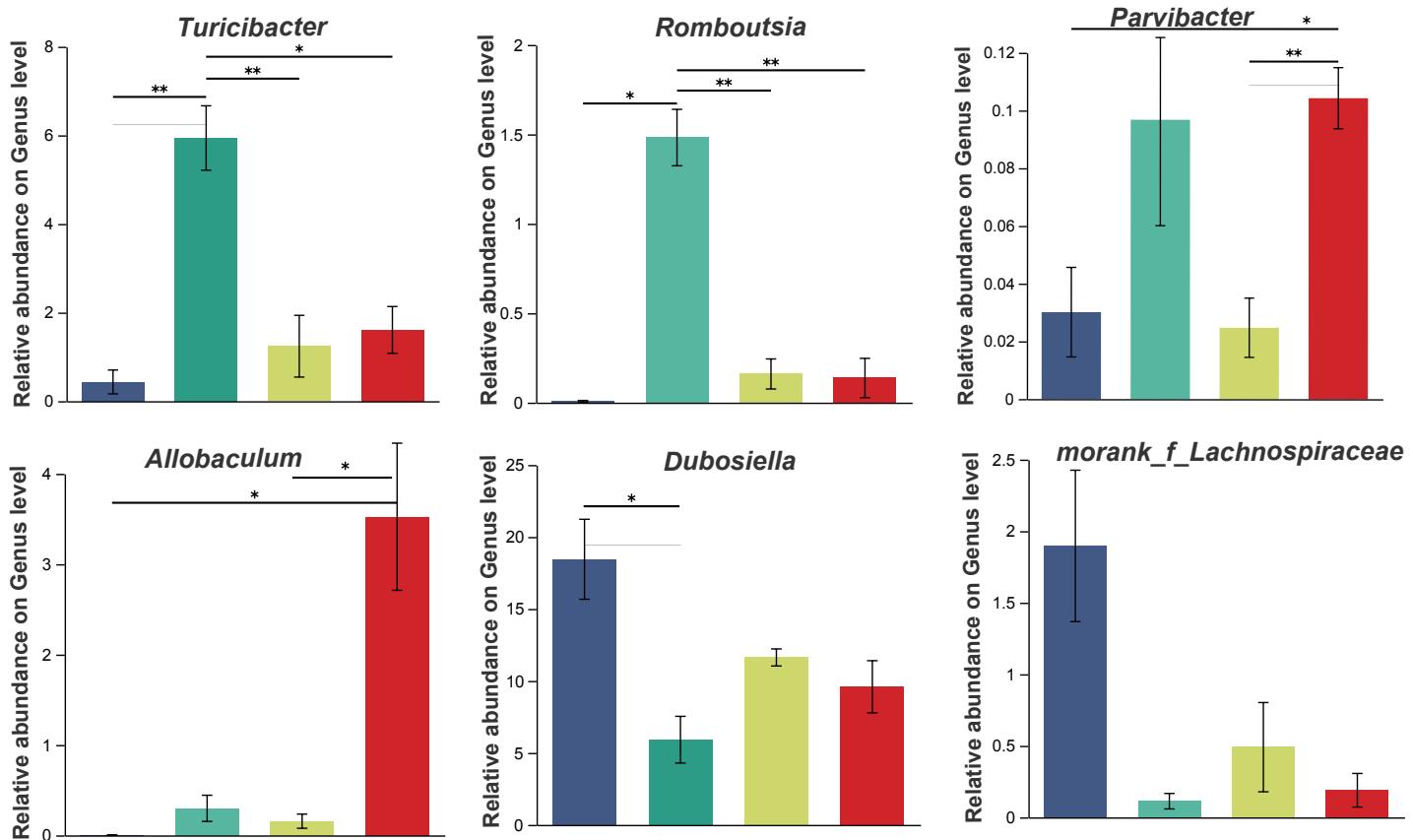

A


B

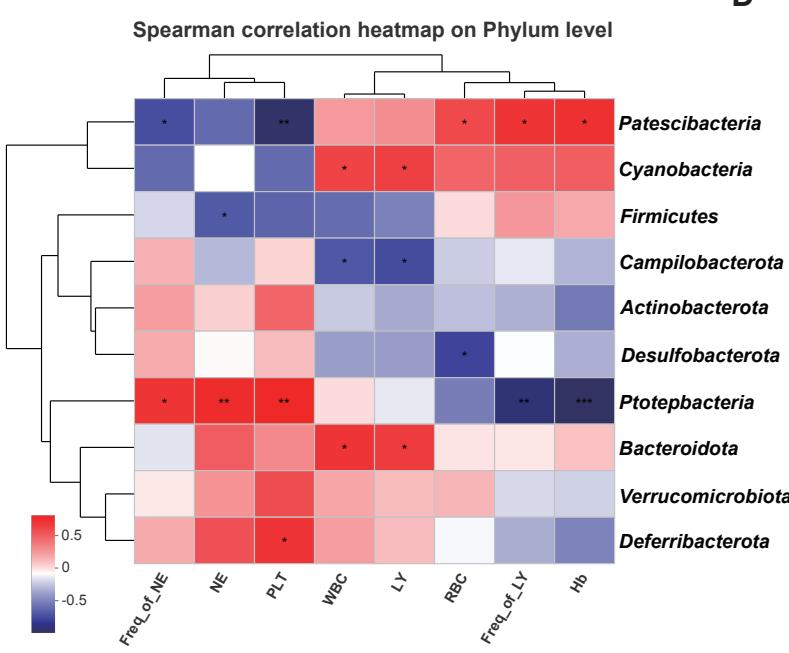
C

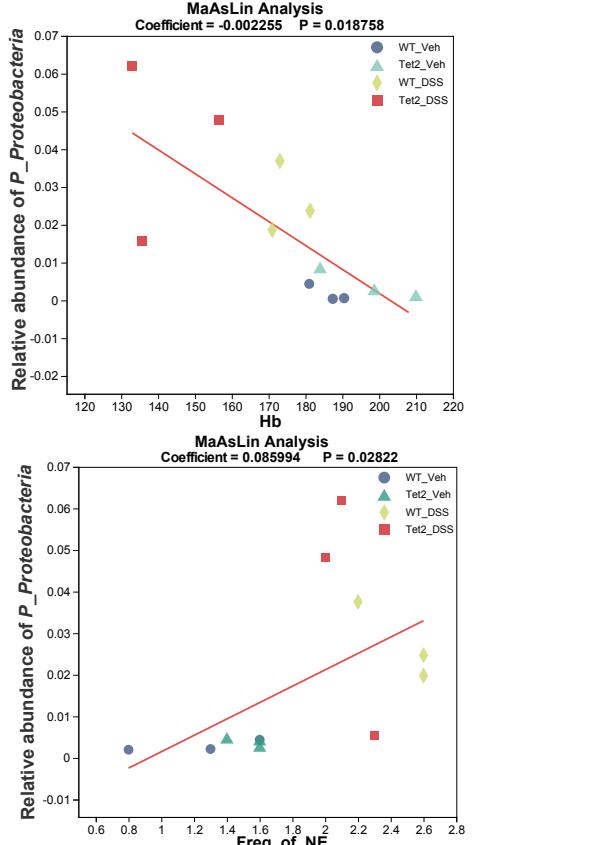


Supplementary Figure 2

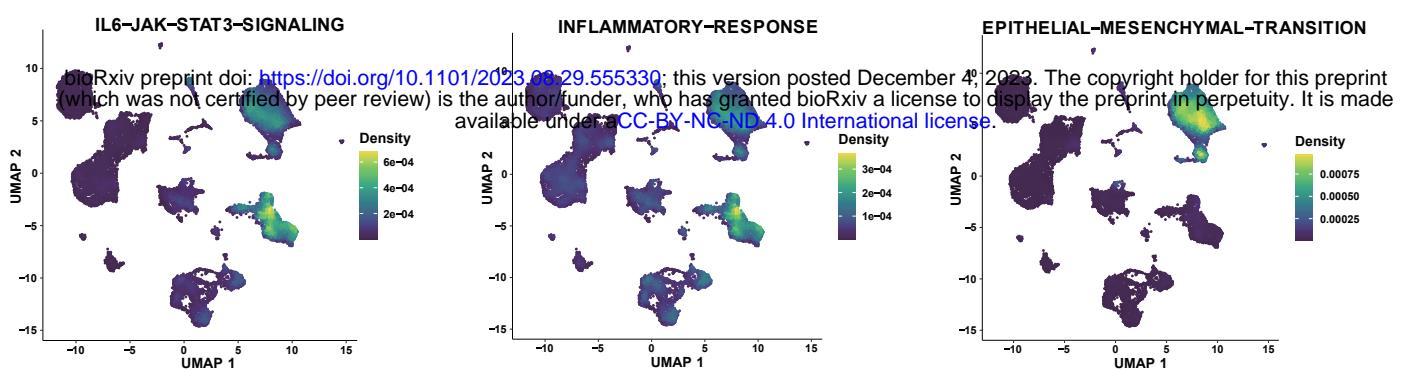


Supplementary Figure 3

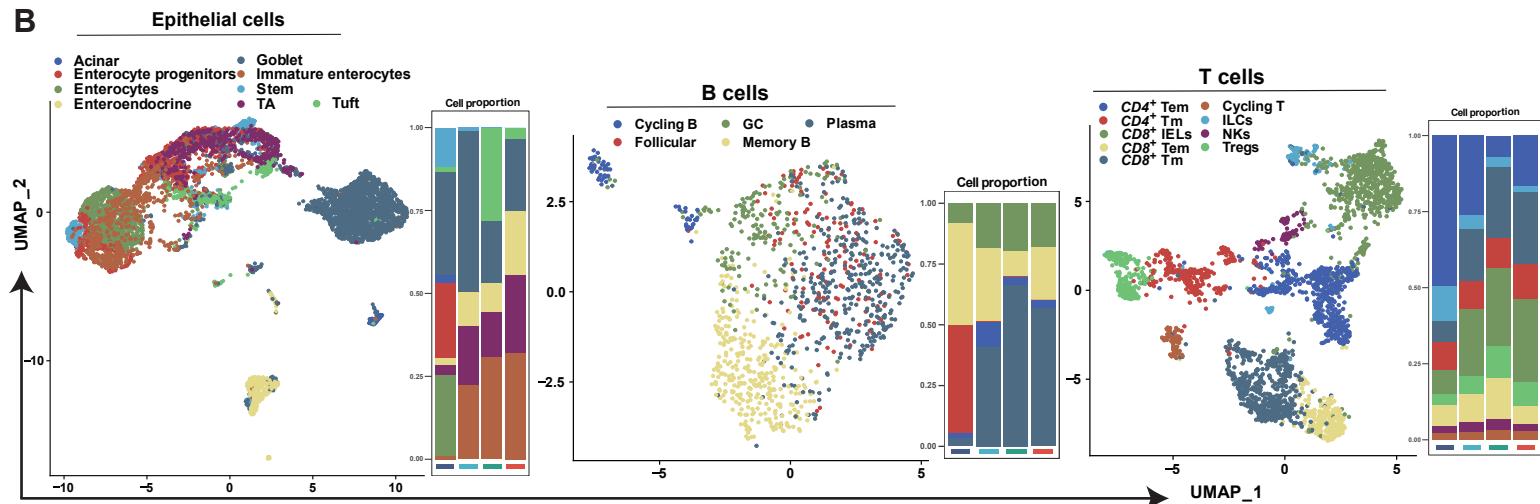

A


B

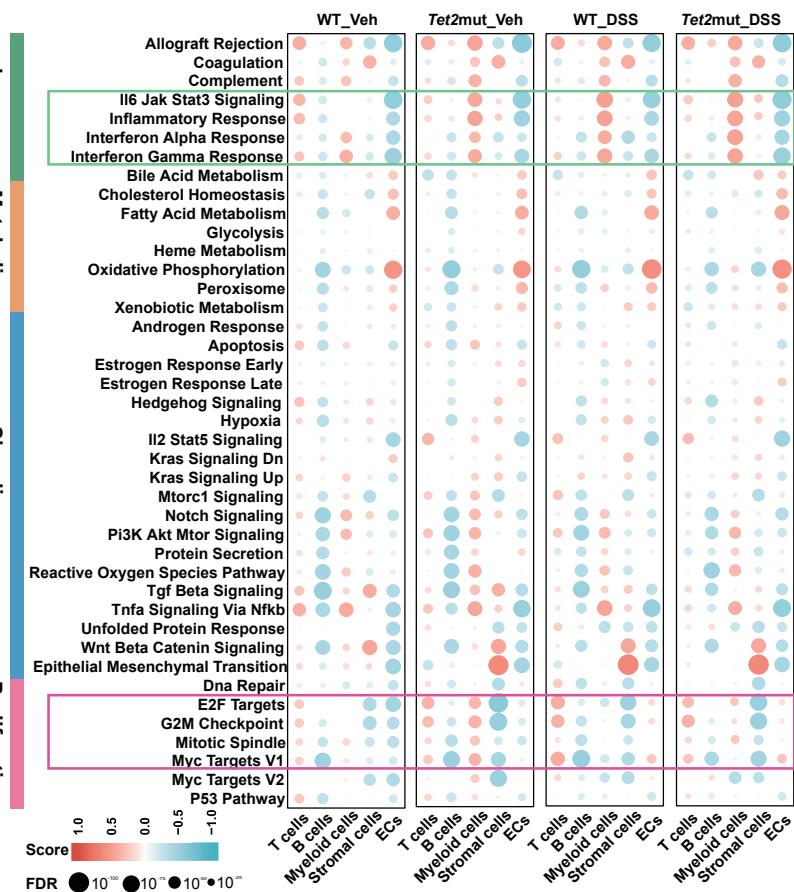
C

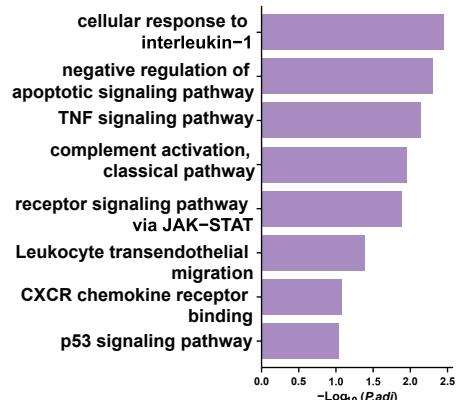


D

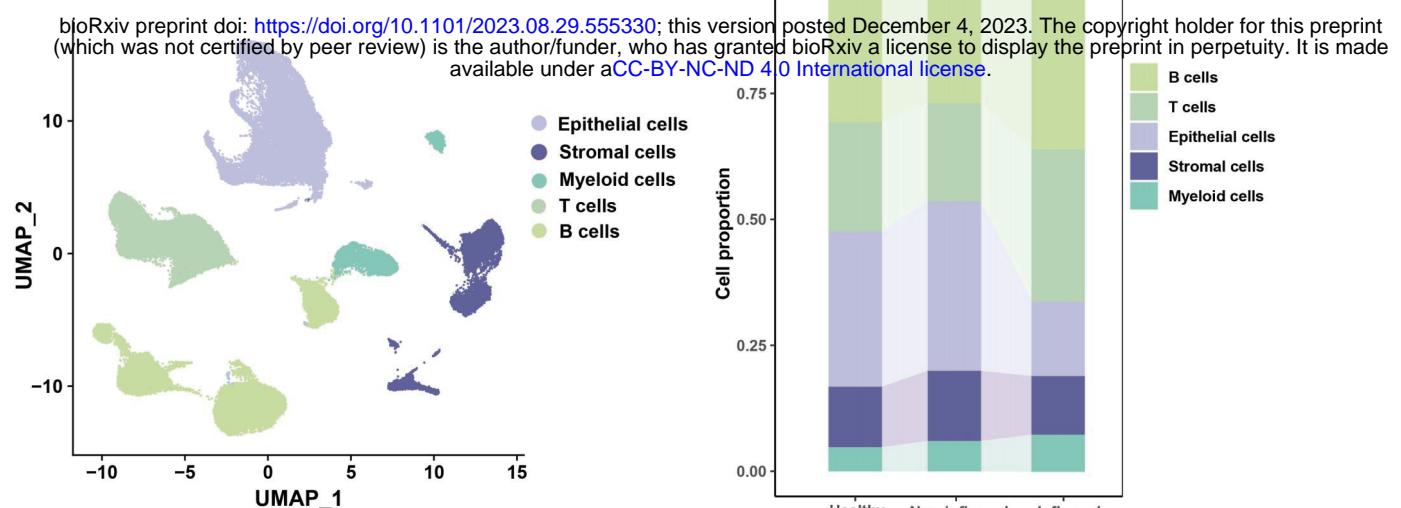


Supplemental Figure 4

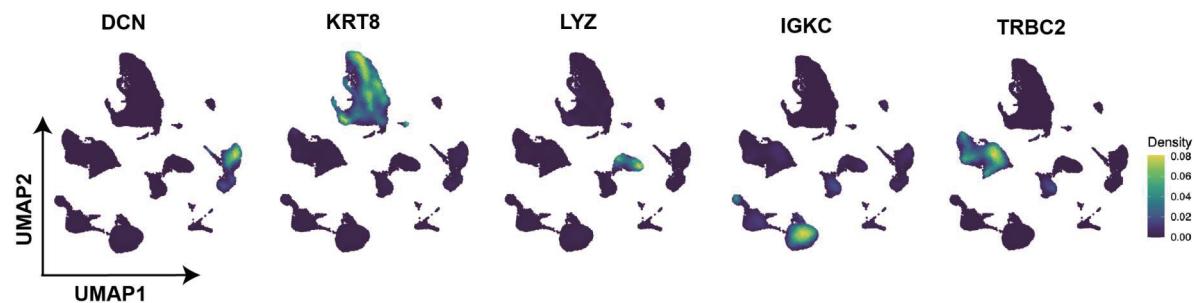

A


B

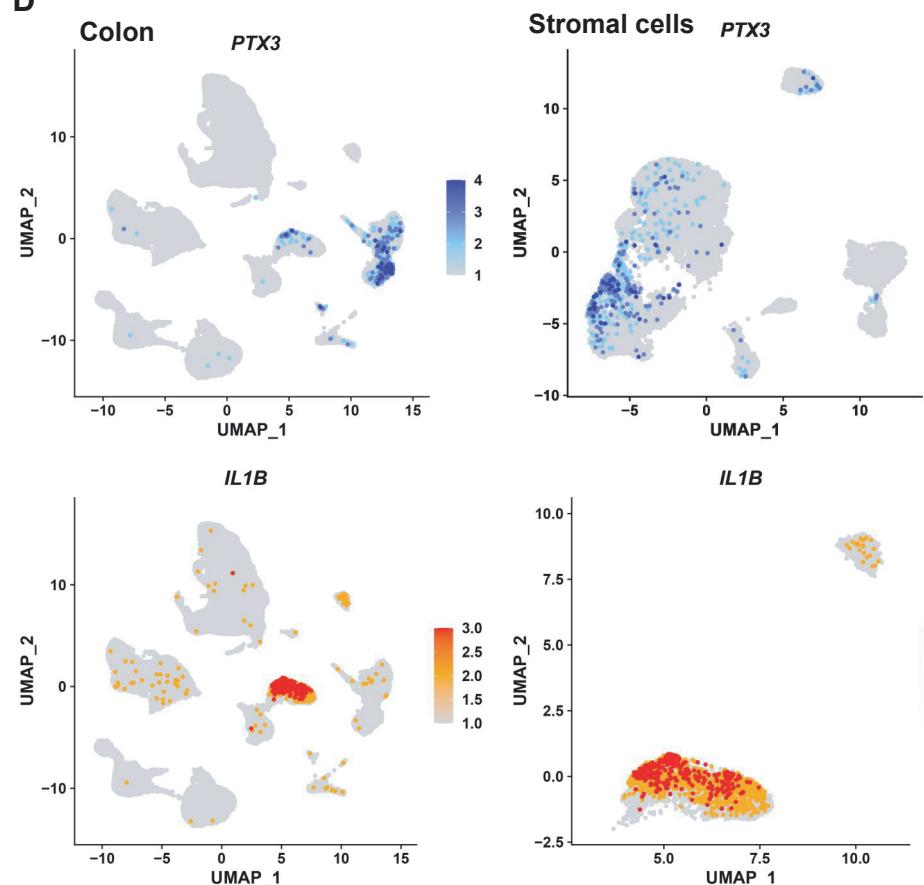
C

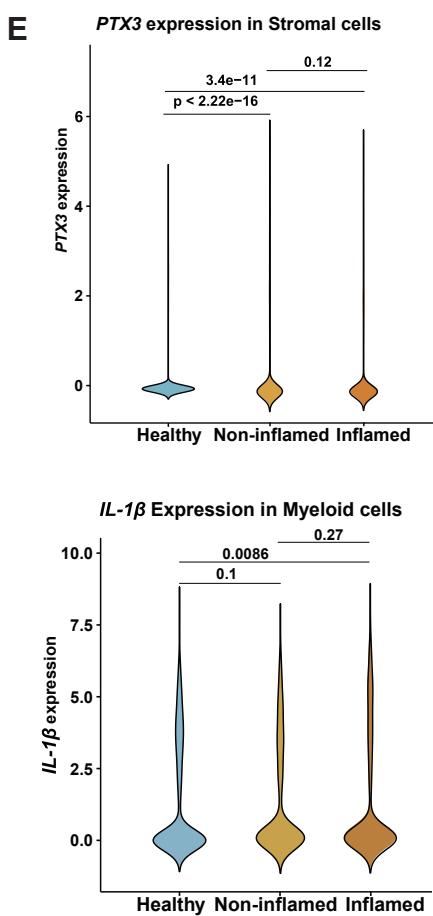


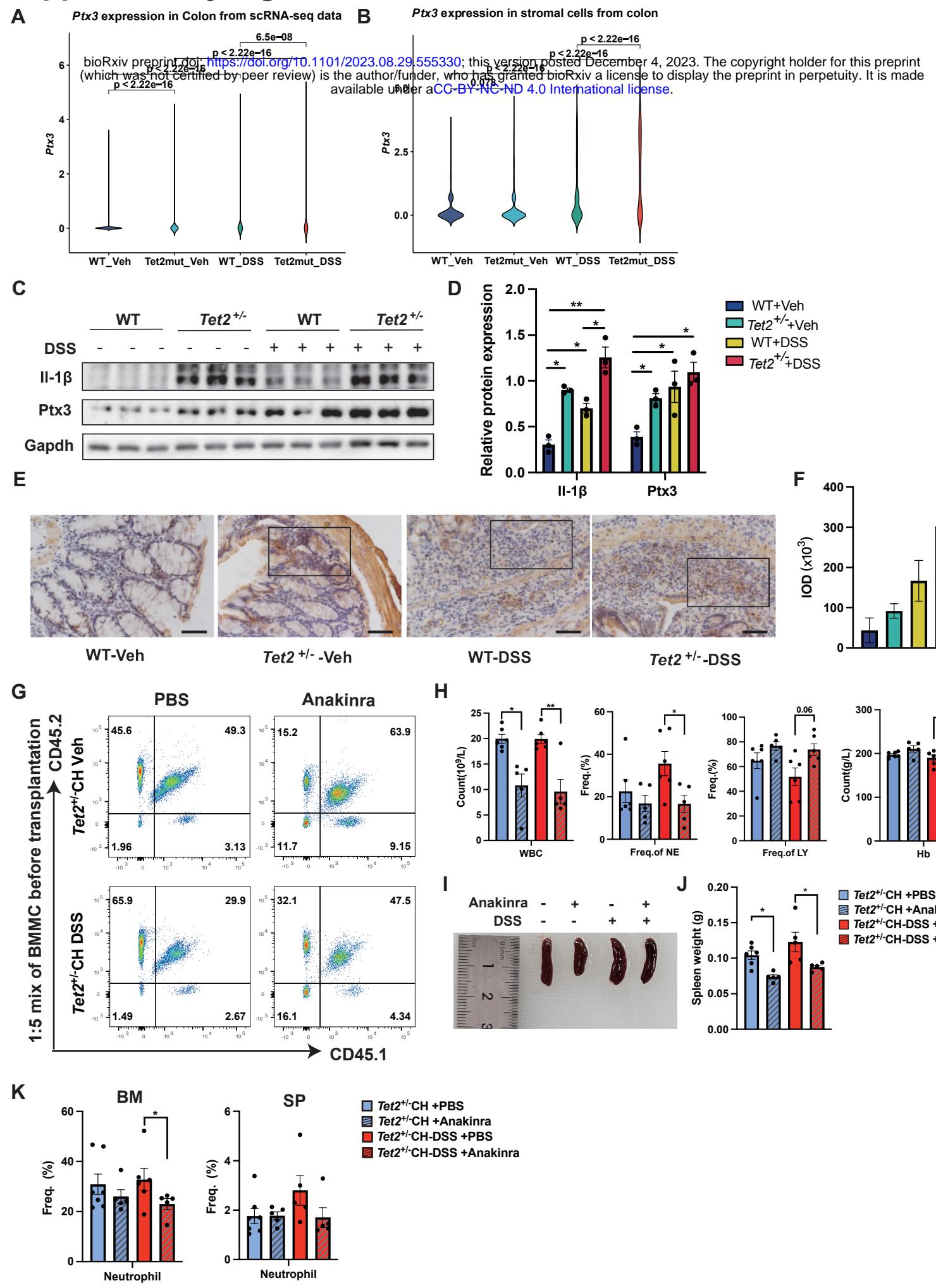
D



Supplementary Figure 5


A


C


D

E

Supplementary Figure 6

