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1 ABSTRACT

N

Balance and movement are impaired in a wide variety of neurological disorders. Recent

advances in behavioral monitoring provide unprecedented access to posture and loco-

~r oW

motor kinematics, but without the throughput and scalability necessary to screen can-
didate genes / potential therapeutics. We present a powerful solution: a Scalable Appa-
ratus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imag-

ing hardware and low-cost open-source acquisition software with real-time processing.

We first demonstrate that SAMPL’s hardware and acquisition software can acquire data

O 00 N O O

from D. melanogaster, C.elegans, and D. rerio as they move vertically. Next, we lever-

10 age SAMPL’s throughput to rapidly (two weeks) gather a new zebrafish dataset. We use
11 SAMPL’s analysis and visualization tools to replicate and extend our current understand-
12 ing of how zebrafish balance as they navigate through a vertical environment. Next, we
13 discover (1) that key kinematic parameters vary systematically with genetic background,
14 and (2) that such background variation is small relative to the changes that accompany
15 early development. Finally, we simulate SAMPL's ability to resolve differences in posture
16 or vertical navigation as a function of effect size and data gathered - key data for screens.
17 Taken together, our apparatus, data, and analysis provide a powerful solution for labora-
18 tories using small animals to investigate balance and locomotor disorders at scale. More
19 broadly, SAMPL is both an adaptable resource for laboratories looking process video-

20 graphic measures of behavior in real-time, and an exemplar of how to scale hardware to

21 enable the throughput necessary for screening.
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INTRODUCTION

Measuring posture and locomotion is key to understand nervous system function and evalu-
ate potential treatments for disease — particularly neurological disorders . Behavioral screen-
ing is a fundamental part of both basic and translational approaches to disease**. For screens,
measuring behavior from large numbers of animals is necessary to differentiate individual vari-
ation“ from changes seen in disease models and/or improvement following treatment>°. The
demand for such high-throughput measurements comes at a cost: often, measurements that
require high resolution — such as posture — are limited. Modern machine learning algorithms
and inexpensive videographic / computing hardware have automated measurements of pos-

ture and kinematics /=2 and illuminated our understanding of animal behavior 1°-12. We sought

to combine videographic analysis of posture and vertical locomotion with the scalability amenable

to screening.

Over the past decade, we have studied posture and locomotion using the larval zebrafish as a
model. Neural architecture is highly conserved across vertebrates, making larval zebrafish an
excellent model to understand the underpinnings of locomotion ** and balance '°. For our
studies, we developed a new apparatus/analysis pipeline to measure the statistics of posture

in the pitch (nose-up/nose-down) axis and locomotion as larvae swam freely in depth. We dis-
covered that larvae learn to time their movements to facilitate balance 1°, that larvae modulate
the kinematics of swimming to correct posture'”, and that larvae engage their pectoral fins to

18

climb efficiently *©, and implicated different neuronal circuits in each of these behaviors. While
informative, data collection was slow (months) on small numbers (<5) of apparatus. Increasing
throughput remains a challenge common to laboratories that develop new tools to measure

behavior.

To meet the needs of scalability, resolution, and extensibility we developed SAMPL: a low-cost,
open-source solution that measures posture and vertical locomotion in real-time in small an-
imals. Further, we provide a turn-key analysis pipeline to measure larval zebrafish balance be-
havior. We begin with a brief treatment of the hardware and software; a detailed design guide,
assembly and operating instructions are included as supplemental appendices. Next, we use
SAMPL to measure unconstrained vertical locomotion in two common invertebrate models:
flies (Drosophila melanogaster), and worms (Caenorhabditis elegans), as well as a small model
vertebrate, the larval zebrafish (Danio rerio). To illustrate SAMPL's capabilities, we parameterize

a new dataset focused on behaviors that larval zebrafish perform as they stabilize posture and
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navigate (i.e. climb/dive) in the water column. Our new dataset represents two weeks worth

of data collection, and allowed us to detail variation in postural/locomotor behaviors. By mea-
suring behavior across different genetic backgrounds and development, we report two new
findings. First, variation in posture/locomotion is systematic across genotype and second, the
scale of variation in behavior across development is much larger than background genetic
variation. We use these new data to simulate the resolving power for each behavioral param-
eter as a function of data gathered — foundational information to rigorously assay the effects of
candidate genes or small molecules on posture or locomotion. SAMPL thus offers a straight-
forward way to gather data from small animals, and a turn-key solution to screen for balance
and vertical locomotion in larval zebrafish. More broadly, SAMPL offers a template for labora-
tories looking to scale their own behavioral apparatus to achieve the throughput necessary for
screens. SAMPL will thus facilitate reproducible studies of postural and locomotor behaviors in
both health and disease, addressing unmet needs in treating neurological disorders, particu-

larly with balance symptoms *°.

RESULTS

SAMPL hardware & software overview

To overcome measure posture with the throughput necessary for genetic and drug screens,
we deployed SAMPL, a real-time videographic system (Figure 1A) that records small animal
behavior in the vertical axis. Below we briefly describe the hardware and software that com-
prise SAMPL. SAMPL's hardware consists of three simple modules: an infrared (IR) illumination
module (Figure 1B), a camera-lens module (Figure 1C), and two clamps to hold fish chambers
(Figure 1D). All three modules are mounted directly (Figure 1A) onto an aluminum breadboard
(Figure S1) and a light-tight enclosure covers the entire apparatus to permit individual control
of lighting (Figures 1F and 1C). Details of hardware and software design can be found in Ap-
pendices 1&2. A complete parts list isin Table 1, hardware assembly instructions in Appendix

3, and a stop-motion movie of assembly provided as Movie 1.

The IR module illuminates the arena from behind. It is optimized to fulfill four criteria: (1) high
image quality; (2) a large area for imaging; (3) imperceptible illumination; (4) ample heat dis-
sipation. We used a 940 nm “star” style LED as our source of IR illumination and developed a
simple illumination module to diffuse IR light across a 50mm circle (Figure 1B). For heat man-
agement, each LED was mounted to a small heat sink (Figure 1B). This setup allows us to power

three illumination modules in series using a single LED driver.
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86 The second module captures videographic data. It consists of a camera and lens optimized for
87 speed, resolution, compactness, and affordability. The camera hardware satisfies the follow-
88 ing demands: (1) large pixel size with low noise allowing for high dynamic range / signal-to-
89 noise ratio; (2) sufficient resolution to resolve subtle changes to animal posture; (3) an interface
90 with sufficient bandwidth for data transfer; (4) availability. The lens achieves (1) close focus; (2)
91 sufficient depth-of-field to cover the entire depth of the imaging arena; (3) high image qual-
92 ity; (4) compact size; (5) high IR transmission rate; (6) ease of integrating an IR-pass filter. We
93 adapted a 50 mm IR-optimized lens by placing a 0.3" extension tube between the lens and
94 the camera to achieve higher magnification ratio with minimum working distance. The space
95 between camera adapters and the extension tube allows us to fit a 25 mm IR-pass filter; the
96 extension tube gives a mount point to connect the module to the base (Figure 1A). Using this
97 camera-lens module, we image an area ~400 mm? (Figure 1E, pink square) at 166 Hz with

98 1200x1216 pixels at a focal distance of ~24 cm.

99 The final module is a rectangular arena optimized for vertical locomotion (i.e. parallel to the
100 focal plane). By design, the chamber size is larger than the imaging area, allowing stochastic
101 sampling of freely behaving animals in a large enough arena. The bottom of the chamber is
102 below the field of view so that animals sitting at the bottom will not be recorded. We assem-
103 bled custom-fabricated chambers from laser-cut acrylic by cementing transparent front and
104 back sides to a U-shaped piece that forms the narrower sides (Figure 1E). We designed two
105 types of chambers with different inner widths to adapt to the needs of different experiments:
106 awider standard chamber optimized for larger groups of animals and a narrower chamber for
107 1-3 animals (Figure 1E). Chambers can be easily dropped into the holders (Figure 1D) from the

108 top of the behavior box and secured in place for recording.

109 SAMPL includes a complete suite of open-source software for acquisition/real-time extraction
110 ofdata (source and compiled executables provided). Acquisition consists of a graphical user in-
111 terface, written in LabView that analyzes video in real-time to isolate an animal’s location and
112 orientation, with the ability to save raw video for further off-line analysis. The real-time process-
113 ing algorithm consists of: (1) background subtraction; (2) noise thresholding; (3) rejection of
114 frames without an animal or with >1 animal in view; (4) size and intensity criteria to identify two
115 distinct animal parts, usually the body and the head; (5) image processing to extract location
116 and body orientation relative to the horizon. Data about location and orientation is saved to a

117 text file, metadata about the experiment is saved to a separate text file, and optionally, video is
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118 saved as an AVl file.

119 SAMPL's modules and software were designed to scale, minimizing footprint and experimenter
120 time. We multiplex apparatus, providing three distinct compiled applications designed to run
121 simultaneously on one computer to reduce cost/footprint. A set of three SAMPL apparatus and
122 acomputer case fit on one 24"x36" shelf (Figure 1H). One SAMPL “rack” consists of four such
123 shelves (81.5" high) and costs ~$40,000-$45,000 (December 2022, before volume discounts).
124 Inour laboratory, trained experimenters can load such a rack for a typical 48 hr experiment in
125 30 minutes. Taken together, SAMPL's design is ideal to efficiently gather data describing pos-

126 ture and vertical locomotion.

127 SAMPL validation: different small animals

128 SAMPL is well-suited to collect data from a wide range of small animals. We demonstrate the
129 flexibility of SAMPL's acquisition suite using three cormmon model organisms. By changing

130 SAMPL's thresholds (Table 2), we could acquire data from three different organisms: Drosophila
131 melanogaster climbing behavior (Figures 2A and 2B), continuous locomotion in Caenorhabdi-
132 tiselegans (Figures 2C and 2D), and swimming in Danio rerio (Figures 2E and 2F). We present
133 raw video from the epochs in Figure 2 together with plots of real-time image processing (fly &
134 worms, Movie 2; fish, Movie 3). These results demonstrate SAMPL's excellent flexibility and ro-

135 bustness in real-time recording and analysis of vertical locomotion of small animals.

136 SAMPL validation: measuring postural and locomotor kinematics in real-time

137 Next, to demonstrate how SAMPL facilitates efficient collection of high-quality kinematic data,

138 we gathered a new dataset from larval zebrafish (7-9 days post-fertilization, dpf) that swam

139 freely in the dark. A typical experimental repeat consisted of two sequential 24-hour sessions

140 using 3 SAMPL boxes. Data were pooled across 27 repeats for subsequent analysis of kine-

141 matics. Each 24-hour behavior session yielded on average 12234481 bouts per day for the

142 standard chamber (6-8 fish) and 12514518 bouts per day for the narrow chamber (1-3 fish).

143  While not analyzed, running a single fish in the narrow chamber yielded 891+903 bouts over

144 24hrs. Based on the number of apparatus used, we estimate that a similar dataset (total n=121,979

145 bouts) could be collected in two weeks using a single SAMPL rack.

146 We first used our data to establish basic distributions of locomotion and posture. We used SAMPL's
147 processing algorithm to extract the following information in real-time: (1) pitch, defined as the
148 angle between the long axis of the fish's body and the horizon (Figure 2E); (2) x (azimuth), z

149 (elevation) coordinates of the center of the pixels that correspond to the fish. After collection,
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we used SAMPL's processing suite to extract basic postural kinematics during swimming. Ze-
brafish larvae swim in discrete periods of translation called “swim bouts” (Figure 2F) 1529 We
defined swim bouts as periods where the instantaneous speed exceeds 5 mm/sec (Figure 2F,
dashed line). The time of the peak speed was defined ast = O ms (Figure 2F, cyan lines). Swim
bouts were aligned to peak speed for extraction of kinematic parameters; the period 250 ms
before and 200 ms after peak speed was reserved for future analysis. We observed that ze-
brafish larvae swim predominantly at slower speeds with mean and standard deviation mea-
sured 12.90+4.91 mm/s, on par with previous reports ' ©“%=27 | arvae showed a broad distri-
bution of postures evaluated at peak speed (8.48°+£15.23°) with a positive (nose-up) average,
suggesting that SAMPL detected a variation of nose-up and nose-down swim bouts. SAMPL
can thus rapidly acquire a rich dataset of spontaneous locomotor behavior and a wide range of

“natural” postures.

SAMPL validation: extracting key parameters of balance and vertical navigation in zebrafish
SAMPL includes data analysis and visualization code (Python source and sample datasets pro-
vided) optimized to extract key parameters of balance and locomotion from larval zebrafish.
We use our “two-week” dataset to demonstrate that SAMPL can resolve these four parameters:
Figure 3: Control of movement timing.©

Figure 4. Control of steering to climb/dive. '’

Figure 5. Coordination between trunk and fin. '

Figure 6: Control of posture stabilizing rotations.*”

We conclude that SAMPL's resolution and throughput allows rapid and deep insight into each
parameter, detailed below. Data analysis using the provided scripts on the provided dataset
runs in 30 minutes on a typical analysis computer (M1 processor, 16GB RAM). Full details of
analysis/visualization is provided in Appendix 4, and a step-by-step guide to set up the relevant

environment and to run experiments provided in Appendix 5.

Proper balance requires active stabilization. Zebrafish larvae are front-heavy and therefore sub-
ject to destabilizing torques in the pitch (nose-up/nose-down) axis. Swim bouts counteract the
resultant forces, stabilizing the fish. Zebrafish larvae learn to initiate swim bouts when unsta-
ble 1°. We first defined movement rate as the reciprocal of the inter-bout interval (Figures 3A
and 3B). More extreme postures were associated with higher movement rate (Figure 3C), with
a parabolic relationship (Figure 3D, R? = 0.14). We expect that the majority of the residual vari-

ance reflects a previously-reported dependence of movement timing on angular velocity *°.
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182 The three coefficients of the parabola represent the baseline posture, the basal rate of move-
183 ment, and - key to our analysis — the degree to which postural eccentricity relates to movement
184 rate, or “sensitivity,” (Figure 3D). SAMPL therefore permits efficient quantification of a crucial
185 posture-stabilizing behavior: the relationship between perceived instability and corrective be-

186 havior.

187 Like most animals, larval zebrafish go where their head points. To adjust their vertical trajec-
188 tory (i.e. toclimb or dive) larvae must rotate their bodies away from their initial posture, point-
189 ingin the direction they will travel (Figures 4A and 4B) 1722, Previous work ' established that
190 steering rotation in larvae swimming spontaneously occurs mostly before they reach the peak
191 speed (Figure 4C). A larva's steering ability reflects the relationship between the change in pos-
192 ture before the peak speed and the resultant deviation in trajectory (Figure 4D). We parame-
193 terized steering as the slope (gain) of the best-fit line between posture and trajectory evaluated
194 at the time of peak speed (Figure 4E). A gain of 1 indicates that the observed trajectory could
195 be explained entirely by the posture at the time of peak speed (Figure 4F). SAMPL revealed
196 that 7 dpflarvae exhibit an average steering gain at 0.67, suggesting an offset between pos-
197 ture and trajectory at the time of peak speed (Figure 4E, R? = 0.92). SAMPL allows us to infer

198 how effectively larvae steer using axial (trunk) musculature to navigate the water column.

199 Toclimb (Figures 5A and 5B) fish generate lift with their pectoral fins, assisting steering rota-
200 tions and subsequent axial undulation %2>, Larval zebrafish learn to climb efficiently by coor-
201 dinating their trunk and fins '¢. We defined the attack angle, or the additional lift associated
202 with each climb, as the difference between the steering-related changes and the resulting tra-
203 jectory (Figure 5C). We evaluated attack angle after pectoral fin loss, revealing a clear contribu-
204 tion to climbs (Figure 5D). Next, we demonstrate a positive correlation (with rectification and
205 asymptote) between steering-related rotations and fin-based attack angle (Figure 5E, left). No-
206 tably, after peak angular velocity, rotations are poorly correlated with attack angles (r =-0.17)
207 (Figure 5E, right). These residuals reflect the initial angular deceleration as fish reach their peak
208 speed (Figure 5A). We parameterize the relationship between the initial rotation and the attack
209 angle using logistic regression (Figure 5F, R? = 0.31). The regression reveals the maximal slope
210 of the sigmoid relating steering and lift (Figure 5C). We named this slope "fin-body ratio" as it
211 describes how larvae distribute labor between axial and appendicular muscles, i.e. between
212 trunk (steering) and fins (lift), as shown in previous work '®. SAMPL thus permits efficient infer-

213 ence of coordinated behavior.
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Larvae must actively maintain their preferred posture in the pitch axis. To do so, they rotate
partially towards their preferred orientation as they decelerate (Figures 6A to 6C). The magni-
tude of these rotations scales with the eccentricity of their posture before a swim bout'”. We
estimated the slope (-0.17) of the line that related initial posture and the amount the fish ro-
tated back toward the horizontal (Figure 6D), R? = 0.56. As the behavior is corrective, the re-
lationship is negative; we therefore define the gain of righting as the inverse of the slope (Fig-
ure 6E). We further define the “set point” as the point where an initial posture would be ex-
pected to produce a righting rotation of zero (Figures 6E and 6F). SAMPL facilitates quantifi-

cation of corrective reflex abilities (gain) and associated internal variables (set point).

Taken together, our estimates of key posture and locomotor parameters establish that SAMPL
can rapidly generate datasets that permit rich insight into the mechanisms of balance and ver-

tical navigation.

SAMPL can resolve slight variations in posture control strategies across genetic backgrounds
To be useful SAMPL must resolve small but systematic differences in key measures of posture
and vertical locomotion. Even among isogenic animals reared in controlled environments, ge-
netic differences contribute to behavioral variability 7% The “two-week” dataset analyzed

in Figures 3 to 6 included data from three different genetic backgrounds. Larvae for experi-
ments were generated by crossing the same clutch of wild-type adults (mixed background)

to zebrafish of three different strains: AB (n = 62457 bouts, N = 225 fish over 10 experimen-

tal repeats); SAT (n = 27990 bouts, N = 117 fish over 7 experimental repeats); and the lab wild
type (n = 31532 bouts, N = 195 fish over 10 experimental repeats), which resembles real-world
approaches where a key transgenic line is often crossed to different backgrounds for experi-
ments. To capture the full variance in the dataset, we took a conservative approach by calcu-
lating kinematic parameters for individual experimental repeats (n = 45184+1658 bouts). We
assayed SAMPL's sensitivity by asking (1) if there were detectable differences in the four pa-

rameters defined in Figures 3 to 6 and (2) if these differences were systematic.

Qualitatively, larval zebrafish of the same age swim similarly; as expected, the magnitude of
change across strains we observed in Figure 7 is quite small. Nonetheless SAMPL could resolve
systematic variations in locomotion behavior and balance abilities among larvae of different
strains (Figure 7). AB larvae exhibited the best posture stability, demonstrated by the lowest
standard deviation of IBI pitch compared to the other two strains (Figure 7C). Correspondingly,

AB larvae had the highest bout frequency (Figure 7B), sensitivity to posture changes (Figure 7E),
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and righting gain (Figure 7K), all of which contributes positively to their higher posture stability.
These results demonstrate that SAMPL is capable of detecting inter-strain variations in locomo-

tion and balance behavior.

In contrast, larvae of different ages adopt different strategies to stabilize posture and navigate

in depth '°~1€ To contextualize the magnitude of strain-related differences we gathered a lon-
gitudinal dataset by measuring behavior from the same siblings of the AB genotype at three
timepoints: 4-6, 7-9, and 14-16 dpf (Table 3). We observed that the standard deviation of IBI
pitch for 4 and 14 dpflarvae was 38.1% higher and 11.3% lower, respectively, than the aver-

age result of 7 dpf larvae (Table 3). Across strains at 7 dpf, the variation was much smaller: from
11.8% higher to 11.2% lower. Similarly, relative to 7 dpf larvae, sensitivity of 4 dpf larvae was
considerably lower (-42.5%), and increased to 23.6% higher by 14 dpf (Table 3); variations among
7 dpf strains were up to 10.0% lower and 15.4% higher.

Our analysis of new data supports three key conclusions. First, SAMPL can uncover small, sys-
tematic differences in the way fish swim and stabilize posture. Second, SAMPL can make lon-
gitudinal measures of the same complement of animals as they develop. Third, relative to de-
velopment, the effect of genetic background is small. We conclude that SAMPL's capacity to

resolve small differences supports its usefulness as a tool screen for modifiers of postural con-

trol and vertical locomotor strategies.

Estimating SAMPL’s resolution

Our dataset establishes SAMPL's ability to resolve small kinematic differences between cohorts.
How does SAMPL's power change as a function of the size of the dataset? We used resampling
statistics to estimate SAMPL's resolution as a function of the number of the bouts (Methods).
To ensure our most conservative estimate, we resampled data combined across AB, SAT and

WT genotypes at 7dpf.

As expected, the width of the confidence interval for any estimated parameter decreased with
the number of bouts (Figure 8A). The most challenging parameter to estimate is coordination
between fin and trunk (fin-body ratio) The steepness with which the confidence interval width
decreases follows the number of regression coefficients necessary for each measure: fin-body
ratio (4 parameters); bout timing (3 parameters); and steering or righting (2 parameters). We
therefore propose that these particular measures can serve as a general guide for the chal-

lenge of estimating parameters within a SAMPL dataset.

A fundamental challenge for all screens is determining the sample size required to correctly
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278 reject the null hypothesis**. We address this question by asking how much data one would
279 need to gather in order to detect meaningful effects. We simulated difference of particular
280 magnitudes by imposing an offset on each parameter (sensitivity, steering gain, fin-body ra-
281 tio, and righting gain) while preserving the original variance (Methods). Offsets were expressed
282 as a fractional difference, and resampling was used to estimate the effect size one would see
283 as a function of the number of bouts/IBls when comparing kinematic parameters between the

284 original dataset and the dataset with an imposed effect (Methods).

285 Broadly, we find that for all kinematic parameters, the smaller the percent change, the larger
286 the required sample size (Figure 8B). Steering and righting gains require the fewest bouts to
287 detecta 1-2% change with an effect size > 0.5 (Figure 8B, green and red). However, sensitivity
288 and fin-body ratio require relatively larger datasets to confidently discriminate small changes
289 (Figure 8B, brown and magenta). We conclude that the full “two-week” dataset we generated
290 using SAMPL (n=121,979 bouts) is sufficient to reveal any biologically-relevant differences be-

291 tween two conditions.

292 Insummary, these simulations demonstrate that a single SAMPL rack divided into two condi-
293 tions (6 apparatus / each) could, in two standard 48-hour runs, generate sufficient data to re-
294 solve meaningful differences in postural and locomotor kinematics between two conditions.

295 We provide detailed instructions in Appendix 5 addressing experimental design strategies to

296 maximize SAMPL's resolution.

297 DISCUSSION

298 We present SAMPL, a scalable solution to measure posture and locomotion in small, freely-
299 moving animals. We start with a brief overview of the hardware and software, with compre-
300 hensive guides to every aspect of SAMPL's hardware and software included in the Appendices.
301 Next we illustrate SAMPL's flexibility with raw video & real-time measurements from three com-
302 mon model organisms: Drosophila melanogaster (fly), Caenorhabtitis elegans (worms), and
303 Danio rerio (zebrafish). To illustrate the depth of insight accessible using SAMPL we explored a
304 new dataset — consisting of two weeks worth of data — that illuminates four key parameters of
305 zebrafish navigation in depth: bout timing, steering, fin-body coordination, and righting. We
306 made two discoveries using SAMPL's analysis suite: (1) systematic changes to zebrafish pos-
307 ture and locomotion across genetic backgrounds and (2) that these changes were small rela-
308 tive to variation across developmental time. Finally, we use our new dataset to define SAMPL's

309 resolution: how much data an experimenter would need to collect to detect meaningful ef-
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310 fects. Taken together, SAMPL provides a screen-friendly solution to investigate vertical locomo-
311 tion and/or other behaviors using common small model organisms, and a turn-key solution to
312 study balance in larval zebrafish. More broadly, our approach serves as a template for laborato-
313 ries looking to develop or scale their own hardware/software. Below we detail SAMPL's innova-
314 tionsand limitations, and make a case for screens to address unmet clinical needs for balance

315 disorders.

316 SAMPL’s innovations

317 One of SAMPL's key innovations is to measure vertical behavior, where the effects of gravity
318 play arole. The overwhelming majority of studies monitor animal behavior from above, where
319 animals are constrained to a horizontal plane. For most animals — especially those that swim

320 or fly - vertical navigation and its neuronal representation *>-°

is vital. Further, maintaining
321 posture in the face of gravity is a universal challenge *’~*?, particularly as animals develop 1©4°.

322 SAMPL can illuminate animal trajectories during exploration of depth.

323 SAMPL reduces the dimensionality of behavior along a number of axes in real-time. First, by
324 focusing on a homogeneous part of the behavioral arena, SAMPL bypasses a number of imag-
325 ing challenges and difficulties involved in interpreting behavior along arena walls“!. Second, by
326 rejecting frames with multiple animals in view at the same time SAMPL incorporates animal-
327 to-animal variability” within each estimated parameter without having to keep track of individ-
328 uals; the narrow chamber (Figure 1E) is ideal for single-animal experiments if such variability
329 isofinterest. Third, while large enough to permit unconstrained behavior, the anisotropic di-
330 mensions of SAMPL's behavioral arenas (Figure 1E) facilitate measurements in the vertical axis.
331 SAMPL's design choices thus facilitate rapid extraction of behavioral parameters relevant for

332 posture and locomotion.

333 SAMPL was designed to scale efficiently. Data is gathered by a compiled executable, allowing
334 SAMPL to run three apparatus off a single computer, reducing costs and space. A SAMPL rack
335 consists of 12 apparatus running off four computers with a footprint of 24"x36"x81.5" (LxWxH).
336 The key components such as the camera are readily available from muiltiple suppliers. Taken
337 together, SAMPL can be used immediately to screen and/or to provide videographic data from

338 freely moving animals at scale.

339 Our new dataset, gathered in two weeks, illustrates the power of SAMPL's analysis/visualization
340 workflow for studies of larval zebrafish balance. While SAMPL can and does save video, by de-

341 sign it extracts only three parameters in time: the (x,z) coordinates of the animal and the angle
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between the body and the horizon. As we demonstrate here, this small set of parameters de-
fines behaviors larval zebrafish use to swim and balance in depth: bout timing (Figure 3), steer-
ing (Figure 4), fin-body coordination (Figure 5), and righting (Figure 6). While each parameter
has been previously defined '°71%, the new data we present here illustrates differences across
genetic backgrounds and development and allows granular estimation of statistical sensitivity.

Taken together, SAMPL's focus facilitates exploration of unconstrained vertical behavior.

Comparisons with other approaches
Here, we discuss SAMPL's advantages by comparing it with other available tools for measuring

Drosophila, C. elegans, and zebrafish behavior.

SAMPL for measuring Drosophila behavior

SAMPL offers advantages over previous methods for measuring negative gravitaxis, an innate
behavior of Drosophila melanogaster”?. The most widespread method, called the bang test,
consists of banging flies down inside a vertical tube and then counting the number of flies
that walk an arbitrary vertical distance in an arbitrary amount of time““~*>. This method star-
tles the flies, which may confound the behavior, and the flies are limited in directional choice.
Using SAMPL, a measurement of fly vertical position and orientation is instantaneously ac-
quired without needing to startle the flies. Another Drosophila gravitaxis assay is the geotaxis
maze“®, that allows the flies to make a series of up-or-down choices as they move across the
maze towards a light. While the flies are not startled in this assay, they are still constrained to
moving only up or down. SAMPLs high resolution camera permits continuous monitoring of
free vertical walking behavior, as well as high-resolution monitoring of head, wing, leg, and an-
tenna positions. While SAMPL has been designed to monitor behavior in the vertical plane, the
hardware and software strategies we have developed for high throughput recording could be
similarly adapted to increase the throughput of measuring other Drosophila behaviors such as
grooming“’, sleep“?, courtship“?, and aggression °°. Because SAMPL has both high resolution
recording and the ability to scale, screening through microbehaviors like head tilting or limb
positioning is possible. Notably, an earlier version of SAMPL's detection algorithm was success-
fully used for data acquisition in a fly olfactory behavior assay>>? with minimal changes. Taken
together, SAMPL's resolution, throughput, and adaptability complement and extend current

approaches to measure Drosophila behavior, particularly in the vertical axis.
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372 SAMPL for measuring C. elegans behavior

373 The simple nervous system of C. elegans is a powerful model to study neural circuits that con-
374 trol posture and movement. C. elegans possess a rich and tractable repertoire of motor con-
375 trol°®. For example a pattern generator creates sinusoidal waves of muscle contraction that
376 propel C. elegans on a solid substrate, and these sinusoidal movements are sculpted by pro-
377 prioceptive feedback“. Proprioceptive feedback also controls transitions between sinusoidal
378 crawling and non-sinusoidal bending that can propel animals in a liquid environment>>=".
379 Other sensory stimuli elicit coordinated motor responses that are critical for navigation. De-
380 creasing concentrations of attractive odorants and gustants trigger reversals followed by a pirou-
381 ette or omega bend, which results in a large-angle turn that reorients animals~%°?. A distinct
382 navigation behavior involves precise steering of an animal as it follows an isotherm in a tem-
383 perature gradient®%! or tracks a preferred concentration of gustant®?. The resolution and
384 scalability of SAMPL offers the opportunity to determine the cellular, molecular, and genetic

385 underpinnings of these diverse motor control mechanismes.

386 C.elegans behavior becomes complex in enriched 3D environments, with animals using strate-
387 gies for exploration and dispersal not seen under standard laboratory conditions®®. Behavior
388 trackers that have been used to study C. elegans kinematics are generally restricted to analysis
389 of behaviors on a surface. By contrast, SAMPL measures behavior in a volume and is well-suited
390 tothe study of newly discovered behaviors that are only expressed in environments that vary
391 across depth. One such example is gravitaxis, where C. elegans display both positive °“ and

392 negative gravitaxis®°, underscoring the need for additional pipelines to test behavior®®. The
393 new data we present here establishes that SAMPL offers a powerful complement to existing

394 pipelines for C. elegans assays of behavior in the vertical dimension.

395 SAMPL for measuring zebrafish behavior

396 SAMPL joins a decades-long tradition of apparatus that has, collectively, established the larval
397 zebrafish as a key vertebrate model to understand the neural control of posture and locomo-
398 tion '*7'°. Broadly, these devices sit on a continuum that represents a trade-off between imag-
399 ingresolution and throughput. At one end, exquisite measures of tail or eye kinematics are
400 available when imaging single animals that are partially restrained®”, or contained in a small
401 field of view®®. Such devices are particularly useful when combined with imaging or pertur-
402 bations of neuronal activity, but at the cost of throughput. At the other end are devices that

403 measure activity when single animals are constrained to small arenas, such as the ~8 mm?
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404 wellsin a 96-well plate®®%~71 These devices lend themselves well to screens, and offer com-
405 mercial options, but the range of behaviors is compressed ’?. Like other attempts to preserve
406 high-resolution kinematic information while accommodating natural unconstrained behav-
407 ior??757/8 SAMPL sits between these two extremes, joining other open-source software pack-

80 We see SAMPL as a complementary tool. SAMPL's

408 agessuch as Stytra’? and Zebrazoom
409 emphasis on vertical behavior and its scalability position it to leverage the advantages of the
410 zebrafish model for screens — either as a primary resource, or to follow-up on promising “hits”

411 identified with higher-throughput approaches®.

412 Screening

413 Balance disorders present a profound and largely unmet clinical challenge '°. Because the
414 neuronal architecture for balance is highly conserved and the fundamental physics (i.e. grav-
415 ity is destabilizing) is universal, animal models represent a promising avenue for discovery. Due
416 totheir size, low cost, molecular accessibility, high fecundity, and conserved biology small an-
417 imals - both vertebrates and invertebrates®! — have long been used in successful screens of
418 both candidate genes®’, peptides®® and therapeutics®48>. Zebrafish are an excellent exem-
419 plar, particularly in the space of neurological disorders?, with well-established approaches for
420 candidate gene screens? >, peptides®®, small molecules®’-2!, and disease models?. Using
421 SAMPL with zebrafish, our dataset establishes a foundation to screen for balance modifiers in

422 health & disease.

423 One particular arena where zebrafish screens for balance/posture could have a profound im-
424 pactisin addressing the unmet therapeutic need that exists for a neurodegenerative tauopa-
425 thy: progressive supranuclear palsy (PSP). PSP is initially characterized by balance impairments,

426 falls, vertical gaze palsy, and rigidity ”?“. Falls are central to early”> PSP presentation and di-

96,9

427 agnosis?®?” and lead to fractures and hospitalization “>“%. Currently, no treatments improve

99-103 104 105-108

428 balance. Studies of posture , graviception *9%, reflexes , electromyography 197110,

429 and neural balance circuits in PSP 103 111-115

are often underpowered, inconsistent, and have
430 yet toidentify the specific mechanism or substrate causing falls. Like most genes and subcor-
431 tical structures ' 1°=17% the genetic and anatomical substrates of PSP are conserved between
432 humans and zebrafish 1247127 Here, using SAMPL, we define behavioral endpoints that reflect
433  how pathological zebrafish might “fall.” By establishing SAMPL's resolution, our data lay the

434 foundation for impactful discovery in the space of a neurodegenerative disorder with balance

435 pathology.
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436 Future prospects

437 SAMPL uses low-cost videographic and computing hardware to make novel behavioral mea-
438 surements. By optimizing scalability, resolution, and extensibility, SAMPL allows experimenters
439 torapidly measure unconstrained behavior as animals navigate in depth. We have used SAMPL
440 with a model vertebrate, zebrafish, to gain insight into posture and vertical locomotion, and to
441 lay the groundwork for future screens. A wide variety of neurological disorders present with

442  balance and locomotor symptoms. SAMPL offers a way to both understand the fundamental
443  Dbiology of balance, as well as means to evaluate candidate therapeutics to address this unmet
444 need. More broadly, SAMPL stands as an exemplar and resource for laboratories looking to de-

445  velop, adapt, or scale videographic apparatus to measure behavior in small animals.

446  Limitations of the study

447  Any apparatus necessarily reflects a set of trade-offs. Consequentially, each of SAMPL's inno-
448 vations can reasonably be recast as a limitation depending on experimental priorities. For ex-
449 ample, SAMPL's focus on a subset of space and parameters is ill-suited to reconstruct a catalog
450 of behaviors from videographic measurements i.e. a computational ethogram 2%, Similarly,
451 SAMPL assumes that the animal’s trajectory reflects coordinated use of its effectors (limbs/trunk/wings).
452  While SAMPL's videos would be an excellent starting point for markerless pose estimation,

453 detailing the links between effector kinematics and resultant changes to posture and trajec-
454  tory may be better served by a multi-camera setup®?. SAMPL's processing is exclusive to one
455  animal; other approaches are therefore necessary to resolve social interactions” 2. Finally,

456 SAMPL's analysis/visualization toolset incorporates priors for movement of zebrafish only — stud-

457 ies of other species would require a moderate investment of effort.
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Movie 1

Movie 1. Stop motion instruction for box assembly.

Movie 2

Movie 2. Example of recorded epochs of a fly, a shrimp, and a worm. Scale bar: 2 mm.

Movie 3
Movie 3. Top: example of a recorded epoch of a freely-swimming zebrafish larva using the ap-

paratus. Bottom: swim speed and pitch angles plotted as a function of time. Scale bar: 1 mm.
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474 STAR METHODS

475 RESOURCE AVAILABILITY
476 Lead contact
477 Further information and requests for resources and reagents should be directed to and will be

478 fulfilled by the lead contact, Dr. David Schoppik ( schoppik@gmail.com ).

479 Materials availability

480 This study did not generate new unique reagents.

481 Data and code availability

482 SAMPL source code, SAMPL executables, raw behavior data, analyzed data used to make paper
483 figures and README.md descriptions of each are all deposited with the Open Science foundation
484 and are publicly available. DOI is listed in the key resources table. All original code has been
485 deposited at the Open Science foundation and is publicly available. DOl is listed in the key re-
486 sources table. This resource includes code to generate each figure / table in this manuscript.
487 Any additional information required to reanalyze the data reported in this paper is available

488 from the lead contact upon request.

489 EXPERIMENTAL MODEL AND SUBJECT DETAILS

490 All procedures involving larval zebrafish (Danio rerio) were approved by the New York Univer-
491 sity Langone Health Institutional Animal Care & Use Committee (IACUC). Zebrafish larvae were
492 raised at 28.5°C on a standard 14/10 h light/dark cycle at a density of 20-50 larvae in 25-40
493 ml of E3 medium before 5 days post-fertilization (dpf). Subsequently, larvae were maintained
494 at densities under 20 larvae per 10 cm petri dish and were fed cultured rotifers (Reed Mari-
495 culture) daily. Larvae that had their behavior measured at 14 dpf were raised as stated above
496 before being moved to 2 L tanks with 300 ml of cultured rotifers at 9 dpf. At 13 dpf, they were

497 transferred back to petri dishes with E3 medium for adaptation.

498 Larvae with different strains were achieved by crossing Schoppik lab strain with a mixed AB, TU,
499 and WIK background to three different wild-type strains: AB (Zebrafish International Resource
500 Center), mixed background of AB/WIK/TU, or SAT (Zebrafish International Resource Center).
501 Reference parameter values in Table 3 for 4, 7, 14 dpf fish were gathered using the AB strain
502 fish.

503 Drosophila melanogaster (w!118) were raised at 23°0on standard cornmeal-agar food under a

504 12/12 light/dark cycle.
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505 Caenorhabditis elegans (C. elegans) were grown at 20°0on nematode growth medium agar

506 plates seeded with Escherichia coli OP50 as previously described 77,

507 METHOD DETAILS

508 Behavior experiment

509 Larvae at desired age (4, 7, or 14 dpf) were transferred from petri dishes to behavior chambers
510 atdensities of 5-8 per standard chamber and 2-3 per narrow chamber with 25-320/10-15 ml
511 of E3, respectively. After 24 h, behavior recording was paused for 30-60 minutes for feeding
512 where 1-2 ml of rotifer culture was added to each chamber. Larvae were removed from the ap-

513 paratus 48 h after the start of the recording.

514 Behavior measurement in this manuscript were collected from 27 clutches of zebrafish larvae
515 between 7 to 9 dpf under constant darkness. 4 dpfand 14 dpf reference parameter values in
516 Table 3 were collected from 10 clutches of zebrafish larvae under constant darkness. Finless
517 data was generated using 4 clutches of larvae under constant darkness. For all experiments, a
518 single clutch of larvae produces one experimental repeat with at least 3 behavior boxes each

519 containing 5-8 larvae per standard chamber or 2-3 fish per narrow chamber.

520 For Drosophila recording, four flies were transfered to a narrow chamber. A small piece of

521 water-dampened kimwipe was put at the bottom of the chamber to maintain humidity. A n
522 acrylic plug was secured at the top to prevent them from escaping the chamber. We secured
523 the chamber with the flies in the SAMPL apparatus and performed the standard SAMPL exper-

524 iment using recording parameters provided in Table 2.

525 Toimage swimming C. elegans, eight starved N2 adult hermaphrodites were transferred to a
526 narrow chamber filled with 15 ml M9 buffer (3 g/l KH2,PO4: 6 g/l Na,HPO,; 0.5 g/l NaCl; 1 g/l
527 NH4Cl) which was secured in the SAMPL apparatus as described above. Behavior recording

528 was started immediately afterwards. Refer to Table 2 for SAMPL thresholds for C. elegans de-

529 tection.

530 Fin amputation

531 o6 dpfzebrafish larvae were anesthetized in 0.02% tricaine methanesulfonate (Syndel) and
532 transferred to 3% Methylcellulose (Sigma). Fin amputation was done by removing pectoral
533 fins using fine forceps (FST). Specifically, one pair of forceps was used to stabilize the head of
534 the fish and a second pair was used to grab the joint and pull off the fins. Finless larvae were

535 washed three-times in E3 and fed with cultured rotifers before behavior assessment at 7 dpf.
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536 Video acquisition

537 Movie 1 was captured using Sigma fp digital camera (Sigma Co.). Video footage was edited
538 and annotated using Premiere Pro (Adobe). Movies 2 & 3 was captured with the innate video
539 capture function in SAMPL software using recording parameters described in Table 2. Movie 3

540 was edited using Adobe Premiere Pro (Adobe) to combine with timeseries data.

541 QUANTIFICATION AND STATISTICAL ANALYSIS

542 Behavior analysis

543 Behavior data was analyzed using the Python analysis pipeline SAMPL_analysis_visualization.
544  SAMPL_analysis() function was used to calculate swim parameters, extract bouts and inter-bout

545 intervals (IBls) from the raw data, and align swim bouts by the time of the peak speed.

546 Each run of the experiment (recording from “start” to “stop”) generates one data file (x.d1lm)

547 containing recorded raw parameters including time stamp, fish body coordinates, fish head co-
548 ordinates, pitch angle, epoch number and fish length at every time point. An epoch is defined
549 by a duration where the number of detected pixels falls within the lower and upper threshold

550 for recording, indicating detection of fish in the field of view.

551 To extract bouts from the raw data, first, swim features, such as speed, distance, trajectory, an-
552 gular velocity, etc., were calculated using basic parameters and time interval. Next, epochs that
553 were longer than 2.5 s, contain maximum swim speed greater than 5 mm/s, and pass various
554 quality-control filters were selected for bout extraction. Epochs containing multiple bouts were
555 segmented and truncated so that each detected bout contains data from 500 ms before to
556 300 ms after the time of the peak speed. Then, bouts containing 800 ms of swim data were

557 aligned by the time of the peak speed and saved for further analysis.

558 All further quantification was performed on data during zeitgeber day, namely the 14 h light
559 time for fish raising under 14/10 h light/dark cycle.

560 To calculate IBls, epochs with multiple bouts are selected and the duration of swim speed be-
561 lowthe 5 mm/s threshold between two consecutive bouts is calculated. A 100 ms buffer win-
562 dow isthen deducted from each end of the duration to account for errors of swim detection

563 (Figure 3A). Pitch angles during each IBI were averaged to generate an IBI pitch (Figure 3B).

564 Definition of other bout parameters can be found in Table 3. All bout parameters (except for ki-
565 netic parameters explained in the next section) reported in the main text and Table 3 are mean

566 values across swim bouts collected from multiple experimental repeats. One experimental re-
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567 peat isdefined as behavior data collected from one clutch of fish over 48 h using at least three

568 boxes.

569 Computation of kinetic parameters
570 To calculate larvae sensitivity to pitch changes (Figure 3), we plotted bout frequency as a func-
571 tion of IBI pitch. The data was modeled using a quadratic polynomial regression (least squares)
572 defined by function:

y=alr—b)?+c
573 where the coefficient of the quadratic term a indicates sensitivity and the y-intersect ¢ repre-

574 sents baseline bout rate.

575 To calculate steering gain (Figure 4), we first computed bout trajectory defined by the tangen-
576 tial angle of instantaneous trajectory. Pitch angles at time of peak speed were then plotted as
577 afunction of bout trajectories and modeled with linear regression (least squares). The slope of

578 the best fitted line was termed the “steering gain.”

579 Time of peak angular velocity in Figure 5 was computed using adjusted angular velocity. First,
580 pitch angles for each bout were smoothed by a window of 11 frames and used for calculate
581 angular velocity. Next, we flipped the signs of angular velocity for bouts that started with nose-
582 down rotation so that all bouts started with positive angular velocity. To calculate time of peak
583 angular velocity, we took the median angular velocity at every time point across all bouts from
584 the same experimental repeat and found the time for the peak. Peak angular velocity times

585 across all experimental repeats were then averaged to generate mean peak time.

586 For fin-body coordination analysis (Figure 5), we selected swim bout that are faster than or

587 equal to 7 mm/s. Bouts with steering rotations (posture change from -250 ms to O ms) greater
588 than the 50" percentile while having a negative attack angle were further excluded from anal-
589 ysis. To calculate fin-body ratio, we plotted attack angles as a function of early rotation. Attack
590 angleis defined as the difference between bout trajectory and pitch at time of peak speed.

591 Body change related to steering were calculated by subtracting pitch angles at time of max
592 angular velocity by initial pitch. Attack angle-rotation plot was then fitted with a logistic func-

593 tion defined by
h

y=a+ 71+€7k(z+b)

594 where his the height of the sigmoid. Fin-body ratio was defined by the maximal slope esti-

595 mated using kh/4.
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596 To calculate righting gain and set point (Figure 6), righting rotation, defined by the pitch

597 changes from time of peak speed to 100 ms after peak speed, was plotted as a function of ini-
598 tial posture. Righting gain was determined by the absolute value of the slope of the best fitted
599 line. The x intersect of the fitted line determines the set point (Figure 6E, blue cross) indicating

600 posture at which results in no righting rotation.

601 Estimating effects of sample size on statistical modeling of bout kinetics

602 For statistical analysis of swim kinetics (Figure 8A), the 7 dpf constant dark behavior dataset
603 was sampled for 20 times at given sample number for calculation of swim kinetics and Cl

604 width. Specifically, sensitivity is determined by the coefficient of the quadratic term of the fit-
605 ted bout-timing parabola as stated above. To plot estimated error as a function of the number
606 of IBI, sets of data with N number of IBIs were sampled from the 7 dpf constant dark behavior
607 dataset. However, different from the calculation of R? above, the total dataset was sampled for
608 20 times for each desired number of IBIs (N). Regression analysis was performed on each set of
609 sampled data to calculate sensitivity and its standard error. Estimated errors were used to cal-

610 culate Cl width at 0.95 significance level using normal distribution for each sampled dataset.

611 Similarly, steering gain and righting gain and their estimated errors were calculated from N
612 number of bouts sampled from the original dataset. Estimated error was used to calculate Cl
613 width at 0.95 significance level for each sampled dataset. Sampling at each N was repeated for

614 20 times to generate error bars on the Cl widths.

615 Fin-body ratio was calculated fromm N number of bouts sampled from the original dataset and
616 repeated 20 times for each N. Because fin-body ratio is determined as the maximal slope of
617 thesigmoid which is given by kh/4, the variance of fin-body ratio (slope) is calculated using for-
618 mulation

Vitope = (B2 X Vi + E? X Vi + Vi x V3,) x (1/4)?
619 where Ej, and Ej, are the mean of k and h with V}, and V}, being their respective variance. Next,
620 the standard errors of the fin-body ratio were calculated and used to estimate Cl widths at 0.95

621 significance level.

622 To estimate effect sizes at given percentage of change (Figure 8B), an artificial data set was
623 generated by altering the coefficient of interest while maintaining other coefficient as well as
624 yresiduals at given x values. N data points were drawn with replacement from each data set for
625 calculation of kinematic parameters, which was repeated 200 times to generate distributions

626 of parameters of interest. Effect sizes were determined using Cohen's d:
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627 where psim and ue are the mean of parameter values calculated from respective data sets
628 and o isthe standard deviation of all 400 calculated parameters. The whole process was re-
629 peated for 20 times to estimate the mean effect size at given sample size (N) and percent-
630 age of change. To reduce program execution time, we used a fixed 40 ms before time of peak
631 speed as the time of max angular velocity for fin-body ratio calculation. Other kinematic pa-

632 rameters were calculated as described above.
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633 APPENDIX 1: HARDWARE DESIGN PRINCIPLES

634 Camera

635 At the time of writing, the best price/performance ratio when using infrared light are the Sony
636 Exmor line of complementary metal-oxide-semiconductor (CMOS) sensors. Sensors in the Ex-
637 mor line are usually released as pairs, with a low-cost low-speed version of the same sensor
638 available at the same time as a more expensive high-speed version. Our initial designed used
639 the lower-cost IMX249 sensor; we have since switched to the faster IMX174 variant. These two
640 sensors have a particularly large pixel size (5.86um), low noise (7e-), and a large well depth
641 (32,513e-) allowing for exceptional dynamic range (73dB) and signal-to-noise ratio (45dB) at
642 high-definition resolution (1936x1216 pixels). Quantum efficiency >900nm (i.e. the infrared
643 range we will use) is 10%. Sony has released new sensors in the Exmor line regularly, but the
644 trend has been to release sensors with increasingly small pixels. Thus for our purposes, the per-

645 formance of the IMX174 remains unmatched.

646 Machine vision cameras are available with different interfaces used to stream data to a com-
647 puter. The major difference between interfaces is the bandwidth available to each. The

648 two most common interfaces for machine vision cameras at the time of writing are Giga-

649 bit Ethernet (125MB/sec) and USB3.0 (500MB/sec after overhead). Currently, there are

650 commercially-available cameras with higher bandwidth interfaces utilize 10-tap CameralLink
651 (850MB/sec), 10 Gigabit Ethernet (1250 MB/sec), 4xCoaXPress 2.0 (6,250MB/sec), and PCle x8
652 (7,000MB/sec). Running our preferred IMX174 sensor at full resolution and speed for 8-bit im-
653 ages only requires 380MB/sec. Thus, USB3.0's low cost and relative ubiquity made it the most

654 attractive option for our apparatus.

655 There are a number of manufacturers that make cameras built around the IMX174 with

656 a USB3.0 interface. Cameras from major manufacturers all conform to the GenlCam stan-
657 dard making them largely interchangeable, particularly when using the Vision Acquisi-

658 tion software from National Instruments. We have successfully used cameras from Ximea

659 (MC023MG-SY), Basler (acA1920-155um), and FLIR (CS3-U3-23S6M-C), others include SYS-
660 Vistek (exol74CU3) and Daheng Imaging (MER2-230-168U3M). We have also used cam-
661 eras ordered directly from different manufacturers — at a substantial discount — available via al-
662 ibaba.com: Hangzhou Huicui Intelligent Technology Co. Ltd. (A7200MU130), Hangzhou Con-
663 trastech Co. Ltd. (Mars2300S-160um), Shenzhen Hifly Technology Co. Ltd. (MV-AU231GCM).

664 When ordering directly from manufacturers we specify Delivery At Place (DAP) shipping.
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665 The primary differences that we've encountered are whether a particular model implements
666 binning or other on-camera computations, heat management, and different manufacturer-
667 provided APIs. When we use multiple cameras from the same manufacturer on the same

668 computer, we have also noticed that certain cameras will throw timeout errors on some USB
669 ports but not others; shuffling cameras and ports has worked to solve this problem. At the

670 time of writing, supply chain issues mean that most major camera companies quote long lead

671 times, but cameras ordered directly through alibaba.com all shipped within two weeks.

672 Illlumination

673 Image quality is proportional to available light. Further, the size of the illuminated area defines
674 the size of the field that can be imaged. Finally it is imperative for our experiments that from
675 the fish's perspective that the “dark” period is completely dark. We therefore chose 940nm
676 LEDs as our source of infrared illumination. This left us with three options to build our illumina-
677 tion source: LEDs mounted on adhesive strips, “star” style LEDs with 1-4 dies on a single PCB,
678 and a high-power LED array. The LED strips had too little illuminance for our purposes due pri-
679 marily to the spacing of the LEDs. The high-power LED array had ample illuminance but gen-

680 erated so much heat that it required active cooling.

681 We developed a simple illumination module to provide diffuse IR light across a 50mm circle
682 An LED mounted on a “star” PCB (Opulent LST-01F09-1R04-00, Mouser) provided ample light.
683 We mount each “star” LED with thermal adhesive to a small heat sink (Ohmite SV-LED-325E)
684 which in turnis glued to a Thorlabs adapter (SM1AG6FW) to allows the wires to exit and the

685 LED/heatsink to connect to collimation and diffusion optics. The heat sink is machined (either
686 with a Dremel hand-held tool or a mill) on one side to allow the wires that power the LED to lie
687 flat against the heatsink. We power multiple illumination modules in series using a constant
688 current LED driver (LuxDrive BuckBlock 1000mA). Our illumination setup generates negligible

689 heat and our modules run continuously for years.

690 Ourimaging parameters are fixed across experiments and optimized to give the highest qual-
691 ity data we can achieve with our hardware. The gain of the camera is set either to its lowest

692 value or just above to minimize noise. Our exposure time is either 750 psec or 1msec, allowing
693 for acrisp image in the face of the fastest movements that fish can make. The illuminated area
694 s circular, but the image sensor size is rectangular. We therefore crop the sides of the image to

695 produce a square that fits within the illuminated area.
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696 Lens

697 Our choice of lens was guided by the need to balance different demands:

698 1. The longer the working distance, the greater the space needed between the sample and
699 the lens. We wanted our apparatus to fit length-wise on a 24 inch shelf, and so we needed
700 to minimize the working distance.

701 2. The entire depth of the tank needs to be in focus, but not beyond that because we'd like to
702 blur our LED.

703 3. The lens should be coated to pass IR light

704 4. The lens should be easy to mount to the base of the apparatus; mounting the lens instead
705 of the camera allows drop-in replacement of cameras from different manufacturers, which
706 have different positions of the tripod mount relative to the sensor.

707 5. The lens should have a simple way to mount an IR-pass filter (e.g. common thread).

708 Unfortunately, we were not able to find a single lens that met all of these criteria. Instead, we
709 adapted a 50mm (Edmund Optics 67717) lens by placing a small Thorlabs tube (ThorlLabs
710 SM1-L0O3) between the lens and the camera. We mounted a 25mm IR pass filter (ThorlLalbs
711 FGL830) inside the Thorlabs tube. By moving the lens farther from the sensor we decreased
712 the minimum working distance sufficiently. Finally, the Thorlabs tube allows us to mount the

713 lensto the breadboard directly.

714 Behavioral arena

715 To maximize the amount of time the fish swam in a plane orthogonal to the camera, we used
716 rectangular chambers. Initially we chose glass colorimeter cuvettes (Starna Cells Inc, Atas-
717 cadero CA): they are made of an inert material (glass) and come in a variety of sizes. Due to
718 supply chain issues, we switched to custom-fabricated chambers, plans attached. We now as-
719 semble these from laser-cut acrylic, cementing a front and back side to a u-shaped piece that
720 forms the other sides. These chambers are considerably cheaper and less prone to breakage

721 than glass and can be rapidly modified to allow for different experiments.

722 Enclosure

723  We designed a custom aluminum base with tapped holes for post-holders for the IR LED,
724 chamber holder, and camera/lens/filter holder. We used custom-cut extruded aluminum rails
725 toframe the sides and top. The sides are made of black foam-core sized to fit in grooves in the

726 breadboard and rails. The top rails have a cross piece that holds the LED strip used to provide
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727 circadian lighting. All parts are fabricated to order by Base Lab Tools Inc (Stroudsburg PA). The
728 topis a steel tray fabricated to order by MetalsCut4U (Avon Lake OH). Our current enclosure

729 took roughly three months to prototype before settling on the final design.

730 Shelving and fleet organization

731 We have organized our fleet of apparatus to sit on mobile wire shelving. Currently, we use

732 36"X24"x81.5" adjustable wire shelving units (McMaster Carr, Robbinsville NJ). We prefer to
733 have the shelving on casters as it makes accessing the back of the units considerably easier.
734 Shelving is organized such that one computer and three apparatus sit on a single shelf. En-
735 closures on a given shelf are color-coded (blue, gold, and red) so that each apparatus can be
736 uniquely identified by a color/shelf/module combination; this also facilitates wire labeling. Each
737 shelf has its own power strip that controls the computer, the IR lights, and the white LEDs; all

738 strips plug into a single uninterruptible power supply (APC SmartUPS 1000CQ).

739 Our aim in specifying module size was to ensure that multiple investigators could set up ex-
740 periments simultaneously, and to minimize the cost One unit has four shelves so that a sin-
741 gle “module” consists of four computers and twelve apparatus. Each module has a dedicated
742 monitor/keyboard/mouse on an adjacent desk, shared by the four computers using a KVM
743 switch (IOGEAR GCS1794). A module has its own dedicated unmanaged Ethernet switch
744  (NETGEAR GS110MX) that allows Gigabit speed communication between computers and 10

745 Gigabit speed between modules.

746 Computer hardware

747 Computer hardware was chosen to ensure adequate performance while minimizing cost,

748 noise, and size. We found that building our own computers was the only path forward in the
749 face of supply chain issues and strict optimization criteria. We opted to build around what
750 was, at the time of writing, the previous generation of AMD microprocessors (Ryzen 7 57000C)
751 cooled by a Noctua NH-L9a-AM4 fan (to minimize acoustic noise). We chose a Mini-ITX form
752 factor motherboard that allowed us to use a small case (Cooler Master NR200). Other parts
753 (64GB RAM, SSD, power supply) were chosen based on availability; a full parts list is attached
754 (Table 1). We recommmend using https:/www.pcpartpicker.com to minimize cost and ensure
755 compatibility of different components. All computers run Windows 10 Professional (Microsoft,

756 Redmond WA).

757 APPENDIX 2: ACQUISITION SOFTWARE DESIGN PRINCIPLES
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758 What we don’t measure

759 To extract the maximum amount of useful information about posture and locomotion with
760 the minimum amount of overhead we had to be selective about what we measure. Our imag-
761 ingfield islocated in the center of the arena; fish that swim at the bottom, top, or sides of the
762 tank where there is a boundary are excluded from tracking. While multiple fish swim in the
763 same arena, we do not take data when more than one fish is in the imaging field to sidestep
764 the need to track fish identity. Our arena is sized to allow fish to swim freely but its shape (a
765 rectangular solid) encourages fish to swim in line with the imaging plane; we exclude frames
766 where fish turn away from the field of view (i.e. are swimming towards/away from the camera).
767 Finally, capturing the full range of rapid propulsive undulations of the fish tail requires a frame
768 rate of 500Hz-1kHz 1911 As changes to posture and locomotion are much slower, we opted
769 torecord at 160Hz. Together, these choices allowed us to optimize our algorithms to achieve

770 the speed necessary to process video in real-time.

771 Algorithms to measure posture and position
772 Our apparatus extracts the position and pitch orientation of zebrafish in real-time over days us-

773 ing asimple set of common machine vision processing steps:

774 1. Measure the absolute difference between the current frame and the background (fish-free)
775 image.

776 2. Threshold the difference image such that all small differences are set to zero.

777 3. Dilate the image three times in succession to remove any larger clumps that are still smaller
778 than a fish.

779 4. Extract and quantify all particles in the image.

780 Real-time video processing allows efficient data extraction during video acquisition. Qur design

781 of the architecture is further discussed in the section: Optimizations for speed.

782 Below we detail a number of additional processing and optimization steps to ensure that we

783 maximize useful data.

784 Measuring the pitch of the fish
785 To extract the pitch (the angle of the fish with respect to the horizon), we perform the following
786 steps to ensure that the sign and magnitude of the angle is correctly assigned:

787 1. Fit the particle with an ellipse and extract the angle of the long axis with respect to the hori-

788 zon.
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2. Threshold the original difference image again to identify the pixels that correspond to the
head of the fish.

3. Using the head and body (X)Y) coordinates determine whether the fish was facing to the left
or right.

4. Assign the correct angle and sign such that nose-up posture is always positive and nose-

down is always negative.

These steps ensure that the data saved follows a simple and intuitive convention for posture.

Optimizations for speed

To optimize our code for speed, we use a set of thresholds to rapidly evaluate and reject frames

1. Before any processing, we sum the pixel values in the frame. If it is too low (no fish in frame)
or too high (more than one fish in the frame) we reject the frame.

2. After the particles are identified we reject the frame if a particle is touching the edge (fish
partially out of frame), if there is more than one particle (multiple fish) or if the length of the
particle is too short (fish bending infout of the field of view). We define an epoch as a set of
continuous frames that pass all our exclusion criteria (i.e. that contain a single fish in frame).

Epoch duration is tracked and, when too short, can be rejected.

In addition to optimizing the algorithm, we adopted a producer-consumer architecture to de-
couple video acquisition from video processing and saving data. Our software runs two rou-
tines: the “producer,” which acquires frames from the camera and places them in a queue

in memory, and the “consumer” that extracts each frame from the queue and processes it in
turn. Our program monitors the size of the consumer buffer and, if it has less that 10% free,
pauses the producer routine for 15 seconds to allow the buffer to clear. In this configuration,
the performance ceiling shifts from CPU speed (i.e. how quickly can a frame be processed) to
the amount of RAM available (i.e. how many frames can be queued). At the time of writing this,
doubling the amount of RAM is considerably less expensive than doubling CPU performance.

The choice of architecture thus brings down the cost of the computer.

Saving raw video

While the bulk of our experiments rely on real-time processing of video it is often useful to save
the actual data. Further, we wanted to be able to set user-defined criteria to determine in real-
time which videos were worth saving. Leveraging the producer-consumer architecture, our
software contains a routine that independently buffers the frames being analyzed and, if, the

video to be saved meets user-defined criteria, will pass the frames to an independent program
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821 towrite them to disk. For example, we can ensure that the video to be saved is of a certain

822 length. Similarly, we can filter the video images ' *? to determine if the target is in crisp focus
823 (useful for larger arenas, or higher magnification) and only save high quality videos. By separat-
824 ing video writing from acquisition and processing, comparatively slow operations such as video
825 compression and/or saving video to a network-accessible shared drive do not compromise per-

826 formance.

827 Apparatus control software

828 Our algorithm relies on common and mature image processing routines and could be instan-
829 tiated in any modern programming language. Since we had run this algorithm for the better
830 part of a decade we were confident that it was sufficiently stable to compile into a distributed
831 executable, which would greatly simplify deployment to a fleet of apparatus. Our original im-
832 plementation was written in LabVIEW (National Instruments, Austin TX) which was stable and
833 accommodated all the lab’s hardware changes for the past decade. We therefore opted to up-
834 date the LabVIEW code, which we distribute both as source and executable versions. Running
835 the executable requires each computer to have the LabVIEW Runtime Engine (free download)
836 installed, as well as a license for NI Vision Acquisition software (NI 7784 13-35) and the Vision

837 Development Module Run-Time engine (NI 778044-35).

838 User interface

839 We designed the interface to enable easy initialization of experiments, rapid graphical and

840 quantitative visualization of video processing and performance, and to minimize error. Launch-
841 ing the executable starts the program, which allows the user to fill out various text, numeric,
842 and drop-down fields that describe the experiment. The user then monitors the video feed un-
843 til nofish are in frame and then selects that image as the background. We have found that this
844 initial bit of monitoring both compensates for slight day-to-day differences in arena placement.
845 More importantly, it forces the user to monitor the live feed at the beginning of each experi-
846 ment, a useful bit of mindfulness that minimizes lost data. Once running, the user can: mon-
847 itor the output of each step in the processing algorithm graphically, monitor the number of
848 times the consumer buffer has overflowed (usually zero), update the text fields, and stop the
849 program. Hardware parameters are stored in a text file that can be easily edited directly. Experi-

850 ment parameters are similarly saved to text files and can be reloaded to save time.

851 We have implemented a number of user interface items to minimize confusion in the face of a

852 fleet of instruments. First, we have color-coded versions of the executable (blue, gold, and red)
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where the background clearly differentiates the version. Each version has its own configura-

tion file that, during setup, is coded to a particular apparatus. Thus the user is always aware of
which apparatus they are interfacing with based on color cues. Next, we added a “debug” but-
ton to the front panel that allows for direct monitoring and editing of all program variables. In

“‘debug” mode the user has the option to save raw video.

APPENDIX 3: HARDWARE ASSEMBLY GUIDE

In this Appendix, we walk through box assembly and recording settings. Refer to Appendix 5

for executing experiments and SAMPL data analysis.

Hardware assembly
Our design of hardware allows connecting up to three SAMPL boxes to one computer while
using one set of power supplies (for IR LED and daylight LED). See Movie 1 for video instruction

on box assembly.

1. Camera module

(a) Attach 1x 1.5 inch post (TR1.5) to the camera module holder (SM1RC). Screw in tightly.

(b) Assemble lens and camber. Sequentially connect parts below: camera lens, SM1A10
adapter, IR filter, SM1-L0O3 extension tube, assembled camera module holder, SM1A9

adapter, and the camera.
2. IR illumination module
(a) Attach wired IR LED to the heatsink and SM1AGFW adaptor (see below for instruction).
(b) Carefully mount the condenser into SM2L0O5 tube.

(c) Assemble the IR module by sequentially connecting parts below: IR kit, SM1M10 tube,
SM1A2 adapter, SM2L20 tube, and the mounted condenser.

(d) Tightly attach TR1 post to SM2RC holder.

3. Chamber holders
(a) Take off rubber covers on the tip of the screws on the chamber holders (FPO1).
(b) Mount holders onto TR1 posts using 8-32 screws.

(c) Assemble the IR module by sequentially connecting parts below: IR kit, SM1M10 tube,
SM1A2 adapter, SM2L20 tube, and the mounted condenser.

(d) Tightly attach TR1 post to SM2RC holder.

4. Put together the box
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883 (a) Mount one of the short rails between two long rails using right angle brackets and T-
884 nuts.

885 (b) Mount the other two short rails onto the long rails using slotted cubes and low-profile
886 cap screws (SH25LP38).

887 (c) Adjust the position of the middle rail so that is approximately 13 cm away from one end
888 of the frame.

889 (d) Attach post holders to the base plate using cap screws (SH25S038). Note that the one
890 for the camera module is the longer post holder (PH1.5).

891 (e) Mount 4 medium rails onto the base plate using standard cap screws.

892 (f) Insert all the modules onto the base plate. Connect USB cable to the camera.

893 (g) Make a notch in the middle of the shorter side of a small panel and insert it between
894 the rails on the side of the camera module.

895 (h) Insert 2 large side panels.

896 (i) Attach daylight LED to the top frame (see below for instruction).

897 (j) Pass IR and daylight LED wires through the front notch of the baseplate.

898 (k) Insert the front panel.

899 (I) Attach the top frame.

900 IR light wiring

901 Solder 2x 9" wires onto the IR LED “star.” Attach IR LEDs to heatsinks using HexaTherm tape.
902 Note that in order to pass the wires through the heatsinks and the SM1AGFW adapter on the
903 opposite end, the ears of the Ohmite heatsink need to be trimmed down a little. When done,
904 attach the heatsink to the adapter using thermal epoxy. To simplify light wiring, we use one
905 1000 mA BuckBlock to dirve 3 IR lights in series for 3 boxes on the same level of the shelf. To
906 do this, one needs 2x 7" wires to connect adjacent IR cables and 1x 22" wire connecting the
907 further IR to the BuckBlock. Use another 8" wire to connect the closest IR to the BuckBlock.
908 We recommend using XT60H connectos to link these wires to the IR light cables and connect
909 wires to the BuckBlock for the ease of troubleshooting and replacement. Finally, connect the

910 BuckBlockto 12V 2 A power supply through pigtail adaptors.

911 Daylight wiring
912 Each box uses a strip of 6 daylight LEDs. Our choice of daylight LED comes with double sided

913 tape already attached to the back side of the LED which is used to install LED strips to the top
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914 frame. To wire daylight LED strips, solder 2x 20" wires to the LED strip. Heat shrink sleeves can
915 be used here to strengthen connections. Twist the wires at the end close to the LED. This helps
916 with cable management in the box. Bend the cables 90 degrees in the XY plane (perpendicu-

917 larto theillumination direction) so that the wires won't get into the field of view.

918 To simplify light wiring, we use one 12V 1A power supply to drive 3 LED strips in parallel. To do
919 this, cut 1x 27" wire for connecting the positive end of the DC plug to the LED strip. Prepare
920 3 wires for the negative end of the strips each measured 10" 18", and 27" Insert one end of
921 allthree wires for the negative end into the negative terminal of a pigtail connector, connect
922 the other endstothe LED cables. For positive end, we recommend using T tap connectors

923 (BO85XGYW1B) which allows easy disconnection.

924 PC setup

925 Assemble computer parts. Make sure 1 PCl-e USB card is installed into each PC. Connect

926 power cable and Ethernet cable. If desired, connect 3 cameras to three different USB BUS on
927 the PC: specifically, one to a PCl-e USB card, one to a USB 3.0/3.1 port on the motherboard in
928 the back of the PC, and one to a USB 3.0 port on the front panel. If desired, connect to the KVM

929 switch.

930 Turn on the PC, setup Windows. If necessary, change settings below to achieve peak perfor-
931 mance: select AMD High Performance in Power Settings; set Sleep time to Never; set hard disk

932 sleep timeto O in Advanced Power Settings.

933 Install behavior programs

934 We provide three executable programs (Blue, Gold, Red) that can run simultaneously on the
935 same PC. Refer to the Key Resources Table for access to the programs. To install executables,
936 download *.exe files and corresponding configuration files (* Configuration.ini). Create a
937 folder under C:/ and move configuration files to C: /Data/. Install required NI software and ac-

938 tivate: LabVIEW Runtime, Vision Acquisition, and Vision Runtime. Restart computer.

939 Open NI Max, rename cameras to camBlue, camGold, and camRed. Set camera settings:

940 - Field of view - X: left = 360; resolution = 1216

941 - Field of view - Y: top = O; resolution = 1200

942 - Under Acquisition attributes - Receive time stamp mode = System time

943 - Under Camera attributes - Analog control - Gain = 1; Black level = 1 (if applicable)

944 - Under Acquisition Control - Exposure time = 1000; Trigger activation = Rising edge; Frame

945 Rate = Freerun (for 166 Hz with our cameras of choice, or set to desired frame rate)
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946 Open configuration files and set box number to desired values. We use box number as a
947 unique identifier for different behavior boxes. Check camera name to make sure it's the same

948 asthe corresponding camera names in NI Max.

949 Open behavior programs, now that you should see images showing up on the preview win-

950 dows.

951 Camera calibration
952 Once the apparatus has been assembled and software has been installed, align the field of
953 view (FOV) to the center of the IR light circle. Raise or lower the post holding the camera mod-

954 ule to center the FOV in 'Y and roll the module to level it.

955 Next, calibrate the scale of the FOV to 60 pixels/mm. To do this, secure a micrometer in a
956 chamber and place it into the box. Snap a picture of it using NI Max, then measure the scale
957 using the image of the micrometer. If necessary, loosen the SM2RC adapter and move the

958 camera and lens forward or backward to achieve the correct scale.

959 Illumination adjustments should be completed with the behavioral arena in place. To calibrate
960 exposure, first ensure the correct IR light is in use and set the aperture ring between /16. In
961 NI Max, the peak of the image histogram peak should be around 128 (the middle of the 8-bit
962 range). If necessary, exposure can be reduced by lowering exposure time or increased by open-

963 ing up aperture to f/11.

964 Network setup
965 We use a Synology data server as a repository to store behavior data. Hard drives are setup
966 as RAID 10. Each SAMPL rack has its own ethernet switch, which can be connected to other

967 switches as necessary.

968 APPENDIX 4: DATA ANALYSIS SOFTWARE

969 In this appendix, we discuss algorithms for the data analysis and plotting software. We assume
970 that the user is working with data from larval zebrafish here. If not, the specific parameters

971 identified here are unlikely to translate as other organisms move differently but can nonethe-
972 less be used as a starting point. Refer to Appendix 5 for instruction for use. Refer to the Key Re-

973 sources Table for access to the code.

974 Read DLM files
975 Each SAMPL session (from Start experiment tO Stop) generates one tab-delimited (i.e. .d1lm) file.

976 Each time point appears as a row of tab-separated values in the .dlm file. Columns, from left to
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right, are time stamp, fish number in the field of view (FOV), pitch angle (0-90°), x coordinate
for body, y coordinate for body, x coordinate for fish head, y coordinate for fish head, raw fish

angle (0-180°), epoch number, and estimated fish length.

Each .dlm's data is loaded as a Pandas DataFrame for further analysis (see
src/SAMPL_analysis/preprocessing/read_dlm.py for details). Each raw DataFrame contains
multiple epochs. An epoch is defined as duration when a fish is detected in the FOV. See

Appendix 1 for details on the algorithm for animal detection.

Extract epochs
We calculated swim attributes, such as angular velocity, swim speed, instantaneous displace-
ment, etc., from recorded pitch angles and fish body coordinates. To extract quality epochs

from the recorded data, epochs are analyzed and passed through several quality control filters:

1. each epoch is truncated by 50 ms at both the start and the end to eliminate frames when

fish is entering/exiting the FOV;
2. epochs with duration shorter than 2.5 s are excluded (for 1 & 2, see function raw_filter());
3. epochs with frame drop greater than 3 frames are excluded;

4. epochs with direction of fish translocation opposite to where the head points toward are

dropped (for 3 & 4, see function dur_y_x_filter 0));
5. epochs with aberrant displacement jumps are excluded;

6. epochs with improbably large angular velocity greater than 250°/s or angular acceleration

larger than 32000°/s? are excluded (for 5 & 6, see function displ_dist_vel_filter()).

All the processes above can be found in the script src/SAMPL_analysis/preprocessing/analyze_dlm_v4.py.

Get bout and inter-bout data

Epochs that pass the quality control are used to extract swim bouts using function
grab_fish_angle() under src/SAMPL_analysis/bout_

analysis/grab_fish_angle_v4.py

We use a swim speed threshold of 5 mm/s to determine swim windows. Adjacent swim win-
dows with intervals smaller than 100 ms are combined. Next, we find the time of the peak
speed for each swim window and extract frames in a range of 500 ms before to 300 ms af-
ter that. Inter-bout intervals (IBl) are determined as time between adjacent swim bouts with
a 100 ms buffer window deducted from both the beginning and the end and IBI data is ex-
tracted accordingly. Baseline is considered the time during which larvae swim slower than 2

mm/s and baseline parameters are extracted accordingly.
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1009 Note that an epoch can only contain a single detected fish. The number of swim bouts ex-
1010 tracted from an epoch various extensively depending on the quality of the epoch (and behavior
1011 offish). Having too many fish in the chamber may lead to low yields of aligned bouts despite

1012 having a large number of epochs. For details of fish detection, refer to Appendix 1.

1013 Export analyzed results
1014 Numerous attributes are saved as DataFrames under keys in HDF5 format files using our anal-
1015 ysis pipeline. Once the analysis is complete, three output data files are generated: all_data.h5,

1016 bout_data.h5, and IEI_data.h5.

1017 The all_data.h5 file contains epoch-based data including raw data from DLM files, epoch
1018 attributes, baseline angular velocity, etc. The bout_data.h5 file includes bout attributes and
1019 aligned bout data such as pitch angles and speed. The IEI_data.h5 file contains all inter-event
1020 interval (IEl) data, or IBI. Refer to docs/ for a complete list of saved attributes and their descrip-
1021 tion. In addition, a metadata table including recording frame rate, number of aligned bouts,

1022 and other information is generated and saved to the same directory.

1023 All results are saved as “long format” DataFrames with each row representing a time point or a
1024 bout/IEl, depending on the type of the result (one value per timepoint vs per bout/IBI). Values

1025 of multiple aligned bouts are stored in successive rows.

1026 All functions above can be called with script src/SAMPL_analysis/SAMPL_analysis.py. Refer
1027 to Appendix 5 for running instructions. For a record of analyzed files, frame rate, number of

1028 aligned bouts, etc,, refer to the log file generated under src/.

1029 Load analyzed data and calculate parameters
1030 We include several plot functions under src/SAMPL_visualization/ that calculate and plot all
1031 the parameters we report in the main text. These functions require an input of a root directory

1032 containing analyzed data. For recommended behavior data structure, see Appendix 5.

1033 Once data is found, plot functions get frame rate from metadata files and calculate the index
1034 of time of peak speed which is used to calculate the number of aligned frames and initialize
1035 other constants. Note that plot functions only read one frame rate for all the data to be plotted.
1036 Therefore, make sure all experiments are done at the same frame rate. To combine results from
1037 different frame rates for plotting, extract parameters of interest separately for experiments with
1038 different frame rates and concatenate the results afterwards. We only plot zeitgeber day data in

1039 thisversion of the code. Users may modify the day_night_split() function to extract zeitgeber
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1040 nightresults if intended.

1041 To load analyzed swim bouts and IBI, we loop through all subfolders under the root directory
1042 and read DataFrames from HDF5 files, extract and calculate desired parameters and concate-

1043 nate results. Each plot function extracts parameters in different ways.

1044 For time series values to be plotted as a function of time, data is loaded from the all_data.h5
1045 file. The key prop_bout_aligned contains propulsive bouts that have been aligned and

1046 grabbed_all includes all epochs that contain swim bouts. See plot_timeseries.py for examples.

1047 Bout parameters, such as speed, displacement, pitch angles and attack angles, are also ex-
1048 tracted from prop_bout_aligned key containing aligned swim bouts. We use a dedicated func-
1049 tion for calculating these swim parameters: extract_bout_features_v4(). These parameters
1050 can be further used to get steering and righting gains. See get_kinetics() for more. Note that
1051 some parameters are determined by specific time points (such as initial pitch, post-bout pitch,
1052 etc.). To determine frames that are the closest to these time points, we use half round up for

1053 rounding.

1054 |IBl data is loaded from the IEI_data.h5 file under key prop_bout_IEI2. For bout tim-
1055 ing estimation, we calculate bout frequencies as reciprocals of bout intervals (IBls). See

1056 plot_bout_timing.py and plot_IBIposture.py for examples.

1057 To calculate fin-body coordination, users need to determine how the rotation is calculated.
1058 Oneway isto use rotation to time of peak angular velocity which requires estimation of
1059 time of peak angular velocity. To do this, we first calculate angular velocity using smoothed
1060 pitch angles and adjust the signs so that values are positive before time of the peak speed.
1061 Median of angular velocity time series from the same experimental repeat (see Appendix 5
1062 for data organization) is used to find time of peak angular velocity. Lastly, we average results
1063 across experimental repeats to determine the peak angular velocity time. However, this calcu-
1064 lation requires a large amount of bout data. Alternatively, one may use a fixed value for time of
1065 peak angular velocity. Generally, we found -50 ms (50 ms before time of peak speed) to be a
1066 good value to use. Once the time of peak angular velocity is determined, rotation is calculated
1067 by pitch change from 250 ms before peak speed to time of peak angular velocity. Some scripts
1068 have the option to sample data from each experimental repeats. See Appendix 5 for instruc-

1069 tion.
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1070 Visualize results

1071 We use the Seaborn package for data visualization '*°. Each plotting script generates a folder
1072 under figures/ and saves figures as PDFs. Below is a list of available plotting functions and

1073 their descriptions. For more details, refer to the README document.

1074 1. plot_timeseries.py

1075 plots basic parameters as a function of time. Modify all_features to select parameters
1076 to plot. This script contains two functions: plot_aligned(), plot_raw(). Change variable
1077 all_features to select parameters to plot.

1078 2. plot_parameters.py

1079 plots swim parameter distribution and 2D distribution of parameters for kinetics calculation.

1080 This script contains function: plot_parameters ().

1081 3. plot_IBIposture.py

1082 plots Inter Bout Interval (IBl; aka inter-event interval, |EIl) posture distribution and stan-
1083 dard deviation. This script contains function: plot_IBIposture(). This script looks for

1084 prop_Bout_IEI2 in the prop_bout_IEI_pitch data which includes mean of body angles dur-
1085 ing IBl. When input root directory contains multiple experimental repeats, the scripts allows
1086 sampling of IBIs from each repeat by specifying argument sample_bout.

1087 4. plot_IBIposture.py

1088 plots Inter Bout Interval (IBl; aka inter-event interval, |El) posture distribution and stan-
1089 dard deviation. This script contains function: plot_IBIposture(). This script looks for

1090 prop_Bout_IEI2 in the prop_bout_IEI_pitch data which includes mean of body angles dur-
1091 ing IBI. When input root directory contains multiple experimental repeats, the scripts allows

1092 sampling of bouts from each repeat by specifying argument sample_bout.

1093 5. plot_bout_timing.py

1094 Plots bout frequency as a function of IBI pitch and fitted coefficients of function. This script
1095 contains function: plot_bout_frequency (). When input root directory contains multiple ex-
1096 perimental repeats, the scripts allows sampling of bouts from each repeat by specifying ar-
1097 gument sample_bout.

1098 6. plot_kinematics.py


https://doi.org/10.1101/2023.01.07.523102
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.07.523102; this version posted March 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1099 Plots righting gain, set point and steering gain. This script contains function:
1100 plot_kinetics (). When input root directory contains multiple experimental repeats, the
1101 scripts allows sampling of bouts from each repeat by specifying argument sample_bout.

1102 7. plot_fin_body_coordination.py

1103 Plots attack angle as a function of rotation and calculates fin-body ratio. Rotation is

1104 calculated by pitch change from -250 ms to -40 ms. This script contains function:

1105 plot_fin_body_coordination(). For reliable sigmoid regression, 6000+ bouts is recom-
1106 mended. When input root directory contains multiple experimental repeats, the scripts al-
1107 lows sampling of bouts from each repeat by specifying argument sample_bout.

1108 8. plot_fin_body_coordination_byAngvelMax.py

1109 Plots attack angle as a function of rotation and calculates fin-body ratio. Rotation is calcu-
1110 lated by pitch change from -250 ms to time of max angular velocity. For reliable sigmoid
1111 regression, 6000+ bouts is recommended. When input root directory contains multiple ex-
1112 perimental repeats, the scripts allows sampling of bouts from each repeat by specifying ar-
1113 gument sample_bout.

1114 APPENDIX 5: STANDARD OPERATING PROCEDURE FOR RUNNING EXPERIMENTS AND
1115 ANALYZING DATA WITH SAMPL

1116 Inthisappendix, we provide a step-by-step instruction for running experiments and analyzing
1117 SAMPL data. Refer to the Key Resources Table for access to SAMPL analysis and visualization

1118 scripts.

1119 Experimental design

1120 SAMPL experiments usually involve comparing behaviors of two or more groups of fish with
1121 different mutations, transgenic backgrounds, or manipulation. We suggest first deciding a
1122 priorion the total number of bouts required to resolve differences Figure 8 with the desired
1123 power. Typically, one SAMPL experimental repeat containing two 24-hour sessions using 3
1124 boxes with 5-7 larvae per box yields 3000-6000 bouts, which is usually sufficient for param-
1125 eter calculation Figure 8. However, multiple factors can affect data size per repeat, such as:
1126 manipulations (mutation/drug treatment), the throughput of manipulation, the availability of
1127 apparatuses, and the number of larvae with desired background per clutch. We therefore sug-
1128 gestrunning a pilot experiment first to determine the number of bouts that can be expected

1129 per box. Once done, we suggest defining an “experiment” with respect to the desired num-
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1130 ber of bouts, which will specify the number of boxes and larvae per box required. Outlier boxes
1131 with too few or too many bouts (e.g. more/less than 2SD) can then be excluded from further
1132 analysis according to pre-determined criteria. Finally, we recommend running the full “exper-
1133 iment” multiple times to ensure that the findings are reproducible, and to report the variance
1134 across estimated parameters. Certain circumstances may be ill-suited to this approach: for ex-
1135 ample, if particular genotypes of larvae are especially rare, such as in the case of doubly biallelic
1136 mutants, or genotypes that simply swim drastically less. In such cases one can combine swim
1137 bouts across experimental repeats, and report the estimated error in pararmeter estimates us-

1138 ing statistical resampling techniques such as the jackknife.

1139 Running an experiment

1140 One typical SAMPL experimental repeat contains two 24-hour sessions. We suggest running
1141 zebrafish larvae at one of 3 time points: 4-6 dpf, 7-9 dpf, or 14-16 dpf. Larvae should be given
1142 30 minutes of access to food before being placed into chambers. We suggest putting 5-8 lar-
1143 vaeinto one standard chamber and 1-3 larvae in one narrow chamber to maximize data yield.
1144 Behavior recording requires having a single fish in the FOV at a time. Appearance of additional
1145 larvae will disrupt fish detection. We suggest transferring 25-30/10-15 ml| E3 medium into
1146 each standard/narrow chamber to account for evaporation and maximize likelihood of fish
1147 swimming in the FOV. Throughput of the apparatus can be found in Figure 2 (standard cham-

1148 ber based on 58 larvae; narrow chamber based on 23 larvae).

1149 With SAMPL, one computer can control up to three behavioral apparatus, or “boxes.” Once the
1150 fish chamber is put into the box and secured, open the program (Blue, Gold, Red) correspond-
1151 ingtothe box torun on the computer controlling the boxes. Enter experimental information
1152 inthe window opened: Genotype (experimental conditions), Cross ID, Fish number, etc. Set the
1153 destination folder for data storage. Choose the desired Light-Dark (L/D) cycle from one of the
1154 followings: L/D, L/L, or D/D. Adjust daytime light connection/timer accordingly. Use fish size
1155 toggle to select thresholds for fish detection: use Small fish for larvae younger than 12 dpf
1156 andBig fish for those that are older. To start recording, click Select Background when there's

1157 nofishin the FOV.

1158 Larvae older than 5 dpfshould be fed every 24 hours with 1-2 ml of diluted cultured rotifers.
1159 To feed fish, click Stop program to stop the current session. Feed with rotifers and allow a pause

1160 of 30 min before re-starting the experiment.

1161 Atthe end of the experiment, click Stop program and remove fish from the box. Each session
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1162 (from Start to Stop program) generates one .dlm data file and a corresponding .ini metadata

1163 file.

1164 Software requirement for data analysis

1165 To analyze behavior data using code provided, one needs Python 3, analysis scripts, and vari-
1166 ous Python modules. An integrated development environment (IDE) is recommended to edit,
1167 debug, and run the code. If you don't have a personal preference, we recormmend using Visual
1168 Studio Code (Microsoft). Analysis and visualization code was developed using Python 3. For the
1169 ease of package management, we suggest the use of environment management tools, such

1170 as miniconda.

1171 The most recent version of the code we use to analyze SAMPL data can be found online at
1172 https;// Download the entire directory by pressing the green Code button and downloading
1173 the ZIP file (orange box) so that you can make changes as needed for your project. The src
1174 folder contains all scripts. The sample figures folder contains examples of plots from the visu-

1175 alization functions. Please refer to the README for instructions and user guides.

1176 Toset up avirtual environment, open a new terminal or use the terminal in your IDE, and type:
1177 conda create -n <myenv>

1178 where <myenv> is substituted with any desired name for the environment. Next, activate this

1179 environment

1180 conda activate <myenv>

1181 and install packages required for analysis and plotting using

1182 conda install <package>

1183 Below is a list of required packages '*“~1“0 other than those included in Python 3.10.4:

1184 - astropy=b.1
1185 - pandas=1.4.4
1186 - pytables=3.7.0
1187 - matplotlib=3.5.2
1188 - numpy=1.23.3

1189 - scipy=1.9.1
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1190 - seaborn=0.12.0
1191 - tqdm=4.64.1

1192 - scikit-learn=1.1.1

1193 For a complete list of packages, refer to the environment . yml file.

1194 Bout analysis
1195 Analysis and plotting scripts support two types of data structures. The first option is one root

1196 directory containing all data files:
root
datal.dlm
datal parameters.ini
data2.dlm
data2 parameters.ini

1197 The second is a root directory containing subfolders with the necessary files indicating experi-

1198 mental repeats:
root
| exp repeat 1
datal.dlm
datal parameters.ini
data2.dlm
data2 parameters.ini

| _exp repeat 2
datal.dlm
datal parameters.ini
data2.dlm
data2 parameters.ini

1199 Run the analysisscript .../src/SAMPL_analysis/SAMPL_analysis.py and input data directory (di-
1200 rectory of the root folder) and the frame rate as instructed. This function aligns bouts in .dlm
1201 files within a directory so that peak speed is at time O ms, with 500 ms of activity before and
1202 300ms of activity after. It is important to note that all files in the same subfolders under the in-
1203 put directory will be combined to extract bout parameters. The analysis script will take the sub-
1204 mitted directory and analyze all data files within it, including all subfolders in its search, regard-
1205 less of depth. Subfolders can be used to separate analyses, experimental conditions, or repeats.
1206 Data with different frame rates should be analyzed separately to ensure proper parameter cal-

1207 culation, as only one can be used at a time.

1208 The program will skip the current .d1m file if it fails to detect a bout in it. However, errors are ex-

1209 pected if files contain too little recorded data to extract a bout. Therefore, we suggest removing
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1210 any .dlmfiles that are smaller than 1 MB.

1211 When analysis is done, it will save three data files (.h5), four catalog files (.csv), and two meta-
1212 datafiles (.csv) under the same directory as the data is in. Below is an example of an analyzed

1213 directory:
root

datal.dlm
datal parameters.ini
data2.dlm
data2 parameters.ini
all data.hb
bout_data.hb
IEI_data.hb
analysis info.csv
root metadata.csv
catalog all_data.csv
catalog bout_data.csv
catalog IEI_data.csv
data_file_explained.csv

1214 Visualizing results
1215 After analysis, the scripts under the visualization folder are used to extract swim parameters
1216 and kinetics, and visualize them. For more detailes, refer to Appendix 4 and the README doc-

1217 ument. Each function can be run individually and will ask for the directory path to your data

1218 (see the Bout analysis section above). Alternatively, use plot_all.py to plot all figures.

1219 |Ifthe data size from a single repeat is not adequate for parameter calculation, we suggest com-
1220 bining data from multiple repeats and use sampling techniques such as Jackknifing for error

1221 estimation.
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Table 1: List of parts, prices per 12/2022

Computer & software licenses ($2,300; one computer runs

three apparatus)

RAM (64GB)

Case (small form factor)

Motherboard (Mini-ITX, AM4 CPU slot, on-board NIC)
Solid state hard drive (1TB)

CPU w/embedded GPU (AMD Ryzen 7)

Quiet CPU fan (Noctua)

Power supply (450W)

USB card

Operating system (Windows 10 Professional)
Vision Development License (Image Processing)
Vision Acquisition License (Image Acquisition)
Software Runtime Engine

Shelving unit for 12 apparatus, ($2,100)

Amazon BO884TNHNC

Amazon BO8BFEYMXC

Amazon BO89D34SZT

Amazon BO8V83JZH4

Amazon BO91J3NVYVF

Amazon BO75SC1T3X

Amazon BO7DTP6SLI]

Amazon BO8SB5BNZQ6

Amazon BOOZSHDJ4O

National Instuments 778044-35
National Instruments 778413-35
NI LabView Runtime (free download)

KVM switch to share keyboard, mouse and monitor w/cables
Monitor 1920x1080

Keyboard

Mouse

Mobile wire shelving unit w/4 shelves 36"x81.5"x24"
Extra shelf (handy to hold UPS and network gear up top)
Uninterruptible power supply

Spare battery for UPS (handy to have around)

Timer (for light/dark)

Power strip (6', higher shelves, 2pk)

Power strip (12', lower shelves, 2pk)

Wire ties (cable management)

Network cables CAT6a 10G 7ft (5pk & 10pk)

Network switch (Netgear GS110MX)

Networked data storage ($3,800)

Amazon BOO1VILQ52
Amazon BO7F8XZN69
Amazon BOOCYX26BC
Amazon BO87Z2733CM
McMaster Carr 25637336
McMaster Carr 5101T497
Amazon BO78D6KZ98
Amazon BO10OXF8SCI
Need 4, Amazon BOO5MMSTNG
Amazon BO82DVCCDR
Amazon BOBKZGCT258
Amazon BO96ZHHRC3
Amazon BO1BGCV2T5U
Amazon BO76642YPN

500GB solid state drive for data server caching

Data server Synology DS162 1xs+

16TB Hard drives for data server. Order 7 (6+1spare)
10GB NIC for data server

Enclosure (BaseLabTools/Amazon/MetalsCut4U, $375 per ap-

paratus)

Need 2 Amazon BO7M7Q21N7
Amazon BOSHYRYLPS

Need 7 Amazon BO7SPFPKF4
Amazon BO7GION9OKIT

Breadboard (see image w/measurements)

Rails for enclosure (see measurements)

Hardboard for enclosure walls (see measurements)
Right angle joiner for LED strip

Joiner cube for enclosure

Spring-loaded t-nuts (10pk)

M5-0.8 x 8mm Screws

Top: G90 galvanized steel (7.25in x 20.25in x 3in, 20 Ga.)

ThorLabs parts ($550 per apparatus)

SABCUST
X2020-CUST
X2020-HB-CUST

Need 2 X2020-AB1
X2020-C3W
X2020-DTSB-M5-P10
Amazon BO7H18YDYB
Tray, MetalsCut4U

Holds condenser

Condenser/diffuser for IR light

Tube to distance condenser from LED
Adapts IR light holder to post

Adapts SM2 tube to SM1 tube

Tube to hold heatsink

Adapts heatsink / LED to SM1 tube
Adapts camera to SM1 tube

Adapts SM1 tube to imaging lens
Filter to pass only IR light

Adapts camera/lens to post

Holds filter / allows camera/lens mounting

SM2L05
ACL5040U-DGC6-B
SM2L20
SM2RC
SM1A2
SM1M10
SM1AGFW
SM1A10
SM1A9
FGL830
SM1RC
SM1LO3
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Holds imaging chamber

Post-holder for chamber holder / IR assembly

Posts for chamber holder /IR assembly

Post-holder for camera/lens

Post for camera/lens

1/4-20" screws to attach post-holder to breadboard
1/4-20" low-profile screws for enclosure

IR LED (assembly required, $100 per apparatus)

Need 2 FPO1
Need 3 PH1
Need 3 TR1
PH1.5

TR1.5
SH255038
SH25LP38

12V 2A power supply for IR

XT60H connector for IR lights

940nm 2.6V IR LED Opulent LST1-01F09-1R04-00
Thermal epoxy (attach heatsink to ThorLabs SM1AGFW
Ohmite heat sink

HexaTherm tape (attach LED to heatsink)

BuckBlock 1A

Daylight LED, ($50 for three apparatus)

Amazon BOOQ2ESIXW

Amazon BO9ST768W?2

Mouser 416-LST101F09IR0400
Amazon BO8Z73HH23

Mouser SV-LED-325E
LEDSupply AOO1

LEDSupply OA009-D-V-1000

12V 1A power supply for daytime lights (5pk)

SMD5050 6500K white LED 12V light strip 60LED/meter
DC power pigtail (to connect LED strip to power)

T tap connectors

Imaging, ($1,200-$1,800 per apparatus)

Amazon BOOFEOB4EI
Amazon BO75R4X1XL
Amazon BO768VOV5Q
Amazon BO85XGYW1B

Camera (IMX174 chip, USB 3 interface)
Lens (50mm, VIS-NIR coating)
USB cable

Chambers, laser cut by Pololu ($200)

e.g. Basler acA1920-155um
Edmund Optics 67-717
e.g. Edmund Optics 86-770

Chamber sides

Chamber faces
Weld-On 4 acrylic cement & applicator

Table 2: Recording parameters for different organisms

12mm (10.2 - 12.75mm) #2025 black cast

acrylic, opaque

1.5mm (0.8 - 2.1mm) clear cast acrylic

Amazon BOOTCUIJ7A8

Zebrafish < 12 dpf Zebrafish > 12 dpf Drosophila C. elegans

Body low 14 14 100 20
Body high 255 255 255 255
Head low 45 45 30 21
Head high 255 255 255 255
Initial cut low 25 25 45 3

Initial cut high 120 120 145 30
Size low 180 250 80 30
Size high 260 450 180 80
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Table 3: Measured parameters of posture and locomotion across development

Parameter Unit 4 dpf 7 dpf 14 dpf Format Definition
10.42 13.02 11.41 Mean of )
Peak speed mm/s (3.85) (4.99) (4.20) bouts (SD) Peak speed of swim bouts
e 521 0.77 0.54 Median of .
Initial pitch deg (3149) (2181) (18.64) bouts (IQR) Eg)tecehdahgle at 250 ms before the peak
. 9.74 6.84 4.36 Median of . .
Pitch at peak speed deg (29.16) (20.35) (19.73) bouts (IQR) Pitch angle at time of the peak speed
. 10.57 10.21 ©.88 Median of )
Post-bout pitch deg (2386) (1670) (16.05) bouts (IOR) Pitch angle at 100 ms after the peak speed
) 10.85 10.78 7.56 Median of .
End pitch deg (2359) (1679) (1555) bouts (IQR) Pitch angle at 200 ms after the peak speed
Bout trajectory deg (2272592) (2869129) (272'8859) b'(\)/lftasn(gg) Peak trajectory, tangential angle of the tra-
’ ’ ' jectory at the time of the peak speed
Bout displacement mm (é'é% (é'éi) (égg) bgftasqgg) Average displacement of fish during a bout
' ' ’ when speed is greater than 5 mm/s
) 1.78 1.89 2.13 Median of ) ) .
Inter-bout interval s (2.61) (2.75) (2.80) bouts (IQR) L)Egﬁ;ramon between two adjacent swim
Bout frequency Hz 0.56 0.59 047 Median of Frequency of swim bouts determined by
(0.70) (0.69) (0.59) bouts (IQR) ; X ;
the reciprocal of inter-bout interval
IBI pitch deg (1537?753) (1533?57) (16i9284) bgftasr](gg) Mean pitch angle during inter-bout interval
) 17.48 12.66 11.23 Mean of . .
IBI pitch standard deg Standard deviation of IBI pitch, a measure-
deviation (1.60) (1.80) (1.28) repeats (SD) ment of stability
Sensitivity mHz/deg? (8‘§é) ((1)82) (égi) e Meeaatg (CgD) Sensitivity to pitch changes. Determined by
’ ’ ’ P the coefficient of the quadratic term of the
parabola model for bout timing
. 051 051 0.47 Mean of .
Baseline bout rate Hz (0.06) (0.08) 011) repeats (SD) ;/ir;;witf;sect of the parabola model for bout
) L 546 413 4.35 Mean of L ) o
Trajectory deviation deg (1453) (11.57) (16.39) bouts (SD) Eilehatlon of bout trajectory from initial
Steering rotation deg (gg% (é‘gg) (é??) bgftasn(gg)) Change of pitch angle from initial (250 ms
' ' ) before) to the time of the peak speed
. : 0.64 0.67 051 Mean of ' . .
Steering gain - Slope of best fitted line of posture vs trajec-
(0.04) (0.04) (0.05) repeats (SD) tory at the time of the peak speed
: 1.72 1.74 0.99 Mean of . -
Steeﬁlng—related deg (6.15) (5.95) (5.42) bouts (SD) Change of pitch angle from initial to the
rotation time of max angular velocity
4.10 0.77 091 Median of L ) )
Attack angle deg (16.16) (968 (5.25) bouts (IQR) De\/|at|on of bout trajectory from pitch at
time of the peak speed
Peak angular veloc- ms (570662? (349‘9166) (550‘102(; e Meeaatg (OSfD) Time of peak angular velocity in ms before
ity time ’ ’ ’ P time of the peak speed
. ) 341 2.27 355 Mean of . ' . .
Fin-body ratio - (0.86) (0.76) (1.98) repeats (SD) Maximal slope of best ﬂtted sigmoid of at-
tack angle vs early rotation
. : . 16.47 10.28 2515 Mean of . ) ) :
Sigmoid height deg (2.31) (1.78) (4.68) repeats (SD) Height of best ﬂtjted sigmoid of attack an-
gle vs early rotation
Righting rotation deg (g'ié) é'gg) é'g% bg/luetasn(sog) Change of pitch angle from time of the
’ ’ ’ peak speed to post bout (100 ms after
peak speed)
. . . 0.15 0.18 0.18 Mean of S . '
Righting gain - Numeric inversion of the slope of best fitted
(0.02) (0.02) (0.02) repeats (SD) line of righting rotation vs initial pitch
. 13.00 19.47 13.60 Mean of . ) . S
Set point deg (2.10) (2.28) (1.78) repeats (SD) Xintersect of best fitted line of righting

rotation vs initial pitch
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Figure 1: Schematic illustrations of SAMPL hardware design.

(A) Overview of the apparatus without aluminum rails, side panels, and the top panel. EQuipment modules mounted
on the breadboard are, from left to right, IR camera and lens, chamber holders, and IR illumination module.

(B) Exploded-view drawing of the IR illumination module.

(C) Exploded-view drawing of the camera and lens module.

(D) Exploded-view drawing of a chamber holder

(E) Design of fish chambers. From left to right: 3D illustration of a standard chamber (upper) and a narrow chamber
(lower); front view of the u-shaped acrylic middle piece for the chambers; side view of the chamber. Pink squares
illustrate the recording field of view. i = 20 mm;s= 1.5 mm.

(F) Dimensions of the apparatus frame and breadboard.

(G) Design and dimensions of the apparatus lid.

(H) Schematic illustration of a set of three SAMPL apparatus and a small-form-factor computer case on a 24"x36"
shelf.


https://doi.org/10.1101/2023.01.07.523102
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.07.523102; this version posted March 27, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

>
@

Speed
(mm/s)

20 Resting Grooming
104

0 1
Time (s

Drosophila
~
°9

Heading
(deg)

(¢}
(@]
1

2
)

O

-4
N
2E 4.
£E°
g e .
S T T
g’ __ 207
© g 5
© I
<tE’-zo-
T 1
° s Time(s)’IO
15- Bouts y'4

2910+ \ Bout
QE threshold
B E 54 -

Zebrafish larvae

O 1 1 1 T
—~ 254
o
Pitch angle E
§ 104
o T T T T
o 0.5 1 1.5
Time (s)

Figure 2: High-definition recording and measurement of animal locomotion using SAMPL.

(A) Example of a recorded frame with a Drosophila melanogaster (white box) in the SAMPL apparatus. Dashed line
indicates heading of the fly relative to vertical up (north). Imaging was performed at 166 Hz with 1200x 1216 pixels.
Same as follows.

(B) Example of an epoch of a walking fly. Walking speed and heading are plotted as a function of time. Gray and cyan
lines marks resting and grooming period, respectively (Movie 2).

(C) Example of a recorded frame with a Caenorhabditis elegans (white box) in the SAMPL apparatus. Dashed line
indicates approximated angle of the worm relative to vertical.

(D) Example of an epoch of a swimming worm. Z position and approximated angle are plotted as a function of time.
Cyan vertical lines label the time when the plane of movement is perpendicular to the imaging plane (Movie 2).

(E) Example of a recorded frame with a 7 dpf Danio rerio larva (white box) in the SAMPL apparatus. Pitch angle is
determined as the angle of the trunk of the fish (dashed line) relative to horizontal. Positive pitch indicates nose-up
posture whereas negative pitch represents nose-down posture.

(F) Example of an epoch containing multiple swim bouts (arrows). Swim speed and pitch angles are plotted as a
function of time. Dashed line marks the 5 mm/s threshold for bout detection. Cyan vertical lines label time of the
peak speed for each bout (Movie 3).
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Figure 3: Modeling timing of swim bouts reveals larval sensitivity to pitch changes.
(A) An inter-bout interval (IBI, brown area) is defined as the duration when swim speed is below the 5 mm/s
homeostasis threshold (dashed line) between two consecutive bouts with a 100 ms buffer window (grey area)

deducted from each end.

(B) Distribution of IBI duration (left) and mean pitch angle during IBI (right).

(C) Bivariate histogram of bout frequency and IBI pitch. Bout frequency is the reciprocal of IBI duration.

(D) Bout frequency plotted as a function of IBI pitch and modeled with a parabola (black line, R? = 0.14). Brown dots
indicate binned average of IBI pitch and bout frequencies calculated by sorting IBI pitch into 3°-wide bins. For all

panels, N = 109593 IBIs from 537 fish over 27 repeats.
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Figure 4: Larval vertical navigation is led by steering toward trajectory

(A) Schematic illustration of two climbing mechanics: (1) a larva may generate a thrust (arrow) toward the pointing
direction (dashed line) at the initial of a bout (left); (2) a larva can steer (green arrow) toward an eccentric angle before
the thrust (right). The offset between trust angle and the direction the larva point toward at bout initial is termed
trajectory deviation (purple).

(B) Distribution of trajectory deviation.

(C) Changes of pitch angles relative to initial pitch plotted as a function of time (dark lines) overlaid with distribution
of pitch change at time of peak speed (green).

(D) Trajectory deviation (purple) plotted as a function of posture changes from bout initial to time of the peak speed
(green). Black line indicates binned average values. Positive correlation between trajectory deviation and posture
change demonstrates that larvae steer toward the trajectory of the bout.

(E) To measure the gain of steering compared to trajectory deviation, pitch angels at time of the peak speed are
plotted as a function of trajectory. Steering gain is determined as the slope of the fitted line (Pearson’s r = 0.96).

(F) Schematic illustrations demonstrating how steering gain associates steering (green arrows) with trajectory
deviation (purple). For all panels,n = 121979 bouts from 537 fish over 27 repeats.
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Figure 5: Steering requires coordination of fin and body.

(A) Swim speed (top) and angular velocity (bottom) plotted as a function of time. Angular velocity peaks (asterisk and
dotted area, mean+SD) during steering phase (green) before time of the peak speed. Angular velocity is adjusted by
flipping signs of bouts with nose-down rotations during steering (mean+SD across experimental repeats). Shaded
region in the upper panel indicates mean=+SD across all quantified swim bouts.

(B) Histogram of time of peak angular velocity, binned by frame, across experimental repeats with mean+SD plotted
below.

(C) Nlustration of components that contribute to trajectory deviation. Larvae rotate their bodies starting from bout
initial (blue) and reach peak angular velocity (asterisk) before peak speed. Any rotation generated during decrease of
angular velocity is considered residual (grey). At time of peak speed, there is an offset between the pitch angle
(dashed line) and bout trajectory (arrow) which is termed attack angle (orange). Body rotations, residual, and attack
angle add up to trajectory deviation.

(D) Distribution of attack angles in control fish (left) and fish after fin amputation (right). Dashed lines indicate O
attack angle.

(E) Attack angles plotted as a function of body rotations (left, blue) or residual rotations (right). Rotations and residuals
are sorted into 0.5°-wide bins for calculation of binned average attack angles. Swim bouts with negative attack
angles while having steering rotations greater the 50th percentile (hollow squares) were excluded for binned-average
calculation.

(F) Attack angles plotted as a function of body rotations (blue line) and fitted with a logistic model (black line, R? =
0.31). Fin-body ratio is determined by the slope of the maximal slope of the fitted sigmoid (magenta). Rotations are
sorted into 0.8°-wide bins for calculation of binned average rotations and attack angles (blue line). Swim bouts with
negative attack angles while having steering rotations greater the 50th percentile were excluded for sigmoid
modeling.

(G) Schematic illustration of how fin-body ratio reflect climbing mechanics. For all panels, n = 121979 bouts from
537 fish over 27 repeats.
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Figure 6: Righting rotation restores posture after peak speed.
(A) Pitch angles plotted as a function of time (dark lines) overlaid with distribution of pitch angles before (left) and

after bouts (right). Red area indicates duration after peak speed when pitch distribution narrowed.

(B) Illustration of righting behavior. Larvae rotate (red arrows) toward more neutral posture after peak speed.

(C) Distribution of rotation during righting (red in A).

(D) Righting rotation plotted as a function of initial pitch angles.

(E) Righting gain is determined by the absolute value of the slope (red dotted line) of best fitted line (black line). The x
intersect of the fitted line determines the set point (blue cross) indicating posture at which results in no righting
rotation.

(F) Schematic illustration of righting rotation (red arrows), righting gain, and set point (blue dashed line). For all
panels,n = 121979 bouts from 537 fish over 27 repeats.
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Figure 7: Variations of kinematic parameters among three different zebrafish strains.

(A) Average pitch angles during IBI.

)
) Baseline bout rate.

) Fin-body ratio (AB vs WT p-adj = 0.0066).

(
(
(
(
(
E
(1) Height of the sigmoid in G.

) Steering gain of different strains.

B) IBI duration (AB vs SAT p-adj = 0.0128; AB vs WT p-adj = 0.0034).
C) Standard deviation of IBI pitch (AB vs WT p-adj = 0.0001; SAT vs WT p-adj = 0.0479).
) Bout frequency plotted as a function of IBI pitch modeled with parabolas.
Sensitivity to pitch changes (AB vs WT p-adj = 0.0319).

(

(K) Righting gain of different strains (AT vs SAT p-adj = 0.0133).
(L) Set point (SAT vs WT p-adj = 0.0094). For each strain of AB/SAT/WT, N = 10/7/10 repeats, n =
62457/27990/31532 bouts and 55683/25964/27946 1BIs from 225/117/195 fish.

D
E
F
G) Attack angles plotted as a function of body rotations modeled with sigmoids.
H
1)
J
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Figure 8: Statistics of regression analysis for swim kinematics.

(A) Confidence interval (Cl) width of kinematic parameters plotted as a function of sample size at 0.95 significance
level (mean =+ SD as ribbon). Errors were estimated by resampling with replacement from the complete dataset.
(B) Effect size plotted as a function of sample size at various percentage differences. Refer to Methods for details of

computation.
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Figure S1: Custom breadboard for SAMPL base
(A) Custom aluminum breadboard, not anodized, 0.5" thick. All holes (8 total) counterbored for 1/4"-20 cap screw.
Grooves to be cut on the side of the breadboard OPPOSITE to the counterbore.
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