

1 **Cysteine-Rich Intestinal Protein 1 is a Novel Surface Marker for Myometrial
2 Stem/Progenitor Cells.**

3
4 Emmanuel N. Paul¹, Tyler J. Carpenter¹, Sarah Fitch^{1,2}, Rachael Sheridan³, Kin H. Lau⁴,
5 Ripla Arora^{1,2}, Jose M. Teixeira^{1*}

6
7 ¹Department of Obstetrics, Gynecology and Reproductive Biology, College of Human
8 Medicine, Michigan State University, Grand Rapids, MI 48824, USA

9 ²Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824,
10 USA

11 ³Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA.

12 ⁴Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503,
13 USA.

14
15 ***Corresponding Author:**

16 Jose M. Teixeira, PhD, Michigan State University, 400 Monroe Ave NW, Grand Rapids,
17 MI 49503. Email: teixe15@msu.edu

18
19 **Acknowledgments:**

20
21 The authors have no conflicts to declare.

24 **Summary**

25 Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of
26 origin for uterine fibroids, which are benign tumors that develop in the myometrium of
27 most reproductive age women, but the identity of the MyoSPC has not been well
28 established. We previously identified SUSD2 as a possible MyoSPC marker, but the
29 relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells
30 compelled us to find better discerning markers for more rigorous downstream analyses.
31 We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify
32 markers capable of further enriching for MyoSPCs. We observed seven distinct cell
33 clusters within the myometrium, with the vascular myocyte cluster most highly enriched
34 for MyoSPC characteristics and markers, including *SUSD2*. *CRIP1* expression was
35 found highly upregulated in both techniques and was used as a marker to sort
36 *CRIP1*+/PECAM1- cells that were both enriched for colony forming potential and able to
37 differentiate into mesenchymal lineages, suggesting that *CRIP1*+/PECAM1- cells could
38 be used to better study the etiology of uterine fibroids.

39

40 **Introduction**

41 Uterine fibroids, also known as leiomyomas, are benign tumors found in the
42 smooth muscle layer of the uterus, the myometrium. Uterine fibroids develop in up to
43 80% of women during their reproductive years and, although benign, are often
44 associated with debilitating symptoms such as menorrhagia, anemia, dysmenorrhea,
45 pelvic pain, and urinary incontinence (1,2). Hormonal therapies, mainly used for
46 alleviating fibroid symptoms, are generally short-term treatments due to long-term side
47 effects or induced infertility (3). Hysterectomy, the most common and effective treatment
48 for uterine fibroids, results in permanent infertility (4). Progress in the search for
49 effective medical therapies that preserve fertility and avoid invasive surgery has been
50 difficult, in part because fibroid etiology and pathogenesis of the disease is unclear.

51 A dysregulated myometrial stem/progenitor cell (MyoSPC) has been proposed as
52 the cell of origin for uterine fibroids. After embryonic development, tissue-specific stem
53 cells remain throughout the body and play important roles in tissue homeostasis,
54 including replacing dying cells and participating in tissue remodeling (5). The dramatic
55 remodeling that occurs during pregnancy and following parturition in the uterus suggest
56 a need for and the existence of myometrial stem cells (6). Uterine fibroids are thought to
57 be a clonal disease (7-9), and since most clonal diseases have a single cell origin (10),
58 we and others (11,12) have hypothesized that a mutated MyoSPC could be the cell of
59 origin for uterine fibroids (13). Thus, the identification of the MyoSPC has been an
60 important goal of many laboratories to begin studying the underlying mechanisms of
61 fibroid etiology. The presence of cells with stem cell properties has been demonstrated
62 using the label-retaining cells in a mouse model (14,15) and using the side population

63 (SP) method in human myometrium (16,17). Putative MyoSPCs have been isolated and
64 studied by using a combination of cell surface markers, including SUSD2 (18),
65 CD44/Stro-1 (11) and CD34/CD49f/b (19). However, cell surface markers in these
66 studies have been selected using stem cell markers from other tissues, and their
67 respective contributions to myometrial smooth muscle regeneration have not been well
68 established. We and others have also used the side population (SP) discrimination
69 assay (16,17), but this stem cell identification technique has multiple pitfalls, not the
70 least of which is difficulty in enriching and recovering live SP cells for further analyses
71 (20). Because the endometrial stroma and the myometrium originate from the same
72 embryonic tissue, the Müllerian duct mesenchyme (6), we recently proposed that
73 SUSD2, an endometrium stem cell marker (21), also enriches for MyoSPCs (18). While
74 SUSD2+ cells do have mesenchymal stem cell characteristics, SUSD2+ cells represent
75 between 25-40% of total myometrial cells. Additionally, colony formation is only
76 increased 2.8-fold increase in SUSD2⁺ cells compared to the rest of the myometrial
77 cells, suggesting that further enrichment might be possible. The objective of the present
78 study was to integrate next-generation sequencing, including single cell RNA-seq and
79 bulk RNA-seq, to identify a more specific marker to significantly enrich for MyoSPCs
80 from human myometrium, which can then be used to better understand the molecular
81 mechanisms underlying fibroid etiology.

82

83 **Results**

84 **SUSD2⁺ are enriched for characteristic MSC genes compared with SUSD2⁻ cells.**

85 To determine how best to enrich for stem cell activities in the SUSD2+ MyoSPC
86 population, we used SUSD2 to enrich for myometrium stem cells followed by RNA-seq
87 to discover new cell surface markers for MyoSPCs in the human myometrium.
88 Myometrial cells from non-fibroid patients (n = 5) were isolated and live SUSD2+ and
89 SUSD2- cells were sorted by flow cytometry. As with our previous results (18), 30-50%
90 of the myometrial cells were SUSD2+ (**Fig 1A**). Total RNA was isolated from the two
91 cell populations and sequenced for differential gene expression analyses. Principal
92 Component Analysis (PCA) plot showed that SUSD2+ and SUSD2- cells were
93 separated by principal component 1 with a variance of 39%, indicating a strong
94 divergence in the transcriptomic profiles of these two cell populations (**Fig 1B**). A total of
95 6777 significant differentially expressed genes (DEGs) were detected between SUSD2+
96 and SUSD2- myometrial cells with a p-adjusted false discovery rate (FDR) <0.05 (**Fig**
97 **1C and Table S1**). 3527 genes were down-regulated and 3250 were up-regulated in the
98 SUSD2+ population compared to the SUSD2- population. We confirmed that *SUSD2*
99 was up-regulated in the SUSD2+ sorted cells and that they were also enriched in other
100 MSC markers such as *MCAM*, *PDGFR β* and *CSPG4* (**Fig 1C and 1D**). A heatmap of
101 the top 300 DEGs from the SUSD2+ to SUSD2- cells comparison showed a good
102 separation between cell types and included *SUSD2*, *MCAM*, *PDGFR β* and *CSPG4* (**Fig**
103 **1E**).

104

105 **Myometrium side population cells are not enriched in MSC markers.**

106 The side population (SP) phenotype is another often used method to isolate cells with
107 stem cell characteristics that exploits the ability of some stem cells to efflux the DNA-
108 binding dye Hoechst 33342 via the ATP-binding cassette (ABC) transporters
109 (11,16,17,22,23). An average of 1.7% of the total myometrial cells were SP+ (**Fig 2A**).
110 Addition of verapamil, a calcium channel blocker used as a negative control to validate
111 the SP, severely decreased of the number of the myometrium SP+ cells (**Fig 2B**). SP+
112 and SP- myometrial cells were sorted for total RNA sequencing and analyzed by PCA
113 plot, which showed that matched SP+ and SP- cells segregated by the principal
114 component 2, accounting for 25% of the variance (**Fig 2C**). A total of 828 significant
115 (FDR <0.05) DEGs, including 478 upregulated genes and 350 downregulated genes,
116 were detected between the SP+ and SP- myometrial cells (**Table S2**). The top 10 DEGs
117 enriched in the SP+ to SP- comparison were associated with immune response (*XCL2*
118 (24), *CD69* (25), *IL7R* (26), *KLRD1* (27), and *IL18R1* (28)) apoptosis (*TNFRSF10A*
119 (29)), extracellular matrix (*SPOCK2* (30)) and hematopoietic stem cell (*SELE* (31),
120 *GATA3* (32), *CD69* (33), and *VCAM1*(34)) (**Fig. 2D**). We confirmed an increase in
121 expression of two major ABC transporters, including *ABCB1*, and *ABCG2*, and a
122 decrease in *PGR*, another marker previously shown downregulated in the SP+
123 compared to the SP- of human myometrial cells (16) (**Fig 2E**). Surprisingly, SP+ cells
124 did not show increased expression of putative MSC markers (19,35,36), *SUSD2*,
125 *MCAM*, *PDGFR β* , *CSPG4*, *CD44*, *CD34* and *ITGA6* (also known as *CD49f*) compared
126 to the SP- (**Fig 2F**).

127

128 **A putative MyoSPC cluster is determined by single cell RNA-seq.**

129 A total of 9,775 cells from 5 myometrium samples passed quality control with an
130 average of 98.3% sequencing saturation, or approximately 512,000 reads per cell.
131 Uniform Manifold Approximation and Projection (UMAP) of myometrial (n = 5) single cell
132 RNA-seq (scRNA-seq) revealed 7 main cell clusters (**Fig 3A**) with similar cell
133 distribution patterns across the five myometrial samples (**Fig S1A**). Cluster identities
134 were assigned using the expression profiles of canonical markers for cell populations
135 expected to be found in the myometrium (**Fig 3B**) (37,38), including 4 different smooth
136 muscle cell types, vascular myocytes, myocytes, myofibroblasts, and fibroblast. The cell
137 proportion of each identified clusters was similar across patients with these muscle cell
138 types dominant (**Fig S1B**). Four MSC markers, *SUSD2*, *MCAM*, *PDGFR β* and *CSPG4*,
139 were found highly expressed in the vascular myocyte cluster (**Fig 3C and 3D**), a
140 common MSC niche (39,40). Immunofluorescence suggests that all 4 MSC markers
141 were found surrounding the blood vessels in a separate set of myometrial samples (**Fig**
142 **3E**). Known MSC properties such as quiescence (G0) and the low gene regulation
143 dynamics (41-43) were determined by the cell cycle score and the velocity of the
144 scRNA-seq data, respectively. We identified a small group of cells within the vascular
145 myocyte cluster in the G1/G0 phase (**Fig 4A**) using a computational assignment of cell-
146 cycle stage (44). Cell velocity, which predicts the future state of individual cells using the
147 RNA splicing information from each cell (45), showed that the same group of cells in
148 G1/G0 phase in the vascular myocyte cluster are depicted with low velocity vectors (**Fig**
149 **4B**), indicating low levels of transcriptional changes, another characteristic of stem cells
150 (46). We defined cells within the vascular myocyte cluster presenting with high

151 expression of MSC markers in a G1/G0 phase and with low velocity as the “MyoSPC”
152 cluster.

153

154 **Integrating bulk SUSD2+/- RNA-seq and myometrial scRNA-seq reveals a new**
155 **MyoSPC marker (CRIP1).**

156 Transcriptomic analyses of SUSD2+/- bulk RNA and myometrial scRNA-seq were
157 performed, and the results were integrated to discover possible overlapping MyoSPC
158 markers. A total of 3,700 DEGs were found in the MyoSPC scRNA-seq cluster
159 compared to the rest of the myometrial cells (**Table S3**). A little over half (1929 DEGs)
160 of the MyoSPC DEGs overlapped significantly ($p = 9.5 \times 10^{-81}$) with the DEGs from the
161 SUSD2 +/- bulk RNA-seq comparison (**Fig 5A and Table S4**). Correlation analysis of
162 the \log_2 fold change (FC) in gene expression in the scRNA-seq analysis with the
163 SUSD2+/- bulk RNA-seq confirmed that the MSC markers, *SUSD2*, *MCAM*, *PDGFRβ*
164 and *CSPG4* were upregulated in both (**Fig 5B**). The most highly upregulated gene in
165 the MyoSPC cluster, Cysteine-Rich Intestinal Protein 1 (*CRIP1*), is also significantly
166 upregulated in the SUSD2+ cells (**Fig 5B**). UMAP plot showed that *CRIP1* was highly
167 expressed in the vascular myocyte cluster (**Fig 5C**), and more particularly in the
168 MyoSPC cluster (**Fig 5D**). *CRIP1* expression wasn't differentially expressed ($\log_2\text{FC} = -$
169 0.2, FDR $p = 9.9 \times 10^{-1}$) in the RNA-seq results of the SP assay (**Fig S2A**). Although the
170 cell distribution in each cluster was different (**Fig S2B and Table S5**), we confirmed that
171 *CRIP1* and the MSC markers were enriched in the MyoSPC cluster (**Fig S2C**) in cells
172 from an orthogonal scRNA-seq study of myometrium from fibroid patients (38) when the
173 cells were projected onto the UMAP shown in **Fig 3A**.

174

175 **CRIP1+ cells have common stem/progenitor cell properties.**

176 We next investigated the CRIP1+ cells to establish their stem cell bona fides.
177 Immunofluorescence analysis using 3D imaging of the myometrial layer showed that
178 CRIP1+ cells are located surrounding the PECAM1+ vascular endothelial cells, a
179 common MSC niche (39,40,47) (**Fig 6A and Supplementary Video**). Interestingly,
180 CRIP1+ cell immunofluorescence appeared to be predominantly localized near the
181 larger blood vessels and within a subset of SUSD2+ cells. Flow cytometry revealed that
182 CRIP1+ cells represented between 2 to 5% of the total myometrial cells (**Fig 6B**).
183 PECAM1 was used for negative selection of the smaller population of endothelial cells
184 that also expressed CRIP1. CRIP1+/PECAM1- cells and the depleted cell population
185 were sorted, and typical downstream stem cell assays were performed to determine if
186 the CRIP1+/PECAM1- cells have stem/progenitor cell proprieties. Colony formation
187 assays indicated that CRIP1+/PECAM1- sorted cells have a greater self-renewal
188 capacity compared to the depleted sorted population (**Fig 6C**), with a significant
189 increase of 4.5-fold greater number of colonies formed (**Fig 6D**), as well as a significant
190 increase of the size of the colonies (**Fig 6E**). After 5 days in smooth muscle
191 differentiation media, CRIP1+/PECAM1- cells were positive for ACTA2, indicating that
192 they differentiated into smooth muscle cells (**Fig 6F**). Similarly, CRIP1+/PECAM1- cells
193 were positive for Oil Red O staining (**Fig 6G**), and alkaline phosphatase activity (**Fig 6H**)
194 when grown in either in adipogenic or osteogenic differentiation media, respectively,
195 compared to CRIP1+/PECAM1- cells grown in control media, indicating that these
196 putative MyoSPC cells have the capacity to differentiate into adipocytes and osteocytes.

197 **Discussion**

198 We have identified CRIP1 as a novel cell surface marker that enriches for a
199 possible MyoSPC by combining the analyses of two next generation sequencing
200 techniques, bulk RNA-seq from SUSD2+ and SUSD2- cells and scRNA-seq of total
201 myometrial samples. Bulk RNA-seq, enriched for known MSC markers, but the large
202 number of DEGs made it difficult to choose putative novel myometrium stem cell
203 markers for further study. To reduce the number of candidate markers for validation and
204 follow up studies, we used scRNA-seq to identify possible stem cells based on MSC
205 markers. Subsequent stem cell assays confirmed that CRIP1+ cells have MSC
206 properties, and further studies are underway to determine whether these cells could be
207 a cell of origin for uterine fibroids.

208 CRIP1, Cysteine-rich intestinal protein 1, is a member of the LIM/double zinc-
209 finger proteins that is predicted to be a novel biomarker in multiple cancers and can
210 promote several biological processes, including cell migration, invasion and epithelial-
211 mesenchymal transition by activating Wnt/β-catenin signaling, an essential pathway
212 that maintains stem cell homeostasis in many tissues (48-50). In an earlier study of
213 SP+/- cells in fibroids (51), CRIP1 was among the DEGs detected by microarray
214 analysis. In that study, the authors demonstrated that the SP+ cells from fibroid tissues
215 have stem cell characteristics, including self-renewal and differentiation into adipose
216 and osteocyte cells. In the present study, we used myometrial samples from non-fibroid
217 patients (MyoN) samples because we recently reported that myometria from fibroid
218 patients (MyoF) have a different transcriptomic profile compared to MyoN samples,
219 including an enrichment of DEGs in a leiomyoma disease ontology panel (52). Here we

220 have reported that *CRIP1* expression was not differentially expressed and that the
221 expression of the MSC markers, *SUSD2*, *MCAM*, *PDGFR β* , and *CSPG4* were
222 decreased in SP+ compared to the SP- from MyoN cells. These discordant results could
223 arise from the tissue type, that is, fibroid tumor versus MyoN, or because the SP
224 technique could be more applicable to other tissues (20) or hematopoietic stem cells
225 (HSCs). It is worth noting that HSC exhibit a specific ABC transporter gene expression
226 profile distinct from other stem cells, including MSCs (53). HSC expressed higher level
227 of most of the ABC transporters including *ABCB1*, *ABCC1* and *ABCG2* compared to
228 other stem cells. Indeed, the SP+ MyoN cells were enriched for ABC transporters and
229 HSC-associated genes. Additionally, the SP technique relies on an intact cell
230 metabolism and considerable variation in results has been observed (20).

231 Our scRNA-seq results suggested that human myometrium has at least 7
232 different cell types, including different types of smooth muscle cells, endothelial cells,
233 and immune cells. Similar clusters were reported in a scRNA-seq comparison of fibroids
234 and myometrium (38). The depth of sequencing for each cell was close to saturation
235 allowing us to identify a small cell population with stem cell characteristics, including the
236 expression of MSC markers *SUSD2*, *MCAM*, *PDGFR β* , and *CSPG4*, a quiescent (G0)
237 cell cycle state (41) and low transcriptomic activity/low RNA velocity (41-43).
238 *CRIP1*+/PECAM1- cells were primarily located in the perivascular region, a common
239 MSC niche (39,40,47), particularly by the larger myometrial blood vessels. These
240 results were consistent with our scRNA-seq results showing that *CRIP1* expression was
241 most highly expressed in the vascular myocyte cluster. Moreover, immunofluorescence
242 staining showed that *CRIP1*+ cells were a subset the *SUSD2*+ cells and that

243 CRIP1+/PECAM1- cells account for only 2 to 5% of the total human myometrial cells, a
244 typical stem cell proportion in adult tissues (54). Interestingly, the depleted population
245 was able to form a few colonies, an indication that some cells in the depleted population
246 also have self-renewal properties. Similar results were observed by us using other MSC
247 markers to isolate myometrium stem/progenitor cells, including SUSD2, MCAM, or
248 PDGFR β (18). This finding suggests that further enrichment of the MyoSPCs with some
249 of the other MSC markers is possible or that myometrial cell plasticity is more common
250 than heretofore appreciated.

251 In summary, we have identified CRIP1 as a novel marker of MyoSPCs from
252 integration of two transcriptome sequencing techniques, sorted bulk cell and single cell
253 RNA-seq. Induction of a known fibroid subtype mutation in CRIP1+/PECAM1- cells and
254 their subsequent development into fibroid-like cells, could advance our understanding of
255 fibroid etiology based on the hypothesis that a dysregulated MyoSPC is the origin of
256 uterine fibroids.

257

258

259 **Study approval**

260 The use of human tissue specimens was approved by the Spectrum Health Systems
261 and Michigan State University Institutional Review Boards (MSU IRB Study ID:
262 STUDY00003101, SR IRB #2017-198) as secondary use of biobank materials.

263

264 **Author contributions**

265 Experimental design (E.N.P, J.M.T) collected data and performed experiments (E.N.P,
266 T.J.C, S.F), analyzed data (E.N.P, R.S, K.H.L, R.A, J.M.T), wrote/reviewed manuscript
267 (E.N.P, T.J.C, S.F, R.S, K.H.L, R.A, J.M.T).

268

269 **Acknowledgments**

270 We would like to thank the patients who consented for the study, the Spectrum Health
271 Systems Universal Biorepository staff, and the Van Andel Institute Genomics Core
272 (RRID:SCR_022913), especially Marie Adams, Rebecca Siwicki and Julie Koeman, for
273 their assistance with the construction and sequencing of 10X libraries for the single cell
274 RNA-seq and bulk RNA-seq. This work was supported by grants HD096259 and
275 HD100959 from the Eunice Kennedy Shriver National Institute of Child Health and
276 Human Development (to J.M.T) and the SRI/Bayer Discovery/Innovation Grant (to
277 E.N.P).

278

279 **Methods**

280

281 **Sample collection and cell isolation**

282 The use of human tissue specimens was approved by the Spectrum Health Systems
283 Institutional Review Board as secondary use of biobank materials. Myometrial samples
284 from non-fibroid patients (MyoN) were obtained following total hysterectomy from pre-
285 menopausal (aged 34-50), self-identified Caucasian women. No fibroids were detected
286 by ultrasound prior to surgery. All patients who participated in the study gave consent to
287 donate tissue through the Spectrum Health Biorepository. Myometrial samples were
288 washed with PBS, dissected away from non-myometrial tissue, and minced. Cells were
289 isolated by incubation at 37°C in baffled flasks containing digestion media (DMEM/F12,
290 10% fetal bovine serum (FBS), collagenase type I, DNase type I, and MgCl₂) with
291 agitation. The resulting cell suspensions were strained through 100- and 40-µm cell
292 strainers, washed with warm media (DMEM/F12 containing 15% FBS), and centrifuged.
293 Isolated cells were then stored in freeze media (90% FBS, 10% DMSO) at -80 °C until
294 needed.

295

296 **Cell staining for FACS**

297 Human primary myometrial cells were thawed and resuspended in 1% bovine serum
298 albumin blocking buffer for 20 min at room temperature (RT). Cells were then incubated
299 with the primary antibody for 45 min at RT; SUSD2-PE anti-human (Miltenyi Biotec,
300 #130-117-682), PECAM1-FITC anti-human (ThermoFisher, #11-0319-42), and CRIP1
301 rabbit anti-human (ThermoFisher, #PA5-24643). For CRIP1/PECAM1 staining, cells
302 were incubated with an Alexa-647 anti-rabbit secondary antibody for 30 min at RT.

303 Stained myometrial cells were then wash with flow buffer and resuspend in 1 mL of flow
304 buffer with 1 µg of 4',6-diamidino-2-phenylindole (DAPI) or Propidium Iodode (PI),
305 depending on the experiment, for live dead discrimination. Cells were sorted by the flow
306 cytometry core at Van Andel Research Institute (VARI) using a FACSymphony S6
307 cytometer (BD Biosciences) and analyzed with FlowJo Software (BD Biosciences,
308 version 10.8.1).

309

310 The side population assay was conducted as described previously (17). Briefly, live
311 cells were incubated with 5 µg/mL of Hoechst 33342 dye for 90 min. As a negative
312 control, separate aliquots of cells from the same patients were treated with 25 µg/ml of
313 verapamil (Sigma) prior to addition of the Hoechst dye. PI was added to stained cells
314 with and without verapamil treatment and analyzed in a MoFlo Astrios (Beckman
315 Coulter) for side population gating by Hoechst red and blue filters and sorting in media
316 (DMEM/F12) at 4 °C.

317

318 **RNA Isolation, Library Preparation and Sequencing**

319 Total RNA was isolated from sorted cells using an RNeasy mini kit (Qiagen) and stored
320 at –80 °C in nuclease-free water. RNA integrity values were determined with an Agilent
321 2100 Bioanalyzer (ThermoFisher), and values ≥7.5 were used for library preparation
322 and paired-end (2 × 100 bp) RNA-sequencing on an Illumina NextSeq 6000 instrument
323 (Illumina). Libraries were prepared using a Kapa RNA HyperPrep kit with ribosomal
324 reduction, pooled, and sequenced on flowcells to yield approximately 50–60 million

325 reads/sample. Raw fastq files were deposited in the NCBI Gene Expression Omnibus
326 (**GSEXXXX**).

327
328 For single cell RNA-seq, dead cells were removed from digested myometrial cells using
329 the Dead Cell Removal Kit (Miltenyi Biotec, #130-090-101) per manufacturer's
330 instructions. Live myometrial cells from 5 non-fibroid patients were then sequenced.
331 Libraries were generated and sequenced using the 10X Chromium Next GEM Single
332 Cell 3□ GEM kit (10X Genomics, v2) platform according to the manufacturer's
333 instructions. 2 x 75 bp, paired end sequencing was performed on an Illumina NovaSeq
334 6000 sequencer using an S2 flow cell, 100 cycle sequencing kit (v1.5) to a minimum
335 depth of 50K reads per cell (Illumina Inc., San Diego, CA, USA). Base calling was done
336 by Illumina RTA3 and output was demultiplexed and converted to FastQ format with
337 Cell Ranger (10X Genomics, v3.1.0). Raw fastq files were deposited in the NCBI Gene
338 Expression Omnibus (**GSEXXXX**).

339
340 **RNA Seq Analysis**
341 For bulk RNA-seq, reads were trimmed for quality and adapters using TrimGalore
342 (version 0.6.5), and quality trimmed reads were assessed with FastQC (version 0.11.7).
343 Trimmed reads were mapped to Homo sapiens genome assembly GRCh38 (hg38)
344 using STAR (version 2.7.9a). Reads overlapping Ensembl annotations (version 99)
345 were quantified with STAR prior to model-based differential expression analysis using
346 the edgeR-robust method with paired samples. Genes with low counts per million
347 (CPM) were removed using the filterByExpr function from edgeR (55). Scatterplots of

348 two selected principal components was constructed with the PCAtools R package
349 (version 2.5.13) to verify sample separation prior to statistical testing. Generalized linear
350 models were used to determine if principal components were significantly associated
351 with cell type. Genes were considered differentially expressed if their respective edgeR-
352 robust FDR corrected p-values were less than 0.05. Differential expression was
353 calculated by comparing SUSD2+ to SUSD2- cells. DEGs were visualized with volcano
354 plots and heatmaps generated using the EnhancedVolcano (version 1.8.0) and
355 pheatmap (version 1.0.12) packages in R. Box plots of the $\log_2(\text{CPM})$ values were
356 generated using the R package ggplot2 (version 3.4.0).

357
358 For scRNA-seq, demultiplexed sequencing reads were processed and aligned to the
359 *Homo sapiens* genome assembly GRCh38 (hg38) using STAR (version 2.7.9a) with
360 10X Genomics Cell Ranger (version 3.1.0). Samples were merged using the integration
361 anchors function of the Seurat package (version 4.2.1) from R (56). Genes expressed in
362 fewer than three cells in a sample were excluded, as well as cells that expressed fewer
363 than 200 genes and mitochondrial gene content >5% of the total unique molecular
364 identifier count. Data were normalized using a global-scaling normalization method (56)
365 that normalizes the feature expression measurements for each cell by the total
366 expression, multiplies this by a scale factor (10,000), and then log-transforms the
367 results. The top 2,000 most variable genes that were used for cell clustering were found
368 using the *FindVariableFeatures* function and were then normalized using the *ScaleData*
369 function. Based on an elbow plot generated using the *Elbowplot* function of Seurat, we
370 selected 15 principal components (PC) for downstream analyses. Cell clusters were

371 generated using *FindNeighbors* and *FindClusters* functions. For visualization, UMAPs
372 were generated using the *RunUMAP*, *FeaturePlot* and *DimPlot* functions. The *DotPlot*
373 Seurat function was used to generate dot plots to visualize gene expression for each
374 assigned cluster. Cell cycle score and velocity were determined using the functions
375 *CellCycleScoring* from Seurat and *RunVelocity* from SeuratWrappers (version 0.3.0),
376 respectively. The “stem cell” cluster was selected using the *CellSelector* function from
377 Seurat. The *RidgePlot* function from the Seurat R package was used for the
378 visualization of *CRIP1* gene expression in the different myometrium clusters.

379

380 Venn diagrams of the overlapping DEGs from the bulk RNA-seq of SUSD2+ and
381 SUSD2- cells and DEGs of scRNA-seq of the “MyoSPC” cluster compared to the rest of
382 the myometrial cells were constructed using the eulerr package (version 6.1.1). The
383 scatter plot of overlapping DEG from bulk- and scRNA-seq was generated with ggplot2
384 (version 3.4.0). *CRIP1* expression in the MyoSPC cluster was confirmed using a single
385 cell data from the NCBI Gene Expression Omnibus (GSE162122). Single cell data from
386 5 MyoF from that study were mapped to the hg38 using STAR. A total of 18939 cells
387 passed quality control and were projected onto our reference UMAP using the function
388 *MapQuery* from Seurat.

389

390 **Imaging**

391 Whole mount immunofluorescent staining (57) was performed for human myometrial
392 samples that were fixed in a 4:1 solution of methanol:DMSO. Tissue was removed from
393 the fixative, rehydrated in (1:1) methanol: PBST (PBS, 1% triton) solution and washed in

394 100% PBST. Samples were incubated in a blocking solution (PBS, 2% powdered milk,
395 1% triton) and then stained with a 1:500 dilution for primary antibodies in blocking
396 solution for 7 nights at 4°C. Primary antibodies used were Rabbit anti-human CRIP1
397 (ThermoFisher, #PA5-24643), Mouse anti-human SUSD2 (Biolegend #327401) and
398 Mouse anti-human PECAM1 (Abcam, #ab9498). Samples were then incubated with
399 secondary antibodies, Donkey anti-Rabbit IgG Alexa Fluor 555 (Invitrogen, #A31572),
400 Goat anti-Mouse IgG Alexa Fluor 647 (Invitrogen, #A21235) at a dilution of 1:300 and
401 Hoechst dye, for three nights at 4°C. Samples were transferred to a methanol:PBST
402 (1:1) solution, then washed in methanol and incubated at 4°C overnight in a 3% H₂O₂
403 solution diluted in methanol. Tissues were then washed in methanol and cleared in
404 benzyl alcohol:benzyl benzoate (1:2) overnight. Imaging was performed using a Leica
405 SP8 TCS white light laser confocal microscope utilizing 10x air objective and a 7.0 μm Z
406 stack (58). Imaris v9.2.1 (Bitplane) commercial software was used to analyze confocal
407 image files and create 3D renderings. The image files were imported into Imaris 3D
408 surpass mode and 3D renderings were created using the Surface plugin. Images were
409 captured using the Snapshot plugin of Imaris and video were generated using the
410 Animation plugin.

411

412 **Colony formation and mesenchymal lineage differentiation**

413 CRIP1+/PECAM1- and the depleted cell populations were sorted as described above
414 and plated at 50 cells/cm² in triplicate in growth media (DMEM/F12, 10% FBS)
415 overnight, then grown in MesenPro RS (Thermo Fisher, # 12746012) for 2 to 3 weeks.
416 Cultures were fixed in 4% paraformaldehyde (PFA) and stained with crystal violet for
417 colony visualization. Colonies were counted and total surface area was estimated using

418 ImageJ (version 1.53k), and the percent colony-forming units (CFUs) was calculated as
419 (number of colonies/number of cells plated) × 100 and averaged for triplicates. Matched
420 CRIP1+/PECAM1- and depleted populations were cultured in different wells of the same
421 plate, and both cell types were assayed on the same day. Images were taken using a
422 Nikon SMZ18 microscope and Ds-Ri1 camera (Nikon Instruments Inc.). For osteogenic
423 and adipogenic differentiation, CRIP1+/PECAM1- cells were plated in triplicate at 50%
424 to 80% confluence in growth media (DMEM/F12, 10% FBS) overnight and then cultured
425 for 10 days in fresh StemPro Adipogenesis Differentiation (Thermo Fisher Scientific,
426 #A1007001) or StemPro Osteogenesis Differentiation (Thermo Fisher Scientific,
427 #A1007201) media according to the manufacturer's instructions. Cells were cultured in
428 regular growth media to serve as differentiation controls. To assay adipogenic
429 differentiation, cultures were fixed in 4% PFA and stained using Oil Red O (Sigma,
430 #01391) according to the manufacturer's instructions. To assay osteogenic
431 differentiation, cultures were stained for alkaline phosphatase activity using the Alkaline
432 Phosphatase (AP), Leukocyte kit (Sigma, #86R-1KT) according to the manufacturer's
433 instructions. For smooth muscle differentiation, cells were plated on 1 mg/ml dried rat
434 tail collagen (Corning, #354236) in 8 well chamber slides with growth media
435 (DMEM/F12, 10% FBS) overnight and then cultured in Medium 231 with a smooth
436 muscle differentiation supplement (Thermo Fisher, #M231500). Cells were fixed in 4%
437 PFA at the indicated times (D0: before adding the differentiation media, D5: 5 days in
438 differentiation media) and stained using αSMA-Cy3 (Sigma, #C6198). Images were
439 taken using a Nikon Eclipse Ni-U or Nikon SMZ18 microscope and Ds-Qi1MC or Ds-Ri1
440 camera (Nikon Instruments Inc.).

441

442 **Statistical analyses**

443 Bioinformatic statistics were performed using the listed packages in R (version 4.0.2).
444 DEGs of the bulk RNA-seq from SUSD2+ vs. SUSD2- and the SP+ vs. SP- were
445 identified as those having an Benjamini–Hochberg FDR corrected $p < 0.05$ (59). Data
446 with unequal variances were log transformed, and homogeneity of variances verified
447 before completion of analyses. DEGs of the scRNA-seq were calculated using the non-
448 parametric Wilcoxon Rank Sum test. Adjusted p-value, based on Bonferroni correction
449 using all features in the dataset was used to determine significance. DEGs with
450 adjusted p-value < 0.05 were consider as significant. Hypergeometric testing was
451 performed using the function phyper from R. For the colony formation assays,
452 comparison of two means was performed with a two-sided student t test, and
453 significance was determined at $p < 0.05$ after confirming normal distribution using
454 Graphpad Prism (version 9.4.1).

455

456 **References**

- 457 1. Zimmermann A, Bernuit D, Gerlinger C, Schaefers M, Geppert K. Prevalence, symptoms
458 and management of uterine fibroids: an international internet-based survey of 21,746
459 women. *BMC Womens Health*. 2012;12:6.
- 460 2. Gupta S, Jose J, Manyonda I. Clinical presentation of fibroids. *Best Pract Res Clin Obstet
461 Gynaecol*. 2008;22(4):615-626.
- 462 3. Farris M, Bastianelli C, Rosato E, Brosens I, Benagiano G. Uterine fibroids: an update on
463 current and emerging medical treatment options. *Ther Clin Risk Manag*. 2019;15:157-
464 178.
- 465 4. Sohn GS, Cho S, Kim YM, Cho CH, Kim MR, Lee SR, Working Group of Society of Uterine
466 L. Current medical treatment of uterine fibroids. *Obstet Gynecol Sci*. 2018;61(2):192-
467 201.
- 468 5. Ono M, Maruyama T. Stem Cells in Myometrial Physiology. *Semin Reprod Med*.
469 2015;33(5):350-356.
- 470 6. Teixeira J, Rueda BR, Pru JK. Uterine stem cells. StemBook. Cambridge (MA)2008.
- 471 7. Canevari RA, Pontes A, Rosa FE, Rainho CA, Rogatto SR. Independent clonal origin of
472 multiple uterine leiomyomas that was determined by X chromosome inactivation and
473 microsatellite analysis. *Am J Obstet Gynecol*. 2005;193(4):1395-1403.
- 474 8. Zhang P, Zhang C, Hao J, Sung CJ, Quddus MR, Steinhoff MM, Lawrence WD. Use of X-
475 chromosome inactivation pattern to determine the clonal origins of uterine leiomyoma
476 and leiomyosarcoma. *Hum Pathol*. 2006;37(10):1350-1356.
- 477 9. Holdsworth-Carson SJ, Zaitseva M, Vollenhoven BJ, Rogers PA. Clonality of smooth
478 muscle and fibroblast cell populations isolated from human fibroid and myometrial
479 tissues. *Mol Hum Reprod*. 2014;20(3):250-259.
- 480 10. Fialkow PJ. Clonal origin of human tumors. *Annu Rev Med*. 1979;30:135-143.
- 481 11. Mas A, Nair S, Laknaur A, Simon C, Diamond MP, Al-Hendy A. Stro-1/CD44 as putative
482 human myometrial and fibroid stem cell markers. *Fertil Steril*. 2015;104(1):225-234
483 e223.
- 484 12. Yin P, Ono M, Moravek MB, Coon JSt, Navarro A, Monsivais D, Dyson MT, Druschitz SA,
485 Malpani SS, Serna VA, Qiang W, Chakravarti D, Kim JJ, Bulun SE. Human uterine
486 leiomyoma stem/progenitor cells expressing CD34 and CD49b initiate tumors in vivo. *J
487 Clin Endocrinol Metab*. 2015;100(4):E601-606.
- 488 13. Bulun SE. Uterine fibroids. *N Engl J Med*. 2013;369(14):1344-1355.
- 489 14. Szotek PP, Chang HL, Zhang L, Preffer F, Dombkowski D, Donahoe PK, Teixeira J. Adult
490 mouse myometrial label-retaining cells divide in response to gonadotropin stimulation.
491 *Stem Cells*. 2007;25(5):1317-1325.
- 492 15. Patterson AL, George JW, Chatterjee A, Carpenter T, Wolfrum E, Pru JK, Teixeira JM.
493 Label-Retaining, Putative Mesenchymal Stem Cells Contribute to Myometrial Repair
494 During Uterine Involution. *Stem cells and development*. 2018.
- 495 16. Ono M, Maruyama T, Masuda H, Kajitani T, Nagashima T, Arase T, Ito M, Ohta K, Uchida
496 H, Asada H, Yoshimura Y, Okano H, Matsuzaki Y. Side population in human uterine
497 myometrium displays phenotypic and functional characteristics of myometrial stem
498 cells. *Proc Natl Acad Sci U S A*. 2007;104(47):18700-18705.

499 17. Chang HL, Senaratne TN, Zhang L, Szotek PP, Stewart E, Dombkowski D, Preffer F,
500 Donahoe PK, Teixeira J. Uterine leiomyomas exhibit fewer stem/progenitor cell
501 characteristics when compared with corresponding normal myometrium. *Reprod Sci.*
502 2010;17(2):158-167.

503 18. Patterson AL, George JW, Chatterjee A, Carpenter TJ, Wolfrum E, Chesla DW, Teixeira
504 JM. Putative human myometrial and fibroid stem-like cells have mesenchymal stem cell
505 and endometrial stromal cell properties. *Human reproduction.* 2020;35(1):44-57.

506 19. Ono M, Kajitani T, Uchida H, Arase T, Oda H, Uchida S, Ota K, Nagashima T, Masuda H,
507 Miyazaki K, Asada H, Hida N, Mabuchi Y, Morikawa S, Ito M, Bulun SE, Okano H,
508 Matsuzaki Y, Yoshimura Y, Maruyama T. CD34 and CD49f Double-Positive and Lineage
509 Marker-Negative Cells Isolated from Human Myometrium Exhibit Stem Cell-Like
510 Properties Involved in Pregnancy-Induced Uterine Remodeling. *Biol Reprod.*
511 2015;93(2):37.

512 20. Golebiewska A, Brons NH, Bjerkvig R, Niclou SP. Critical appraisal of the side population
513 assay in stem cell and cancer stem cell research. *Cell Stem Cell.* 2011;8(2):136-147.

514 21. Masuda H, Anwar SS, Buhring HJ, Rao JR, Gargett CE. A novel marker of human
515 endometrial mesenchymal stem-like cells. *Cell Transplant.* 2012;21(10):2201-2214.

516 22. Redvers RP, Li A, Kaur P. Side population in adult murine epidermis exhibits phenotypic
517 and functional characteristics of keratinocyte stem cells. *Proc Natl Acad Sci U S A.*
518 2006;103(35):13168-13173.

519 23. Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G.
520 Somatic origin of limb muscle satellite and side population cells. *Proc Natl Acad Sci U S A.*
521 2006;103(4):945-950.

522 24. Fox JC, Nakayama T, Tyler RC, Sander TL, Yoshie O, Volkman BF. Structural and agonist
523 properties of XCL2, the other member of the C-chemokine subfamily. *Cytokine.*
524 2015;71(2):302-311.

525 25. Lopez-Cabrera M, Santis AG, Fernandez-Ruiz E, Blacher R, Esch F, Sanchez-Mateos P,
526 Sanchez-Madrid F. Molecular cloning, expression, and chromosomal localization of the
527 human earliest lymphocyte activation antigen AIM/CD69, a new member of the C-type
528 animal lectin superfamily of signal-transmitting receptors. *J Exp Med.* 1993;178(2):537-
529 547.

530 26. Akashi K, Kondo M, von Freeden-Jeffry U, Murray R, Weissman IL. Bcl-2 rescues T
531 lymphopoiesis in interleukin-7 receptor-deficient mice. *Cell.* 1997;89(7):1033-1041.

532 27. Bongen E, Vallania F, Utz PJ, Khatri P. KLRD1-expressing natural killer cells predict
533 influenza susceptibility. *Genome Med.* 2018;10(1):45.

534 28. Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future.
535 *Immunity.* 2013;39(6):1003-1018.

536 29. Passarelli C, Selvatici R, Carrieri A, Di Raimo FR, Falzarano MS, Fortunato F, Rossi R,
537 Straub V, Bushby K, Reza M, Zhabaeva I, D'Amico A, Bertini E, Merlini L, Sabatelli P,
538 Borgiani P, Novelli G, Messina S, Pane M, Mercuri E, Claustres M, Tuffery-Giraud S,
539 Aartsma-Rus A, Spitali P, T'Hoer PAC, Lochmuller H, Strandberg K, Al-Khalili C,
540 Kotelnikova E, Lebowitz M, Schwartz E, Muntoni F, Scapoli C, Ferlini A. Tumor Necrosis
541 Factor Receptor SF10A (TNFRSF10A) SNPs Correlate With Corticosteroid Response in
542 Duchenne Muscular Dystrophy. *Front Genet.* 2020;11:605.

543 30. Liu G, Ren F, Song Y. Upregulation of SPOCK2 inhibits the invasion and migration of
544 prostate cancer cells by regulating the MT1-MMP/MMP2 pathway. *PeerJ*. 2019;7:e7163.

545 31. Nabors LK, Wang LD, Wagers AJ, Kansas GS. Overlapping roles for endothelial selectins
546 in murine hematopoietic stem/progenitor cell homing to bone marrow. *Exp Hematol*.
547 2013;41(7):588-596.

548 32. Tufa DM, Yingst AM, Shank T, Shim S, Trahan GD, Lake J, Woods R, Jones KL, Verneris
549 MR. Transient Expression of GATA3 in Hematopoietic Stem Cells Facilitates Helper
550 Innate Lymphoid Cell Differentiation. *Front Immunol*. 2019;10:510.

551 33. Bujanova N, Goldstein O, Greenshpan Y, Turgeman H, Klainberger A, Scharff Y, Gazit R.
552 Identification of immune-activated hematopoietic stem cells. *Leukemia*.
553 2018;32(9):2016-2020.

554 34. Pinho S, Wei Q, Maryanovich M, Zhang D, Balandran JC, Pierce H, Nakahara F, Di Stauro
555 A, Bartholdy BA, Xu J, Borger DK, Verma A, Frenette PS. VCAM1 confers innate immune
556 tolerance on haematopoietic and leukaemic stem cells. *Nat Cell Biol*. 2022;24(3):290-
557 298.

558 35. Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M, Ghadirkhomi E. Comparison of
559 mesenchymal stem cell markers in multiple human adult stem cells. *Int J Stem Cells*.
560 2014;7(2):118-126.

561 36. Patterson AL, George JW, Chatterjee A, Carpenter T, Wolfrum E, Pru JK, Teixeira JM.
562 Label-Retaining, Putative Mesenchymal Stem Cells Contribute to Murine Myometrial
563 Repair During Uterine Involution. *Stem Cells Dev*. 2018;27(24):1715-1728.

564 37. Pique-Regi R, Romero R, Garcia-Flores V, Peyvandipour A, Tarca AL, Pusod E, Galaz J,
565 Miller D, Bhatti G, Para R, Kanninen T, Hadaya O, Paredes C, Motomura K, Johnson JR,
566 Jung E, Hsu CD, Berry SM, Gomez-Lopez N. A single-cell atlas of the myometrium in
567 human parturition. *JCI Insight*. 2022;7(5).

568 38. Goad J, Rudolph J, Zandigohar M, Tae M, Dai Y, Wei JJ, Bulun SE, Chakravarti D, Rajkovic
569 A. Single-cell sequencing reveals novel cellular heterogeneity in uterine leiomyomas.
570 *Hum Reprod*. 2022;37(10):2334-2349.

571 39. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B,
572 Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ,
573 Giacobino JP, Lazzari L, Huard J, Peault B. A perivascular origin for mesenchymal stem
574 cells in multiple human organs. *Cell Stem Cell*. 2008;3(3):301-313.

575 40. Bautch VL. Stem cells and the vasculature. *Nat Med*. 2011;17(11):1437-1443.

576 41. O'Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L,
577 Kufeld M, Bolouri H, Basom R, Delrow J, McFaline-Figueroa JL, Trapnell C, Pollard SM,
578 Patel A, Paddison PJ, Plaisier CL. Neural GO: a quiescent-like state found in
579 neuroepithelial-derived cells and glioma. *Mol Syst Biol*. 2021;17(6):e9522.

580 42. Riba A, Oravecz A, Durik M, Jimenez S, Alunni V, Cerciat M, Jung M, Keime C, Keyes WM,
581 Molina N. Cell cycle gene regulation dynamics revealed by RNA velocity and deep-
582 learning. *Nat Commun*. 2022;13(1):2865.

583 43. Zywicza V, Misios A, Bunatyan L, Willnow TE, Rajewsky N. Single-Cell Transcriptomics
584 Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects
585 Impairing Adult Neurogenesis. *Cell Rep*. 2018;25(9):2457-2469 e2458.

586 44. Scialdone A, Natarajan KN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O, Marioni JC,
587 Buettner F. Computational assignment of cell-cycle stage from single-cell transcriptome
588 data. *Methods*. 2015;85:54-61.

589 45. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, Petukhov V, Lidschreiber K,
590 Kastriti ME, Lonnerberg P, Furlan A, Fan J, Borm LE, Liu Z, van Bruggen D, Guo J, He X,
591 Barker R, Sundstrom E, Castelo-Branco G, Cramer P, Adameyko I, Linnarsson S,
592 Kharchenko PV. RNA velocity of single cells. *Nature*. 2018;560(7719):494-498.

593 46. Efroni S, Duttagupta R, Cheng J, Dehghani H, Hoeppner DJ, Dash C, Bazett-Jones DP, Le
594 Grice S, McKay RD, Buetow KH, Gingeras TR, Misteli T, Meshorer E. Global transcription
595 in pluripotent embryonic stem cells. *Cell Stem Cell*. 2008;2(5):437-447.

596 47. Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise review: the surface markers and identity
597 of human mesenchymal stem cells. *Stem Cells*. 2014;32(6):1408-1419.

598 48. Zhang LZ, Huang LY, Huang AL, Liu JX, Yang F. CRIP1 promotes cell migration, invasion
599 and epithelial-mesenchymal transition of cervical cancer by activating the
600 Wnt/beta-catenin signaling pathway. *Life Sci*. 2018;207:420-427.

601 49. Fevr T, Robine S, Louvard D, Huelsken J. Wnt/beta-catenin is essential for intestinal
602 homeostasis and maintenance of intestinal stem cells. *Mol Cell Biol*. 2007;27(21):7551-
603 7559.

604 50. Nusse R. Wnt signaling and stem cell control. *Cell Res*. 2008;18(5):523-527.

605 51. Mas A, Cervello I, Gil-Sanchis C, Faus A, Ferro J, Pellicer A, Simon C. Identification and
606 characterization of the human leiomyoma side population as putative tumor-initiating
607 cells. *Fertil Steril*. 2012;98(3):741-751 e746.

608 52. Paul EN, Burns GW, Carpenter TJ, Grey JA, Fazleabas AT, Teixeira JM. Transcriptome
609 Analyses of Myometrium from Fibroid Patients Reveals Phenotypic Differences
610 Compared to Non-Diseased Myometrium. *Int J Mol Sci*. 2021;22(7).

611 53. Tang L, Bergevoet SM, Gilissen C, de Witte T, Jansen JH, van der Reijden BA, Raymakers
612 RA. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile
613 clearly distinct from other stem cells. *BMC Pharmacol*. 2010;10:12.

614 54. Bhartiya D. Adult tissue-resident stem cells-fact or fiction? *Stem Cell Res Ther*.
615 2021;12(1):73.

616 55. Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA
617 sequencing data using observation weights. *Nucleic Acids Res*. 2014;42(11):e91.

618 56. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, Lee MJ, Wilk AJ,
619 Darby C, Zager M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A,
620 Stuart T, Fleming LM, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P,
621 Satija R. Integrated analysis of multimodal single-cell data. *Cell*. 2021;184(13):3573-3587
622 e3529.

623 57. Arora R, Fries A, Oelerich K, Marchuk K, Sabeur K, Giudice LC, Laird DJ. Insights from
624 imaging the implanting embryo and the uterine environment in three dimensions.
625 *Development*. 2016;143(24):4749-4754.

626 58. Flores D, Madhavan M, Wright S, Arora R. Mechanical and signaling mechanisms that
627 guide pre-implantation embryo movement. *Development*. 2020;147(24).

628 59. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate - a Practical and Powerful
629 Approach to Multiple Testing. *J Roy Stat Soc B Met*. 1995;57(1):289-300.

630

631 **Figure Legends:**

632 **Figure 1. Bulk RNA-seq results of SUSD2⁻ and SUSD2⁺ cells from myometrial**
633 **samples.** **(A)** Representative flow cytometry scatter plot of single cell SUSD2- and
634 SUSD2+ sort showing over 30% of the live myometrial cells positive for the SUSD2
635 marker. Boxed areas indicate gating strategy. **(B)** Principal component analysis (PCA)
636 plot of RNA-seq results from SUSD2- (in black) and SUSD2+ (in red) cells, labels
637 represent individual patient samples (n = 5), and variance for each PC is indicated in
638 percentage. **(C)** Volcano plot showing up (n = 3527) and down (n = 3250) DEGs with an
639 FDR-adjusted p-value < 0.05 in SUSD2+ vs. SUSD2- cells depicted as red dots. Grey
640 dots represent genes with an FDR p-value > 0.05. **(D)** Boxplot of mesenchymal stem
641 cells markers, *SUSD2*, *MCAM*, *PDGFRβ* and *CSPG4* in the SUSD2- (in grey) and
642 SUSD2+ (in red) cell population (n = 5). Gene expression is shown as log₂CPM.
643 SUSD2+ sorted cells are significantly enriched for MSC markers including *SUSD2*
644 (log₂FC= 4.5, FDR p= 2.9x10⁻⁵), *MCAM* (log₂FC= 3.1, FDR p= 8.8x10⁻¹⁶), *PDGFRβ*
645 (log₂FC= 2.8, FDR p= 1.5x10⁻¹¹) and *CSPG4* (log₂FC= 3.4, FDR p= 1.1x10⁻¹¹). **(E)**
646 Heatmap of the top 300 DEGs from SUSD2+ vs. SUSD2- cells comparison with
647 unsupervised hierarchical clustering of genes and samples (n = 5). Color gradient
648 represents gene expression as z-score.

649

650 **Figure 2. Transcriptomic analysis of the myometrium side population (SP).** **(A)**
651 Scatter plot of the gating strategy to sort the SP+ and the SP- cells from human
652 myometrium. **(B)** Verapamil pre-treatment of myometrial cells reduces the number of
653 the SP⁺ cells from 1.99% to 0.1% of the total live single cells. **(C)** PCA plot of RNA-seq

654 results from SP- (in black) and SP+ (in red) cells, each label represents one sample (n =
655 3), variance for each PC is indicated in percentage. (D) Volcano plot showing up (n =
656 478) and down (n = 350) DEGs with a false discovery rate (FDR) p-value < 0.05 in SP+
657 vs. SP- cells depicted as red dots, including *SELE*, *GATA3*, *XCL2*, *IL7R*, *CD69*, *KLRD1*,
658 *IL18R1*, *VCAM1*, *TNFRSF10A*, and *SPOCK2*. Grey dots represent genes with an FDR
659 p-value > 0.05. (E) Boxplots of myometrium SP associated genes, *ABCB1* ($\log_2\text{FC} = 1.9$,
660 FDR $p = 2.8 \times 10^{-5}$), *ABCC1* ($\log_2\text{FC} = 0.7$, FDR $p = 5.9 \times 10^{-1}$), *ABCG2* ($\log_2\text{FC} = 1.1$, FDR
661 $p = 9.5 \times 10^{-2}$), *ESR1* ($\log_2\text{FC} = -1.1$, FDR $p = 2.3 \times 10^{-1}$) and *PGR* ($\log_2\text{FC} = -1.5$, FDR $p =$
662 6.4×10^{-2}) and (F) MSC associated genes, *SUSD2* ($\log_2\text{FC} = -1$, FDR $p = 5.6 \times 10^{-1}$),
663 *MCAM* ($\log_2\text{FC} = -1.5$, FDR $p = 3.9 \times 10^{-2}$), *PDGFR\beta* ($\log_2\text{FC} = -0.9$, FDR $p = 4.9 \times 10^{-1}$),
664 *CSPG4* ($\log_2\text{FC} = -1.5$, FDR $p = 3.9 \times 10^{-2}$), *CD44* ($\log_2\text{FC} = -0.5$, FDR $p = 8.3 \times 10^{-1}$), *CD34*
665 ($\log_2\text{FC} = -0.2$, FDR $p = 4.9 \times 10^{-1}$), and *ITGA6* ($\log_2\text{FC} = 0.9$, FDR $p = 2.1 \times 10^{-1}$) in the SP-
666 (in grey) and SP+ (in red) cell population (n = 3), genes are expressed in $\log_2\text{CPM}$. ns =
667 not significant, with FDR > 0.05.

668

669 **Figure 3. Single cell RNA-seq analysis of isolated cells from human myometrial**
670 **samples. (A)** Uniform manifold approximation and projection (UMAP) visualization of
671 9775 isolated cells from human myometrial samples (n = 5). Each cluster (n = 7)
672 represent a cell population with a similar transcriptomic profile. **(B)** Dotplot for cluster
673 identification using specific markers for cell types found in the myometrium. MSC
674 marker gene expression in the different myometrial cell clusters shown in a dotplot **(C)**
675 and by UMAP **(D)**. Average gene expression and percentage of cells expressing the
676 specific gene in each cell cluster are shown by the color intensity and the diameter of

677 the dot, respectively, in B and C. Color gradient in the UMAP represents gene
678 expression as $\log_2\text{CPM}$ in D.

679

680 **Figure 4. Identification of putative MyoSPCs from scRNA-seq**

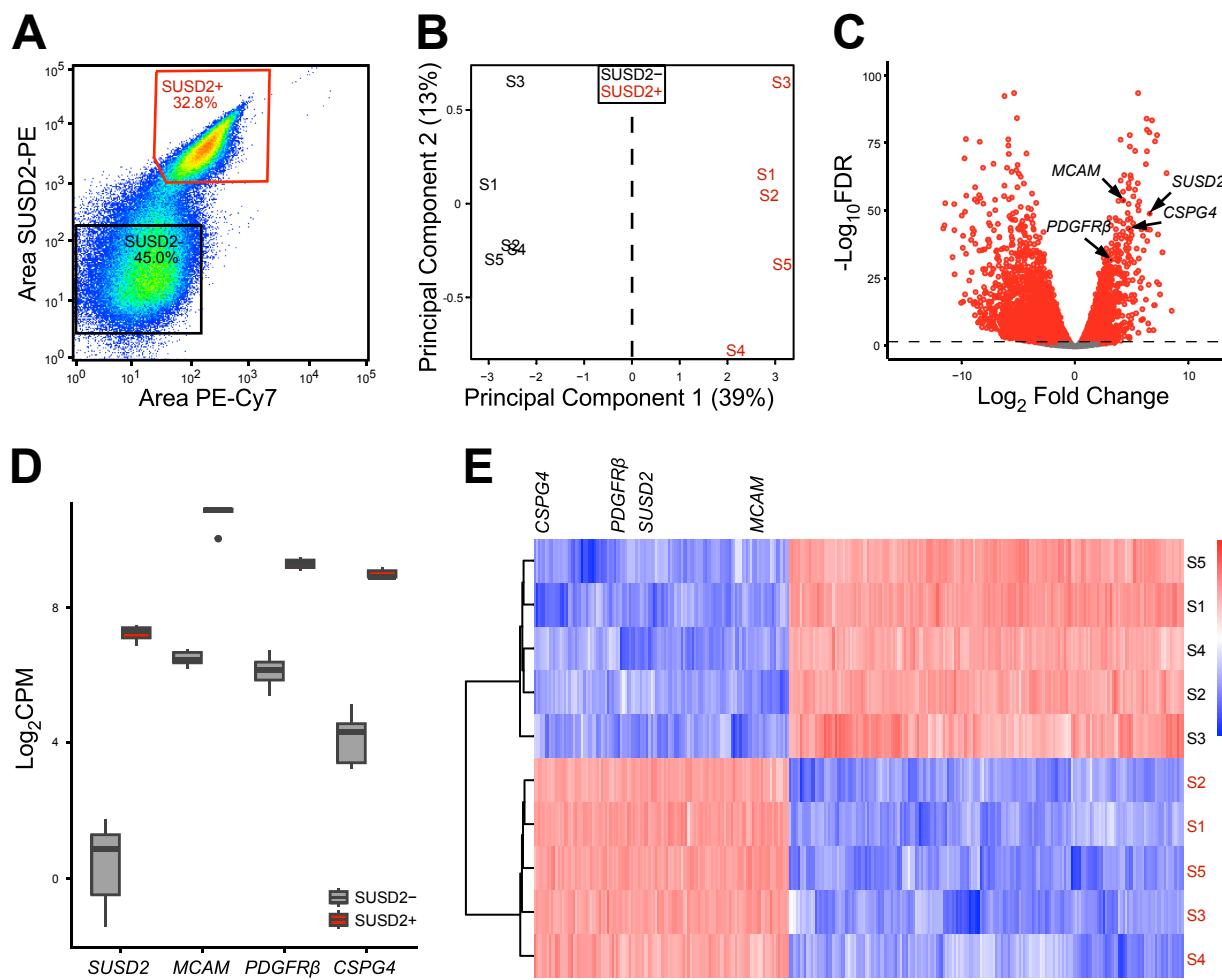
681 **(A)** Cell cycle score for myometrial cells visualized in the UMAP plot. Cells in G1/G0, S,
682 and G2/M phases are plotted with the corresponding color. Boxed area is shown at
683 higher magnification. **(B)** Cell velocity predicting the future state of individual cells
684 illustrated in a UMAP plotted with the clusters as in panel A showed that in the vascular
685 myocyte cluster, the same group of cells in G1/G0 phase exhibit low velocity. Boxed
686 area is shown at higher magnification. Putative MyoSPCs are encircled with black
687 dotted lines.

688

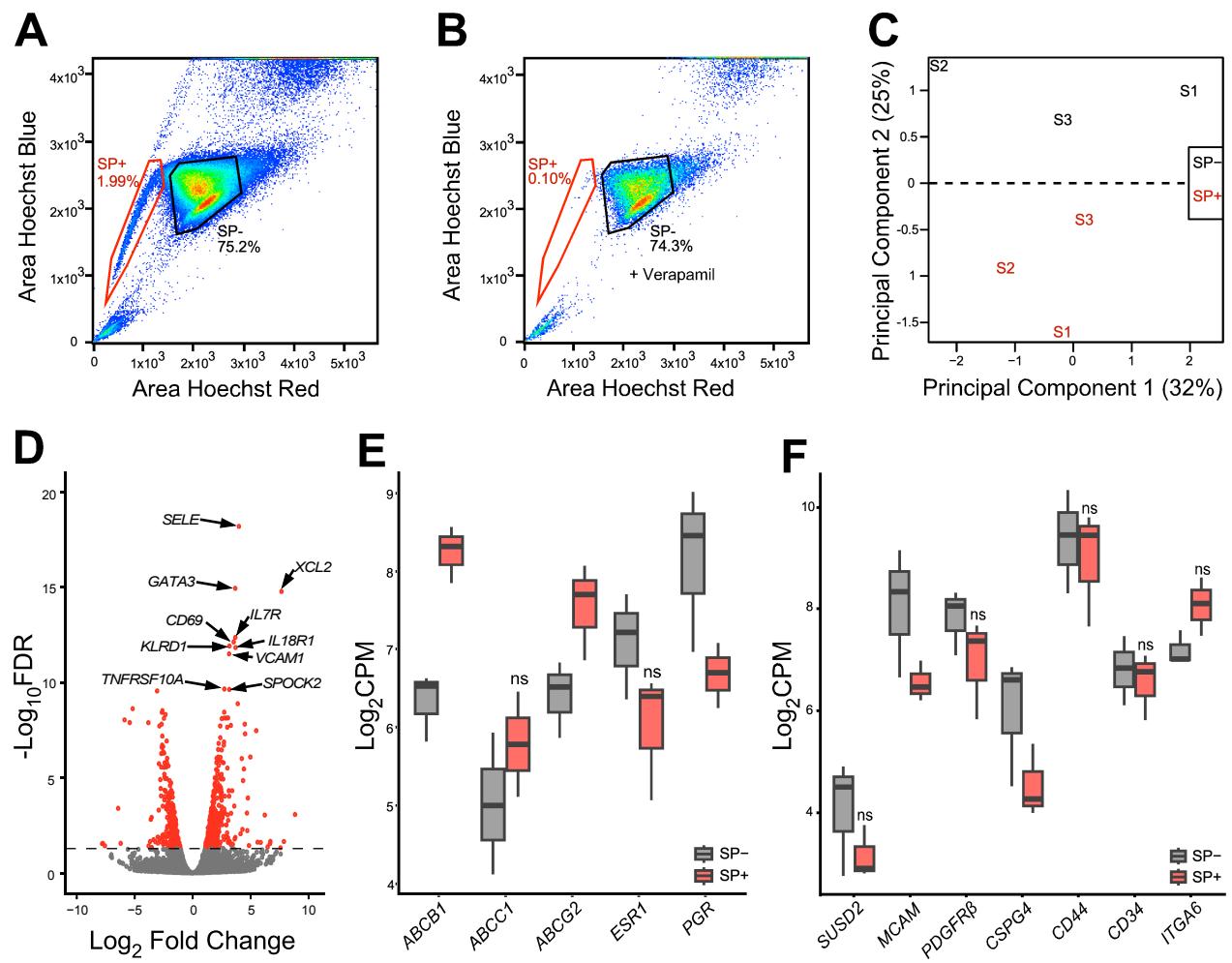
689 **Figure 5. Integrated analysis of the bulk RNA-seq of SUSD2+ vs SUSD2- and the**
690 **MyoSPC cluster vs the rest of the myometrial cells from the scRNA-seq. (A)** Venn
691 diagrams illustrate the overlapping DEGs between the bulk RNA-seq of SUSD2+ vs
692 SUSD2- and the assigned MyoSPC cluster compared with the rest of the myometrial
693 cells from the single cell RNA-seq analysis. **(B)** Scatter plot of \log_2 fold change genes
694 from bulk RNA-seq (x axis) and scRNA-seq (y axis). Non-significant genes in both
695 analyses were represented in purple dots, and DEGs in the bulk RNA-seq only were
696 represented in blue dots, DEGs in the scRNA-seq only were represented in green dots,
697 and the DEGs in both analyses were represented in red dots. *CRIP1* is highly
698 upregulated in the MyoSPC cluster ($\log_2\text{FC}=3.1$, adjusted p value = 4×10^{-251}) and in

699 the SUSD2+ cells ($\log_2\text{FC}=1.9$, $\text{FDR} = 5 \times 10^{-4}$). UMAP (**C**) and Ridge plots (**D**) display
700 *CRIP1* scaled expression by cell cluster.

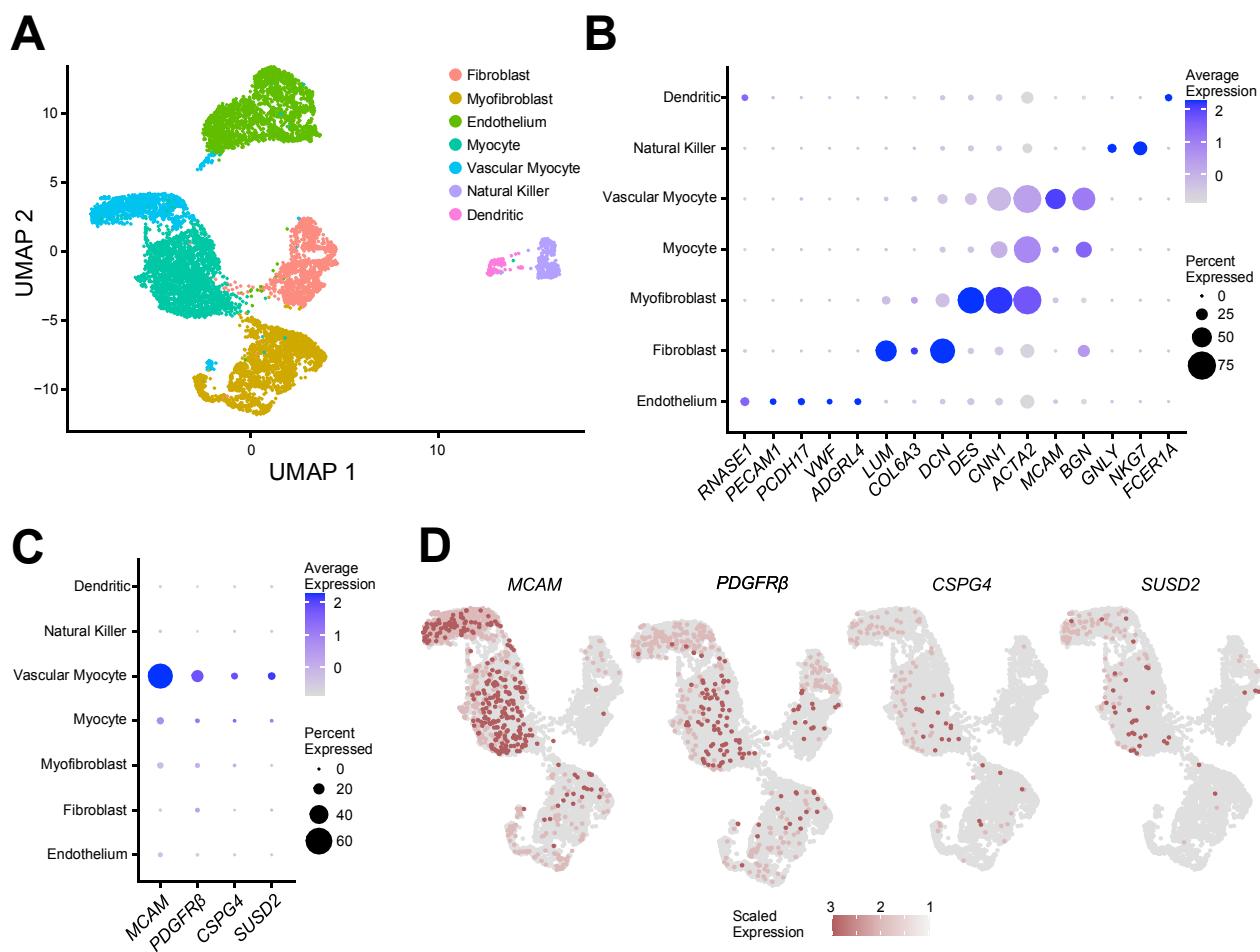
701
702 **Figure 6. CRIP1⁺ cells have stem/progenitor cell characteristics.** (**A**) Representative
703 ($n=3$) immunofluorescence imaging of human myometrium using PECAM1 as an
704 endothelial marker, SUSD2 as a mesenchymal stem cell marker, and CRIP1. Scale bar
705 = 200 μm . (**B**) Representative ($n=6$) scatter plot of the gating strategy for
706 CRIP1+/PECAM- cell sort. (**C**) Representative ($n=6$) images of colonies formed by the
707 CRIP1+/PECAM- and depleted myometrial cells. (**D**) Plot of colony forming efficiency
708 represented as %CFUs (#CFU/cells seeded $\times 100$) of CRIP1+/PECAM- and depleted
709 myometrial cells ($n = 6$). (**E**) Total area of colony formed in pixels from
710 CRIP1+/PECAM- and depleted myometrial cells ($n = 6$). (**F**) ACTA2
711 immunofluorescence in CRIP1⁺/PECAM⁻ myometrial cells after differentiation. Scale bar
712 = 100 μm . Representative ($n=3$) images of CRIP1+/PECAM- and depleted myometrial
713 cells grown in control growth media and adipogenic (**G**) or osteogenic (**H**) differentiation
714 media. Adipogenic and control cultures were stained with Oil Red O (red color, black
715 arrows), and osteogenic and control cultures were stained for alkaline phosphatase
716 activity (purple color). Scale bar for the adipogenic and osteogenic assays are 500 μm
717 and 5 mm, respectively. * $p<0.05$; by student t test.

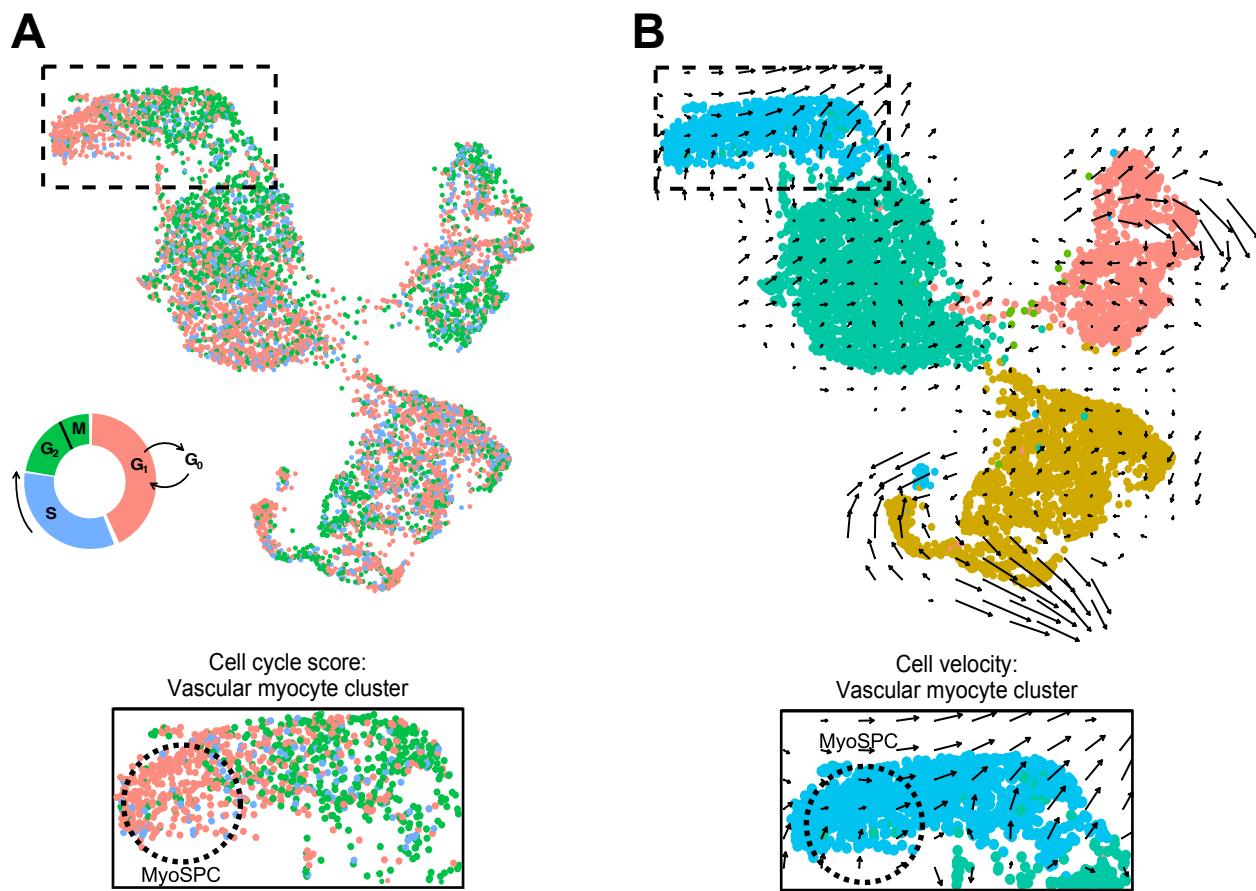

718
719 **Figure S1. Cell distribution across cell clusters in the single cell RNA-seq.** (**A**)
720 Uniform manifold approximation and projection (UMAP) visualization of 9775 isolated
721 cells from human myometrial samples ($n = 5$). Each color dot represents cells from a

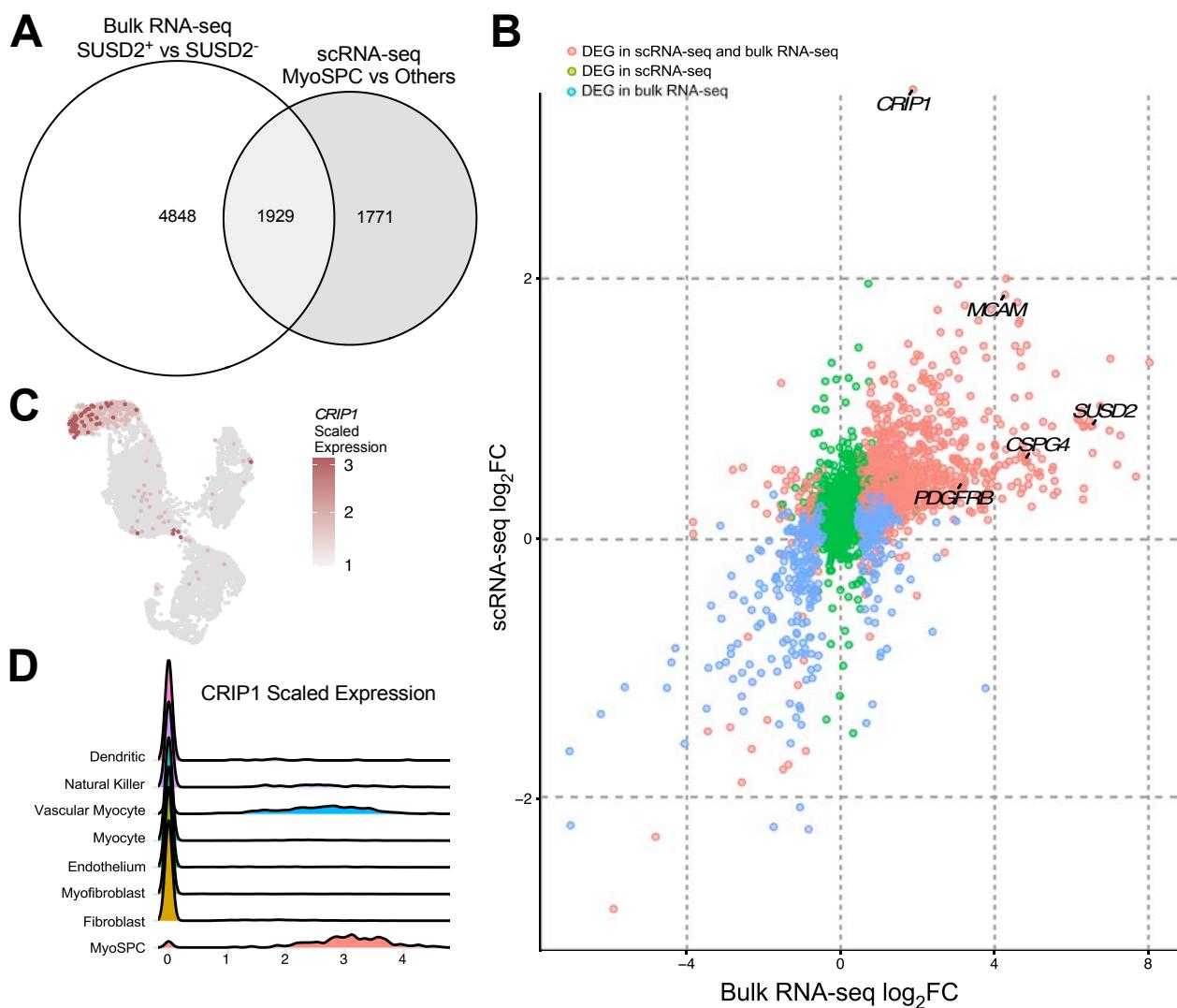
722 myometrials from a different patient. UMAP plot shows that each patient's cells are well
723 distributed across clusters. (B) Cell proportion of each cluster as a percentage across
724 patients.


725

726 **Figure S2. CRIP1 expression in the side population and an orthogonal single cell**
727 **study.** (A) *CRIP1* expression in log₂CPM of the RNA-seq results from the SP+ is not
728 significantly different from that of the SP- cells (FDR>0.05). (B) Projection of a data set
729 of 18,939 cells from 5 myometrial samples from fibroids patients (38) onto the UMAP in
730 Fig 3A. (C) Dotplot of mesenchymal stem cell markers and *CRIP1* gene expression in
731 the different myometrial cell clusters as defined in Fig 3C.


Figure 1


Figure 2


Figure 3

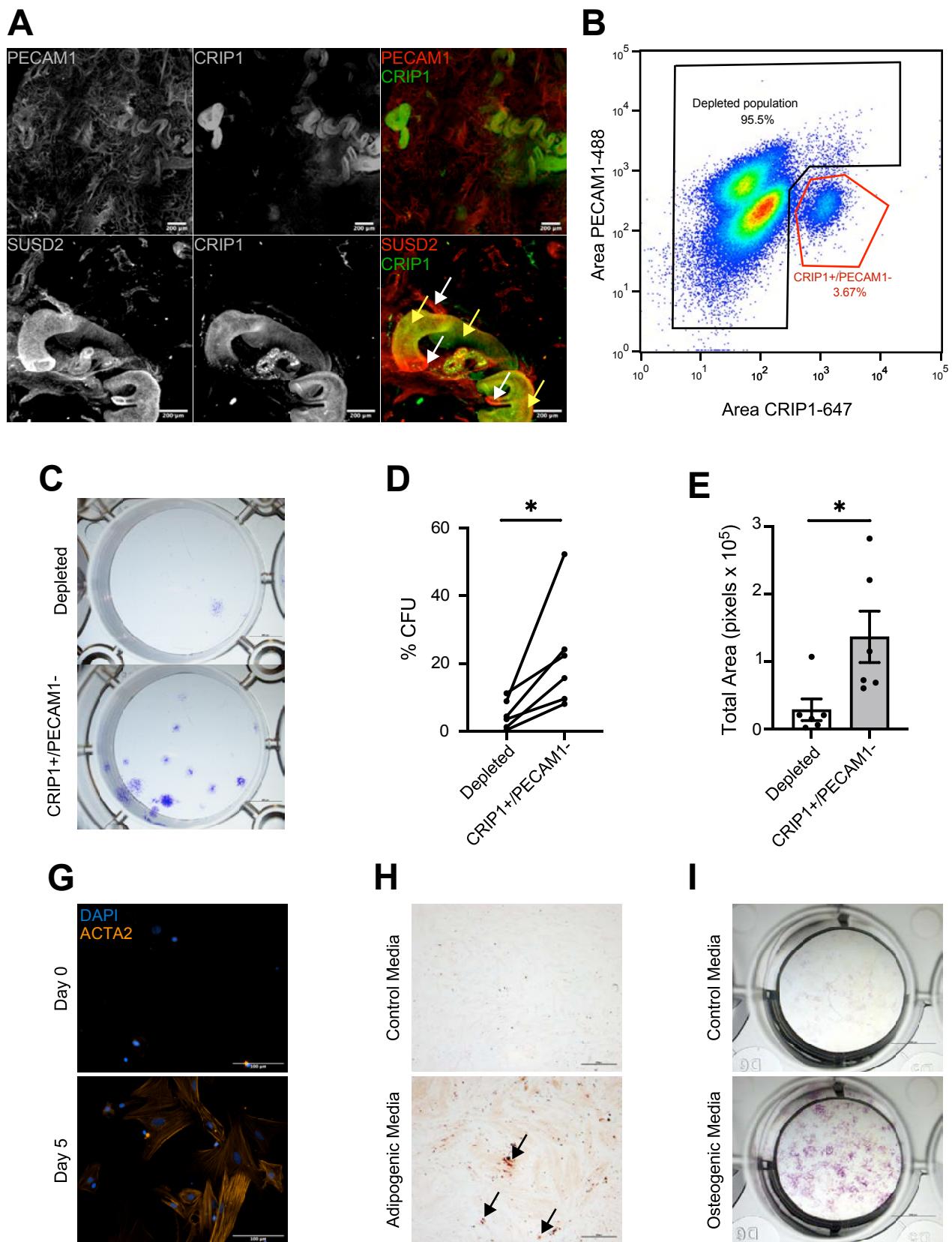

Figure 4

Figure 5

Figure 6

