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Abstract

The assessment of genomic conservation between human and pig at the functional level can
help understand and improve the potential of pig as a human biomedical model. To address this,
we developed a Deep learning-based approach to learn the Genomic Conservation at the
Functional level (DeepGCF) between species by integrating 386 and 374 epigenome and
transcriptome profiles from human and pig, respectively. DeepGCF demonstrated a better
prediction performance compared to the previous functional conservation prediction method. In
addition, we showed that the resulting DeepGCF score captures the functional conservation by
examining DeepGCF on chromatin states, sequence ontologies, and regulatory variants. Regions
with higher DeepGCF score play a more important role in regulatory activities and show
heritability enrichment in human complex traits and diseases. Our DeepGCF approach shows a
promising application on the comparison of cross-species functional conservation, and the model
framework can be easily adapted to other species. By expanding the model to integrate the
functional profiles of multiple species, including human, mouse, pig, cattle, and other livestock
animals in the future, the functional conservation information will provide additional insight into

the genetic and evolutionary mechanisms behind complex traits and diseases.
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Main text
Introduction

Comparative genome not only reveals evolutionary changes at the DNA sequence level', but
also helps with the translation of genetic and biological findings across species?>. Compared to
lab organisms like mice, pig is more similar to human in anatomy, physiology, and genome?,
thus is widely used as a biomedical model for human medicine and genetic diseases, such as
drug tests*, xenotransplantation®, Alzheimer’s disease®, breast cancer’, and diabetes®. To fully
recognize the substantial potential of pig as a human biomedical model, it is essential to conduct
an extensive comparison of pig and human physiology at the molecular level for assessing to
what degree that the genetic and biological findings in pig can be extrapolated to human. Several
methods have been proposed to infer the conservation at the DNA sequence level, such as
Genomic Evolutionary Rate Profiling (GERP)? and Phylogenetic P-values (PhyloP)!°. However,
the conservation at DNA sequence level is not equivalent to the conservation at functional
level''=13,

The ongoing global efforts on functional annotation of genomes in both humans and
livestock, such as the Encyclopedia of DNA Elements'4, Roadmap Epigenomics projects'?, the
Functional Annotation of Animal Genomes (FAANG)'6, and Farm animal Genotype-Tissue
Expression (FarmGTEX) projects!’, provide an unprecedented opportunity to quantify the
genome conservation across species at the functional level. Previous studies often rely on a
single functional profile in one tissue/cell type, such as gene expression'® or epigenome!*?°, to
infer the functional conservation of orthologous regions between human and pig. However,
integrative analysis of multi-omics is essential for unravelling how biological information

encoded in the genome is conserved or diverged across species, as the functional consequence of
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genomic variants is often modulated at multiple levels of gene regulation across tissues/cells.
Artificial neural networks have been applied in the prediction and integration of multi-omics
data, such as histone marks, transcription factors, and gene expression, to investigate
transcriptional and biochemical impact of DNA sequences and their conservation across
species?!?2. For instance, Kwon and Ernst??> developed a neural network model, LECIF, to study
human-mouse functional conservation based on multi-omics data from Roadmap and ENCODE
databases.

In this study, to systematically evaluate the functional conservation between human and pig,
we developed a Deep learning-based approach to learn the Genomic Conservation at the
Functional level (DeepGCF) between species. Unlike LECIF using functional genomics data as
input, DeepGCF uses both DNA sequences and functional genomics data as input. It thus enables
us to predict the impact of sequence mutations on the functional conservation between species.
By integrating 386 and 374 epigenome and transcriptome profiles, representing 28 and 21 tissues
from human and pig, respectively, DeepGCF captures the conservation of epigenetic features and
genes across tissues between human and pig. By further examining expression/splicing
quantitative trait loci (¢/sQTL) from 54 and 35 tissues in human GTEx?* and PigGTEx?**,
respectively, and genome-wide association studies (GWAS) of 80 complex traits/diseases in
human, DeepGCF provides novel insights into the evolutionary mechanisms underlying both
molecular phenotype and complex trait variation. The DeepGCF model can be easily expanded
to multiple species for extensively understanding the genome evolution at functional genomics
level when large-scale functional annotation data is available for many other species in the near

feature.
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85  Results

86  Overview of the DeepGCF model

87 In general, the training of DeepGCF model consists of two steps (Fig. 1). The first step is to

88  transform the binary functional features to continuous values by training a deep convolutional

89  network implemented in DeepSEA?°. Binary functional feature is a common data type in the

90 functional genomics filed, which represents whether a genomic base overlapped with functional

91  annotations such as peaks or chromatin states derived from ATAC-Seq and ChIP-Seq. By taking

92  both DNA sequences and binary functional features as inputs, DeepSEA predicts the

93  probabilities of each functional feature at a single-nucleotide resolution. In this study, we

94  collected 309 and 294 genome-wide binary functional annotations from human and pig,

95  respectively (Supplementary data 1-4). These represented the chromatin accessibility measured

96 by Assay for Transposase-Accessible Chromatin (ATAC-seq), histone modifications measured

97 by Chromatin Immunoprecipitation sequencing (ChIP-seq) and chromatin states from 26 and 21

98 tissues in human and pig, respectively. We trained the DeepSEA models and predicted the

99  functional effect of each nucleotide in human and pig separately, which were subsequently used
100  as inputs in the DeepGCF for predicting the functional conservation score between these two
101  species. The performance of DeepSEA was evaluated using an independent validation set and
102 showed a strong predictive power in both species (Supplementary Fig. 1).
103 The second step of DeepGCF is to predict the functional conservation score of orthologous
104  regions between human and pig using a supervised deep learning approach, similar to LECIF?2,
105  We divided the whole-genome alignment between human and pig into non-overlapping 50-bp
106  regions within each alignment block, resulting in 38,961,848 paired alignments (i.e., orthologous

107  regions). We then selected the first base to represent the functional annotation of the 50-bp


https://doi.org/10.1101/2023.01.13.523857
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523857; this version posted February 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

108  region, because bases within such a narrow region are likely to have similar functions and the
109  computational burden is greatly lightened by doing so?2. Apart from the predicted functional
110  effects from DeapSEA, we also included the gene expression values from 77 and 80 RNA-seq
111  datasets as functional annotations, representing 11 and 19 tissues in human and pig, respectively
112 (Supplementary data 5 and 6). To train the DeepSEA model, we randomly shifted the human-
113 pig orthologous regions to obtain the same number of non-orthologous pairs. Functional

114 conservation is lack of ground truth, thus as an approximation, we presume that the orthologous
115  regions (coded as 1) are more likely to be functionally conserved than non-orthologous regions
116  (coded as 0). We then trained a pseudo-Siamese neural network model? using both functional
117  effects predicted from DeepSEA and gene expression as inputs (Fig. 1a). We weighted non-

118  orthologous regions 50 times more than orthologous ones when training to highlight regions with
119  strong evidence of functional conservation??. The output, DeepGCF score, is a value between 0
120  and 1 quantifying the functional conservation of the paired human-pig region. Furthermore, since
121 the DeepGCF predicts the functional conservation based on the DNA sequence, it allows us to
122 conduct an in silico mutagenesis analysis to assess the impact of orthologous variants on the

123 functional conservation between species through investigating the changes of DeepGCF score
124 caused by a mutation (Fig. 1b).

125

126  The evaluation of DeepGCF model

127 The performance of DeepGCF was evaluated by predicting whether the paired human-pig

128  regions of an independent testing set are orthologous or not. Compared to LECIF, which had the
129  areas under receiver operating characteristic curve (AUROC) and precision-recall curve

130 (AUPRC) of 0.80 and 0.79, respectively, DeepGCF showed a better predictive ability with
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131  AUROC and AUPRC of 0.89 and 0.87, respectively (Figs. 2a, b). Of note, we normalized the
132 gene expression values with a natural logarithm transformation, which showed a better predictive
133 ability than that without a transformation (Supplementary Fig. 2). Among all the 38,961,848
134 orthologous regions between human and pig, only a small percentage (1.2%) exhibited a

135  DeepGCF score greater than 0.8, while more than half with a score less than 0.1 (Fig. 2c¢),

136  consistent with previous findings between human and mice??. This result suggests that most of
137  orthologous regions were not functionally conserved between species.

138 To provide suggestions for researchers who are interested in running the DeepGCF model in
139  other species with limited functional annotation data available, we explored different features
140  that may influence the performance of DeepGCF, including sample size and diversity of

141  functional annotations regarding array and tissue/cell type. When training the model, we

142 downsampled both human and pig functional profiles. We found that using ~50% (Human: 192;
143 Pig: 187) and ~10% (Human: 52; Pig: 47) of the functional profiles resulted in similar AUROC
144 (50%: 0.88; 10%: 0.85) and AUPRC (50%: 0.87; 10%: 0.83) values compared to using all the
145  profiles, but using only ~1% (Human: 4; Pig: 4) of the profiles showed substantially lower

146 AUROC (0.69) and AUPRC (0.68) values (Fig. 2d). When leaving one type of functional

147  profiles out, the predictive ability of DeepGCF did not change too much (Fig. 2e).

148

149  Relationship between DNA sequence conservation and functional conservation

150 To fully explore whether DNA sequence conservation indicates functional conservation, we
151  first examined PhyloP scores, which are commonly used to measure the DNA sequence

152 conservation across species'?. We observed a U-shaped relationship between PhyloP and

153  DeepGCF scores (Fig. 3a), demonstrating that both fast-evolving and slow-evolving sequences
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154  exhibited a higher functional conservation between species, compared to evolutionary neutral or
155  near-neutral sequences. This agrees with previous findings on comparing individual epigenetic
156  marks and DNA sequence conservation!®?’. Furthermore, we defined three types of orthologous
157  regions according to their PhyloP and DeepGCF scores to represent the two tails and the bottom
158  ofthe U curve: 1) regions with both high DeepGCF (> 95™ percentile) and PhyloP (> 95

159  percentile): high D & high P (n = 260,281), 2) those with high DeepGCF (> 95™ percentile) but
160  low PhyloP (< 5% percentile): high D & low P (n = 152,557), and 3) those with low DeepGCF (<
161  5™) and medium PhyloP (between 47.5% and 52.5™): low D & med P (n = 95,231). By examining
162  sequence classes, which are predicted regulatory activities of DNA sequences in human genome
163 by a deep learning model, Sei, trained on a compendium of 21,907 epigenome profiles®®, and
164  Gene Ontology (GO) terms, we found that, compared to the whole genome, high D & high P

165  regions were more enriched in promoter, CTCF, and transcription but depleted in enhancer

166  (Binomial test P < 0.0001; Fig. 3b). Compared to other regions, high D & high P regions showed
167  a higher enrichment in transcription (Binomial test P < 0.0001; Fig. 3b), and were significantly
168  associated with several RNA-related regulation processes (Supplementary Data 7). This

169  indicates the similarities in transcriptional networks between pig and human'®?°, High D & low
170 P regions were significantly enriched in Polycomb (Binomial test P < 0.0001; Fig. 3b), in

171  consistency with the fact that some core subunits of Polycomb protein complexes with similar
172 biological functions have shown a weak evolutionary conservation on DNA sequence across

173 species®®. The low D & med P regions had similar sequence class compositions as the whole

174  genome background except promoter, which was enriched but to a less extent than high D &

175  high P and high D & low P (Binomial test P < 0.0001; Fig. 3b), and were enriched in fewer GO

176  terms than regions with high DeepGCF (Supplementary Data 7-9). In addition, we examined


https://doi.org/10.1101/2023.01.13.523857
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523857; this version posted February 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

177  six different sequence ontologies and found that 5° UTR is the most functionally conserved

178  element, followed by start codon, 3° UTR, stop codon, exon, and finally intron. This is consistent
179  between both human and pig (Fig. 3c¢).

180 To investigate the impact of orthologous variants on the functional conservation between
181  species, we examined 35,575,835 human SNPs that are located in orthologous regions between
182  human and pig, which were obtained from the 1,000 Genome Project’!. We used the DeepGCF
183  model trained based on only predicted probabilities of binary features from DeepSEA (i.e.,

184  leaving RNA-seq out), as the DeepSEA model does not predict for continuous functional

185  features. The new score predicted from DeepGCF without RNA-seq data had a relatively well
186  agreement with the original DeepGCF score with a Pearson’s correlation coefficient (PCC) of
187  0.74 (Supplementary Fig. 3). To measure the effect of each human SNP on functional

188  conservation, we recomputed the probabilities of binary features for the corresponding

189  orthologous human region due to the SNP mutation and kept the pig probabilities the same, and
190  used the new probabilities to calculate the updated DeepGCF score. The effect on functional
191  conservation is measured by ADeepGCF = DeepGCF after SNP mutation — original DeepGCF. By
192 classifying all the orthologous variants into eight categories®®, we found that most of the variants
193  had a limited effect on the functional conservation (Fig. 3d). We further grouped them into 40
194  sequence classes?®, and in general, we found that variants in functional features with larger

195  DeepGCF scores showed the stronger effects on the functional conservation between species
196  (Fig. 3e). Promoter and CTCF were more sensitive to variants than other sequence classes. Of
197  note, the average DeepGCF score of CTCF is lower than that of promoter, but it is much more
198  sensitive to genetic mutations regarding the functional conservation, indicating that the genetic

199  disruption of CTCF binding sites (chromatin conformation) may cause strong impacts on
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200  functional genome evolution between species by altering the genome topology and consequently
201  the gene expression’>33.

202

203  DeepGCEF captures the evolutionary characteristics of regulatory elements

204 To investigate the functional conservation of distinct regulatory elements between pig and
205  human, we first examined the DeepGCF score of 15 chromatin states predicted from 14 pig

206  tissues and 12 human tissues using ChromHMM'. We found that strongly active promoters

207  showed the highest DeepGCF scores (i.e., the strongest functional conservation), followed by
208  poised transcription start site (TSS), chromatin states proximal to TSS, enhancers, and finally
209  repressed Polycomb (Fig. 4a). This was consistent between human and pig, which agrees with
210 the conservation properties of regulatory elements reported in the previous studies!®>4. As

211  chromatin states that play important roles in determining the cellular functions may vary among
212 different tissues, we identified strongly active promoters and enhancers that were specific in each
213 of 12 human tissues and 14 pig tissues. Compared to promoters and enhancers shared across all
214 the tissues, tissue-specific ones showed significantly lower DeepGCF scores in both species

215  (Mann—Whitney U test P < 2.2e-16), indicative of their faster evolutionary rate (Fig. 4b). Among
216  eight common tissues between human and pig, we found that adipose had the strongest

217  functionally conserved promoters in both human and pig, followed by spleen, lung, cortex, liver,
218  and finally stomach (Supplementary Fig. 4a). This result suggests pigs could be a good model
219  animal for studying human obesity and metabolic traits'®. However, the tissue-conservation

220  patterns of enhancers were different from those of promoters and were not consistent between

221  species (Supplementary Fig. 4b).
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222 We further investigated the DeepGCF score on human promoters and enhancers annotated by
223 Sei?®. We linked a promoter to its potential target gene and then ranked genes with the DeepGCF
224  scores of their promoters (from largest to smallest). We found that top 5% of genes were

225  significantly enriched in basic biological processes, such as anatomical structure development
226  and organ morphogenesis, whereas bottom 5% of genes were significantly enriched in

227  biosynthetic and metabolic process (Supplementary data 10 and 11). In addition, we ranked
228  enhancers according to their own DeepGCF scores and investigated the function of top 5% and
229  bottom 5% enhancers. Unlike promoters, top 5% of enhancers exhibited the most significant
230  enrichment in metabolic processes, while bottom 5% of enhancers were significantly enriched in
231  organ growth and development (Supplementary data 12 and 13). In general, we found that
232 promoters and enhancers with a higher DeepGCF score were enriched in much more biological
233 processes compared to those with a lower DeepGCF score (Fig. 4¢, d), which indicates that

234  functionally conserved regions between species tend to be the hotspot of regulatory activities.
235

236  DeepGCEF provide insight into the functional conservation of regulatory variants

237 To explore the functional conservation of regulatory variants, we systematically examined
238  expression QTLs (eQTLs) and splicing QTLs (sQTLs) falling in the orthologous regions in 54
239  human tissues and 35 pig tissues, respectively. In general, DeepGCF scores of eQTLs and sQTLs
240  were significantly (Mann—Whitney U test P < 2.2e-16) higher than the genome background

241  across all the tissues in both human and pig (Fig. 5a; Supplementary Figs. S and 6), which

242 suggests that regulatory variants are functionally conserved between species®>*¢. Of note, sQTLs
243 showed a higher DeepGCF score than eQTLs in both species (Mann—Whitney U test P < 1e-8),

244 probably due to their larger impacts on the transcriptome function (underlying a stronger
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245  purifying selection). This is consistent with previous findings that sQTLs were more likely to be
246  enriched in 5’UTR than eQTLs (GTEx, 2020), and 5> UTR is the most functionally conserved
247  genomic features (Fig. 2¢). We further observed that eGenes associated with eQTLs having a
248  larger absolute effect on the gene expression had a lower DeepGCF score in both species (Fig.
249  5b), which suggests that orthologous regions with smaller regulatory effects are more likely to be
250  functionally conserved between species, probably due to the stronger purifying selection

251  underlying them®’. Moreover, regulatory variants influencing more tissues showed higher

252 DeepGCF scores (i.e., more functionally conserved), consistent in human and pig (Fig. 5S¢, d). In
253 addition, the tissue-sharing pattern of orthologous eGenes (PCC = 0.38, P value <2.2e-16) and
254 sGenes (PCC = 0.45, P value < 2.2e-16) were positively correlated between human and pig.

255  Altogether, these results indicate that regulatory variants controlling transcriptome function in
256  more tissues tend to be more functionally conserved between species.

257 We then investigated the DeepGCEF scores of 105,461 pathological and likely pathological
258  SNPs obtained from the ClinVar database®. A total 98.6% of these SNPs were in the human-pig
259  orthologous regions, consistent with a previous finding that reported more than 98% of

260  pathological variants of Mendelian diseases located in human-mouse orthologous regions™’.

261  Compared to random orthologous regions, these pathological SNPs were significantly more

262  functionally conserved (Mann—Whitney U test P < 2.2e-16; Fig. 6a). Like orthologous SNP, we
263  classified the ClinVar SNP into eight sequence class categories?® and conducted an in silico

264  mutagenesis analysis to predict their impact on the functional conservation. Overall, the average
265  magnitude of variant effect (measured by |[ADeepGCF|) for pathological and likely pathological
266  mutations is 1.5 times larger than that for random orthologous SNPs (0.0088 versus 0.0058,

267  Mann—Whitney U test P < 2.2e-16). In most of cases, the DeepGCF score did not change much
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268  after genetic mutations, but the variance of ADeepGCF showed a bell-shaped curve regarding the
269  original DeepGCF score, indicating that SNPs with a medium-high DeepGCF (50™ to 80t

270  percentile) were more sensitive to pathological mutations than those with lower or higher

271  DeepGCF (Fig. 6b). This suggests that the most functionally conserved regions (> 90

272  percentile) are more tolerable of mutations than less conserved ones (50 to 80 percentile).

273 Most of the ClinVar SNPs were classified as transcription (51.2%), followed by enhancer

274  (16.4%), Polycomb (14.8%), promoter (8.8%), transcription factor (3.3%), and CTCF (2.2%;
275  Fig. 6¢). Among the ClinVar SNPs with top 5% of |[ADeepGCF| (> 0.03), there were more SNPs
276  relevant to a decreased DeepGCF (54.4%) than an increased one (45.6%). Moreover, 9 out of 10
277  ClinVar SNPs with the largest effect on DeepGCF were relevant to a decreased DeepGCF (Fig.
278  6¢). In summary, pathological and likely pathological SNPs are located in functionally more
279  conserved regions, and their impact on functional conservation tends to be related to a decreased
280  functional conservation between human and pig.

281

282  Application of DeepGCF on gene mapping and prediction for human complex traits

283  To investigate whether DeepGCF scores could advance our understanding of the evolutionary
284  basis of complex traits/diseases in human, we conducted a heritability partitioning analysis used
285  the functionally conserved genomic regions (top 5% DeepGCEF scores) as a functional

286  annotation, along with 97 existing annotations from the baseline model of LDSC***!, to analyze
287  the GWAS summary statistics from 80 human complex traits/diseases (Supplementary Data
288  14). We found that regions with higher DeepGCF scores explained more heritability of complex
289 traits/diseases (Fig. 7a). The heritability of eight complex traits was significantly enriched in

290  functionally conserved regions, with the most enrichment found for coxarthrosis (enrichment =
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291 3.5, FDR =0.032), followed by varicose veins, height, hypertension, primary hypertension,

292 waist-hip ratio, weight, and BMI (Supplementary Data 15; Fig. 7b). Furthermore, we took
293  these eight traits as examples to explore whether DeepCGF can help us with fine-mapping of
294  causal variants. By using functionally conserved regions (top 5% of DeepCGF) as a biological
295  prior in the PolyFun + SuSiE model*?, we detected 33, 22, and 17 additional putative causal

296  variants (PIP > 0.95 and P < 5e-8) compared to the SuSiE model only without any priors in

297  height, BMI and weight, respectively (Fig. 7¢, Supplementary Data 16). We further incorporated
298  DeepCGF in SBayesRC* model to conduct polygenic score prediction for 20 human complex
299  traits (Supplementary Data 17). On average, the relative prediction accuracy increased by

300 0.56% (Fig. 7d; Supplementary Data 18), and the largest increase was observed on waist-hip
301  ratio (3.5%), followed by body weight (1.7%). Altogether, our results showed that DeepGCF
302  provide additional insights into the genetic and evolutionary basis of complex phenotypes.

303

304  Discussion

305 In this study, we developed a two-step neural network approach, DeepGCF, to evaluate the

306  genomic conservation at the functional level between human and pig. DeepGCF shares a similar
307  model structure as LECIF?? in the evaluation of functional conservation by comparing the

308 epigenome and gene expression profiles of orthologous regions between two species. But instead
309  ofusing binary epigenome profiles as the direct inputs, DeepGCF first predicts their functional
310 effects (i.e., the continuous probability score of each epigenome binary feature) using

311 DeepSEA?, and then use them as the input to predict the functional conservation between

312 species. Compared to the LECIF approach, DeepSEA showed a better performance in the

313  ortholog prediction, probably due to a higher resolution of the model input. Similar to LECIF, we
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314  found that the performance of DeepGCF was not sensitive to the number of functional features,
315  indicating that DeepGCF could be applied on other species where functional features are not
316  abundant.

317 We demonstrated that functional conservation is different from sequence conservation. The
318  relationship between DeepGCF and PhyloP scores confirms the U shape relationship between
319  functional and sequence conservation. By examining DeepGCF on chromatin states, sequence
320  ontologies, and regulatory variants, we verified that DeepGCF captures the functional

321  conservation of genome, and regions with higher DeepGCF play a more important role in

322 regulatory activities. We thereby expected DeepGCF to be useful in explaining complex traits
323  and diseases. The heritability enrichment and polygenic prediction accuracy brought by

324  functionally conserved regions were limited, this may because we only considered functional
325  conservation between human and pig compared to sequence conservation which were obtained
326  based on over 100 species**. With the increasing amount of epigenome and gene expression data
327  in other species in the near future, we could identify the core functionally conserved regions by
328  expanding the DeepGCF model structure to integrate functional profiles from multiple species.
329  Another limitation is that the functional conservation of the same sequence segment in different
330 tissues and cell types should be conceptually different, which could not be distinguished by the
331  current DeepGCF score. One ideal way to obtain tissue- and cell-type- specific DeepGCF scores
332 isto train a different model on each tissue and cell type using the respective data. However, the
333 current volume of functional profiles, particularly in pig, does not support the development of
334  tissue- and cell-type- specific DeepGCF models.

335 Despite the limitations, the DeepGCF approach shows a promising application on the

336  comparison of cross-species functional conservation. The model framework can be easily
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337  adapted to other species. Our future work will focus on expanding the model to the comparison
338  of multiple species, including human, mouse, pig, cattle, and other livestock animals. The

339  functional conservation information among different species will provide additional insight into
340  the genetic and evolutionary mechanisms behind complex traits and diseases, analogous to the
341  sequence conservation among vertebrate animals provided by such as PhyloP score.

342

343  Methods

344  Genome alignment. We used the chained and netted alignments of human (GRCh38) and pig
345  (susScrll) genome assemblies from the UCSC genome browser®. The assemblies were aligned
346 by the lastz alignment program*® using human as the reference.

347  Model inputs. We divided the whole-genome alignment between human and pig into non-

348  overlapping 50-bp regions within each alignment block, resulting in 38,961,848 orthologous

349  pairs. If an alignment block ended shorter than a 50-bp window, the window was truncated to the
350  end of the block, which resulted in some regions smaller than 50 bp. For each orthologous pair,
351  we collected the corresponding functional features, including chromatin accessibility measured
352 by Assay for Transposase-Accessible Chromatin (ATAC-seq), histone modifications measured
353 by Chromatin Immunoprecipitation sequencing (ChIP-seq), chromatin state annotations

354  (ChromHMM), and gene expression measured by RNA-seq for human and pig from public

355  resources, including ENCODE! and public literatures'®?’. We only collected the functional data
356  at the tissue level for human, and merged those of the same data type from the same tissue, so
357  that the total number of human features were close to pig. For human, there were 604 ChIP-seq
358 and ATAC-seq files merged into 129 features, 12 ChromHMM files of 15 chromatin states (12 x

359  15=180 features), and 77 RNA-seq features, which resulted in 386 functional annotations. For
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360 pig, there were 287 ChlIP-seq and ATAC-seq files merged into 84 features, 14 ChromHMM files
361  of 15 chromatin states (14 x 15 =210 features), and 80 RNA-seq features, which resulted in 374
362  functional annotations. Details of features from each data type are reported in Supplementary
363  Data 1-6.

364  Prediction of binary functional features based on DeepSEA. We trained two DeepSEA

365 models to predict the binary functional features, including ATAC-seq, ChIP-seq and chromatin
366  state annotations, of human and pig using the PyTorch-based package, Selene*’. We used the
367  peak calls of ATAC-seq and ChIP-seq, and one-hot encoded chromatin state annotations as the
368  training input. We then trained the model based on a sequence region of 1,000 bp, and the feature
369  must take up 50% of the center bin (200 bp) for it to be considered a feature annotated to that
370  sequence. All the hyperparameters were set as default (Supplementary Data 19). We created a
371  wvalidation set using the data from chromosomes 6 and 7 for early stopping during training, a test
372  setusing the data from chromosomes 8 and 9 for the generation of the receiver operating

373  characteristic (ROC) and precision-recall (PR) curves, and a training set using the rest data. We
374  then predicted the probability of each binary feature using the trained model for the first base of
375  all the paired regions that were at most 50 bp.

376  Data subsets for training and evaluation. We divided the entire data into the training,

377  wvalidation, and prediction sets based on the chromosome number. To predict the DeepGCF score
378  of human regions from even and X chromosomes (prediction set), and the corresponding paired
379  pig regions, we trained a DeepGCF model based on paired regions from a subset of odd

380  chromosomes of human and pig. We created a validation set also from another subset of odd
381  chromosomes (not overlapping with the training set) for the hyper-parameter tuning and early

382  stopping during training. We used a subset of the test set to generate the ROC and PR curves. To
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383  predict the DeepGCF score of human regions from odd chromosomes and the corresponding
384  paired pig regions, we created training and validation set similarly as above, except from even
385  chromosomes. We excluded Y and mitochondrial chromosomes in this study. Detailed division
386  of each set is shown in Supplementary Data 20.

387  DeepGCF training. Before training the DeepGCF model, we first randomly paired up the

388  human-pig orthologous regions to get the same number of non-orthologous pairs in the training
389  set. We then trained the DeepGCF model with a pseudo-Siamese architecture as the LECIF

390  model??. In our pseudo-Siamese neural network, for each orthologous/non-orthologous pair, two
391  input vectors containing the human and pig binary features (probabilities between 0 and 1)

392  predicted from DeepSEA and normalized RNAseq data (also between 0 and 1) were connected
393  to the human and pig subnetworks, respectively (Fig. 1). We performed a natural logarithm

394  transformation on RNAseq data given the large range before normalizing. The two subnetworks
395  were then fully connected to a final subnetwork, which generated the output prediction. We

396  weighted non-orthologous pairs 50 times more than orthologous ones during the training process.
397 We conducted a random grid search for hyper-parameters, including number of layers in each
398  subnetwork and the final subnetwork, number of neurons in each layer, learning rate, batch size,
399  and dropout rate. We generated 100 combinations of hyper-parameters randomly selected from
400  the candidate parameter pool (Supplementary Data 21), using each combination to train a

401  DeepGCF model based on the same random subset of 1 million aligned and 1 million unaligned
402  human-pig pairs from the training set. We then selected the combination of hyper-parameters
403  that maximized the AUROC on the validation set to train the final model based on the whole

404  training set. We stopped training if there was no improvement in AUROC over three epochs on
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405  the validation set for both hyper-parameter search and training, otherwise the training stopped
406  when reaching the maximum number of epochs, which was set to be 100.

407  Human-pig orthologous SNPs. In total 73,257,633 human biallelic SNPs (GRCh38) were

408  obtained from 1,000 Genome Project®!. Their positions were lifted to corresponding orthologous
409  positions in the pig genomes (SusScrl1) using the UCSC liftover utility with chain files available
410  from the UCSC website*’, which resulted in 35,575,835 orthologous SNPs.

411  Function enrichment. To explore the Gene Ontology terms of genomic regions (e.g.,

412  enhancers), we used the GREAT tool*® with default parameters and a cut-off of FDR < 0.05 for
413  both the binomial and the hypergeometric distribution-based tests.

414  Tissue specific chromatin state. For each chromatin state, we first used the merge function of
415  BEDtools* to merge any regulatory regions between two tissues overlapping by at least 1 bp
416  across all tissues. Then for strongly active enhancer and promoter in each tissue, if a region is
417  active in only one tissue and does not overlap with any active regions in other tissues, we define
418  the region as tissue specific regulatory element. If a region is active in all tissues (i.e., overlaps
419  across all tissues), we define the region as “all common” regulatory element.

420  Tissue-sharing of e/sGene. To explore how e/sGenes are shared across all tissues, we performed
421  the meta-analysis of e/sGenes using MashR (v0.2.57)>°. We used the slope and the standard error
422  of slope of top e/sQTL of genes (missing slopes were set to be 0 with standard error of 1) across
423 49 tissues from GTEx (v8)? for human and 34 tissues from PigGTEx databases?* for pig as the
424  input. We then obtained the estimate of effect size and the corresponding significance (local false
425  sign rate, LFSR) from the mash function. An e/sGene was considered active in a tissue if LFSR

426  <0.05.
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427  DeepGCF score for genes. We obtained the gene boundaries of human and pig genes from

428  Ensembl release 107 (GRCh38 for human and Sscrofall for pig), and extended them by 35 kb
429  upstream and 10 kb downstream to include probable cis-regulatory regions®'. We then compute
430  the DeepGCF score for genes based on the average score of all orthologous regions overlapping
431  with the gene and the extended regions. For human genes linked to promoter sequence class, we
432  identified a promoter’s potential target gene if the distance between the promoter and the TSS of
433  agene is less than 2 kb, yielding a total of 12,044 promoter-gene pairs.

434  Heritability partitioning analysis. We collected the GWAS summary statistics of 80 human
435  complex traits from the UK Biobank and public literatures (Supplementary Data 14). We ran the
436  LD-score regression software ldsc (v1.0.1)*! to partition the heritability based on two sets of
437  annotations: 1) one binary annotation of functionally conserved regions (top 5% of DeepGCF)
438  and 2) five binary annotations dividing the top 5% DeepGCF into 5 equal-width bins based on
439  percentiles. Both sets of annotations were analyzed with a baseline including 97 annotations*’.
440  Heritability enrichment was calculated as the proportion of trait heritability contributed by SNPs
441  in the annotation over the proportion of SNPs in that annotation.

442  Fine-mapping analysis. We first used PolyFun* to compute SNP prior causal probabilities

443  based on the annotation of functional conservation (top 5% DeepGCF). These prior causal

444  probabilities were then used as priors in SuSiE>? for the fine-mapping analysis. To compare fine-
445  mapping using functional conservation as prior with not using it, we also performed a fine-

446  mapping analysis using SuSiE alone, which only took LD information into account. A SNP is
447  identified to be putative causal if the posterior causal probability (PIP) is greater than 0.95 and

448  the P-value in GWAS is smaller than Se-8.
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449  Polygenic prediction. We incorporated functional conservation as a prior in polygenic

450  prediction using the software SBayesRC*. The GWAS summary statistics of 20 complex traits
451  from UK Biobank (Supplementary Data 17) were analyzed using ~7 million common SNPs with
452  and without one annotation of functional conservation (top 5% DeepGCF). To compare the

453  prediction accuracy, we partitioned the total sample into ten equal-sized disjoint subsamples. For
454  each fold, we retained one subsample as the validation set and other remaining nine subsamples
455  as the training set. We calculated the polygenic score (PGS) using genotypes from an

456  independent validation set in each fold and obtained the prediction R? from linear regression of
457  true phenotype on the PGS. We then calculated the relative prediction accuracy by (Ro?> — Rp?) /
458  R¢?, where R¢? is the prediction R? without any priors, and Rp? is the prediction R? using

459  functional conservation as a prior.

460

461  Data availability

462  The DeepGCEF score for human-pig orthologous regions are publicly available for download

463  without restrictions from https://github.com/liangend/DeepGCEFE. All epigenomic and gene

464  expression data used for model training can be found in Supplementary data 1-6. Orthologous
465  SNPs between human and pig are from the 1,000 Genome Project

466  (http:/ftp.1000genomes.ebi.ac.uk/voll/ftp/data collections/1000_genomes_project/release/2018

467 1203 biallelic SNV). GWAS summary statistics used for LDSC analysis are from UK Biobank

468  (http://www.ukbiobank.ac.uk), with details showing in Supplementary data 14. Summary
469  statistics and genotype used for polygenic score prediction from UK Biobank

470  (http://www.ukbiobank.ac.uk) are available through formal application.

471
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Code availability

The code of DeepGCeF is available at https://github.com/liangend/DeepGCF.
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Fig. 1 Overview of the DeepGCF model. a The learning procedure of DeepGCF model consists
of two steps. The first step is to train DeepSEA models in human and pig separately to transform
the binary functional features (e.g., peaks called from ATAC-seq and ChIP-seq, and chromatin
states predicted from ChromHMM) to continuous values by predicting the functional effects of
single nucleotides through centering the target nucleotide at a genomic region of 1,000 bp. The
second step is to train a pseudo-Siamese network for predicting whether the paired human-pig
regions are orthologous or not using two corresponding vectors of functional effects predicted
from DeepSEA and normalized gene expression as inputs. The output, DeepGCF score, is a
value between 0 and 1 quantifying the functional conservation of the paired human-pig region. b
The DeepGCF model can be applied to predict the effect of genome variants on the functional

conservation, quantified by changes in DeepGCEF scores.
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608  Fig. 2 The performance of DeepGCF under different scenarios a Receiver operating

609  characteristic (ROC) curves comparing the performance of DeepGCF (this study) and LECIF??
610  methods. The ROC curve of each method is generated by predicting whether 200,000 pairs

611 randomly selected from the testing set, which included equal number of orthologous and non-
612  orthologous pairs (e.g., randomly mismatched genomics regions), were orthologous or not. b
613  Precision-recall (PR) curves generated by similar procedures as the ROC curves. ¢ DeepGCF
614  score distribution of all 38,961,848 human-pig orthologues pairs. d The areas under receiver
615  operating characteristic curve (AUROC) and precision-recall curve (AUPRC) of DeepGCF using
616  all (Human: 386; Pig: 374), ~50% (Human: 192; Pig: 187), ~10% (Human: 52; Pig: 47), and
617  ~1% (Human: 4; Pig: 4) of human and pig functional features. The subsets of the human and pig
618  features were randomly selected ~50%, ~10%, ~1% from each of ChIP-/ ATAC-seq,

619  ChromHMM, and RNAseq profiles. e The AUROC and AUPRC of DeepGCF using all
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620  functional features (Human: 386; Pig: 374), features without ChIP-/ATAC-seq (Human: 129;
621  Pig: 84), without ChromHMM (Human: 180; Pig: 210) and without RNA-seq (Human: 77; Pig:
622 80).

623
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625  Fig. 3 Comparison of functional and sequence conservations. a Relationship between

626  DeepGCF score and PhyloP score of 20,000 randomly selected human regions. PhyloP score is
627  based on multiple alignments of 99 vertebrate genomes to the human genome!?. The blue line is
628  the fitted loess regression and red crosses represents 50 equally-divided percentiles of PhyloP
629  score corresponding to the average of DeepGCF score. b Enrichment fold of 8 sequence class
630  categories®® for regions with high DeepGCF (> 95 percentile) and high PhyloP (> 95t

631  percentile; high D & high P; n = 260,281), regions with high DeepGCF but low PhyloP (< 51
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632  percentile; high D & low P; n = 152,557), and regions with low DeepGCF (< 5™ percentile) and
633  medium PhyloP (between 47.5" and 52.5" percentile; low D & med P; n = 77,848). Enrichment
634  is equal to the proportion of a sequence class category for a type of orthologous regions divided
635 by that for the whole genome. The dashed line (set at 1) represents no enrichment. ¢ DeepGCF
636  score distribution of the different sequence ontologies. The red and green dashed lines represent
637  the mean and the median DeepGCF score of the whole genome. The dots inside each box

638  represent the mean DeepGCF score. d ADeepGCF (DeepGCF after mutation — original DeepGCF)
639  caused by 1,000,000 randomly selected orthologous variants, which are classified into 8 sequence class

640  categories®™. The red dashed line represents the fitted regression line. € The effect of orthologous

641  variants (n = 35,575,835) on DeepGCF score of regions in 40 sequence classes?®, which are
642  classified into 8 categories. The effect was measured by ADeepGCF for variants in each

643  sequence class. The SD of ADeepGCEF for each sequence class quantifies the overall sensitivity
644  of the sequence class to variant effect.

645
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647  Fig. 4 DeepGCF score of genomic regions overlapping with different regulatory elements. a
648  Distribution of average DeepGCF scores across human tissues (n = 12) and pig tissues (n = 14)
649  for each chromatin state. The red and green dashed lines represent the mean and the median
650  DeepGCF score of the whole genome. b DeepGCF scores of genomic regions overlapping with
651 tissue-specific strongly active promoter and enhancer for human and pig'°®. “All common”

652  represents promoters/enhancers shared across all tissues. " denotes Mann—Whitney U test P <
653  2.2e-16. ¢ Number of significantly enriched gene ontology terms for human of genes related to
654  promoters annotated by sequence class®®. The genes were binned by DeepGCF into ten equal-
655  width bins, and the functional enrichment analysis was conducted on each bin. d Similar to ¢,
656  except showing the results of enhancers annotated by sequence class?®.
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Fig. 5 Relationship of DeepGCF score to genetic variants. a The distribution of DeepGCF

score of eQTLs and sQTLs. The red and green dashed lines represent the mean and the median

DeepGCF score of the whole genome. The dots inside each box represent the mean DeepGCF

score. *" denotes P value < 1e-8 based on a two-sided Mann—Whitney U test. b Relationship

between the absolute value of eQTL effect size (|log2(aFC)|) and DeepGCF score for eGenes.

The genes were binned by DeepGCF into ten equal-width bins for human and pig, respectively.

seoketok

denotes the group is different from all other groups with P value < 1e-8 based on a Tukey

multiple comparison. ¢ DeepGCF scores of tissue-sharing e/sGenes from human at local false

sign rate (LFSR) < 5% obtained by MashR>°. d Similar to ¢, except showing the results of pig.


https://doi.org/10.1101/2023.01.13.523857
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.13.523857; this version posted February 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b
sekskok

0.020

08 0.015
2 b5
: 2
o 3
[a)

® 2 0.010
§ 0.4 ‘5
8 7]

0.005

0.000 -
ClinVar Whole genome Oth 100th
Original DeepGCF percentile
C
PRR12: Neuroocular syndrome
COL1A1: Osteogenesis imperfecta o
o °
Y L ]

° RECQL4: Baller-Gerold syndrome

npDUFAFs;  Category

Mitochondrial s CTCF
Original DeepGCF complex 1
9 e O deficiency ¢ Enhancer _
+ 025 o . * Heterochromatin
o ) . e
* 05 ATOHT: Persistent ¢ Low activity
® 0.75 ® Pol b
. . hyperplastic primary -« ¢ Polycom
o1 SDHB: F‘heochromoc‘toma .vitreous SUMF1: Multiple ® Promoter
Sl * Transcription
deficiency =

Increased - Transcription factor

DeepGCF -, .

BBST: Bardet-_gy "
Bied| syndrome U
CDKN1C: Beckwith-
Wiedemann syndrome
* NR3C2: Autosomal dominant pseudohypoaldosteronism

Decreased
DeepGCF

668

669  Fig. 6 Relationship of conservation score to pathogenic variants. a The distribution of

670  DeepGCF scores in pathogenic and likely pathogenic SNPs (n = 104,033) obtained from

671  ClinVar®®, compared to the DeepGCF distribution across the whole genome. **** denotes Mann—
672  Whitney U test P <2.2e-16. b SD of ADeepGCF (DeepGCF after mutation — original DeepGCF)
673  caused by ClinVar SNPs. The SNPs were binned by their original DeepGCF into ten equal-width

674  bins. ¢ ClinVar SNPs classified by sequence class®®. A polar coordinate system was used, where
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the radial coordinate indicates the SNP effect on DeepGCF. The red solid circle represents zero
DeepGCF change, and two dashed circles represent + 0.03 of DeepGCF encompassing 95% of
SNPs. Each dot represents a SNP and SNPs inside the red circle were predicted to have positive
effects (increased DeepGCF), while SNPs outside the red circle were predicted to have negative
effects (decreased DeepGCF). Dot size indicates the original DeepGCF. Within each sequence
class, SNPs were ordered by chromosomal coordinates. Top 10 SNPs with large impact on

DeepGCF associated disease and gene names were annotated.
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Fig. 7 Application of DeepGCF on complex traits/diseases in human. a Heritability
enrichment calculated by LDSC for 80 human traits using functionally conserved regions (top
5% DeepGCF). The regions were divided into 5 equal equal-width bins and the heritability
enrichment of all traits was calculated for each bin. The dashed red line is the fitted regression
line between heritability enrichment and DeepGCF percentile, and the grey area is the 95%
confidence interval. b Significant heritability enrichment explained by functionally conserved
regions in 8 human traits. ¢ The number of putatitive SNPs (PIP > 0.95 and P < 5e-8) identified

by PolyFun + SuSiE using functionally conserved regions as a prior and SuSiE without priors for
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691 7 human traits. d The relative prediction accuracy of PRS for 20 human complex traits using

692  functionally conserved regions as a prior in SBayesRC*. Relative prediction accuracy is equal to
693  (prediction accuracy using the prior — prediction accuracy without priors) / prediction accuracy
694  without priors. A relative prediction accuracy > 0 (dashed line) indicates an accuracy higher than

695  without priors.
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