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ABSTRACT1

Balance and movement are impaired in a wide variety of neurological disorders. Recent2

advances in behavioral monitoring provide unprecedented access to posture and loco-3

motor kinematics, but without the throughput and scalability necessary to screen can-4

didate genes / potential therapeutics. We present a powerful solution: a Scalable Appa-5

ratus to Measure Posture and Locomotion (SAMPL). SAMPL includes extensible imag-6

ing hardware and low-cost open-source acquisition software with real-time processing.7

We first demonstrate that SAMPL’s hardware and acquisition software can acquire data8

from D. melanogaster, C.elegans, and D. rerio as they move vertically. Next, we lever-9

age SAMPL’s throughput to rapidly (two weeks) gather a new zebrafish dataset. We use10

SAMPL’s analysis and visualization tools to replicate and extend our current understand-11

ing of how zebrafish balance as they navigate through a vertical environment. Next, we12

discover (1) that key kinematic parameters vary systematically with genetic background,13

and (2) that such background variation is small relative to the changes that accompany14

early development. Finally, we simulate SAMPL’s ability to resolve differences in posture15

or vertical navigation as a function of effect size and data gathered – key data for screens.16

Taken together, our apparatus, data, and analysis provide a powerful solution for labora-17

tories using small animals to investigate balance and locomotor disorders at scale. More18

broadly, SAMPL is both an adaptable resource for laboratories looking process video-19

graphic measures of behavior in real-time, and an exemplar of how to scale hardware to20

enable the throughput necessary for screening.21
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INTRODUCTION22

Measuring posture and locomotion is key to understand nervous system function and evalu-23

ate potential treatments for disease – particularly neurological disorders1. Behavioral screen-24

ing is a fundamental part of both basic and translational approaches to disease2,3. For screens,25

measuring behavior from large numbers of animals is necessary to differentiate individual vari-26

ation4 from changes seen in disease models and/or improvement following treatment5,6. The27

demand for such high-throughput measurements comes at a cost: often, measurements that28

require high resolution – such as posture – are limited. Modern machine learning algorithms29

and inexpensive videographic / computing hardware have automated measurements of pos-30

ture and kinematics7–9 and illuminated our understanding of animal behavior10–12. We sought31

to combine videographic analysis of posture and vertical locomotion with the scalability amenable32

to screening.33

Over the past decade, we have studied posture and locomotion using the larval zebrafish as a34

model. Neural architecture is highly conserved across vertebrates, making larval zebrafish an35

excellent model to understand the underpinnings of locomotion13,14 and balance15. For our36

studies, we developed a new apparatus/analysis pipeline to measure the statistics of posture37

in the pitch (nose-up/nose-down) axis and locomotion as larvae swam freely in depth. We dis-38

covered that larvae learn to time their movements to facilitate balance16, that larvae modulate39

the kinematics of swimming to correct posture17, and that larvae engage their pectoral fins to40

climb efficiently18, and implicated different neuronal circuits in each of these behaviors. While41

informative, data collection was slow (months) on small numbers (<5) of apparatus. Increasing42

throughput remains a challenge common to laboratories that develop new tools to measure43

behavior.44

To meet the needs of scalability, resolution, and extensibility we developed SAMPL: a low-cost,45

open-source solution that measures posture and vertical locomotion in real-time in small an-46

imals. Further, we provide a turn-key analysis pipeline to measure larval zebrafish balance be-47

havior. We begin with a brief treatment of the hardware and software; a detailed design guide,48

assembly and operating instructions are included as supplemental appendices. Next, we use49

SAMPL to measure unconstrained vertical locomotion in two common invertebrate models:50

flies (Drosophila melanogaster), and worms (Caenorhabditis elegans), as well as a small model51

vertebrate, the larval zebrafish (Danio rerio). To illustrate SAMPL’s capabilities, we parameterize52

a new dataset focused on behaviors that larval zebrafish perform as they stabilize posture and53
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navigate (i.e. climb/dive) in the water column. Our new dataset represents two weeks worth54

of data collection, and allowed us to detail variation in postural/locomotor behaviors. By mea-55

suring behavior across different genetic backgrounds and development, we report two new56

findings. First, variation in posture/locomotion is systematic across genotype and second, the57

scale of variation in behavior across development is much larger than background genetic58

variation. We use these new data to simulate the resolving power for each behavioral param-59

eter as a function of data gathered – foundational information to rigorously assay the effects of60

candidate genes or small molecules on posture or locomotion. SAMPL thus offers a straight-61

forward way to gather data from small animals, and a turn-key solution to screen for balance62

and vertical locomotion in larval zebrafish. More broadly, SAMPL offers a template for labora-63

tories looking to scale their own behavioral apparatus to achieve the throughput necessary for64

screens. SAMPL will thus facilitate reproducible studies of postural and locomotor behaviors in65

both health and disease, addressing unmet needs in treating neurological disorders, particu-66

larly with balance symptoms19.67

RESULTS68

SAMPL hardware & software overview69

To overcomemeasure posture with the throughput necessary for genetic and drug screens,70

we deployed SAMPL, a real-time videographic system (Figure 1A) that records small animal71

behavior in the vertical axis. Below we briefly describe the hardware and software that com-72

prise SAMPL. SAMPL’s hardware consists of three simple modules: an infrared (IR) illumination73

module (Figure 1B), a camera-lens module (Figure 1C), and two clamps to hold fish chambers74

(Figure 1D). All three modules are mounted directly (Figure 1A) onto an aluminum breadboard75

(Figure S1) and a light-tight enclosure covers the entire apparatus to permit individual control76

of lighting (Figures 1F and 1G). Details of hardware and software design can be found in Ap-77

pendices 1&2. A complete parts list is in Table 1, hardware assembly instructions in Appendix78

3, and a stop-motion movie of assembly provided as Movie 1.79

The IR module illuminates the arena from behind. It is optimized to fulfill four criteria: (1) high80

image quality; (2) a large area for imaging; (3) imperceptible illumination; (4) ample heat dis-81

sipation. We used a 940 nm “star” style LED as our source of IR illumination and developed a82

simple illumination module to diffuse IR light across a 50mm circle (Figure 1B). For heat man-83

agement, each LED was mounted to a small heat sink (Figure 1B). This setup allows us to power84

three illumination modules in series using a single LED driver.85

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.01.07.523102doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.07.523102
http://creativecommons.org/licenses/by/4.0/


The secondmodule captures videographic data. It consists of a camera and lens optimized for86

speed, resolution, compactness, and affordability. The camera hardware satisfies the follow-87

ing demands: (1) large pixel size with low noise allowing for high dynamic range / signal-to-88

noise ratio; (2) sufficient resolution to resolve subtle changes to animal posture; (3) an interface89

with sufficient bandwidth for data transfer; (4) availability. The lens achieves (1) close focus; (2)90

sufficient depth-of-field to cover the entire depth of the imaging arena; (3) high image qual-91

ity; (4) compact size; (5) high IR transmission rate; (6) ease of integrating an IR-pass filter. We92

adapted a 50mm IR-optimized lens by placing a 0.3" extension tube between the lens and93

the camera to achieve higher magnification ratio with minimumworking distance. The space94

between camera adapters and the extension tube allows us to fit a 25 mm IR-pass filter; the95

extension tube gives a mount point to connect the module to the base (Figure 1A). Using this96

camera-lens module, we image an area ~400mm2 (Figure 1E, pink square) at 166 Hz with97

1200×1216 pixels at a focal distance of ~24 cm.98

The final module is a rectangular arena optimized for vertical locomotion (i.e. parallel to the99

focal plane). By design, the chamber size is larger than the imaging area, allowing stochastic100

sampling of freely behaving animals in a large enough arena. The bottom of the chamber is101

below the field of view so that animals sitting at the bottom will not be recorded. We assem-102

bled custom-fabricated chambers from laser-cut acrylic by cementing transparent front and103

back sides to a U-shaped piece that forms the narrower sides (Figure 1E). We designed two104

types of chambers with different inner widths to adapt to the needs of different experiments:105

a wider standard chamber optimized for larger groups of animals and a narrower chamber for106

1-3 animals (Figure 1E). Chambers can be easily dropped into the holders (Figure 1D) from the107

top of the behavior box and secured in place for recording.108

SAMPL includes a complete suite of open-source software for acquisition/real-time extraction109

of data (source and compiled executables provided). Acquisition consists of a graphical user in-110

terface, written in LabView that analyzes video in real-time to isolate an animal’s location and111

orientation, with the ability to save raw video for further off-line analysis. The real-time process-112

ing algorithm consists of: (1) background subtraction; (2) noise thresholding; (3) rejection of113

frames without an animal or with >1 animal in view; (4) size and intensity criteria to identify two114

distinct animal parts, usually the body and the head; (5) image processing to extract location115

and body orientation relative to the horizon. Data about location and orientation is saved to a116

text file, metadata about the experiment is saved to a separate text file, and optionally, video is117
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saved as an AVI file.118

SAMPL’s modules and software were designed to scale, minimizing footprint and experimenter119

time. Wemultiplex apparatus, providing three distinct compiled applications designed to run120

simultaneously on one computer to reduce cost/footprint. A set of three SAMPL apparatus and121

a computer case fit on one 24"x36" shelf (Figure 1H). One SAMPL “rack” consists of four such122

shelves (81.5" high) and costs ~$40,000-$45,000 (December 2022, before volume discounts).123

In our laboratory, trained experimenters can load such a rack for a typical 48hr experiment in124

30minutes. Taken together, SAMPL’s design is ideal to efficiently gather data describing pos-125

ture and vertical locomotion.126

SAMPL validation: different small animals127

SAMPL is well-suited to collect data from a wide range of small animals. We demonstrate the128

flexibility of SAMPL’s acquisition suite using three commonmodel organisms. By changing129

SAMPL’s thresholds (Table 2), we could acquire data from three different organisms: Drosophila130

melanogaster climbing behavior (Figures 2A and 2B), continuous locomotion in Caenorhabdi-131

tis elegans (Figures 2C and 2D), and swimming in Danio rerio (Figures 2E and 2F). We present132

raw video from the epochs in Figure 2 together with plots of real-time image processing (fly &133

worms, Movie 2; fish, Movie 3). These results demonstrate SAMPL’s excellent flexibility and ro-134

bustness in real-time recording and analysis of vertical locomotion of small animals.135

SAMPL validation: measuring postural and locomotor kinematics in real-time136

Next, to demonstrate how SAMPL facilitates efficient collection of high-quality kinematic data,137

we gathered a new dataset from larval zebrafish (7-9 days post-fertilization, dpf) that swam138

freely in the dark. A typical experimental repeat consisted of two sequential 24-hour sessions139

using 3 SAMPL boxes. Data were pooled across 27 repeats for subsequent analysis of kine-140

matics. Each 24-hour behavior session yielded on average 1223±481 bouts per day for the141

standard chamber (6-8 fish) and 1251±518 bouts per day for the narrow chamber (1-3 fish).142

While not analyzed, running a single fish in the narrow chamber yielded 891±903 bouts over143

24hrs. Based on the number of apparatus used, we estimate that a similar dataset (total n=121,979144

bouts) could be collected in two weeks using a single SAMPL rack.145

We first used our data to establish basic distributions of locomotion and posture. We used SAMPL’s146

processing algorithm to extract the following information in real-time: (1) pitch, defined as the147

angle between the long axis of the fish’s body and the horizon (Figure 2E); (2) x (azimuth), z148

(elevation) coordinates of the center of the pixels that correspond to the fish. After collection,149
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we used SAMPL’s processing suite to extract basic postural kinematics during swimming. Ze-150

brafish larvae swim in discrete periods of translation called “swim bouts” (Figure 2F)16,20. We151

defined swim bouts as periods where the instantaneous speed exceeds 5 mm/sec (Figure 2F,152

dashed line). The time of the peak speed was defined as t = 0 ms (Figure 2F, cyan lines). Swim153

bouts were aligned to peak speed for extraction of kinematic parameters; the period 250ms154

before and 200ms after peak speed was reserved for future analysis. We observed that ze-155

brafish larvae swim predominantly at slower speeds with mean and standard deviation mea-156

sured 12.90±4.91 mm/s, on par with previous reports16,20–22. Larvae showed a broad distri-157

bution of postures evaluated at peak speed (8.48°±15.23°) with a positive (nose-up) average,158

suggesting that SAMPL detected a variation of nose-up and nose-down swim bouts. SAMPL159

can thus rapidly acquire a rich dataset of spontaneous locomotor behavior and a wide range of160

“natural” postures.161

SAMPL validation: extracting key parameters of balance and vertical navigation in zebrafish162

SAMPL includes data analysis and visualization code (Python source and sample datasets pro-163

vided) optimized to extract key parameters of balance and locomotion from larval zebrafish.164

We use our “two-week” dataset to demonstrate that SAMPL can resolve these four parameters:165

Figure 3: Control of movement timing.16166

Figure 4: Control of steering to climb/dive.17167

Figure 5: Coordination between trunk and fin.18168

Figure 6: Control of posture stabilizing rotations.17169

We conclude that SAMPL’s resolution and throughput allows rapid and deep insight into each170

parameter, detailed below. Data analysis using the provided scripts on the provided dataset171

runs in 30minutes on a typical analysis computer (M1 processor, 16GB RAM). Full details of172

analysis/visualization is provided in Appendix 4, and a step-by-step guide to set up the relevant173

environment and to run experiments provided in Appendix 5.174

Proper balance requires active stabilization. Zebrafish larvae are front-heavy and therefore sub-175

ject to destabilizing torques in the pitch (nose-up/nose-down) axis. Swim bouts counteract the176

resultant forces, stabilizing the fish. Zebrafish larvae learn to initiate swim bouts when unsta-177

ble16. We first defined movement rate as the reciprocal of the inter-bout interval (Figures 3A178

and 3B). More extreme postures were associated with higher movement rate (Figure 3C), with179

a parabolic relationship (Figure 3D, R2 = 0.14). We expect that the majority of the residual vari-180

ance reflects a previously-reported dependence of movement timing on angular velocity16.181
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The three coefficients of the parabola represent the baseline posture, the basal rate of move-182

ment, and – key to our analysis – the degree to which postural eccentricity relates to movement183

rate, or “sensitivity,” (Figure 3D). SAMPL therefore permits efficient quantification of a crucial184

posture-stabilizing behavior: the relationship between perceived instability and corrective be-185

havior.186

Like most animals, larval zebrafish go where their head points. To adjust their vertical trajec-187

tory (i.e. to climb or dive) larvae must rotate their bodies away from their initial posture, point-188

ing in the direction they will travel (Figures 4A and 4B)17,23. Previous work17 established that189

steering rotation in larvae swimming spontaneously occurs mostly before they reach the peak190

speed (Figure 4C). A larva’s steering ability reflects the relationship between the change in pos-191

ture before the peak speed and the resultant deviation in trajectory (Figure 4D). We parame-192

terized steering as the slope (gain) of the best-fit line between posture and trajectory evaluated193

at the time of peak speed (Figure 4E). A gain of 1 indicates that the observed trajectory could194

be explained entirely by the posture at the time of peak speed (Figure 4F). SAMPL revealed195

that 7 dpf larvae exhibit an average steering gain at 0.67, suggesting an offset between pos-196

ture and trajectory at the time of peak speed (Figure 4E, R2 = 0.92). SAMPL allows us to infer197

how effectively larvae steer using axial (trunk) musculature to navigate the water column.198

To climb (Figures 5A and 5B) fish generate lift with their pectoral fins, assisting steering rota-199

tions and subsequent axial undulation24,25. Larval zebrafish learn to climb efficiently by coor-200

dinating their trunk and fins18. We defined the attack angle, or the additional lift associated201

with each climb, as the difference between the steering-related changes and the resulting tra-202

jectory (Figure 5C). We evaluated attack angle after pectoral fin loss, revealing a clear contribu-203

tion to climbs (Figure 5D). Next, we demonstrate a positive correlation (with rectification and204

asymptote) between steering-related rotations and fin-based attack angle (Figure 5E, left). No-205

tably, after peak angular velocity, rotations are poorly correlated with attack angles (r = -0.17)206

(Figure 5E, right). These residuals reflect the initial angular deceleration as fish reach their peak207

speed (Figure 5A). We parameterize the relationship between the initial rotation and the attack208

angle using logistic regression (Figure 5F, R2 = 0.31). The regression reveals the maximal slope209

of the sigmoid relating steering and lift (Figure 5G). We named this slope "fin-body ratio" as it210

describes how larvae distribute labor between axial and appendicular muscles, i.e. between211

trunk (steering) and fins (lift), as shown in previous work18. SAMPL thus permits efficient infer-212

ence of coordinated behavior.213
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Larvae must actively maintain their preferred posture in the pitch axis. To do so, they rotate214

partially towards their preferred orientation as they decelerate (Figures 6A to 6C). The magni-215

tude of these rotations scales with the eccentricity of their posture before a swim bout17. We216

estimated the slope (-0.17) of the line that related initial posture and the amount the fish ro-217

tated back toward the horizontal (Figure 6D), R2 = 0.56. As the behavior is corrective, the re-218

lationship is negative; we therefore define the gain of righting as the inverse of the slope (Fig-219

ure 6E). We further define the “set point” as the point where an initial posture would be ex-220

pected to produce a righting rotation of zero (Figures 6E and 6F). SAMPL facilitates quantifi-221

cation of corrective reflex abilities (gain) and associated internal variables (set point).222

Taken together, our estimates of key posture and locomotor parameters establish that SAMPL223

can rapidly generate datasets that permit rich insight into the mechanisms of balance and ver-224

tical navigation.225

SAMPL can resolve slight variations in posture control strategies across genetic backgrounds226

To be useful SAMPLmust resolve small but systematic differences in key measures of posture227

and vertical locomotion. Even among isogenic animals reared in controlled environments, ge-228

netic differences contribute to behavioral variability26–33. The “two-week” dataset analyzed229

in Figures 3 to 6 included data from three different genetic backgrounds. Larvae for experi-230

ments were generated by crossing the same clutch of wild-type adults (mixed background)231

to zebrafish of three different strains: AB (n = 62457 bouts, N = 225 fish over 10 experimen-232

tal repeats); SAT (n = 27990 bouts, N = 117 fish over 7 experimental repeats); and the lab wild233

type (n = 31532 bouts, N = 195 fish over 10 experimental repeats), which resembles real-world234

approaches where a key transgenic line is often crossed to different backgrounds for experi-235

ments. To capture the full variance in the dataset, we took a conservative approach by calcu-236

lating kinematic parameters for individual experimental repeats (n = 4518±1658 bouts). We237

assayed SAMPL’s sensitivity by asking (1) if there were detectable differences in the four pa-238

rameters defined in Figures 3 to 6 and (2) if these differences were systematic.239

Qualitatively, larval zebrafish of the same age swim similarly; as expected, the magnitude of240

change across strains we observed in Figure 7 is quite small. Nonetheless SAMPL could resolve241

systematic variations in locomotion behavior and balance abilities among larvae of different242

strains (Figure 7). AB larvae exhibited the best posture stability, demonstrated by the lowest243

standard deviation of IBI pitch compared to the other two strains (Figure 7C). Correspondingly,244

AB larvae had the highest bout frequency (Figure 7B), sensitivity to posture changes (Figure 7E),245
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and righting gain (Figure 7K), all of which contributes positively to their higher posture stability.246

These results demonstrate that SAMPL is capable of detecting inter-strain variations in locomo-247

tion and balance behavior.248

In contrast, larvae of different ages adopt different strategies to stabilize posture and navigate249

in depth16–18 To contextualize the magnitude of strain-related differences we gathered a lon-250

gitudinal dataset by measuring behavior from the same siblings of the AB genotype at three251

timepoints: 4-6, 7-9, and 14-16 dpf (Table 3). We observed that the standard deviation of IBI252

pitch for 4 and 14 dpf larvae was 38.1% higher and 11.3% lower, respectively, than the aver-253

age result of 7 dpf larvae (Table 3). Across strains at 7 dpf, the variation was much smaller: from254

11.8% higher to 11.2% lower. Similarly, relative to 7 dpf larvae, sensitivity of 4 dpf larvae was255

considerably lower (-42.5%), and increased to 23.6% higher by 14 dpf (Table 3); variations among256

7 dpf strains were up to 10.0% lower and 15.4% higher.257

Our analysis of new data supports three key conclusions. First, SAMPL can uncover small, sys-258

tematic differences in the way fish swim and stabilize posture. Second, SAMPL can make lon-259

gitudinal measures of the same complement of animals as they develop. Third, relative to de-260

velopment, the effect of genetic background is small. We conclude that SAMPL’s capacity to261

resolve small differences supports its usefulness as a tool screen for modifiers of postural con-262

trol and vertical locomotor strategies.263

Estimating SAMPL’s resolution264

Our dataset establishes SAMPL’s ability to resolve small kinematic differences between cohorts.265

How does SAMPL’s power change as a function of the size of the dataset? We used resampling266

statistics to estimate SAMPL’s resolution as a function of the number of the bouts (Methods).267

To ensure our most conservative estimate, we resampled data combined across AB, SAT and268

WT genotypes at 7dpf.269

As expected, the width of the confidence interval for any estimated parameter decreased with270

the number of bouts (Figure 8A). The most challenging parameter to estimate is coordination271

between fin and trunk (fin-body ratio) The steepness with which the confidence interval width272

decreases follows the number of regression coefficients necessary for each measure: fin-body273

ratio (4 parameters); bout timing (3 parameters); and steering or righting (2 parameters). We274

therefore propose that these particular measures can serve as a general guide for the chal-275

lenge of estimating parameters within a SAMPL dataset.276

A fundamental challenge for all screens is determining the sample size required to correctly277

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.01.07.523102doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.07.523102
http://creativecommons.org/licenses/by/4.0/


reject the null hypothesis34. We address this question by asking howmuch data one would278

need to gather in order to detect meaningful effects. We simulated difference of particular279

magnitudes by imposing an offset on each parameter (sensitivity, steering gain, fin-body ra-280

tio, and righting gain) while preserving the original variance (Methods). Offsets were expressed281

as a fractional difference, and resampling was used to estimate the effect size one would see282

as a function of the number of bouts/IBIs when comparing kinematic parameters between the283

original dataset and the dataset with an imposed effect (Methods).284

Broadly, we find that for all kinematic parameters, the smaller the percent change, the larger285

the required sample size (Figure 8B). Steering and righting gains require the fewest bouts to286

detect a 1-2% change with an effect size > 0.5 (Figure 8B, green and red). However, sensitivity287

and fin-body ratio require relatively larger datasets to confidently discriminate small changes288

(Figure 8B, brown andmagenta). We conclude that the full “two-week” dataset we generated289

using SAMPL (n = 121,979 bouts) is sufficient to reveal any biologically-relevant differences be-290

tween two conditions.291

In summary, these simulations demonstrate that a single SAMPL rack divided into two condi-292

tions (6 apparatus / each) could, in two standard 48-hour runs, generate sufficient data to re-293

solve meaningful differences in postural and locomotor kinematics between two conditions.294

We provide detailed instructions in Appendix 5 addressing experimental design strategies to295

maximize SAMPL’s resolution.296

DISCUSSION297

We present SAMPL, a scalable solution to measure posture and locomotion in small, freely-298

moving animals. We start with a brief overview of the hardware and software, with compre-299

hensive guides to every aspect of SAMPL’s hardware and software included in the Appendices.300

Next we illustrate SAMPL’s flexibility with raw video & real-time measurements from three com-301

monmodel organisms: Drosophila melanogaster (fly), Caenorhabtitis elegans (worms), and302

Danio rerio (zebrafish). To illustrate the depth of insight accessible using SAMPL we explored a303

new dataset – consisting of two weeks worth of data – that illuminates four key parameters of304

zebrafish navigation in depth: bout timing, steering, fin-body coordination, and righting. We305

made two discoveries using SAMPL’s analysis suite: (1) systematic changes to zebrafish pos-306

ture and locomotion across genetic backgrounds and (2) that these changes were small rela-307

tive to variation across developmental time. Finally, we use our new dataset to define SAMPL’s308

resolution: howmuch data an experimenter would need to collect to detect meaningful ef-309
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fects. Taken together, SAMPL provides a screen-friendly solution to investigate vertical locomo-310

tion and/or other behaviors using common small model organisms, and a turn-key solution to311

study balance in larval zebrafish. More broadly, our approach serves as a template for laborato-312

ries looking to develop or scale their own hardware/software. Below we detail SAMPL’s innova-313

tions and limitations, and make a case for screens to address unmet clinical needs for balance314

disorders.315

SAMPL’s innovations316

One of SAMPL’s key innovations is to measure vertical behavior, where the effects of gravity317

play a role. The overwhelming majority of studies monitor animal behavior from above, where318

animals are constrained to a horizontal plane. For most animals – especially those that swim319

or fly – vertical navigation and its neuronal representation35,36 is vital. Further, maintaining320

posture in the face of gravity is a universal challenge37–39, particularly as animals develop16,40.321

SAMPL can illuminate animal trajectories during exploration of depth.322

SAMPL reduces the dimensionality of behavior along a number of axes in real-time. First, by323

focusing on a homogeneous part of the behavioral arena, SAMPL bypasses a number of imag-324

ing challenges and difficulties involved in interpreting behavior along arena walls41. Second, by325

rejecting frames with multiple animals in view at the same time SAMPL incorporates animal-326

to-animal variability4 within each estimated parameter without having to keep track of individ-327

uals; the narrow chamber (Figure 1E) is ideal for single-animal experiments if such variability328

is of interest. Third, while large enough to permit unconstrained behavior, the anisotropic di-329

mensions of SAMPL’s behavioral arenas (Figure 1E) facilitate measurements in the vertical axis.330

SAMPL’s design choices thus facilitate rapid extraction of behavioral parameters relevant for331

posture and locomotion.332

SAMPL was designed to scale efficiently. Data is gathered by a compiled executable, allowing333

SAMPL to run three apparatus off a single computer, reducing costs and space. A SAMPL rack334

consists of 12 apparatus running off four computers with a footprint of 24"x36"x81.5" (LxWxH).335

The key components such as the camera are readily available frommultiple suppliers. Taken336

together, SAMPL can be used immediately to screen and/or to provide videographic data from337

freely moving animals at scale.338

Our new dataset, gathered in two weeks, illustrates the power of SAMPL’s analysis/visualization339

workflow for studies of larval zebrafish balance. While SAMPL can and does save video, by de-340

sign it extracts only three parameters in time: the (x,z) coordinates of the animal and the angle341
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between the body and the horizon. As we demonstrate here, this small set of parameters de-342

fines behaviors larval zebrafish use to swim and balance in depth: bout timing (Figure 3), steer-343

ing (Figure 4), fin-body coordination (Figure 5), and righting (Figure 6). While each parameter344

has been previously defined16–18, the new data we present here illustrates differences across345

genetic backgrounds and development and allows granular estimation of statistical sensitivity.346

Taken together, SAMPL’s focus facilitates exploration of unconstrained vertical behavior.347

Comparisons with other approaches348

Here, we discuss SAMPL’s advantages by comparing it with other available tools for measuring349

Drosophila, C. elegans, and zebrafish behavior.350

SAMPL for measuring Drosophila behavior351

SAMPL offers advantages over previous methods for measuring negative gravitaxis, an innate352

behavior of Drosophila melanogaster42. The most widespread method, called the bang test,353

consists of banging flies down inside a vertical tube and then counting the number of flies354

that walk an arbitrary vertical distance in an arbitrary amount of time42–45. This method star-355

tles the flies, which may confound the behavior, and the flies are limited in directional choice.356

Using SAMPL, a measurement of fly vertical position and orientation is instantaneously ac-357

quired without needing to startle the flies. Another Drosophila gravitaxis assay is the geotaxis358

maze46, that allows the flies to make a series of up-or-down choices as they move across the359

maze towards a light. While the flies are not startled in this assay, they are still constrained to360

moving only up or down. SAMPLs high resolution camera permits continuous monitoring of361

free vertical walking behavior, as well as high-resolution monitoring of head, wing, leg, and an-362

tenna positions. While SAMPL has been designed to monitor behavior in the vertical plane, the363

hardware and software strategies we have developed for high throughput recording could be364

similarly adapted to increase the throughput of measuring other Drosophila behaviors such as365

grooming47, sleep48, courtship49, and aggression50. Because SAMPL has both high resolution366

recording and the ability to scale, screening throughmicrobehaviors like head tilting or limb367

positioning is possible. Notably, an earlier version of SAMPL’s detection algorithm was success-368

fully used for data acquisition in a fly olfactory behavior assay51,52 with minimal changes. Taken369

together, SAMPL’s resolution, throughput, and adaptability complement and extend current370

approaches to measure Drosophila behavior, particularly in the vertical axis.371
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SAMPL for measuring C. elegans behavior372

The simple nervous system of C. elegans is a powerful model to study neural circuits that con-373

trol posture and movement. C. elegans possess a rich and tractable repertoire of motor con-374

trol53. For example a pattern generator creates sinusoidal waves of muscle contraction that375

propel C. elegans on a solid substrate, and these sinusoidal movements are sculpted by pro-376

prioceptive feedback54. Proprioceptive feedback also controls transitions between sinusoidal377

crawling and non-sinusoidal bending that can propel animals in a liquid environment55–57.378

Other sensory stimuli elicit coordinated motor responses that are critical for navigation. De-379

creasing concentrations of attractive odorants and gustants trigger reversals followed by a pirou-380

ette or omega bend, which results in a large-angle turn that reorients animals58,59. A distinct381

navigation behavior involves precise steering of an animal as it follows an isotherm in a tem-382

perature gradient60,61 or tracks a preferred concentration of gustant62. The resolution and383

scalability of SAMPL offers the opportunity to determine the cellular, molecular, and genetic384

underpinnings of these diverse motor control mechanisms.385

C. elegans behavior becomes complex in enriched 3D environments, with animals using strate-386

gies for exploration and dispersal not seen under standard laboratory conditions63. Behavior387

trackers that have been used to study C. elegans kinematics are generally restricted to analysis388

of behaviors on a surface. By contrast, SAMPLmeasures behavior in a volume and is well-suited389

to the study of newly discovered behaviors that are only expressed in environments that vary390

across depth. One such example is gravitaxis, where C. elegans display both positive64 and391

negative gravitaxis65, underscoring the need for additional pipelines to test behavior66. The392

new data we present here establishes that SAMPL offers a powerful complement to existing393

pipelines for C. elegans assays of behavior in the vertical dimension.394

SAMPL for measuring zebrafish behavior395

SAMPL joins a decades-long tradition of apparatus that has, collectively, established the larval396

zebrafish as a key vertebrate model to understand the neural control of posture and locomo-397

tion13–15. Broadly, these devices sit on a continuum that represents a trade-off between imag-398

ing resolution and throughput. At one end, exquisite measures of tail or eye kinematics are399

available when imaging single animals that are partially restrained67, or contained in a small400

field of view68. Such devices are particularly useful when combined with imaging or pertur-401

bations of neuronal activity, but at the cost of throughput. At the other end are devices that402

measure activity when single animals are constrained to small arenas, such as the ~8 mm2403
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wells in a 96-well plate6,69–71. These devices lend themselves well to screens, and offer com-404

mercial options, but the range of behaviors is compressed72. Like other attempts to preserve405

high-resolution kinematic information while accommodating natural unconstrained behav-406

ior22,73–78, SAMPL sits between these two extremes, joining other open-source software pack-407

ages such as Stytra79 and Zebrazoom80. We see SAMPL as a complementary tool. SAMPL’s408

emphasis on vertical behavior and its scalability position it to leverage the advantages of the409

zebrafish model for screens – either as a primary resource, or to follow-up on promising “hits”410

identified with higher-throughput approaches6.411

Screening412

Balance disorders present a profound and largely unmet clinical challenge19. Because the413

neuronal architecture for balance is highly conserved and the fundamental physics (i.e. grav-414

ity is destabilizing) is universal, animal models represent a promising avenue for discovery. Due415

to their size, low cost, molecular accessibility, high fecundity, and conserved biology small an-416

imals – both vertebrates and invertebrates81 – have long been used in successful screens of417

both candidate genes82, peptides83 and therapeutics84,85. Zebrafish are an excellent exem-418

plar, particularly in the space of neurological disorders3, with well-established approaches for419

candidate gene screens2,5, peptides86, small molecules87–91, and disease models92. Using420

SAMPL with zebrafish, our dataset establishes a foundation to screen for balance modifiers in421

health & disease.422

One particular arena where zebrafish screens for balance/posture could have a profound im-423

pact is in addressing the unmet therapeutic need that exists for a neurodegenerative tauopa-424

thy: progressive supranuclear palsy (PSP). PSP is initially characterized by balance impairments,425

falls, vertical gaze palsy, and rigidity93,94. Falls are central to early95 PSP presentation and di-426

agnosis96,97 and lead to fractures and hospitalization96,98. Currently, no treatments improve427

balance. Studies of posture99–103, graviception104, reflexes105–108, electromyography109,110,428

and neural balance circuits in PSP103,111–115 are often underpowered, inconsistent, and have429

yet to identify the specific mechanism or substrate causing falls. Like most genes and subcor-430

tical structures116–123 the genetic and anatomical substrates of PSP are conserved between431

humans and zebrafish124–127. Here, using SAMPL, we define behavioral endpoints that reflect432

how pathological zebrafish might “fall.” By establishing SAMPL’s resolution, our data lay the433

foundation for impactful discovery in the space of a neurodegenerative disorder with balance434

pathology.435
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Future prospects436

SAMPL uses low-cost videographic and computing hardware to make novel behavioral mea-437

surements. By optimizing scalability, resolution, and extensibility, SAMPL allows experimenters438

to rapidly measure unconstrained behavior as animals navigate in depth. We have used SAMPL439

with a model vertebrate, zebrafish, to gain insight into posture and vertical locomotion, and to440

lay the groundwork for future screens. A wide variety of neurological disorders present with441

balance and locomotor symptoms. SAMPL offers a way to both understand the fundamental442

biology of balance, as well as means to evaluate candidate therapeutics to address this unmet443

need. More broadly, SAMPL stands as an exemplar and resource for laboratories looking to de-444

velop, adapt, or scale videographic apparatus to measure behavior in small animals.445

Limitations of the study446

Any apparatus necessarily reflects a set of trade-offs. Consequentially, each of SAMPL’s inno-447

vations can reasonably be recast as a limitation depending on experimental priorities. For ex-448

ample, SAMPL’s focus on a subset of space and parameters is ill-suited to reconstruct a catalog449

of behaviors from videographic measurements i.e. a computational ethogram11,20. Similarly,450

SAMPL assumes that the animal’s trajectory reflects coordinated use of its effectors (limbs/trunk/wings).451

While SAMPL’s videos would be an excellent starting point for markerless pose estimation,452

detailing the links between effector kinematics and resultant changes to posture and trajec-453

tory may be better served by a multi-camera setup8,9. SAMPL’s processing is exclusive to one454

animal; other approaches are therefore necessary to resolve social interactions7,128. Finally,455

SAMPL’s analysis/visualization toolset incorporates priors for movement of zebrafish only – stud-456

ies of other species would require a moderate investment of effort.457
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Movie 1467

Movie 1. Stop motion instruction for box assembly.468

Movie 2469

Movie 2. Example of recorded epochs of a fly, a shrimp, and a worm. Scale bar: 2 mm.470

Movie 3471

Movie 3. Top: example of a recorded epoch of a freely-swimming zebrafish larva using the ap-472

paratus. Bottom: swim speed and pitch angles plotted as a function of time. Scale bar: 1 mm.473
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STAR METHODS474

RESOURCE AVAILABILITY475

Lead contact476

Further information and requests for resources and reagents should be directed to and will be477

fulfilled by the lead contact, Dr. David Schoppik ( schoppik@gmail.com ).478

Materials availability479

This study did not generate new unique reagents.480

Data and code availability481

SAMPL source code, SAMPL executables, raw behavior data, analyzed data used to make paper482

figures and README.md descriptions of each are all deposited with the Open Science foundation483

and are publicly available. DOI is listed in the key resources table. All original code has been484

deposited at the Open Science foundation and is publicly available. DOI is listed in the key re-485

sources table. This resource includes code to generate each figure / table in this manuscript.486

Any additional information required to reanalyze the data reported in this paper is available487

from the lead contact upon request.488

EXPERIMENTAL MODEL AND SUBJECT DETAILS489

All procedures involving larval zebrafish (Danio rerio) were approved by the New York Univer-490

sity Langone Health Institutional Animal Care & Use Committee (IACUC). Zebrafish larvae were491

raised at 28.5°C on a standard 14/10 h light/dark cycle at a density of 20-50 larvae in 25-40492

ml of E3 medium before 5 days post-fertilization (dpf). Subsequently, larvae were maintained493

at densities under 20 larvae per 10 cm petri dish and were fed cultured rotifers (Reed Mari-494

culture) daily. Larvae that had their behavior measured at 14 dpf were raised as stated above495

before being moved to 2 L tanks with 300ml of cultured rotifers at 9 dpf. At 13 dpf, they were496

transferred back to petri dishes with E3medium for adaptation.497

Larvae with different strains were achieved by crossing Schoppik lab strain with a mixed AB, TU,498

andWIK background to three different wild-type strains: AB (Zebrafish International Resource499

Center), mixed background of AB/WIK/TU, or SAT (Zebrafish International Resource Center).500

Reference parameter values in Table 3 for 4, 7, 14 dpf fish were gathered using the AB strain501

fish.502

Drosophila melanogaster (w1118) were raised at 23°on standard cornmeal-agar food under a503

12/12 light/dark cycle.504

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.01.07.523102doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.07.523102
http://creativecommons.org/licenses/by/4.0/


Caenorhabditis elegans (C. elegans) were grown at 20°on nematode growth medium agar505

plates seeded with Escherichia coli OP50 as previously described129.506

METHOD DETAILS507

Behavior experiment508

Larvae at desired age (4, 7, or 14 dpf) were transferred from petri dishes to behavior chambers509

at densities of 5-8 per standard chamber and 2-3 per narrow chamber with 25-30/10-15ml510

of E3, respectively. After 24 h, behavior recording was paused for 30-60minutes for feeding511

where 1-2 ml of rotifer culture was added to each chamber. Larvae were removed from the ap-512

paratus 48 h after the start of the recording.513

Behavior measurement in this manuscript were collected from 27 clutches of zebrafish larvae514

between 7 to 9 dpf under constant darkness. 4 dpf and 14 dpf reference parameter values in515

Table 3 were collected from 10 clutches of zebrafish larvae under constant darkness. Finless516

data was generated using 4 clutches of larvae under constant darkness. For all experiments, a517

single clutch of larvae produces one experimental repeat with at least 3 behavior boxes each518

containing 5-8 larvae per standard chamber or 2-3 fish per narrow chamber.519

For Drosophila recording, four flies were transfered to a narrow chamber. A small piece of520

water-dampened kimwipe was put at the bottom of the chamber to maintain humidity. A n521

acrylic plug was secured at the top to prevent them from escaping the chamber. We secured522

the chamber with the flies in the SAMPL apparatus and performed the standard SAMPL exper-523

iment using recording parameters provided in Table 2.524

To image swimming C. elegans, eight starved N2 adult hermaphrodites were transferred to a525

narrow chamber filled with 15ml M9 buffer (3 g/l KH2PO4; 6 g/l Na2HPO4; 0.5 g/l NaCl; 1 g/l526

NH4Cl) which was secured in the SAMPL apparatus as described above. Behavior recording527

was started immediately afterwards. Refer to Table 2 for SAMPL thresholds for C. elegans de-528

tection.529

Fin amputation530

6 dpf zebrafish larvae were anesthetized in 0.02% tricaine methanesulfonate (Syndel) and531

transferred to 3% Methylcellulose (Sigma). Fin amputation was done by removing pectoral532

fins using fine forceps (FST). Specifically, one pair of forceps was used to stabilize the head of533

the fish and a second pair was used to grab the joint and pull off the fins. Finless larvae were534

washed three-times in E3 and fed with cultured rotifers before behavior assessment at 7 dpf.535
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Video acquisition536

Movie 1 was captured using Sigma fp digital camera (Sigma Co.). Video footage was edited537

and annotated using Premiere Pro (Adobe). Movies 2 & 3 was captured with the innate video538

capture function in SAMPL software using recording parameters described in Table 2. Movie 3539

was edited using Adobe Premiere Pro (Adobe) to combine with timeseries data.540

QUANTIFICATION AND STATISTICAL ANALYSIS541

Behavior analysis542

Behavior data was analyzed using the Python analysis pipeline SAMPL_analysis_visualization.543

SAMPL_analysis() function was used to calculate swim parameters, extract bouts and inter-bout544

intervals (IBIs) from the raw data, and align swim bouts by the time of the peak speed.545

Each run of the experiment (recording from “start” to “stop”) generates one data file (∗.dlm)546

containing recorded raw parameters including time stamp, fish body coordinates, fish head co-547

ordinates, pitch angle, epoch number and fish length at every time point. An epoch is defined548

by a duration where the number of detected pixels falls within the lower and upper threshold549

for recording, indicating detection of fish in the field of view.550

To extract bouts from the raw data, first, swim features, such as speed, distance, trajectory, an-551

gular velocity, etc., were calculated using basic parameters and time interval. Next, epochs that552

were longer than 2.5 s, contain maximum swim speed greater than 5mm/s, and pass various553

quality-control filters were selected for bout extraction. Epochs containing multiple bouts were554

segmented and truncated so that each detected bout contains data from 500ms before to555

300ms after the time of the peak speed. Then, bouts containing 800ms of swim data were556

aligned by the time of the peak speed and saved for further analysis.557

All further quantification was performed on data during zeitgeber day, namely the 14 h light558

time for fish raising under 14/10 h light/dark cycle.559

To calculate IBIs, epochs with multiple bouts are selected and the duration of swim speed be-560

low the 5 mm/s threshold between two consecutive bouts is calculated. A 100ms buffer win-561

dow is then deducted from each end of the duration to account for errors of swim detection562

(Figure 3A). Pitch angles during each IBI were averaged to generate an IBI pitch (Figure 3B).563

Definition of other bout parameters can be found in Table 3. All bout parameters (except for ki-564

netic parameters explained in the next section) reported in the main text and Table 3 are mean565

values across swim bouts collected frommultiple experimental repeats. One experimental re-566
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peat is defined as behavior data collected from one clutch of fish over 48 h using at least three567

boxes.568

Computation of kinetic parameters569

To calculate larvae sensitivity to pitch changes (Figure 3), we plotted bout frequency as a func-570

tion of IBI pitch. The data was modeled using a quadratic polynomial regression (least squares)571

defined by function:572

y = a(x− b)2 + c

where the coefficient of the quadratic term a indicates sensitivity and the y-intersect c repre-573

sents baseline bout rate.574

To calculate steering gain (Figure 4), we first computed bout trajectory defined by the tangen-575

tial angle of instantaneous trajectory. Pitch angles at time of peak speed were then plotted as576

a function of bout trajectories and modeled with linear regression (least squares). The slope of577

the best fitted line was termed the “steering gain.”578

Time of peak angular velocity in Figure 5 was computed using adjusted angular velocity. First,579

pitch angles for each bout were smoothed by a window of 11 frames and used for calculate580

angular velocity. Next, we flipped the signs of angular velocity for bouts that started with nose-581

down rotation so that all bouts started with positive angular velocity. To calculate time of peak582

angular velocity, we took the median angular velocity at every time point across all bouts from583

the same experimental repeat and found the time for the peak. Peak angular velocity times584

across all experimental repeats were then averaged to generate mean peak time.585

For fin-body coordination analysis (Figure 5), we selected swim bout that are faster than or586

equal to 7 mm/s. Bouts with steering rotations (posture change from -250ms to 0 ms) greater587

than the 50th percentile while having a negative attack angle were further excluded from anal-588

ysis. To calculate fin-body ratio, we plotted attack angles as a function of early rotation. Attack589

angle is defined as the difference between bout trajectory and pitch at time of peak speed.590

Body change related to steering were calculated by subtracting pitch angles at time of max591

angular velocity by initial pitch. Attack angle-rotation plot was then fitted with a logistic func-592

tion defined by593

y = a+
h

1 + e−k(x+b)

where h is the height of the sigmoid. Fin-body ratio was defined by the maximal slope esti-594

mated using kh/4.595
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To calculate righting gain and set point (Figure 6), righting rotation, defined by the pitch596

changes from time of peak speed to 100ms after peak speed, was plotted as a function of ini-597

tial posture. Righting gain was determined by the absolute value of the slope of the best fitted598

line. The x intersect of the fitted line determines the set point (Figure 6E, blue cross) indicating599

posture at which results in no righting rotation.600

Estimating effects of sample size on statistical modeling of bout kinetics601

For statistical analysis of swim kinetics (Figure 8A), the 7 dpf constant dark behavior dataset602

was sampled for 20 times at given sample number for calculation of swim kinetics and CI603

width. Specifically, sensitivity is determined by the coefficient of the quadratic term of the fit-604

ted bout-timing parabola as stated above. To plot estimated error as a function of the number605

of IBI, sets of data with N number of IBIs were sampled from the 7 dpf constant dark behavior606

dataset. However, different from the calculation of R2 above, the total dataset was sampled for607

20 times for each desired number of IBIs (N). Regression analysis was performed on each set of608

sampled data to calculate sensitivity and its standard error. Estimated errors were used to cal-609

culate CI width at 0.95 significance level using normal distribution for each sampled dataset.610

Similarly, steering gain and righting gain and their estimated errors were calculated from N611

number of bouts sampled from the original dataset. Estimated error was used to calculate CI612

width at 0.95 significance level for each sampled dataset. Sampling at each N was repeated for613

20 times to generate error bars on the CI widths.614

Fin-body ratio was calculated from N number of bouts sampled from the original dataset and615

repeated 20 times for each N. Because fin-body ratio is determined as the maximal slope of616

the sigmoid which is given by kh/4, the variance of fin-body ratio (slope) is calculated using for-617

mulation618

Vslope = (E2
k × Vh + E2

h × Vk + Vk × Vh)× (1/4)2

where Ek and Eh are the mean of k and hwith Vk and Vh being their respective variance. Next,619

the standard errors of the fin-body ratio were calculated and used to estimate CI widths at 0.95620

significance level.621

To estimate effect sizes at given percentage of change (Figure 8B), an artificial data set was622

generated by altering the coefficient of interest while maintaining other coefficient as well as623

y residuals at given x values. N data points were drawn with replacement from each data set for624

calculation of kinematic parameters, which was repeated 200 times to generate distributions625

of parameters of interest. Effect sizes were determined using Cohen’s d:626
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ES =
|µsim − µori|

σ

where µsim and µori are the mean of parameter values calculated from respective data sets627

and σ is the standard deviation of all 400 calculated parameters. The whole process was re-628

peated for 20 times to estimate the mean effect size at given sample size (N) and percent-629

age of change. To reduce program execution time, we used a fixed 40ms before time of peak630

speed as the time of max angular velocity for fin-body ratio calculation. Other kinematic pa-631

rameters were calculated as described above.632
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APPENDIX 1: HARDWARE DESIGN PRINCIPLES633

Camera634

At the time of writing, the best price/performance ratio when using infrared light are the Sony635

Exmor line of complementary metal-oxide-semiconductor (CMOS) sensors. Sensors in the Ex-636

mor line are usually released as pairs, with a low-cost low-speed version of the same sensor637

available at the same time as a more expensive high-speed version. Our initial designed used638

the lower-cost IMX249 sensor; we have since switched to the faster IMX174 variant. These two639

sensors have a particularly large pixel size (5.86um), low noise (7e-), and a large well depth640

(32,513e-) allowing for exceptional dynamic range (73dB) and signal-to-noise ratio (45dB) at641

high-definition resolution (1936x1216 pixels). Quantum efficiency >900nm (i.e. the infrared642

range we will use) is 10%. Sony has released new sensors in the Exmor line regularly, but the643

trend has been to release sensors with increasingly small pixels. Thus for our purposes, the per-644

formance of the IMX174 remains unmatched.645

Machine vision cameras are available with different interfaces used to stream data to a com-646

puter. The major difference between interfaces is the bandwidth available to each. The647

two most common interfaces for machine vision cameras at the time of writing are Giga-648

bit Ethernet (125MB/sec) and USB3.0 (500MB/sec after overhead). Currently, there are649

commercially-available cameras with higher bandwidth interfaces utilize 10-tap CameraLink650

(850MB/sec), 10 Gigabit Ethernet (1250 MB/sec), 4xCoaXPress 2.0 (6,250MB/sec), and PCIe x8651

(7,000MB/sec). Running our preferred IMX174 sensor at full resolution and speed for 8-bit im-652

ages only requires 380MB/sec. Thus, USB3.0’s low cost and relative ubiquity made it the most653

attractive option for our apparatus.654

There are a number of manufacturers that make cameras built around the IMX174 with655

a USB3.0 interface. Cameras frommajor manufacturers all conform to the GenICam stan-656

dard making them largely interchangeable, particularly when using the Vision Acquisi-657

tion software from National Instruments. We have successfully used cameras from Ximea658

(MC023MG-SY), Basler (acA1920-155um), and FLIR (GS3-U3-23S6M-C), others include SYS-659

Vistek (exo174CU3) and Daheng Imaging (MER2-230-168U3M). We have also used cam-660

eras ordered directly from different manufacturers – at a substantial discount – available via al-661

ibaba.com: Hangzhou Huicui Intelligent Technology Co. Ltd. (A7200MU130), Hangzhou Con-662

trastech Co. Ltd. (Mars2300S-160um), Shenzhen Hifly Technology Co. Ltd. (MV-AU231GM).663

When ordering directly frommanufacturers we specify Delivery At Place (DAP) shipping.664
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The primary differences that we’ve encountered are whether a particular model implements665

binning or other on-camera computations, heat management, and different manufacturer-666

provided APIs. When we use multiple cameras from the samemanufacturer on the same667

computer, we have also noticed that certain cameras will throw timeout errors on some USB668

ports but not others; shuffling cameras and ports has worked to solve this problem. At the669

time of writing, supply chain issues mean that most major camera companies quote long lead670

times, but cameras ordered directly through alibaba.com all shipped within two weeks.671

Illumination672

Image quality is proportional to available light. Further, the size of the illuminated area defines673

the size of the field that can be imaged. Finally it is imperative for our experiments that from674

the fish’s perspective that the “dark” period is completely dark. We therefore chose 940nm675

LEDs as our source of infrared illumination. This left us with three options to build our illumina-676

tion source: LEDs mounted on adhesive strips, “star” style LEDs with 1-4 dies on a single PCB,677

and a high-power LED array. The LED strips had too little illuminance for our purposes due pri-678

marily to the spacing of the LEDs. The high-power LED array had ample illuminance but gen-679

erated so much heat that it required active cooling.680

We developed a simple illumination module to provide diffuse IR light across a 50mm circle681

An LEDmounted on a “star” PCB (Opulent LST-01F09-IR04-00, Mouser) provided ample light.682

Wemount each “star” LED with thermal adhesive to a small heat sink (Ohmite SV-LED-325E)683

which in turn is glued to a Thorlabs adapter (SM1A6FW) to allows the wires to exit and the684

LED/heatsink to connect to collimation and diffusion optics. The heat sink is machined (either685

with a Dremel hand-held tool or a mill) on one side to allow the wires that power the LED to lie686

flat against the heatsink. We power multiple illumination modules in series using a constant687

current LED driver (LuxDrive BuckBlock 1000mA). Our illumination setup generates negligible688

heat and our modules run continuously for years.689

Our imaging parameters are fixed across experiments and optimized to give the highest qual-690

ity data we can achieve with our hardware. The gain of the camera is set either to its lowest691

value or just above to minimize noise. Our exposure time is either 750 µsec or 1msec, allowing692

for a crisp image in the face of the fastest movements that fish can make. The illuminated area693

is circular, but the image sensor size is rectangular. We therefore crop the sides of the image to694

produce a square that fits within the illuminated area.695
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Lens696

Our choice of lens was guided by the need to balance different demands:697

1. The longer the working distance, the greater the space needed between the sample and698

the lens. We wanted our apparatus to fit length-wise on a 24 inch shelf, and so we needed699

to minimize the working distance.700

2. The entire depth of the tank needs to be in focus, but not beyond that because we’d like to701

blur our LED.702

3. The lens should be coated to pass IR light703

4. The lens should be easy to mount to the base of the apparatus; mounting the lens instead704

of the camera allows drop-in replacement of cameras from different manufacturers, which705

have different positions of the tripod mount relative to the sensor.706

5. The lens should have a simple way to mount an IR-pass filter (e.g. common thread).707

Unfortunately, we were not able to find a single lens that met all of these criteria. Instead, we708

adapted a 50mm (Edmund Optics 67717) lens by placing a small Thorlabs tube (ThorLabs709

SM1-L03) between the lens and the camera. Wemounted a 25mm IR pass filter (ThorLabs710

FGL830) inside the Thorlabs tube. By moving the lens farther from the sensor we decreased711

the minimumworking distance sufficiently. Finally, the Thorlabs tube allows us to mount the712

lens to the breadboard directly.713

Behavioral arena714

To maximize the amount of time the fish swam in a plane orthogonal to the camera, we used715

rectangular chambers. Initially we chose glass colorimeter cuvettes (Starna Cells Inc, Atas-716

cadero CA): they are made of an inert material (glass) and come in a variety of sizes. Due to717

supply chain issues, we switched to custom-fabricated chambers, plans attached. We now as-718

semble these from laser-cut acrylic, cementing a front and back side to a u-shaped piece that719

forms the other sides. These chambers are considerably cheaper and less prone to breakage720

than glass and can be rapidly modified to allow for different experiments.721

Enclosure722

We designed a custom aluminum base with tapped holes for post-holders for the IR LED,723

chamber holder, and camera/lens/filter holder. We used custom-cut extruded aluminum rails724

to frame the sides and top. The sides are made of black foam-core sized to fit in grooves in the725

breadboard and rails. The top rails have a cross piece that holds the LED strip used to provide726
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circadian lighting. All parts are fabricated to order by Base Lab Tools Inc (Stroudsburg PA). The727

top is a steel tray fabricated to order by MetalsCut4U (Avon Lake OH). Our current enclosure728

took roughly three months to prototype before settling on the final design.729

Shelving and fleet organization730

We have organized our fleet of apparatus to sit on mobile wire shelving. Currently, we use731

36"x24"x81.5" adjustable wire shelving units (McMaster Carr, Robbinsville NJ). We prefer to732

have the shelving on casters as it makes accessing the back of the units considerably easier.733

Shelving is organized such that one computer and three apparatus sit on a single shelf. En-734

closures on a given shelf are color-coded (blue, gold, and red) so that each apparatus can be735

uniquely identified by a color/shelf/module combination; this also facilitates wire labeling. Each736

shelf has its own power strip that controls the computer, the IR lights, and the white LEDs; all737

strips plug into a single uninterruptible power supply (APC SmartUPS 1000C).738

Our aim in specifying module size was to ensure that multiple investigators could set up ex-739

periments simultaneously, and to minimize the cost One unit has four shelves so that a sin-740

gle “module” consists of four computers and twelve apparatus. Each module has a dedicated741

monitor/keyboard/mouse on an adjacent desk, shared by the four computers using a KVM742

switch (IOGEAR GCS1794). A module has its own dedicated unmanaged Ethernet switch743

(NETGEAR GS110MX) that allows Gigabit speed communication between computers and 10744

Gigabit speed betweenmodules.745

Computer hardware746

Computer hardware was chosen to ensure adequate performance while minimizing cost,747

noise, and size. We found that building our own computers was the only path forward in the748

face of supply chain issues and strict optimization criteria. We opted to build around what749

was, at the time of writing, the previous generation of AMDmicroprocessors (Ryzen 7 5700G)750

cooled by a Noctua NH-L9a-AM4 fan (to minimize acoustic noise). We chose a Mini-ITX form751

factor motherboard that allowed us to use a small case (Cooler Master NR200). Other parts752

(64GB RAM, SSD, power supply) were chosen based on availability; a full parts list is attached753

(Table 1). We recommend using https://www.pcpartpicker.com to minimize cost and ensure754

compatibility of different components. All computers run Windows 10 Professional (Microsoft,755

RedmondWA).756

APPENDIX 2: ACQUISITION SOFTWARE DESIGN PRINCIPLES757
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What we don’t measure758

To extract the maximum amount of useful information about posture and locomotion with759

the minimum amount of overhead we had to be selective about what wemeasure. Our imag-760

ing field is located in the center of the arena; fish that swim at the bottom, top, or sides of the761

tank where there is a boundary are excluded from tracking. While multiple fish swim in the762

same arena, we do not take data whenmore than one fish is in the imaging field to sidestep763

the need to track fish identity. Our arena is sized to allow fish to swim freely but its shape (a764

rectangular solid) encourages fish to swim in line with the imaging plane; we exclude frames765

where fish turn away from the field of view (i.e. are swimming towards/away from the camera).766

Finally, capturing the full range of rapid propulsive undulations of the fish tail requires a frame767

rate of 500Hz-1kHz130,131. As changes to posture and locomotion are much slower, we opted768

to record at 160Hz. Together, these choices allowed us to optimize our algorithms to achieve769

the speed necessary to process video in real-time.770

Algorithms to measure posture and position771

Our apparatus extracts the position and pitch orientation of zebrafish in real-time over days us-772

ing a simple set of commonmachine vision processing steps:773

1. Measure the absolute difference between the current frame and the background (fish-free)774

image.775

2. Threshold the difference image such that all small differences are set to zero.776

3. Dilate the image three times in succession to remove any larger clumps that are still smaller777

than a fish.778

4. Extract and quantify all particles in the image.779

Real-time video processing allows efficient data extraction during video acquisition. Our design780

of the architecture is further discussed in the section: Optimizations for speed.781

Below we detail a number of additional processing and optimization steps to ensure that we782

maximize useful data.783

Measuring the pitch of the fish784

To extract the pitch (the angle of the fish with respect to the horizon), we perform the following785

steps to ensure that the sign andmagnitude of the angle is correctly assigned:786

1. Fit the particle with an ellipse and extract the angle of the long axis with respect to the hori-787

zon.788
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2. Threshold the original difference image again to identify the pixels that correspond to the789

head of the fish.790

3. Using the head and body (X,Y) coordinates determine whether the fish was facing to the left791

or right.792

4. Assign the correct angle and sign such that nose-up posture is always positive and nose-793

down is always negative.794

These steps ensure that the data saved follows a simple and intuitive convention for posture.795

Optimizations for speed796

To optimize our code for speed, we use a set of thresholds to rapidly evaluate and reject frames797

1. Before any processing, we sum the pixel values in the frame. If it is too low (no fish in frame)798

or too high (more than one fish in the frame) we reject the frame.799

2. After the particles are identified we reject the frame if a particle is touching the edge (fish800

partially out of frame), if there is more than one particle (multiple fish) or if the length of the801

particle is too short (fish bending in/out of the field of view). We define an epoch as a set of802

continuous frames that pass all our exclusion criteria (i.e. that contain a single fish in frame).803

Epoch duration is tracked and, when too short, can be rejected.804

In addition to optimizing the algorithm, we adopted a producer-consumer architecture to de-805

couple video acquisition from video processing and saving data. Our software runs two rou-806

tines: the “producer,” which acquires frames from the camera and places them in a queue807

in memory, and the “consumer” that extracts each frame from the queue and processes it in808

turn. Our programmonitors the size of the consumer buffer and, if it has less that 10% free,809

pauses the producer routine for 15 seconds to allow the buffer to clear. In this configuration,810

the performance ceiling shifts from CPU speed (i.e. how quickly can a frame be processed) to811

the amount of RAM available (i.e. howmany frames can be queued). At the time of writing this,812

doubling the amount of RAM is considerably less expensive than doubling CPU performance.813

The choice of architecture thus brings down the cost of the computer.814

Saving raw video815

While the bulk of our experiments rely on real-time processing of video it is often useful to save816

the actual data. Further, we wanted to be able to set user-defined criteria to determine in real-817

time which videos were worth saving. Leveraging the producer-consumer architecture, our818

software contains a routine that independently buffers the frames being analyzed and, if, the819

video to be saved meets user-defined criteria, will pass the frames to an independent program820
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to write them to disk. For example, we can ensure that the video to be saved is of a certain821

length. Similarly, we can filter the video images132 to determine if the target is in crisp focus822

(useful for larger arenas, or higher magnification) and only save high quality videos. By separat-823

ing video writing from acquisition and processing, comparatively slow operations such as video824

compression and/or saving video to a network-accessible shared drive do not compromise per-825

formance.826

Apparatus control software827

Our algorithm relies on common andmature image processing routines and could be instan-828

tiated in any modern programming language. Since we had run this algorithm for the better829

part of a decade we were confident that it was sufficiently stable to compile into a distributed830

executable, which would greatly simplify deployment to a fleet of apparatus. Our original im-831

plementation was written in LabVIEW (National Instruments, Austin TX) which was stable and832

accommodated all the lab’s hardware changes for the past decade. We therefore opted to up-833

date the LabVIEW code, which we distribute both as source and executable versions. Running834

the executable requires each computer to have the LabVIEW Runtime Engine (free download)835

installed, as well as a license for NI Vision Acquisition software (NI 778413-35) and the Vision836

Development Module Run-Time engine (NI 778044-35).837

User interface838

We designed the interface to enable easy initialization of experiments, rapid graphical and839

quantitative visualization of video processing and performance, and to minimize error. Launch-840

ing the executable starts the program, which allows the user to fill out various text, numeric,841

and drop-down fields that describe the experiment. The user then monitors the video feed un-842

til no fish are in frame and then selects that image as the background. We have found that this843

initial bit of monitoring both compensates for slight day-to-day differences in arena placement.844

More importantly, it forces the user to monitor the live feed at the beginning of each experi-845

ment, a useful bit of mindfulness that minimizes lost data. Once running, the user can: mon-846

itor the output of each step in the processing algorithm graphically, monitor the number of847

times the consumer buffer has overflowed (usually zero), update the text fields, and stop the848

program. Hardware parameters are stored in a text file that can be easily edited directly. Experi-849

ment parameters are similarly saved to text files and can be reloaded to save time.850

We have implemented a number of user interface items to minimize confusion in the face of a851

fleet of instruments. First, we have color-coded versions of the executable (blue, gold, and red)852
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where the background clearly differentiates the version. Each version has its own configura-853

tion file that, during setup, is coded to a particular apparatus. Thus the user is always aware of854

which apparatus they are interfacing with based on color cues. Next, we added a “debug” but-855

ton to the front panel that allows for direct monitoring and editing of all program variables. In856

“debug” mode the user has the option to save raw video.857

APPENDIX 3: HARDWARE ASSEMBLY GUIDE858

In this Appendix, we walk through box assembly and recording settings. Refer to Appendix 5859

for executing experiments and SAMPL data analysis.860

Hardware assembly861

Our design of hardware allows connecting up to three SAMPL boxes to one computer while862

using one set of power supplies (for IR LED and daylight LED). See Movie 1 for video instruction863

on box assembly.864

1. Camera module865

(a) Attach 1x 1.5 inch post (TR1.5) to the camera module holder (SM1RC). Screw in tightly.866

(b) Assemble lens and camber. Sequentially connect parts below: camera lens, SM1A10867

adapter, IR filter, SM1-L03 extension tube, assembled camera module holder, SM1A9868

adapter, and the camera.869

2. IR illumination module870

(a) Attach wired IR LED to the heatsink and SM1A6FW adaptor (see below for instruction).871

(b) Carefully mount the condenser into SM2L05 tube.872

(c) Assemble the IR module by sequentially connecting parts below: IR kit, SM1M10 tube,873

SM1A2 adapter, SM2L20 tube, and the mounted condenser.874

(d) Tightly attach TR1 post to SM2RC holder.875

3. Chamber holders876

(a) Take off rubber covers on the tip of the screws on the chamber holders (FP01).877

(b) Mount holders onto TR1 posts using 8-32 screws.878

(c) Assemble the IR module by sequentially connecting parts below: IR kit, SM1M10 tube,879

SM1A2 adapter, SM2L20 tube, and the mounted condenser.880

(d) Tightly attach TR1 post to SM2RC holder.881

4. Put together the box882
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(a) Mount one of the short rails between two long rails using right angle brackets and T-883

nuts.884

(b) Mount the other two short rails onto the long rails using slotted cubes and low-profile885

cap screws (SH25LP38).886

(c) Adjust the position of the middle rail so that is approximately 13 cm away from one end887

of the frame.888

(d) Attach post holders to the base plate using cap screws (SH25S038). Note that the one889

for the camera module is the longer post holder (PH1.5).890

(e) Mount 4 medium rails onto the base plate using standard cap screws.891

(f) Insert all the modules onto the base plate. Connect USB cable to the camera.892

(g) Make a notch in the middle of the shorter side of a small panel and insert it between893

the rails on the side of the camera module.894

(h) Insert 2 large side panels.895

(i) Attach daylight LED to the top frame (see below for instruction).896

(j) Pass IR and daylight LED wires through the front notch of the baseplate.897

(k) Insert the front panel.898

(l) Attach the top frame.899

IR light wiring900

Solder 2x 9” wires onto the IR LED “star.” Attach IR LEDs to heatsinks using HexaTherm tape.901

Note that in order to pass the wires through the heatsinks and the SM1A6FW adapter on the902

opposite end, the ears of the Ohmite heatsink need to be trimmed down a little. When done,903

attach the heatsink to the adapter using thermal epoxy. To simplify light wiring, we use one904

1000mA BuckBlock to dirve 3 IR lights in series for 3 boxes on the same level of the shelf. To905

do this, one needs 2x 7" wires to connect adjacent IR cables and 1x 22" wire connecting the906

further IR to the BuckBlock. Use another 8" wire to connect the closest IR to the BuckBlock.907

We recommend using XT60H connectos to link these wires to the IR light cables and connect908

wires to the BuckBlock for the ease of troubleshooting and replacement. Finally, connect the909

BuckBlock to 12 V 2 A power supply through pigtail adaptors.910

Daylight wiring911

Each box uses a strip of 6 daylight LEDs. Our choice of daylight LED comes with double sided912

tape already attached to the back side of the LED which is used to install LED strips to the top913
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frame. To wire daylight LED strips, solder 2x 20" wires to the LED strip. Heat shrink sleeves can914

be used here to strengthen connections. Twist the wires at the end close to the LED. This helps915

with cable management in the box. Bend the cables 90 degrees in the XY plane (perpendicu-916

lar to the illumination direction) so that the wires won’t get into the field of view.917

To simplify light wiring, we use one 12V 1A power supply to drive 3 LED strips in parallel. To do918

this, cut 1x 27" wire for connecting the positive end of the DC plug to the LED strip. Prepare919

3 wires for the negative end of the strips each measured 10", 18", and 27". Insert one end of920

all three wires for the negative end into the negative terminal of a pigtail connector, connect921

the other ends to the LED cables. For positive end, we recommend using T tap connectors922

(B085XGYW1B) which allows easy disconnection.923

PC setup924

Assemble computer parts. Make sure 1 PCI-e USB card is installed into each PC. Connect925

power cable and Ethernet cable. If desired, connect 3 cameras to three different USB BUS on926

the PC: specifically, one to a PCI-e USB card, one to a USB 3.0/3.1 port on the motherboard in927

the back of the PC, and one to a USB 3.0 port on the front panel. If desired, connect to the KVM928

switch.929

Turn on the PC, setupWindows. If necessary, change settings below to achieve peak perfor-930

mance: select AMD High Performance in Power Settings; set Sleep time to Never; set hard disk931

sleep time to 0 in Advanced Power Settings.932

Install behavior programs933

We provide three executable programs (Blue, Gold, Red) that can run simultaneously on the934

same PC. Refer to the Key Resources Table for access to the programs. To install executables,935

download *.exe files and corresponding configuration files (* Configuration.ini). Create a936

folder under C:/ andmove configuration files to C:/Data/. Install required NI software and ac-937

tivate: LabVIEW Runtime, Vision Acquisition, and Vision Runtime. Restart computer.938

Open NI Max, rename cameras to camBlue, camGold, and camRed. Set camera settings:939

• Field of view - X: left = 360; resolution = 1216940

• Field of view - Y: top = 0; resolution = 1200941

• Under Acquisition attributes - Receive time stampmode = System time942

• Under Camera attributes - Analog control - Gain = 1; Black level = 1 (if applicable)943

• Under Acquisition Control - Exposure time = 1000; Trigger activation = Rising edge; Frame944

Rate = Freerun (for 166 Hz with our cameras of choice, or set to desired frame rate)945
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Open configuration files and set box number to desired values. We use box number as a946

unique identifier for different behavior boxes. Check camera name to make sure it’s the same947

as the corresponding camera names in NI Max.948

Open behavior programs, now that you should see images showing up on the preview win-949

dows.950

Camera calibration951

Once the apparatus has been assembled and software has been installed, align the field of952

view (FOV) to the center of the IR light circle. Raise or lower the post holding the camera mod-953

ule to center the FOV in Y and roll the module to level it.954

Next, calibrate the scale of the FOV to 60 pixels/mm. To do this, secure a micrometer in a955

chamber and place it into the box. Snap a picture of it using NI Max, then measure the scale956

using the image of the micrometer. If necessary, loosen the SM2RC adapter and move the957

camera and lens forward or backward to achieve the correct scale.958

Illumination adjustments should be completed with the behavioral arena in place. To calibrate959

exposure, first ensure the correct IR light is in use and set the aperture ring between f/16. In960

NI Max, the peak of the image histogram peak should be around 128 (the middle of the 8-bit961

range). If necessary, exposure can be reduced by lowering exposure time or increased by open-962

ing up aperture to f/11.963

Network setup964

We use a Synology data server as a repository to store behavior data. Hard drives are setup965

as RAID 10. Each SAMPL rack has its own ethernet switch, which can be connected to other966

switches as necessary.967

APPENDIX 4: DATA ANALYSIS SOFTWARE968

In this appendix, we discuss algorithms for the data analysis and plotting software. We assume969

that the user is working with data from larval zebrafish here. If not, the specific parameters970

identified here are unlikely to translate as other organisms move differently but can nonethe-971

less be used as a starting point. Refer to Appendix 5 for instruction for use. Refer to the Key Re-972

sources Table for access to the code.973

Read DLM files974

Each SAMPL session (from Start experiment to Stop) generates one tab-delimited (i.e. .dlm) file.975

Each time point appears as a row of tab-separated values in the .dlm file. Columns, from left to976
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right, are time stamp, fish number in the field of view (FOV), pitch angle (0-90°), x coordinate977

for body, y coordinate for body, x coordinate for fish head, y coordinate for fish head, raw fish978

angle (0-180°), epoch number, and estimated fish length.979

Each .dlm’s data is loaded as a Pandas DataFrame for further analysis (see980

src/SAMPL_analysis/preprocessing/read_dlm.py for details). Each raw DataFrame contains981

multiple epochs. An epoch is defined as duration when a fish is detected in the FOV. See982

Appendix 1 for details on the algorithm for animal detection.983

Extract epochs984

We calculated swim attributes, such as angular velocity, swim speed, instantaneous displace-985

ment, etc., from recorded pitch angles and fish body coordinates. To extract quality epochs986

from the recorded data, epochs are analyzed and passed through several quality control filters:987

1. each epoch is truncated by 50ms at both the start and the end to eliminate frames when988

fish is entering/exiting the FOV;989

2. epochs with duration shorter than 2.5 s are excluded (for 1 & 2, see function raw_filter());990

3. epochs with frame drop greater than 3 frames are excluded;991

4. epochs with direction of fish translocation opposite to where the head points toward are992

dropped (for 3 & 4, see function dur_y_x_filter());993

5. epochs with aberrant displacement jumps are excluded;994

6. epochs with improbably large angular velocity greater than 250°/s or angular acceleration995

larger than 32000°/s2 are excluded (for 5 & 6, see function displ_dist_vel_filter()).996

All the processes above can be found in the script src/SAMPL_analysis/preprocessing/analyze_dlm_v4.py.997

Get bout and inter-bout data998

Epochs that pass the quality control are used to extract swim bouts using function999

grab_fish_angle() under src/SAMPL_analysis/bout_1000

analysis/grab_fish_angle_v4.py.1001

We use a swim speed threshold of 5 mm/s to determine swim windows. Adjacent swim win-1002

dows with intervals smaller than 100ms are combined. Next, we find the time of the peak1003

speed for each swim window and extract frames in a range of 500ms before to 300ms af-1004

ter that. Inter-bout intervals (IBI) are determined as time between adjacent swim bouts with1005

a 100ms buffer window deducted from both the beginning and the end and IBI data is ex-1006

tracted accordingly. Baseline is considered the time during which larvae swim slower than 21007

mm/s and baseline parameters are extracted accordingly.1008
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Note that an epoch can only contain a single detected fish. The number of swim bouts ex-1009

tracted from an epoch various extensively depending on the quality of the epoch (and behavior1010

of fish). Having too many fish in the chamber may lead to low yields of aligned bouts despite1011

having a large number of epochs. For details of fish detection, refer to Appendix 1.1012

Export analyzed results1013

Numerous attributes are saved as DataFrames under keys in HDF5 format files using our anal-1014

ysis pipeline. Once the analysis is complete, three output data files are generated: all_data.h5,1015

bout_data.h5, and IEI_data.h5.1016

The all_data.h5 file contains epoch-based data including raw data from DLM files, epoch1017

attributes, baseline angular velocity, etc. The bout_data.h5 file includes bout attributes and1018

aligned bout data such as pitch angles and speed. The IEI_data.h5 file contains all inter-event1019

interval (IEI) data, or IBI. Refer to docs/ for a complete list of saved attributes and their descrip-1020

tion. In addition, a metadata table including recording frame rate, number of aligned bouts,1021

and other information is generated and saved to the same directory.1022

All results are saved as “long format” DataFrames with each row representing a time point or a1023

bout/IEI, depending on the type of the result (one value per timepoint vs per bout/IBI). Values1024

of multiple aligned bouts are stored in successive rows.1025

All functions above can be called with script src/SAMPL_analysis/SAMPL_analysis.py. Refer1026

to Appendix 5 for running instructions. For a record of analyzed files, frame rate, number of1027

aligned bouts, etc., refer to the log file generated under src/.1028

Load analyzed data and calculate parameters1029

We include several plot functions under src/SAMPL_visualization/ that calculate and plot all1030

the parameters we report in the main text. These functions require an input of a root directory1031

containing analyzed data. For recommended behavior data structure, see Appendix 5.1032

Once data is found, plot functions get frame rate frommetadata files and calculate the index1033

of time of peak speed which is used to calculate the number of aligned frames and initialize1034

other constants. Note that plot functions only read one frame rate for all the data to be plotted.1035

Therefore, make sure all experiments are done at the same frame rate. To combine results from1036

different frame rates for plotting, extract parameters of interest separately for experiments with1037

different frame rates and concatenate the results afterwards. We only plot zeitgeber day data in1038

this version of the code. Users may modify the day_night_split() function to extract zeitgeber1039

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.01.07.523102doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.07.523102
http://creativecommons.org/licenses/by/4.0/


night results if intended.1040

To load analyzed swim bouts and IBI, we loop through all subfolders under the root directory1041

and read DataFrames from HDF5 files, extract and calculate desired parameters and concate-1042

nate results. Each plot function extracts parameters in different ways.1043

For time series values to be plotted as a function of time, data is loaded from the all_data.h51044

file. The key prop_bout_aligned contains propulsive bouts that have been aligned and1045

grabbed_all includes all epochs that contain swim bouts. See plot_timeseries.py for examples.1046

Bout parameters, such as speed, displacement, pitch angles and attack angles, are also ex-1047

tracted from prop_bout_aligned key containing aligned swim bouts. We use a dedicated func-1048

tion for calculating these swim parameters: extract_bout_features_v4(). These parameters1049

can be further used to get steering and righting gains. See get_kinetics() for more. Note that1050

some parameters are determined by specific time points (such as initial pitch, post-bout pitch,1051

etc.). To determine frames that are the closest to these time points, we use half round up for1052

rounding.1053

IBI data is loaded from the IEI_data.h5 file under key prop_bout_IEI2. For bout tim-1054

ing estimation, we calculate bout frequencies as reciprocals of bout intervals (IBIs). See1055

plot_bout_timing.py and plot_IBIposture.py for examples.1056

To calculate fin-body coordination, users need to determine how the rotation is calculated.1057

One way is to use rotation to time of peak angular velocity which requires estimation of1058

time of peak angular velocity. To do this, we first calculate angular velocity using smoothed1059

pitch angles and adjust the signs so that values are positive before time of the peak speed.1060

Median of angular velocity time series from the same experimental repeat (see Appendix 51061

for data organization) is used to find time of peak angular velocity. Lastly, we average results1062

across experimental repeats to determine the peak angular velocity time. However, this calcu-1063

lation requires a large amount of bout data. Alternatively, one may use a fixed value for time of1064

peak angular velocity. Generally, we found -50ms (50 ms before time of peak speed) to be a1065

good value to use. Once the time of peak angular velocity is determined, rotation is calculated1066

by pitch change from 250ms before peak speed to time of peak angular velocity. Some scripts1067

have the option to sample data from each experimental repeats. See Appendix 5 for instruc-1068

tion.1069
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Visualize results1070

We use the Seaborn package for data visualization133. Each plotting script generates a folder1071

under figures/ and saves figures as PDFs. Below is a list of available plotting functions and1072

their descriptions. For more details, refer to the README document.1073

1. plot_timeseries.py1074

plots basic parameters as a function of time. Modify all_features to select parameters1075

to plot. This script contains two functions: plot_aligned(), plot_raw(). Change variable1076

all_features to select parameters to plot.1077

2. plot_parameters.py1078

plots swim parameter distribution and 2D distribution of parameters for kinetics calculation.1079

This script contains function: plot_parameters().1080

3. plot_IBIposture.py1081

plots Inter Bout Interval (IBI; aka inter-event interval, IEI) posture distribution and stan-1082

dard deviation. This script contains function: plot_IBIposture(). This script looks for1083

prop_Bout_IEI2 in the prop_bout_IEI_pitch data which includes mean of body angles dur-1084

ing IBI. When input root directory contains multiple experimental repeats, the scripts allows1085

sampling of IBIs from each repeat by specifying argument sample_bout.1086

4. plot_IBIposture.py1087

plots Inter Bout Interval (IBI; aka inter-event interval, IEI) posture distribution and stan-1088

dard deviation. This script contains function: plot_IBIposture(). This script looks for1089

prop_Bout_IEI2 in the prop_bout_IEI_pitch data which includes mean of body angles dur-1090

ing IBI. When input root directory contains multiple experimental repeats, the scripts allows1091

sampling of bouts from each repeat by specifying argument sample_bout.1092

5. plot_bout_timing.py1093

Plots bout frequency as a function of IBI pitch and fitted coefficients of function. This script1094

contains function: plot_bout_frequency(). When input root directory contains multiple ex-1095

perimental repeats, the scripts allows sampling of bouts from each repeat by specifying ar-1096

gument sample_bout.1097

6. plot_kinematics.py1098
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Plots righting gain, set point and steering gain. This script contains function:1099

plot_kinetics(). When input root directory contains multiple experimental repeats, the1100

scripts allows sampling of bouts from each repeat by specifying argument sample_bout.1101

7. plot_fin_body_coordination.py1102

Plots attack angle as a function of rotation and calculates fin-body ratio. Rotation is1103

calculated by pitch change from -250ms to -40 ms. This script contains function:1104

plot_fin_body_coordination(). For reliable sigmoid regression, 6000+ bouts is recom-1105

mended. When input root directory contains multiple experimental repeats, the scripts al-1106

lows sampling of bouts from each repeat by specifying argument sample_bout.1107

8. plot_fin_body_coordination_byAngvelMax.py1108

Plots attack angle as a function of rotation and calculates fin-body ratio. Rotation is calcu-1109

lated by pitch change from -250ms to time of max angular velocity. For reliable sigmoid1110

regression, 6000+ bouts is recommended. When input root directory contains multiple ex-1111

perimental repeats, the scripts allows sampling of bouts from each repeat by specifying ar-1112

gument sample_bout.1113

APPENDIX 5: STANDARD OPERATING PROCEDURE FOR RUNNING EXPERIMENTS AND1114

ANALYZING DATAWITH SAMPL1115

In this appendix, we provide a step-by-step instruction for running experiments and analyzing1116

SAMPL data. Refer to the Key Resources Table for access to SAMPL analysis and visualization1117

scripts.1118

Experimental design1119

SAMPL experiments usually involve comparing behaviors of two or more groups of fish with1120

different mutations, transgenic backgrounds, or manipulation. We suggest first deciding a1121

priori on the total number of bouts required to resolve differences Figure 8 with the desired1122

power. Typically, one SAMPL experimental repeat containing two 24-hour sessions using 31123

boxes with 5-7 larvae per box yields 3000-6000 bouts, which is usually sufficient for param-1124

eter calculation Figure 8. However, multiple factors can affect data size per repeat, such as:1125

manipulations (mutation/drug treatment), the throughput of manipulation, the availability of1126

apparatuses, and the number of larvae with desired background per clutch. We therefore sug-1127

gest running a pilot experiment first to determine the number of bouts that can be expected1128

per box. Once done, we suggest defining an “experiment” with respect to the desired num-1129
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ber of bouts, which will specify the number of boxes and larvae per box required. Outlier boxes1130

with too few or too many bouts (e.g. more/less than 2SD) can then be excluded from further1131

analysis according to pre-determined criteria. Finally, we recommend running the full “exper-1132

iment” multiple times to ensure that the findings are reproducible, and to report the variance1133

across estimated parameters. Certain circumstances may be ill-suited to this approach: for ex-1134

ample, if particular genotypes of larvae are especially rare, such as in the case of doubly biallelic1135

mutants, or genotypes that simply swim drastically less. In such cases one can combine swim1136

bouts across experimental repeats, and report the estimated error in pararmeter estimates us-1137

ing statistical resampling techniques such as the jackknife.1138

Running an experiment1139

One typical SAMPL experimental repeat contains two 24-hour sessions. We suggest running1140

zebrafish larvae at one of 3 time points: 4-6 dpf, 7-9 dpf, or 14-16 dpf. Larvae should be given1141

30minutes of access to food before being placed into chambers. We suggest putting 5-8 lar-1142

vae into one standard chamber and 1-3 larvae in one narrow chamber to maximize data yield.1143

Behavior recording requires having a single fish in the FOV at a time. Appearance of additional1144

larvae will disrupt fish detection. We suggest transferring 25-30/10-15ml E3medium into1145

each standard/narrow chamber to account for evaporation andmaximize likelihood of fish1146

swimming in the FOV. Throughput of the apparatus can be found in Figure 2 (standard cham-1147

ber based on 58 larvae; narrow chamber based on 23 larvae).1148

With SAMPL, one computer can control up to three behavioral apparatus, or “boxes.” Once the1149

fish chamber is put into the box and secured, open the program (Blue, Gold, Red) correspond-1150

ing to the box to run on the computer controlling the boxes. Enter experimental information1151

in the window opened: Genotype (experimental conditions), Cross ID, Fish number, etc. Set the1152

destination folder for data storage. Choose the desired Light-Dark (L/D) cycle from one of the1153

followings: L/D, L/L, or D/D. Adjust daytime light connection/timer accordingly. Use fish size1154

toggle to select thresholds for fish detection: use Small fish for larvae younger than 12 dpf1155

and Big fish for those that are older. To start recording, click Select Background when there’s1156

no fish in the FOV.1157

Larvae older than 5 dpf should be fed every 24 hours with 1-2 ml of diluted cultured rotifers.1158

To feed fish, click Stop program to stop the current session. Feed with rotifers and allow a pause1159

of 30 min before re-starting the experiment.1160

At the end of the experiment, click Stop program and remove fish from the box. Each session1161
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(from Start to Stop program) generates one .dlm data file and a corresponding .ini metadata1162

file.1163

Software requirement for data analysis1164

To analyze behavior data using code provided, one needs Python 3, analysis scripts, and vari-1165

ous Python modules. An integrated development environment (IDE) is recommended to edit,1166

debug, and run the code. If you don’t have a personal preference, we recommend using Visual1167

Studio Code (Microsoft). Analysis and visualization code was developed using Python 3. For the1168

ease of package management, we suggest the use of environment management tools, such1169

as miniconda.1170

The most recent version of the code we use to analyze SAMPL data can be found online at1171

https://. Download the entire directory by pressing the green Code button and downloading1172

the ZIP file (orange box) so that you can make changes as needed for your project. The src1173

folder contains all scripts. The sample figures folder contains examples of plots from the visu-1174

alization functions. Please refer to the README for instructions and user guides.1175

To set up a virtual environment, open a new terminal or use the terminal in your IDE, and type:1176

conda create -n <myenv>1177

where <myenv> is substituted with any desired name for the environment. Next, activate this1178

environment1179

conda activate <myenv>1180

and install packages required for analysis and plotting using1181

conda install <package>1182

Below is a list of required packages134–140 other than those included in Python 3.10.4:1183

- astropy=5.11184

- pandas=1.4.41185

- pytables=3.7.01186

- matplotlib=3.5.21187

- numpy=1.23.31188

- scipy=1.9.11189
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- seaborn=0.12.01190

- tqdm=4.64.11191

- scikit-learn=1.1.11192

For a complete list of packages, refer to the environment.yml file.1193

Bout analysis1194

Analysis and plotting scripts support two types of data structures. The first option is one root1195

directory containing all data files:1196
root

data1.dlm
data1 parameters.ini
data2.dlm
data2 parameters.ini
...

The second is a root directory containing subfolders with the necessary files indicating experi-1197

mental repeats:1198
root

exp repeat 1
data1.dlm
data1 parameters.ini
data2.dlm
data2 parameters.ini
...

exp repeat 2
data1.dlm
data1 parameters.ini
data2.dlm
data2 parameters.ini
...

Run the analysis script .../src/SAMPL_analysis/SAMPL_analysis.py and input data directory (di-1199

rectory of the root folder) and the frame rate as instructed. This function aligns bouts in .dlm1200

files within a directory so that peak speed is at time 0ms, with 500ms of activity before and1201

300ms of activity after. It is important to note that all files in the same subfolders under the in-1202

put directory will be combined to extract bout parameters. The analysis script will take the sub-1203

mitted directory and analyze all data files within it, including all subfolders in its search, regard-1204

less of depth. Subfolders can be used to separate analyses, experimental conditions, or repeats.1205

Data with different frame rates should be analyzed separately to ensure proper parameter cal-1206

culation, as only one can be used at a time.1207

The program will skip the current .dlm file if it fails to detect a bout in it. However, errors are ex-1208

pected if files contain too little recorded data to extract a bout. Therefore, we suggest removing1209
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any .dlm files that are smaller than 1 MB.1210

When analysis is done, it will save three data files (.h5), four catalog files (.csv), and twometa-1211

data files (.csv) under the same directory as the data is in. Below is an example of an analyzed1212

directory:1213
root

data1.dlm
data1 parameters.ini
data2.dlm
data2 parameters.ini
all_data.h5
bout_data.h5
IEI_data.h5
analysis info.csv
root metadata.csv
catalog all_data.csv
catalog bout_data.csv
catalog IEI_data.csv
data_file_explained.csv

Visualizing results1214

After analysis, the scripts under the visualization folder are used to extract swim parameters1215

and kinetics, and visualize them. For more detailes, refer to Appendix 4 and the README doc-1216

ument. Each function can be run individually and will ask for the directory path to your data1217

(see the Bout analysis section above). Alternatively, use plot_all.py to plot all figures.1218

If the data size from a single repeat is not adequate for parameter calculation, we suggest com-1219

bining data frommultiple repeats and use sampling techniques such as Jackknifing for error1220

estimation.1221
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Table 1: List of parts, prices per 12/2022

Computer & software licenses ($2,300; one computer runs
three apparatus)

RAM (64GB) Amazon B0884TNHNC
Case (small form factor) Amazon B08BF8YMXC
Motherboard (Mini-ITX, AM4 CPU slot, on-board NIC) Amazon B089D34SZT
Solid state hard drive (1TB) Amazon B08V83JZH4
CPU w/embedded GPU (AMD Ryzen 7) Amazon B091J3NYVF
Quiet CPU fan (Noctua) Amazon B075SG1T3X
Power supply (450W) Amazon B07DTP6SLJ
USB card Amazon B08B5BNZQ6
Operating system (Windows 10 Professional) Amazon B00ZSHDJ4O
Vision Development License (Image Processing) National Instuments 778044-35
Vision Acquisition License (Image Acquisition) National Instruments 778413-35
Software Runtime Engine NI LabView Runtime (free download)

Shelving unit for 12 apparatus, ($2,100)

KVM switch to share keyboard, mouse andmonitor w/cables Amazon B001V9LQ52
Monitor 1920x1080 Amazon B07F8XZN69
Keyboard Amazon B00CYX26BC
Mouse Amazon B087Z733CM
Mobile wire shelving unit w/4 shelves 36"x81.5"x24" McMaster Carr 2563T336
Extra shelf (handy to hold UPS and network gear up top) McMaster Carr 5101T497
Uninterruptible power supply Amazon B078D6KZ98
Spare battery for UPS (handy to have around) Amazon B010XF8SCI
Timer (for light/dark) Need 4, Amazon B005MMSTNG
Power strip (6’, higher shelves, 2pk) Amazon B082DVCCDR
Power strip (12’, lower shelves, 2pk) Amazon B08KZGT258
Wire ties (cable management) Amazon B096ZHHRC3
Network cables CAT6a 10G 7ft (5pk & 10pk) Amazon B01BGV2T5U
Network switch (Netgear GS110MX) Amazon B076642YPN

Networked data storage ($3,800)

500GB solid state drive for data server caching Need 2 Amazon B07M7Q21N7
Data server Synology DS1621xs+ Amazon B08HYRYLPS
16TB Hard drives for data server. Order 7 (6+1spare) Need 7 Amazon B07SPFPKF4
10GB NIC for data server Amazon B07G9N9KJT

Enclosure (BaseLabTools/Amazon/MetalsCut4U, $375 per ap-
paratus)

Breadboard (see image w/measurements) SABCUST
Rails for enclosure (see measurements) X2020-CUST
Hardboard for enclosure walls (see measurements) X2020-HB-CUST
Right angle joiner for LED strip Need 2 X2020-AB1
Joiner cube for enclosure X2020-C3W
Spring-loaded t-nuts (10pk) X2020-DTSB-M5-P10
M5-0.8 x 8mm Screws Amazon B07H18YDYB
Top: G90 galvanized steel (7.25in x 20.25in x 3in, 20 Ga.) Tray, MetalsCut4U

ThorLabs parts ($550 per apparatus)

Holds condenser SM2L05
Condenser/diffuser for IR light ACL5040U-DG6-B
Tube to distance condenser from LED SM2L20
Adapts IR light holder to post SM2RC
Adapts SM2 tube to SM1 tube SM1A2
Tube to hold heatsink SM1M10
Adapts heatsink / LED to SM1 tube SM1A6FW
Adapts camera to SM1 tube SM1A10
Adapts SM1 tube to imaging lens SM1A9
Filter to pass only IR light FGL830
Adapts camera/lens to post SM1RC
Holds filter / allows camera/lens mounting SM1L03
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Holds imaging chamber Need 2 FP01
Post-holder for chamber holder / IR assembly Need 3 PH1
Posts for chamber holder / IR assembly Need 3 TR1
Post-holder for camera/lens PH1.5
Post for camera/lens TR1.5
1/4-20" screws to attach post-holder to breadboard SH25S038
1/4-20" low-profile screws for enclosure SH25LP38

IR LED (assembly required, $100 per apparatus)

12V 2A power supply for IR Amazon B00Q2E5IXW
XT60H connector for IR lights Amazon B09ST768W2
940nm 2.6V IR LED Opulent LST1-01F09-IR04-00 Mouser 416-LST101F09IR0400
Thermal epoxy (attach heatsink to ThorLabs SM1A6FW Amazon B08Z73HH23
Ohmite heat sink Mouser SV-LED-325E
HexaTherm tape (attach LED to heatsink) LEDSupply A001
BuckBlock 1A LEDSupply 0A009-D-V-1000

Daylight LED, ($50 for three apparatus)

12V 1A power supply for daytime lights (5pk) Amazon B00FEOB4EI
SMD5050 6500K white LED 12V light strip 60LED/meter Amazon B075R4X1XL
DC power pigtail (to connect LED strip to power) Amazon B0768V9V5Q
T tap connectors Amazon B085XGYW1B

Imaging, ($1,200-$1,800 per apparatus)

Camera (IMX174 chip, USB 3 interface) e.g. Basler acA1920-155um
Lens (50mm, VIS-NIR coating) Edmund Optics 67-717
USB cable e.g. Edmund Optics 86-770

Chambers, laser cut by Pololu ($200)

Chamber sides 12mm (10.2 - 12.75mm) #2025 black cast
acrylic, opaque

Chamber faces 1.5mm (0.8 - 2.1mm) clear cast acrylic
Weld-On 4 acrylic cement & applicator Amazon B00TCUJ7A8

Table 2: Recording parameters for different organisms

Zebrafish ≤ 12 dpf Zebrafish > 12 dpf Drosophila C. elegans

Body low 14 14 100 20
Body high 255 255 255 255
Head low 45 45 30 21
Head high 255 255 255 255
Initial cut low 25 25 45 3
Initial cut high 120 120 145 30
Size low 180 250 80 30
Size high 260 450 180 80
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Table 3: Measured parameters of posture and locomotion across development

Parameter Unit 4 dpf 7 dpf 14 dpf Format Definition

Peak speed mm/s 10.42
(3.85)

13.02
(4.99)

11.41
(4.20)

Mean of
bouts (SD) Peak speed of swim bouts

Initial pitch deg 5.21
(31.49)

0.77
(21.81)

0.54
(18.64)

Median of
bouts (IQR) Pitch angle at 250ms before the peak

speed

Pitch at peak speed deg 9.74
(29.16)

6.84
(20.35)

4.36
(19.73)

Median of
bouts (IQR) Pitch angle at time of the peak speed

Post-bout pitch deg 10.57
(23.86)

10.21
(16.70)

6.88
(16.05)

Median of
bouts (IQR) Pitch angle at 100ms after the peak speed

End pitch deg 10.85
(23.59)

10.78
(16.79)

7.56
(15.55)

Median of
bouts (IQR) Pitch angle at 200ms after the peak speed

Bout trajectory deg 12.29
(27.52)

8.92
(20.19)

7.85
(22.89)

Mean of
bouts (SD) Peak trajectory, tangential angle of the tra-

jectory at the time of the peak speed

Bout displacement mm 1.12
(0.63)

1.36
(0.64)

1.35
(0.70)

Mean of
bouts (SD) Average displacement of fish during a bout

when speed is greater than 5mm/s

Inter-bout interval s 1.78
(2.61)

1.89
(2.75)

2.13
(2.80)

Median of
bouts (IQR) IBI, duration between two adjacent swim

bouts

Bout frequency Hz 0.56
(0.70)

0.53
(0.69)

0.47
(0.59)

Median of
bouts (IQR) Frequency of swim bouts determined by

the reciprocal of inter-bout interval

IBI pitch deg 8.75
(17.73)

8.06
(13.07)

6.08
(11.24)

Mean of
bouts (SD) Mean pitch angle during inter-bout interval

IBI pitch standard
deviation

deg 17.48
(1.60)

12.66
(1.80)

11.23
(1.28)

Mean of
repeats (SD) Standard deviation of IBI pitch, a measure-

ment of stability

Sensitivity mHz/deg2 0.61
(0.18)

1.06
(0.23)

1.31
(0.34)

Mean of
repeats (SD) Sensitivity to pitch changes. Determined by

the coefficient of the quadratic term of the
parabola model for bout timing

Baseline bout rate Hz 0.51
(0.06)

0.51
(0.08)

0.47
(0.11)

Mean of
repeats (SD) Y intersect of the parabola model for bout

timing

Trajectory deviation deg 5.46
(14.53)

4.13
(11.57)

4.35
(16.39)

Mean of
bouts (SD) Deviation of bout trajectory from initial

pitch

Steering rotation deg 2.30
(7.51)

3.00
(7.33)

1.94
(6.31)

Mean of
bouts (SD) Change of pitch angle from initial (250ms

before) to the time of the peak speed

Steering gain - 0.64
(0.04)

0.67
(0.04)

0.51
(0.05)

Mean of
repeats (SD) Slope of best fitted line of posture vs trajec-

tory at the time of the peak speed

Steering-related
rotation

deg 1.72
(6.15)

1.74
(5.95)

0.99
(5.42)

Mean of
bouts (SD) Change of pitch angle from initial to the

time of max angular velocity

Attack angle deg 4.10
(16.16)

0.77
(9.68)

0.91
(5.25)

Median of
bouts (IQR) Deviation of bout trajectory from pitch at

time of the peak speed

Peak angular veloc-
ity time

ms 50.60
(7.62)

39.16
(4.96)

50.00
(5.12)

Mean of
repeats (SD) Time of peak angular velocity in ms before

time of the peak speed

Fin-body ratio - 3.41
(0.86)

2.27
(0.76)

3.55
(1.98)

Mean of
repeats (SD) Maximal slope of best fitted sigmoid of at-

tack angle vs early rotation

Sigmoid height deg 16.47
(2.31)

10.28
(1.78)

25.15
(4.68)

Mean of
repeats (SD) Height of best fitted sigmoid of attack an-

gle vs early rotation

Righting rotation deg 0.92
(3.49)

2.64
(3.55)

1.90
(3.01)

Mean of
bouts (SD) Change of pitch angle from time of the

peak speed to post bout (100ms after
peak speed)

Righting gain - 0.15
(0.02)

0.18
(0.02)

0.18
(0.02)

Mean of
repeats (SD) Numeric inversion of the slope of best fitted

line of righting rotation vs initial pitch

Set point deg 13.00
(2.10)

19.47
(2.28)

13.60
(1.78)

Mean of
repeats (SD) X intersect of best fitted line of righting

rotation vs initial pitch
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Figure 1: Schematic illustrations of SAMPL hardware design.
(A) Overview of the apparatus without aluminum rails, side panels, and the top panel. Equipment modules mounted
on the breadboard are, from left to right, IR camera and lens, chamber holders, and IR illumination module.
(B) Exploded-view drawing of the IR illumination module.
(C) Exploded-view drawing of the camera and lens module.
(D) Exploded-view drawing of a chamber holder
(E) Design of fish chambers. From left to right: 3D illustration of a standard chamber (upper) and a narrow chamber
(lower); front view of the u-shaped acrylic middle piece for the chambers; side view of the chamber. Pink squares
illustrate the recording field of view. i = 20 mm; s = 1.5 mm.
(F) Dimensions of the apparatus frame and breadboard.
(G) Design and dimensions of the apparatus lid.
(H) Schematic illustration of a set of three SAMPL apparatus and a small-form-factor computer case on a 24"x36"
shelf.
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Figure 2: High-definition recording and measurement of animal locomotion using SAMPL.
(A) Example of a recorded frame with a Drosophila melanogaster (white box) in the SAMPL apparatus. Dashed line
indicates heading of the fly relative to vertical up (north). Imaging was performed at 166 Hz with 1200×1216 pixels.
Same as follows.
(B) Example of an epoch of a walking fly. Walking speed and heading are plotted as a function of time. Gray and cyan
lines marks resting and grooming period, respectively (Movie 2).
(C) Example of a recorded frame with a Caenorhabditis elegans (white box) in the SAMPL apparatus. Dashed line
indicates approximated angle of the worm relative to vertical.
(D) Example of an epoch of a swimming worm. Z position and approximated angle are plotted as a function of time.
Cyan vertical lines label the time when the plane of movement is perpendicular to the imaging plane (Movie 2).
(E) Example of a recorded frame with a 7 dpf Danio rerio larva (white box) in the SAMPL apparatus. Pitch angle is
determined as the angle of the trunk of the fish (dashed line) relative to horizontal. Positive pitch indicates nose-up
posture whereas negative pitch represents nose-down posture.
(F) Example of an epoch containing multiple swim bouts (arrows). Swim speed and pitch angles are plotted as a
function of time. Dashed line marks the 5 mm/s threshold for bout detection. Cyan vertical lines label time of the
peak speed for each bout (Movie 3).
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Figure 3: Modeling timing of swim bouts reveals larval sensitivity to pitch changes.
(A) An inter-bout interval (IBI, brown area) is defined as the duration when swim speed is below the 5mm/s
homeostasis threshold (dashed line) between two consecutive bouts with a 100ms buffer window (grey area)
deducted from each end.
(B) Distribution of IBI duration (left) and mean pitch angle during IBI (right).
(C) Bivariate histogram of bout frequency and IBI pitch. Bout frequency is the reciprocal of IBI duration.
(D) Bout frequency plotted as a function of IBI pitch andmodeled with a parabola (black line, R2 = 0.14). Brown dots
indicate binned average of IBI pitch and bout frequencies calculated by sorting IBI pitch into 3°-wide bins. For all
panels, n = 109593 IBIs from 537 fish over 27 repeats.
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Figure 4: Larval vertical navigation is led by steering toward trajectory
(A) Schematic illustration of two climbing mechanics: (1) a larva may generate a thrust (arrow) toward the pointing
direction (dashed line) at the initial of a bout (left); (2) a larva can steer (green arrow) toward an eccentric angle before
the thrust (right). The offset between trust angle and the direction the larva point toward at bout initial is termed
trajectory deviation (purple).
(B) Distribution of trajectory deviation.
(C) Changes of pitch angles relative to initial pitch plotted as a function of time (dark lines) overlaid with distribution
of pitch change at time of peak speed (green).
(D) Trajectory deviation (purple) plotted as a function of posture changes from bout initial to time of the peak speed
(green). Black line indicates binned average values. Positive correlation between trajectory deviation and posture
change demonstrates that larvae steer toward the trajectory of the bout.
(E) To measure the gain of steering compared to trajectory deviation, pitch angels at time of the peak speed are
plotted as a function of trajectory. Steering gain is determined as the slope of the fitted line (Pearson’s r = 0.96).
(F) Schematic illustrations demonstrating how steering gain associates steering (green arrows) with trajectory
deviation (purple). For all panels, n = 121979 bouts from 537 fish over 27 repeats.
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Figure 5: Steering requires coordination of fin and body.
(A) Swim speed (top) and angular velocity (bottom) plotted as a function of time. Angular velocity peaks (asterisk and
dotted area, mean±SD) during steering phase (green) before time of the peak speed. Angular velocity is adjusted by
flipping signs of bouts with nose-down rotations during steering (mean±SD across experimental repeats). Shaded
region in the upper panel indicates mean±SD across all quantified swim bouts.
(B) Histogram of time of peak angular velocity, binned by frame, across experimental repeats with mean±SD plotted
below.
(C) Illustration of components that contribute to trajectory deviation. Larvae rotate their bodies starting from bout
initial (blue) and reach peak angular velocity (asterisk) before peak speed. Any rotation generated during decrease of
angular velocity is considered residual (grey). At time of peak speed, there is an offset between the pitch angle
(dashed line) and bout trajectory (arrow) which is termed attack angle (orange). Body rotations, residual, and attack
angle add up to trajectory deviation.
(D) Distribution of attack angles in control fish (left) and fish after fin amputation (right). Dashed lines indicate 0
attack angle.
(E) Attack angles plotted as a function of body rotations (left, blue) or residual rotations (right). Rotations and residuals
are sorted into 0.5°-wide bins for calculation of binned average attack angles. Swim bouts with negative attack
angles while having steering rotations greater the 50th percentile (hollow squares) were excluded for binned-average
calculation.
(F) Attack angles plotted as a function of body rotations (blue line) and fitted with a logistic model (black line, R2 =
0.31). Fin-body ratio is determined by the slope of the maximal slope of the fitted sigmoid (magenta). Rotations are
sorted into 0.8°-wide bins for calculation of binned average rotations and attack angles (blue line). Swim bouts with
negative attack angles while having steering rotations greater the 50th percentile were excluded for sigmoid
modeling.
(G) Schematic illustration of how fin-body ratio reflect climbing mechanics. For all panels, n = 121979 bouts from
537 fish over 27 repeats.
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Figure 6: Righting rotation restores posture after peak speed.
(A) Pitch angles plotted as a function of time (dark lines) overlaid with distribution of pitch angles before (left) and
after bouts (right). Red area indicates duration after peak speed when pitch distribution narrowed.
(B) Illustration of righting behavior. Larvae rotate (red arrows) toward more neutral posture after peak speed.
(C) Distribution of rotation during righting (red in A).
(D) Righting rotation plotted as a function of initial pitch angles.
(E) Righting gain is determined by the absolute value of the slope (red dotted line) of best fitted line (black line). The x
intersect of the fitted line determines the set point (blue cross) indicating posture at which results in no righting
rotation.
(F) Schematic illustration of righting rotation (red arrows), righting gain, and set point (blue dashed line). For all
panels, n = 121979 bouts from 537 fish over 27 repeats.
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Figure 7: Variations of kinematic parameters among three different zebrafish strains.
(A) Average pitch angles during IBI.
(B) IBI duration (AB vs SAT p-adj = 0.0128; AB vs WT p-adj = 0.0034).
(C) Standard deviation of IBI pitch (AB vs WT p-adj = 0.0001; SAT vs WT p-adj = 0.0479).
(D) Bout frequency plotted as a function of IBI pitch modeled with parabolas.
(E) Sensitivity to pitch changes (AB vs WT p-adj = 0.0319).
(F) Baseline bout rate.
(G) Attack angles plotted as a function of body rotations modeled with sigmoids.
(H) Fin-body ratio (AB vs WT p-adj = 0.0066).
(I) Height of the sigmoid in G.
(J) Steering gain of different strains.
(K) Righting gain of different strains (AT vs SAT p-adj = 0.0133).
(L) Set point (SAT vs WT p-adj = 0.0094). For each strain of AB/SAT/WT, N = 10/7/10 repeats, n =
62457/27990/31532 bouts and 55683/25964/27946 IBIs from 225/117/195 fish.
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Figure 8: Statistics of regression analysis for swim kinematics.
(A) Confidence interval (CI) width of kinematic parameters plotted as a function of sample size at 0.95 significance
level (mean ± SD as ribbon). Errors were estimated by resampling with replacement from the complete dataset.
(B) Effect size plotted as a function of sample size at various percentage differences. Refer to Methods for details of
computation.
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Figure S1: Custom breadboard for SAMPL base
(A) Custom aluminum breadboard, not anodized, 0.5" thick. All holes (8 total) counterbored for 1/4"-20 cap screw.
Grooves to be cut on the side of the breadboard OPPOSITE to the counterbore.
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