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Abstract 22 

The assessment of genomic conservation between human and pig at the functional level can 23 

help understand and improve the potential of pig as a human biomedical model. To address this, 24 

we developed a Deep learning-based approach to learn the Genomic Conservation at the 25 

Functional level (DeepGCF) between species by integrating 386 and 374 epigenome and 26 

transcriptome profiles from human and pig, respectively. DeepGCF demonstrated a better 27 

prediction performance compared to the previous functional conservation prediction method. In 28 

addition, we showed that the resulting DeepGCF score captures the functional conservation by 29 

examining DeepGCF on chromatin states, sequence ontologies, and regulatory variants. Regions 30 

with higher DeepGCF score play a more important role in regulatory activities and show 31 

heritability enrichment in human complex traits and diseases. Our DeepGCF approach shows a 32 

promising application on the comparison of cross-species functional conservation, and the model 33 

framework can be easily adapted to other species. By expanding the model to integrate the 34 

functional profiles of multiple species, including human, mouse, pig, cattle, and other livestock 35 

animals in the future, the functional conservation information will provide additional insight into 36 

the genetic and evolutionary mechanisms behind complex traits and diseases.  37 

  38 
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Main text 39 

Introduction 40 

    Comparative genome not only reveals evolutionary changes at the DNA sequence level1, but 41 

also helps with the translation of genetic and biological findings across species2. Compared to 42 

lab organisms like mice, pig is more similar to human in anatomy, physiology, and genome3, 43 

thus is widely used as a biomedical model for human medicine and genetic diseases, such as 44 

drug tests4, xenotransplantation5, Alzheimer’s disease6, breast cancer7, and diabetes8. To fully 45 

recognize the substantial potential of pig as a human biomedical model, it is essential to conduct 46 

an extensive comparison of pig and human physiology at the molecular level for assessing to 47 

what degree that the genetic and biological findings in pig can be extrapolated to human. Several 48 

methods have been proposed to infer the conservation at the DNA sequence level, such as 49 

Genomic Evolutionary Rate Profiling (GERP)9 and Phylogenetic P-values (PhyloP)10. However, 50 

the conservation at DNA sequence level is not equivalent to the conservation at functional 51 

level11–13.  52 

     The ongoing global efforts on functional annotation of genomes in both humans and 53 

livestock, such as the Encyclopedia of DNA Elements14, Roadmap Epigenomics projects15, the 54 

Functional Annotation of Animal Genomes (FAANG)16, and Farm animal Genotype-Tissue 55 

Expression (FarmGTEx) projects17, provide an unprecedented opportunity to quantify the 56 

genome conservation across species at the functional level. Previous studies often rely on a 57 

single functional profile in one tissue/cell type, such as gene expression18 or epigenome19,20, to 58 

infer the functional conservation of orthologous regions between human and pig. However, 59 

integrative analysis of multi-omics is essential for unravelling how biological information 60 

encoded in the genome is conserved or diverged across species, as the functional consequence of 61 
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genomic variants is often modulated at multiple levels of gene regulation across tissues/cells. 62 

Artificial neural networks have been applied in the prediction and integration of multi-omics 63 

data, such as histone marks, transcription factors, and gene expression, to investigate 64 

transcriptional and biochemical impact of DNA sequences and their conservation across 65 

species21,22. For instance, Kwon and Ernst22 developed a neural network model, LECIF, to study 66 

human-mouse functional conservation based on multi-omics data from Roadmap and ENCODE 67 

databases.  68 

In this study, to systematically evaluate the functional conservation between human and pig, 69 

we developed a Deep learning-based approach to learn the Genomic Conservation at the 70 

Functional level (DeepGCF) between species. Unlike LECIF using functional genomics data as 71 

input, DeepGCF uses both DNA sequences and functional genomics data as input. It thus enables 72 

us to predict the impact of sequence mutations on the functional conservation between species. 73 

By integrating 386 and 374 epigenome and transcriptome profiles, representing 28 and 21 tissues 74 

from human and pig, respectively, DeepGCF captures the conservation of epigenetic features and 75 

genes across tissues between human and pig. By further examining expression/splicing 76 

quantitative trait loci (e/sQTL) from 54 and 35 tissues in human GTEx23 and PigGTEx24, 77 

respectively, and genome-wide association studies (GWAS) of 80 complex traits/diseases in 78 

human, DeepGCF provides novel insights into the evolutionary mechanisms underlying both 79 

molecular phenotype and complex trait variation. The DeepGCF model can be easily expanded 80 

to multiple species for extensively understanding the genome evolution at functional genomics 81 

level when large-scale functional annotation data is available for many other species in the near 82 

feature. 83 

 84 
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Results 85 

Overview of the DeepGCF model  86 

In general, the training of DeepGCF model consists of two steps (Fig. 1). The first step is to 87 

transform the binary functional features to continuous values by training a deep convolutional 88 

network implemented in DeepSEA25. Binary functional feature is a common data type in the 89 

functional genomics filed, which represents whether a genomic base overlapped with functional 90 

annotations such as peaks or chromatin states derived from ATAC-Seq and ChIP-Seq. By taking 91 

both DNA sequences and binary functional features as inputs, DeepSEA predicts the 92 

probabilities of each functional feature at a single-nucleotide resolution. In this study, we 93 

collected 309 and 294 genome-wide binary functional annotations from human and pig, 94 

respectively (Supplementary data 1–4). These represented the chromatin accessibility measured 95 

by Assay for Transposase-Accessible Chromatin (ATAC-seq), histone modifications measured 96 

by Chromatin Immunoprecipitation sequencing (ChIP-seq) and chromatin states from 26 and 21 97 

tissues in human and pig, respectively. We trained the DeepSEA models and predicted the 98 

functional effect of each nucleotide in human and pig separately, which were subsequently used 99 

as inputs in the DeepGCF for predicting the functional conservation score between these two 100 

species. The performance of DeepSEA was evaluated using an independent validation set and 101 

showed a strong predictive power in both species (Supplementary Fig. 1).  102 

The second step of DeepGCF is to predict the functional conservation score of orthologous 103 

regions between human and pig using a supervised deep learning approach, similar to LECIF22. 104 

We divided the whole-genome alignment between human and pig into non-overlapping 50-bp 105 

regions within each alignment block, resulting in 38,961,848 paired alignments (i.e., orthologous 106 

regions). We then selected the first base to represent the functional annotation of the 50-bp 107 
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region, because bases within such a narrow region are likely to have similar functions and the 108 

computational burden is greatly lightened by doing so22. Apart from the predicted functional 109 

effects from DeapSEA, we also included the gene expression values from 77 and 80 RNA-seq 110 

datasets as functional annotations, representing 11 and 19 tissues in human and pig, respectively 111 

(Supplementary data 5 and 6). To train the DeepSEA model, we randomly shifted the human-112 

pig orthologous regions to obtain the same number of non-orthologous pairs. Functional 113 

conservation is lack of ground truth, thus as an approximation, we presume that the orthologous 114 

regions (coded as 1) are more likely to be functionally conserved than non-orthologous regions 115 

(coded as 0). We then trained a pseudo-Siamese neural network model26 using both functional 116 

effects predicted from DeepSEA and gene expression as inputs (Fig. 1a). We weighted non-117 

orthologous regions 50 times more than orthologous ones when training to highlight regions with 118 

strong evidence of functional conservation22. The output, DeepGCF score, is a value between 0 119 

and 1 quantifying the functional conservation of the paired human-pig region. Furthermore, since 120 

the DeepGCF predicts the functional conservation based on the DNA sequence, it allows us to 121 

conduct an in silico mutagenesis analysis to assess the impact of orthologous variants on the 122 

functional conservation between species through investigating the changes of DeepGCF score 123 

caused by a mutation (Fig. 1b).  124 

 125 

The evaluation of DeepGCF model 126 

The performance of DeepGCF was evaluated by predicting whether the paired human-pig 127 

regions of an independent testing set are orthologous or not. Compared to LECIF, which had the 128 

areas under receiver operating characteristic curve (AUROC) and precision-recall curve 129 

(AUPRC) of 0.80 and 0.79, respectively, DeepGCF showed a better predictive ability with 130 
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AUROC and AUPRC of 0.89 and 0.87, respectively (Figs. 2a, b). Of note, we normalized the 131 

gene expression values with a natural logarithm transformation, which showed a better predictive 132 

ability than that without a transformation (Supplementary Fig. 2). Among all the 38,961,848 133 

orthologous regions between human and pig, only a small percentage (1.2%) exhibited a 134 

DeepGCF score greater than 0.8, while more than half with a score less than 0.1 (Fig. 2c), 135 

consistent with previous findings between human and mice22. This result suggests that most of 136 

orthologous regions were not functionally conserved between species.  137 

To provide suggestions for researchers who are interested in running the DeepGCF model in 138 

other species with limited functional annotation data available, we explored different features 139 

that may influence the performance of DeepGCF, including sample size and diversity of 140 

functional annotations regarding array and tissue/cell type. When training the model, we 141 

downsampled both human and pig functional profiles. We found that using ~50% (Human: 192; 142 

Pig: 187) and ~10% (Human: 52; Pig: 47) of the functional profiles resulted in similar AUROC 143 

(50%: 0.88; 10%: 0.85) and AUPRC (50%: 0.87; 10%: 0.83) values compared to using all the 144 

profiles, but using only ~1% (Human: 4; Pig: 4) of the profiles showed substantially lower 145 

AUROC (0.69) and AUPRC (0.68) values (Fig. 2d). When leaving one type of functional 146 

profiles out, the predictive ability of DeepGCF did not change too much (Fig. 2e).  147 

 148 

Relationship between DNA sequence conservation and functional conservation  149 

To fully explore whether DNA sequence conservation indicates functional conservation, we 150 

first examined PhyloP scores, which are commonly used to measure the DNA sequence 151 

conservation across species10. We observed a U-shaped relationship between PhyloP and 152 

DeepGCF scores (Fig. 3a), demonstrating that both fast-evolving and slow-evolving sequences 153 
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exhibited a higher functional conservation between species, compared to evolutionary neutral or 154 

near-neutral sequences. This agrees with previous findings on comparing individual epigenetic 155 

marks and DNA sequence conservation19,27. Furthermore, we defined three types of orthologous 156 

regions according to their PhyloP and DeepGCF scores to represent the two tails and the bottom 157 

of the U curve: 1) regions with both high DeepGCF (> 95th percentile) and PhyloP (> 95th 158 

percentile): high D & high P (n = 260,281), 2) those with high DeepGCF (> 95th percentile) but 159 

low PhyloP (< 5th percentile): high D & low P (n = 152,557), and 3) those with low DeepGCF (< 160 

5th) and medium PhyloP (between 47.5th and 52.5th): low D & med P (n = 95,231). By examining 161 

sequence classes, which are predicted regulatory activities of DNA sequences in human genome 162 

by a deep learning model, Sei, trained on a compendium of 21,907 epigenome profiles28, and 163 

Gene Ontology (GO) terms, we found that, compared to the whole genome, high D & high P 164 

regions were more enriched in promoter, CTCF, and transcription but depleted in enhancer 165 

(Binomial test P < 0.0001; Fig. 3b). Compared to other regions, high D & high P regions showed 166 

a higher enrichment in transcription (Binomial test P < 0.0001; Fig. 3b), and were significantly 167 

associated with several RNA-related regulation processes (Supplementary Data 7). This 168 

indicates the similarities in transcriptional networks between pig and human18,29. High D & low 169 

P regions were significantly enriched in Polycomb (Binomial test P < 0.0001; Fig. 3b), in 170 

consistency with the fact that some core subunits of Polycomb protein complexes with similar 171 

biological functions have shown a weak evolutionary conservation on DNA sequence across 172 

species30. The low D & med P regions had similar sequence class compositions as the whole 173 

genome background except promoter, which was enriched but to a less extent than high D & 174 

high P and high D & low P (Binomial test P < 0.0001; Fig. 3b), and were enriched in fewer GO 175 

terms than regions with high DeepGCF (Supplementary Data 7–9). In addition, we examined 176 
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six different sequence ontologies and found that 5’ UTR is the most functionally conserved 177 

element, followed by start codon, 3’ UTR, stop codon, exon, and finally intron. This is consistent 178 

between both human and pig (Fig. 3c).  179 

To investigate the impact of orthologous variants on the functional conservation between 180 

species, we examined 35,575,835 human SNPs that are located in orthologous regions between 181 

human and pig, which were obtained from the 1,000 Genome Project31. We used the DeepGCF 182 

model trained based on only predicted probabilities of binary features from DeepSEA (i.e., 183 

leaving RNA-seq out), as the DeepSEA model does not predict for continuous functional 184 

features. The new score predicted from DeepGCF without RNA-seq data had a relatively well 185 

agreement with the original DeepGCF score with a Pearson’s correlation coefficient (PCC) of 186 

0.74 (Supplementary Fig. 3). To measure the effect of each human SNP on functional 187 

conservation, we recomputed the probabilities of binary features for the corresponding 188 

orthologous human region due to the SNP mutation and kept the pig probabilities the same, and 189 

used the new probabilities to calculate the updated DeepGCF score. The effect on functional 190 

conservation is measured by ΔDeepGCF = DeepGCF after SNP mutation – original DeepGCF. By 191 

classifying all the orthologous variants into eight categories28, we found that most of the variants 192 

had a limited effect on the functional conservation (Fig. 3d). We further grouped them into 40 193 

sequence classes28, and in general, we found that variants in functional features with larger 194 

DeepGCF scores showed the stronger effects on the functional conservation between species 195 

(Fig. 3e). Promoter and CTCF were more sensitive to variants than other sequence classes. Of 196 

note, the average DeepGCF score of CTCF is lower than that of promoter, but it is much more 197 

sensitive to genetic mutations regarding the functional conservation, indicating that the genetic 198 

disruption of CTCF binding sites (chromatin conformation) may cause strong impacts on 199 
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functional genome evolution between species by altering the genome topology and consequently 200 

the gene expression32,33. 201 

 202 

DeepGCF captures the evolutionary characteristics of regulatory elements 203 

To investigate the functional conservation of distinct regulatory elements between pig and 204 

human, we first examined the DeepGCF score of 15 chromatin states predicted from 14 pig 205 

tissues and 12 human tissues using ChromHMM19. We found that strongly active promoters 206 

showed the highest DeepGCF scores (i.e., the strongest functional conservation), followed by 207 

poised transcription start site (TSS), chromatin states proximal to TSS, enhancers, and finally 208 

repressed Polycomb (Fig. 4a). This was consistent between human and pig, which agrees with 209 

the conservation properties of regulatory elements reported in the previous studies19,34. As 210 

chromatin states that play important roles in determining the cellular functions may vary among 211 

different tissues, we identified strongly active promoters and enhancers that were specific in each 212 

of 12 human tissues and 14 pig tissues. Compared to promoters and enhancers shared across all 213 

the tissues, tissue-specific ones showed significantly lower DeepGCF scores in both species 214 

(Mann–Whitney U test P < 2.2e-16), indicative of their faster evolutionary rate (Fig. 4b). Among 215 

eight common tissues between human and pig, we found that adipose had the strongest 216 

functionally conserved promoters in both human and pig, followed by spleen, lung, cortex, liver, 217 

and finally stomach (Supplementary Fig. 4a). This result suggests pigs could be a good model 218 

animal for studying human obesity and metabolic traits19. However, the tissue-conservation 219 

patterns of enhancers were different from those of promoters and were not consistent between 220 

species (Supplementary Fig. 4b).  221 
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We further investigated the DeepGCF score on human promoters and enhancers annotated by 222 

Sei28. We linked a promoter to its potential target gene and then ranked genes with the DeepGCF 223 

scores of their promoters (from largest to smallest). We found that top 5% of genes were 224 

significantly enriched in basic biological processes, such as anatomical structure development 225 

and organ morphogenesis, whereas bottom 5% of genes were significantly enriched in 226 

biosynthetic and metabolic process (Supplementary data 10 and 11). In addition, we ranked 227 

enhancers according to their own DeepGCF scores and investigated the function of top 5% and 228 

bottom 5% enhancers. Unlike promoters, top 5% of enhancers exhibited the most significant 229 

enrichment in metabolic processes, while bottom 5% of enhancers were significantly enriched in 230 

organ growth and development (Supplementary data 12 and 13). In general, we found that 231 

promoters and enhancers with a higher DeepGCF score were enriched in much more biological 232 

processes compared to those with a lower DeepGCF score (Fig. 4c, d), which indicates that 233 

functionally conserved regions between species tend to be the hotspot of regulatory activities. 234 

 235 

DeepGCF provide insight into the functional conservation of regulatory variants 236 

To explore the functional conservation of regulatory variants, we systematically examined 237 

expression QTLs (eQTLs) and splicing QTLs (sQTLs) falling in the orthologous regions in 54 238 

human tissues and 35 pig tissues, respectively. In general, DeepGCF scores of eQTLs and sQTLs 239 

were significantly (Mann–Whitney U test P < 2.2e-16) higher than the genome background 240 

across all the tissues in both human and pig (Fig. 5a; Supplementary Figs. 5 and 6), which 241 

suggests that regulatory variants are functionally conserved between species35,36. Of note, sQTLs 242 

showed a higher DeepGCF score than eQTLs in both species (Mann–Whitney U test P < 1e-8), 243 

probably due to their larger impacts on the transcriptome function (underlying a stronger 244 
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purifying selection). This is consistent with previous findings that sQTLs were more likely to be 245 

enriched in 5’UTR than eQTLs (GTEx, 2020), and 5’ UTR is the most functionally conserved 246 

genomic features (Fig. 2c). We further observed that eGenes associated with eQTLs having a 247 

larger absolute effect on the gene expression had a lower DeepGCF score in both species (Fig. 248 

5b), which suggests that orthologous regions with smaller regulatory effects are more likely to be 249 

functionally conserved between species, probably due to the stronger purifying selection 250 

underlying them37. Moreover, regulatory variants influencing more tissues showed higher 251 

DeepGCF scores (i.e., more functionally conserved), consistent in human and pig (Fig. 5c, d). In 252 

addition, the tissue-sharing pattern of orthologous eGenes (PCC = 0.38, P value < 2.2e-16) and 253 

sGenes (PCC = 0.45, P value < 2.2e-16) were positively correlated between human and pig. 254 

Altogether, these results indicate that regulatory variants controlling transcriptome function in 255 

more tissues tend to be more functionally conserved between species.  256 

We then investigated the DeepGCF scores of 105,461 pathological and likely pathological 257 

SNPs obtained from the ClinVar database38. A total 98.6% of these SNPs were in the human-pig 258 

orthologous regions, consistent with a previous finding that reported more than 98% of 259 

pathological variants of Mendelian diseases located in human-mouse orthologous regions39. 260 

Compared to random orthologous regions, these pathological SNPs were significantly more 261 

functionally conserved (Mann–Whitney U test P < 2.2e-16; Fig. 6a). Like orthologous SNP, we 262 

classified the ClinVar SNP into eight sequence class categories28 and conducted an in silico 263 

mutagenesis analysis to predict their impact on the functional conservation. Overall, the average 264 

magnitude of variant effect (measured by |ΔDeepGCF|) for pathological and likely pathological 265 

mutations is 1.5 times larger than that for random orthologous SNPs (0.0088 versus 0.0058, 266 

Mann–Whitney U test P < 2.2e-16). In most of cases, the DeepGCF score did not change much 267 
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after genetic mutations, but the variance of ΔDeepGCF showed a bell-shaped curve regarding the 268 

original DeepGCF score, indicating that SNPs with a medium-high DeepGCF (50th to 80th 269 

percentile) were more sensitive to pathological mutations than those with lower or higher 270 

DeepGCF (Fig. 6b). This suggests that the most functionally conserved regions (> 90th 271 

percentile) are more tolerable of mutations than less conserved ones (50th to 80th percentile). 272 

Most of the ClinVar SNPs were classified as transcription (51.2%), followed by enhancer 273 

(16.4%), Polycomb (14.8%), promoter (8.8%), transcription factor (3.3%), and CTCF (2.2%; 274 

Fig. 6c). Among the ClinVar SNPs with top 5% of |ΔDeepGCF| (> 0.03), there were more SNPs 275 

relevant to a decreased DeepGCF (54.4%) than an increased one (45.6%). Moreover, 9 out of 10 276 

ClinVar SNPs with the largest effect on DeepGCF were relevant to a decreased DeepGCF (Fig. 277 

6c). In summary, pathological and likely pathological SNPs are located in functionally more 278 

conserved regions, and their impact on functional conservation tends to be related to a decreased 279 

functional conservation between human and pig. 280 

  281 

Application of DeepGCF on gene mapping and prediction for human complex traits  282 

To investigate whether DeepGCF scores could advance our understanding of the evolutionary 283 

basis of complex traits/diseases in human, we conducted a heritability partitioning analysis used 284 

the functionally conserved genomic regions (top 5% DeepGCF scores) as a functional 285 

annotation, along with 97 existing annotations from the baseline model of LDSC40,41, to analyze 286 

the GWAS summary statistics from 80 human complex traits/diseases (Supplementary Data 287 

14). We found that regions with higher DeepGCF scores explained more heritability of complex 288 

traits/diseases (Fig. 7a). The heritability of eight complex traits was significantly enriched in 289 

functionally conserved regions, with the most enrichment found for coxarthrosis (enrichment = 290 
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3.5, FDR = 0.032), followed by varicose veins, height, hypertension, primary hypertension, 291 

waist-hip ratio, weight, and BMI (Supplementary Data 15; Fig. 7b). Furthermore, we took 292 

these eight traits as examples to explore whether DeepCGF can help us with fine-mapping of 293 

causal variants. By using functionally conserved regions (top 5% of DeepCGF) as a biological 294 

prior in the PolyFun + SuSiE model42, we detected 33, 22, and 17 additional putative causal 295 

variants (PIP > 0.95 and P < 5e-8) compared to the SuSiE model only without any priors in 296 

height, BMI and weight, respectively (Fig. 7c, Supplementary Data 16). We further incorporated 297 

DeepCGF in SBayesRC43 model to conduct polygenic score prediction for 20 human complex 298 

traits (Supplementary Data 17). On average, the relative prediction accuracy increased by 299 

0.56% (Fig. 7d; Supplementary Data 18), and the largest increase was observed on waist-hip 300 

ratio (3.5%), followed by body weight (1.7%). Altogether, our results showed that DeepGCF 301 

provide additional insights into the genetic and evolutionary basis of complex phenotypes.  302 

 303 

Discussion 304 

In this study, we developed a two-step neural network approach, DeepGCF, to evaluate the 305 

genomic conservation at the functional level between human and pig. DeepGCF shares a similar 306 

model structure as LECIF22 in the evaluation of functional conservation by comparing the 307 

epigenome and gene expression profiles of orthologous regions between two species. But instead 308 

of using binary epigenome profiles as the direct inputs, DeepGCF first predicts their functional 309 

effects (i.e., the continuous probability score of each epigenome binary feature) using 310 

DeepSEA25, and then use them as the input to predict the functional conservation between 311 

species. Compared to the LECIF approach, DeepSEA showed a better performance in the 312 

ortholog prediction, probably due to a higher resolution of the model input. Similar to LECIF, we 313 
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found that the performance of DeepGCF was not sensitive to the number of functional features, 314 

indicating that DeepGCF could be applied on other species where functional features are not 315 

abundant.  316 

We demonstrated that functional conservation is different from sequence conservation. The 317 

relationship between DeepGCF and PhyloP scores confirms the U shape relationship between 318 

functional and sequence conservation. By examining DeepGCF on chromatin states, sequence 319 

ontologies, and regulatory variants, we verified that DeepGCF captures the functional 320 

conservation of genome, and regions with higher DeepGCF play a more important role in 321 

regulatory activities. We thereby expected DeepGCF to be useful in explaining complex traits 322 

and diseases. The heritability enrichment and polygenic prediction accuracy brought by 323 

functionally conserved regions were limited, this may because we only considered functional 324 

conservation between human and pig compared to sequence conservation which were obtained 325 

based on over 100 species44. With the increasing amount of epigenome and gene expression data 326 

in other species in the near future, we could identify the core functionally conserved regions by 327 

expanding the DeepGCF model structure to integrate functional profiles from multiple species. 328 

Another limitation is that the functional conservation of the same sequence segment in different 329 

tissues and cell types should be conceptually different, which could not be distinguished by the 330 

current DeepGCF score. One ideal way to obtain tissue- and cell-type- specific DeepGCF scores 331 

is to train a different model on each tissue and cell type using the respective data. However, the 332 

current volume of functional profiles, particularly in pig, does not support the development of 333 

tissue- and cell-type- specific DeepGCF models.  334 

Despite the limitations, the DeepGCF approach shows a promising application on the 335 

comparison of cross-species functional conservation. The model framework can be easily 336 
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adapted to other species. Our future work will focus on expanding the model to the comparison 337 

of multiple species, including human, mouse, pig, cattle, and other livestock animals. The 338 

functional conservation information among different species will provide additional insight into 339 

the genetic and evolutionary mechanisms behind complex traits and diseases, analogous to the 340 

sequence conservation among vertebrate animals provided by such as PhyloP score.  341 

 342 

Methods 343 

Genome alignment. We used the chained and netted alignments of human (GRCh38) and pig 344 

(susScr11) genome assemblies from the UCSC genome browser45. The assemblies were aligned 345 

by the lastz alignment program46 using human as the reference.   346 

Model inputs. We divided the whole-genome alignment between human and pig into non-347 

overlapping 50-bp regions within each alignment block, resulting in 38,961,848 orthologous 348 

pairs. If an alignment block ended shorter than a 50-bp window, the window was truncated to the 349 

end of the block, which resulted in some regions smaller than 50 bp. For each orthologous pair, 350 

we collected the corresponding functional features, including chromatin accessibility measured 351 

by Assay for Transposase-Accessible Chromatin (ATAC-seq), histone modifications measured 352 

by Chromatin Immunoprecipitation sequencing (ChIP-seq), chromatin state annotations 353 

(ChromHMM), and gene expression measured by RNA-seq for human and pig from public 354 

resources, including ENCODE14 and public literatures19,20. We only collected the functional data 355 

at the tissue level for human, and merged those of the same data type from the same tissue, so 356 

that the total number of human features were close to pig. For human, there were 604 ChIP-seq 357 

and ATAC-seq files merged into 129 features, 12 ChromHMM files of 15 chromatin states (12 × 358 

15 = 180 features), and 77 RNA-seq features, which resulted in 386 functional annotations. For 359 
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pig, there were 287 ChIP-seq and ATAC-seq files merged into 84 features, 14 ChromHMM files 360 

of 15 chromatin states (14 × 15 = 210 features), and 80 RNA-seq features, which resulted in 374 361 

functional annotations. Details of features from each data type are reported in Supplementary 362 

Data 1–6. 363 

Prediction of binary functional features based on DeepSEA. We trained two DeepSEA 364 

models to predict the binary functional features, including ATAC-seq, ChIP-seq and chromatin 365 

state annotations, of human and pig using the PyTorch-based package, Selene47. We used the 366 

peak calls of ATAC-seq and ChIP-seq, and one-hot encoded chromatin state annotations as the 367 

training input. We then trained the model based on a sequence region of 1,000 bp, and the feature 368 

must take up 50% of the center bin (200 bp) for it to be considered a feature annotated to that 369 

sequence. All the hyperparameters were set as default (Supplementary Data 19). We created a 370 

validation set using the data from chromosomes 6 and 7 for early stopping during training, a test 371 

set using the data from chromosomes 8 and 9 for the generation of the receiver operating 372 

characteristic (ROC) and precision-recall (PR) curves, and a training set using the rest data. We 373 

then predicted the probability of each binary feature using the trained model for the first base of 374 

all the paired regions that were at most 50 bp. 375 

Data subsets for training and evaluation. We divided the entire data into the training, 376 

validation, and prediction sets based on the chromosome number. To predict the DeepGCF score 377 

of human regions from even and X chromosomes (prediction set), and the corresponding paired 378 

pig regions, we trained a DeepGCF model based on paired regions from a subset of odd 379 

chromosomes of human and pig. We created a validation set also from another subset of odd 380 

chromosomes (not overlapping with the training set) for the hyper-parameter tuning and early 381 

stopping during training. We used a subset of the test set to generate the ROC and PR curves. To 382 
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predict the DeepGCF score of human regions from odd chromosomes and the corresponding 383 

paired pig regions, we created training and validation set similarly as above, except from even 384 

chromosomes. We excluded Y and mitochondrial chromosomes in this study. Detailed division 385 

of each set is shown in Supplementary Data 20. 386 

DeepGCF training. Before training the DeepGCF model, we first randomly paired up the 387 

human-pig orthologous regions to get the same number of non-orthologous pairs in the training 388 

set. We then trained the DeepGCF model with a pseudo-Siamese architecture as the LECIF 389 

model22. In our pseudo-Siamese neural network, for each orthologous/non-orthologous pair, two 390 

input vectors containing the human and pig binary features (probabilities between 0 and 1) 391 

predicted from DeepSEA and normalized RNAseq data (also between 0 and 1) were connected 392 

to the human and pig subnetworks, respectively (Fig. 1). We performed a natural logarithm 393 

transformation on RNAseq data given the large range before normalizing. The two subnetworks 394 

were then fully connected to a final subnetwork, which generated the output prediction. We 395 

weighted non-orthologous pairs 50 times more than orthologous ones during the training process. 396 

We conducted a random grid search for hyper-parameters, including number of layers in each 397 

subnetwork and the final subnetwork, number of neurons in each layer, learning rate, batch size, 398 

and dropout rate. We generated 100 combinations of hyper-parameters randomly selected from 399 

the candidate parameter pool (Supplementary Data 21), using each combination to train a 400 

DeepGCF model based on the same random subset of 1 million aligned and 1 million unaligned 401 

human-pig pairs from the training set. We then selected the combination of hyper-parameters 402 

that maximized the AUROC on the validation set to train the final model based on the whole 403 

training set. We stopped training if there was no improvement in AUROC over three epochs on 404 
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the validation set for both hyper-parameter search and training, otherwise the training stopped 405 

when reaching the maximum number of epochs, which was set to be 100. 406 

Human-pig orthologous SNPs. In total 73,257,633 human biallelic SNPs (GRCh38) were 407 

obtained from 1,000 Genome Project31. Their positions were lifted to corresponding orthologous 408 

positions in the pig genomes (SusScr11) using the UCSC liftover utility with chain files available 409 

from the UCSC website45, which resulted in 35,575,835 orthologous SNPs. 410 

Function enrichment. To explore the Gene Ontology terms of genomic regions (e.g., 411 

enhancers), we used the GREAT tool48 with default parameters and a cut-off of FDR < 0.05 for 412 

both the binomial and the hypergeometric distribution-based tests.  413 

Tissue specific chromatin state. For each chromatin state, we first used the merge function of 414 

BEDtools49 to merge any regulatory regions between two tissues overlapping by at least 1 bp 415 

across all tissues. Then for strongly active enhancer and promoter in each tissue, if a region is 416 

active in only one tissue and does not overlap with any active regions in other tissues, we define 417 

the region as tissue specific regulatory element. If a region is active in all tissues (i.e., overlaps 418 

across all tissues), we define the region as “all common” regulatory element.  419 

Tissue-sharing of e/sGene. To explore how e/sGenes are shared across all tissues, we performed 420 

the meta-analysis of e/sGenes using MashR (v0.2.57)50. We used the slope and the standard error 421 

of slope of top e/sQTL of genes (missing slopes were set to be 0 with standard error of 1) across 422 

49 tissues from GTEx (v8)23 for human and 34 tissues from PigGTEx databases24 for pig as the 423 

input. We then obtained the estimate of effect size and the corresponding significance (local false 424 

sign rate, LFSR) from the mash function. An e/sGene was considered active in a tissue if LFSR 425 

< 0.05. 426 
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DeepGCF score for genes. We obtained the gene boundaries of human and pig genes from 427 

Ensembl release 107 (GRCh38 for human and Sscrofa11 for pig), and extended them by 35 kb 428 

upstream and 10 kb downstream to include probable cis-regulatory regions51. We then compute 429 

the DeepGCF score for genes based on the average score of all orthologous regions overlapping 430 

with the gene and the extended regions. For human genes linked to promoter sequence class, we 431 

identified a promoter’s potential target gene if the distance between the promoter and the TSS of 432 

a gene is less than 2 kb, yielding a total of 12,044 promoter-gene pairs. 433 

Heritability partitioning analysis. We collected the GWAS summary statistics of 80 human 434 

complex traits from the UK Biobank and public literatures (Supplementary Data 14). We ran the 435 

LD-score regression software ldsc (v1.0.1)41 to partition the heritability based on two sets of 436 

annotations: 1) one binary annotation of functionally conserved regions (top 5% of DeepGCF) 437 

and 2) five binary annotations dividing the top 5% DeepGCF into 5 equal-width bins based on 438 

percentiles. Both sets of annotations were analyzed with a baseline including 97 annotations40. 439 

Heritability enrichment was calculated as the proportion of trait heritability contributed by SNPs 440 

in the annotation over the proportion of SNPs in that annotation. 441 

Fine-mapping analysis. We first used PolyFun42 to compute SNP prior causal probabilities 442 

based on the annotation of functional conservation (top 5% DeepGCF). These prior causal 443 

probabilities were then used as priors in SuSiE52 for the fine-mapping analysis. To compare fine-444 

mapping using functional conservation as prior with not using it, we also performed a fine-445 

mapping analysis using SuSiE alone, which only took LD information into account. A SNP is 446 

identified to be putative causal if the posterior causal probability (PIP) is greater than 0.95 and 447 

the P-value in GWAS is smaller than 5e-8. 448 
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Polygenic prediction. We incorporated functional conservation as a prior in polygenic 449 

prediction using the software SBayesRC43. The GWAS summary statistics of 20 complex traits 450 

from UK Biobank (Supplementary Data 17) were analyzed using ~7 million common SNPs with 451 

and without one annotation of functional conservation (top 5% DeepGCF). To compare the 452 

prediction accuracy, we partitioned the total sample into ten equal-sized disjoint subsamples. For 453 

each fold, we retained one subsample as the validation set and other remaining nine subsamples 454 

as the training set. We calculated the polygenic score (PGS) using genotypes from an 455 

independent validation set in each fold and obtained the prediction R2 from linear regression of 456 

true phenotype on the PGS. We then calculated the relative prediction accuracy by (R02 – RD2) / 457 

R02, where R02 is the prediction R2 without any priors, and RD2 is the prediction R2 using 458 

functional conservation as a prior. 459 

 460 

Data availability 461 

The DeepGCF score for human-pig orthologous regions are publicly available for download 462 

without restrictions from https://github.com/liangend/DeepGCF. All epigenomic and gene 463 

expression data used for model training can be found in Supplementary data 1–6. Orthologous 464 

SNPs between human and pig are from the 1,000 Genome Project 465 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/2018466 

1203_biallelic_SNV). GWAS summary statistics used for LDSC analysis are from UK Biobank 467 

(http://www.ukbiobank.ac.uk), with details showing in Supplementary data 14. Summary 468 

statistics and genotype used for polygenic score prediction from UK Biobank 469 

(http://www.ukbiobank.ac.uk) are available through formal application. 470 

 471 
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Code availability 472 

The code of DeepGCF is available at https://github.com/liangend/DeepGCF. 473 

 474 
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Figures and legends 593 
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Fig. 1 Overview of the DeepGCF model. a The learning procedure of DeepGCF model consists 595 

of two steps. The first step is to train DeepSEA models in human and pig separately to transform 596 

the binary functional features (e.g., peaks called from ATAC-seq and ChIP-seq, and chromatin 597 

states predicted from ChromHMM) to continuous values by predicting the functional effects of 598 

single nucleotides through centering the target nucleotide at a genomic region of 1,000 bp. The 599 

second step is to train a pseudo-Siamese network for predicting whether the paired human-pig 600 

regions are orthologous or not using two corresponding vectors of functional effects predicted 601 

from DeepSEA and normalized gene expression as inputs. The output, DeepGCF score, is a 602 

value between 0 and 1 quantifying the functional conservation of the paired human-pig region. b 603 

The DeepGCF model can be applied to predict the effect of genome variants on the functional 604 

conservation, quantified by changes in DeepGCF scores. 605 
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 607 

Fig. 2 The performance of DeepGCF under different scenarios a Receiver operating 608 

characteristic (ROC) curves comparing the performance of DeepGCF (this study) and LECIF22 609 

methods. The ROC curve of each method is generated by predicting whether 200,000 pairs 610 

randomly selected from the testing set, which included equal number of orthologous and non-611 

orthologous pairs (e.g., randomly mismatched genomics regions), were orthologous or not. b 612 

Precision-recall (PR) curves generated by similar procedures as the ROC curves. c DeepGCF 613 

score distribution of all 38,961,848 human-pig orthologues pairs. d The areas under receiver 614 

operating characteristic curve (AUROC) and precision-recall curve (AUPRC) of DeepGCF using 615 

all (Human: 386; Pig: 374), ~50% (Human: 192; Pig: 187), ~10% (Human: 52; Pig: 47), and 616 

~1% (Human: 4; Pig: 4) of human and pig functional features. The subsets of the human and pig 617 

features were randomly selected ~50%, ~10%, ~1% from each of ChIP-/ ATAC-seq, 618 

ChromHMM, and RNAseq profiles. e The AUROC and AUPRC of DeepGCF using all 619 
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functional features (Human: 386; Pig: 374), features without ChIP-/ATAC-seq (Human: 129; 620 

Pig: 84), without ChromHMM (Human: 180; Pig: 210) and without RNA-seq (Human: 77; Pig: 621 

80). 622 
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 624 

Fig. 3 Comparison of functional and sequence conservations. a Relationship between 625 

DeepGCF score and PhyloP score of 20,000 randomly selected human regions. PhyloP score is 626 

based on multiple alignments of 99 vertebrate genomes to the human genome10. The blue line is 627 

the fitted loess regression and red crosses represents 50 equally-divided percentiles of PhyloP 628 

score corresponding to the average of DeepGCF score. b Enrichment fold of 8 sequence class 629 

categories28 for regions with high DeepGCF (> 95th percentile) and high PhyloP (> 95th 630 

percentile; high D & high P; n = 260,281), regions with high DeepGCF but low PhyloP (< 5th 631 
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percentile; high D & low P; n = 152,557), and regions with low DeepGCF (< 5th percentile) and 632 

medium PhyloP (between 47.5th and 52.5th percentile; low D & med P; n = 77,848). Enrichment 633 

is equal to the proportion of a sequence class category for a type of orthologous regions divided 634 

by that for the whole genome. The dashed line (set at 1) represents no enrichment. c DeepGCF 635 

score distribution of the different sequence ontologies. The red and green dashed lines represent 636 

the mean and the median DeepGCF score of the whole genome. The dots inside each box 637 

represent the mean DeepGCF score. d ΔDeepGCF (DeepGCF after mutation – original DeepGCF) 638 

caused by 1,000,000 randomly selected orthologous variants, which are classified into 8 sequence class 639 

categories28. The red dashed line represents the fitted regression line. e The effect of orthologous 640 

variants (n = 35,575,835) on DeepGCF score of regions in 40 sequence classes28, which are 641 

classified into 8 categories. The effect was measured by ΔDeepGCF for variants in each 642 

sequence class. The SD of ΔDeepGCF for each sequence class quantifies the overall sensitivity 643 

of the sequence class to variant effect. 644 
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 646 

Fig. 4 DeepGCF score of genomic regions overlapping with different regulatory elements. a 647 

Distribution of average DeepGCF scores across human tissues (n = 12) and pig tissues (n = 14) 648 

for each chromatin state. The red and green dashed lines represent the mean and the median 649 

DeepGCF score of the whole genome. b DeepGCF scores of genomic regions overlapping with 650 

tissue-specific strongly active promoter and enhancer for human and pig19. “All common” 651 

represents promoters/enhancers shared across all tissues. **** denotes Mann–Whitney U test P < 652 

2.2e-16. c Number of significantly enriched gene ontology terms for human of genes related to 653 

promoters annotated by sequence class28. The genes were binned by DeepGCF into ten equal-654 

width bins, and the functional enrichment analysis was conducted on each bin. d Similar to c, 655 

except showing the results of enhancers annotated by sequence class28.  656 
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 657 

Fig. 5 Relationship of DeepGCF score to genetic variants. a The distribution of DeepGCF 658 

score of eQTLs and sQTLs. The red and green dashed lines represent the mean and the median 659 

DeepGCF score of the whole genome. The dots inside each box represent the mean DeepGCF 660 

score. **** denotes P value < 1e-8 based on a two-sided Mann–Whitney U test. b Relationship 661 

between the absolute value of eQTL effect size (|log2(aFC)|) and DeepGCF score for eGenes. 662 

The genes were binned by DeepGCF into ten equal-width bins for human and pig, respectively. 663 

**** denotes the group is different from all other groups with P value < 1e-8 based on a Tukey 664 

multiple comparison. c DeepGCF scores of tissue-sharing e/sGenes from human at local false 665 

sign rate (LFSR) < 5% obtained by MashR50. d Similar to c, except showing the results of pig.  666 
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 668 

Fig. 6 Relationship of conservation score to pathogenic variants. a The distribution of 669 

DeepGCF scores in pathogenic and likely pathogenic SNPs (n = 104,033) obtained from 670 

ClinVar38, compared to the DeepGCF distribution across the whole genome. **** denotes Mann–671 

Whitney U test P < 2.2e-16. b SD of ΔDeepGCF (DeepGCF after mutation – original DeepGCF) 672 

caused by ClinVar SNPs. The SNPs were binned by their original DeepGCF into ten equal-width 673 

bins.  c ClinVar SNPs classified by sequence class28. A polar coordinate system was used, where 674 
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the radial coordinate indicates the SNP effect on DeepGCF. The red solid circle represents zero 675 

DeepGCF change, and two dashed circles represent ± 0.03 of DeepGCF encompassing 95% of 676 

SNPs. Each dot represents a SNP and SNPs inside the red circle were predicted to have positive 677 

effects (increased DeepGCF), while SNPs outside the red circle were predicted to have negative 678 

effects (decreased DeepGCF). Dot size indicates the original DeepGCF. Within each sequence 679 

class, SNPs were ordered by chromosomal coordinates. Top 10 SNPs with large impact on 680 

DeepGCF associated disease and gene names were annotated.   681 
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 682 
Fig. 7 Application of DeepGCF on complex traits/diseases in human. a Heritability 683 

enrichment calculated by LDSC for 80 human traits using functionally conserved regions (top 684 

5% DeepGCF). The regions were divided into 5 equal equal-width bins and the heritability 685 

enrichment of all traits was calculated for each bin. The dashed red line is the fitted regression 686 

line between heritability enrichment and DeepGCF percentile, and the grey area is the 95% 687 

confidence interval. b Significant heritability enrichment explained by functionally conserved 688 

regions in 8 human traits. c The number of putatitive SNPs (PIP > 0.95 and P < 5e-8) identified 689 

by PolyFun + SuSiE using functionally conserved regions as a prior and SuSiE without priors for 690 
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7 human traits. d The relative prediction accuracy of PRS for 20 human complex traits using 691 

functionally conserved regions as a prior in SBayesRC43. Relative prediction accuracy is equal to 692 

(prediction accuracy using the prior – prediction accuracy without priors) / prediction accuracy 693 

without priors. A relative prediction accuracy > 0 (dashed line) indicates an accuracy higher than 694 

without priors. 695 
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