

1 Genomes and transcriptomes help unravel the complex life cycle of the blastoclad fungus,
2 *Coelomomyces lativittatus*, an obligate parasite of mosquitoes and microcrustaceans
3
4 Cassandra L. Ettinger^{a,#}, Talieh Ostovar^{a,b,\$}, Mark Yacoub^{a,\$}, Steven Ahrendt^{a,*}, Robert H. Hice^c,
5 Brian A. Federici^{c,d}, Jason E. Stajich^{a,d,#}
6

7 ^aDepartment of Microbiology and Plant Pathology, University of California, Riverside, Riverside,
8 California, USA.

9 ^bUCR/SDSU Joint Doctoral Program in Evolutionary Biology, San Diego State University, San
10 Diego, CA, USA.

11 ^cDepartment of Entomology, University of California, Riverside, Riverside, California, USA.

12 ^dInstitute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
13

14 ***Present address** U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley
15 National Laboratory, Berkeley, California, USA

16

17 **\$These authors contributed equally to this work.**

18

19 **#Address correspondence to:** Cassandra L. Ettinger, cassande@ucr.edu; Jason E. Stajich,
20 jason.stajich@ucr.edu

21

22 **KEYWORDS:** Blastocladiomycota, RNAseq, development, genome assembly, genome
23 annotation, host-associated, alternations of generations

24

25

26 **ABSTRACT:**

27 Species of the phylum Blastocladiomycota, early diverging zoosporic (flagellated) lineages of
28 fungi, are vastly understudied. This phylum includes the genus *Coelomomyces* which consists
29 of more than 80 fungal species that are obligate parasites of arthropods. Known *Coelomomyces*
30 species lack a complete asexual life cycle, instead surviving through an obligate heteroecious
31 alternation of generations life cycle. Despite their global distribution and interesting life cycle,
32 little is known about the genomics of any *Coelomomyces* species. To address this, we
33 generated three draft-level genomes and annotations for *C. lativittatus* representing its haploid
34 meiospore, orange gamete, and amber gamete life stages. These draft genome assemblies
35 ranged in size from 5002 to 5799 contigs with a total length of 19.8-22.8 Mb and a mean of
36 7416 protein-coding genes. We then demonstrated the utility of these genomes by combining
37 the draft annotations as a reference for analysis of *C. lativittatus* transcriptomes. We analyzed
38 transcriptomes from across host-associated life stages including infection of larva and excised
39 mature sporangia from the mosquito, *Anopheles quadrimaculatus*. We identified differentially
40 expressed genes and enriched GO terms both across and within life stages and used these to
41 make hypotheses about *C. lativittatus* biology. Generally, we found the *C. lativittatus*
42 transcriptome to be a complex and dynamic expression landscape; GO terms related to
43 metabolism and transport processes were enriched during infection and terms related to
44 dispersal were enriched during sporulation. We further identified five HMG box genes in *C.*
45 *lativittatus*, three belonging to clades with mating type (MAT) loci from other fungi, as well as
46 four ortholog expansions in *C. lativittatus* compared to other fungi. The *C. lativittatus* genomes
47 and transcriptomes reported here are a valuable resource and may be leveraged toward
48 furthering understanding of the biology of these and other early diverging fungal lineages.

49

50

51 **INTRODUCTION:**

52

53 Fungi contribute to critical roles in the global ecosystem, yet knowledge of their biology,
54 genetics and biochemistry largely stems from observations of only two phyla, the Ascomycota
55 and Basidiomycota (i.e., the Dikarya). Zoosporic (flagellated) lineages of fungi make up
56 additional fungal phyla (including the Blastocladiomycota and Chytridiomycota), but are
57 generally understudied (James et al. 2020). The phylogenetic placement of these early-
58 diverging zoosporic lineages is controversial and under constant revision as new genomic data
59 becomes available (James et al. 2020; Li et al. 2021). For example, fungi belonging to the
60 Blastocladiomycota were originally placed together with lineages in the Chytridiomycota, but
61 now Blastocladiomycota is its own phylum (James et al. 2006; Porter et al. 2011). In addition,
62 recent phylogenetic efforts have suggested that Blastocladiomycota may be more closely
63 related to the Dikarya than the Chytridiomycota (Amses et al. 2022).

64

65 Within the Blastocladiomycota, the genus *Coelomomyces* (Blastocladiales;
66 Coelomomycetaceae) consists of more than 80 highly fastidious fungal species that are obligate
67 fatal parasites, primarily of mosquitoes and microcrustaceans (Whisler et al. 1975; Couch and
68 Bland 1985; Powell 2017; Shen et al. 2020). These fungi have a worldwide distribution and over
69 the last hundred years have been reported infecting all major genera of mosquitoes, i.e., *Aedes*,
70 *Culex*, and *Anopheles*, each of which contain many species that transmit pathogens that cause
71 medically important diseases such as malaria, filariasis, and various viral encephalitides.
72 Moreover, because it is difficult to detect *Coelomomyces* infections in larval and adult
73 mosquitoes, it is estimated that there are more than several hundred species worldwide yet to
74 be described (Couch and Bland 1985), making these fungi a very large group for which we
75 know virtually nothing about their genomes and biochemistry. This lack of knowledge is due to

76 the failure, despite numerous attempts, to culture any species of *Coelomomyces* *in vitro*. One
77 major difficulty is the lack of a cell wall on hyphae growing in the vegetative stages of their
78 mosquito and copepod hosts. As far as is known, *Coelomomyces* species lack a complete
79 asexual life cycle, instead surviving through an obligate alternation of generations in which a
80 sporophytic phase parasitizes mosquitoes (e.g., larva) and a gametophytic phase parasitizes
81 microcrustaceans (e.g., copepods) (Figure 1) (Whisler et al. 1975; Federici and Chapman 1977;
82 Couch and Bland 1985). This type of lifecycle is uncommon in fungi, though a similar
83 heteroecious life cycle is observed in the rust fungi (Duplessis et al. 2021).

84
85 The *Coelomomyces* life cycle begins when a biflagellate zygote encounters a mosquito larva.
86 The motile spore encysts on the intersegmental membrane of the mosquito cuticle, a process
87 facilitated by the secretion of adhesion vesicles (Travland 1979). The encysted spore develops
88 an appressorium and penetration tube, which penetrates through the host cuticle (Zebold et al.
89 1979). Once inside the mosquito larva, the so-called hyphagens grow into coenocytic hyphae
90 that ramify within the hemocoel over a period of seven to ten days, which then form sporangia at
91 their tips (Federici and Chapman 1977; Couch and Bland 1985). The mosquito larva
92 subsequently die and putrefy, liberating the sporangia. Meiosis then occurs in the sporangia
93 resulting in haploid uniflagellate meiospores, which after sporangial dehiscence seek out and
94 infect a crustacean host (typically copepods, though ostracods can serve as hosts as in some
95 *Coelomomyces* species (Whisler et al. 2009)).

96
97 The penetration of copepods is thought to occur in a manner similar to that of the mosquito larva
98 (Federici and Chapman 1977; Zebold et al. 1979), after which hyphae of the gametophyte form
99 a holocarpic gametangium that cleaves into gametes. The meiospores that infect the copepods
100 are of opposite mating types, thus forming gametangia in the copepod host that can generate

101 gametes of opposite mating types. When gametogenesis is complete, the gametangium bursts,
102 killing the copepod host and allowing the gametes to escape through fissures in the
103 intersegmental membranes. If a copepod is infected by meiospores of each mating type, the
104 gametangia burst simultaneously, and gametes of opposite mating types mate forming
105 biflagellate zygotes within the dead copepod, which then seek out a mosquito larval host after
106 release, thereby completing the alternations of generations life cycle (Whisler et al. 1975). If
107 only a single mating type gametangium develops within a copepod, the gametes swim to the
108 surface where they seek a mate in the water in which the mosquito larvae are breeding. In
109 some species, such as *C. punctatus* and *C. dodgei*, the gametangia and gametes of different
110 mating types, much like those of *Blastocladiella emersonii*, are different colors, apparently due
111 to different levels of β -carotene, with one isoforms being bright orange, and the other light
112 amber (Federici 1977; Federici and Thompson 1979).

113
114 As noted above, despite their worldwide distribution and relatively unique life cycle, little is
115 known about the biology, biochemistry, or genomic landscape of *Coelomomyces* species.
116 Modern molecular and genomic techniques allow us to circumvent the need for *in vitro* culturing
117 and to expand foundational knowledge of this enigmatic fungal genus. Toward this goal, we
118 have established an *in vivo* culture of *C. lativittatus*, a close relative of *C. dodgei* and *C.*
119 *punctatus* (Federici 1979; Couch and Bland 1985), which we maintain using the mosquito,
120 *Anopheles quadrimaculatus*, and the copepod, *Acanthocyclops vernalis*. The research
121 presented here represents the first exploratory investigation of *Coelomomyces* genomics and
122 the *C. lativittatus* transcriptome.

123
124 To begin to answer questions related to *Coelomomyces* biology, we generated draft genomes
125 and annotations for *C. lativittatus* from three life stages: (i) meiospores, (ii) orange gametes, and

126 (iii) amber gametes. We generated transcriptomes from across life stages including infection of
127 *An. quadrimaculatus* hosts and sporangia excised from *An. quadrimaculatus*, to elucidate genes
128 involved in the unique biology and alternation of generations life cycle of this fungus. We then
129 searched for mating type loci in *C. lativittatus*, as well as looked at expansions of orthologous
130 genes compared to close relatives in the Blastocladiomycota and Chytridiomycota. The *C.*
131 *lativittatus* genomes and transcriptomes reported here provide an invaluable foundational
132 resource for understanding the biology of this and other unique and important understudied
133 fungal lineages in various worldwide aquatic ecosystems.

134

135 **MATERIALS AND METHODS:**

136 *Study system*

137 Larvae and copepods used for maintenance of the *in vivo* culture of *C. lativittatus* were,
138 respectively, *Anopheles quadrimaculatus* and *Acanthocyclops vernalis*. These were maintained
139 in culture as described previously (Federici 1983).

140

141 *DNA extraction methods & sequencing*

142 We sought to generate genomes from three haploid life stages (i) meiospores, (ii) orange
143 gametes, and (iii) amber gametes. To obtain *C. lativittatus* meiospores, mosquito larvae with
144 advanced infections were collected when full of sporangia, within a day or two of death. To
145 induce germination of sporangia, each larva was surface-sterilized by rinsing it in 70% ethanol
146 for 20 seconds, after which each was placed in 1 mL of double-distilled water in a 22 mm plastic
147 Petri dish at room temperature. The larvae were dissected with jeweler's forceps and most of
148 the cuticle and midgut were removed from the water. Typically, the sporangia dehisced,
149 releasing meiospores, 48-72 hours after incubation at room temperature. Meiospore samples
150 were collected using a 1 mL pipette and centrifuged using a table-top mini-fuge for 3 seconds to

151 sediment any sporangia in the sample. The meiospores were then pelleted by centrifugation at
152 16,000xg for 2 minutes. To obtain *C. lativittatus* gametes, infected copepods containing the
153 orange and amber mating types were separated prior to copepod lysis. Liquid was removed and
154 then copepods were surface-sterilized by rinsing in 70% ethanol and then washed with double-
155 distilled water to reduce contaminants. After the gametes were released from the copepods, the
156 copepod carcasses were removed by allowing them to settle in the microfuge tube and the
157 supernatant containing the gametes was transferred to a new tube. Samples were spun for 3
158 minutes at 6000xg to pellet the gametes, and the supernatant was removed.

159
160 DNA was extracted from the resulting meiospore and gamete pellets using a Qiagen genomic
161 DNA purification kit with Qiagen genomic-20/G tips following the standard manufacturer
162 protocol. DNA was then amplified using the Qiagen repli-G Whole Genome Amplification Kit
163 according to the standard manufacturer protocol. Illumina Libraries were prepared with the NEB
164 DNA Library Prep Kit. Libraries were sequenced on an Illumina HiSeq 2500 with 100 bp PE
165 sequencing by the UC Riverside Genomics Core Facilities.

166
167 *RNA extraction and library preparation*
168
169 For transcriptome analysis of the sporophyte, hyphae were excised from infected fourth instar
170 larvae of *An. quadrimaculatus* during either early, middle, or late stages of fungal development.
171 For the purpose of this study, we define early, middle, and late infection stages as follows.
172 Typically, the early stage of obvious infection appears as a few unpigmented, i.e., white,
173 sporangia at the tips of hyphae about six days after molting to the fourth instar. The fat body in
174 these larvae is quite well developed, and hyphae can be seen adhering to this tissue in each of
175 the larval abdominal segments and in the thorax. The middle stage occurs over days seven and

176 eight, during which the number of sporangia increases significantly, with most being mature,
177 meaning rusty brown in color. The late stage occurs during days nine and ten, by which time
178 many larvae are full of sporangia and die, although many other larvae survive another four to
179 five days before dying. These larvae continue to grow, being at least twice the size at which
180 healthy larvae pupate. Two replicate samples were collected from each time point.

181

182 For the sporangia transcriptomes, mosquito larvae with advanced infections were collected
183 when full of sporangia, within a day or two of death. To induce sporangia to undergo meiosis
184 and germinate, each larva was surface-sterilized by rinsing it in 70% ethanol for 20 seconds,
185 after which each was placed in 1 mL of double-distilled water in a 22 mm plastic Petri dish at
186 room temperature. The sporangia were excised from the larvae using jeweler's forceps, after
187 which the cuticle and midgut were removed from the water. Typically, the sporangia dehisced,
188 releasing meiospores, 48-72 hours after incubation at room temperature. Sporangia were
189 collected at 0, 24, 36, and 48 hour time points starting from the period the sporangia were
190 excised from the mosquito larva (0 hour) through dehiscence (48 hour), when the uniflagellate
191 meiospores burst out of the sporangia. Samples were collected using a 1 mL pipette and
192 centrifuged using a table-top mini-fuge for 3 seconds to obtain the sporangia in the sample. Two
193 replicate samples were collected from each time point.

194

195 RNA from all samples was extracted with Trizol (Life Technologies, Grand Island, NY) as per
196 the manufacturer protocol. 1.2 μ g of RNA was used as the starting material for the NEBNext
197 Ultra Directional RNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA). Poly-A
198 RNA was purified as per instructions and converted to adapter-ligated, size-selected cDNA. An
199 aliquot of the library was cloned into pJet1.2 (Thermo Fisher Scientific, Waltham, MA) and
200 clones sequenced with standard methods to check library quality. An aliquot was also run on a

201 Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA). The resulting sequencing libraries
202 were sequenced by the Institute for Integrative Genome Biology Core facility at the University of
203 California at Riverside using the MiSeq instrument with 100 bp paired-end reads (Illumina, San
204 Diego, CA).

205

206 *Genome assembly*

207 Genomes for the meiospore (MEIOSPORE), orange gamete (ORANGE) and amber gamete
208 (AMBER) libraries were assembled using the Automatic Assembly of the Fungi (AAFTF)
209 pipeline v. 0.2.3 (Stajich and Palmer 2019). Briefly, this involved first trimming and filtering reads
210 using bbduk.sh from BBTools v. 37.76 (Bushnell 2014). Next, assemblies were produced using
211 the ‘assemble’ command in AAFTF which relies on SPAdes v. 3.12.0 (Prjibelski et al. 2020) run
212 with default parameters to select optimal *k*-mer size and screened for contaminant vectors with
213 AAFTF vecscreen step using NCBI BLAST (Camacho et al. 2009). The AAFTF sourpurge step
214 was run which utilizes sourmash v. 3.5.0 (Brown et al. 2016) to further purge any remaining
215 contaminant contigs and AAFTF rmdup step using Minimap2 v. 2.17 (Li 2018) was run to
216 identify duplicate contigs for removal. Finally, AAFTF polish step ran Pilon v. 1.22 (Walker et al.
217 2014) to polish the resulting contigs in each assembly to remove potentially mis-called
218 consensus nucleotides or indels by SPAdes.

219

220 Assembly evaluation for each genome was performed using QUAST v. 5.0.0 (Gurevich et al.
221 2013) and BUSCO v. 5.0.0 (Simão et al. 2015) against both the eukaryote_odb10 and
222 fungi_odb10 gene sets. BUSCO assessment was also performed for reference genomes from
223 other fungal lineages for comparison (for lineages see Table S1). We performed telomere
224 searches against the *Coelomomyces* assemblies using find_telomeres.py

225 (https://github.com/markhilt/genome_analysis_tools) to test for telomeric repeats at the ends of
226 the scaffolds and determine chromosome completeness (Hiltunen et al. 2021).

227

228 *Contamination screen and removal*

229 Given the obligate nature of *C. lativittatus* with its hosts, microbial contamination was assessed
230 in each assembly using the BlobTools2 pipeline (Figure S1) (Challis et al. 2020). This involved
231 first assigning taxonomy against the UniProt Reference Proteomes database (v. 2020_10) to
232 each contig using diamond (v. 2.0.4) and command-line BLAST v. 2.2.30+ (Camacho et al.
233 2009; Buchfink et al. 2021). Next, read coverage was calculated by aligning the reads from the
234 MEIOSPORE, AMBER and ORANGE libraries to their respective genome assemblies with BWA
235 v.0.7.17 (Li and Durbin 2009) and sorted using samtools v. 1.11 (Li et al. 2009). Finally, the
236 BlobToolKit Viewer was used to visualize the GC content, read coverage, and predicted
237 taxonomies of contigs to identify contaminants. This approach flagged 1969, 11, and 24 contigs
238 as putative contaminants in the AMBER, MEIOSPORE and ORANGE assemblies respectively.

239

240 Microbial contamination was further assessed with the anvi'o v.7 pipeline (Eren et al. 2015,
241 2021), a complementary method, for the AMBER assembly given the large number of
242 contaminants predicted by BlobTools2 (Figure S1). This involved first obtaining read coverage
243 from each of the three genomic samples (AMBER, ORANGE, and MEIOSPORE) to the AMBER
244 assembly with bowtie2 v. 2.4.2 (Langmead et al. 2009) and samtools v. 1.11 (Li et al. 2009). A
245 contig database for the AMBER assembly was then generated using 'anvi-gen-contigs-
246 database' which uses Prodigal v. 2.6.3 (Hyatt et al. 2010) to predict open-reading frames. This
247 command also identifies single-copy bacterial (Lee 2019), archaeal (Lee 2019) and protista
248 (Delmont 2018) genes using HMMER v. 3.2.1 (Eddy 2011) and ribosomal RNA genes using
249 barrnap (Seemann 2018). We predicted taxonomy for each predicted ORF using Kaiju v. 1.7.2

250 (Menzel et al. 2016) with the NCBI BLAST non-redundant protein database nr including fungi
251 and microbial eukaryotes v. 2020-05-25. We then constructed anvi'o profiles for each sample
252 (AMBER, ORANGE, and MEIOSPORE) using 'anvi-profile' with the '--cluster-contigs' option and
253 a contig length cut-off of >2.5 kbp. These profiles were then merged using 'anvi-merge'.
254 Contaminant contigs in the AMBER assembly were then identified through 'anvi-interactive'
255 using a combination of hierarchical clustering based on coverage and tetranucleotide frequency,
256 taxonomic identity, and GC content. This second method identified 1127 contaminant contigs in
257 the AMBER assembly.

258

259 Contaminant contigs (e.g., any contig identified by the BlobTools2 pipeline as assigned to
260 bacteria, archaea or viruses and any contig identified using the anvi'o pipeline) were
261 subsequently removed from the draft assemblies. For the AMBER assembly, this meant
262 conservatively removing a total of 2091 contaminant contigs (1005 identified by both methods,
263 964 contigs identified by BlobTool2 only, and 122 identified by anvi'o only).

264

265 *Genome annotation*

266 Genome annotation was performed using the Funannotate pipeline v.1.7.4 (Palmer and Stajich
267 2020). This first involved using RepeatModeler v.1.0.11 (Flynn et al. 2020) and RepeatMasker
268 v.4.0.7 (Smit et al. 2013-2015) to generate a library of predicted repetitive elements and then
269 soft mask these elements in the draft genomes. Next the RNASeq data was assembled using
270 Trinity v. 2.10.0 in Genome-Guided mode and aligned with PASA v.2.3.3 to train the *ab initio*
271 gene prediction algorithms augustus and SNAP (Haas et al. 2003; Grabherr et al. 2011).
272 Consensus gene models were generated using EVidenceModeler v.1.1.1 (Haas et al. 2008) on
273 predicted protein-coding gene models from a combination of algorithms including CodingQuarry
274 v. 2.0, Augustus v. 3.3.3, GeneMark-ETS v. 4.38, GlimmerHMM, and SNAP v 2013_11_29 (Korf

275 2004; Majoros et al. 2004; Stanke et al. 2006; Ter-Hovhannisyan et al. 2008; Testa et al. 2015).
276 Transfer rRNA genes were predicted using tRNAscan-SE v. 1.3.1 (Lowe and Eddy 1997).
277 Protein annotations were predicted for the consensus gene models based on similarity to Pfam
278 (Finn et al. 2014), CAZyme domains (Lombard et al. 2014; Huang et al. 2018), MEROps
279 (Rawlings et al. 2014), eggNOG v. 1.0.3 (Huerta-Cepas et al. 2016), InterProScan v. 5 (Jones et
280 al. 2014), and Swiss-Prot (Boutet et al. 2016) using HMMER v.3 (Eddy 2011) or diamond
281 BLASTP (Buchfink et al. 2015). Phobius (Käll et al. 2004) and SignalP v. 4.1c (Armenteros et al.
282 2019) were also run to predict transmembrane proteins and secreted proteins respectively. Any
283 problematic gene models that were flagged by Funannotate were manually curated as needed.
284 The annotation results were summarized in custom code written in R v. 4.0.3 using the tidyverse
285 v. 1.3.0 package (Wickham et al. 2019; R Core Team 2020). The annotated genomes of the
286 MEIOSPORE, ORANGE, and AMBER assemblies were aligned and mapped to the RNA
287 sequencing reads using HISAT2 (Kim et al. 2019).
288

289 *Transcriptome analysis*

290 Given the obligate relationship of *Coelomomyces* with its hosts, we chose a reference-based
291 transcriptome approach as initial results from *de-novo* approaches revealed host contamination
292 even after removal using a reference host transcriptome. To provide a more comprehensive
293 gene set to use as a reference for transcriptome analysis, we combined the predicted transcript
294 sets from all three genome annotations. We then used CD-HIT-EST to cluster transcripts at
295 90% sequence identity and evaluated this combined set (AOM90) with BUSCO v. 5.0.0 (Fu et
296 al. 2012; Simão et al. 2015). For comparative purposes, a protein alignment of *C. lativittatus*
297 with other fungal lineages (for lineages see Table S1), was constructed using the
298 PHYling_unified (https://github.com/stajichlab/PHYling_unified) pipeline, which uses HMMER
299 v.3 (Eddy 2011) and ClipKIT (Steenwyk et al. 2020) to search for markers in the protein

300 sequences, build, and trim an alignment based on BUSCO fungi_odb10 HMMs. A maximum
301 likelihood phylogeny was built from this alignment using IQ-TREE2 v.2.2.0 (Minh et al. 2020).
302 BUSCO fungi_odb10 gene partitions were provided to IQ-TREE2 using -p (Chernomor et al.
303 2016) and ModelFinder Plus was run using -m MFP to ensure use of the best evolutionary
304 model for each partition based on BIC (Kalyaanamoorthy et al. 2017).

305

306 Mosquito host transcripts were removed from the transcriptome data using BBMap against an
307 *An. quadrimaculatus* (Accession: GBTE00000000) reference transcriptome prior to read
308 quantification (Bushnell 2014; Desjardins et al. 2015). Host-filtered transcriptome read counts
309 were quantified against the AOM90 transcript set using kallisto (Bray et al. 2016). The count
310 data were then imported into R for analysis with the DESeq2, ggplot2 and GSEABase packages
311 (Wickham 2009; Love et al. 2014; R Core Team 2020; Morgan et al. 2022).

312

313 General expression trends across all samples were visualized using variance stabilized count
314 data. We then used DESeq2 to identify differentially expressed transcripts between life stages
315 (e.g., sporangial vs. infection). Significant genes were defined as transcripts with a false
316 discovery rate adjusted *p*-value of < 0.01 and a |log₂ fold change| > 2. Gene Ontology (GO)
317 enrichment analysis was performed to assess if the differentially expressed transcripts were
318 significantly enriched in any particular functions (*p* < 0.05). This analysis was performed at each
319 of three GO classes: biological processes (BP), molecular functions (MF), and cellular
320 components (CC). Significantly enriched GO terms were simplified using Revigo with the default
321 settings (Supek et al. 2011).

322

323 In order to identify transcripts that show change in expression across the development time
324 course conditions within each sporangium (e.g., 0 hr vs. 24 hr vs. 32 hr vs. 48 hr) and infection

325 stages (e.g., early vs. middle vs. late infection), we performed a Likelihood Ratio Test (LRT).
326 Significant transcripts from LRT were filtered with a false discovery rate adjusted *p*-value of <
327 0.01 and a $|\log_2 \text{fold change}| > 2$. The “DEGreport” package was used to cluster genes with
328 similar expression profiles based on the LRT results across different time series conditions
329 (Pantano 2022). A GO enrichment analysis was performed to identify enriched GO terms in
330 each of the clusters with similar expression patterns ($p < 0.05$). GO terms were simplified using
331 Revigo with default settings (Supek et al. 2011).

332

333 *Identification of mating type (MAT) loci in C. lativattus*

334 To identify high mobility group box (HMG-box) genes putatively involved in mating in the *C.*
335 *lativittatus* genomes, we used HMMsearch v. 3.3.2 for PFAM PF00505 with an e-value of 1e-15
336 (Eddy 2011). Given that genes neighboring HMG-boxes are thought to be involved in mating in
337 other fungi (Vossenberg et al. 2019), we used Clinker (Gilchrist and Chooi 2021) and Cblaster
338 (Gilchrist et al. 2021) to assess the syntenic regions surrounding the HMG-boxes in the
339 *Coelomomyces* assemblies to identify conserved regions neighboring HMG-boxes. To confirm
340 phylogenetic placement of the identified HMG-box genes, we aligned the candidate genes from
341 *C. lativattatus* with those of other fungi (for fungi used see Table S1) using HMMalign (Eddy
342 2011). We then constructed a maximum likelihood phylogenetic tree of the HMG-box genes
343 using IQ-TREE using the VT+R6 model which was selected by ModelFinder Plus (Minh et al.
344 2020). Finally, to compare expression of HMG-box genes across *C. lativittatus* life stages, the
345 variance stabilized expression levels of the HMG-box genes were plotted using ggplot2
346 (Wickham 2009). Pairwise t-tests were performed to assess differential expression between life
347 stages.

348

349 *Identification of orthologous gene expansions relative to other fungal lineages*

350 Orthofinder v. 2.5.4 was used to identify whether any differentially expressed transcripts
351 represented genes expanded in copy number in *C. lativittatus* compared to other fungi (for fungi
352 used see Table S1) (Emms and Kelly 2019). We filtered the Orthofinder results to orthogroups
353 containing genes with differentially expressed transcripts in the RNAseq data. These results
354 were subsetted by orthogroups that were at least $|\log_2 \text{fold change}| > 2$ higher in copy number
355 in *C. lativittatus* compared to the other fungi. Orthogroup expansions were confirmed through
356 phylogenetic analyses. Briefly, a nucleotide alignment of all genes in an orthogroup of interest
357 was produced using MUSCLE v. 5.1 and then a phylogenetic tree was built with IQ-TREE2
358 using -m MFP which runs ModelFinder Plus (Kalyaanamoorthy et al. 2017).

359

360 **RESULTS:**

361 *Over half of the genomic landscape is represented in *C. lativittatus* assemblies and annotations*
362 After successful contaminant removal, the draft genome assemblies ranged in size from 5002 to
363 5799 contigs with a total length between 19.8 Mb and 22.8 Mb (Table 1). Although the
364 assemblies were fragmented with an average N50 of 6128 bp, BUSCO assessment found that
365 the draft assemblies were halfway complete (Table S2). Mean completeness in 'genome' mode
366 was 43.1% and 56.3% using the fungi_odb10 and eukaryota_odb10 sets, respectively. While,
367 these values were lower than those of other blastoclads on average (fungi_odb10: 75.5%,
368 eukaryota_odb10: 83.8%), including a recent long-read genome from *B. emersonii*
369 (fungi_odb10: 81.8%) (Leonard et al. 2022), it is important to note that BUSCO sets are biased
370 against early diverging fungal lineages. Nonetheless, these draft assemblies provide a valuable
371 starting point for further improvement and refinement moving forward.

372

373 Annotation of the three assemblies with Funannotate identified on average 7416 protein-coding
374 genes and 59 tRNA genes, with 63.2% of these having a hit to at least one functional database

375 (Table 1). We combined the three predicted transcript sets together at 90% identity using CD-
376 HIT-EST to generate a comprehensive final gene set (AOM90) of 8645 transcripts and leading
377 to improved BUSCO ‘protein’ scores of 62.5% and 82.8% using the fungi_odb10 and
378 eukaryota_odb10 sets, respectively (Table S2; Figure S2). Despite being slightly lower than the
379 average scores for other blastoclads (Figure 2; fungi_odb10: 84.1, eukaryota_odb10: 90.1%),
380 the AOM90 transcript set represents a promising and robust reference for beginning to elucidate
381 *C. lativittatus* biology.

382

383 *Differential expression analysis reveals distinct expression profiles between life stages*
384 Initial analysis of the transcriptome profiles supported a distinct divide between infection and
385 sporangial life stages with each stage clustering separately (Figure 3A) and clear differences in
386 expression in the most abundant differentially expressed transcripts (Figure 3B). We followed
387 this analysis with differential transcript expression analysis using DESeq2 to identify specific
388 transcripts responsible for these patterns.

389

390 We found 1262 differentially expressed transcripts between life stages, with 395 transcripts
391 enriched during infection compared to 867 enriched during sporangial life stages ($p < 0.01$,
392 $\log_{2}\text{foldchange} > 2$). Of these, 575 (45.6%) had no matches to any of the databases used for
393 annotation. Interestingly, while more transcripts were enriched in sporangial stages, many of the
394 most abundant transcripts were representative of transcripts enriched in the infection stages
395 and many of these transcripts were unannotated. For example, of the top 25 most abundant
396 differentially expressed transcripts, 22 were upregulated during infection relative to sporangial
397 stages (Figure 3B). Further, 18 of these 25 transcripts had no significant similarity to any
398 features in the annotation databases, and further only one transcript was fully annotated,
399 HMI54_014395 (*ERG10*), an acetyl-CoA C-acetyltransferase.

400

401 We performed GO enrichment analysis on the differentially expressed transcripts to identify
402 enriched GO terms of interest (Table S3, $p < 0.05$). For the infection stages, GO terms from 38
403 biological processes (BP), 9 cellular compartments (CC), and 46 molecular functions (MF) were
404 identified. Of these, seven of the top ten significantly enriched BP were metabolic processes
405 (e.g., GO:0006082: organic acid metabolic process, GO:0046394: carboxylic acid biosynthetic
406 process) and three were transport-related (e.g., GO:0006848: pyruvate transport, GO:1905039:
407 carboxylic acid transmembrane transport). For the sporangial stages, GO terms from 35 BP, 26
408 CC, and 41 MF were identified. Of these, the most significantly enriched BP was related to
409 reproduction (GO:0000003: reproduction), with four of the top ten significantly enriched
410 biological processes related to metabolic and biosynthetic processes (e.g., GO:0005975:
411 carbohydrate metabolic process, GO:0006183: GTP biosynthetic process, GO:0006228: UTP
412 biosynthetic process) and three related to movement or organization of cellular machinery (e.g.,
413 GO:0006928: movement of cell or subcellular component, GO:0007010: cytoskeleton
414 organization, GO:0007017: microtubule-based process).

415

416 *Differential expression analysis reveals complex pattern of expression clusters within life stages*
417 Identification of differentially expressed transcripts across the development time course within
418 sporangial and infection stages was done using a Likelihood Ratio Test (LRT). We found 380
419 transcripts that were significantly differentially expressed between infection stages ($p < 0.01$). Of
420 these, we found two clusters of differentially expressed transcripts with similar expression
421 patterns in each, group 1 and group 2 with 167 and 213 transcripts, respectively (Figure 4A).
422 The same analysis with the sporangial stages indicated 3701 differentially expressed transcripts
423 ($p < 0.01$) and out of which, we identified 7 clusters, each including differentially expressed

424 transcripts with similar patterns of expression. There were 1083, 965, 859, 219, 355, 156 and 64
425 genes in groups 1 to 7, respectively (Figure 4B).

426
427 In order to identify enriched GO terms of interest, we performed GO enrichment analysis on the
428 differentially expressed transcripts across the developmental conditions within infection and
429 sporangial stages (Figure S3, $p < 0.05$). Within the infection stages, we found 30 BP, 12 CC,
430 and 33 MF enriched GO terms. Of these, the top significantly enriched GO terms were in the CC
431 category (GO:0000786: nucleosome, GO:0043228: non-membrane-bounded organelle,
432 GO:0043232: intracellular non-membrane-bounded organelle, GO:0044815: DNA packaging
433 complex, GO:0032993: protein-DNA complex), and were also seen in group 2 with decreasing
434 expression across infection stages (Figure 4A).

435
436 Furthermore, we found 19 BP, 10 CC and 28 MF enriched GO terms represented within the
437 sporangial stages and of them, the most significantly enriched GO terms were related to
438 structural molecule activity and binding (GO:0005488: binding, GO:0003735: structural
439 constituent of ribosome, GO:0004100: chitin synthase activity, GO:0005198: structural molecule
440 activity, GO:0003779: actin binding) as well as the GO terms related to peptide biological
441 processes (GO:0006412: translation, GO:0043043: peptide biosynthetic process, GO:0006518:
442 peptide metabolic process). Terms related to structural molecule activity and binding were
443 generally seen in expression pattern groups 1 and 5 both of which generally increased in
444 expression over time (Figure 4B).

445
446 *HMG-box loci were identified with differential expression across life stages*
447 A total of five unique HMG-box genes were identified, with all five HMG-box genes present in
448 the MEIOSPORE assembly and three in each of the AMBER and ORANGE assemblies. The

449 identified HMG-box genes were found on small fragmented contigs (average: 8300 bp) which
450 contained only a few neighboring genes (average: 3 genes). Despite their small size, synteny
451 analysis across the three assemblies found that the AMBER and ORANGE assemblies share
452 two HMG-box loci with each other. The third HMG-box genes in the ORANGE and AMBER
453 assemblies were only shared with the MEIOSPORE assembly, which has four syntenic
454 orthologous HMG-boxes (Figure S4). We tested the five HMG-box loci in *C. lativittatus* for
455 synteny against *Allomyces macrogynus* to determine whether neighboring genes around HMG-
456 boxes are conserved in sexually reproducing chytrids (Lee et al. 2010). We were unable to
457 determine synteny of neighboring genes around HMG-box loci, possibly due to the fragmented
458 scaffolds where these genes are found in our *C. lativittatus* assemblies. Phylogenetic analyses
459 of the HMG-box genes showed that four of the HMG-box genes generally fell in clades with
460 other blastoclads or chytrids, while HMI54_015288 fell into a clade with Dikarya. Further, three
461 of the five HMG-box orthologs from *C. lativittatus* (HMI56_006544, HMI55_007199, and
462 HMI54_004920) were present in a clade containing known mating-related HMG-boxes (Figure
463 S5). HMI56_006544 and HMI54_004920 were present in all three *C. lativittatus* assemblies
464 while HMI55_007199 was only present in the ORANGE assembly. Interestingly HMI56_006544
465 is closely related to SexM in *Phycomyces blakesleeanus*, however we were unable to identify a
466 SexP homolog in *C. lativittatus*. The number of identified HMG-box genes here is in line with
467 that of other blastoclads (i.e., *Blastocladiella britannica* and *Catenaria anguillulae*; Figure 5). Of
468 the five identified HMG-box genes, HMI54_015288 was significantly over-expressed in the
469 infection stages compared to the sporangial stages. (Figure S6; $p < 0.01$).

470

471 *C. lativittatus* may have expanded gene families of orthologs related to its unique life history
472 In order to determine if gene families expanded in *C. lativittatus* we performed Orthofinder
473 analysis comparing *C. lativittatus* with other fungal taxa. In total we identified 37 398

474 orthogroups among the fungal taxa. Of these, 182 orthogroups were exclusively present in *C.*

475 *lativattatus* and absent in all other fungal taxa.

476

477 We identified 10 orthogroups that both contained genes with differentially expressed transcripts

478 and were expanded in copy number compared to other fungi. Of these 10 orthogroups, only four

479 had predicted functional annotations (Figure 5). We tested the four orthogroups for duplication

480 errors and removed any sequences that appeared truncated or had 100% sequence similarity to

481 an ortholog from a different *C. lativittatus* assembly. Most of the copy number expansions for

482 these four orthogroups appeared to occur on clades exclusive to *C. lativittatus*. The putative

483 functions for the four validated orthogroups were replication timing regulatory factor 1 (*RIF1*),

484 chitin deacetylase, adenosine monophosphate (AMP)-activated protein kinase 1 (*AMPK1*), and

485 *Egh16*-like virulence factor. Within these orthogroups, only the *RIF1* orthogroup contained a

486 gene that had higher expression in infection stages; the other three orthogroups had genes with

487 higher expression during sporangial stages.

488

489 **DISCUSSION**

490 *C. lativittatus* annotated genomes are an important community resource

491 The genomes assembled and annotated here, while partial, are a promising and critical

492 community resource as little genomic data exists for members of the Blastocladiomycota. The

493 smallest public genome is *B. britannica* with a genome size of 19 Mb with 9431 predicted gene

494 models and the largest is *Allomyces macrogynus* with a genome size of 47 Mb and 19 446

495 predicted genes (Grigoriev et al. 2014). *C. lativittatus* falls on the shorter end of this range with

496 an average genome length of 21.5 Mb and average 7475 predicted gene models, possibly due

497 to the incomplete nature of the draft genomes reported here. While partial, we think that the

498 three *C. lativattaus* genomes assembled and annotated in this study provide much needed

499 community resources for study of these obligate fungi. For example, the phylogenetic placement
500 of Blastocladiomycota has been disputed, but inclusion of additional genomes like those
501 reported here can help elucidate these ancient phylogenetic relationships (Amses et al. 2022).

502

503 *Transcriptomic landscape of C. lativittatus life stages provides insight into Blastocladiomycota*
504 *biology*

505 The transcriptome of *C. lativittatus* is a complex, dynamic, and underexplored landscape. The
506 results of this study highlight a need for future refinement and exploration of gene annotation in
507 this species, as evidenced by the 45.6% of differentially expressed transcripts with no
508 annotation, and the majority of the top 25 abundant differentially expressed transcripts lacking
509 functional annotation. In spite of these shortcomings, we were able to make generalizable
510 insights about *C. lativittatus* biology from the subset of transcripts that were annotated with GO
511 terms. Overall, during infection, GO terms were enriched related to metabolism and transport
512 processes. While during sporangial stages, GO terms were enriched related to dispersal (i.e.,
513 cell signaling, locomotion and transport machinery). Looking at the expression patterns within
514 life stages, we can begin to see more complicated trends emerge.

515

516 Within infection stages, we identified two different patterns of gene expression. In the first, gene
517 expression increased over the course of development time (early, middle and late infection),
518 with enriched GO terms related to membrane transport and metabolic processes. In the second,
519 gene expression decreased over time with GO terms related to DNA replication, nucleic acid
520 and amino acid biosynthetic processes.

521

522 The enrichment of metabolism and membrane transport processes in the transcriptomes during
523 infection stages is similar to reports from other early diverging fungal lineages. Upregulation of

524 transport-related pathways has been reported in chytrid infection of frog hosts, which the
525 authors suggest might be related to nutrient availability and proliferation related to host
526 association (Ellison et al. 2017). Further, in *Vavraia culicis* (Microsporidia) enriched GO terms
527 for growth, metabolism and replication were identified and posited to be related to its generalist
528 lifestyle and ability to infect multiple types of hosts (Desjardins et al. 2015). Here, we observed
529 an enrichment of metabolism terms as part of a pattern of increasing expression (group 1,
530 Figure 4A), and an enrichment of replication-related terms as part of a pattern of decreasing
531 expression (group 2, Figure 4A). Thus, we may be observing a shift in priorities during infection,
532 with early infection stages marked by increased replication as hyphagens grow into coenocytic
533 hyphae inside the host and later infection stages marked by increased metabolism as the
534 fungus proliferates and begins preparing to make sporangia.

535
536 Within sporangial stages, we identified seven expression patterns with two patterns displaying
537 higher expression over these developmental stages, two patterns displaying lower expression,
538 and three patterns with a relatively higher gene expression at the second time point (24 hrs),
539 followed by stable or decreasing expression. In general, expression patterns with higher
540 expression were enriched in GO terms related to chitin activity as well as terms related to
541 dispersal and microtubule-based processes. In decreasing expression patterns the enriched GO
542 terms were mostly related to metabolism and transcription. The other three expression patterns,
543 which displayed the highest expression at the second developmental time point, were
544 functionally different from each other. One group was enriched in GO terms related to dispersal
545 and structural machinery, another in terms related to oxidative stress responses, and the third in
546 terms related to lipid metabolism. Similarly, time series clustering of the transcriptome profiles of
547 differentially expressed genes during the sporulation of the blastoclad, *Blastocladiella emersonii*,
548 showed eight different patterns (Vieira and Gomes 2010).

549

550 The enrichment of reproduction and dispersal machinery-related mechanisms during the
551 sporangial stages likely relates to the production of meiospores. For example, signal
552 transduction and microtubule and cytoskeleton biogenesis were similarly reported to be
553 enriched during sporulation in *B. emersonii* (Vieira and Gomes 2010). These authors also
554 observed a decrease in transcription and metabolism during sporulation which they attributed to
555 the nutritional starvation required in order to sporulate. Additionally, previous investigations into
556 protein synthesis in chytrids (Léjohn and Lovett 1966) and blastoclads (Lovett 1968; Schmoyer
557 and Lovett 1969) suggest that translation does not occur until zoospore germination and that
558 zoospores are likely partially dependent on maternal mRNA and ribosomes for initial protein
559 production. Laundon *et. al.* (2022) posited that the chytrid zoospore life stage is optimized for
560 dispersal to new hosts rather than general metabolism. The authors also reported complex lipid
561 dynamics throughout the lifecycle of the chytrid, *Rhizoclostrum globosum*. Of particular note,
562 they observed increased expression of genes related to lipid transport and metabolism in
563 zoospores, which often have large amounts of intracellular storage lipids. In this study across
564 sporangial stages, we observed an enrichment of dispersal and microtubule-based terms as
565 part of patterns with increasing expression, and transcription terms as part of patterns with
566 decreasing expression (Figure 4B). We also observed one pattern of increasing and then
567 decreasing expression related to lipid metabolism (group 7, Figure 4B). Therefore, here we may
568 be discerning the metabolic preparation and production of meiospores for optimal dispersal,
569 survival and host identification.

570

571 Later stages of host association are likely characterized by increased immune response in the
572 host and countered by increased stress response by the fungus in order to continue to evade
573 the host immune system. Upregulation of stress response genes has been reported in the plant

574 pathogen *Zymoseptoria tritici* during late stages of sporulation in its host, which the authors
575 posited might be protective (Keon et al. 2005). Similarly, we observed an enrichment of terms
576 related to oxidative stress responses in the later stages of sporulation (group 6, Figure 4B),
577 which we speculate may assist *Coelomomyces* evade host defenses during meiospore
578 production.

579

580 *Mating-type genes may be useful for future work on evolution of sex in fungi*

581 Unlike in animals and plants which have sex-specific chromosomes, sex determination in fungi
582 is regulated by only a handful of genes. These mating-type (*MAT*) loci include HMG-box genes
583 (Benkhali et al. 2013). While *MAT* loci in Dikarya have been widely studied (Wallen and Perlin
584 2018), the *MAT* loci of early diverging lineages of fungi have received relatively less attention
585 (Idnurm et al. 2008). Given its obligate sexual two-host alternation of generations life cycle and
586 the ability to separate sexed haploid gametes by color (orange or amber), *C. lativattatus*
587 provides an intriguing system for investigating the evolution of sex in early diverging fungi. Using
588 the genomes generated here, we identified five putative HMG-box genes, including one gene,
589 HMI54_015288, which was differentially expressed between life stages, and three genes which
590 were in a clade with known mating-related genes. Additionally, HMI56_006544, which was
591 highly expressed during the sporangial stage, is homologous to the SexM gene of *Phycomyces*
592 *blakesleeanus*. Interestingly, the three *C. lativattatus* HMG-boxes within the clade containing
593 mating-related genes were up-regulated in the sporangial stage. Future work should tease apart
594 the role in mating of these putative HMG-box genes in *C. lativattatus* and also place these
595 genes in a comparative framework in order to further investigate the evolution of sex
596 determination in fungi.

597

598 *Ortholog expansions in C. lativattatus may relate to host-association*

599 Compared to other fungal lineages, *C. lativattatus* genomes had an enriched number of gene
600 copies in four orthologs with functional annotations representing chitin deacetylase, *AMPK1*,
601 *Egh16*-like virulence factor, and *RIF1* (Figure 5). We believe these expanded orthogroups may
602 be good candidates for future investigations elucidating mechanisms behind *C. lativattatus*-host
603 interactions.

604

605 In *C. lativattatus*, we found that members of the chitin deacetylase orthogroup were upregulated
606 during sporangial stages and that “chitin synthase activity” was also an enriched GO term in
607 group 1, which is a group represented by increasing expression (Figure 4B). Chitin
608 deacetylases catalyze the deacetylation of chitin, an important structural component of fungal
609 cell walls and insect cuticles, and have been previously reported in many fungal species (Zhao
610 et al. 2010). Chitin-binding proteins and chitin deacetylation are thought to protect fungal
611 pathogens against plant chitinases during infection (Gueddari et al. 2002; van den Burg et al.
612 2006), and have also been shown to be upregulated during infection of amphibian hosts by the
613 chytrid pathogen, *Batrachochytrium dendrobatidis* (Ellison et al. 2017). Further, the *B.*
614 *dendrobatidis* genome has gene expansions of chitin-binding proteins which can confer
615 protection against chitinase activity when expressed in the fungus, *Trichoderma reesei*
616 (Abramyan and Stajich 2012; Liu and Stajich 2015). Thus, it is possible that the expansion in the
617 chitin deacetylase orthogroup here may be related to *C. lativattatus* defense against its two
618 hosts.

619

620 *AMPK1* genes are sensors that modulate energy metabolism and homeostasis, and can be
621 important for regulating stress responses (Hardie et al. 2012). These genes can also be used to
622 alter host energy metabolism by microbial pathogens (Mesquita et al. 2016). Increased counts
623 of *AMPK1* orthologs and higher expression in sporangial stages in *C. lativattatus* may be related

624 to regulation of increased stress during its two-host life cycle or to evasion of host immune
625 detection.

626

627 In *C. lativattatus*, we found that members of the *Egh16*-like expanded orthogroup displayed
628 higher expression during sporangial stages. *Egh16*-like virulence factors are proteins related to
629 appressorium formation and pathogenesis which are present in pathogenic fungi including
630 insect pathogens such as *Metarhizium acridum* (Grell et al. 2003; Cao et al. 2012). *Egh16*-like
631 factors have been postulated to aid in the penetration of insect cuticles (Cao et al. 2012). Thus,
632 it is possible that the expanded *Egh16*-like virulence factor orthogroup is contributing to *C.*
633 *lativattatus* virulence.

634

635 *RIF1* is important for telomere length control and subtelomeric silencing in fungi and other
636 eukaryotes (Sreesankar et al. 2012). Subtelomeric regions have increased variability, caused
637 by duplications and rearrangements that can result in functional novelty, including secondary
638 metabolites related to pathogenicity and virulence. Silencing of subtelomeric regions is one way
639 pathogens can control secondary metabolite expression (Wyatt et al. 2020; Diotti et al. 2021).
640 Given the increased expression of members of the expanded *RIF1* ortholog during infection,
641 these genes may have roles in silencing subtelomeric regions and may be another tool in the *C.*
642 *lativattatus* toolbox for interacting with its hosts.

643

644 CONCLUSION

645 We generated three draft genomes and annotations for *C. lativattatus* and characterized the *C.*
646 *lativattatus* transcriptome landscape across infection and sporangial life stages. Little is known
647 about the genomic landscapes of blastoclads or zoosporic fungi and thus, the genomic and
648 transcriptomic data described here represent a valuable foundational resource. In the

649 transcriptome investigation, we identified differentially expressed transcripts and enriched GO
650 terms that provide insight into the blastoclad life cycle, with infection stages marked by an
651 enrichment of metabolism and transport processes and sporangial stages by dispersal-related
652 processes. Further, *C. lativittatus* has an interesting obligate alternation of generations life cycle
653 with two hosts and here we found several ortholog expansions in virulence related genes which
654 may have roles in modulating its host-associated lifecycle. As additional genomic data from
655 other blastoclads and zoosporic fungi are generated, more powerful comparative approaches
656 can be used to assess the evolutionary relationships of these lineages to other fungi, as well as
657 better understand their complex life histories. We hope that this work sets the stage for this
658 future studies by providing some foundational knowledge of these unique fungi.

659

660 **DATA AVAILABILITY**

661 The decontaminated *C. lativittatus* genome assemblies and annotation are deposited at
662 DDBJ/ENA/GenBank under the accessions JADGJU000000000, JADGJV000000000 and
663 JADHYY000000000. The versions described in this paper are JADGJU010000000,
664 JADGJV010000000 and JADHYY010000000. The raw sequence reads for the genome
665 assemblies are available through BioProjects [PRJNA631428](#), [PRJNA631429](#), and
666 [PRJNA631430](#). The raw sequence reads for the transcriptome work are available under GEO
667 accession [GSE222209](#). Analysis scripts for this work are available on GitHub
668 (https://github.com/stajichlab/Chytrid_Coelomomyces_Project) and archived in Zenodo
669 (<https://doi.org/10.5281/zenodo.7435008>).

670

671 **ACKNOWLEDGEMENTS**

672

673 Funding to support sequencing work was provided by a seed grant from the UC Riverside Office
674 of Research and Chancellor's Strategic Investment Funds project "Coelomomyces Genomics
675 for Mosquito Vector Control". CLE was supported by funds from California Department of Food
676 and Agriculture agreement # 20–0267. MY was supported by funds from Gordon and Betty
677 Moore Foundation (award #9337). J.E.S. is a CIFAR Fellow in the program Fungal Kingdom:
678 Threats and Opportunities and partially supported by USDA Agriculture Experimental Station at
679 the University of California, Riverside and NIFA Hatch projects CA-R-PPA-5062-H. Data
680 analyses performed at the High-Performance Computing Cluster at the University of California
681 Riverside in the Institute of Integrative Genome Biology were supported by NSF grant DBI-
682 1429826 and NIH grant S10-OD016290. We thank Jericho Ortañez for assistance in
683 experiments for generating genomic DNA and RNA.

684

685 LITERATURE CITED

686 Abramyan J, Stajich JE. 2012. Species-specific chitin-binding module 18 expansion in the
687 amphibian pathogen *Batrachochytrium dendrobatis*. *mBio* 3:e00150–12.

688 Amses KR, Rabern Simmons D, Longcore JE, Mondo SJ, Seto K, Jerônimo GH, Bonds AE,
689 Alisha Quandt C, Davis WJ, Chang Y, Federici BA, Kuo A, LaButti K, Pangilinan J,
690 Andreopoulos W, Tritt A, Riley R, Hundley H, Johnson J, Lipzen A, Barry K, Franz Lang B,
691 Cuomo CA, Buchler NE, Grigoriev IV, Spatafora JW, Stajich JE, James TY. 2022. Diploid-
692 dominant life cycles characterize the early evolution of Fungi. *Proceedings of the National
693 Academy of Sciences* 119:e2116841119.

694 Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, Heijne G von,
695 Nielsen H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks.
696 *Nature Biotechnology* 37:420–423.

697 Benkhali JA, Coppin E, Brun S, Peraza-Reyes L, Martin T, Dixelius C, Lazar N, Tilbeurgh H van,
698 Debuchy R. 2013. A network of HMG-box transcription factors regulates sexual cycle in the
699 fungus *Podospora anserina*. *PLoS Genetics* 9:e1003642.

700 Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, Poux S, Bougueret L,
701 Xenarios I. 2016. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt
702 KnowledgeBase: how to use the entry view. *Methods in Molecular Biology* 1374:23–54.

703 Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq
704 quantification. *Nature Biotechnology* 34:525–527.

705 Brown CT, Titus Brown C, Irber L. 2016. sourmash: a library for MinHash sketching of DNA. The
706 Journal of Open Source Software 1:27.

707 Buchfink B, Reuter K, Drost H-G. 2021. Sensitive protein alignments at tree-of-life scale using
708 DIAMOND. Nature Methods 18:366–368.

709 Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND.
710 Nature Methods 12:59–60.

711 Burg HA van den, Harrison SJ, Joosten MHAJ, Vervoort J, Wit PJGM de. 2006. *Cladosporium*
712 *fulvum* Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during
713 infection. Molecular Plant-Microbe Interactions: MPMI 19:1420–1430.

714 Bushnell B. 2014. BBMap: Short read aligner for DNA and RNA-seq data. Available online at
715 <https://sourceforge.net/projects/bbmap/>.

716 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.
717 BLAST+ : architecture and applications. BMC Bioinformatics 10:1–9.

718 Cao Y, Zhu X, Jiao R, Xia Y. 2012. The Magas1 gene is involved in pathogenesis by affecting
719 penetration in *Metarhizium acridum*. Journal of Microbiology and Biotechnology 22:889–893.

720 Challis R, Richards E, Rajan J, Cochrane G, Blaxter M. 2020. BlobToolKit – interactive quality
721 assessment of genome assemblies. G3 Genes|Genomes|Genetics 10:1361–1374.

722 Chernomor O, Haeseler A von, Minh BQ. 2016. Terrace aware data structure for phylogenomic
723 inference from supermatrices. Systematic Biology 65:997–1008.

724 Couch JN, Bland CE. 1985. The genus *Coelomomyces*. Orlando, FL 32887: Academic Press,
725 Inc.

726 Delmont T. 2018. Assessing the completion of eukaryotic bins with anvi'o. Available online at
727 <http://merenlab.org/delmont-euk-scgs>.

728 Desjardins CA, Sansrainte ND, Goldberg JM, Heiman D, Young S, Zeng Q, Madhani HD,
729 Becnel JJ, Cuomo CA. 2015. Contrasting host–pathogen interactions and genome evolution in
730 two generalist and specialist microsporidian pathogens of mosquitoes. Nature Communications
731 6:7121.

732 Diotti R, Esposito M, Shen CH. 2021. Telomeric and sub-telomeric structure and implications in
733 fungal opportunistic pathogens. Microorganisms 9.

734 Duplessis S, Lorrain C, Petre B, Figueroa M, Dodds PN, Aime MC. 2021. Host adaptation and
735 virulence in heteroecious rust fungi. Annual Review of Phytopathology 59:403–422.

736 Eddy SR. 2011. Accelerated Profile HMM Searches. PLoS Computational Biology 7:e1002195.

737 Ellison AR, DiRenzo GV, McDonald CA, Lips KR, Zamudio KR. 2017. First in vivo
738 *Batrachochytrium dendrobatidis* transcriptomes reveal mechanisms of host exploitation, host-
739 specific gene expression, and expressed genotype shifts. G3 7:269–278.

740 Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative
741 genomics. Genome Biology 20:238.

742 Eren AM, Murat Eren A, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO.
743 2015. Anvi'o: an advanced analysis and visualization platform for 'omics data. *PeerJ* 3:e1319.

744 Eren AM, Murat Eren A, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, Fink I, Pan JN,
745 Yousef M, Fogarty EC, Trigodet F, Watson AR, Esen ÖC, Moore RM, Clayssen Q, Lee MD,
746 Kivenson V, Graham ED, Merrill BD, Karkman A, Blankenberg D, Eppley JM, Sjödin A, Scott JJ,
747 Vázquez-Campos X, McKay LJ, McDaniel EA, Stevens SLR, et al. 2021. Community-led,
748 integrated, reproducible multi-omics with anvi'o. *Nature Microbiology* 6:3–6.

749 Federici BA. 1977. Differential pigmentation in the sexual phase of *Coelomomyces*. *Nature*
750 267:514–515.

751 Federici BA. 1979. Experimental hybridization of *Coelomomyces dodgei* and *Coelomomyces*
752 *punctatus*. *Proceedings of the National Academy of Sciences of the United States of America*
753 76:4425–4428.

754 Federici BA. 1983. Species-specific gating of gametangial dehiscence as a temporal
755 reproductive isolating mechanism in *Coelomomyces*. *Proceedings of the National Academy of*
756 *Sciences of the United States of America* 80:604–607.

757 Federici BA, Chapman HC. 1977. *Coelomomyces dodgei*: establishment of an in vivo laboratory
758 culture. *Journal of Invertebrate Pathology* 30:288–297.

759 Federici BA, Thompson SN. 1979. β-Carotene in the gametophytic phase of *Coelomomyces*
760 *dodgei*. *Experimental Mycology* 3:281–284.

761 Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K,
762 Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M. 2014. Pfam: the protein families
763 database. *Nucleic Acids Research* 42:D222–30.

764 Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. 2020.
765 RepeatModeler2 for automated genomic discovery of transposable element families.
766 *Proceedings of the National Academy of Sciences of the United States of America* 117:9451–
767 9457.

768 Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation
769 sequencing data. *Bioinformatics* 28:3150–3152.

770 Gilchrist CLM, Booth TJ, Wersch B van, Grieken L van, Medema MH, Chooi Y-H. 2021.
771 cblaster: a remote search tool for rapid identification and visualization of homologous gene
772 clusters. *Bioinformatics Advances* 1:vbab016.

773 Gilchrist CLM, Chooi Y-H. 2021. Clinker & clustermap.js: Automatic generation of gene cluster
774 comparison figures. *Bioinformatics* 37:2473–2475.

775 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L,
776 Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F di,
777 Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome
778 assembly from RNA-Seq data without a reference genome. *Nature Biotechnology* 29:644–652.

779 Grell MN, Mouritzen P, Giese H. 2003. A *Blumeria graminis* gene family encoding proteins with
780 a C-terminal variable region with homologues in pathogenic fungi. *Gene* 311:181–192.

781 Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X,
782 Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I. 2014. MycoCosm portal:
783 gearing up for 1000 fungal genomes. *Nucleic Acids Research* 42:D699–704.

784 Gueddari NEE, El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB. 2002.
785 Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant
786 pathogenic fungi. *New Phytologist* 156:103–112.

787 Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome
788 assemblies. *Bioinformatics* 29:1072–1075.

789 Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, Maiti R, Ronning CM,
790 Rusch DB, Town CD, Salzberg SL, White O. 2003. Improving the *Arabidopsis* genome
791 annotation using maximal transcript alignment assemblies. *Nucleic Acids Research* 31:5654–
792 5666.

793 Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR.
794 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the
795 Program to Assemble Spliced Alignments. *Genome Biology* 9:R7.

796 Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains
797 energy homeostasis. *Nature Reviews Molecular Cell Biology* 13:251–262.

798 Hiltunen M, Ament-Velásquez SL, Johannesson H. 2021. The Assembled and Annotated
799 Genome of the Fairy-Ring Fungus *Marasmius oreades*. *Genome Biology and Evolution*
800 13:evab126.

801 Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, Yi H, Yang Z, Yin Y. 2018. dbCAN-seq: a
802 database of carbohydrate-active enzyme (CAZyme) sequence and annotation. *Nucleic Acids
803 Research* 46:D516–D521.

804 Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR,
805 Sunagawa S, Kuhn M, Jensen LJ, Mering C von, Bork P. 2016. eggNOG 4.5: a hierarchical
806 orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral
807 sequences. *Nucleic Acids Research* 44:D286–93.

808 Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic
809 gene recognition and translation initiation site identification. *BMC Bioinformatics* 11:119.

810 Idnurm A, Walton FJ, Floyd A, Heitman J. 2008. Identification of the sex genes in an early
811 diverged fungus. *Nature* 451:193–196.

812 James TY, Letcher PM, Longcore JE, Mozley-Standridge SE, Porter D, Powell MJ, Griffith GW,
813 Vilgalys R. 2006. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and
814 description of a new phylum (Blastocladiomycota). *Mycologia* 98:860–871.

815 James TY, Stajich JE, Hittinger CT, Rokas A. 2020. Toward a fully resolved fungal tree of life.
816 *Annual Review of Microbiology* 74:291–313.

817 Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A,
818 Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong S-Y, Lopez R,
819 Hunter S. 2014. InterProScan 5: genome-scale protein function classification. *Bioinformatics*

820 30:1236–1240.

821 Käll L, Krogh A, Sonnhammer ELL. 2004. A combined transmembrane topology and signal
822 peptide prediction method. *Journal of Molecular Biology* 338:1027–1036.

823 Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler A von, Jermiin LS. 2017. ModelFinder: fast
824 model selection for accurate phylogenetic estimates. *Nature Methods* 14:587–589.

825 Keon J, Rudd JJ, Antoniw J, Skinner W, Hargreaves J, Hammond-Kosack K. 2005. Metabolic
826 and stress adaptation by *Mycosphaerella graminicola* during sporulation in its host revealed
827 through microarray transcription profiling. *Molecular Plant Pathology* 6:527–540.

828 Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and
829 genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology* 37:907–915.

830 Korf I. 2004. Gene finding in novel genomes. *BMC Bioinformatics* 5:59.

831 Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment
832 of short DNA sequences to the human genome. *Genome Biology* 10:R25.

833 Laundon D, Chrismas N, Bird K, Thomas S, Mock T, Cunliffe M. 2022. A cellular and molecular
834 atlas reveals the basis of chytrid development. *eLife* 11:e73933.

835 Lee MD. 2019. GToTree: a user-friendly workflow for phylogenomics. *Bioinformatics* 35:4162–
836 4164.

837 Lee SC, Ni M, Li W, Shertz C, Heitman J. 2010. The evolution of sex: a perspective from the
838 fungal kingdom. *Microbiology and Molecular Biology Reviews: MMBR* 74:298–340.

839 Léjohn HB, Lovett JS. 1966. Ribonucleic acid and protein synthesis in *Rhizophlyctis rosea*
840 zoospores. *Journal of Bacteriology* 91:709–717.

841 Leonard G, Galindo LJ, Milner DS, Avelar GM, Gomes-Vieira AL, Gomes SL, Richards TA.
842 2022. A genome sequence assembly of the phototactic and optogenetic model fungus
843 *Blastocladiella emersonii* reveals a diversified nucleotide-cyclase repertoire. *Genome Biology
844 and Evolution* 14:evac157.

845 Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* 34:3094–
846 3100.

847 Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
848 *Bioinformatics* 25:1754–1760.

849 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
850 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format
851 and SAMtools. *Bioinformatics* 25:2078–2079.

852 Liu P, Stajich JE. 2015. Characterization of the Carbohydrate Binding Module 18 gene family in
853 the amphibian pathogen *Batrachochytrium dendrobatidis*. *Fungal Genetics and Biology: FG & B*
854 77:31–39.

855 Li Y, Steenwyk JL, Chang Y, Wang Y, James TY, Stajich JE, Spatafora JW, Groenewald M,
856 Dunn CW, Hittinger CT, Shen X-X, Rokas A. 2021. A genome-scale phylogeny of the kingdom

857 Fungi. *Current Biology*: CB 31:1653–1665.e5.

858 Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-
859 active enzymes database (CAZy) in 2013. *Nucleic Acids Research* 42:D490–5.

860 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
861 RNA-seq data with DESeq2. *Genome Biology* 15:550.

862 Lovett JS. 1968. Reactivation of ribonucleic acid and protein synthesis during germination of
863 *Blastocladiella* zoospores and the role of the ribosomal nuclear cap. *Journal of Bacteriology*
864 96:962–969.

865 Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA
866 genes in genomic sequence. *Nucleic Acids Research* 25:955–964.

867 Majoros WH, Pertea M, Salzberg SL. 2004. TigrScan and GlimmerHMM: two open source ab
868 initio eukaryotic gene-finders. *Bioinformatics* 20:2878–2879.

869 Menzel P, Ng KL, Krogh A. 2016. Fast and sensitive taxonomic classification for metagenomics
870 with Kaiju. *Nature Communications* 7:11257.

871 Mesquita I, Moreira D, Sampaio-Marques B, Laforge M, Cordeiro-da-Silva A, Ludovico P,
872 Estaquier J, Silvestre R. 2016. AMPK in Pathogens. In: M. Cordero, and B. Viollet, eds. AMP-
873 Activated Protein Kinase. Springer, Cham. p. 287–323.

874 Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Haeseler A von, Lanfear R.
875 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic
876 era. *Molecular Biology and Evolution* 37:1530–1534.

877 Morgan M, Falcon S, Gentleman R. 2022. GSEABase: Gene set enrichment data structures and
878 methods. Available online at <http://bioconductor.org/packages/GSEABase/>.

879 Palmer JM, Stajich J. 2020. Funannotate v1.8.1: Eukaryotic genome annotation. Available
880 online at <http://doi.org/10.5281/zenodo.4054262>.

881 Pantano L. 2022. DEGreport: Report of DEG analysis. Available online at
882 <http://lpantano.github.io/DEGreport/>.

883 Porter TM, Martin W, James TY, Longcore JE, Gleason FH, Adler PH, Letcher PM, Vilgalys R.
884 2011. Molecular phylogeny of the Blastocladiomycota (Fungi) based on nuclear ribosomal DNA.
885 *Fungal Biology* 115:381–392.

886 Powell MJ. 2017. Blastocladiomycota. In: J. Archibald, A. Simpson, and C. Slamovits, eds.
887 *Handbook of the Protists*. p. 1497–1521.

888 Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. 2020. Using SPAdes de novo
889 assembler. *Current Protocols in Bioinformatics* 70:e102.

890 Rawlings ND, Barrett AJ, Bateman A. 2014. Using the MEROPS database for proteolytic
891 enzymes and their inhibitors and substrates. *Current Protocols in Bioinformatics* 48:1.25.1–33.

892 R Core Team. 2020. R: A language and environment for statistical computing. Available online
893 at <https://www.R-project.org/>. Vienna, Austria.

894 Schmoyer IR, Lovett JS. 1969. Regulation of protein synthesis in zoospores of *Blastocladiella*.
895 *Journal of Bacteriology* 100:854–864.

896 Seemann T. 2018. barrnap: BAsic Rapid Ribosomal RNA Predictor. Available online at
897 <https://github.com/tseemann/barrnap>.

898 Shen D, Nyawira KT, Xia A. 2020. New discoveries and applications of mosquito fungal
899 pathogens. *Current Opinion in Insect Science* 40:111–116.

900 Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO:
901 assessing genome assembly and annotation completeness with single-copy orthologs.
902 *Bioinformatics* 31:3210–3212.

903 Smit AFA, Hubley R, Green P. 2013-2015. RepeatMasker. Available online at
904 <http://www.repeatmasker.org>.

905 Sreesankar E, Senthilkumar R, Bharathi V, Mishra RK, Mishra K. 2012. Functional
906 diversification of yeast telomere associated protein, Rif1, in higher eukaryotes. *BMC Genomics*
907 13:255.

908 Stajich J, Palmer J. 2019. stajichlab/AAFTF: v0.2.3. Available online at
909 <http://dx.doi.org/10.5281/zenodo.3437300>.

910 Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. 2006. AUGUSTUS: ab initio
911 prediction of alternative transcripts. *Nucleic Acids Research* 34:W435–9.

912 Steenwyk JL, Buida TJ 3rd, Li Y, Shen X-X, Rokas A. 2020. ClipKIT: A multiple sequence
913 alignment trimming software for accurate phylogenomic inference. *PLoS Biology* 18:e3001007.

914 Supek F, Bošnjak M, Škunca N, Šmuc T. 2011. REVIGO summarizes and visualizes long lists
915 of gene ontology terms. *PloS One* 6:e21800.

916 Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M. 2008. Gene prediction in novel
917 fungal genomes using an *ab initio* algorithm with unsupervised training. *Genome Research*
918 18:1979–1990.

919 Testa AC, Hane JK, Ellwood SR, Oliver RP. 2015. CodingQuarry: highly accurate hidden
920 Markov model gene prediction in fungal genomes using RNA-seq transcripts. *BMC Genomics*
921 16:170.

922 Travland LB. 1979. Initiation of infection of mosquito larvae (*Culiseta inornata*) by
923 *Coelomomyces psorophorae*. *Journal of Invertebrate Pathology* 33:95–105.

924 Vieira ALG, Gomes SL. 2010. Global gene expression analysis during sporulation of the aquatic
925 fungus *Blastocladiella emersonii*. *Eukaryotic Cell* 9:415–423.

926 Vossenberg BTLH van de, Vossenberg BTLH van de, Warris S, Nguyen HDT, Gent-Pelzer MPE
927 van, Joly DL, Geest HC van de, Bonants PJM, Smith DS, André Lévesque C, Lee TAJ van der.
928 2019. Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and
929 pathogenic lifestyle of *Synchytrium endobioticum*. *Scientific Reports* 9:1–14.

930 Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q,

931 Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial
932 variant detection and genome assembly improvement. *PLoS One* 9:e112963.

933 Wallen RM, Perlin MH. 2018. An overview of the function and maintenance of sexual
934 reproduction in dikaryotic fungi. *Frontiers in Microbiology* 9:503.

935 Whisler HC, Karanja DMS, Shemanchuk JA, Zebold SL, Romney SV, Nielsen LT. 2009. The life
936 history and *in vivo* culture of *Coelomomyces utahensis* (Blastocladiomycetes). *Journal of*
937 *Invertebrate Pathology* 100:40–43.

938 Whisler HC, Zebold SL, Shemanchuk JA. 1975. Life history of *Coelomomyces psorophorae*.
939 *Proceedings of the National Academy of Sciences of the United States of America* 72:693–696.

940 Wickham H. 2009. *ggplot2: Elegant graphics for data analysis*. Springer-Verlag New York.

941 Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A,
942 Henry L, Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D,
943 Seidel DP, Spinu V, Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the
944 tidyverse. *Journal of Open Source Software* 4:1686.

945 Wyatt NA, Richards JK, Brueggeman RS, Friesen TL. 2020. A comparative genomic analysis of
946 the barley pathogen *Pyrenophora teres f. teres* identifies subtelomeric regions as drivers of
947 virulence. *Molecular Plant-Microbe Interactions: MPMI* 33:173–188.

948 Zebold SL, Whisler HC, Shemanchuk JA, Travland LB. 1979. Host specificity and penetration in
949 the mosquito pathogen *Coelomomyces psorophorae*. *Canadian Journal of Botany Journal*
950 *Canadien de Botanique* 57:2766–2770.

951 Zhao Y, Park R-D, Muzzarelli RAA. 2010. Chitin deacetylases: properties and applications.
952 *Marine Drugs* 8:24–46.

953

954

955

956

957

958

959

960

961

962

963

964

965 **Figures/Tables:**

966 **Table 1. Genome assembly and annotation statistics.** Various statistics calculated by
967 QUAST for each of the assemblies are provided here including the total number of contigs in the
968 assembly, the total assembly length, percent GC content, the N50 and the L50. All statistics
969 from QUAST are based on contigs of size ≥ 500 bp, unless specifically noted (e.g., “# contigs
970 (≥ 0 bp)” and “Total length (≥ 0 bp)” include all contigs in each assembly). We also report the
971 percentage of RNAseq reads that were aligned to each assembly using HISAT, the percentage
972 of each assembly masked by RepeatMasker (this value includes total interspersed repeats,
973 simple repeats and low complexity regions), and the number of predicted telomeres. A summary
974 of genome annotation results is reported here including the total number of gene models,
975 mRNAs, tRNAs, the mean exon length (bp), tRNA length (bp), mRNA length (bp), and the
976 percentage of proteins with a PFAM domain, InterProScan, EggNog, COG, or GO term
977 matches.

978

Software	Statistic	Amber	Orange	Meiospore
QUAST	# contigs (≥ 0 bp)	5799	5413	5002
	Largest contig	56469	30249	37025
	Total length (≥ 0 bp)	22882397	19891335	21857322
	GC (%)	33.43	32.32	32.33
	N50	6067	5623	6695
	N90	1782	1603	1996
	L50	1089	1030	988
	L90	3884	3610	3254

	# N's per 100 kbp	480.4	362.27	101.38
Telomeres	Telomeres TOTAL	23	18	22
	Telomeres FRWRD	8	9	10
	Telomeres RVRS	15	9	12
HISAT2	Overall RNAseq alignment to genome	55.40%	55.17%	59.01%
RepeatMasker	Repetitive regions (%)	10.77%	12.57%	14.04%
Funannotate	Total number of gene models	7404	7344	7677
	Number of mRNA genes	7352	7289	7608
	Number of tRNA genes	52	55	69
	Mean exon length	367.89	358.18	372.63
	Mean tRNA length	74.58	74.62	74.91
	Mean mRNA length	1501.03	1309.02	1465.69
	Genes with PFAM hit (%)	48.74	44.91	48.04
	Genes with InterProScan hit (%)	65.11	63.82	64.91
	Genes with EggNog hit (%)	54.16	52.78	53.82
	Genes with COG hit (%)	53.28	52.03	52.98
	Genes with GO Term (%)	46.83	45.68	46.72

979

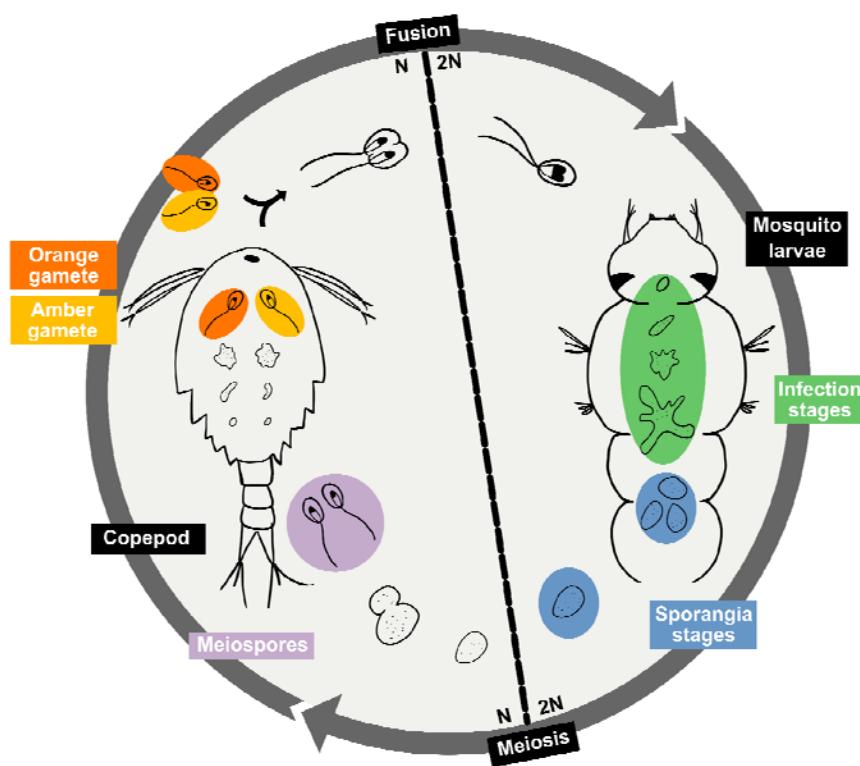
980

981

982

983

984


985

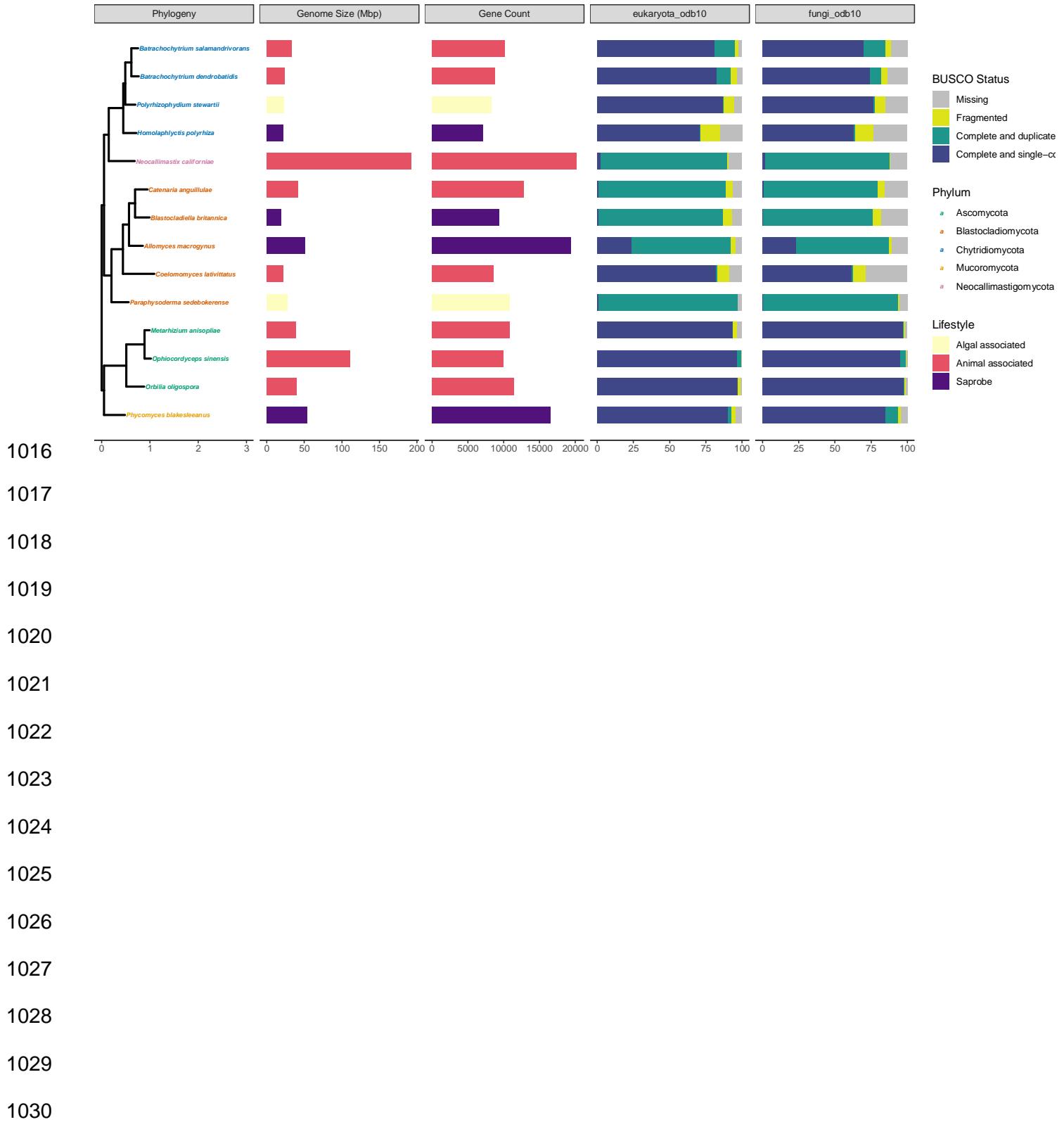
986

987

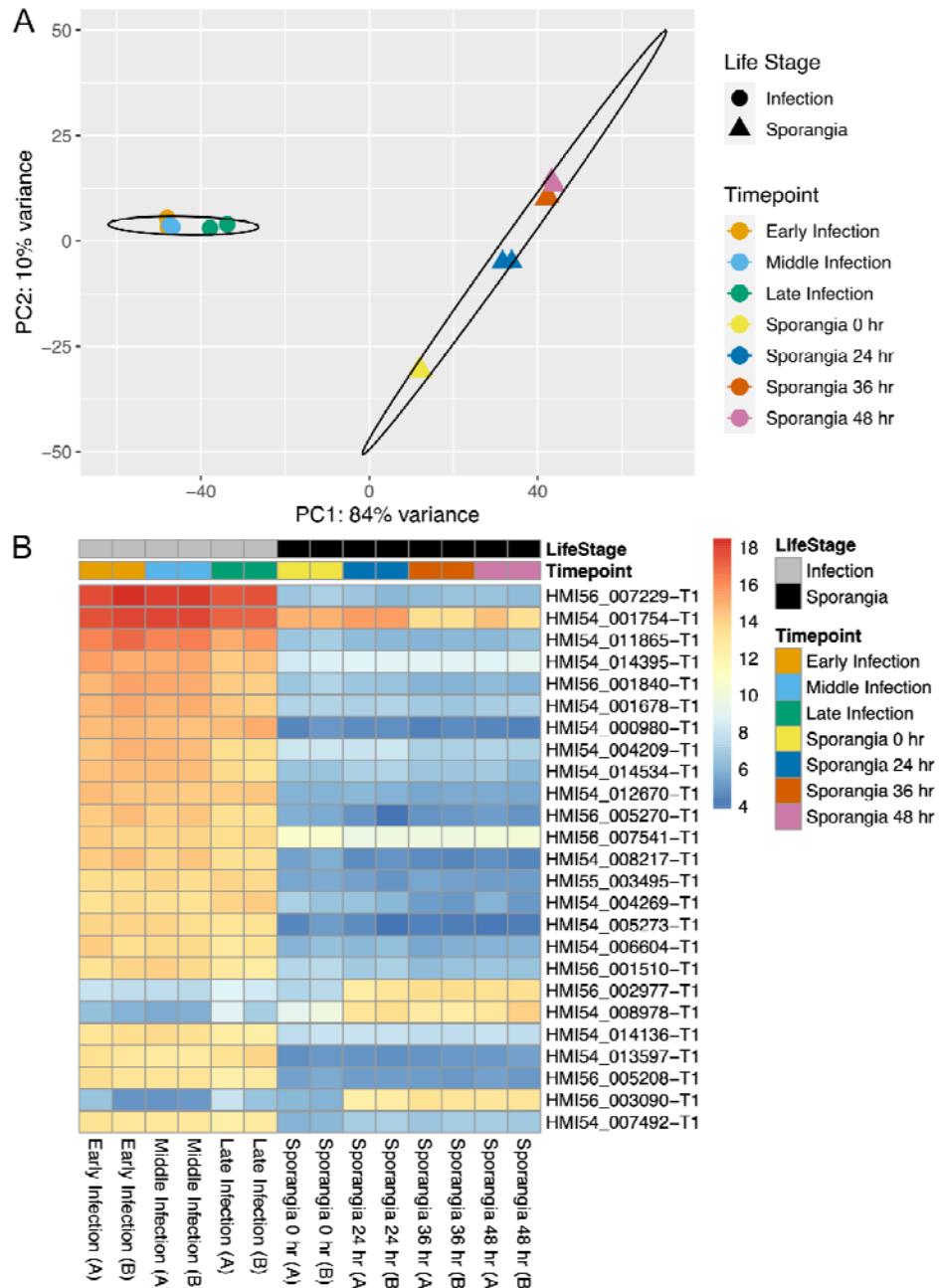
988 **Figure 1. Alternation of generations life cycle of *Coelomomyces lativittatus*.**

989 Diagram showing the general alternation of generations life cycle of *C. lativittatus* between
990 copepod and mosquito hosts. We have circled and highlighted the different life stages that were
991 used in this study. Genomic sequencing was performed on haploid stages: including orange
992 gametes (orange), amber gametes (yellow) and meiospores (purple). RNA sequencing was
993 performed on diploid stages including mosquito larval infection stages (green) as well as
994 sporangial stages excised from mosquito larva (blue).

995


996

997


998

999

1000 **Figure 2. *C. lativittatus* protein set is comparable to those of other fungal taxa.** Moving
1001 from left to right, here we show a maximum likelihood phylogeny which shows the relationship of
1002 *C. lativittatus* to other fungal lineages. This tree was generated using IQ-TREE2 on an
1003 alignment of BUSCO fungi_odb10 HMMs constructed using the PHYling_unified pipeline. Taxa
1004 labels in the phylogeny are shown colored by assigned fungal phylum. In association with this
1005 phylogeny, we then depict a barchart of the draft genome size (Mbp) for each taxon with
1006 genome size colored by fungal lifestyle (saprobe = purple, algal associated = yellow, animal
1007 associated = pink), followed by a barchart of predicted gene counts for each taxon with counts
1008 colored by fungal lifestyle. Next, we show barcharts of BUSCO ‘protein’ completion status for
1009 the eukaryota_odb10 and fungal_odb10 sets. Bars show the percent of genes found in each
1010 genome annotation as a percentage of the total gene set and are colored by BUSCO status
1011 (missing = grey, fragmented = yellow, complete and duplicated = green, complete and single-
1012 copy = blue). The values depicted here for *C. lativittatus* gene counts and BUSCO scores are
1013 based on the combined clustered transcript set (AOM90), and the genome size is the average
1014 size across all three assemblies. The BUSCO scores for individual *C. lativittatus* assemblies can
1015 be seen in Figure S2.

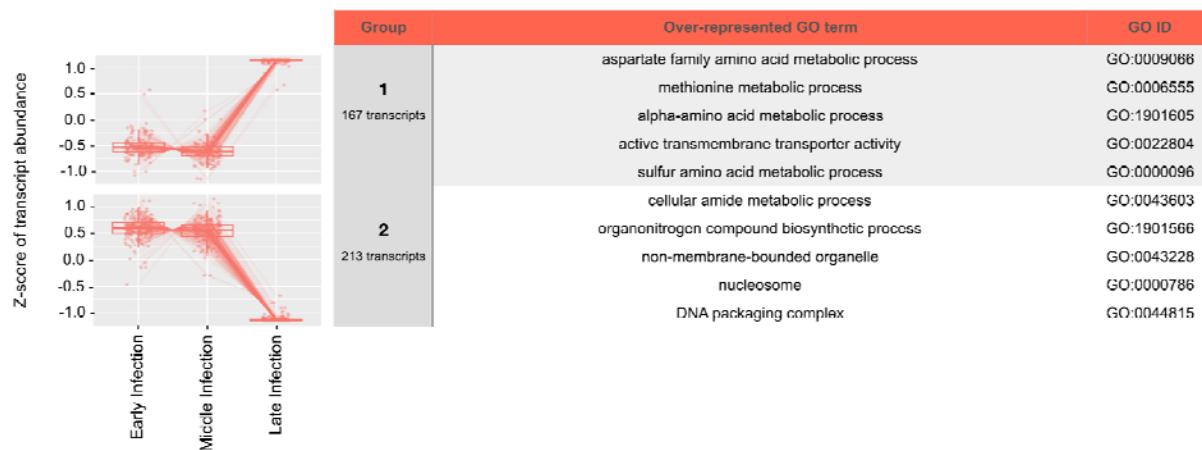
1031 **Figure 3. Transcript expression differs between *C. lativittatus* life stages.** (A) Principal
1032 Component Analysis (PCA) of variance stabilized transcriptomic count data. Samples are
1033 colored by time points while shapes are used to broadly represent life stages (circle = infection,
1034 triangle = sporangial). Ellipses represent the 95% confidence interval around the centroid of
1035 each life stage. Replicate samples may be overlapping. (B) Heatmap showing the variance
1036 stabilized counts of the 25 most expressed transcripts with differential expression across life
1037 stages. Replicates are indicated by 'A' or 'B'.

1038

1039

1040

1041


1042

1043

1044 **Figure 4. Transcript expression differs across the development time course conditions in**
1045 **each sporangium and infection stage.** (A) The plots on the left are the two possible groups
1046 with specific transcript expression patterns across early, middle, and late infection timepoints
1047 and number of transcripts in each group. The table on the right shows the top five enriched GO
1048 terms for each of the groups of transcripts. (B) The plots on the left are the seven groups with
1049 specific transcript expression patterns across 0 hr, 24 hr, 36 hr and 48 hr timepoints within the
1050 sporangial life stages. The table on the right shows the top five enriched GO terms for each of
1051 the seven groups of transcripts.

1052

1053 **(A)**

1054

1055 **(B)**

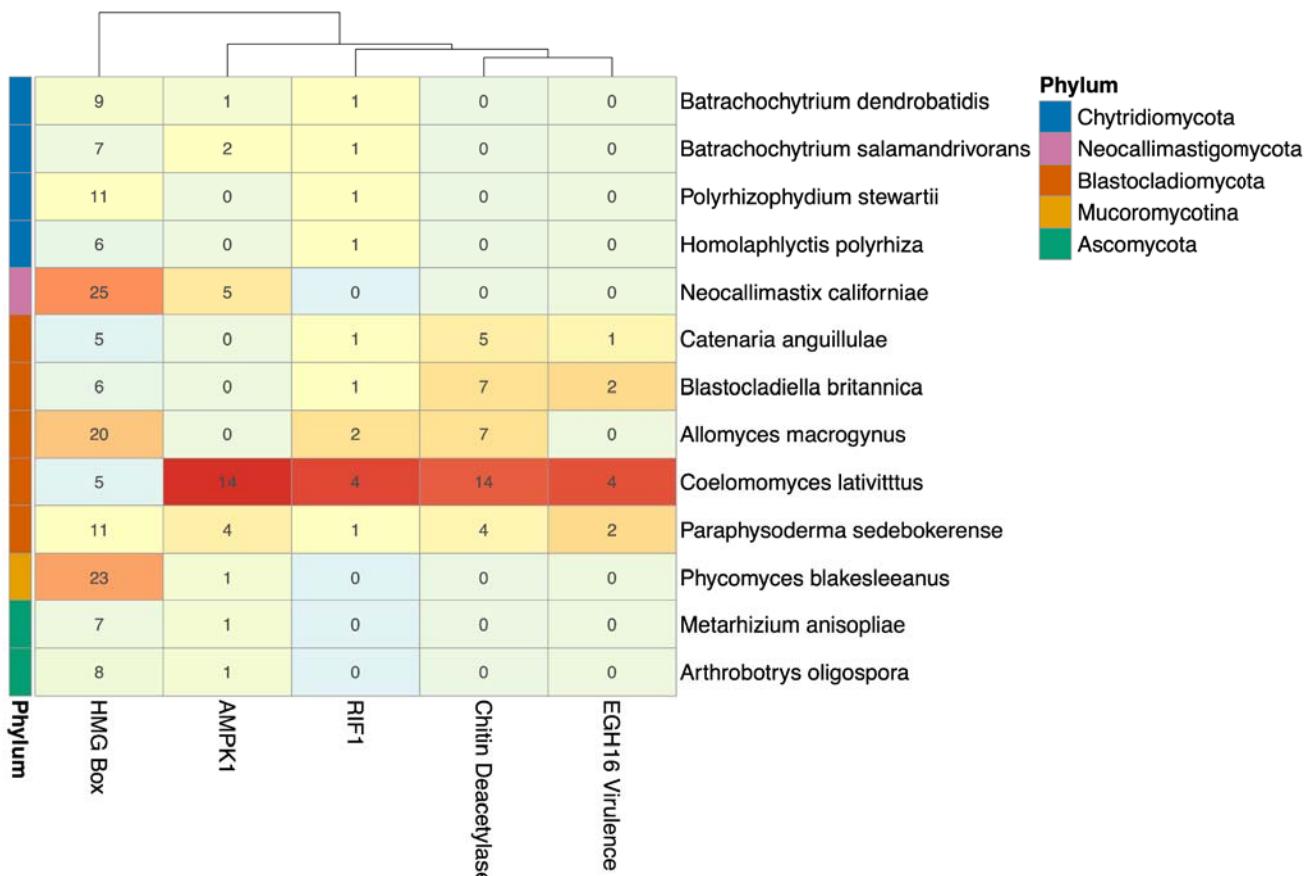
1056
1057
1058
1059
1060
1061
1062
1063

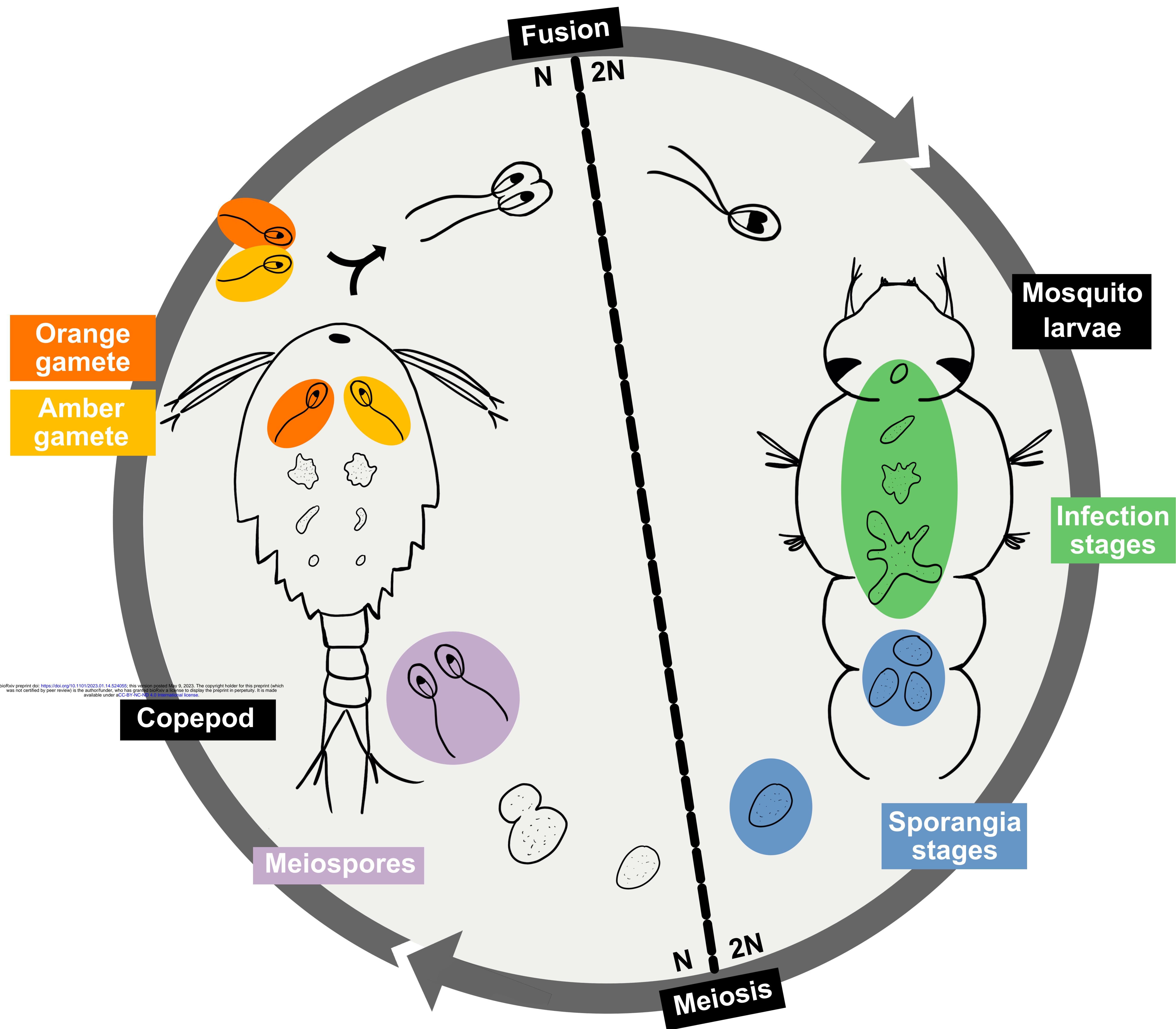
1064 **Figure 5. *C. lativittatus* copy number for HMG box, *RIF1*, chitin deacetylase, *Egh16-like*,**

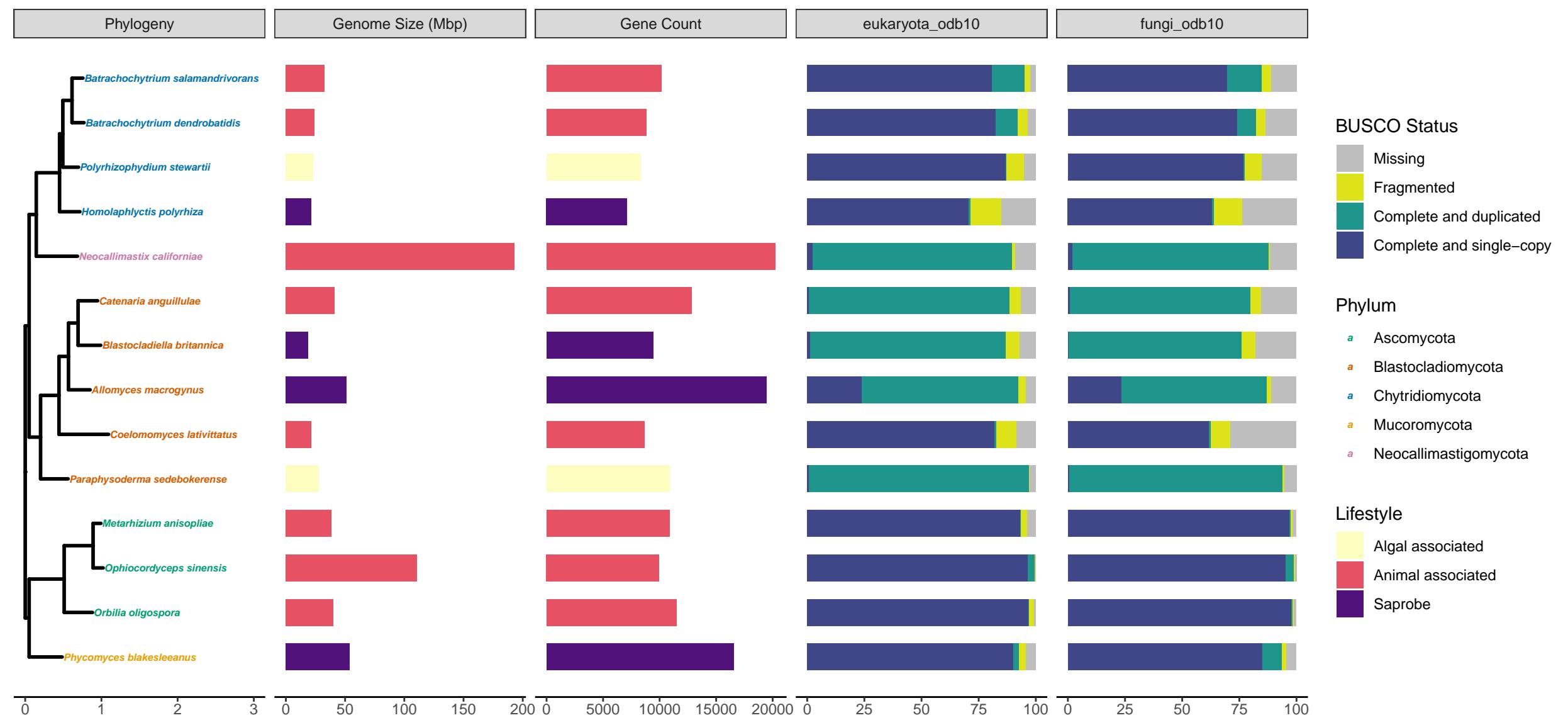
1065 and *AMPK1* gene orthogroups compared to other fungi. Here we depict a heatmap,

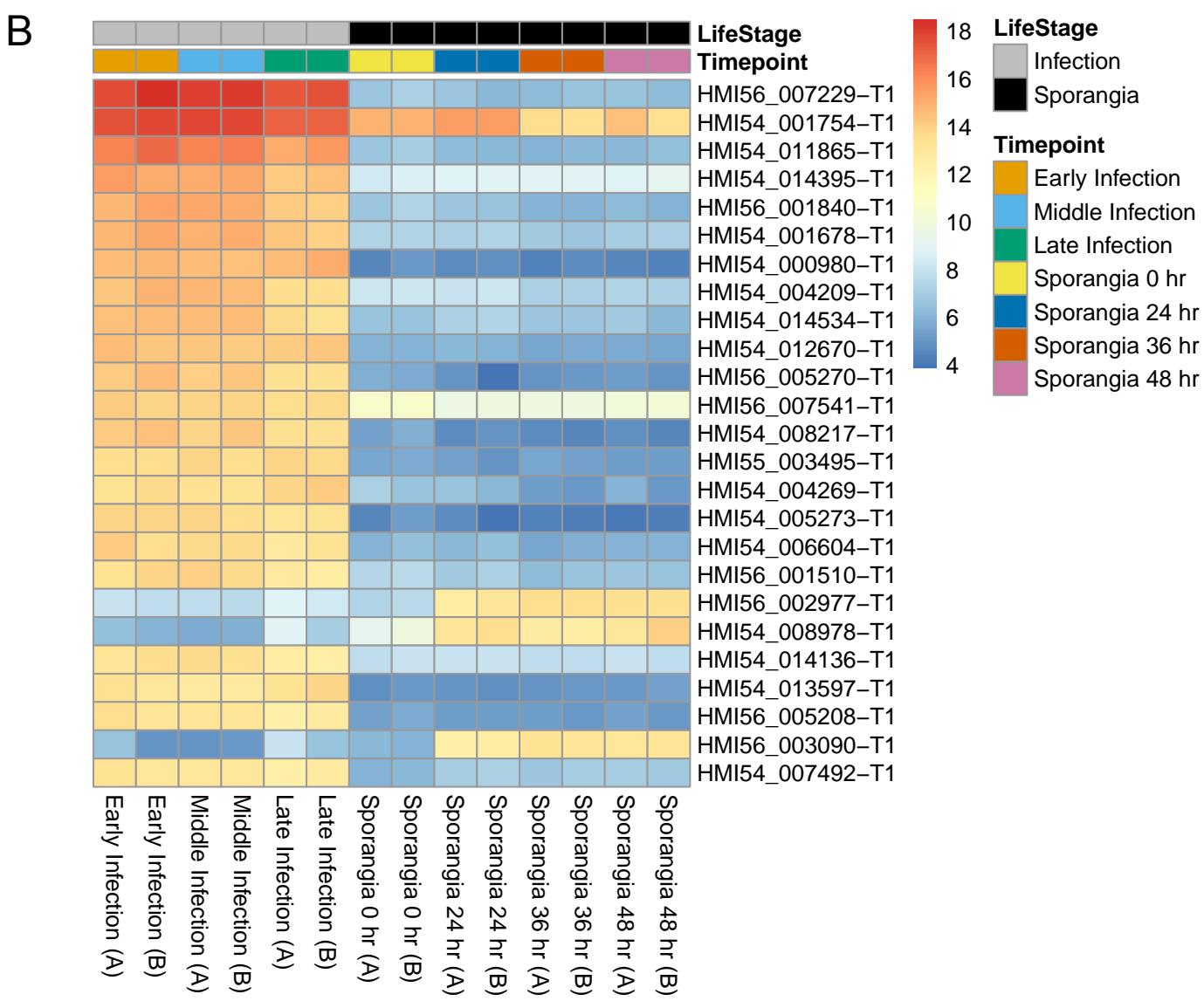
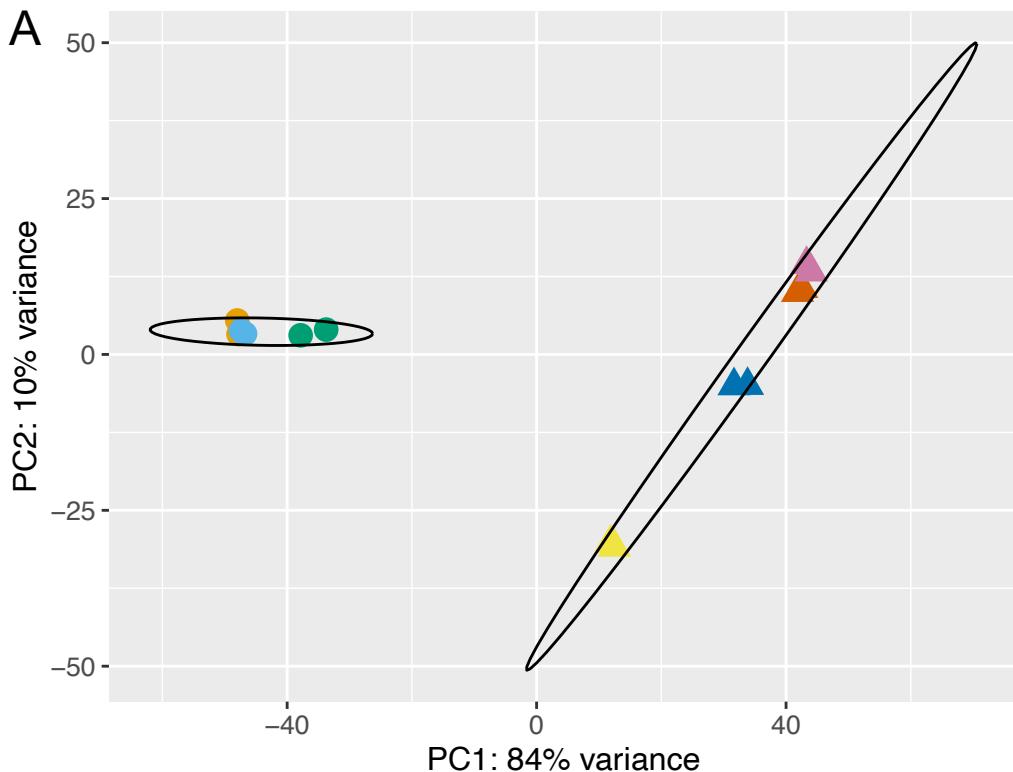
1066 organized by fungal phylogenetic relationships, depicting the copy number of orthologous

1067 genes, representing differentially expressed transcripts, with expanded gene counts in *C.*

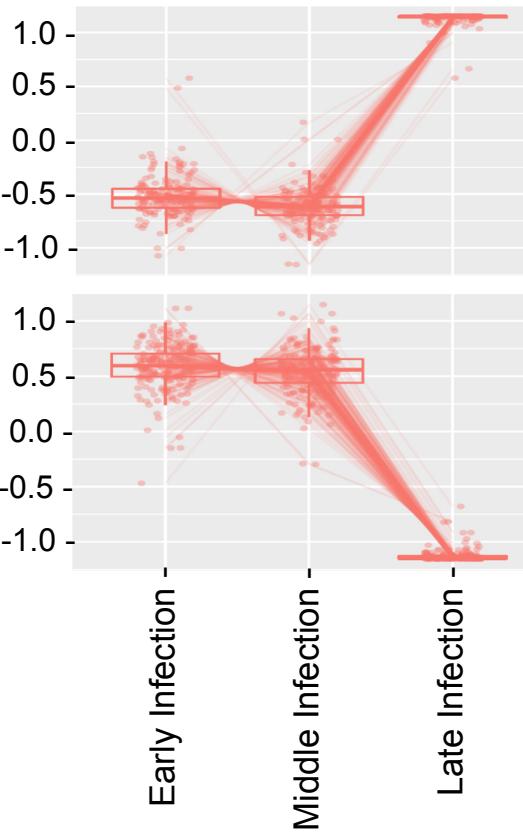

1068 *lativittatus* relative to other fungi. The colors of the gene counts are normalized per gene family

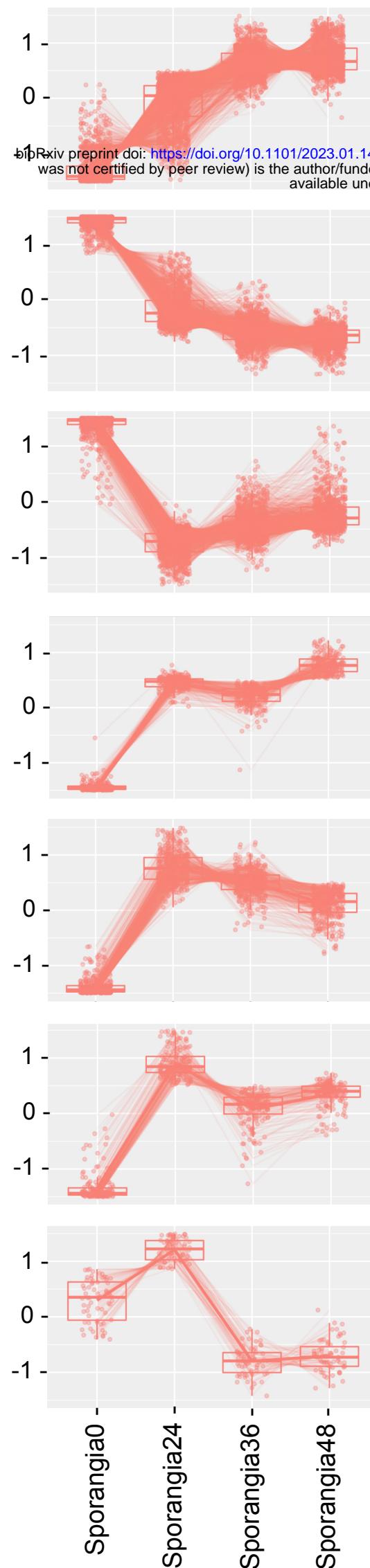

1069 with red indicating a high normalized count and blue indicating a low count. The phylum for each


1070 taxon is indicated by the colored row labels at the left. The dendrogram above the heatmap

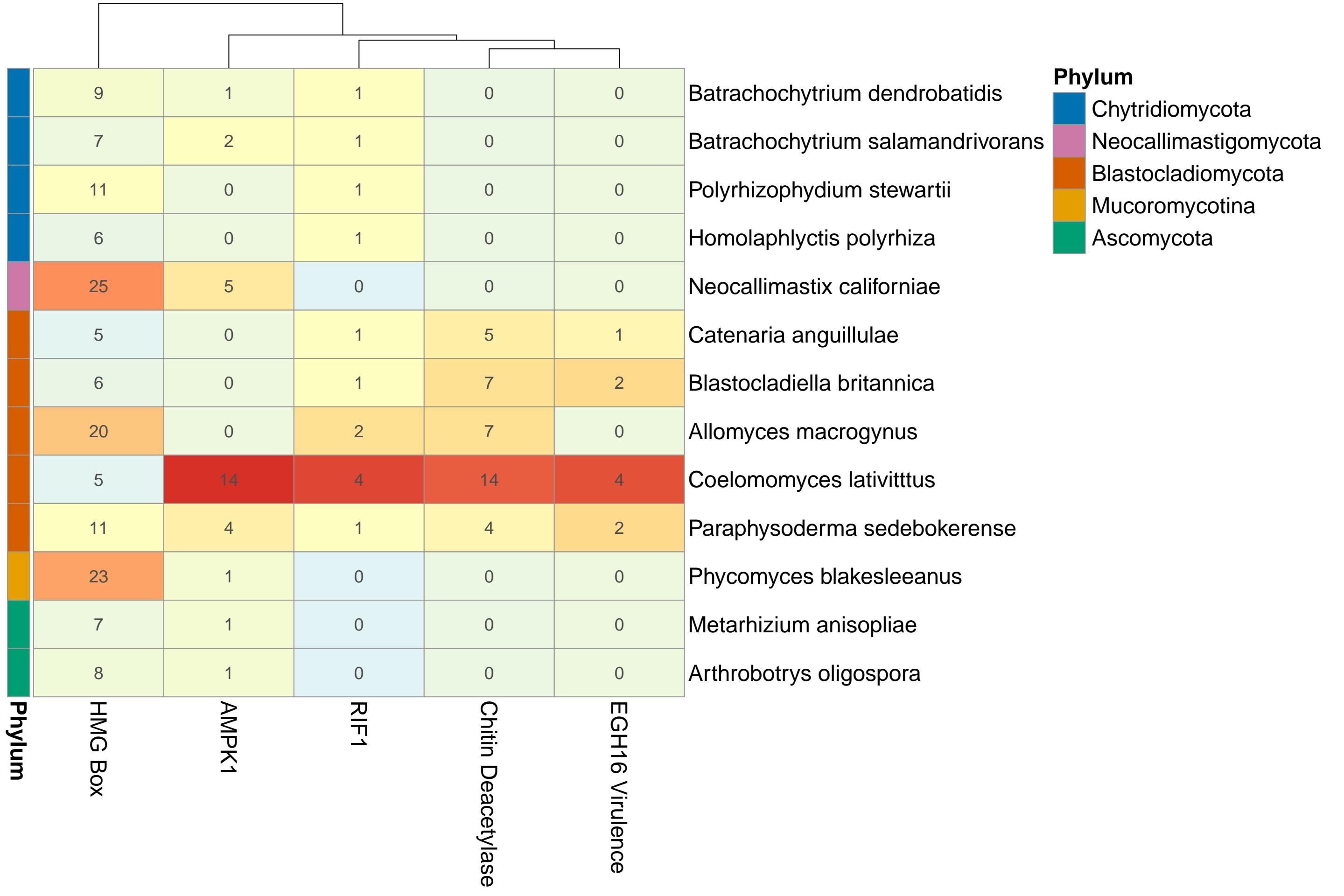


1071 clusters the columns by similarity in counts between the different gene families. Validated HMG

1072 boxes were found in two orthogroups which are shown combined here for simplicity.





Z-score of transcript abundance



Group	Over-represented GO term	GO ID
1 167 transcripts	aspartate family amino acid metabolic process methionine metabolic process alpha-amino acid metabolic process active transmembrane transporter activity sulfur amino acid metabolic process cellular amide metabolic process	GO:0009066 GO:0006555 GO:1901605 GO:0022804 GO:0000096 GO:0043603
2 213 transcripts	organonitrogen compound biosynthetic process non-membrane-bounded organelle nucleosome DNA packaging complex	GO:1901566 GO:0043228 GO:0000786 GO:0044815

Z-score of transcript abundance

Group	Over-represented GO term	GO ID
1 1083 transcripts	structural constituent of ribosome structural molecule activity chitin synthase activity translation cellular amide metabolic process	GO:0003735 GO:0005198 GO:0004100 GO:0006412 GO:0043603
2 965 transcripts	RNA metabolic process nucleic acid metabolic process nucleobase-containing compound metabolic process gene expression heterocycle metabolic process	GO:0016070 GO:0090304 GO:0006139 GO:0010467 GO:0046483
3 859 transcripts	nucleic acid binding binding RNA binding ribosome biogenesis RNA metabolic process	GO:0003676 GO:0005488 GO:0003723 GO:0042254 GO:0016070
4 219 transcripts	microtubule-based movement movement of cell or subcellular component microtubule-based process microtubule motor activity dynein complex	GO:0007018 GO:0006928 GO:0007017 GO:0003777 GO:0030286
5 355 transcripts	structural constituent of ribosome structural molecule activity 7S RNA binding branched-chain-amino-acid transaminase activity glucose-6-phosphate dehydrogenase activity	GO:0003735 GO:0005198 GO:0008312 GO:0004084 GO:0004345
6 156 transcripts	oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor oxidoreductase activity, acting on the aldehyde or oxo group of donors response to oxidative stress proteasome assembly proline metabolic process	GO:0016620 GO:0016903 GO:0006979 GO:0043248 GO:0006560
7 64 transcripts	reactive oxygen species metabolic process superoxide metabolic process lipid metabolic process methionyl-tRNA aminoacylation cellular lipid metabolic process	GO:0072593 GO:0006801 GO:0006629 GO:0006431 GO:0044255

