

1 **Roles of microbiota in autoimmunity in *Arabidopsis***

2 Yu Ti Cheng^{1,2,3,*}, Caitlin A. Thireault³, Bradley C. Paasch^{1,2}, Li Zhang^{1,2,3}, Sheng Yang He^{1,2,3,*}

3

4 **Affiliation**

5 ¹Department of Biology, Duke University, Durham, NC, USA

6 ²Howard Hughes Medical Institute, Duke University, Durham, NC, USA

7 ³Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI,
8 USA

9 *Corresponding authors

10

11 **Abstract**

12 Over the past three decades, researchers have isolated plant mutants that display constitutively
13 activated defense responses in the absence of pathogen infection. These mutants are called
14 autoimmune mutants and are typically dwarf and/or bearing chlorotic/necrotic lesions. From a
15 genetic screen for *Arabidopsis* genes involved in maintaining a normal leaf microbiota, we
16 identified *TIP GROWTH DEFECTIVE 1* (*TIP1*), which encodes a S-acyltransferase, as a key
17 player in guarding leaves against abnormal microbiota level and composition under high humidity
18 conditions. The *tip1* mutant has several characteristic phenotypes of classical autoimmune mutants,
19 including a dwarf stature, displaying lesions, and having a high basal level of defense gene
20 expression. Gnotobiotic experiments revealed that the autoimmune phenotypes of the *tip1* mutant
21 are largely dependent on the presence of microbiota as axenic *tip1* plants have markedly reduced
22 autoimmune phenotypes. We found that the microbiota dependency of autoimmune phenotypes is
23 shared by several “lesion mimic”-type autoimmune mutants in *Arabidopsis*. Interestingly,
24 autoimmune phenotypes caused by mutations in *NLR* genes do not require the presence of
25 microbiota and can even be partially alleviated by microbiota. Our results therefore suggest the
26 existence of two classes of autoimmunity (microbiota-dependent vs. microbiota-independent) in
27 plants. The observed interplay between autoimmunity and microbiota in the lesion mimic class of
28 autoimmunity is reminiscent of the interactions between autoimmunity and dysbiosis in the animal
29 kingdom.

30

31 **Main**

32 In the past forty years, tremendous progress has been made in the understanding of plant immune
33 responses against pathogens¹⁻³. The plant innate immune system is comprised of both constitutive
34 physical barriers and inducible immune responses. Inducible immunity can be initiated by plasma
35 membrane-residing receptor kinases that recognize conserved microbe-associated molecular
36 patterns, resulting in a broad-spectrum basal immunity called pattern-triggered immunity (PTI).
37 Successful pathogens have evolved virulence-associated effector molecules to defeat the plant
38 immune system and/or to create a conducive microenvironment within the host tissue as two major
39 pathogenic mechanisms⁴⁻⁷. In response, plants have evolved an array of intracellular nucleotide-
40 binding leucine-rich repeat (NLR) immune receptors that recognize the presence of specific
41 pathogen effectors, leading to a more robust effector-triggered immunity (ETI) that often involved
42 hypersensitive cell death^{2,8}. Activation and mutual potentiation of PTI and ETI lead to
43 accumulation of defense hormones, including salicylic acid, and activation of defense gene
44 expression and other cellular responses^{8,9}. Activation of plant immune response is often
45 accompanied by growth inhibition, a phenomenon known as growth-defense trade-offs^{10,11}

46 In nature, however, plants spend most of their life in an environment that is occupied by
47 enormously diverse, mostly non-pathogenic (commensal) microorganisms^{12,13}. Plant-associated
48 commensal microbial community plays a vital role in influencing host growth, development, and
49 stress responses^{14,15}. However, compared to plant-pathogenic microbe interactions, less is known
50 about how plants recognize and communicate with their surrounding non-pathogenic microbial
51 communities and how plants fine tune their immune system to achieve a long-term, harmonious
52 state in the context of complex microbial communities. Only in the past decade, thanks to the
53 advent of high throughput sequencing technologies and availability of genetic mutants in model
54 systems, such as *Arabidopsis* and rice, increasing efforts are being devoted to the study of the
55 interplay between plant host genetics and associated microbial communities^{12,14,16}. Nevertheless,
56 the mechanisms of plant-microbiome interactions in terms of (i) how plants recognize, configure,
57 and maintain a homeostatic composition of their associated microbiota and (ii) how the host
58 immune system distinguishes non-self signals derived from commensal vs. pathogenic microbes
59 are still largely unclear.

60 The lifestyle of commensal bacterial microbiota in plant leaves resembles those of non-pathogenic
61 strains of phyllosphere bacterial phytopathogens: both are adapted to live in plant tissues but are
62 unable to multiply to a high population level *in planta*. Recent studies have shown that the
63 transcriptomes of commensal bacteria *in planta* share a high degree of similarity to that of a non-
64 pathogenic mutant of the phyllosphere-adapted bacterial pathogen *Pseudomonas syringae* pv.
65 *tomato* (*Pst*) DC3000^{17,18}. Furthermore, two *Arabidopsis* quadruple mutants, *min7 fls2 efr cerk1*
66 (*mfec*) and *min7 bak1 bkk1 cerk1* (*mbbc*), which are defective in pattern-triggered immunity and
67 MIN7-associated intracellular vesicle trafficking, not only fail to control the proliferation of non-
68 pathogenic mutants of *Pst* DC3000, but also unable to maintain a typical endophytic leaf
69 microbiota^{19,20}. In addition, immunity-associated reactive oxygen species (ROS) is required for
70 maintaining a homeostatic leaf microbiota as the *Arabidopsis rbohD* mutant, which is defective in
71 the generation of immunity-associated ROS, has altered leaf microbiota composition²¹. Taken
72 together, these initial studies begin to identify plant genes/pathways that are required for
73 maintaining a normal bacterial microbiota in *Arabidopsis* leaves and provide a strong link between
74 plant immune regulation and microbiota homeostasis.

75 To identify additional plant genes involved in regulating plant-microbiome interactions and
76 microbiota homeostasis, we conducted a forward genetic screen to isolate *Arabidopsis* mutants
77 that exhibit an altered response to non-pathogenic mutants of *Pst* DC3000 and endophytic leaf
78 microbiota. Characterization of the resulting mutants led to an unexpected broad connection
79 between microbiota and autoimmunity in plants.

80

81 **Results**

82 **Genetic screen to identify *Arabidopsis* mutants with altered leaf microbiota level.**

83 We previously found that *Arabidopsis* mutant plants compromised in three pattern-recognition co-
84 receptor genes, *BAK1*, *BKK1* and *CERK1*, are still capable of preventing over-proliferation of non-
85 pathogenic strain *Pst* D28E¹⁹ and endogenous leaf microbiota²⁰. We therefore conducted a forward
86 genetic screen in the *bak1-5 bkk1-1 cerk1-2* triple mutant background^{22,23} (*bbc* hereafter),
87 intending to identify genes whose functions are either independent of and/or additive to these three
88 pattern-recognition co-receptors (see Extended Data Figure 1 for the setup of the genetic screen).

89 The primary screen was carried out by flood-inoculating 3-week-old plate-grown M2 seedlings
90 with *Pst* D28E, a non-pathogenic mutant which was constructed by deleting 28 effectors of *Pst*
91 DC3000²⁴. Individual plants that showed disease-like symptoms (e.g., necrosis or chlorosis) were
92 transplanted to soil and grown for seeds. Secondary screen of putative mutants was conducted by
93 monitoring disease-like symptoms after syringe-infiltration of *Pst* D28E into leaves of 4-week-old
94 soil-grown M3 plants. We also monitored disease-like symptoms induced by natural soil-derived
95 microbiota under holoxenic conditions in a peat-based gnotobiotic system²⁵. In total, we identified
96 ten mutants with various degrees of enhanced disease-like symptoms in response to non-
97 pathogenic *Pst* D28E and/or natural soil-derived microbiota; we named them *guardian of normal*
98 *microbiota* (*grm*) mutants.

99 **Characterization of the *grm1* mutant.**

100 Next, we conducted detailed characterization of one of the identified *grm* mutants, *grm1*. When
101 grown in soil, the *grm1* mutant had a smaller stature compared to its progenitor, the *bbc* triple
102 mutant. Notably, lower leaves that were in contact or in close proximity to the soil showed mild
103 chlorosis (Fig. 1a, top panel). Previously, we found that *mfec* and *mbbc* mutant plants exhibited
104 dysbiotic endophytic leaf microbiota and leaf tissue damage when grown under high humidity, a
105 common environmental condition associated with plant disease outbreaks in nature^{19,20}. The
106 chlorotic lower leaves of the *grm1* mutant resembled those of *mfec* and *mbbc* mutant plants and
107 prompted us to investigate if *grm1* also displays dysbiotic endophytic leaf microbiota under high
108 humidity. As expected in wild type *Arabidopsis* (accession Col-0, which is the progenitor of the
109 *bbc* triple mutant), characteristic hyponastic changes in leaf morphology were induced after five
110 days of high humidity treatment (~95% relative humidity [RH]; Fig. 1a, lower panel); however,
111 high humidity was not able to cause over-proliferation of endophytic leaf microbiota and no leaf
112 chlorosis nor necrosis was observed (Fig. 1b). Similar to Col-0 plants, the *bbc* mutant also
113 maintained a low level of culturable endophytic leaf microbiota, similar to these plants under
114 ambient humidity (~50% RH). In contrast, after five days of high humidity treatment, most of the
115 *grm1* true leaves showed strong chlorosis (Fig. 1a, lower panel). Quantification of culturable
116 endophytic microbiota loads by colony counts on agar plates revealed that, compared to Col-0 and
117 the *bbc* mutant, the endophytic microbiota within leaves of *grm1* plants grown under high humidity

118 was more than three orders of magnitude higher (Fig. 1b). In addition to a drastic increase in leaf
119 endophytic microbiota, the relative abundance of leaf microbiota members in the *grm1* mutant also
120 shifted overwhelmingly to Proteobacteria (Fig. 1c, ~97% in *grm1* leaves compared to ~45-55% in
121 Col-0 and *bbc* leaves). In the *grm1* mutant, amplicon sequence variants (ASVs) in Proteobacteria
122 belong predominantly to the genus *Pseudomonas* of the class Gammaproteobacteria, while
123 *Bacillus* and *Paenibacillus* belonging to Firmicutes became nearly undetectable (Fig. 1c and
124 Extended Data Table 1). Shannon index that measures richness and evenness of a microbial
125 community composition also decreased in the *grm1* mutant, reflecting the overwhelming presence
126 of Proteobacteria (Fig. 1d).

127 **Identification of the causal mutation in the *grm1* mutant.**

128 To identify the causative mutation in the *grm1* mutant, *grm1* plants were backcrossed with its
129 progenitor, the *bbc* triple mutant, to generate a segregated F2 population. Analyzing the mapping-
130 by-sequencing data from *grm1* co-segregates revealed that the mutation was located on
131 chromosome 5 between 5Mb and 8Mb with the allele frequency of the *grm1*-like pool peaking
132 around 7Mb (Extended Data Fig. 2a; see Extended Data Table 2 for a list of mutated loci in this
133 region). Of all candidates, a G to A mutation on chromosome 5 at position 6,877,509 has the
134 strongest effect. This G to A mutation occurs at the splicing junction of the 5' end of the third
135 intron of the *TIP GROWTH DEFECTIVE 1* (*TIP1*) gene and is expected to disrupt the splicing
136 pattern, leading to a premature stop codon instead of tryptophan at position 171 (Extended Data
137 Fig. 4a). RT-PCR using primers flanking the mutation locus followed by Sanger sequencing
138 revealed that, indeed, the mutation altered the splicing pattern of the *TIP1* transcript (Extended
139 Data Fig. 2b). Transgene complementation with the full length *TIP1* gene driven by its native
140 promoter could complement *grm1* mutant phenotypes (i.e., reversion of the dwarf stature and
141 humidity-dependent dysbiotic phenotypes to those in *bbc* and wild-type Col-0), confirming the
142 causative mutation in *grm1* is in the *TIP1* gene (Extended Data Fig. 3).

143 To determine if the dysbiotic phenotypes of the *grm1* mutant (i.e., the *bbc tip1* quadruple mutant)
144 are dependent on the background *bbc* mutations, we segregated the *tip1* mutation from the *bbc*
145 triple mutations by outcrossing the *grm1* mutant with wild-type Col-0 plants and genotyping the
146 resulting F2 population (see Extended Data Table 5 for primers used to genotyping). From The
147 Arabidopsis Biological Resource Center (ABRC)²⁶, we also obtained two independent *tip1* single
148 mutant alleles (SALK_020996 and SALK_052842) carrying T-DNA insertions in the *TIP1* gene
149 (Fig. 2a). All three *tip1* single mutants were larger than the original *grm1* (*bbc tip1*) mutant, but
150 still smaller than wild type Col-0 plants (Fig. 2b). Interestingly, the humidity-dependent dysbiosis
151 phenotypes (e.g., leaf chlorosis) (Extended Data Fig. 4b) and over-proliferation of endophytic leaf
152 microbiota were still observed in all three alleles of *tip1* single mutant plants, suggesting dysbiotic
153 phenotypes observed in *grm1* do not require *bbc* triple mutations in the background (Fig. 2c). Since
154 all three mutant alleles of *tip1* behaved similarly, we used *tip1*^{W171STOP}, the single mutant allele
155 isolated from this screen, for all subsequent experiments.

156 **The *tip1* mutant has features of autoimmune mutants.**

157 We noticed that the morphological phenotypes of *grm1* and *tip1* (i.e., small statures and chlorotic
158 leaves) were reminiscent of typical autoimmune mutants, which have been isolated in the past few
159 decades. One hallmark of autoimmunity is constitutive high basal expression of immune-related
160 marker genes in the absence of pathogen attacks. We therefore analyzed two immune-related
161 molecular markers, *Pathogenesis-Related Gene 1* (*PR1*) and *flg22-Induced Receptor-like Kinase*

162 *I* (*FRK1*). Indeed, both *grm1* and *tip1* plants have heightened *PR1* and *FRK1* expression under
163 basal condition (i.e., in the absence of pathogen inoculation) (Fig. 2d and 2e). *TIP1* gene expression
164 itself was found to be induced by flg22, a flagellin-derived peptide that induces many PTI-
165 associated genes^{27,28} (Extended Data Fig. 5).

166 ***tip1*-mediated autoimmunity is distinct from *snc1*-mediated autoimmunity.**

167 We were intrigued by the morphological phenotypes and heightened immune-related marker gene
168 expression of the *tip1* mutant as they point to a connection between dysbiosis and autoimmunity.
169 However, it is not known (i) if all autoimmune mutants possess a defect in maintaining microbiota
170 homeostasis and/or (ii) if their autoimmune phenotype is dependent on microbiota. To investigate
171 on a possible connection between altered microbiome and autoimmunity, we first examined
172 microbiota-related phenotypes of a widely studied *Arabidopsis* autoimmune mutant, *snc1*, which
173 contains a gain-of-function E552K mutation that results in an elevated level of the SNC1^{E552K}
174 protein^{29,30}.

175 As expected, *snc1* mutant plants had a dwarf morphology (Fig. 4a, top panel), constitutively
176 elevated immune-related marker gene expression (Fig. 3a and 3b) and enhanced resistance to the
177 virulent pathogen *Pst* DC3000 (Fig. 3c). However, *snc1* and *tip1* mutant plants behaved differently
178 in response to non-pathogenic bacteria. As shown in Figure 3d, *tip1* single mutant plants were
179 more susceptible to the non-pathogenic *Pst* *ΔhrcC* mutant strain (*Pst* DC3000 defective in type III
180 secretion system³¹), whereas *snc1* plants were marginally more resistant to the *Pst* *ΔhrcC* mutant
181 compared to wild-type Col-0 plants.

182 Furthermore, while most *tip1* leaves showed severe chlorotic lesions when shifted to high humidity
183 condition for five days, *snc1* mutant plants were morphologically similar under either ambient or
184 high humidity conditions (Fig. 4a). In addition, enumeration of leaf endophytic microbiota showed
185 that *snc1* plants carried similar levels of culturable bacteria inside their leaves as that of Col-0
186 plants, whereas *tip1* plants had more than 1,000-fold increase of endophytic bacterial load
187 compared to Col-0 after higher humidity shift (Fig. 4b). The differences in leaf endophytic
188 microbiota between *tip1* and *snc1* plants were not just in quantity but also in composition. Profiling
189 bacterial communities inside Col-0, *tip1* and *snc1* leaves using 16S rDNA amplicon sequencing
190 revealed that, compared to Col-0, *tip1* plants had substantially reduced leaf endophytic microbiota
191 diversity (Fig. 4c) with overwhelming relative abundance of Gammaproteobacteria (Fig. 4d and
192 Extended Data Table 3). In contrast, *snc1* plants had a diverse leaf endophytic microbiota
193 composition, similar to that of Col-0 plants (Fig. 4c and 4d). Finally, when grown in aseptic agar
194 plates, *snc1* plants continued to exhibit heightened immune-related marker gene expression in the
195 absence of microbes, whereas *PR1* and *FRK1* expression in *tip1* mutant plants greatly subsided to
196 close to the low levels observed in wild type Col-0 plants (Fig. 4e and 4f).

197 **A broad role of microbiota in “lesion-mimic” autoimmunity in *Arabidopsis*.**

198 The interesting contrast in microbiota-dependency for autoimmune phenotypes between the *tip1*
199 vs. *snc1* mutants prompted us to further investigate if there is a broad connection between
200 microbiota-dependency and autoimmunity in other reported *Arabidopsis* autoimmune mutants^{32,33}
201 (see Extended Data Table 4 for list of mutants and stock numbers). Based on if they possessed
202 tissue lesions when grew in potting soil under standard growth chamber conditions, we found that
203 the *tip1*-like autoimmune mutant category includes (i) the *aca4 aca11* double mutant, which
204 harbors mutations on two vacuolar calcium ion pumps ACA4 and ACA11³⁴, (ii) the *acd5* mutant,
205 which carries mutation in a ceramide kinase^{35,36} and (iii) the *lsd1* mutant, which has a defective

206 zinc-finger protein in *Arabidopsis*³⁷. The *snc1*-like autoimmune mutant category consists of (i) the
207 *chs3* mutant, which carries a gain-of-function mutation in a TIR-type NLR immune receptor³⁸, (ii)
208 *dnd1*³⁹ and (iii) *dnd2*⁴⁰ mutants, which carry mutations in two cyclic nucleotide-gated cation
209 channels. Mutant plants in the *tip1*-like category showed severe leaf lesions (Fig. 5a; top panel)
210 and harboured high levels of endophytic leaf microbiota under high humidity (Fig. 5b), whereas
211 mutant plants in the *snc1*-like category had no visible lesions (Fig. 5a; bottom panel) and carried
212 low levels of endophytic leaf microbiota similar to wild-type Col-0 plants (Fig. 5c).

213 To further characterize a possible microbiota dependency of autoimmune phenotypes in these two
214 categories of mutants, we grew mutant plants in the absence (axenic) or presence (holoxenic) of a
215 natural soil-derived microbiota using GnotoPots, a peat-based gnotobiotic system as recently
216 described²⁵. Growing under the holoxenic condition, lesion-mimic mutants showed various
217 degrees of chlorosis and lesions (Fig. 6a, top panel, and Extended Data Fig. 7a) and heightened
218 immune-related marker gene expression (Fig. 6c; right panel). However, in the absence of
219 microbiota, these autoimmune mutants showed neither chlorosis nor lesions (Fig. 6a, bottom panel)
220 and their immune marker gene expression also subsided to a low basal level, with exception of
221 *lsd1* (Fig. 6c, left panel). In contrast, mutants in the *snc1*-like category have high basal *PRI*
222 expression even in the axenic condition. For example, the *chs3* mutant showed heightened *PRI*
223 expression regardless of presence or absence of microbiota (Fig. 6d), behaving similarly to the
224 *snc1* mutant which shows microbiota-independent autoimmunity. Furthermore, compared to
225 microbiota-induced lesions and immune-related gene expression in lesion mimic mutants, the
226 autoimmune dwarf phenotype of *chs3* mutants was noticeably alleviated in the presence of
227 microbiota (Fig. 6b), again similar to the *snc1* mutant. In *dnd1* and *dnd2* mutants, *PRI* expression
228 was elevated to a higher level when they were grown in the presence of microbiota compared to
229 when grown in the axenic condition (Fig. 6d), behaving intermediately between lesion mimic-type
230 and *snc1*-type. Together, these results suggest that there are at least two types of autoimmunity in
231 plants, one depends on microbiota for autoimmune phenotypes, as exemplified by the *tip1* mutant,
232 and the other is independent of microbiota, as exemplified by the *snc1* mutant. *dnd1* and *dnd2*
233 mutants share with *snc1*-type in that they do not show lesions in the presence of microbiota and
234 have a high basal defense gene expression in the absence of microbiota, although defense gene
235 expression is further enhanced in the presence of microbiota.

236 **Microbiota dependency of autoimmunity in natural *Arabidopsis* accessions**

237 Autoimmunity has been observed in natural *Arabidopsis* populations/accessions⁴¹. For example,
238 *A. thaliana* accessions Est-1 and C24 have constitutively elevated defense gene expression and
239 enhanced disease resistance toward the virulent pathogen *Pst* DC3000 when grown in potting
240 soil^{42,43}. We were therefore interested in knowing if autoimmune phenotypes of natural accessions
241 are dependent on microbiota. When grown in potting soil under ambient humidity, Est-1 showed
242 chlorosis and lesions on older leaves, whereas C24 had curly leaves and small stature but did not
243 show chlorosis or lesions (Extended Data Fig. 6). However, like the *tip1* mutant, Est-1 leaves
244 showed stronger leaf lesions under high humidity (Fig. 7a) and harboured a higher level of
245 endophytic bacterial microbiota compared to Col-0 plants (Fig. 7b). In contrast, C24 plants did not
246 show chlorosis or necrosis under ambient (Extended Data Fig. 6) or high humidity (Fig. 7a);
247 additionally, similarly to the *snc1* mutant, C24 plants maintained similar levels of endophytic leaf
248 bacterial microbiota compared to Col-0 (Fig. 7b). The phenotypic resemblance between *tip1* and
249 Est-1 and between *snc1* and C24 prompted us to investigate if microbiota is required for the
250 autoimmune phenotypes in Est-1 and C24. As shown in Figure 7c, under holoxenic condition, Est-

251 1 shows lesions on leaves, albeit to a lesser extent compared to Est-1 grown under the conventional
252 potting soil growth condition (Extended Data Fig. 6 and Extended Data Fig. 7b). Interestingly, like
253 the *tip1*, Est-1 plants did not show leaf lesions under the axenic condition. Furthermore, like the *tip1*
254 mutant, the heightened *PR1* expression in Est-1 subsided to a low level when grown in the axenic
255 condition (Fig. 7d; left panel). Conversely, like the *snc1* mutant, C24 plants had elevated *PR1*
256 expression regardless of growth in the presence or absence of a microbial community (Fig. 7d).
257 Another similarity between the *snc1* mutant and C24, which is in contrast to the *tip1* mutant, is the
258 alleviation of their stunted growth morphology in the presence of microbiota (Fig. 6b and 7c).

259

260 Discussion

261 A healthy microbiome can play a vital role in initiating, training, and maintaining host immune
262 homeostasis. In return, the host immune system can fine tune its immune strength to accommodate
263 commensal/symbiotic microbes and to prepare for a robust immune response against pathogenic
264 microbe invasion. As plants spend most of their life interacting with a vast number of commensal
265 microbes and occasionally encountering pathogens, understanding the intricate interplays between
266 plant immunity and the endophytic commensal microbiota is important for explaining how plants
267 dial their plant immune system to maximize the effectiveness of plant immune responses to nurture
268 beneficial microbes and/or fight against pathogens. In this study, we conducted a forward genetic
269 screen aimed at identifying *Arabidopsis* mutants that cannot maintain a normal leaf microbiota.
270 Among putative mutants isolated was *grm1*, which we characterized in detail.

271 The *grm1* mutant contains a missense mutation in the *TIP1* gene that encodes a S-acyltransferase.
272 The first mutant allele of *TIP1* was isolated in a genetic screen for mutants that had defects in root
273 hair development⁴⁴. The causal mutation was later mapped to *At5g20350*⁴⁵, which encodes one of
274 the 23 DHHC-containing S-acyltransferases and is the only ankyrin-repeat containing DHHC S-
275 acyltransferase in *Arabidopsis*. Both the *Arabidopsis* TIP1 protein and human HIP14 (huntingtin-
276 interacting protein 14; zDHHC17) have been shown to be functional orthologs of yeast Akr1p^{45,46}.
277 Akr1p and zDHHC17 are involved in vesicle trafficking. For example, acylation of yeast Yck2
278 protein by Akr1p is required for proper localization of Yck2 to the plasma membrane via secretory
279 vesicles and Yck2p's membrane association is essential for its biological function in yeast
280 morphogenesis⁴⁷.

281 Prior to this study, however, the connection between TIP1 and leaf microbiota homeostasis was
282 not known. A comprehensive *Arabidopsis* acylome using multiple tissue types identified close to
283 1,100 putative S-acylated proteins⁴⁸. Thirty seven percent of identified proteins overlapped with
284 those identified in a previous study which used *Arabidopsis* root cell culture⁴⁹. Of note, many of
285 the identified proteins have been demonstrated to be associated with microbe perception and plant
286 immune responses⁴⁹. However, it is not known if S-acylation is required for their function and, so
287 far, none of them are confirmed to be TIP1-specific substrates. In light of our findings on a genetic
288 connection between *TIP1* and maintenance of a normal leaf microbiota, future research is needed
289 to identify specific TIP1 substrate(s) that is required for microbiota homeostasis in *Arabidopsis*
290 leaves.

291 A key finding in this study is that not only the *tip* mutants are unable to control the proliferation
292 or maintain a normal composition of a leaf microbiota, but they also display dysbiosis-associated
293 tissue damages and autoimmunity in the presence of microbiota (Fig. 4). The microbiota-
294 dependent autoimmune phenotypes of the *tip1* mutant led us to broadly examine a potential

295 connection between microbiota and previously reported “autoimmune” mutants in *Arabidopsis*.
296 Based on how they respond to the existence of microbiota, it appears that autoimmune mutants in
297 *Arabidopsis* can be divided into at least two classes (Extended Data Fig. 8). One class, exemplified
298 by the *tip1* mutant, exhibits microbiome-dependent autoimmunity. The autoimmune phenotypes
299 in this class largely disappeared when grown in the axenic conditions. Given that these mutants
300 also have an increased microbiota load, this result suggests that the autoimmune phenotypes in this
301 class of mutants are a consequence of harbouring an overabundant microbial community. The
302 other class of autoimmunity is independent of microbiota and is represented by the *snc1* mutant.
303 The autoimmune phenotypes of this class do not require the presence of microbiota. i.e., they have
304 small statures and high *PR1* expression regardless of presence or absence of microbial
305 communities. In fact, the presence of microbiota alleviates the stunted growth morphology of *snc1*
306 and *chs3* (Fig. 6b), which is in striking contrast to those of the *tip1* class (Fig. 6a).

307 We find it interesting that microbiota-dependent and -independent autoimmunity can also be
308 observed in *Arabidopsis* natural accessions. Although autoimmunity is often associated with
309 fitness trade-offs at the individual plant level^{10,11}, the presence of heightened basal immunity in
310 natural accessions suggests a fitness advantage at the population level⁴³. For example, if a
311 devastating disease spreads through a largely susceptible *Arabidopsis* population, accessions like
312 C24 and Est-1 may be able to survive and reproduce to avoid extinction of the entire population.
313 The microbiota-dependent and -independent expression of autoimmunity in Est-1 vs. C24, as
314 observed in our study (Fig. 7), may reflect different paths by which the two types of autoimmunity
315 have convergently evolved in natural populations under different abiotic and biotic pressures.
316 Future research may uncover other natural accessions that show a continuum range of autoimmune
317 phenotypes in terms of microbiota-dependency, as observed for the *dnd1* and *dnd2* mutants, which
318 exhibit microbiota- amplification of heightened basal defense gene expression (Fig. 6d).

319 Overall, results from this study begin to illustrate conceptual parallels in microbiota interactions
320 with plants and animals and may have broad implications in understanding host-microbiota
321 interactions in general. In mammalian-microbiota interactions, for example, dysbiotic
322 shifting/reducing diversity in microbiome composition is often associated with inflammation and
323 dysregulated immune responses that fail to distinguish self from non-self, which are characteristics
324 of autoimmune disorders⁵⁰⁻⁵². The similarities in autoimmune symptoms between *Arabidopsis tip1*
325 and mammalian inflammatory autoimmunity are notable that they include a dysbiotic microbial
326 community, tissue lesions, and dysregulated immune responses. The most renowned substrate of
327 zDHHC17, the human functional homologue of *Arabidopsis* TIP1, is huntingtin (htt)^{46,53}. In light
328 of the connection between *tip1* mutation and autoimmunity in *Arabidopsis*, it would be interesting
329 for future research to examine if zDHHC17 mutations are associated with dysbiosis and/or if
330 dysbiosis is involved in Huntington's disease development. The advance in biochemistry studies
331 of zDHHC17⁵⁴⁻⁵⁶ and the more easily amenable mutant studies at the whole organism level in
332 *Arabidopsis* should facilitate further understanding of a possibly broad role of DHHC S-
333 acyltransferases in microbiome homeostasis and immunity across the kingdoms of life.

334
335

336 **Methods**

337 **Plant materials and growth condition**

338 All seeds were surface-sterilized using 15% diluted bleach (containing final concentration of 1.2%
339 active ingredient sodium hypochlorite [NaOCl]) before being sown onto potting soil. All plants
340 were grown under a 12h day/12h night regimen with 100 μ E light intensity and ~50% relative
341 humidity, unless otherwise indicated. See Extended Data Table 4 for a complete list of *Arabidopsis*
342 mutants and accessions used in this study.

343 For peat-based gnotobiotic experiments, plants were grown in GnotoPots²⁵. Nutrients were
344 supplemented with buffered half-strength Linsmaier and Skoog liquid media (0.5x LS; Caisson
345 Labs LSP03). Soil for natural microbiota inoculation was harvested from a miscanthus field plot
346 at Michigan State University (42.716989, -84.462711; microbiota input for holoxenic condition).
347 Holoxenic (Holo) plants were inoculated with soil slurry (10g soil/L of 0.5x LS), whereas axenic
348 (Ax) plants were inoculated with 0.5x LS liquid medium.

349 **Genetic screen**

350 Roughly 30,000 *Arabidopsis bak1-5 bkk1-1 cerk1-2 (bbc)* seeds were mutagenized using 0.2%
351 ethyl methanesulfonate (EMS). Mutagenized M1 seeds were sown on soil and allowed to grow to
352 set seeds. Seeds from two to three M1 plants were pooled and approximately 1,700 pools were
353 collected. This EMS population was estimated to cover the *Arabidopsis* genome more than 10
354 times. The primary screen was conducted by seedling flood-inoculation assay⁵⁷. In brief, roughly
355 fifty M2 seeds from each pool were sown onto 0.5x LS agar plates followed by flooding 3-week-
356 old seedlings with 1×10^8 CFU/mL *Pst* D28E (suspended in 0.25mM MgCl₂ and 0.015% Silwet L-
357 77) for 4 minutes. After 4 minutes, inoculum was removed, and plates were returned to Percival
358 chambers for disease symptom development. Mutants showing signs of chlorosis and/or necrosis
359 were transplanted to potting soil and transferred to a growth chamber to collect M3 seeds.
360 Secondary screen was conducted by monitoring symptoms after either syringe-infiltration of *Pst*
361 D28E to 4-week-old soil-grown M3 plants or after growth in holoxenic condition in the FlowPot
362 gnotobiotic plant growth system²⁵.

363 **Mutation identification using mapping-by-sequencing approach**

364 To identify the causative mutation in the *grm1* mutant, a mapping-by-sequencing population was
365 generated by backcrossing the *grm1* mutant with the *bbc* mutant. All four F1 plants showed *bbc*-
366 like morphology suggesting that the mutant trait is recessive. F1 plants were selfed to produce F2
367 populations. Of 674 F2 plants screened, 633 had *bbc*-like morphology and 41 were *grm1*-like. This
368 ratio deviates from the 3:1 single nuclear gene inheritance pattern. However, mapping-by-
369 sequencing data does not support the idea that the mutant phenotype in *grm1* plants was caused by
370 two or more unlinked loci as the allele frequency only peaks at around 7Mb on chromosome 5
371 (Extended Data Fig. 2a); the G to A mutation in the *TIP1* (*At5g20350*) gene is tightly associated
372 with the *grm1* phenotype (Extended Data Fig. 2 and Extended Data Table 2). A literature search
373 found that, interestingly, a similar genetic inheritance pattern deviation was observed in the
374 characterization of the first mutant allele of *TIP1* (*tip1-1*⁴⁴). The authors suggested that “deficiency
375 in the number of homozygous *tip1* mutant seeds” as a potential cause of such inheritance ratio
376 deviation.

377

378 **Genetic complementation of the *grm1* mutant**

379 High fidelity PCR was performed using Col-0 genomic DNA as template and with a sense primer
380 covering roughly 2kb upstream of the *At5g20350* start codon and an anti-sense primer roughly 1kb
381 downstream of the stop codon. Cloned PCR product was inserted into pDONR207 entry vector
382 and verified using Sanger sequencing. Recombination reaction was conducted using verified entry
383 clone and pMDC123 destination vector to create the *TIP1* genomic clone driven by the *TIP1* native
384 promoter. The construct was transformed into the *grm1* mutant plants via floral dipping method⁵⁸
385 using *Agrobacterium tumefaciens* GV3101 as the vehicle strain. See Extended Data Table 5 for
386 the primer sequences used in this study.

387 **Quantification of endophytic leaf bacterial microbiota**

388 Four-week-old potting soil-grown plants were sprayed with distilled water and fully covered with
389 a clear dome to maintain high humidity (~95% RH) for 5 days (or 7 days for natural *Arabidopsis*
390 accessions). After high humidity treatment, 1-3 leaves from each plant were surface sterilized with
391 4% bleach (0.33% active ingredient NaOCl) for one minute followed by two rinses with sterile
392 water. Surface-sterilized leaves were blotted dry using paper towels and weighted. Sterile water
393 was added to leaf samples, which were homogenized using TissueLyser II (QIAGEN) for 2 x 45
394 seconds at 30 Hz. Homogenized samples were serial-diluted and spotted onto R-2A plates (Sigma-
395 Aldrich Cat. No. 17209) supplemented with cycloheximide (15 mg/L) and 0.5% MeOH to
396 enumerate culturable colonies.

397 **Profiling microbial composition using 16S rDNA amplicon sequencing**

398 For this experiment, all consumables and kits came from the same lot to avoid any background
399 contamination or variations. Seeds of indicated *Arabidopsis* genotypes were surface sterilized
400 using 15% bleach (1.2% active ingredient NaOCl) and washed twice using autoclaved water before
401 sowing onto potting soil. Plants were grown in growth chambers. Four-week-old plants were
402 sprayed with distilled water and kept at ≥95% relative humidity for five days. One to two leaves
403 per plant were harvested, surface-sterilized using 4% bleach (0.33% active ingredient NaOCl) for
404 one minute and followed by two washes using autoclaved Milli-Q water. Excess water on leaf
405 surfaces was blotted dry, put into Safe-Lock Eppendorf tubes containing 3-mm zirconium beads
406 (Glen Mills Inc), snap froze in liquid nitrogen and stored at -80 °C.

407 Total DNA (host and microbes) was extracted using DNeasy PowerSoil Pro Kit (Qiagen Cat. No.
408 47014) following the manufacturer's protocol. Extracted DNA was used as template for PCR
409 amplification of the v5/v6 region of 16S rRNA gene using 799F and 1193R primers (See Extended
410 Data Table 5 for the sequence of primers) and high fidelity AccuPrime Taq DNA Polymerase
411 (Invitrogen Cat. No. 12346086). Amplified products were run in 1% agarose gels to separate
412 bacterial and chloroplast 16S rDNA amplicons (~400bp) from the mitochondrial 18S amplicon
413 (~750bp). DNA in the ~400 bp band was recovered using the Zymoclean Gel DNA Recovery Kit
414 (Zymo Research D4008). Concentration of recovered DNA was measured using the Quant-iT
415 PicoGreen dsDNA Assay Kits (Invitrogen P7589) and normalized to 3-8 ng/µL for sample
416 submission. Library preparation and sequencing using MiSeq platform (2 × 250 bp paired-end
417 format) was conducted by the Genomic Core Facility at Michigan State University.

418 **16S rDNA amplicon data processing**

419 Raw Illumina data for 16S rDNA amplicon were processing as described previously²⁰ using
420 QIIME2 version 2022.2⁵⁹. In brief, primer sequences were removed using Cutadapt⁶⁰ followed by

421 filtering, denoising and creating an ASV table by DADA2⁶¹. Taxonomic assignment of each ASV
422 was performed using a Naïve Bayes classifier⁶² pre-trained on the SILVA 16S rRNA gene
423 reference database^{63,64} (release 138) formatted for QIIME using RESCRIPT⁶⁵. Unassigned
424 sequences and sequences annotated as mitochondria and chloroplast were removed. Diversity
425 analyses were performed within QIIME2. Samples were rarified to 1952 reads for calculating
426 diversity metrics. The entire sequence analysis workflow is available on GitHub
427 (<https://github.com/BradCP/Roles-of-microbiota-in-autoimmunity-in-Arabidopsis>).

428 **Bacterial infection assays**

429 Four-week-old soil-grown plants were infiltrated with either *Pst* DC3000 at 1 to 2 x 10⁵ CFU/mL
430 or *Pst* *ΔhrcC* at 2 to 3 x 10⁶ CFU/mL. After infiltration, plants were returned to growth chambers
431 and kept at high humidity (~95% RH) for disease progression. Samples were harvested 3 days post
432 inoculation (dpi) for *Pst* DC3000 or 5 dpi for *Pst* *ΔhrcC*. To determine bacterial population in
433 leaves, leaf-discs were collected and ground in autoclaved Milli-Q water using a TissueLyser II
434 (QIAGEN; 45 seconds at 30 Hz). Serial dilutions of the ground tissue were spotted onto low salt
435 Luria Bertani (LB) plates (10 g/L Tryptone, 5 g/L Yeast Extract and 5 g/L NaCl; pH 7.0) with
436 appropriate antibiotics. Colony forming units (CFUs) per cm² were determined for each sample.

437 **RT-qPCR analysis gene expression**

438 For gene expression analysis, plant tissues at the indicated conditions were harvested, snap frozen
439 in liquid N₂ and stored at -80°C until further processing.

440 Total RNA was extracted from plant tissues using TRIzol Reagent (Thermo Fisher Cat. No.
441 15596026) according to the manufacturer's instructions. cDNA synthesis was accomplished in 10
442 µL volume with SuperScript IV VILO Master Mix (Thermo Fisher Cat. No. 11756050) according
443 to the manufacturer's instructions with 1 µg total RNA as input. Upon reverse transcription, the
444 product was diluted 5-fold using TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA). qPCR was
445 performed in a 10 µL reaction volume containing 5 µL SYBR Green PCR master mix (Thermo
446 Fisher Cat. No. 4309155), 500 nM of each primer, and 1 µL of template cDNA using a
447 QuantStudio 3 real-tame PCR system (Applied Biosystems). *PP2AA3* was used for normalization.
448 The primer sets used to quantify gene expression in this study are listed in Extended Data Table 5.

449

450 **Data availability**

451 Raw Illumina data for 16S rDNA amplicon sequences for the *grm1* mutant and related controls
452 are available in the Sequence Read Archive database (SRA) under BioProject PRJNA934331,
453 accession numbers SAMN33271678 to SAMN33271728. Raw Illumina data for 16S rDNA
454 amplicon sequences for Col-0, *tip1* and *snc1* are available in the SRA database under BioProject
455 PRJNA934350, accession numbers SAMN33272493 to SAMN33272548.

456

457 **Code availability**

458 There is no custom code generated for this study.

459

460

461 **References**

462

463 1 Staskawicz, B. J., Ausubel, F. M., Baker, B. J., Ellis, J. G. & Jones, J. D. Molecular
464 genetics of plant disease resistance. *Science* **268**, 661-667 (1995).
465 <https://doi.org/10.1126/science.7732374>

466 2 Jones, J. D. & Dangl, J. L. The plant immune system. *Nature* **444**, 323-329 (2006).
467 <https://doi.org/10.1038/nature05286>

468 3 Ngou, B. P. M., Ding, P. & Jones, J. D. G. Thirty years of resistance: Zig-zag through the
469 plant immune system. *Plant Cell* **34**, 1447-1478 (2022).
470 <https://doi.org/10.1093/plcell/koac041>

471 4 Lewis, J. D., Guttman, D. S. & Desveaux, D. The targeting of plant cellular systems by
472 injected type III effector proteins. *Semin Cell Dev Biol* **20**, 1055-1063 (2009).
473 <https://doi.org/10.1016/j.semcdb.2009.06.003>

474 5 Dou, D. & Zhou, J. M. Phytopathogen effectors subverting host immunity: different foes,
475 similar battleground. *Cell Host Microbe* **12**, 484-495 (2012).
476 <https://doi.org/10.1016/j.chom.2012.09.003>

477 6 Toruno, T. Y., Stergiopoulos, I. & Coaker, G. Plant-Pathogen Effectors: Cellular Probes
478 Interfering with Plant Defenses in Spatial and Temporal Manners. *Annu Rev Phytopathol*
479 **54**, 419-441 (2016). <https://doi.org/10.1146/annurev-phyto-080615-100204>

480 7 Xin, X. F., Kvitko, B. & He, S. Y. *Pseudomonas syringae*: what it takes to be a pathogen.
481 *Nat Rev Microbiol* **16**, 316-328 (2018). <https://doi.org/10.1038/nrmicro.2018.17>

482 8 Zhou, J. M. & Zhang, Y. Plant Immunity: Danger Perception and Signaling. *Cell* **181**,
483 978-989 (2020). <https://doi.org/10.1016/j.cell.2020.04.028>

484 9 Yuan, M., Ngou, B. P. M., Ding, P. & Xin, X. F. PTI-ETI crosstalk: an integrative view
485 of plant immunity. *Curr Opin Plant Biol* **62**, 102030 (2021).
486 <https://doi.org/10.1016/j.pbi.2021.102030>

487 10 Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth-defense tradeoffs in plants: a
488 balancing act to optimize fitness. *Mol Plant* **7**, 1267-1287 (2014).
489 <https://doi.org/10.1093/mp/ssu049>

490 11 He, Z., Webster, S. & He, S. Y. Growth-defense trade-offs in plants. *Curr Biol* **32**, R634-
491 R639 (2022). <https://doi.org/10.1016/j.cub.2022.04.070>

492 12 Muller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The Plant Microbiota: Systems-Level
493 Insights and Perspectives. *Annu Rev Genet* **50**, 211-234 (2016).
494 <https://doi.org/10.1146/annurev-genet-120215-034952>

495 13 Wang, N. R. & Haney, C. H. Harnessing the genetic potential of the plant microbiome.
496 *The Biochemist* **42**, 20-25 (2020).

497 14 Bulgarelli, D., Schlaepi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert,
498 P. Structure and functions of the bacterial microbiota of plants. *Annu Rev Plant Biol* **64**,
499 807-838 (2013). <https://doi.org/10.1146/annurev-arplant-050312-120106>

500 15 Paasch, B. C. & He, S. Y. Toward understanding microbiota homeostasis in the plant
501 kingdom. *PLoS Pathog* **17**, e1009472 (2021).
502 <https://doi.org/10.1371/journal.ppat.1009472>

503 16 Hacquard, S., Spaepen, S., Garrido-Oter, R. & Schulze-Lefert, P. Interplay Between
504 Innate Immunity and the Plant Microbiota. *Annu Rev Phytopathol* **55**, 565-589 (2017).
505 <https://doi.org/10.1146/annurev-phyto-080516-035623>

506 17 Nobori, T. *et al.* Dissecting the cotranscriptome landscape of plants and their microbiota.
507 *EMBO Rep*, e55380 (2022). <https://doi.org/10.15252/embr.202255380>

508 18 Velasquez, A. C., Huguet-Tapia, J. C. & He, S. Y. Shared in planta population and
509 transcriptomic features of nonpathogenic members of endophytic phyllosphere
510 microbiota. *Proc Natl Acad Sci U S A* **119**, e2114460119 (2022).
511 <https://doi.org/10.1073/pnas.2114460119>

512 19 Xin, X. F. *et al.* Bacteria establish an aqueous living space in plants crucial for virulence.
513 *Nature* **539**, 524-529 (2016). <https://doi.org/10.1038/nature20166>

514 20 Chen, T. *et al.* A plant genetic network for preventing dysbiosis in the phyllosphere.
515 *Nature* **580**, 653-657 (2020). <https://doi.org/10.1038/s41586-020-2185-0>

516 21 Pfeilmeier, S. *et al.* The plant NADPH oxidase RBOHD is required for microbiota
517 homeostasis in leaves. *Nat Microbiol* **6**, 852-864 (2021). <https://doi.org/10.1038/s41564-021-00929-5>

519 22 Gimenez-Ibanez, S. *et al.* AvrPtoB targets the LysM receptor kinase CERK1 to promote
520 bacterial virulence on plants. *Curr Biol* **19**, 423-429 (2009).
521 <https://doi.org/10.1016/j.cub.2009.01.054>

522 23 Schwessinger, B. *et al.* Phosphorylation-dependent differential regulation of plant
523 growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1.
524 *PLoS Genet* **7**, e1002046 (2011). <https://doi.org/10.1371/journal.pgen.1002046>

525 24 Cunnac, S. *et al.* Genetic disassembly and combinatorial reassembly identify a minimal
526 functional repertoire of type III effectors in *Pseudomonas syringae*. *Proc Natl Acad Sci U
527 S A* **108**, 2975-2980 (2011). <https://doi.org/10.1073/pnas.1013031108>

528 25 Kremer, J. M. *et al.* Peat-based gnotobiotic plant growth systems for *Arabidopsis*
529 microbiome research. *Nat Protoc* **16**, 2450-2470 (2021). <https://doi.org/10.1038/s41596-021-00504-6>

531 26 Alonso, J. M. *et al.* Genome-wide insertional mutagenesis of *Arabidopsis thaliana*.
532 *Science* **301**, 653-657 (2003). <https://doi.org/10.1126/science.1086391>

533 27 Gomez-Gomez, L., Felix, G. & Boller, T. A single locus determines sensitivity to
534 bacterial flagellin in *Arabidopsis thaliana*. *Plant J* **18**, 277-284 (1999).
535 <https://doi.org/10.1046/j.1365-313x.1999.00451.x>

536 28 Boudsocq, M. *et al.* Differential innate immune signalling via Ca(2+) sensor protein
537 kinases. *Nature* **464**, 418-422 (2010). <https://doi.org/10.1038/nature08794>

538 29 Zhang, Y., Goritschnig, S., Dong, X. & Li, X. A gain-of-function mutation in a plant
539 disease resistance gene leads to constitutive activation of downstream signal transduction
540 pathways in suppressor of npr1-1, constitutive 1. *Plant Cell* **15**, 2636-2646 (2003).
541 <https://doi.org/10.1105/tpc.015842>

542 30 Cheng, Y. T. *et al.* Stability of plant immune-receptor resistance proteins is controlled by
543 SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. *Proc Natl Acad Sci U S A*
544 **108**, 14694-14699 (2011). <https://doi.org/10.1073/pnas.1105685108>

545 31 Wei, W. *et al.* The gene coding for the Hrp pilus structural protein is required for type III
546 secretion of Hrp and Avr proteins in *Pseudomonas syringae* pv. tomato. *Proc Natl Acad
547 Sci U S A* **97**, 2247-2252 (2000). <https://doi.org/10.1073/pnas.040570097>

548 32 van Wersch, R., Li, X. & Zhang, Y. Mighty Dwarfs: *Arabidopsis* Autoimmune Mutants
549 and Their Usages in Genetic Dissection of Plant Immunity. *Front Plant Sci* **7**, 1717
550 (2016). <https://doi.org/10.3389/fpls.2016.01717>

551 33 Bruggeman, Q., Raynaud, C., Benhamed, M. & Delarue, M. To die or not to die? Lessons
552 from lesion mimic mutants. *Front Plant Sci* **6**, 24 (2015).
553 <https://doi.org/10.3389/fpls.2015.00024>

554 34 Boursiac, Y. *et al.* Disruption of the vacuolar calcium-ATPases in *Arabidopsis* results in
555 the activation of a salicylic acid-dependent programmed cell death pathway. *Plant
556 Physiol* **154**, 1158-1171 (2010). <https://doi.org/10.1104/pp.110.159038>

557 35 Liang, H. *et al.* Ceramides modulate programmed cell death in plants. *Genes Dev* **17**,
558 2636-2641 (2003). <https://doi.org/10.1101/gad.1140503>

559 36 Zeng, H. Y. *et al.* The immune components ENHANCED DISEASE SUSCEPTIBILITY
560 1 and PHYTOALEXIN DEFICIENT 4 are required for cell death caused by
561 overaccumulation of ceramides in *Arabidopsis*. *Plant J* **107**, 1447-1465 (2021).
562 <https://doi.org/10.1111/tpj.15393>

563 37 Dietrich, R. A., Richberg, M. H., Schmidt, R., Dean, C. & Dangl, J. L. A novel zinc
564 finger protein is encoded by the *Arabidopsis* LSD1 gene and functions as a negative
565 regulator of plant cell death. *Cell* **88**, 685-694 (1997). [https://doi.org/10.1016/s0092-8674\(00\)81911-x](https://doi.org/10.1016/s0092-
566 8674(00)81911-x)

567 38 Yang, H. *et al.* A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates
568 growth, cell death and freezing tolerance in a temperature-dependent manner in

569 570 Arabidopsis. *Plant J* **63**, 283-296 (2010). <https://doi.org/10.1111/j.1365-313X.2010.04241.x>

571 39 Clough, S. J. *et al.* The Arabidopsis dnd1 "defense, no death" gene encodes a mutated
572 cyclic nucleotide-gated ion channel. *Proc Natl Acad Sci U S A* **97**, 9323-9328 (2000).
573 <https://doi.org/10.1073/pnas.150005697>

574 40 Jurkowski, G. I. *et al.* Arabidopsis DND2, a second cyclic nucleotide-gated ion channel
575 gene for which mutation causes the "defense, no death" phenotype. *Mol Plant Microbe
576 Interact* **17**, 511-520 (2004). <https://doi.org/10.1094/MPMI.2004.17.5.511>

577 41 Velasquez, A. C., Oney, M., Huot, B., Xu, S. & He, S. Y. Diverse mechanisms of
578 resistance to *Pseudomonas syringae* in a thousand natural accessions of Arabidopsis
579 *thaliana*. *New Phytol* **214**, 1673-1687 (2017). <https://doi.org/10.1111/nph.14517>

580 42 Ton, J., Pieterse, C. M. & Van Loon, L. C. Identification of a Locus in Arabidopsis
581 Controlling Both the Expression of Rhizobacteria-Mediated Induced Systemic Resistance
582 (ISR) and Basal Resistance Against *Pseudomonas syringae* pv. *tomato*. *Mol Plant
583 Microbe Interact* **12**, 911-918 (1999). <https://doi.org/10.1094/MPMI.1999.12.10.911>

584 43 Todesco, M. *et al.* Natural allelic variation underlying a major fitness trade-off in
585 Arabidopsis thaliana. *Nature* **465**, 632-636 (2010). <https://doi.org/10.1038/nature09083>

586 44 Schiefelbein, J., Galway, M., Masucci, J. & Ford, S. Pollen tube and root-hair tip growth
587 is disrupted in a mutant of Arabidopsis thaliana. *Plant Physiol* **103**, 979-985 (1993).
588 <https://doi.org/10.1104/pp.103.3.979>

589 45 Hemsley, P. A., Kemp, A. C. & Grierson, C. S. The TIP GROWTH DEFECTIVE1 S-
590 acyl transferase regulates plant cell growth in Arabidopsis. *Plant Cell* **17**, 2554-2563
591 (2005). <https://doi.org/10.1105/tpc.105.031237>

592 46 Singaraja, R. R. *et al.* HIP14, a novel ankyrin domain-containing protein, links huntingtin
593 to intracellular trafficking and endocytosis. *Hum Mol Genet* **11**, 2815-2828 (2002).
594 <https://doi.org/10.1093/hmg/11.23.2815>

595 47 Babu, P., Deschenes, R. J. & Robinson, L. C. Akr1p-dependent palmitoylation of Yck2p
596 yeast casein kinase 1 is necessary and sufficient for plasma membrane targeting. *J Biol
597 Chem* **279**, 27138-27147 (2004). <https://doi.org/10.1074/jbc.M403071200>

598 48 Kumar, M., Carr, P. & Turner, S. R. An atlas of Arabidopsis protein S-acylation reveals
599 its widespread role in plant cell organization and function. *Nat Plants* **8**, 670-681 (2022).
600 <https://doi.org/10.1038/s41477-022-01164-4>

601 49 Hemsley, P. A., Weimar, T., Lilley, K. S., Dupree, P. & Grierson, C. S. A proteomic
602 approach identifies many novel palmitoylated proteins in Arabidopsis. *New Phytol* **197**,
603 805-814 (2013). <https://doi.org/10.1111/nph.12077>

604 50 Choi, S. C. *et al.* Gut microbiota dysbiosis and altered tryptophan catabolism contribute
605 to autoimmunity in lupus-susceptible mice. *Sci Transl Med* **12** (2020).
606 <https://doi.org/10.1126/scitranslmed.aax2220>

607 51 Cox, L. M. *et al.* Gut Microbiome in Progressive Multiple Sclerosis. *Ann Neurol* **89**,
608 1195-1211 (2021). <https://doi.org/10.1002/ana.26084>

609 52 Chriswell, M. E. *et al.* Clonal IgA and IgG autoantibodies from individuals at risk for
610 rheumatoid arthritis identify an arthritogenic strain of *Subdoligranulum*. *Sci Transl Med*
611 **14**, eabn5166 (2022). <https://doi.org/10.1126/scitranslmed.abn5166>

612 53 Yanai, A. *et al.* Palmitoylation of huntingtin by HIP14 is essential for its trafficking and
613 function. *Nat Neurosci* **9**, 824-831 (2006). <https://doi.org/10.1038/nn1702>

614 54 Lemonidis, K., Sanchez-Perez, M. C. & Chamberlain, L. H. Identification of a Novel
615 Sequence Motif Recognized by the Ankyrin Repeat Domain of zDHHC17/13 S-
616 Acyltransferases. *J Biol Chem* **290**, 21939-21950 (2015).
617 <https://doi.org/10.1074/jbc.M115.657668>

618 55 Lemonidis, K., MacLeod, R., Baillie, G. S. & Chamberlain, L. H. Peptide array-based
619 screening reveals a large number of proteins interacting with the ankyrin-repeat domain
620 of the zDHHC17 S-acyltransferase. *J Biol Chem* **292**, 17190-17202 (2017).
621 <https://doi.org/10.1074/jbc.M117.799650>

622 56 Verardi, R., Kim, J. S., Ghirlando, R. & Banerjee, A. Structural Basis for Substrate
623 Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase.
624 *Structure* **25**, 1337-1347 e1336 (2017). <https://doi.org/10.1016/j.str.2017.06.018>

625 57 Ishiga, Y., Ishiga, T., Uppalapati, S. R. & Mysore, K. S. Arabidopsis seedling flood-
626 inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions.
627 *Plant Methods* **7**, 32 (2011). <https://doi.org/10.1186/1746-4811-7-32>

628 58 Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated
629 transformation of *Arabidopsis thaliana*. *Plant J* **16**, 735-743 (1998).
630 <https://doi.org/10.1046/j.1365-313x.1998.00343.x>

631 59 Bolyen, E. *et al.* Reproducible, interactive, scalable and extensible microbiome data
632 science using QIIME 2. *Nat Biotechnol* **37**, 852-857 (2019).
633 <https://doi.org/10.1038/s41587-019-0209-9>

634 60 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
635 *EMBnet. journal* **17**, 10-12 (2011).

636 61 Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon
637 data. *Nat Methods* **13**, 581-583 (2016). <https://doi.org/10.1038/nmeth.3869>

638 62 Mohammad, N. S., Nazli, R., Zafar, H. & Fatima, S. Effects of lipid based Multiple
639 Micronutrients Supplement on the birth outcome of underweight pre-eclamptic women:

640 A randomized clinical trial. *Pak J Med Sci* **38**, 219-226 (2022).
641 <https://doi.org/10.12669/pjms.38.1.4396>

642 63 Yilmaz, P. *et al.* The SILVA and "All-species Living Tree Project (LTP)" taxonomic
643 frameworks. *Nucleic Acids Res* **42**, D643-648 (2014). <https://doi.org/10.1093/nar/gkt1209>

644 64 Quast, C. *et al.* The SILVA ribosomal RNA gene database project: improved data
645 processing and web-based tools. *Nucleic Acids Res* **41**, D590-596 (2013).
646 <https://doi.org/10.1093/nar/gks1219>

647 65 Robeson, M. S., 2nd *et al.* RESCRIPt: Reproducible sequence taxonomy reference
648 database management. *PLoS Comput Biol* **17**, e1009581 (2021).
649 <https://doi.org/10.1371/journal.pcbi.1009581>

650

651

652

653 **Acknowledgements**

654 We thank Dr. Xin Li for kindly providing us *snc1* seeds. We thank Michigan State University
655 (MSU) Growth Chamber Facility, MSU Genomics Core Facility and Duke Phytotron for technical
656 assistance. This work was supported by the Natural Sciences and Engineering Research Council
657 of Canada (Y.T.C.) and United States National Institutes of Health (1R01AI155441; to S.Y.H.).
658 S.Y.H. is an Investigator at Howard Hughes Medical Institute.

659

660 **Author information**

661 Authors and Affiliations

662 Department of Biology, Duke University, Durham, NC, USA

663 Yu Ti Cheng, Bradley C. Paasch, Li Zhang, and Sheng Yang He

664

665 Howard Hughes Medical Institute, Duke University, Durham, NC, USA

666 Yu Ti Cheng, Bradley C. Paasch, Li Zhang, and Sheng Yang He

667

668 Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI,
669 USA

670 Yu Ti Cheng, Caitlin A. Thireault, Li Zhang, Sheng Yang He

671

672 Contributions

673 Y.T.C. and S.Y.H. conceptualized and designed the project.

674 Y.T.C. led and conducted most of the experimental work.

675 C.A.T. generated EMS-mutagenized population of *Arabidopsis bbc* mutant.

676 C.A.T. and L.Z. carried out genetic screens and characterization of *grm* mutants.

677 B.C.P. contributed materials for gene expression analysis.

678 Y.T.C. and B.C.P. performed data analysis of the 16S rDNA amplicon sequencing.

679 Y.T.C and S.Y.H. wrote the manuscript with input from all authors.

680

681 Corresponding authors

682 Yu Ti Cheng (yuti.cheng@duke.edu)

683 Sheng Yang He (shengyang.he@duke.edu)

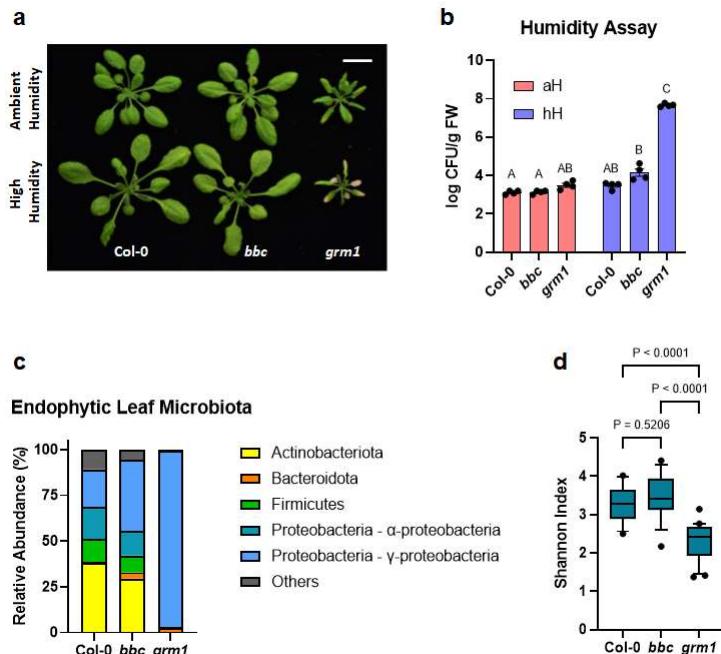
684

685

686

687 **Ethics declarations**

688 Competing interests


689 The authors declare no competing interests.

690

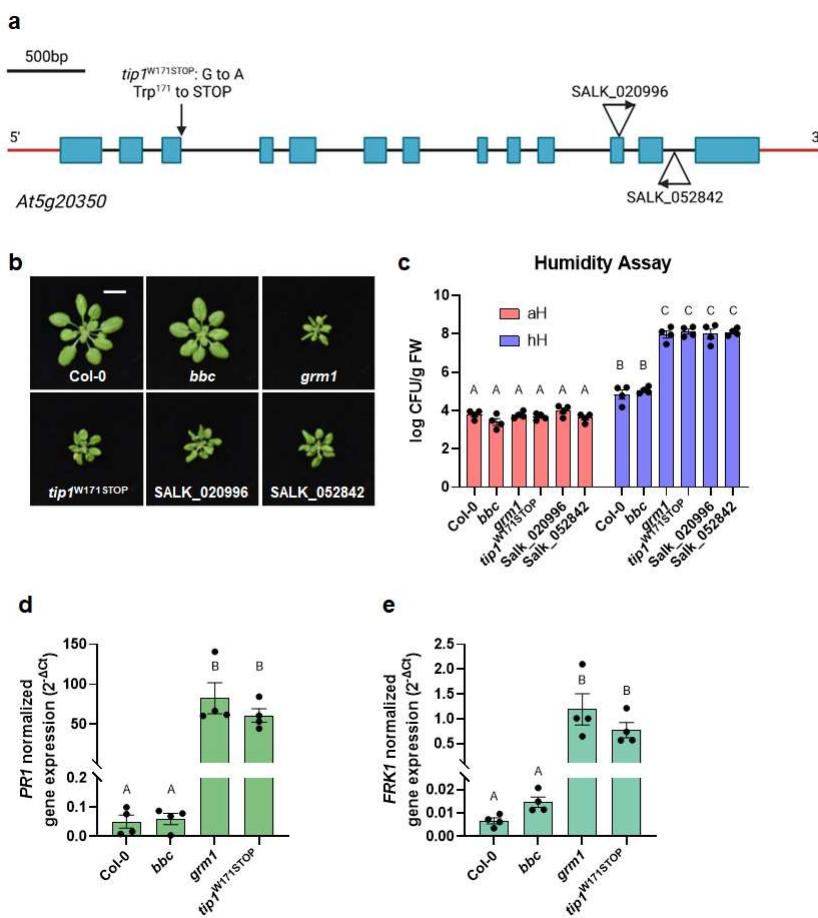
691

692 **FIGURES AND FIGURE LEGENDS**

693

694

695


696

697 **Figure 1. The appearance and leaf microbiota phenotypes of the *grm1* mutant.**

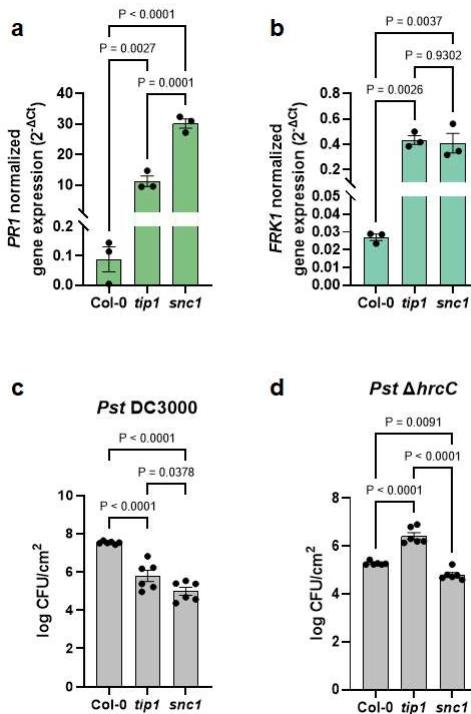
698 **a**, Top panel, four-week-old soil-grown Col-0, *bbc* and *grm1* plants under ambient humidity (~50%
699 RH) for five days (basal condition, controls). Bottom panel, four-week-old soil-grown plants
700 shifted to high humidity (~95% RH) for five days. Images were taken on day five of the treatments.
701 Scale bar equals 2 cm. **b**, Population sizes of endophytic leaf microbiota after five days of indicated
702 humidity conditions. aH = ambient humidity (~50% RH; basal condition, controls); hH = high
703 humidity (~95% RH). Each column represents bacterial titer as log-transformed colony forming
704 units (CFU) per gram of fresh weight (FW). Data are displayed as mean \pm SEM (n=4 biological
705 replicates; each biological replicate contains 1-3 leaves from one plant). Different letters represent
706 significant differences (p < 0.05, two-way ANOVA with Tukey's HSD test). Experiment was
707 independently performed three times with similar results. **c**, Relative abundance of endophytic leaf
708 bacteria at the phylum level and at the class level for Proteobacteria. **d**, Shannon indexes of
709 endophytic leaf bacteria based on 16S rDNA amplicon sequence profiling of indicated genotypes.
710 The center lines of the box plot represent means, the box edges are the 75th and 25th percentiles,
711 whiskers extend to 10-90 percentiles, and dots are outliers.

712

713

714

715


716

717 **Figure 2. Characterization of *tip1* single mutant plants.**

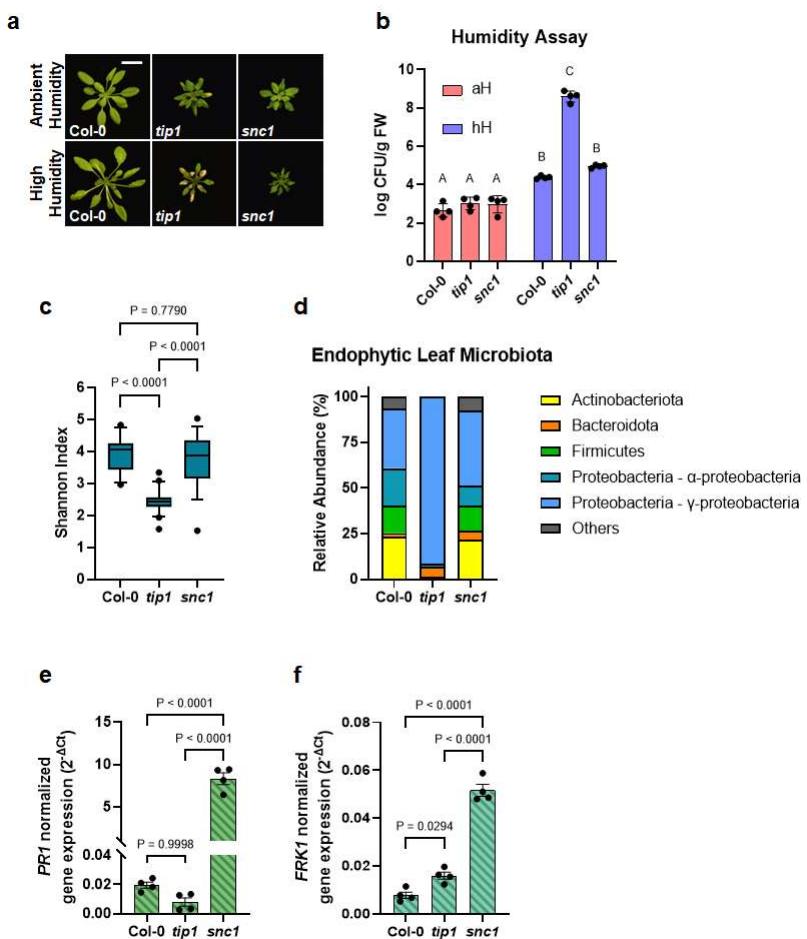
718 **a**, A schematic diagram showing various mutant alleles in the *TIP1* gene. *tip1*^{W171STOP} is the allele
719 isolated from this study which contains a G to A mutation at the splicing junction that is expected
720 to cause a pre-mature STOP codon at amino acid residue Trp¹⁷¹ in the ankyrin-repeat domain.
721 SALK_020996 and SALK_052842 are T-DNA insertion alleles obtained from ABRC. Created
722 with BioRender.com. **b**, Images of four-week-old, soil-grown Col-0, *bbc*, *grm1* and *tip1* single
723 mutant plants. Scale bar equals 2 cm. **c**, Population sizes of endophytic leaf microbiota after five
724 days under humidity conditions indicated. aH = ambient humidity (~50% RH; basal condition,
725 controls); hH = high humidity (~95% RH). Results represent the mean values \pm SEM (n=4
726 biological replicates; each biological replicate contains 1-3 leaves from one plant). Different letters
727 represent a significant difference ($p < 0.05$, two-way ANOVA with Tukey's HSD test).
728 Experiment was independently performed three times with similar results. **d,e**, Expression levels
729 of *PR1* (d) and *FRK1* (e) genes in four-week-old, soil-grown Col-0, *bbc*, *grm1* and *tip1* plants.
730 *PP2AA3* expression was used for normalization. Results represent the mean values \pm SEM of four
731 biological replicates. Each biological replicate is a pool of three plants. Different letters represent

732 a significant difference ($p < 0.05$, one-way ANOVA with Tukey's HSD test). Experiment was
733 independently performed twice with similar results.
734

735

736

737


738

739 **Figure 3. The autoimmune phenotypes of *tip1* and *snc1* mutants.**

740 **a,b,** Expression level of *PR1* (a) and *FRK1* (b) genes in four-week-old, soil-grown Col-0, *tip1* and
741 *snc1* plants. *PP2AA3* was used for normalization. Results represent the mean values \pm SEM of
742 three biological replicates. Each biological replicate is a pool of three plants. Statistical analysis
743 was performed using one-way ANOVA with Tukey's HSD test. Experiment was independently
744 performed twice with similar results. **c,d,** Total bacterial populations in Col-0, *tip1* and *snc1* leaves
745 three days after *Pst* DC3000 (c) or five days after *Pst* Δ hrcC (d) infiltration. Humidity was kept at
746 \sim 95% throughout the duration of the disease assay. Each column represents bacterial titer as log-
747 transformed colony forming units (CFU) per cm² and is the mean of six biological replicates; each
748 biological replicate contains leaf discs from infiltrated leaves from one plant; total of six plants
749 were infiltrated. Error bars indicate SEM. Statistical analysis was performed using one-way
750 ANOVA with Tukey's HSD test. Experiment was independently performed three times with
751 similar results.

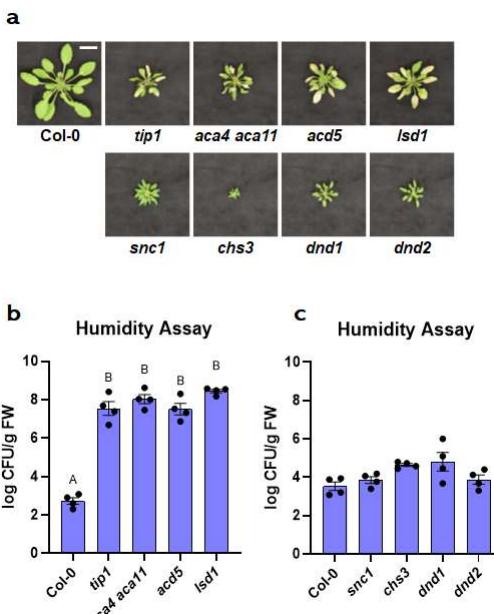
752

753

754

755

756


757 **Figure 4. The distinct autoimmune phenotypes of *tip1* and *snc1* mutants.**

758 **a**, Top panel, four-week-old, soil-grown Col-0, *tip1* and *snc1* plants under ambient humidity (~50%
759 RH) for five days (basal condition, controls). Bottom panel, four-week-old, soil-grown plants
760 shifted to high humidity (~95% RH) for five days. Images were taken on day five of the treatments.
761 Scale bar equals 2 cm. **b**, Population sizes of endophytic leaf microbiota after five days of plant
762 growth under humidity conditions indicated. aH = ambient humidity (~50% RH; basal condition,
763 controls); hH = high humidity (~95% RH). Results represent the mean values \pm SEM of four
764 biological replicates; each biological replicate contains 1-2 leaves from one plant. Different letters
765 represent a significant difference ($p < 0.05$, two-way ANOVA with Tukey's HSD test).
766 Experiment was independently performed three times with similar results. **c,d**, Shannon indexes
767 (c) and relative abundance (d) of endophytic bacterial microbiota at the phylum level and at class
768 level for Proteobacteria of in Col-0, *tip1* and *snc1* leaves based on 16S rDNA amplicon sequence
769 profiling. The center lines of the box plot represent means, the box edges are the 75th and 25th
770 percentiles, whiskers extend to 10-90 percentiles, and dots are outliers. **e,f**, Expression level of
771 *PP2AA3*

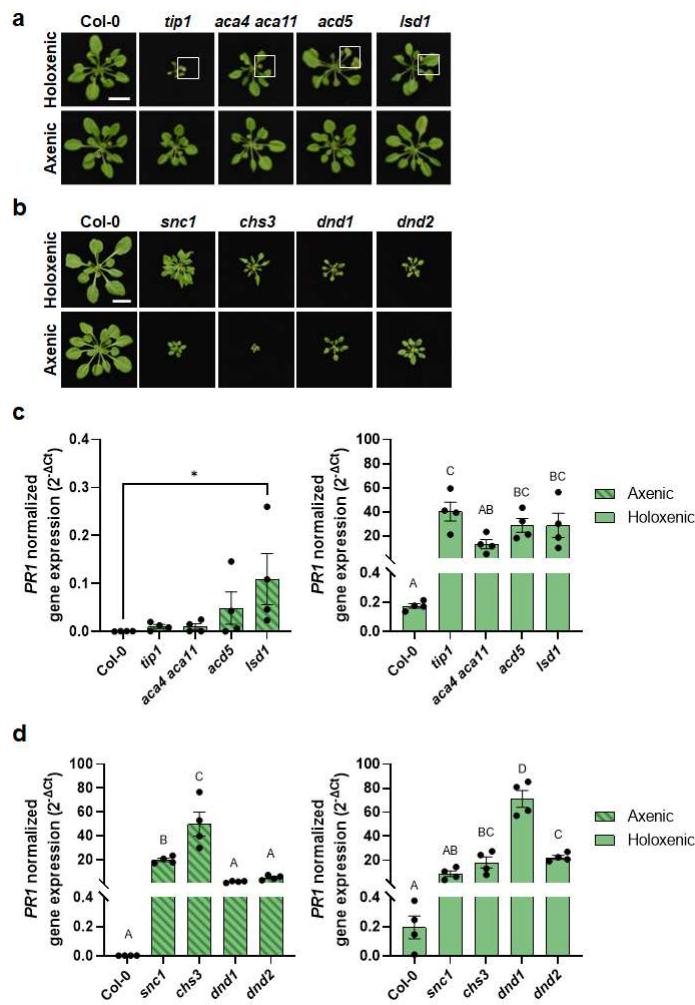
772 expression was used for normalization. Results represent the mean values \pm SEM of four biological
773 replicates. Each biological replicate is a pool of two seedlings. Statistical analysis by one-way
774 ANOVA with Tukey's HSD test. Experiment was independently performed twice with similar
775 results.

776

777

778

779


780

781 **Figure 5. The appearance and leaf microbiota phenotypes of *Arabidopsis* autoimmune**
782 **mutants.**

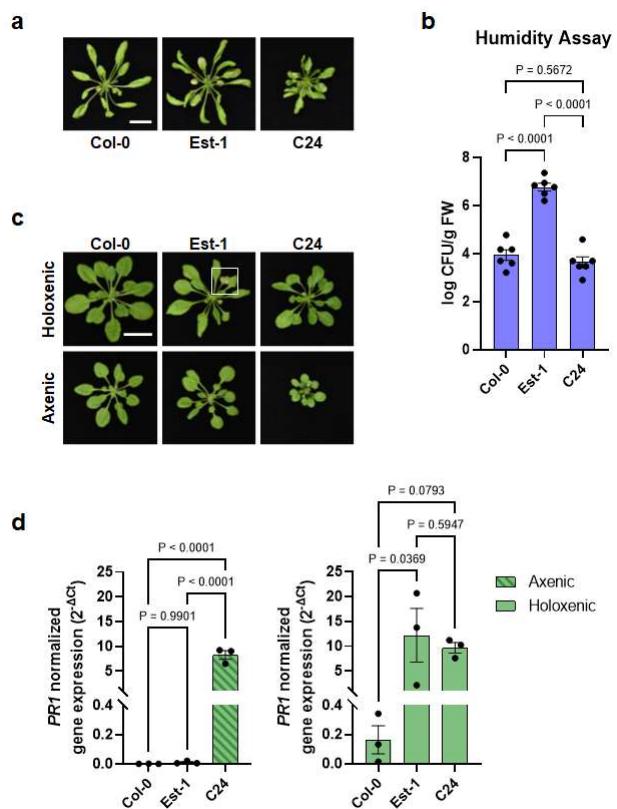
783 **a**, Images of four-week-old, soil-grown *Arabidopsis* autoimmune mutants exposed to high
784 humidity (~95% RH) for five days. Top panel, Col-0, *tip1* and three previously identified “lesion-
785 mimic” autoimmune mutants; bottom panel, *snc1* and three previously identified autoimmune
786 mutants that showed no visible lesions. Scale bar equals 2 cm. **b**, Population sizes of endophytic
787 leaf microbiota after five days of plant growth under high humidity condition (~95% RH) in *tip1*
788 and three previously identified “lesion-mimic” autoimmune mutants. **c**, Population sizes of
789 endophytic leaf microbiota after five days of plant growth under high humidity in *snc1* and three
790 previously identified autoimmune mutants with no visible lesions. Results represent the mean
791 values \pm SEM of four biological replicates; each biological replicate contains 1-3 leaves from one
792 plant. Different letters represent a significant difference ($p < 0.05$, one-way ANOVA with Tukey’s
793 HSD test). Experiment was independently performed three times with similar results.

794

795

796

797


798

799 **Figure 6. Microbiota dependency for autoimmunity in *Arabidopsis* autoimmune mutants.**

800 **a**, Five-week-old Col-0, *tip1* and three previously identified lesion-mimic autoimmune mutants
801 grown in GnotoPots under holoxenic (top panel) or axenic (lower panel) conditions. Scale bar
802 equals 2 cm. Zoomed in images (white squares) on leaf lesions are shown in Extended Data Figure
803 7a. **b**, Five-week-old Col-0, *snc1* and three previously identified autoimmune mutants that showed
804 no visible lesions were grown in GnotoPots under holoxenic (upper panel) or axenic (lower panel)
805 conditions. Scale bar equals 2 cm. **c,d**, *PR1* expression in *tip1* and three previously identified
806 lesion-mimic autoimmune mutants (c) and *snc1* and three autoimmune mutants (d) grown in
807 GnotoPots under axenic (left; with diagonal stripe pattern) or holoxenic (right) conditions. Results
808 represent the mean values \pm SEM of four biological replicates. Each biological replicate is a pool
809 of two plants. Different letters and “*” represent a significant difference ($p < 0.05$, one-way
810 ANOVA). Experiment was independently performed twice with similar results.

811

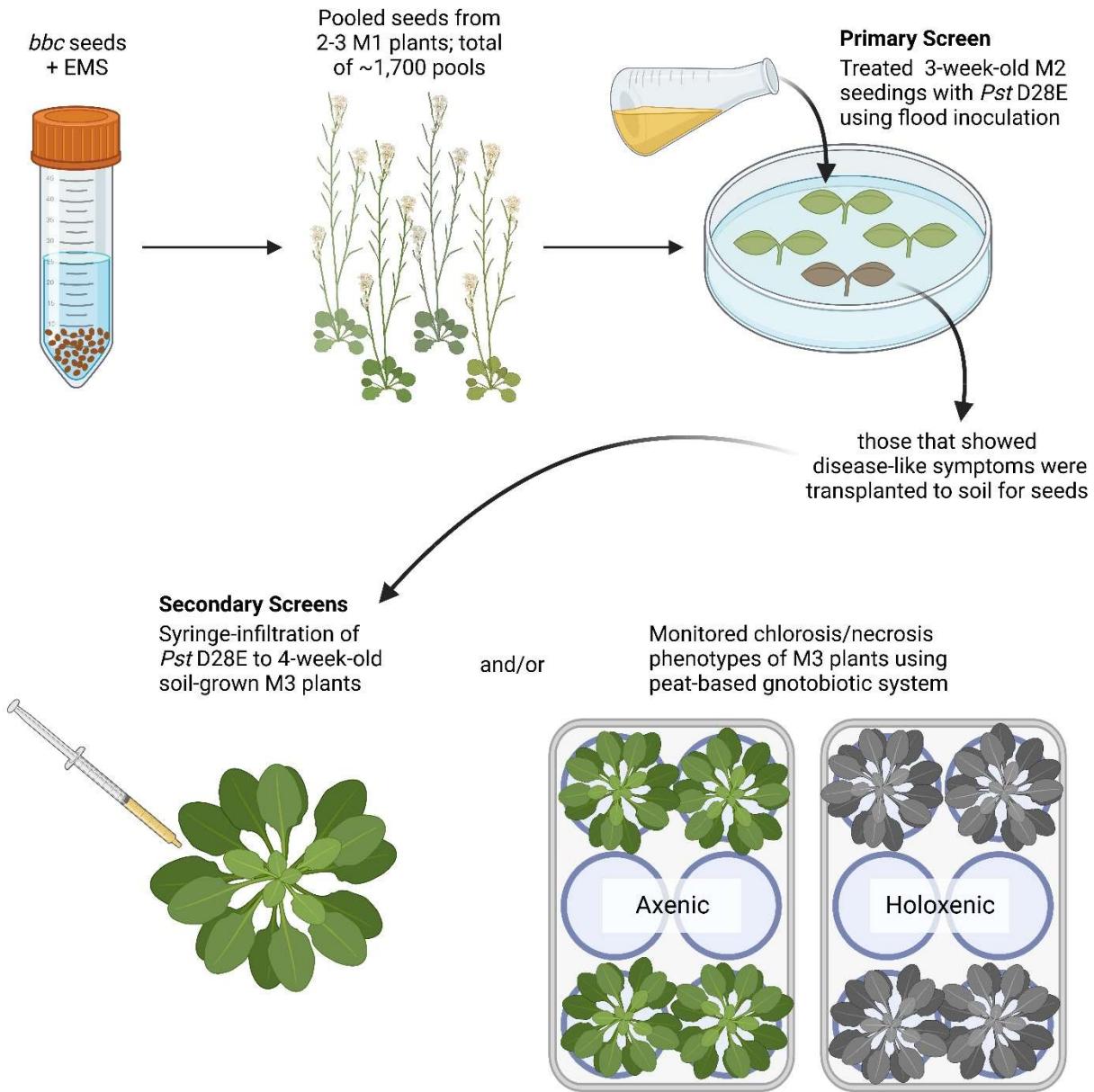
812

813

814

815

816 **Figure 7. Microbiota dependency for autoimmunity in *Arabidopsis* natural accessions.**


817 **a**, Images of five-week-old, potting soil-grown *Arabidopsis* accessions (Col-0, Est-1 and C24) exposed to high humidity (~95% RH) for seven days. Scale bar equals 2 cm. **b**, Population sizes of leaf endophytic microbiota after seven days of plant growth under high humidity condition (~95% RH). Results represent the mean values \pm SEM of six plants. Statistical analysis was performed using one-way ANOVA with Tukey's HSD test. Experiment was independently performed three times with similar results. **c**, Five-week-old *Arabidopsis* accessions grown using GnotoPots under holoxenic (upper panel) or axenic (lower panel) conditions. Scale bar equals 2 cm. Zoomed in image (white square) on Est-1 leaf lesions is shown in Extended Data Figure 7b. **d**, *PR1* expression in *Arabidopsis* accessions grown in GnotoPots under axenic (left; with diagonal stripe pattern) or holoxenic (right) conditions. Results represent the mean values \pm SEM of three biological replicates. Each biological replicate is a pool of two plants. Statistical analysis by one-way ANOVA with Tukey's HSD test. Experiment was independently performed twice with similar results.

830

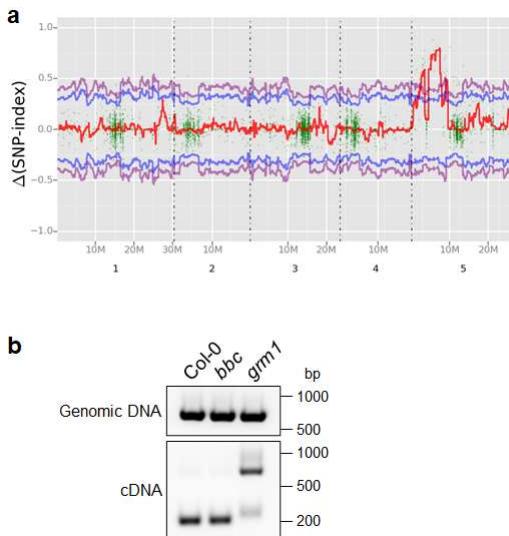
831

1 EXTENDED DATA FIGURES AND LEGENDS

2

3

4


5

6 **Extended Data Figure 1. A schematic diagram of the genetic screen workflow.**

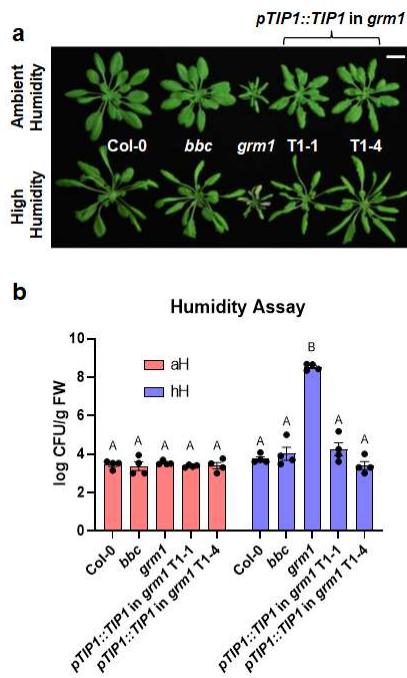
7 See Methods for detailed description of the genetic screen. Created with BioRender.com.

8

9

10

11


12

13 **Extended Data Figure 2. Mapping-by-sequencing to identify the causative mutation in the**
14 ***grm1* mutant.**

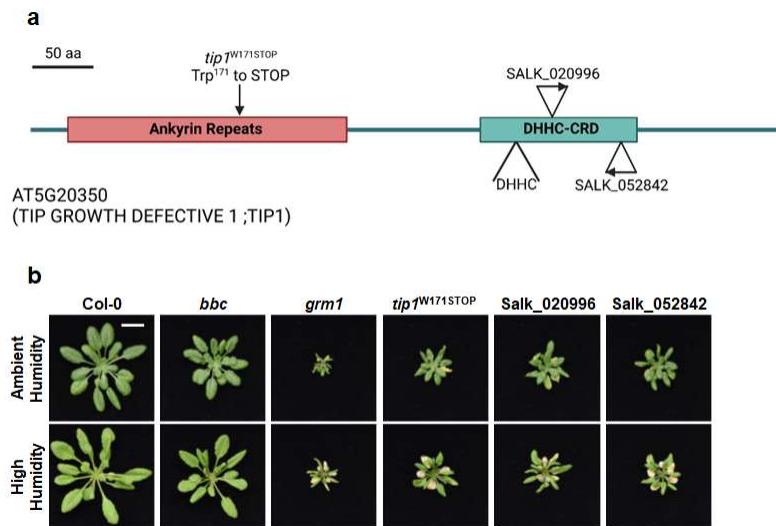
15 **a**, *grm1* genomic mapping. Red line represents allele frequency. Blue and purple lines denote 95%
16 and 99% confidence intervals, respectively. **b**, RT-PCR products using primers flanking the *grm1*
17 mutation locus. Genomic (top panel) and complementary (bottom panel) DNA from indicated
18 genotypes were used as templates.

19

20

21

22


23

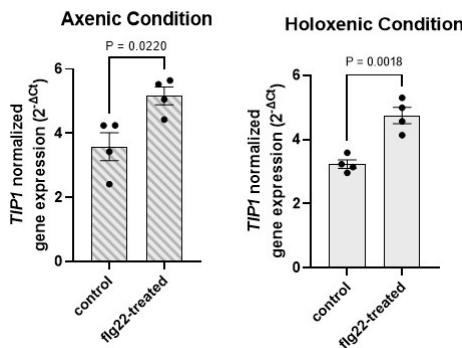
24 **Extended Data Figure 3. Transgene complementation of the *grm1* mutant.**

25 **a**, Images of four-week-old, potting soil-grown Col-0, *bbc*, *grm1* and two independent *grm1*
26 complementation lines under ambient humidity (~50% RH basal control condition; upper panel)
27 or high humidity (~95% RH; bottom panel) for five days. Scale bar equals 2 cm. **b**, Transgene
28 complementation of the *grm1* mutant. Population sizes of leaf endophytic microbiota after five
29 days of plant growth under ambient humidity (aH, ~50% RH basal control condition) or high
30 humidity (~95% RH). Results represent the mean values \pm SEM of four plants. Statistical analysis
31 was performed using two-way ANOVA with Tukey's HSD test. Experiment was independently
32 performed twice with similar results.

33

34

35


36

37

38 **Extended Data Figure 4. Appearance of *tip1* mutant alleles.**

39 **a**, A schematic diagram illustrating various mutant alleles of TIP1 protein. *tip1*^{W171STOP} is the allele
40 isolated from this study which contains a G to A mutation at the splicing junction that is expected
41 to cause a pre-mature STOP codon at amino acid residue Trp¹⁷¹ in the ankyrin-repeat domain.
42 SALK_020996 and SALK_052842 have T-DNA insertions that would affect the DHHC cysteine-
43 rich domain (DHHC-CRD). Created with BioRender.com. **b**, Images of four-week-old, potting
44 soil-grown Col-0, *bbc*, *grm1* and various *tip1* single mutant plants under ambient humidity (~50%
45 RH basal control condition; upper panel) or high humidity (~95% RH) for five days. Scale bar
46 equals 2 cm.
47

48

49

50

51

52 **Extended Data Figure 5. *TIP1* is induced by PTI elicitor flg22.**

53 Expression of *TIP1* after 90 minutes of 250 nM flg22 treatment. Plants were grown under axenic
54 (left panel; with diagonal stripe pattern) or holoxenic (right panel) conditions in GnotoPots. Results
55 represent the mean values \pm SEM of four biological replicates. Statistical analysis was done by the
56 Student's *t*-test. Experiment was independently performed three times with similar results.

57

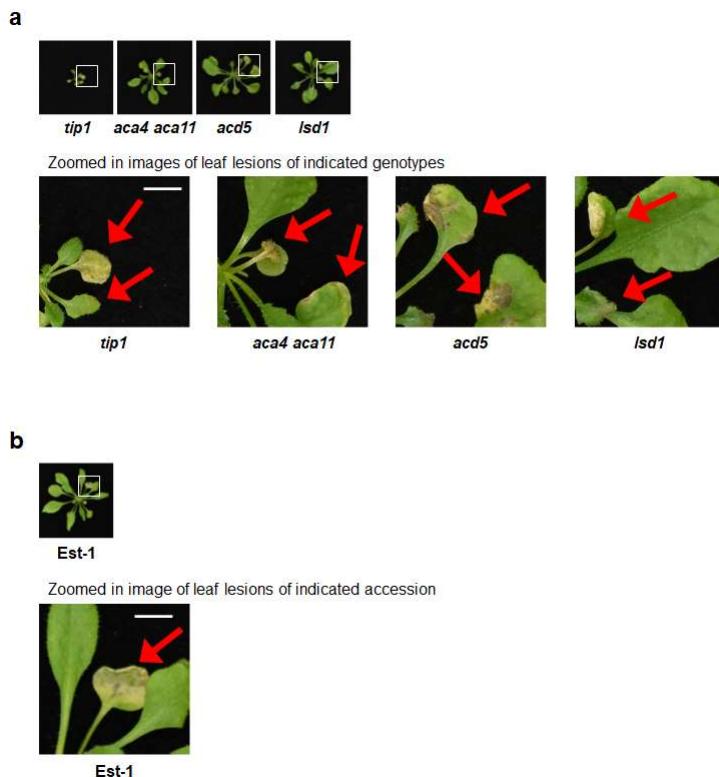
58

59

60

61

62


63

64

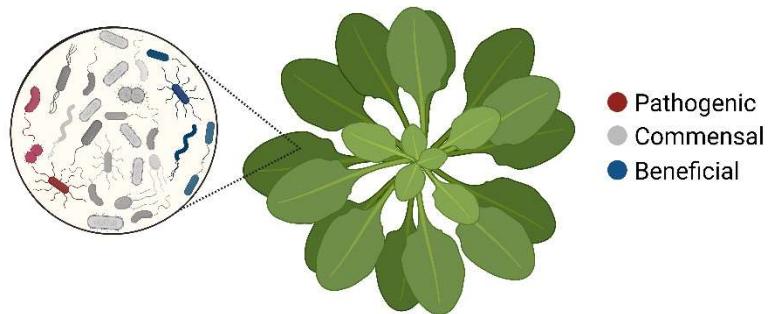
65 **Extended Data Figure 6. Appearance of 5-week-old, soil-grown Col-0, Est-1 and C24 plants.**

66

67

68

69


70

71 **Extended Data Figure 7. Zoomed in images of leaf lesions on plants grown in holoxenic
72 conditions.**

73 **a**, Zoomed in images of indicated genotypes grown on GnotoPots under holoxenic conditions.
74 Scale bar equals 0.5 cm. **b**, Zoomed in image of Est-1 grown on GnotoPots under holoxenic
75 conditions. Scale bar equals 0.5 cm.

76

77

**Microbiota-Independent
Autoimmunity (e.g. *snc1*)**

- resistant to pathogenic bacteria *Pst* DC3000
- have curled leaves and small stature
- no apparent lesions
- wild-type level of endophytic leaf microbiota
- high defence marker gene expression regardless of the presence or absence of microbiota

**Microbiota-Dependent
Autoimmunity (e.g. *tip1*)**

- resistant to pathogenic bacteria *Pst* DC3000
- have small stature and associated with lesions
- higher level of endophytic leaf microbiota
- tissue lesions disappeared in the absence of microbial community
- high defence marker gene expression only in the presence microbiota

78

79

80

81 **Extended Data Figure 8. Characteristics of two types of autoimmunity in plants based on**
82 **their microbiota dependency.** Created with BioRender.com.

83

84

85

86

87 **Extended Data Table 1. ASV counts of leaf endophytic microbiota in Col-0, *bbc* and *grm1* plants.**

89 **Extended Data Table 2. Mutations on chromosome 5 (from 4 to 12 Mbp) in the *grm1* mutant.**

90 **Extended Data Table 3. ASV counts of leaf endophytic microbiota in Col-0, *tip1* and *snc1* plants.**

92 **Extended Data Table 4. List of *Arabidopsis* mutants and accessions used in this study.**

93 **Extended Data Table 5. List of primers used in this study.**

94

95