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Clusters of walking impairment post-stroke 

Abstract  

Background: Walking patterns in stroke survivors are highly heterogeneous, which poses a 

challenge in systematizing treatment prescriptions for walking rehabilitation interventions. 

Objective: We used bilateral spatiotemporal and force data during walking to create a multi-site 

research sample to: 1) identify clusters of walking behaviors in people post-stroke and 

neurotypical controls, and 2) determine the generalizability of these walking clusters across 

different research sites. We hypothesized that participants post-stroke will have different walking 

impairments resulting in different clusters of walking behaviors, which are also different from 

control participants. 

Methods: We gathered data from 81 post-stroke participants across four research sites and 

collected data from 31 control participants. Using sparse K-means clustering, we identified 

walking clusters based on 17 spatiotemporal and force variables. We analyzed the biomechanical 

features within each cluster to characterize cluster-specific walking behaviors. We also assessed 

the generalizability of the clusters using a leave-one-out approach.  

Results: We identified four stroke clusters: a fast and asymmetric cluster, a moderate speed and 

asymmetric cluster, a slow cluster with frontal plane force asymmetries, and a slow and 

symmetric cluster. We also identified a moderate speed and symmetric gait cluster composed of 

controls and participants post-stroke. The moderate speed and asymmetric stroke cluster did not 

generalize across sites.  

Conclusions: Although post-stroke walking patterns are heterogenous, these patterns can be 

systematically classified into distinct clusters based on spatiotemporal and force data. Future 

interventions could target the key features that characterize each cluster to increase the efficacy 

of interventions to improve mobility in people post-stroke. 
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Introduction 
 

Walking patterns differ between individuals to the point that we can recognize people by 

how they walk 1. These individual differences are more marked after a neurologic injury, such as 

stroke 2, due to heterogeneity in stroke lesion type, size, location, and differences in recovery 3–6. 

These individual differences in walking patterns make systematizing treatment prescription for 

walking rehabilitation interventions a difficult clinical endeavor. The heterogeneity in walking 

patterns has been acknowledged by Knutsson and Richards as early as 1979, stating that “therapy 

and training in the hemiparetic patient should preferably be adapted to the disturbance in each 

individual case” 4. In this study 4, researchers used paretic electromyography (EMG) and walking 

kinematics to qualitatively identify three subgroups of abnormal muscle activation during 

walking post-stroke – early triceps surae activation, decreased activation of paretic musculature, 

and paretic muscle coactivation. Similarly, Olney and Richards qualitatively identified different 

subgroups of walking impairments in the spatiotemporal, kinematic, and kinetic domains 7. Also, 

a seminal study by our co-authors* investigated paretic leg kinematics and used hierarchical 

clustering to identify four clusters of walking behaviors, distinguished by walking speed and 

paretic knee flexion angles at different points during the gait cycle 5. While these studies 

identified individual differences in paretic leg function during walking, walking patterns post-

stroke are defined not only by paretic leg function but also by non-paretic leg function 8.  

 

To characterize functional differences between the paretic and non-paretic legs during 

walking, recent studies have used asymmetry measures in kinematics 9–14 or forces 11,15–18. These 

asymmetry measures are compared to asymmetries observed in neurotypical controls to classify 

individuals post-stroke into subgroups with higher, comparable, or lower asymmetries than 
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control participants 9–19. However, individuals might be classified as symmetric in one feature, 

for example step lengths, while remaining asymmetric in other features, for example joint 

kinematics 19. Therefore, we reasoned that using an approach that allowed simultaneously 

assessing multiple measures of walking, we can quantitatively identify distinct subgroups of 

walking behaviors beyond those identified via a single asymmetry measure, which could inform 

more specific clinical rehabilitation targets.  

 

Identifying subgroups of walking behaviors requires a heterogeneous sample that 

encompasses the different combinations of gait deviations observed in survivors of stroke. 

Achieving this heterogeneity necessitates a large sample size. However, studies in walking post-

stroke typically collect small, single site samples: for example, a systematic review of 46 studies 

in walking post-stroke reported sample sizes between 8 and 39 participants 20 that lack the 

heterogeneity of walking behaviors observed post-stroke. Additionally, activity levels, 

socioeconomic, and ethnic disparities in post-stroke care across geographical locations influence 

the walking patterns of the samples engaged in research at different sites 21–25. Therefore, 

combining data across different sites increases sample size and heterogeneity of behaviors 

measured in research studies, which ultimately can improve the generalizability of research 

findings to the overall post-stroke population.  

 

Here, we obtained measures derived from ground reaction forces (GRFs), which is the 

simplest data collected across research labs that use instrumented treadmills, to generate a multi-

site sample and used a data-driven approach to identify subgroups of walking behaviors in 

people post-stroke and controls. We used sparse K-means clustering to obtain a subset of 
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features that define walking clusters, and determined whether different levels of function and 

impairment distinguish these walking clusters, such that they are indicative of different walking 

subgroups. We determined whether the observed walking clusters are generalizable across 

research sites. We hypothesized that participants post-stroke will have different walking features 

resulting in different clusters of walking behaviors, which are also different from control 

participants 5,14,26. Our results could provide the basis for designing and testing targeted 

interventions aimed at improving walking quality in people post-stroke.  

 

Methods: 
 

Data Curation 
 

The lack of standardized protocols for collecting, processing, and analyzing walking data 

can limit researchers’ ability to combine walking data 27. However, bilateral ground reaction 

forces (GRFs) measured using instrumented treadmills are commonly collected across research 

sites. These GRFs result from muscles generating forces at each segment which then is applied to 

the ground during walking 28,29, providing insight into how each extremity contributes to the 

main objectives of walking, defined as shock absorption, stance stability, and forward 

progression 29. Additionally, these GRFs can be used to derive spatiotemporal walking metrics 

such as step lengths, step times, and speed 30. Thus, we gathered GRF data from individuals with 

chronic hemiparetic stroke walking at their self-selected speed. We gathered data from: Rancho 

Los Amigos (Rancho, N=7 31), collected from an overground force plate at 2500 Hz (Kistler 

Instrument Corp., Amherst, NY) for the paretic extremity only. University of Southern California 

(USC2018 N=22 9 and USC2021 N=23 12, the first author reviewed all data to ensure no 
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duplicates between studies): participants walked for three minutes on a Bertec instrumented 

treadmill (Columbus, OH, USA) that measured ground reaction forces at 1000 Hz. Kennedy 

Krieger Institute/Johns Hopkins University School of Medicine (JHU, N=10 19): participants 

walked for five minutes on a Motek instrumented treadmill (Amsterdam, NL) that recorded 

forces at 1000 Hz. Emory University (Em, N=9 32): participants walked for one minute on a 

Bertec instrumented treadmill (Columbus, OH, USA) that measured ground reaction forces at 

1000 Hz. University of Pittsburgh (Pitt, N=21 33–35) participants walked between 150 and 320 

strides on a Bertec instrumented treadmill (Columbus, OH, USA) that measured ground reaction 

forces at 1000 Hz (Fig. 1A). We received GRF data for each gait cycle, normalized to 100 points 

per gait cycle, filtered with a fourth order lowpass Butterworth filter with a 15 Hz cut-off 

frequency for JHU and with a 20 Hz cutoff for Pitt. Data from Emory were shared as raw data. 

We filtered data from Em and USC using a 20 Hz cut-off low-pass zero-lag digital Butterworth 

filter. 

 

We also collected data for 32 age and gender-matched neurotypical control participants 

using a Bertec instrumented treadmill (Columbus, OH, USA). We used the control data in the 

definition of the different walking clusters, to determine whether individuals post-stroke could be 

comparable to neurotypical adults walking at the reduced speed of people post-stroke, such that 

controls and participants post-stroke would belong to the same clusters. Control participants 

were age and sex matched to the participants in the USC2021 study 12.  

 

Participants post-stroke held onto a front handrail during walking in all studies except 

USC2021 12 and Pitt 33–35. Control participants did not hold onto a handrail. The respective IRB 
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approved all studies, and all participants provided written informed consent before testing. Data 

collection for neurotypical control participants was approved by the USC IRB number HS-19-

00430. Data gathering was approved by the USC IRB number HS-19-00075. IRB-approved Data 

Use Agreements (DUA) were established between USC and each research institution. Data from 

Rancho were excluded as they were collected overground; all DUAs and data sharing manuals 

were first implemented with Rancho, which was vital in setting up this project. We accumulated 

GRF data for 92 participants post-stroke (Fig. 1A). We compiled information about participant 

age, sex, time post-stroke in months, paresis, mass, treadmill walking speed, and lower extremity 

Fugl-Meyer score 36 (out of 34 points for the motor scale) (Table 1).  

 

Data processing 
 

From the GRF data collected across labs, we used custom code and derived 17 walking 

variables common across all labs. Variable definitions are presented in Table 2. We obtained 

averages across strides for all variables for each participant. Data processing was done using 

custom code written in Matlab 2021b (The MathWorks, Natick, MA).  

 

For data collected in neurotypical adults, leg dominance was defined as the leg they 

would use to kick a ball, which was the right leg for all participants. We compared the non-

dominant leg of control participants to the paretic leg and the dominant leg to the non-paretic leg.  

 

Stride-by-stride data in a subset of participants post-stroke and controls are available for 

download from the Stroke Initiative for Gait Data Evaluation (STRIDE) database 37 hosted by the 

Archive of Data on Disability to Enable Policy and Research (ADDEP).  
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Statistical analyses 
 

Statistical analyses were done in RStudio, R version 4.1.2. Since multiple researchers 

collected data, identifying potential acquisition issues and quality assessment was done post-hoc. 

To remove noisy data and outliers, we quantified the mean and standard deviation of all variables 

in our sample, including both participants post-stroke and controls and removed participants with 

datapoints outside of the mean ± 3*standard deviation range (Supplementary Table 1). The final 

sample comprised 81 participants post-stroke and 31 controls for 112 participants (Fig. 1A). For 

all analyses comparing participants post-stroke with neurotypical controls, we used data with 

neurotypical control participants walking at a matched speed to participants post-stroke.  

 

Given that many walking variables are correlated due to the inherent coordination found 

in the walking pattern, the clusters found in the data can be accounted for by a small subset of 

features. Thus, we used sparse K-means clustering analyses 38, which uses a Lasso penalty 39 to 

derive a sparse subset of features with non-zero predictors. We z-scored all variables before 

analyses, and set K=5 clusters in agreement with prior work identifying four subgroups of 

participants post-stroke 5, and an additional control group. We verified that K=5 provided 

clusters that maximized the between clusters distance via the Krzanowski and Lai index40. Using 

the sparcl package in R, we chose the tuning parameter for the Lasso penalty 39, which 

determines the number of non-zero predictors to use in our analyses that maximizes between 

cluster variance and minimizes within cluster variance. We ran 100 permutations in a search 

space between 1 and the square root of the number of candidate variables included in the sparse 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.05.11.540385doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540385
http://creativecommons.org/licenses/by-nc-nd/4.0/


Clusters of walking impairment post-stroke 

clustering analyses, i.e., sqrt(17) and set the number of random starts to 100 to avoid finding a 

local minimum.  

 

We assessed stability of the clusters identified in this study via the Jaccard similarity 

index 41–43. We resampled the 112 participants with replacement via bootstrap to obtain 10,000 

new samples, and identified K=5 clusters for each bootstrap iteration. We then measured the 

proportion of observations consistently assigned to the same cluster over each iteration; this 

proportion is the Jaccard index. A Jaccard below 0.6 indicates that the clusters are unstable, a 

Jaccard between 0.6 and 0.75 shows moderately stable clusters, between 0.75 and 0.85 stable 

clusters, and a Jaccard above 0.85 indicates highly stable clusters.  

 

We used linear models with cluster as a categorical fixed effect to determine whether 

there were significant differences across clusters in participants’ biomechanical features, as well 

as participant demographics and Fugl-Meyer scores. We performed multiple comparisons using 

Tukey-Kramer adjusted critical values. We used the results from these multiple comparisons to 

characterize the cluster-specific walking behaviors, by identifying which features were 

significantly different across clusters. Within each cluster, we used t-tests with false discovery 

rate (FDR) corrected p-values for all spatiotemporal and force variables, to compare paretic 

values relative to non-paretic values to determine asymmetries in each cluster. 

 

We assessed generalizability of each research site by determining the number of 

participants from each site that were included in each cluster. To assess whether the observed 

clusters can be generalized, we performed a leave-one-out sparse K-means clustering approach, 
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leaving out data from each site simultaneously (Em, Pitt, JHU, USC2018, USC2021). We 

mapped the clusters obtained in each iteration of the leave-one-out approach to the clusters using 

the full dataset. We interpret cluster generalizability based on its Jaccard 43 and the similarity of 

the descriptive walking and impairment measures within each cluster.  

 

Results 
 

Our final sample was composed of 112 participants (Fig. 1, Table 1 and 2, 

Supplementary Fig. 1). At a group level, participants post-stroke showed significant differences 

in paretic swing (p=0.007) and stance times (p=0.005), medial and lateral ground reaction forces 

(p<0.001), braking (p=0.032), and propulsion (p<0.001) compared to the non-paretic extremity. 

Chronicity (p=0.024), impairment measured via FM score (p=0.001), and walking speed 

(p<0.001) differed across sites (Fig. 1B-D).  

 

Sparse K-means clustering identified 8/17 features with non-zero weights from which 

five distinct clusters could be obtained (Fig. 2, Supplementary Figs. 2 – 5). The Krzanowski and 

Lai index (Supplementary Fig. 2) was maximal for K=5 clusters. Analyses of the clusters 

obtained showed different walking behaviors from those observed at a group level. The variables 

that maximized between cluster variance and minimized within cluster variance, as shown by the 

non-zero weights returned by the Lasso analyses, were paretic and non-paretic stance times, non-

paretic propulsion, speed, paretic step length, paretic and non-paretic braking, and non-paretic 

step length (Fig. 2). The data for the paretic extremity was combined with the non-dominant 

extremity in controls, and the data for the non-paretic extremity was combined with the  

dominant extremity in controls.  We describe the obtained clusters next:  
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Cluster 1 – Fast speed and asymmetric stroke cluster: N=10 stroke participants. 

Composed of four participants from JHU, three from Pitt, two from USC2018 and one from 

USC2021. Participants had mild impairment (FM 29±3, Fig. 2D).  

Walking characteristics: Participants in the fast and asymmetric cluster had the fastest speed 

(0.97±0.17 m/s, p<0.001, Fig. 2C, Fig. 3), and were classified as community ambulators 6,44. Step 

lengths were 0.49±0.05 and 0.51±0.07 m for the paretic and non-paretic extremities, the longest 

of all post-stroke participants. Participants had the largest braking and propulsive GRFs 

bilaterally (p<0.001), and showed marked asymmetries: non-paretic propulsion was 72% greater 

than paretic propulsion (p<0.001), and non-paretic stance (p=0.015) and paretic swing times 

(p=0.017) were longer than the contralateral extremity.  

Cluster stability and generalizability: The Jaccard index for the fast and asymmetric cluster was 

0.72 (Fig. 4), and during the leave-one-out validation varied between 0.63 and 0.75. Leaving out 

the data from JHU, which was the sample with the highest walking speed, had the greatest effect 

on cluster stability and reduced the Jaccard to 0.63. Given the absence of the JHU participants, 

many participants changed cluster membership and the number of participants in the fast and 

asymmetric cluster increased to 32, and the average speed decreased to 0.78m/s as the speed 

requirement for this cluster became less stringent. Despite the change in membership, the general 

characteristics of the fast and asymmetric cluster remained consistent, thus, the cluster is 

generalizable.  

 

Cluster 2– Moderate speed, symmetric and short stance times in controls and stroke: 

N=22 composed of 11 control and 11 post-stroke participants. Participants post-stroke were four 
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from Pitt, one from USC2018 and six from USC2021. Participants post-stroke in the moderate 

speed, symmetric cluster had mild impairment (FM 29±4, Fig. 2D).  

Walking characteristics: Participants in the moderate speed, symmetric cluster walked at 

0.61±0.14 m/s (greater than the slow clusters, p<0.005 and less than the fast cluster, p<0.001), 

classified as least limited community ambulators 6,44. Step lengths were 0.35±0.06 m for both the 

paretic and non-paretic extremities. Additional analyses also showed that stance times were 

shorter in the moderate speed, symmetric cluster compared to all other clusters (Fig. 3). Post-

stroke participants in the moderate speed, symmetric cluster were symmetric across all variables 

measured, making them comparable to controls walking at this slow speed.  

Cluster stability and generalizability: The Jaccard index for the moderate speed, symmetric 

cluster was 0.63 and varied between 0.6 and 0.87 during validation, bordering on stable to highly 

stable. Leaving out the data from Em, JHU, USC2018, and USC2021 made the moderate speed, 

symmetric cluster exclusively a control cluster with Jaccard indices of 0.87, 0.63, 0.80, and 0.85. 

Leaving out the data from Pitt reduced the Jaccard to 0.6 and reduced the number of control 

participants in the moderate speed, symmetric cluster to eight, with one participant from Em, 

four from JHU and four from USC. Given that this cluster is primarily a control cluster during 

validation and that the Jaccard remains in the moderately stable to the highly stable range, the 

moderate speed, symmetric cluster is generalizable and may indicate changes in the walking 

pattern that are adopted when people walk at a slower speed. 

 

Cluster 3 – Moderate speed, asymmetric cluster of participants post-stroke and controls: 

N=34. 11 controls and 23 participants post-stroke from all sites. Post-stroke participants had mild 

impairment (FM 27±3, Fig. 2D).  
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Walking characteristics: Participants in the moderate, asymmetric cluster walked at 0.69±0.16 

m/s, classified as least limited community ambulators 6,44 (faster than Cluster 4 and Cluster 5, 

p<0.005 and slower than Cluster 1, p<0.001). This was the only cluster that showed cluster-level 

step length asymmetry, with longer paretic steps (p=0.032).  

Stance times were a shorter percentage of the stride sample compared to all other clusters (Fig. 

3). Forces were highly asymmetric both for participants post-stroke and control participants in 

this cluster. The non-paretic peak lateral GRF was 62% greater than the paretic lateral GRF 

(p<0.001), non-paretic propulsion was 62% greater than paretic propulsion (p<0.001), and 

paretic braking was 28% greater than non-paretic braking (p=0.001).  

Cluster stability and generalizability: The Jaccard index for the moderate, asymmetric cluster 

using the entire dataset was 0.75 and during the leave-one-out validation varied between 0.51 

and 0.81, from unstable to stable. Leaving out the data from Pitt or USC2018 reduced Jaccard 

indices to 0.51 (Fig. 4A). Leaving out the data from Em, JHU, USC2018, or USC2021 made the 

moderate, asymmetric cluster a primarily control cluster composed of three participants post-

stroke from Pitt and nine controls. In contrast, leaving out the data from Pitt made the moderate, 

asymmetric cluster a primarily stroke cluster with three control participants and 13 participants 

post-stroke. Given the change in cluster from a control cluster to a stroke cluster during 

validation, this cluster is not generalizable across sites.  

 

Cluster 4 – Slow speed and frontal plane force asymmetries: N=16 primarily stroke 

participants, three from Em, five from Pitt, three from USC2018, two from USC2021 with 

moderate to mild impairment (FM 20±8, Fig. 2D). This cluster included three control 
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participants who walked with a frontal plane waddling pattern to account for the slower speeds to 

match participants post-stroke.  

Walking characteristics: Participants in the slow cluster with frontal plane asymmetry walked at 

0.35±0.13 m/s (slower than the fast and the two moderate speed clusters, p<0.001), classified as 

unlimited household ambulators 6,44. Step lengths were 0.29±0.08 and 0.31±0.09m for the paretic 

and non-paretic extremities, respectively. Participants within the slow cluster with frontal plane 

asymmetry had stance times that were a longer percentage of the gait cycle compared to all other 

participants (p<0.001), non-paretic stance was markedly longer than paretic stance (p<0.001), 

and paretic swing time was also longer than non-paretic swing time (p=0.038). The paretic 

medial GRF was 25% greater than the non-paretic counterpart (p=0.013), and a paretic lateral 

GRF that was half of its non-paretic counterpart (p=0.005, Fig. 3). Non-paretic propulsion was 

61% greater than paretic propulsion (p=0.006). Participants in the slow cluster with frontal plane 

asymmetry generated non-paretic propulsion at around 31% of the gait cycle, significantly later 

than all other clusters (p<0.0001), and had significantly longer double support times than all 

other clusters (p<0.001). 

Cluster stability and generalizability: The Jaccard index for the slow cluster with frontal plane 

asymmetry using the entire dataset was 0.87, and during the leave-one-out validation varied 

between 0.73 and 0.80, indicating a stable cluster. Given the high stability with the entire dataset 

and maintained stability during the leave-one-out approach, this cluster is generalizable across 

sites.  

 

Cluster 5 – Slow speed, symmetric: N=30, primarily stroke cluster of participants from all 

sites with moderate impairment (FM 21±4, Fig. 2D).  
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Walking characteristics: Participants in the slow speed symmetric cluster walked at 0.45±0.13 

m/s (slower than the fast and moderate speed clusters, p<0.001), classified as the most limited 

community ambulators 6,44. Step lengths were 0.31±0.08 and 0.31±0.09m for the paretic and non-

paretic extremities, respectively. The percent of the gait cycle in the swing phase was 

significantly shorter for participants in the slow speed, symmetric cluster. Participants within the 

slow speed symmetric cluster were symmetric except with regards to propulsion, which was 30% 

greater in the non-paretic extremity (p=0.005), and the medial GRF, which was greater in the 

paretic extremity (p=0.003).  

Cluster stability and generalizability: The Jaccard index in the slow speed, symmetric cluster 

using the entire dataset was 0.73 and during the leave-one-out validation varied between 0.57 

and 0.72, from unstable to moderately stable. Leaving out the data from JHU, which contributed 

two participants to this cluster, had the greatest effect on cluster stability, increasing the Jaccard 

to 0.57 and walking speed to 0.60 m/s. Leaving out the USC2018 data decreased the Jaccard to 

0.64 and increased walking speed to 0.63 m/s. Despite the lower Jaccard, the characteristics of 

the slow speed symmetric cluster, mainly low propulsion and short swing times remained 

consistent, making this cluster generalizable.  

Discussion 
 

We identified five clusters of walking behaviors in a combined sample of people post-

stroke and controls. Contrary to our hypothesis, we did not identify a cluster composed 

exclusively of control individuals: we identified a cluster with an equal number of control 

participants and participants post-stroke, the latter of whom seemed to have reduced walking 

impairment. We also identified clusters with mostly participants post-stroke and a few controls, 
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which points to the fact that slow walking speeds can lead to aberrant gait patterns even in 

healthy controls 45. The clusters obtained in our study point at different levels of function and 

impairment defining each cluster, which correspond to different walking subgroups post-stroke. 

We assessed the generalizability of clusters and observed that 4/5 clusters were generalizable 

across research sites. These clusters were: Cluster 1: a cluster of post-stroke participants with fast 

walking speed and asymmetric propulsion; Cluster 2: a cluster of controls and stroke participants 

walking with moderate speed and symmetric steps, with apparent impairments due to reduced 

speed, such as short stance times, low propulsion; Cluster 4: a cluster of participants post-stroke 

walking with a slow speed and asymmetric medial and lateral ground reaction forces; and Cluster 

5: a cluster of post-stroke participants who walked with a slow speed, short swing times and slow 

but symmetric steps. It may be possible to develop more personalized intervention targets by 

considering the cluster to which a given patient is assigned. For example, a post-stroke 

participant in the fast cluster can benefit from an intervention to increase paretic propulsion 17,46–

48; a post-stroke participant in the moderate symmetric cluster can benefit from an intervention to 

increase speed 13,49–51; a post-stroke participant in the slow, frontal asymmetry cluster can benefit 

from interventions to reduce asymmetries in medial and lateral GRFs 52; and a post-stroke 

participant in the slow symmetric cluster can benefit from increasing speed 53, swing times, and 

step lengths. The effects of these targeted interventions are still unknown, and future work will 

determine whether addressing cluster specific impairments will lead to a shift towards a control 

cluster, or a shift towards a different stroke cluster. Taken together, our results provide a 

preliminary cross-sectional analyses to estimate which subject-specific walking-related variables 

could be targeted in interventions to improve mobility and promote neuroplasticity in the long 

term 54. 
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Our findings complement those of our co-authors who showed speed to be the greatest 

determinant in allocating participants to specific clusters 5, and previous work using speed alone 

to classify participants to ambulation categories 6. Similar to Mulroy, 2003, we found one fast 

cluster of participants post-stroke, one moderate speed cluster and two slow clusters. A recent 

study used paretic and non-paretic kinematic data in 36 stroke survivors and identified six 

distinct walking clusters 55 based on range of motion for the paretic and non-paretic side. Like 

our results, Kim et al. observed different types of impairment associated with the different 

clusters. A potential limitation of these two studies is that they comprise single-site datasets, 

which might be biased by geographical affordances. We complement the clusters described by 

Mulroy by providing insights into both paretic and non-paretic spatiotemporal characteristics and 

forces generated by each limb. One of our slow clusters had asymmetric mediolateral forces 

(Cluster 4), which corresponds to the slow extended cluster in Mulroy 2003: this cluster in 

Mulroy 2003 showed knee hyperextension in mid-stance, which limits pre-swing and swing knee 

flexion and toe clearance, leading to frontal plane compensations and asymmetric frontal plane 

forces, as observed in our study. Our other slow cluster, Cluster 5 also corresponds to the very 

slow velocity and excessive knee flexion cluster from Mulroy 2003. Thus, comparison of our 

clusters to those previously reported show consistency of subgroups of walking patterns, and 

provide additional insights into non-paretic function in these subgroups.  

 

The variables that had the largest effect on the between cluster variance, were paretic and 

non-paretic stance times, non-paretic propulsion, speed, paretic step length, paretic and non-

paretic braking, and non-paretic step length. It is worth noting that none of these variables on 
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their own are sufficient to identify the clusters that we observed, similar to what was concluded 

by Mulroy, 2003. For example, speed ranges overlapped for participants in Clusters 2 and 3 and 

for participants in Clusters 4 and 5, yet different stance times and forces were observed between 

clusters despite overlapping speeds, indicating that speed alone was not the only factor driving 

the between cluster differences. Thus, here we show that while speed influences many gait 

features, speed alone is not enough to classify post-stroke individuals in more specific subgroups 

of impairment.  

 

Cluster 3, the moderate speed and asymmetric cluster was not stable or generalizable, consistent 

with the fact that the common impairments of stroke participants, and how they compare to 

control participants within Cluster 3 was less clear. For example, participants in Cluster 3 had 

highly asymmetric forces between the paretic and non-paretic extremity whereas control 

participants within the cluster were not asymmetric. Similarly, at a group level, participants 

within Cluster 3 were the only ones to show marked step length asymmetry with longer paretic 

steps. It could be the case that Cluster 3 is composed of participants for whom the measured 

spatiotemporal and kinetic variables included in analyses does not account for variability in the 

data. Future work will aim to use joint level kinematic, kinetic or EMG measures to determine 

whether these more specific measures can detect evident differences in walking patterns in these 

individuals. 

 

We observed differences in cluster specific speed and FM scores compared to group level 

averages in these variables. For example, the average FM score for all participants was 24.6 ± 

5.6 points, yet as seen in Figure 2D, this average value does not align with any of the cluster-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.05.11.540385doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540385
http://creativecommons.org/licenses/by-nc-nd/4.0/


Clusters of walking impairment post-stroke 

specific averages. We also observed that similar levels of impairment measured via overlapping 

FM scores between clusters could be associated with vastly different walking speeds: 

participants in Cluster 1 walked significantly faster than those in Clusters 2 and 3, despite no 

differences in FM scores. Clinically this might imply that participants in Clusters 2 and 3 have 

the capacity to walk at faster speeds, given their impairment. Note that these differences in 

behavior and capacity between clusters could inform clinical practice beyond group level 

averages.  

      Interestingly, our findings show that some commonly reported spatiotemporal impairments 

post-stroke are observed in only a subset of post-stroke participants 8,28,61,66. For example, we 

observed asymmetric stance times only for participants in the fast cluster, and asymmetries in 

step lengths only in Cluster 3 11,61,66,67, as well as varying degrees of paretic propulsion that were 

not uniformly associated with walking speed or impairment 56. Finally, and surprisingly, we did 

not observe any asymmetries in the peak vertical GRF among our participants. Thus, our results 

show in a sample of 81 participants post-stroke that spatiotemporal asymmetries are less 

pronounced than what has been shown in the seminal literature using smaller samples.  

 

      We observed significant differences in participant impairment and function across research 

sites. Consistent with prior literature, control participants’ self-selected walking speed was faster 

than post-stroke participants’7. Similarly, participants from Pitt had lower impairment compared 

to Emory and USC2018, while participants from JHU walked at faster speeds than those from 

Em, and USC. Additional information about activity levels and access to post-stroke care across 

geographical locations could provide information about the causes of the differences in 

impairment and function between sites. Given these differences, we assessed generalizability by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.05.11.540385doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540385
http://creativecommons.org/licenses/by-nc-nd/4.0/


Clusters of walking impairment post-stroke 

assessing cluster stability when removing each experimental sample from our dataset. This 

approach assessed both generalizability of the cluster such that its definition did not depend on 

the experimental samples, as well as generalizability of the experimental samples such that if a 

sample needed its own cluster, it would imply that participants in that sample are distinct from 

all other participants. We did not find a cluster of participants post-stroke from a single research 

site. Additionally, 4/5 clusters were generalizable across research sites. However, we did find 

that some research sites did not contribute to specific clusters. For example, participants from 

JHU were not part of Cluster 4, and participants from Em were not part of the fast cluster, 

consistent with the significant differences in walking speeds observed between both samples. 

These results confirm that some samples may not encompass all different walking behaviors 

observed after stroke.  

 

Limitations 
 

There are multiple limitations in our study. First, this study used variables derived from 

gait analyses to identify clusters indicative of subgroups of walking impairment. The variables 

used in this study are easy to capture via GRFs and represent global measures of walking that 

relate to the coordinated action of multiple segments and joints. However, joint-level kinematic 

and kinetic measures might capture impairments that cannot be inferred from GRF data alone. 

Future research efforts should aim to establish standards for data collection that allow combining 

more complex data across sites, such as joint-level kinematics, kinetics and EMG patterns. 

Second, we extracted peak force as the feature representing GRF data due to the ease to capture 

these measures. Future work can assess whether other GRF features, such as impulses, or GRFs 

during more specific points during the gait cycle provide more insight into the range of walking 
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impairments in people post-stroke. Third, we were also limited in the sample size of control 

participants which was unbalanced and matched in speed to the USC2021 sample only. The 

sample size across study sites was also unbalanced, with samples from Em and JHU consisting 

of ~10 participants and the samples from USC and Pitt consisting of ~20 participants, providing 

different heterogeneity within each sample and different contribution of each site to the overall 

sample. Stability analyses show however, that changes in stability when removing each of the 

samples were not just due to sample size: removing the JHU sample which consisted of 10 

participants with the highest speeds decreased cluster stability for most clusters, while removing 

the USC2018 sample did not change cluster stability uniformly. We interpret this to indicate that 

the characteristics of the samples had a greater influence on cluster stability than did sample size. 

Future multi-site studies can address these points. Fourth, participants in this study were all in 

the chronic phase of stroke recovery; future work should assess if these clusters are consistent or 

change across recovery phases. Fifth, data were collected with participants walking on a 

treadmill which may induce changes in walking patterns compared to overground walking 57. 

However, some of our clusters were similar to those reported by Mulroy 2003 5, indicating 

consistency of clusters on the treadmill compared to overground. In addition, the use of a 

handrail in some of the experimental protocols could have influenced participant’s walking 

patterns 58. Future work could systematically assess whether participants are assigned to the same 

clusters measured during treadmill walking as to during overground walking. Finally, we used 

average metrics within participants, despite different patterns of stride-to-stride variance during 

post-stroke walking 13. Future work in larger samples can include stride-to-stride variance as 

additional features to characterize post-stroke walking patterns.  
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Conclusions 
 

We compiled and curated GRF data across multiple research sites in people post-stroke 

and controls. Using simple measures derived from GRFs, we identified five clusters of different 

walking behaviors. Four of these clusters captured walking subgroups that were generalizable 

across study sites. Our findings provide new information about how to classify the heterogeneity 

of gait patterns post-stroke. Identifying more specific types of walking impairment and different 

intervention targets for each subgroup can move the field of neurorehabilitation toward a 

precision medicine approach 59, and improve the effectiveness of rehabilitation interventions.  
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Figure Captions 

 

Figure 1. Data consolidation and quality assessments and demographics for the final 

sample. A) Pipeline for participant inclusion. N indicates the sample size at each point for the 

total sample (bold) and the sample from each research site. The final sample size was N=112 

participants. B) Time post-stroke onset in months across all research sites. Participants from Pitt 

were more chronic than those from USC2021 (p=0.033). C) Post-stroke participant lower 

extremity Fugl-Meyer score. The maximum score is 34 points. Participants from Pitt were less 

impaired than those from Em and USC. D) Treadmill self-selected walking speed for all 

participants. Control self-selected speed was significantly higher than the average speed in the 

stroke group (p<0.001). Control participants also walked at speed matched to that of a stroke 

participant of the same age and sex (Control Matched). Participants from JHU walked at a 

significantly greater speed than those from Em and both samples from USC (p<0.050).  

 

Figure 2. The sparse variables make up K=5 clusters with distinct walking speeds and 

impairments. A) Weights for each of the 17 candidate features for clustering. 8/17 features had 

non-zero weights and were used in clustering analyses. B) Individual observations within each 

cluster, plotted in discriminant component space, colored by cluster. Cluster 1 comprised 10 

participants; four from JHU, three from Pitt, two from USC2018, and one from USC2021. 

Cluster 2, 22 participants; 11 controls, four from Pitt, one from USC2018, and six from 

USC2021. Cluster 3, 34 participants; 11 control participants, one from Em, four from JHU, four 

from Pitt, seven from USC2018, and seven from USC2021. Cluster 4 had 16 participants; three 

controls, three from Em, five from Pitt, three from USC2018, and three from USC2021. Cluster 
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5 had 30 participants; six controls, four from Em, two from JHU, three from Pitt, seven from 

USC2018, and seven from USC2021. C) Participant speed (for participants post-stroke and 

controls) and impairment (for stroke participants) were measured via FM score across the 

different clusters. Only speed was used in the cluster definition. Solid horizontal lines indicate 

post-hoc significant differences between clusters (p<0.050). The dashed horizontal line indicates 

group-level average speed across all participants and average Fugl-Meyer (FM) scores for all 

stroke participants compared with the cluster-level speed and FM. P: Paretic NP: Non-Paretic. 

St: Stance. Sw: Swing. Lat: Lateral. Prop: Propulsion. GRF: Ground reaction force.  

 

Figure 3. Gait features for participants post-stroke and controls within each cluster 

compared to all other participants outside each cluster for a subset of sparse variables used 

in k-means clustering. C1, … C5 indicates participants included in the respective cluster 

number, and ~C1, … ~C5 indicates all participants not included in the respective cluster. Stance 

and swing times are expressed as a percentage of stride duration to account for differences in 

walking speed. Cluster 1: participants post-stroke with a fast-walking speed and asymmetric 

propulsion; Cluster 2: participants post-stroke and controls with moderate speed, short stance 

times, low propulsion, and symmetric steps. Cluster 3: participants post-stroke and controls with 

moderate speed, short stance times, and asymmetric forces; Cluster 4: participants post-stroke 

with a slow speed and frontal plane force asymmetries; and Cluster 5: post-stroke participants 

who walked slowly and symmetrically, with short swing times. Color conventions as in Figure 3. 

* FDR corrected p<0.010 for all variables indicated as significant. Abbreviations as in Figure 2.   
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Figure 4. Stability and generalizability of clusters assessed via leave one out approach. A) 

Jaccard stability index for each cluster for the entire dataset (horizontal black lines) and leaving 

out each sample. Colors indicate the sample left out to assess the Jaccard. The dashed gray line is 

the line above which clusters are considered stable. The Jaccard Index is the proportion of 

observations consistently assigned to the same cluster over the bootstrap iterations. A Jaccard 

below 0.6 indicates that the clusters are unstable, a Jaccard between 0.6 and 0.75 shows 

moderately stable clusters, 0.75 and 0.85 stable clusters, and a Jaccard above 0.85 indicates 

highly stable clusters. B) Average and standard deviation of the speed for each cluster for the 

entire dataset in black and the leave one out approach with colors indicating the sample left out 

from analyses.   
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Table 1: Participant Demographics.  

 Stroke Control 

N 81 31 

Sex 28F/53M+ 19F/12M 

Age 58.9 ± 10.5 [32 – 77] years 63.3 ± 13.6 [24 – 81] 

Mass 85 ± 18.6* [47 – 131] kg 73 ± 15.7 [46 – 110] 

Speed 0.58 ± 0.24 [ 0.13 – 1.25] m/s 
SS: 0.84 ± 0.18* [0.48 – 1.43] m/s 

Matched: 0.60 ± 0.25 [0.3 – 1.0] m/s 

Paresis 42R/39L  

Time post-stroke 90 ± 83 [6 – 467] months  

Fugl-Meyer Score 24.6 ± 5.6 [7 – 33]   

Descriptive statistics are presented as average ± standard deviation with the range in brackets.  

F: Female 

M: Males 

L: Left 

R: Right 

SS: Self-selected 

*Significant differences between participants post-stroke and controls (p<0.050) 
+p<0.050 significant difference in the frequency of males compared to females in the study 

sample 
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Table 2: Group-level averages for gait variables in participants post-stroke and control 

participants walking at matched speeds.  

Variable Definition 

Stroke Control 

Paretic 
Mean ± SD 

Non-Paretic 
Mean ± SD 

Non-
dominant 

Mean ± SD 

Dominant 
Mean ± SD 

Speed Treadmill speed 0.58 ± 0.24 0.60 ± 0.18 

Step Length 
(m) 

Distance between 
limbs at leading limb 

initial contact 
0.37 ± 0.10 0.36 ± 0.11 0.39 ± 0.09 0.39 ± 0.10 

Stance Time 
(s) 

Time between initial 
contact and lift-off on 

the same side 
0.97 ± 0.25*,+ 1.00 ± 0.28+ 0.86 ± 0.23 0.87 ± 0.23 

Swing Time 
(s) 

Time as the time 
between lift-off to 

initial contact on the 
same side 

0.47 ± 0.09* 0.43 ± 0.07 0.45 ± 0.06 0.45 ± 0.06 

Double 
Support Time 

(s) 

Time from 
contralateral initial 

contact to ipsilateral 
foot-off 

0.29 ± 0.13+ 0.24 ± 0.19 0.20 ± 0.08 0.21 ± 0.09 

Peak Medial 
GRF (N/kg) 

medially directed 
force during the 

contralateral toe-off 28 
0.93 ± 0.22* 0.82 ± 0.20 0.85 ± 0.28 0.82 ± 0.26 

Peak Lateral 
GRF (N/kg) 

Laterally directed 
GRF during loading 

response 
-0.24 ± 0.21* -0.39 ± 0.24+ -0.20 ± 0.18 -0.21 ± 0.17 

Peak 
Propulsive 

GRF (N/kg) 

Force during 
ipsilateral push-off 0.67 ± 0.34*,+ 1.03 ± 0.46+ 0.87 ± 0.34 0.87 ± 0.34 

Peak Braking 
GRF (N/kg) 

Force during weight 
acceptance/weight 

transfer 
-0.86 ± 0.44* -0.75 ± 0.44 -0.80 ± 0.33 -0.84 ± 0.31 

Vertical GRF 
(N/kg) Force due to gravity 10.18 ± 1.05 10.15 ± 0.99 10.2 ± 2.50 10.7 ± 2.68 

% Gait Cycle 
of Peak 

Propulsive 
GRF 

Relative to paretic 
limb initial contact 47 ± 12% 19 ± 22% 57 ± 9% 11 ± 12% 

% Gait Cycle 
of Peak 

Braking GRF 

Relative to paretic 
limb initial contact 16 ± 16% 52 ± 17% 16 ± 3% 66 ± 4% 

t-tests corrected for multiple comparisons using the Benjamini and Hochberg FDR 60.  
*Significant differences between the paretic and non-paretic extremity of post-stroke participants 
+Significant differences between participants post-stroke and controls 

Variables in bold were included in sparse clustering analyses.  
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Figure 1 

 
Figure 1. Data consolidation and quality assessments and demographics for the final sample. A) 
Pipeline for participant inclusion. N indicates the sample size at each point for the total sample 
(bold) and the sample from each research site. The final sample size was N=112 participants. B) 
Time post-stroke onset in months across all research sites. Participants from Pitt were more 
chronic than those from USC2021 (p=0.033). C) Post-stroke participant lower extremity Fugl-
Meyer score. The maximum score is 34 points. Participants from Pitt were less impaired than 
those from Em and USC. D) Treadmill self-selected walking speed for all participants. Control 
self-selected speed was significantly higher than the average speed in the stroke group (p<0.001). 
Control participants also walked at speed matched to that of a stroke participant of the same age 
and sex (Control Matched). Participants from JHU walked at a significantly greater speed than 
those from Em and both samples from USC (p<0.050).  
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Figure 2 

 
Figure 2. The sparse variables make up K=5 clusters with distinct walking speeds and 
impairments. A) Weights for each of the 17 candidate features for clustering. 8/17 features had 
non-zero weights and were used in clustering analyses. B) Individual observations within each 
cluster, plotted in discriminant component space, colored by cluster. Cluster 1 comprised 10 
participants; four from JHU, three from Pitt, two from USC2018, and one from USC2021. 
Cluster 2, 22 participants; 11 controls, four from Pitt, one from USC2018, and six from 
USC2021. Cluster 3, 34 participants; 11 control participants, one from Em, four from JHU, four 
from Pitt, seven from USC2018, and seven from USC2021. Cluster 4 had 16 participants; three 
controls, three from Em, five from Pitt, three from USC2018, and three from USC2021. Cluster 
5 had 30 participants; six controls, four from Em, two from JHU, three from Pitt, seven from 
USC2018, and seven from USC2021. C) Participant speed (for participants post-stroke and 
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controls) and impairment (for stroke participants) were measured via FM score across the 
different clusters. Only speed was used in the cluster definition. Solid horizontal lines indicate 
post-hoc significant differences between clusters (p<0.050). The dashed horizontal line indicates 
group-level average speed across all participants and average Fugl-Meyer (FM) scores for all 
stroke participants compared with the cluster-level speed and FM. P: Paretic NP: Non-Paretic. 
St: Stance. Sw: Swing. Lat: Lateral. Prop: Propulsion. GRF: Ground reaction force. 
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Figure 3
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Figure 3. Gait features for participants post-stroke and controls within each cluster compared to 
all other participants outside each cluster for a subset of sparse variables used in k-means  
clustering. C1, … C5 indicates participants included in the respective cluster number, and ~C1, 
… ~C5 indicates all participants not included in the respective cluster. Stance and swing times 
are expressed as a percentage of stride duration to account for differences in walking speed. 
Cluster 1: participants post-stroke with a fast-walking speed and asymmetric propulsion; Cluster 
2: participants post-stroke and controls with moderate speed, short stance times, low propulsion, 
and symmetric steps. Cluster 3: participants post-stroke and controls with moderate speed, short 
stance times, and asymmetric forces; Cluster 4: participants post-stroke with a slow speed and 
frontal plane force asymmetries; and Cluster 5: post-stroke participants who walked slowly and 
symmetrically, with short swing times. Color conventions as in Figure 3. * FDR corrected  
p<0.010 for all variables indicated as significant. Abbreviations as in Figure 2. 
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Figure 4 

 
Figure 4. Stability and generalizability of clusters assessed via leave one out approach. A) 
Jaccard stability index for each cluster for the entire dataset (horizontal black lines) and leaving 
out each sample. Colors indicate the sample left out to assess the Jaccard. The dashed gray line is 
the line above which clusters are considered stable. The Jaccard Index is the proportion of 
observations consistently assigned to the same cluster over the bootstrap iterations. A Jaccard 
below 0.6 indicates that the clusters are unstable, a Jaccard between 0.6 and 0.75 shows 
moderately stable clusters, 0.75 and 0.85 stable clusters, and a Jaccard above 0.85 indicates 
highly stable clusters. B) Average and standard deviation of the speed for each cluster for the 
entire dataset in black and the leave one out approach with colors indicating the sample left out 
from analyses.  
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Supplementary Materials  
Supplementary Table 1. Demographics for participants excluded from analyses.  

Group Speed 
(m/s) 

Mass* 
(kg) 

Age 
(years) 

Sex FM Score Affected 
Side 

Months 
Post-
Stroke 

Emory 0.45 71.4 74 F 26 L 24 
Pitt 1.11 74.5 75 M 32 R 370 
Pitt 0.53 53.9 66 F 26 R 117 
USC 0.13 67.0 28 F 19 L 25 
Control 1.05 

(matched 
0.13) 

51.4 28 F    

*p<0.05 significant differences for the independent samples t-test comparing the sample of participants 
excluded vs. the sample of participants included in analyses 
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Supplementary Figure 1 

 

 
Supplementary Figure 1. Demographics. A) Participant age in years across all sites tested. B) 

Participant mass in kilograms. Mass in control participants was significantly lower than in post-

stroke participants (p=0.002). C) Self-reported sex across different sites. D) Paretic side for 

participants post-stroke across different sites.  
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Supplementary Figure 2 

 

 
Supplementary Figure 2. A) Krzanowski and Lai index for D-Index plots for the dataset in our 

study. The optimal number of clusters is the one with the highest index. B) Mean and 95% 

confidence intervals for the Krzanowski and Lai index obtained via 1000 bootstrap iterations. 

Bootstrap analyses indicate overlapping confidence intervals for the Krzanowski and Lai index 

for 2, 5, 6 and 13 clusters, which are also higher than all other number of clusters. Given 

previous work identifying 4 stroke clusters plus our group of control participants we maintain 

K=5 clusters.   
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Supplementary Figure 3 

 

 
Supplementary Figure 3. Participant demographics across the different clusters. A) Age in 

years for participants post-stroke and controls in each cluster. Participants in C1 were marginally 

younger than C2 (p=0.051). B) Mass in kg for participants post-stroke and controls across 

clusters. C) Time post-stroke in months for participants post-stroke. No differences were 

observed across clusters (p=0.925). Horizontal lines indicate post-hoc differences between 

clusters. D) Sex for participants post-stroke and controls across clusters for all participants. E) 

Paresis across clusters for participants post-stroke.   
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Supplementary Figure 4 
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Supplementary Figure 4. Spatiotemporal and peak forces across the different clusters for 

participants post-stroke and controls. Post-hoc significant differences between clusters are 

indicated by the solid horizontal lines (p<0.050). The dashed horizontal line indicates the 

average value of the variable across all 112 participants to allow comparisons of group-level 

averages with cluster-level averages. DST refers to double support time, and SLS refers to single 

limb support time, which was available for all participants except those from Pitt and therefore 

were not used as candidate variables for clustering. All other variables were used as candidate 

variables in sparse analyses.  
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Clusters of walking impairment post-stroke 

Supplementary Figure 5 

 
Supplementary Figure 5. Temporal variables are expressed as the percent duration of the 

overall stride. Post-hoc significant differences between clusters are indicated by the solid 

horizontal lines (p<0.050). The dashed horizontal line indicates the average value of the variable 

across all 112 participants for stance and swing times and 93 participants for double and single 

support times to allow comparisons of group-level averages with cluster-level averages. DST 

refers to double support time, and SLS refers to single limb support time, which was available 

for all participants except those from Pitt.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2023. ; https://doi.org/10.1101/2023.05.11.540385doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.11.540385
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods:
	Data Curation
	Data processing
	Statistical analyses
	Results

	Discussion
	Limitations
	Conclusions
	Acknowledgments


