

1 **ccTCM: a quantitative component and compound platform for**
2 **promoting the research of traditional Chinese medicine**

3 Dongqing Yang¹, Zhu Zhu², Qi Yao², Cuihua Chen³, Feiyan Chen³, Ling Gu³, Yucui
4 Jiang³, Lin Chen⁴, Jingyuan Zhang⁵, Juan Wu¹, Xingsu Gao¹, Junqin Wang¹, Guochun
5 Li¹ and Yunan Zhao^{2,*}

6 ¹ Department of Public Health, School of Medicine & Holistic Integrative Medicine,
7 Nanjing University of Chinese Medicine, Nanjing 210023, China

8 ² Department of Pathology and Pathophysiology, School of Medicine & Holistic
9 Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023,
10 China

11 ³ Research and Innovation Center, College of Traditional Chinese Medicine·Integrated
12 Chinese and Western Medicine College, Nanjing University of Chinese Medicine,
13 Nanjing 210023, China

14 ⁴ Department of Physiology, School of Medicine & Holistic Integrative Medicine,
15 Nanjing University of Chinese Medicine, Nanjing 210023, China

16 ⁵ Department of Treatise on Febrile Diseases, School of Traditional Chinese Medicine
17 & Integrated Traditional Chinese and Western Medicine, Nanjing University of
18 Chinese Medicine, Nanjing 210023, China

* Corresponding author: Tel/Fax: +86-25-85811922. E-mail: zhaoyunan-js@163.com (Y. Zhao).

19 **Abstract**

20 **Traditional Chinese medicine (TCM) databases play a vital role in bridging the**
21 **gap between TCM and modern medicine, as well as in promoting the popularity**
22 **of TCM. Elucidating the bioactive ingredients of Chinese medicinal materials is**
23 **key to TCM modernization and new drug discovery. However, one drawback of**
24 **current TCM databases is the lack of quantitative data on the constituents of**
25 **Chinese medicinal materials. Herein, we present ccTCM, a web-based platform**
26 **designed to provide a component and compound-content-based resource on**
27 **TCM and analysis services for medical experts. In terms of design features,**
28 **ccTCM combines resource distribution, similarity analysis, and**
29 **molecular-mechanism analysis to accelerate the discovery of bioactive**
30 **ingredients in TCM. ccTCM contains 273 Chinese medicinal materials**
31 **commonly used in clinical settings, covering 29 functional classifications. By**
32 **searching and comparing, we finally adopted 2043 studies, from which we**
33 **collected the compounds contained in each TCM with content greater than**
34 **0.001%, and a total of 1 449 were extracted. Subsequently, we collected 40767**
35 **compound-target pairs by integrating multiple databases. Taken together,**
36 **ccTCM is a versatile platform for that can be used by TCM scientists to perform**
37 **scientific and clinical TCM studies based on quantified ingredients of Chinese**
38 **medicinal materials. ccTCM is freely accessible at <http://www.cctcm.org.cn>.**

39 **Keywords TCM; Compound; Component; Content; Database**

41 INTRODUCTION

42 As an alternative to modern medicine, traditional Chinese medicine (TCM) has been
43 used to treat and prevent various diseases over thousands of years, playing an
44 important role in improving the health of East Asian people [1]. In recent decades,
45 great efforts have been exerted to study all aspects of TCM, such as clinical
46 evaluation [2], chemical profiling [3], and bioactivities [4]. With the rapid increase in
47 available TCM data, many web-based databases specializing in TCM have emerged,
48 which in turn facilitate the scientific and clinical study of TCM.

49 First, the TCM Information Database [5], published in 2006, has been introduced
50 earlier as a web resource to provide free-of-charge and comprehensive information
51 about TCM, including herbs, prescriptions, herbal ingredients, structure and
52 functional properties of compounds, as well as their therapeutic effects and clinical
53 indications and applications. The database represents early efforts toward enhancing
54 the ability to evaluate TCM herbs' beneficial and risk effects.

55 Second, are TCM Database@Taiwan [6] and SymMap [7], which emphasize
56 phenotypic drug discovery (PDD) based on a large amount of information on natural
57 products and their clinical applications. TCM Database@Taiwan, published in 2011,
58 contains more than 20,000 natural compounds from 453 Chinese Materia Medica,
59 including herbs, animal products, and minerals. The 2D and 3D formats of each
60 compound in the database are available for virtual filtering or molecular simulation.
61 SymMap, an integrative database of TCM enhanced by symptom mapping, was
62 published in 2019. SymMap presents the newly curated symptom-herb knowledge

63 and connects symptoms and phenotypes to herbs and diseases, thereby providing both
64 phenotypic changes and lead compounds for PDD screening efforts.

65 Finally, for TCMID [8], TCMSP [9], HERB [10], and LTM-TCM [11], these four
66 TCM databases focus on understanding of the action mechanisms underlying TCM
67 through the concept and theory of network pharmacology. TCMID, a TCM integrative
68 database for herb molecular mechanism analysis, was published in 2012. Based on
69 predicted targets of compounds, the database displays herb-disease networks and
70 compound-target networks, integrating TCM with modern science at the phenotypic
71 and molecular levels. TCMSP, a database of system pharmacology for drug discovery
72 from herbal medicines, was published in 2014. The database improves the
73 network-pharmacology analysis of TCM with the help of absorption, distribution,
74 metabolism, and excretion related properties of compounds. Unlike TCMID and
75 TCMSP, HERB, published in 2020, used gene targets guided by high-throughput
76 transcriptomic screening experiments to identify herb-disease networks and
77 compound-target networks. LTM-TCM, published in 2022, is currently the most
78 comprehensive TCM database. Using the LTM-TCM platform, the
79 network-pharmacology analysis of TCM is enhanced by large amounts of data
80 integration and high-quality normalization.

81 Nowadays, these TCM databases play a crucial role in bridging the gap between
82 TCM and modern medicine as well as in promoting the modernization and
83 popularization of TCM [12]. However, some problems have emerged in the result
84 reliability of PDD screening and network-pharmacology analysis. An obvious

85 disadvantage of these TCM databases is that all of them do not provide quantitative
86 data on ingredients in Chinese medicinal materials. Some ingredients of Chinese
87 medicinal materials with very low content, even if they have better bioactivities, are
88 not responsible for the therapeutic effects of TCM medicinal materials. If such
89 ingredients are not discarded based on content data, the ranking of lead compounds
90 and the construction of herb-compound-target-disease networks are bound to be
91 seriously affected. Thus, adding quantitative data on ingredients into TCM databases
92 contributes to upgrading PDD screening and network-pharmacology analysis.

93 With the rapid development of quantitative analysis techniques including
94 chemical and instrumental analysis methods [13], many studies have aimed to
95 determine the contents of different ingredients of Chinese medicinal materials and
96 link them to the biodiversity and quality evaluation of Chinese medicinal materials
97 [14]. In particular, a few TCM quality-control studies have focused on detecting the
98 content differences of multiple compounds in certain Chinese medicinal materials
99 derived from different botanical origins [15], producing areas [16], cultivation years
100 [17], harvesting seasons [18], and processing methods [19] through high-performance
101 liquid chromatography (HPLC) coupled with different up-to-date detectors. The
102 rapidly increasing number of quantified ingredients in Chinese medicinal materials
103 provides us an opportunity to develop a component and compound-content-based
104 database integrating comprehensive information on TCM (**ccTCM**).

105 Hence, in the present study, we obtained the quantified ingredients data of TCM
106 based on comprehensive literature searches with focus on botanical origins, producing

107 areas, harvesting seasons, and processing methods. The scope of our collection
108 covered 29 categories of TCM, 273 Chinese medicinal materials (Supplementary
109 Table S1), and 1499 compounds in total. The content-determination information of
110 each TCM was obtained through manual literature retrieval, totaling 2043 articles,
111 with an average of 7.48 literature supporting each TCM. For the convenience of use,
112 the metadata of each TCM was collected from the Chinese Pharmacopoeia (2020
113 edition), and the metadata of each compound was collected from PubChem [20]. We
114 also provided 40 767 pieces of target information for compounds. In brief, the
115 data-based connections between TCM and modern medicine described in ccTCM
116 provided reliable support for understanding the molecular mechanisms underlying
117 TCM clinical therapy. Moreover, ccTCM provided similarity analysis of Chinese
118 medicinal materials and resource-distribution analysis of components and compounds,
119 thereby enabling the progress of the TCM industry and scientific research.

120 **METHODS**

121 **Data sources of Chinese medicinal materials and compounds**

122 The metadata of Chinese medicinal materials in ccTCM (including name, species,
123 Latin name, medicinal part, basic characteristics, dosage, toxicity, main efficacy,
124 identification, source information, trait, storage conditions, etc.) originated from the
125 Chinese Pharmacopoeia (2020 edition) and were automatically translated into English
126 through Google translation API.

127 The metadata of compounds was retrieved, using the compound name and their
128 synonyms, from PubChem by using PubChemPy (v1.0.4) package via PubChem's

129 PUG REST web service. The metadata of each compound includes molecular formula,
130 molecular weight, complexity, classification, properties, synonyms, IUPAC, InChi,
131 InChiKey, Canonical Smiles, Isomeric Smiles, exact mass, etc. The structures of
132 compounds were searched from PubChem, ChEMBL [21], and ZINC [22]. For those
133 compounds not found in these databases, their structures were drawn by using InDraw
134 5.2 software (<https://www.integle.com/static/indraw>).

135 **Manual collection of quantified TCM ingredients**

136 The schematic of document retrieval, quantitative data collection, and ingredient
137 rating is shown in Figure 1. The chemical profiling of Chinese medicinal materials
138 was searched from the Chinese Academic Journal Network Publishing Database
139 (CAJD) (<https://www.cnki.net>) by using the combinations of the keywords (“name”,
140 “progress”, and “chemistry”) in the title. Original research on ingredient content
141 analysis was also searched from CAJD by using the combinations of the keywords
142 (“name”, “content”, and “determination”) in the title. The 5777 pieces of literature
143 273 Chinese medicinal materials were adopted, as the botanical origin of Chinese
144 herbs and the content unit of quantified ingredients was clearly clarified in the context.
145 The inclusion criteria of ingredient content data into ccTCM can be referring to
146 supplementary document 1. In brief, quantitative data were preferentially extracted
147 from the articles focusing on the quality assessment of Chinese medicinal materials
148 derived from different botanical origins, producing areas, cultivation years, harvesting
149 seasons, or processing methods through the quantitative analysis of multi-components
150 by a single marker or HPLC-based simultaneous detection. Abnormal quantitative

151 data that deviated so far from the rest of the data were not adopted.

152 We divided ingredients into 26 categories based on the structural characteristics
153 of natural products, which were named major category in ccTCM, including aliphatic
154 organic acids, alkaloids, benzyls, caffeoylquinic acids, chromones, coumarins,
155 diarylheptanoids, essential oils, fatty oils, flavonoids, inorganic compounds, lignans,
156 nucleosides, phenanthrenes, phenols, phenylethanols, phenylpropanoids,
157 polyacetylenes, polypeptides, polysaccharides, quinones, steroids, stilbenes, tannins,
158 terpenes, and others. Each major category contained some minor categories and
159 subcategories, with a total of 115 minor categories and 132 subcategories
160 (Supplementary Table S2). These ingredients were regarded as major ingredients
161 when component contents (i.e., total flavonoids and total terpenes) or representative
162 compound contents were equal to or greater than 0.1% (g/g). Minor and trace
163 ingredients were defined as component contents or representative compound contents
164 of 0.01%–0.1% (g/g) and 0.001%–0.01% (g/g), respectively. If no quantitative data
165 existed, such ingredients that possessed more than three analogs were regarded as
166 trace ingredients. As regards the weight factor of ingredients in TCM, we ranked
167 major ingredients, minor ingredients, and trace ingredients as 1, 0.3, and 0.1.

168 **Compound–target relationships**

169 We collected compound-target relationships primarily by integrating multiple reliable
170 databases, such as Human Metabolome Database (HMDB, v5.0) [23], DrugBank
171 v5.1.9 [24], Comparative Toxicogenomics Database (CTD, 2022-04) [25], Natural
172 Product Activity and Species Source (NPASS v2022) [26], and Collective Molecular

173 Activities of Useful Plants (CMAUP, v1.0) [27]. To avoid omission of information,
174 we used compound names and their synonyms for matching. The literature links of
175 compound primarily–target were provided when the PubMed IDs were available.

176 **Implementation of ccTCM**

177 The ccTCM database was developed on the PostgreSQL database (v14.0) and Django
178 server framework (v3.2). Its web interfaces were built using the Vue3 framework, and
179 ECharts was used for front-end visualization. The entire database was designed to
180 enable the access of its entries by TCM and compounds by using multiple browse and
181 search facilities. When applicable, the compound entries were cross-linked to the
182 PubChem, CTD, and ZINC databases. The relevant pieces of literature on
183 compound–target relation was provided by PubMed identifiers and cross-linked to
184 PubMed. ccTCM is freely accessible at <http://www.cctcm.org.cn> without a need for
185 user registration. The website is compatible with most major browsers. Enrichment
186 analysis was conducted using the R package “clusterProfiler” (v4.2.2) (Yu et al. 2012),
187 and networkx (<https://networkx.org/>, v2.6.3) was used for network-module analysis
188 and net-properties calculations including diameter, clustering coefficient, closeness
189 centrality, and betweenness centrality.

190 **RESULTS**

191 **Database statistics**

192 ccTCM currently contains 273 Chinese medicinal materials containing 1,449 unique
193 compounds targeting 9,880 proteins. We collected a total of 1,248 records of TCM
194 component or representative compound contents with 1,073 supporting literature, a

195 total of 2,757 TCM-compound content pairs with 1,126 supporting literature, and
196 40,767 compound–target pairs (Table 1).

197 On the ccTCM main page, users can view the sunburst plot containing all
198 Chinese medicinal materials and click the tick next to the TCM name to open the
199 detail page. These Chinese medicinal materials were classified into 7 categories
200 according to TCM function, and each category was further divided into 29
201 subcategories (Supplementary Table S1).

202 **Browsing and searching Chinese medicinal materials, compounds, and literature**

203 Users can view all Chinese medicinal materials, compounds, and literature through
204 the resource browser. The TCM category filter can help users screen the list of
205 Chinese medicinal materials. Similarly, compound browsing can also be filtered by a
206 major category filter. Users can specify a range of years to view the list of available
207 literature.

208 The resource browser also provides different angles for users to view the data
209 contained in ccTCM. The component profile lists the weight factors of components
210 included in each TCM by using the numbers 1, 0.3, and 0.1. In the component content
211 page, users can view the content data of components or representative compounds in
212 each TCM, and each record provided the corresponding literature. The
213 compound-content page lists the quantified compounds in each TCM, whose average
214 contents in Chinese medicinal materials are generally more than 0.01% (g/g). Each
215 compound was given a structural classification including major category, minor
216 category, and subcategory.

217 The search page is convenient for users to search for wanted Chinese medicinal
218 materials, compounds, and targets included in ccTCM. The search keywords can be
219 the names of Chinese medicinal materials or compounds in English or Chinese.

220 On each TCM page, users can visit the metadata, origin picture, identification
221 pictures, component profiling, compound contents, and corresponding targets on
222 which the compounds act (Figure 2). On each compound page, users can visit the
223 molecular formula, molecular weight, complexity, classification, properties,
224 cross-references and corresponding targets (Figure 3).

225 **Pot function, take Gegen Qinlian Tang as an example**

226 Gegen Qinlian Tang (GQT) is mostly used in diarrhea and diabetes clinically. This
227 prescription contains 15 g of Puerariae Lobatae Radix, 9 g of Scutellariae Radix, 9 g
228 of Coptidis Rhizoma, and 6 g of Glycyrrhizae Radix Et Rhizoma. ccTCM provides a
229 Pot function like a shopping cart for users to customize the prescription on their own.
230 On the Pot page, the prescription can be named, and the TCM quantity can also be
231 modified or even deleted (Figure 4A). At the bottom of the page, users can view all
232 the compounds and their quantitative information contained in the current prescription
233 (Figure 4B). To demonstrate the reliability of the quantitative information provided by
234 ccTCM, we compared it with the measurement data in [28], and the comparison
235 results are shown in Table 2. Spearman's rank correlation analysis showed that the
236 quantitative data provided by ccTCM and the data measured by Li et al had high
237 consistency ($r=0.943$, P value=0.005). The details of the formulation using Pot
238 function and subsequent molecular mechanism analysis can be referring to

239 supplementary document 2.

240 **Resource distribution, similarity analysis, and molecular-mechanism analysis**

241 The resource distribution of ingredients in Chinese medicinal materials can be
242 viewed by selecting or specifying compounds or components. ccTCM uses cascade
243 mode to facilitate users to select the component object (Figure 5A). For example, the
244 user wants to find the distribution data of oxindole-type alkaloids in Chinese
245 medicinal materials. First, alkaloids in the drop-down box of the major category are
246 selected, and then indoles in the drop-down box of minor category are selected.
247 Finally, the oxindole-type alkaloid in the drop-down box of subcategory is selected.

248 Users can directly type the name of the compound in the dialog box to view the
249 distribution in Chinese medicinal materials (Figure 5B).

250 The TCM similarity analysis service provides a comparison of Chinese medicinal
251 materials from three aspects: major category, minor category, and compound. By
252 using the Pot function, users add TCM to the Pot and specify the quantity. The
253 analysis method uses Spearman's rank correlation coefficient, and the analysis results
254 are displayed in the form of heat map (Figure 6A).

255 Molecular-mechanism analysis refers to network analysis and enrichment analysis
256 (KEGG signaling-pathway enrichment analysis and gene ontology (GO)
257 functional-module enrichment analysis) according to the quantified compounds in
258 Chinese medicinal materials and the targets they act on. The currently accepted
259 species are *Homo sapiens*, *Mus musculus*, and *Rattus norvegicus*. ccTCM provides
260 three types of networks (Compound Target Network, Weighted Compound Target

261 Network, and Module Identified Network).

262 As for the Compound Target Network, the box represents TCM, the triangle
263 represents compound, and the circle represents gene. Different colors represent
264 different classifications of Chinese medicinal materials or compounds. The TCM node
265 size corresponds with its quantity in the prescription, and the compound node size
266 corresponds with its quantity in the TCM multiplied by the TCM quantity in the
267 prescription. As regards the Weighted Compound Target Network, the nodes were
268 resized according to their degrees, which was an update of the previous network. A
269 higher content of compounds in the prescription corresponded with a larger size of the
270 compound nodes and corresponding gene nodes connected to them (Figure 6B). The
271 Module Identified Network is analyzed according to the network-module
272 identification algorithm [29], and different colors represent different possible modules
273 (Figure 6C). All analysis results are available for user download.

274 **Special subject of COVID-19**

275 For the treatment of COVID-19, China has accumulated a considerable clinical
276 experience in the aspect of TCM therapy and has proposed many effective
277 prescriptions. The ccTCM platform provided the three prescriptions (Qingfei Paidu
278 Decoction, Huashi Baidu Prescription, and Xuanfei Baidu Prescription) suggested by
279 the State Administration of Traditional Chinese Medicine
280 (<http://www.satcm.gov.cn/xinxifabu/meitibaodao/2020-04-17/14712.html>,
281 Supplementary Table S3). Users can easily view the contents of the three prescriptions
282 from the home page and carry out molecular-mechanism analysis. We also marked

283 effective traditional Chinese materials for COVID-19 treatment on TCM pages.

284 **DISCUSSION AND CONCLUSION**

285 Accurate quantitative information plays a crucial role in expediting the discovery of
286 effective ingredients in TCM and its formulations, thereby promoting the
287 development of novel drugs. While there has been a rapid accumulation of
288 quantitative data from laboratory and clinical studies on TCM herbs and ingredients in
289 recent decades, there has been a lack of a well-structured organizational system to
290 catalog this information. Furthermore, the latest TCM-related references published in
291 the past decade have remained uncurated. Consequently, this study aimed to address
292 these gaps by meticulously gathering all available literature pertaining to the
293 determination of the quantity of TCM ingredients and curating high-confidence target
294 information from recently published TCM references. Leveraging the Pot function
295 and online analysis, we have successfully constructed ccTCM, the sole database
296 encompassing quantitative information for all TCM compounds currently available.

297 The novelty of the ccTCM database includes the following: (i) ccTCM is the first
298 available database containing quantitative component and compound data in Chinese
299 medicinal materials; (ii) ccTCM integrates the Pot function for the user-defined
300 analysis of molecular mechanism of TCM, visualized-distribution profiles of
301 components and compounds in Chinese medicinal materials, and similarity analysis of
302 different Chinese medicinal materials from three aspects (major category, minor
303 category, and compounds). (iii) ccTCM is the first available database providing
304 structural classification of natural compounds. The current version of ccTCM contains

305 a total of 273 Chinese medicinal materials and covers almost all functional
306 classifications of TCM. Nevertheless, some Chinese medicinal materials have not
307 been collected yet. We plan to add more Chinese medicinal materials into the ccTCM
308 database in the future. We will also try to integrate TCM theory into ccTCM and
309 provide a more comprehensive and useful TCM database.

310

311 **ACKNOWLEDGMENTS**

312 The authors thank Weichao Xu for authorizing ccTCM to use his TCM images. The
313 study was financially supported by National Natural Science Foundation of China
314 (No.82204647, 82003970), and supporting project of National Natural Youth
315 Foundation of Nanjing University of Chinese Medicine (XPT82204647), and
316 supporting project of Jiangsu Province "The 14th Five-year Plan" Key
317 Discipline-Public Health and Preventive Medicine (035091005007).

318

319 **AUTHOR CONTRIBUTIONS**

320 Yunan Zhao and Dongqing Yang designed the research. Zhu Zhu, Qi Yao, Cuihua
321 Chen, Feiyan Chen, Ling Gu, Yucui Jiang, and Lin Chen collected and corrected the
322 data. Dongqing Yang designed the ccTCM database and developed the website.
323 Jingyuan Zhang, Juan Wu, and Xingsu Gao tested the website performance and
324 correction. Junqin Wang and Guochun Li performed the statistical analyses. Yunan
325 Zhao and Dongqing Yang wrote the manuscript.

326

327 **DATA AVAILABILITY STATEMENT**

328 All data provided by ccTCM is accessible for free at <http://www.cctcm.org.cn/>.

329

330 **CONFLICT OF INTEREST**

331 The authors declare that they have no conflict of interest.

332

333 **ORCID**

334 Yunan Zhao <http://orcid.org/0000-0003-4944-8765>

335

336 **REFERENCES**

337 1. Oravecz M, Mészáros J. Traditional Chinese medicine: theoretical background and
338 its use in China. *Orv Hetil.* 2012;153:723–31.

339 2. Guo X, Chen X, Chen J, Tan Z, Yang Y, Zhang H. Current Status and Evaluation of
340 Randomized Clinical Trials of Traditional Chinese Medicine in the Treatment of
341 Cardiovascular Diseases. *Evid-Based Complement Altern Med ECAM.*
342 2022;2022:6181862.

343 3. Fan Y-L, Liu R-Z, Tan Q, Zhao H-L, Song M, Wang R, et al. A database-guided
344 integrated strategy for comprehensive chemical profiling of traditional Chinese
345 medicine. *J Chromatogr A.* 2022;1674:463145.

346 4. Wang M, Chen L, Liu D, Chen H, Tang D-D, Zhao Y-Y. Metabolomics highlights
347 pharmacological bioactivity and biochemical mechanism of traditional Chinese
348 medicine. *Chem Biol Interact.* 2017;273:133–41.

349 5. Chen X, Zhou H, Liu YB, Wang JF, Li H, Ung CY, et al. Database of traditional
350 Chinese medicine and its application to studies of mechanism and to prescription
351 validation. *Br J Pharmacol.* 2006;149:1092–103.

352 6. Chen CY-C. TCM Database@Taiwan: The World's Largest Traditional Chinese
353 Medicine Database for Drug Screening In Silico. Hofmann A, editor. *PLoS ONE.*
354 2011;6:e15939.

355 7. Wu Y, Zhang F, Yang K, Fang S, Bu D, Li H, et al. SymMap: an integrative
356 database of traditional Chinese medicine enhanced by symptom mapping. *Nucleic*

357 Acids Res. 2019;47:D1110–7.

358 8. Xue R, Fang Z, Zhang M, Yi Z, Wen C, Shi T. TCMID: traditional Chinese
359 medicine integrative database for herb molecular mechanism analysis. Nucleic Acids
360 Res. 2012;41:D1089–95.

361 9. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, et al. TCMSp: a database of systems
362 pharmacology for drug discovery from herbal medicines. J Cheminformatics.
363 2014;6:13.

364 10. Fang S, Dong L, Liu L, Guo J, Zhao L, Zhang J, et al. HERB: a high-throughput
365 experiment- and reference-guided database of traditional Chinese medicine. Nucleic
366 Acids Res. 2021;49:D1197–206.

367 11. Li X, Ren J, Zhang W, Zhang Z, Yu J, Wu J, et al. LTM-TCM: A comprehensive
368 database for the linking of Traditional Chinese Medicine with modern medicine at
369 molecular and phenotypic levels. Pharmacol Res. 2022;178:106185.

370 12. Zhang R, Zhu X, Bai H, Ning K. Network Pharmacology Databases for
371 Traditional Chinese Medicine: Review and Assessment. Front Pharmacol.
372 2019;10:123.

373 13. Wu H, Guo J, Chen S, Liu X, Zhou Y, Zhang X, et al. Recent developments in
374 qualitative and quantitative analysis of phytochemical constituents and their
375 metabolites using liquid chromatography-mass spectrometry. J Pharm Biomed Anal.
376 2013;72:267–91.

377 14. Ren J-L, Zhang A-H, Kong L, Han Y, Yan G-L, Sun H, et al. Analytical strategies
378 for the discovery and validation of quality-markers of traditional Chinese medicine.
379 Phytomedicine Int J Phytother Phytopharm. 2020;67:153165.

380 15. Wu M, Ma S, Wu M, Cao H, Zhang Y, Ma Z. Simultaneous qualitative and
381 quantitative analysis of 10 bioactive flavonoids in Aurantii Fructus Immaturus (Zhishi)
382 by ultrahigh-performance liquid chromatography and high-resolution tandem mass
383 spectrometry combined with chemometric methods. Phytochem Anal PCA.
384 2022;33:710–21.

385 16. Tan M, Chen J, Wang C, Zou L, Chen S, Shi J, et al. Quality Evaluation of
386 Ophiopogonis Radix from Two Different Producing Areas. Mol Basel Switz.
387 2019;24:3220.

388 17. Sun P, Tong J, Li X. Evaluation of the Effects of Pacllobutrazol and Cultivation
389 Years on Saponins in Ophiopogon japonicus Using UPLC-ELSD. Int J Anal Chem.
390 2020;2020:5974130.

391 18. Luo S, Ren X, Shi X, Zhong K, Zhang Z, Wang Z. Study on enhanced extraction
392 and seasonal variation of secondary metabolites in Eucommia ulmoides leaves using

393 deep eutectic solvents. *J Pharm Biomed Anal.* 2022;209:114514.

394 19. Han L, Wang R, Zhang X, Yu X, Zhou L, Song T, et al. Advances in Processing
395 and Quality Control of Traditional Chinese Medicine Coptidis rhizoma (Huanglian): A
396 Review. *J AOAC Int.* 2019;102:699–707.

397 20. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update.
398 *Nucleic Acids Res.* 2023;51:D1373–80.

399 21. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, et al. The
400 ChEMBL database in 2017. *Nucleic Acids Res.* 2017;45:D945–54.

401 22. Sterling T, Irwin JJ. ZINC 15--Ligand Discovery for Everyone. *J Chem Inf Model.*
402 2015;55:2324–37.

403 23. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al.
404 HMDB 4.0: the human metabolome database for 2018. *Nucleic Acids Res.*
405 2018;46:D608–17.

406 24. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al.
407 DrugBank: a comprehensive resource for in silico drug discovery and exploration.
408 *Nucleic Acids Res.* 2006;34:D668–672.

409 25. Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ.
410 Comparative Toxicogenomics Database (CTD): update 2023. *Nucleic Acids Res.*
411 2022;gkac833.

412 26. Zeng X, Zhang P, He W, Qin C, Chen S, Tao L, et al. NPASS: natural product
413 activity and species source database for natural product research, discovery and tool
414 development. *Nucleic Acids Res.* 2018;46:D1217–22.

415 27. Zeng X, Zhang P, Wang Y, Qin C, Chen S, He W, et al. CMAUP: a database of
416 collective molecular activities of useful plants. *Nucleic Acids Res.*
417 2019;47:D1118–27.

418 28. Li R, Chen Y, Shi M, Xu X, Zhao Y, Wu X, et al. Gegen Qinlian decoction
419 alleviates experimental colitis via suppressing TLR4/NF-κB signaling and enhancing
420 antioxidant effect. *Phytomedicine Int J Phytother Phytopharm.* 2016;23:1012–20.

421 29. Wang X, Dalkic E, Wu M, Chan C. Gene module level analysis: identification to
422 networks and dynamics. *Curr Opin Biotechnol.* 2008;19:482–91.

423

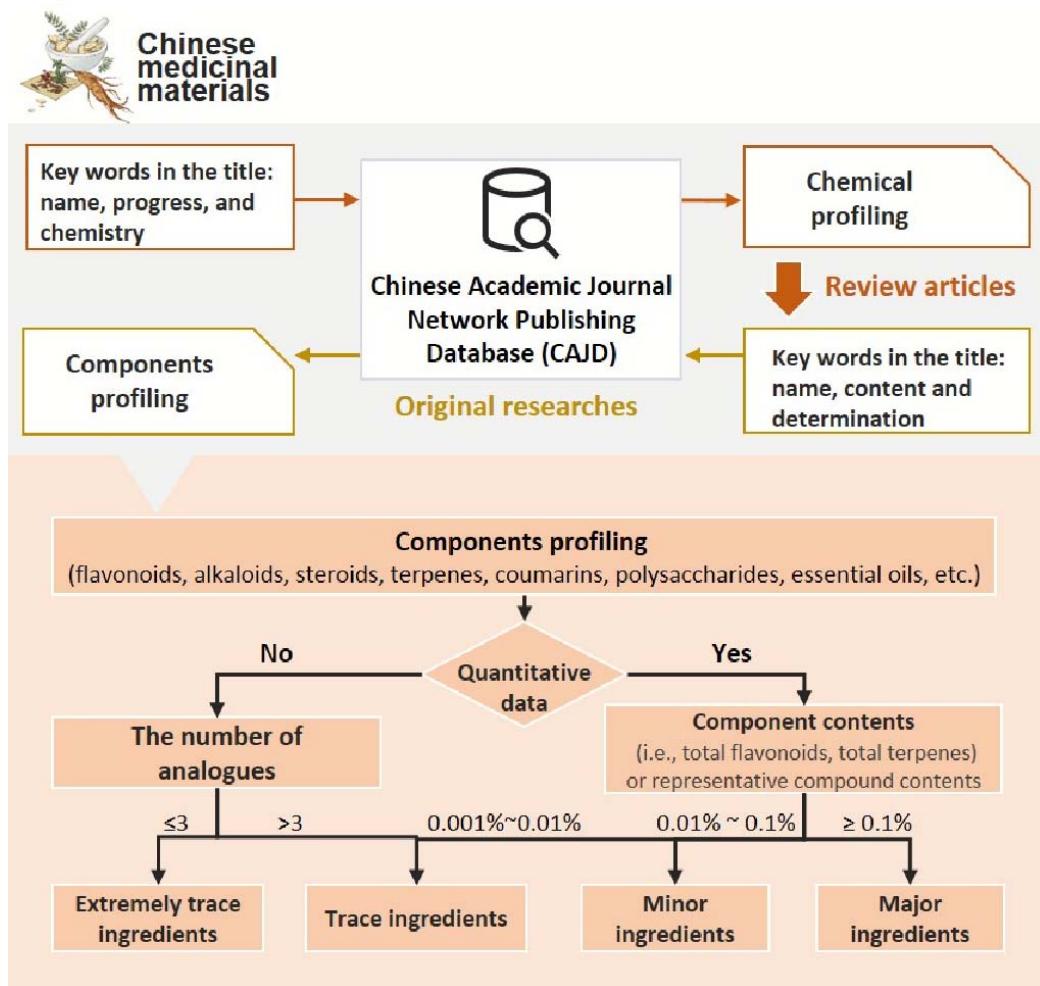
424 **Tables**

425 **Table 1. Overview of data from peering databases**

Items	Data type	ccTCM	TCMSP	TCMID 2.0	ETCM	HERB	HIT 2.0
Published year		2014	2018	2019	2020	2022	
Chinese medicinal materials	The total number	273	499	8159	402	7263	1237
	Origin images	Yes	No	n.a.	No	No	No
	Identification images	Yes	No	n.a.	Yes	No	No
Compounds	The total number	1449	29 384	43 413	7284	49 258	1284
	Classification	Yes	No	n.a.	No	No	No
	Druglikeness	Yes	No	n.a.	Yes	No	No
	ADMET properties	Yes	Yes	n.a.	Yes	No	No
Quantification information	Quantified ingredients	1248	0	0	0	0	0
	TCM-compound content pairs	2757	0	0	0	0	0
Targets	The total number	9880	3311	82	2266	12 933	2208
	Source by literatures supported	Yes	No	n.a.	No	Yes	Yes
	Compound-target pairs	40767	84260	n.a.	n.a.	4815	10 031
Literature	The total number	7027	1288	n.a.	n.a.	1966	7100
Online analysis	Resource distribution and similarity analysis	Yes	No	No	No	No	No
	Molecular-mechanism analysis (network analysis and enrichment analysis (KEGG and GO))	Yes	No	No	Yes	Yes	No

426 n.a.: not available.

427 **Table 2. Comparison of quantitative information of compounds in GQT**


Compound	Source	Content in GQT extract [%] [28]	Median content (ccTCM) (%), g/g Prescription)	Content (ccTCM) (%), g/g Prescription)
Puerarin	<i>Pueraria lobata (Willd) Ohwi.</i>	2.87	0.90385	0.115~1.692
Daidzein	<i>Pueraria lobata (Willd) Ohwi.</i>	0.77	0.01538	0.0038~0.0269
Liquiritin	<i>Glycyrrhiza uralensis Fisch</i>	1.42	0.29231	0.05~0.54
Baicalin	<i>Scutellaria baicalensis Georgi.</i>	28.84	3.16154	2.17~4.15
Baicalein	<i>Scutellaria baicalensis Georgi.</i>	9.72	0.37846	0.04~0.72
Berberine	<i>Coptis chinensis Franch.</i>	18.93	1.51154	1.2~1.8

428

429

430 **Figure legends**

431 **Figure 1.** Schematic of document retrieval, quantitative data collection, and
432 ingredient rating. Related papers were collected through Chinese Academic Journal
433 Network Publishing Database (CAJD). These articles were selected as candidates, in
434 the context of which the botanical origin of Chinese herbs and the content unit of
435 quantified ingredients is clearly clarified. The inclusion criteria of ingredient content
436 data into ccTCM can be referring to supplementary document 2. The basis for the
437 setting of major ingredients was as follows: if the patient was given 10 g of medicinal
438 materials per day, the value of 0.1% (g/g) indicated that the patient can take 10 mg of
439 ingredients. In fact, most of drugs are orally used at a dosage of not less than 10–20
440 mg per day. Particularly, alkaloids were identified as major ingredients if the content
441 of total alkaloids or a representative compound exceeded 0.01%. When the content of
442 polysaccharides, aliphatic organic acids or fatty oils in medicinal materials exceeded
443 10%, they can be considered as major ingredients.

444

445

446

447

448

449

450

451

452

453

454 **Figure 2.** The metadata of *Leonurus japonicas* is taken as an example (A): taxonomy,
455 origin, medicinal part, feature, usage, and toxicity. (B) The identification image of the
456 morphology of *L. japonicas*. (C) Component profiling of *L. japonicas*. (D) Lists of
457 similar TCMs belonging to the same functional category. (E) List of all the quantified
458 compounds in *L. japonicas* with a content ratio greater than 0.001%.

A

Leonuri Herba

Yi Mu Cao (ccTCM000474)
益母草

Taxonomy: Lamiaceae

Origin: *Leonurus Japonicus* Houtt.

Use part: Aboveground Part

Feature: slightly cold; bitter, bitter

Usage: 9~30g; fresh product 12~40g.

Toxicity: Non-Toxic

1 - +

Add

B

C

Component Profiling	
Flavonoids	Total Flavonoids (0.04~0.33%)
Alkaloids	Total Alkaloids (0.04~0.5%)
Alkaloids	Total Alkaloids (0.2~1.9%)
Polysaccharides	Total Polysaccharides (~3%)
Polysaccharides	Total Polysaccharides (~7%)
Essential oils	Essential Oils (~0.08%)

D

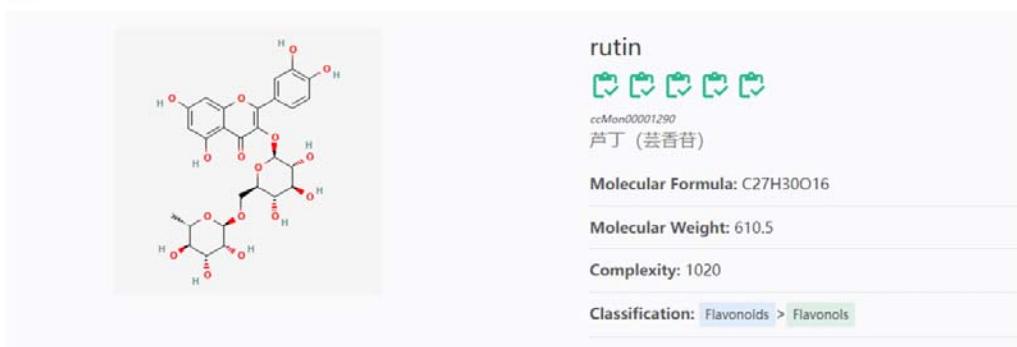
Similar TCMs	
Cyathulae Radix	Chuanxiong Rhizoma
Salviae Miltiorrhizae Radix Et Rhizoma	Curcumae Rhizoma
Carthami Flos	Spatholobi Caulis
Curcumae Longae Rhizoma	Myrra

E

List of quantified compounds in **Leonuri Herba**

Major category	Minor category	Subcategory	Compound	Content (Essential oils)	Content (Chinese medicinal materials)	Literature
Alkaloids	Pyrrolidines	quaternary a...	stachydrine hydrochloride	NA	0.6~1.3%	ccRef01393
Alkaloids	Organic Ami...	guanidines	leonurine hydrochloride	NA	0.10~1.20%	ccRef01394
Alkaloids	Pyrrolidines	quaternary a...	stachydrine hydrochloride	NA	0.01~0.61%	ccRef01434
Flavonoids	Flavonols		rutin	NA	0.07~0.47%	ccRef01394
Alkaloids	Organic Ami...	guanidines	leonurine hydrochloride	NA	0.06~0.36%	ccRef01393
Flavonoids	Flavonols		quercetin	NA	0.05~0.31%	ccRef01842
Flavonoids	Flavonols		isoquercitrin	NA	0.04~0.31%	ccRef01394

459


460

461

462

463 **Figure 3.** Information of a specific compound. (A) The metadata of rutin is taken as
464 an example: molecular formula, molecular weight, complexity, and classification. (B)
465 Description of compound properties and available cross-references. (C) Functional
466 description of the main category to which the compound rutin belongs. (D) Network
467 of relation between rutin and targets in humans, mice, rats, and other organisms.

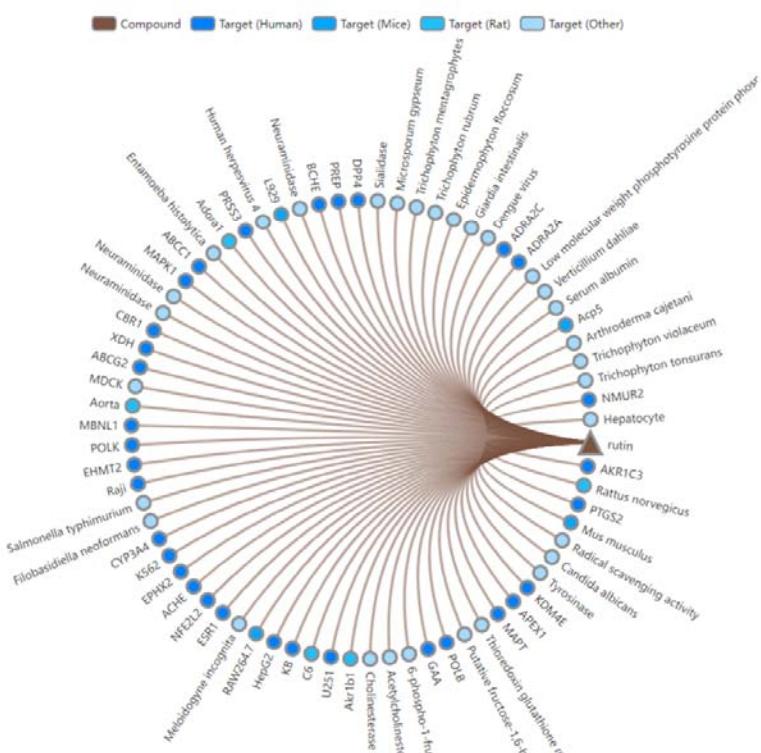
A

B

Compound properties

Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutin's anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators

Cross References


- ChEMBL Database: [CHEMBL226335](#)
- PubChem Database: [5280805](#)
- CTD Database: [D005419](#)
- DrugBank Database: [DB01698](#)

C

20 Flavonoids

A class of compounds in which two benzene rings are interconnected by a three-carbon chain, most of which have the basic skeleton of C6-C3-C6, and often have substituents such as hydroxyl, methoxy, methyl, and isopentenyl. The categories include: flavonoids, flavonols, dihydroflavonoids, dihydroflavonols, isoflavones, dihydroisoflavones, chalcones, anthocyanins, flavanols, orange ketones, biflavonoids, high isoflavones, pterostilbene type, diphenyprone and so on.

D

469

470 **Figure 4.** Pot function. (A) In the pot function, users can customize the quantity of
471 various Chinese medicinal materials. (B) All TCM compounds and their quantitative
472 information contained in the current prescription.

A

Prescription name	Number of selected herbs	Total quantity of prescription		
GegenQinlian	4	39		
TCM Info	Category	Medicinal parts	Quantity	Delete
1. Puerariae Lobatae Radix ccTCM000139 葛根	Cool Acrid Exterior-resolving Drug	Root	- 15 +	trash
2. Glycyrrhizae Radix Et Rhizoma ccTCM000132 甘草	Qi-invigorating Drug	Root and Rhizome	- 6 +	trash
3. Scutellariae Radix ccTCM000199 黄芩	Heat-clearing and Damp-drying Drug	Root	- 9 +	trash
4. Coptidis Rhizoma ccTCM000197 黄连	Heat-clearing and Damp-drying Drug	Root	- 9 +	trash
GegenQinlian		12 / 50	APPLY PRESCRIPTION NAME	EMPTY POT

B

List of quantified compounds					
Compound	TCM(s)	Major Category	Minor Category	Subcategory	Content (% q/q Prescr...)
baicalin	Scutellariae Radix(黄芩)	Flavonoids	Flavone-Type		3.16154
berberine	Coptidis Rhizoma(黄连)	Alkaloids	Isoquinolines	berberine-type	1.51154
glycyrrhizic acid	Glycyrrhizae Radix Et Rhiz...	Terpenes	Pentacyclic Triterpenoids	oleanane-type	1.09231
puerarin	Puerariae Lobatae Radix(...)	Flavonoids	Isoflavones		0.90385
3'-methoxy puerarin	Puerariae Lobatae Radix(...)	Flavonoids	Isoflavones		0.78846
wogonoside	Scutellariae Radix(黄芩)	Flavonoids	Flavone-Type		0.49615
coptisine	Coptidis Rhizoma(黄连)	Alkaloids	Isoquinolines	berberine-type	0.48462
baicalein	Scutellariae Radix(黄芩)	Flavonoids	Flavone-Type		0.37846
palmatine	Coptidis Rhizoma(黄连)	Alkaloids	Isoquinolines	berberine-type	0.36923
3'-hydroxy puerarin	Puerariae Lobatae Radix(...)	Flavonoids	Isoflavones		0.32692
daidzin	Puerariae Lobatae Radix(...)	Flavonoids	Isoflavones		0.32308
epiberberine	Coptidis Rhizoma(黄连)	Alkaloids	Isoquinolines	berberine-type	0.3
liquiritin	Glycyrrhizae Radix Et Rhiz...	Flavonoids	Flavanones		0.29231
oroxylloside	Scutellariae Radix(黄芩)	Flavonoids	Flavone-Type		0.28846
luteolin	Scutellariae Radix(黄芩)	Flavonoids	Flavone-Type		0.26538
puerarinapioside	Puerariae Lobatae Radix(...)	Flavonoids	Isoflavones		0.21923
liquiritin apioside	Glycyrrhizae Radix Et Rhiz...	Flavonoids	Flavanones		0.19615

473

474

475

476 **Figure 5.** Presentation of resource-distribution analysis. (A) The drop-down menu

477 provides users with resource analysis at different aspects (major category, minor

478 category, and subcategory) in a cascading manner. (B) Bar plot of distribution of

479 Bisepoxylignans in ccTCM.

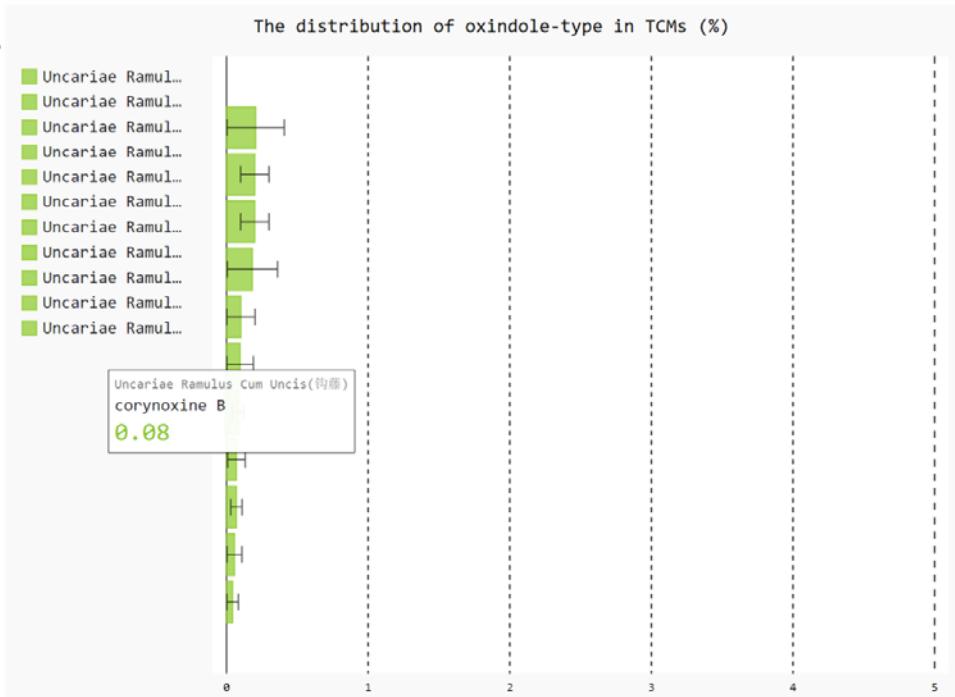
A

Choose the **major category** to check the distribution in TCMs

ANALYSE

Choose the **Minor Category**

ANALYSE

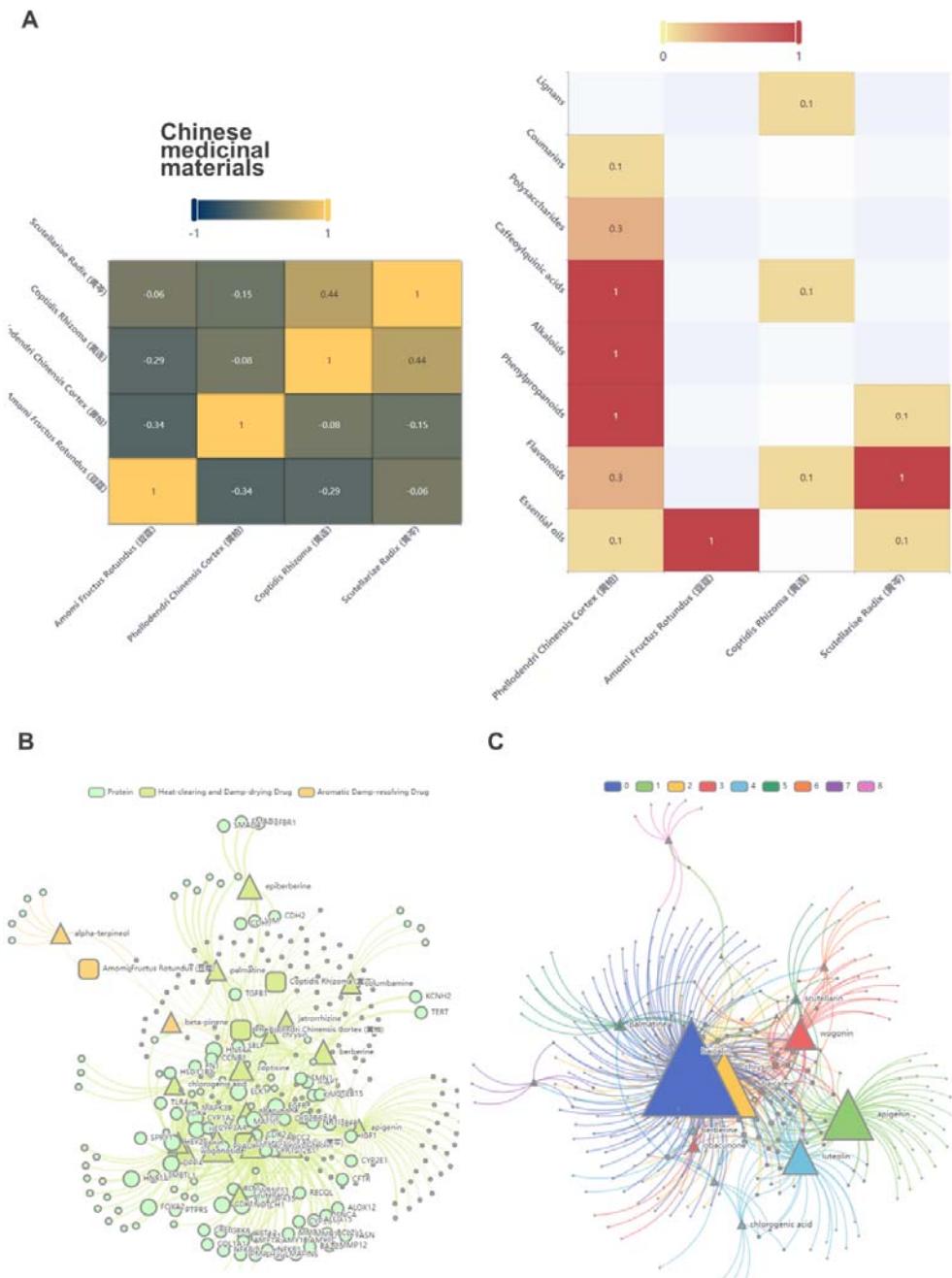

Choose the **Subcategory**

ANALYSE

Input the **Compound** name

ANALYSE

□


480

481

482

483

484 **Figure 6.** Presentation of enrichment-analysis results. (A) Similarity analysis uses a
485 similarity matrix to reflect the Spearman correlation among different Chinese
486 medicinal materials. A heatmap showing the contents of compounds in each TCM. (B)
487 Weighted compound-target network, with the nodes resized according to their degrees.
488 (C) Module-identified network is analyzed according to the network
489 module-identification algorithm, and different colors represent different possible
490 modules.

491

492

493 **Supplementary materials**

494 Table S1 List of Chinese medicinal materials information contained in ccTCM

495

496 Table S2 Classification information list of TCM compounds

497

498 Table S3 Prescription list for COVID-19

499

500 .