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Abstract

Bipolar disorder (BD) is a chronic mood disorder characterized by recurrent episodes of
depression and (hypo-) mania. The gut microbiome is a potential avenue through which
metabolic signaling, inflammatory pathways, environmental factors, and genetics
influence BD pathogenesis via the gut-brain axis. Fecal microbiota transplantation
(FMT) is a powerful translational tool for investigating the connections between the gut
microbiome and BD, and there is evidence FMT can transfer affective symptoms of BD
from humans to mice. In this study, we compared the behavior, gut-brain metabolomic
profiles, and inflammatory marker expression in two groups of adult female C57BL/6J
mice, one receiving FMT from a human donor with BD in a mixed episode ( HAM-D =
20, YMRS = 14) and another receiving FMT from a mentally healthy weight and
age-matched control donor without BD (HAM-D and YMRS = 0). Here, we demonstrate
that mice receiving FMT from individuals with BD had an increased abundance of
Bacteroidota and decreased abundances of Parabacteroides merdae and Akkermansia
muciniphila associated with altered levels of fecal metabolites, short-chain fatty acids,
and related gut hormone expression relative to mice receiving control donor FMT. BD
mice also exhibited differential regulation of several metabolites and inflammatory
markers in the amygdala, with glycine being the most prominently affected.
Furthermore, BD mice displayed increased anxiety-like behavior and decreased
sociability, indicating that aspects of the behavioral phenotype of BD are transferable
from humans to mice via FMT. Taken together, these findings implicate gut-brain
signaling in the physiological and behavioral changes observed in our BD-FMT mouse

model.
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Introduction

Bipolar disorder (BD) is a severe mood disorder characterized by recurrent episodes of
depression, hypomania, and mania. Individuals with bipolar | (BDI) disorder undergo
frequent depressive and manic episodes, and patients with bipolar Il (BDII) disorder
may experience a depressive or hypomanic episode without fully entering mania. BD is
one of the most common psychiatric disorders worldwide [1,2] and is associated with
increased mortality due to psychosocial consequences, suicidality, and psychiatric and
somatic comorbidities [3,4]. Strengthening our understanding of the biological
mechanisms behind BD is crucial for advancing treatment and improving patient
outcomes. The psychiatric genomic consortium (PGC) revealed 64 genome-wide
significant gene variants predisposing for BD [5], but genetics alone cannot explain the
multifactorial phenotype of BD. Biopsychosocial interactions and gene-environment
interactions play a crucial role in the outbreak and progression of BD [6,7]. There is also
substantial evidence that the bidirectional signaling pathway known as the gut-brain axis
is involved in BD pathogenesis [8]. Gut microbiota may influence BD by regulating
neuroinflammatory systems [9], impacting gene expression [7,10], and producing
metabolites and short-chain fatty acids (SCFAs) that influence CNS activity through
vagus nerve interception [11-13]. BD patients also harbor different intestinal bacterial
populations and have lower gut microbiome diversity than mentally healthy individuals
[14]. Hence, disruptions in gut microbiome compositions by diet, medication, and other
environmental factors can affect BD etiology [6,15].

Fecal microbiota transplantation (FMT) is a promising translational tool for BD

research. One study found that depression-like behavior is transferable from humans to
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mice via FMT [16]. Mice receiving FMT from individuals with ADHD exhibited
neurological changes and anxiety-related behaviors associated with ADHD [17].
Furthermore, FMT from a human donor with BD to mice affected the expression of
TRANK?1 [18], a gene whose down-regulation in the brain is associated with BD [19].
FMT also has therapeutic potential. FMT from a healthy human donor alleviated
symptoms of alcohol-induced depression and anxiety in mice [20]. FMT from mentally
healthy donors was an effective adjunctive treatment for depression for 4-8 weeks [21],
and also improved symptoms of depression and mania for a male patient with BDII and
ADHD [22].

Here, we used FMT to study the influence of gut-brain signaling on BD
pathogenesis in a mouse model. Given the role of the gut-brain axis in BD, we
hypothesized that mice receiving FMT from a human donor experiencing a mixed
bipolar episode and mice with FMT from a mentally healthy age and weight-matched
control donor would exhibit distinct emotional behaviors, inflammatory marker

expression, and gut-brain metabolomic profiles.

Materials and methods

Animals

All experiments were approved by the ethical committee at the Federal Ministry of
Education, Science and Research of the Republic of Austria (permit
BMBWF-66.010/0047-V/3b/2019). Three cohorts of female C57BL/6J mice were bred in

house and raised at a controlled temperature (22°C) and illumination (12:12 hr light-dark
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cycle, lights on at 07:00), and given access to water and a standard chow diet ad

libitum.

Donors and fecal sample processing

The study was conducted according to the guidelines of the Declaration of Helsinki and
approved by the Institutional Review Board of the Medical University of Graz (protocol
code 31-120 ex 18/19, date of approval: 27.03.2019). Informed consent was obtained
from all subjects involved in the study. The Young Mania Rating Scale (YMRS) was
used to assess the severity of manic symptoms [23], and the Hamilton Depression
Scale for Depression (HAM-D) was used to assess the severity of depressive symptoms
[24] in human donors. Fecal samples were collected from a female human donor in a
mixed episode of bipolar disorder with a YMRS score of 14 and a HAM-D score of 20,
as well as from a weight and age-matched healthy control with HAM-D and YMRS
scores of 0.

The donor with BD was only on a very low dose of venlafaxine (37.5 mg/d) and
refused mood stabilizers, resembling an almost drug-native state. The patient gave
informed consent to our longitudinal study before in euthymic state. Exclusion criteria for
both groups included antibiotic or antifungal treatment within the previous month,
regular intake of prebiotics or probiotics, acute or chronic somatic diseases or infections
(including rheumatoid arthritis, systemic lupus erythematosus, neurodegenerative and
neuroinflammatory disorders), severe alcohol or drug abuse, dementia, history of
digestive diseases such as inflammatory bowel disease and irritable bowel syndrome,

history of gastrointestinal surgery (other than appendectomy), current pregnancy or
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breast-feeding, history of eating disorder (anorexia, bulimia) in the last two years, and
laxative abuse. Self-reporting revealed no difference in somatization.

Fecal samples were collected in a plastic container containing an anaerobic
generator (AnaeroGenTM 2.5L, Thermo Fisher Scientific). 60 to 100 g of the samples
were processed within 6 hours of collection in an anaerobic chamber (Whitley A85
Workstation, Don Whitley Scientific). The stool samples were diluted in 150 mL of
anaerobic, reduced sterile phosphate-buffered saline (PBS), homogenized and filtered
through a sieve to remove solid components from the sample. 10% glycerol was added
and the sample was aliquoted into 4 mL anaerobic tubes (Anaerobic Hungate Culture
Tubes, Chemglass Life Sciences) [25]. Samples were stored at -70°C until stool

transfer.

Fecal microbiota transplantation (FMT)

Three cohorts of 20-30-week-old female C57BL/6J mice were treated with antibiotics
added to their drinking water (0.5 mg/mL neomycin, 1 mg/mL meropenem, and 0.3
mg/mL vancomycin) for 1 week to deplete their existing gut microbiome and promote
the uptake of donor microbiota as previously described [26]. A day prior to FMT, mice
were fasted to prevent fecal blockage in the colon during transplantation and were given
normal tap water instead of antibiotics. While anesthetized with isoflurane, one group of
mice received stool from the donor with BD and another group was transferred stool
from the healthy control donor. Approximately 0.2 mL of human stool sample was
administered rectally into each mouse. A few drops of stool were also placed in the

cage and on a few chow pellets to promote further microbiota uptake.
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Open Field Test

Cohort 1 mice were subject to the open field test 6 days post FMT as previously
described [26]. The open field apparatus was a 35 lux illuminated 50 x 50 x 40 cm
opaque, gray plastic box. Mice were placed in one corner of the open field and their
locomotion (distance, velocity, speed) was measured for 5 minutes using a video
camera and “EthoVision” (Noldus, the Netherlands) software. For analysis, the area was
divided into a 36 x 36 cm center zone and the surrounding periphery zone. Entry into

either zone was defined by the mouse center point.

Elevated plus maze

Mice in cohort 1 were subject to the elevated plus maze (EPM) 10 days post-FMT as
previously described [26]. The EPM apparatus comprised two open arms (30 x 5 cm),
two closed arms (30 x 5 x 15.5 cm), and a center platform (5 cm x 5 cm). The maze
was raised 60 cm above the floor and illuminated 35 lux from above. Time spent in the
open arm, number of entries to open arm, and total distance traveled were recorded

over the course of 5 minutes with “EthoVision” (Noldus, the Netherlands) software.

Light/dark box test

Mice in cohort 1 were subject to the light/dark box test (LDT) 14 days post FMT [26].
The light-dark box was divided into two sections by a partition containing a door (4.5 x
6 cm) (TSE Systems). The light compartment (18.5 x 21 cm) was made of transparent

walls and brightly illuminated (350-400 lux), whereas the dark compartment (18.5 x 21
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cm) was made of black acrylic walls (20 lux). Mice were placed in the light compartment
facing the dark compartment opening, and locomotion and exploration were tracked via
two external infrared frames, which recorded light beam interruptions (counts) during a
10-minute period. Data was analyzed with LabMaster software (TSE Systems, Bad

Homburg, Germany).

Social interaction test

Mice in cohort 2 were subject to the social interaction test (SIT) 10 days post FMT. The
test was performed in an open field apparatus containing two wire cages divided by a
wooden panel extending halfway down the box. The SIT consisted of a 5-minute
habituation phase and a 5-minute test phase during which the test mouse was exposed
to a stranger mouse from a different home cage. The cage placement (right or left) of
the stranger mouse was alternated between sessions. The time the test mouse spent in
the vicinity (3 cm radius) of the stranger mouse’s cage vs the time it spent in the vicinity
of the empty cage was measured with “EthoVision” (Noldus, the Netherlands) software,
using the nose point of the test mouse as a reference. Each test mouse was given a

one-hour interval between the habituation phase and the stranger mouse phase.

Splash test

Cohort 2 mice were subiject to the splash test 11 days post FMT. Mice were placed in
individual cages and sprayed with a 10% sucrose and tap water solution to promote
grooming behavior, which was quantified by latency, duration, and counts of both head

and total body grooming. Mice exhibiting depression-like behavior groom less frequently
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[26]. Mice were recorded for 5 minutes after spraying, and grooming behavior was

manually tracked with “EthoVision” (Noldus, the Netherlands) software.

LabMaster cages

Circadian activity and sucrose preference were recorded continuously from 7 to 14 days
post FMT for BD and control mice in cohort 3 using the LabMaster system (TSE
Systems, Bad Homburg, Germany) as previously described [27]. The set-up consisted
of six 42 x 26.5 x 15 cm test cages with two external infrared frames and a lid attached
to two weight transducers. The hardware sampling rate was 100 Hz at the infrared
frames and 1 Hz at the drinking and feeding sensors. The sampling interval of the
LabMaster software was 1 minute. The two weight transducers were used to measure
food and water intake. One drinking bottle was filled with water and another with a 1%
sucrose solution. To record locomotion, the two external infrared frames were placed
4.3 cm apart horizontally, with the lower frame 2.0 cm above the bottom of the cage.
The bottom infrared frame recorded horizontal locomotion (ambulatory movements) of
the mice, while the top infrared frame recorded vertical movements (rearing,
exploration). Mouse activity was measured by counts of interruptions of the light beams

of the infrared frames.

Tissue extraction
Tissue extraction was performed as described [28]. Mice were deeply anesthetized with
pentobarbital (150 mg/kg) via intraperitoneal injection (IP). Brains were dissected and

immediately frozen for 5 seconds in 2-methylbutane on dry ice. The amygdalas were
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microdissected under a stereomicroscope (Bregma -0.58 to -2.54) on a -20 °C cold
plate (Weinkauf Medizintechnik, Forchheim, Germany) [29]. RNase AWAY (Carl Roth,
Karlsruhe, Germany) was used to clean dissection instruments before and in between
uses. Microdissected brain samples were placed in micro packaging tubes with
Precellys beads (Peqglab, Erlangen, Germany) and stored at -70 °C until further
analysis. Colon contents and distal and proximal regions were frozen on dry ice and

stored at -70°C.

Microbiome analysis

Bacterial DNA was extracted from fecal contents with the QlAamp DNA Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. PCR
amplification and sequencing was performed by Novogene Europe (Cambridge, UK).
The variable V3-V4 region of the bacterial 16S rRNA gene was amplified with PCR
using oligonucleotide primers 341F: 5-CCTAYGGGRBGCASCAG and 806R:
5-GGACTACNNGGGTATCTAAT, while additionally including a molecular barcode
sequence. PCR reactions were carried out using the Phusion High-Fidelity PCR Master
Mix (New England Biolabs). The PCR products were selected by 2% agarose gel
electrophoresis. Same amount of PCR products from each sample was pooled,
end-repaired, A-tailed and further ligated with lllumina adapters. Libraries were
sequenced on a paired-end lllumina platform (NovaSeq PE250) to generate 250 bp
paired-end raw reads. Paired-end reads were assigned to samples based on their
unique barcodes and trimmed by cutting off the barcode and primer sequences.

Paired-end reads were merged using FLASH (V1.2.7) [30]. Quality filtering was
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performed according to the Qiime quality control process [31] and chimeras were
removed using UCHIME algorithm. Sequencing analyses were performed by Uparse
software (Uparse v7.0.1090) [32] and sequences with 297% similarity were assigned to
the same OTUs. Species annotation was performed by QIIME2 software using the
annotation database SILVA138. Alpha diversity was calculated for observed species.

The QIIME2 tool on the local Galaxy instance (https://galaxy.medunigraz.at/) was used

to calculate beta diversity (weighted Unifrac) and predict bacterial biological pathways

using PICRUst2.

Metabolomics

Fecal and amygdala samples collected 13 days post FMT from cohort 1 were prepared
for NMR spectroscopy measurements as previously described [33]. 50 to 100 mg of
stool or brain tissue were mixed with 200 uyl water and 400 yl methanol to inactivate and
precipitate proteins. Remaining solids were lysed using a Precellys homogenizer (Bertin
Technologies SAS, Montigny-le-Bretonneux, France), stored at -20 °C for 1 hour,
followed by centrifugation for 30 min at 10,000 x g at 4 °C. Finally, the supernatants
were lyophilized, resuspended in 500 yl NMR buffer (0.08 M Na,HPO,, 5 mM
3-(trimethylsilyl) propionic acid-2,2,3,3-d, sodium salt (TSP), 0.04 (w/v) % NaN; in D,0,
with pH adjusted to 7.4 with HCI or NaOH, respectively), and transferred into 5-mm
NMR tubes for measurement on the NMR instrument using the CPMG pulse sequence
as described. Spectra pre-processing and data analysis have been carried out using
Matlab® scripts (group of Prof. Jeremy Nicholson at Imperials College London). NMR

data were imported to Matlab® vR2014b (Mathworks, Natick, Massachusetts, USA),


https://www.zotero.org/google-docs/?XUXV4C
https://www.zotero.org/google-docs/?RWVGGd
https://galaxy.medunigraz.at/
https://www.zotero.org/google-docs/?Q2lsHg
https://doi.org/10.1101/2023.11.16.566698
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.16.566698; this version posted November 26, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

regions around the water, TSP, and remaining methanol signals excluded, aligned, and
corrected for sample metabolite dilution by probabilistic quotient normalization [34].
Reported values correspond to arbitrary units (A.U.) derived from the area under the

peak being proportional to concentration.

Quantitative polymerase chain reaction

RNA from the colon and amygdala was extracted with the RNeasy Tissue Mini Kit
(Qiagen) and RNeasy Lipid Tissue Mini Kit (Qiagen), respectively. Aliquots of 1 uyg RNA
were reverse-transcribed with the High-Capacity cONA Reverse Transcription kit
(Applied Biosystems, Foster City, CA, USA). For relative quantification of mRNA, real
time PCR was performed with the CFX384 Touch Real-Time PCR System (Biorad)
using TagMan inventoried gene expression assays for Tnf (Mm 00443258 m1), lI1b
(Mm 00434228 m1), 116 (Mm 00446190_m1), Ifng (Mm 01168134_m1), Ido1 (Mm
00492590_m1), 1110 (Mm 01288386_m1), Ccl2 (Mm 00441242_m1), Chil3 (Mm
00657889 _mH), Iba1 (Mm 00479862_g1), Cd68 (Mm 03047343 _m1), Arg1 (Mm
00475988 _m1), Cldn1 (Mm 00516701_m1), Cldn5 (Mm 00727012_s1), Tjp1 (Mm
00493699_m1), OcIn (Mm 00500912_m1), Glra1 (Mm00445061_m1), Glra2
(Mm01168376_m1), Glra3 (Mm00475507_m1), Glra4 (Mm00501674_m1), Girb
(Mm00439140_m1), Gpr158 (Mm00558878 m1) and the TagMan Gene Expression
Master Mix (Life Technologies). All samples were measured as duplicates. Actb, Gapdh
and Ppil3 were used as reference genes. Quantitative measurements of target gene
levels relative to controls were performed with the 2-AACt method using the mean value

of the control group as the calibrator [35].
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Statistics

Differences among mouse groups were assessed by Student's t-test, Mann-Whitney,
two-way ANOVA or repeated-measures ANOVA combined with Sidak post hoc analysis
where appropriate. Pearson's correlation was calculated for bacterial taxa that differed
between BD and control mice versus behavioral parameters of the EPM followed by
Bonferroni correction. Statistical analyses were performed with GraphPad Prism 9
(GraphPad Software, Inc CA, USA). Metastats was used for detecting differentially
abundant microbial features [36]. Linear discriminant analysis (LDA) Effect Size (LEfSe)
calculations implemented in Galaxy were performed to identify the predicted pathways
that differentiate FMT effects. The statistical analysis of the metabolomics data was
done using the web-based analysis platform “MetaboAnalyst”
(https://lwww.metaboanalyst.ca/, Version 5.0, last visited 11/3/2023). Statistical

significance was defined as p < 05.

Results

Compositional and functional microbiome profiles of BD and control mice

BD and control FMT mice exhibited distinct compositional and functional microbiome
profiles 10 days post FMT. Principal coordinate analysis (PCoA) of fecal 16S rRNA data
demonstrated that the gut microbiomes of BD and control mice clustered differently, as
did the microbiomes of their respective human donors (Fig. 1A). Full microbiome
engraftment did not occur, which is unsurprising given innate differences between
human and murine intestinal tracts. 16S rRNA sequencing of fecal samples showed

notable distinctions in microbiome compositions between BD and control mice (Fig. 1B).
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Compared to controls, BD mice had a significantly higher abundance of the phylum
Bacteroidota and significantly lower abundances of Akkermansia muciniphila and
Parabacteroides merdae (Fig. 1E). Alpha-rarefaction curves approached saturation for
both BD and control fecal samples, indicating sufficient sequencing depth to capture
microbiome diversity, while no difference in alpha diversity was present between BD and
control mice (Fig. 1C). Metagenomic predictions by PICRUSt2 identified differential
regulation of several metabolic pathways such as glucose-1-phosphate degradation,
S-adenosyl-L-methionine salvage |, and tetrapyrrole biosynthesis between BD and

control mice (Fig. 1D).

Assessment of emotional behavior, circadian rhythm, and anhedonia in BD

and control mice

BD-FMT mice exhibited more anxiety-like behavior and decreased sociability than mice
with control FMT, but no differences in depression-like behavior. During the EPM 10
days post FMT, BD mice spent significantly less time in the open arms (Fig. 2E) and
made significantly fewer entries to open arms (Fig. 2F). Time spent in the open arms
also positively correlated with Akkermansia muciniphila in both BD and control groups
(Fig. 2H). Traveling distance during the EPM was similar between BD and control mice
(Fig. 2G). BD mice also displayed less sociability during the SIT 10 days post FMT.
Control mice spent significantly more time in the vicinity of the stranger mouse cage
than in the vicinity of the empty cage (Fig. 2J). By contrast, BD mice did not spend a
significant amount of time exploring the stranger mouse over the empty cage (Fig. 2J).

No significant differences between groups were measured during the OFT 6 days post
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FMT for time spent in the center (Fig. 2B), number of entries to the center (Fig. 2C), or
total traveling distance (Fig. 2D). We measured no significant differences in time spent
by each group in the light and dark compartments during the LDT 11 days post FMT
(Fig. 2I). During the splash test 11 days post FMT, no significant difference in grooming
duration was recorded between groups (Fig. 2K). No significant differences in circadian
activity (Fig. 2L) or sucrose preference at any time point (Fig. 2M) were measured

between BD and control mice 7 to 13 days post FMT.

Gut and brain metabolomic profiles of BD and control mice

BD and control mice displayed significantly different gut and brain metabolomic profiles
13 days post FMT. Metabolomic analysis revealed significant up-regulation of fecal
valeric acid, fructose, glucose, and sucrose in BD mice relative to controls. Fecal
aspartic acid, capric acid, xanthine, and hypoxanthine were significantly down-regulated
in BD mice (Fig 3A). There were significantly lower levels of acetic acid and a notable,
but not statistically significant reduction of butyric acid in the feces of BD mice. Fecal
propionic and succinic acid levels were similar between BD and control groups (Fig.
3B). BD mice had significantly lower levels of fecal L-glutamic acid than control mice
(Fig. 3C). Expression levels of gut hormones Peptide YY (Pyy) and preproglucagon
(Gceg) were decreased in BD mice colons relative to controls (Fig. 3D). Given the
increased anxiety-like behavior observed in BD mice, we focused on the amygdala for
metabolomic analysis of the brain. Our results revealed significant down-regulation of
glycine, glycerol, uridine, tryptophan, pyroglutamic acid, inosine, acetic acid,

phosphorylcholine, choline, and methionine in the amygdalas of BD mice, with glycine
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being the most prominently affected. Conversely, adenosine monophosphate and

inosinic acid were significantly up-regulated in the BD group (Fig. 3E).

Cytokine, inflammatory marker, tight junction protein, and glycine receptor

subunit expression in BD and control mice

Thirteen days post FMT, BD and control mice displayed similar levels of colonic (Fig.
4A) and amygdalar (Fig. 4C) Ido-1 mRNA expression. Pro-inflammatory cytokine (Tnf,
I11b, 116, Ccl2, Ifng) and anti-inflammatory cytokine (//10) expression did not differ
significantly between groups in both the colon (Fig. 4A) and amygdala (Fig. 4C).
However, BD mice did exhibit a significant increase in amygdalar Chil3 expression
relative to controls (Fig. 4C). There were no significant differences between BD and
control mice in the expression of tight junction protein genes Cldn1, Cldn5, Tjp1, and
Ocln in both the colon (Fig. 4B) and the amygdala (Fig. 4D), nor was there differential
expression of microglial markers Iba1, Cd68, Cd86, and Arg1 (Fig. 4E). Glra4
expression was significantly increased in the brains of BD mice relative to controls, but
there were no significant differences in the expression of other glycine receptor subunits

Glra1, Glra2, Glra3, GIrb, and Gpr158 (Fig. 4F).

Discussion

Mice receiving FMT from a donor with BD exhibited altered microbiome compositions
associated with differences in behavior and fecal and brain metabolomic profiles relative
to mice with FMT from a mentally healthy control. These findings implicate the

involvement of gut-brain signaling in the physiological and behavioral changes in our
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BD-FMT mouse model and provide a promising translational framework for
understanding the mechanisms of BD.

Increased anxiety-like behavior and decreased sociability of BD mice suggest
that these behavioral features are especially affected by gut-derived signals. The
positive correlation observed between A. muciniphila and open arm visits in the EPM is
supported by previous findings that A. muciniphila relative abundance negatively
correlates with anxiety-like behavior in mice [37]. Furthermore, probiotic treatment with
A. muciniphila has been shown to reduce anxiety-like behavior, motor degeneration,
and learning memory deficits in mice [38—40]. A murine model of mania demonstrated
hyperactivity, disrupted circadian rhythm, and decreased sucrose preference [41].
However, a lack of significant differences between BD and control FMT mice in these
areas suggests that the manic and depressive symptoms of the BD donor were less
transferable to mice via FMT.

Behavioral differences between BD and control mice are possibly linked to
differential regulation of several gut and brain metabolites, short-chain fatty acids
(SCFAs), and related gut hormone signaling. Reduced A. muciniphila in BD mice
potentially lowered fecal acetic acid concentrations, since A. muciniphila produces
acetic acid through intestinal mucin degradation [42]. Acetic acid was also decreased in
the amygdala, suggesting a link to fecal acetic acid depletion. Elevated fecal valeric acid
in BD mice possibly resulted from reduced P. merdae, which can catabolize
branched-chain amino acids such as valine [43]. P. merdae also inversely correlates
with depression in humans [44]. Interestingly, increased valeric acid and decreased

acetic acid concentrations have been measured in fecal samples from children with
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autism [45], suggesting a connection between the regulation of these metabolites and
neurodevelopmental disorders. Acetate supplementation has also rescued social
deficits in an autistic mouse model, implicating decreased central acetic acid levels with
impaired social interaction in BD mice [46].

Diminished acetic and butyric acid production in BD mice possibly reduced
colonic expression of gut hormones Gcg and Pyy [47,48]. In mice, Geg encodes for
glucagon but also produces glucagon-like peptide-1 (GLP-1) [49], which is released
from intestinal cells and can cross the blood-brain barrier [50]. GLP-1 attenuated
symptoms of mania in a mouse model [51] as well as depressive symptoms in both
humans and mice by reducing neuroinflammation [52], ameliorating synaptic
dysfunction [53], and promoting neurogenesis [54]. Mice lacking Pyy expression also
exhibit increased depression-like behavior [55]. Therefore, reduced acetic and butyric
acid in BD mice may have influenced mouse behavior through changes in Pyy and Gcg
expression and consequent gut-brain signaling.

Our results also indicate metabolic differences between BD and control mice. BD
mice had elevated fecal glucose levels associated with predicted decreased
glucose-1-phosphate degradation by gut microbiota. Impaired glucose metabolism has
been observed in 50% of individuals with BD [56], and type |l diabetes mellitus and BD
are comorbid disorders [57]. Elevated sucrose and D-fructose in BD mice further
indicate disruptions in gut carbohydrate metabolism that could influence cognitive
function [58], signify neurodegeneration [59], and be related to the high comorbidity of
metabolic syndromes in BD [60,61]. Metabolic syndromes are also linked to

neuroinflammation [62], which could explain increased Chil3 (chitinase-3-like protein)
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expression in the amygdalas of BD mice. Chil3 is produced by myeloid cells in rodents
in response to neuroinflammation [63—65], and in humans, elevated serum levels of
Chil3L1 (chitinase-3-like protein 1) have been identified in BD patients [66] and
individuals with neuroinflammatory conditions [67]. However, there was no differential
expression of pro-inflammatory cytokines and glial markers in the colons and
amygdalas of BD mice. Furthermore, reduced fecal concentrations of xanthine and
hypoxanthine in BD mice, potentially via enhanced inosine 5'-phosphate degradation by
gut microbiota, indicate disrupted purine metabolism, which is possibly linked to
decreased inosine and upregulated adenosine monophosphate (AMP) and inosinic acid
(IMP) in the amygdalas of BD mice. Alterations in purine and adenosine metabolism in
the brain are associated with depression [68] and neurodegeneration [59].

An increased abundance of glutamate fermenting Bacteroides strains in BD mice
could be linked to reduced fecal L-glutamic acid [69], which potentially diminished
tetrapyrrole biosynthesis in the gut and lowered levels of the glutamic acid derivative,
pyroglutamic acid, in the amygdala. Other studies confirm that gut microbiota can
influence pyroglutamic acid levels in the brain [70]. Alterations in amygdalar
pyroglutamic acid concentrations in BD mice signify disrupted glutamate metabolism
and neurotransmission, which is associated with depression and anxiety in both
humans and mice [71,72]. In a piglet model, L-glutamic acid supplementation was also
shown to improve small intestinal architecture and influence the expression of amino
acid receptors and transporters [73], further connecting reduced fecal L-glutamic acid in

BD mice to gut-brain signaling.
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Down-regulation glycine, L-tryptophan, uridine, choline, and glycerol in the
amygdalas of BD mice further signify altered neurotransmission, neurodegeneration,
cellular membrane breakdown, and abnormalities in synaptic plasticity. Glycine
reductions are potentially linked to diminished fecal sarcosine, since sarcosine inhibits
glycine uptake by glycine-transporter 1 (GlyT1) on neighboring glial cells and can cross
the blood-brain barrier [74]. Inhibition of GlyT1 by sarcosine has even been proposed as
a treatment for both MDD [75] and schizophrenia [76]. Alterations in sarcosine and
glycine production in BD mice could be linked to up-regulation of the
S-adenosyl-L-methionine salvage | pathway in the gut. An increase in amygdalar
glycine receptor alpha 4 (Glra4) expression in BD mice is a potential compensatory
mechanism to maximize sensitivity to available glycine in the brain. Given that glycine
acts as a co-agonist at N-methyl-D-aspartate (NMDA) receptors, a decline in glycine
level could result in abnormalities in synaptic plasticity associated with BD [77]. Glycine
supplementation can ameliorate anxiety in rats [78], but elevated glycine in the brain is
associated with manic episodes [79], implicating a disrupted glycine homeostasis in BD
pathogenesis.

Tryptophan is an established player in gut-brain signaling and both BD and MDD
are associated with central and peripheral tryptophan depletion [80—82]. Activation of
indoleamine 2,3-dioxygenase (IDO) catabolizes tryptophan; however, because both
colonic and amygdalar /do-1 expression was similar between BD and control mice,
L-tryptophan depletion in the brain was unlikely due to enhanced tryptophan
catabolization by IDO. Since Bacteroidota are especially enriched in tryptophan

metabolizing strains [83,84], increased Bacteroidota in the guts of BD mice could limit
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L-tryptophan availability. Fructose malabsorption is also linked to lower serum
tryptophan concentrations [85], suggesting elevated gut fructose as a mechanism of
tryptophan depletion in BD mice. However, given that fecal L-tryptophan levels were
similar between BD and control mice, future work should evaluate disruptions in
L-tryptophan brain transportation in BD-FMT mice.

Because uridine, choline, and glycerol are involved in phospholipid biosynthesis,
their down-regulation in the amygdalas of BD mice relative to controls indicates
disrupted metabolism of cellular membranes, which is linked to the cognitive
impairment, reduced neuroplasticity and neurodegeneration associated with BD [86].
Increased Bacteroidota and up-regulated pyrimidine deoxyribonucleosides salvage in
the microbiomes of BD mice provide explanation for uridine and glycerol depletion
[87,88]. However, reduced brain choline in BD mice is likely independent of choline
regulation in the gut since fecal choline levels were similar between BD and control
mice. Additionally, there is evidence that reinstitution of uridine and choline could
mitigate depression and anxiety symptoms in mice [89,90], and uridine supplementation
has been found to significantly increase brain phosphoesters in humans [91].

Our study has several limitations. There is no proof of causality between gut
microbiome compositions and gut-brain metabolite profiles and behavior in BD mice.
Gut microbiome compositions are inconsistent amongst BD patients, with some studies
finding reduced Faecalibacterium [92] and Bacteroiodota and increased Actinobacteria
and Firmicutes in BD patients [93]. These inconsistencies are further exacerbated by
different regional diets. Additionally, venlafaxine administration was found to elicit

microbiome changes in a chronic unpredictable mild stress (CUMS) mouse model,
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however, Akkermansia depletion was still associated with depression-like behaviors
[94]. More large-scale microbiome studies of subjects with BD are necessary to fully
characterize the BD microbiome and elucidate mechanisms of gut-brain signaling.

Overall, our results demonstrate substantial physiological and behavioral
distinctions between mice receiving FMT from a donor with BD and mice receiving FMT
from a control donor. BD mice had a greater abundance of Bacteroidota and lower
abundances of P. merdae and A. muciniphila, which are associated with differential fecal
SCFA and secondary metabolite production that indicate disrupted carbohydrate
metabolism and purinergic signaling. The BD group also displayed increased
anxiety-like behaviors and decreased sociability, suggesting that these BD-related
behaviors are especially affected by gut-derived signals. Down-regulation of glycine,
uridine, choline, glycerol, and L-tryptophan in the amygdalas of BD mice further signifies
altered neurotransmission, neurodegeneration, reduced neural plasticity, and cellular
membrane breakdown linked to BD. Finally, elevated amygdalar Chil3 expression in BD
mice indicates some neuroinflammatory responses, while no significant differences in
the expression of other inflammatory markers were measured between groups.
Together, these results suggest a prominent role of gut-brain signaling in our BD-FMT
mouse model. Future research should delve deeper into the mechanisms of these
gut-brain interactions and perform replication with additional donors. Further exploration
of the therapeutic applications of modifying gut microbiota, either through FMT or

probiotic interventions, may reveal novel avenues for BD treatment.
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Fig 1. Compositional and functional microbiome profiles of female C57BL/6J mice 10
days after receiving FMT from a donor with BD or a control (Co) donor. PCoA plot of
16S rRNA gene data from feces of control donor (blue), donor with BD (orange), control
mice (purple), and BD mice (red) (PERMANOVA, p < 0.001) (A). Bar plot showing 16S
rRNA gene relative abundance of bacterial phyla in the feces of mice receiving FMT
from an individual with BD and healthy control (B). Alpha-rarefaction curves (observed
species) for both BD and control fecal samples show no differences in alpha diversity
between BD and control mice (C). Enzyme Commission (EC) number pathways
predicted by PICRUSt2 to be up-regulated in the microbiomes of BD (red) and control
(green) mice selected by Linear discriminant analysis Effect Size (LEfSe) (D). Bar plot of
fecal 16S rRNA sequencing results showing greater abundance of Bacteroidota phylum
(q =0.047) and lower abundance of Parabacteroides merdae (q = 0.034) and
Akkermansia muciniphila species (q = 0.009) in BD mice relative to controls. Significant

differences were analyzed using Metastats (E).BDn=7,Con=7.
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Fig 2. Assessment of emotional behavior, circadian rhythm, and anhedonia in 3 cohorts
of mice receiving FMT from a donor with BD or a control (Co) donor. . Experimental

timeline, OFT = open field test, EPM = elevated plus maze, LDT = light/dark box test,
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SIT = social interaction test, ST = splash test, SPT = sucrose preference test (A).
Comparison of time spent by BD and control mice in the center of open field (B),
number of entries to the center of open field (C), and total traveling distance during OFT
(D). Comparison of time spent by BD and control mice in the open arms of EPM (p =
0.0079) (E), number of entries to open arms (p = 0.043) (F), and total traveling distance
during EPM (G). Time spent in the open arms of EPM positively correlates with
Akkermansia muciniphila relative abundance for both BD and control mice (Pearson r =
0.5359, p = 0.0482) (H). Relative time spent by BD and control mice in light and dark
compartments of light/dark box (l). Total time spent in the vicinity of an empty cage vs
time spent in the vicinity of a cage with a stranger mouse for BD (p > 0.05) and control
mice (p = 0.0041) (J). Difference in grooming duration between BD and control mice
during splash test (K). Number of activity counts for BD and control mice between 7 and
14 days post FMT (L). Percent sucrose preference for BD and control mice between 7
and 14 days post FMT (M). BD n =7, Co n = 7. Data represent mean + SEM. Significant
differences between BD and control groups were analyzed using an unpaired t-test or

2-way ANOVA, *p <0.05, **p < 0.01.
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Fig 3. Metabolite and SCFA profiles of the feces and amygdalas of BD and control
mice. Volcano plot representing the metabolomic profiles of the feces of BD mice plotted
relative to control mice 13 days post FMT (A). Bar plots with relative levels of
short-chain fatty acids acetic acid (2-way ANOVA, p = 0.017), butyric acid, propionic
acid, and succinic acid in the feces of BD and control groups (B). Box plots comparing
levels of fecal L-glutamic in BD mice relative to controls (Mann-Whitney, p = 0.011). (C).
Bar plot showing expression of colonic mMRNA expression of gut hormones Pyy and Gcg
(2-way ANOVA main effect, p = 0.003) in BD and control mice (D). Volcano plot
representing the metabolomic profiles of BD mice feces plotted relative to control mice
(E). For both volcano plots, the x-axis represents the log2 fold change (log2(FC)),
indicating the magnitude of expression change. The y-axis represents the negative
logarithm of the p-value (-log10(p)), indicating the statistical significance of the change.
Metabolites with statistically significant upregulation are shown in red, while those with
significant downregulation are in blue. Non-significant changes are in gray. The dashed
horizontal line depicts the threshold for statistical significance (p <0.05).BDn=7,Con

= 7. For bar plots, data represent mean + SEM, *p<0.05, **p<0.01, "p=<0.01.
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Fig 4. Quantitative polymerase chain reaction (qQPCR) determined mRNA expression
levels of tight junction proteins, cytokines, and other inflammatory markers in BD and
control (Co) FMT mice groups. Bar plot showing that relative colonic mRNA expression
of cytokines, inflammatory markers (A), and tight junction proteins (B) were not
significantly different between BD and control mice. Bar plot showing up-regulated
MRNA expression of Chil3 in the amygdalas of BD mice relative to controls (p =
0.0047), but expression of other cytokines and inflammatory markers were not
differently regulated (C). Bar plot showing that tight junction protein expression was
similar between BD and control mice (D). Bar plot showing that amygdalar mRNA
expression levels of glial markers in BD and control mice were not significantly different
between BD and control groups (E). Bar plot showing that Glra4 expression was
significantly elevated in BD mice (p = 0.015), but other glycine receptor subunit proteins

were not differentially expressed between groups (F). BDn=7, Con =7. Data
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represent mean = SEM. Significant differences between BD and control groups were

analyzed using 2-way ANOVA, *p<0.05, **p<0.01.
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