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Abstract—Taking advantage of the human brain functional
connectome as an individual’s fingerprint has attracted great
research in recent years. Conventionally, Pearson correlation
between regional time-courses is used as a pairwise measure
for each edge weight of the connectome. Building upon recent
advances in graph signal processing, we propose here to estimate
the graph structure as a whole by considering all time-courses
at once. Using data from two publicly available datasets, we
show the superior performance of such learned brain graphs
over correlation-based functional connectomes in characterizing
an individual.

Index Terms—Brain Functional Connectivity, EEG, Finger-
printing, Graph Learning, Graph Signal Processing

I. INTRODUCTION

A growing number of studies have demonstrated that
functional connectomes are subject-specific and can thus be
considered as brain fingerprints; i.e., capable to identify an
individual within a population, in health [1] and disease [2],
[3]. The conventional approach is to construct the functional
connectome (FC) by considering brain regions as vertices and
a pairwise measure of statistical dependence (i.e., Pearson’s
correlation coefficient) between the regional time-courses of
pairs of regions as edge weight. The fingerprinting potential
of FC has been investigated using different neuroimaging
modalities, namely electroencephalography (EEG) [4], [5],
magnetoencephalography (MEG) [6], [7], and functional mag-
netic resonance imaging (fMRI) [1], [8]. All these studies have
helped in advancing towards single-subject level inferences
from brain connectivity data, i.e., by capitalizing on individual
properties of functional network organization across different
cognitive tasks and resting state [9], [10], or by relating
individual connectome features to behavioral and demographic
scores [1], [6], [7], [9]. However, the conventional FC captures
not only the statistical dependence between neural activity but
also that of underlying noise sources. Furthermore, functional
connectomes by construction only provide a pairwise represen-
tation of the brain dynamics, e.g., by looking at the brain as a
composition of dyads. Beneficial because of its simplicity, this
assumption limits the investigation of the individual features
arising from human brain networks. Therefore, FC denoising
remedies have been proposed based on principal component-
based reconstruction [9] or eigenspace embedding [10], each
of which require the learning of latent space-based FCs from a

population of subjects. Here we propose an alternative strategy,
that is, to directly infer a sparse graph structure [11] from
an individual’s EEG data—thus, an alternative to a functional
connectome—using principles from graph signal processing
(GSP) [12], [13]. The fundamental objective of the learning
strategy is to infer a graph on which brain maps are seen as
smooth signals—that is, the majority of signal energy lies at
the lower end of the graph spectrum, which is an intrinsic
property of functional brain organization supported by prior
results in brain GSP [14]–[19]. We treat the adjacency matrix
of learned graphs as an alternative to FC matrices for finger-
printing. A closely related method has already shown promis-
ing results on fMRI data [8]. Here we focus on EEG data,
leveraging our recently proposed method for inferring brain
graphs from EEG data [20]. This method results in a graph
that captures subtle spatial relations between EEG electrodes,
in particular, their instantaneous spatial profiles, such that
EEG maps can be seen as smooth functions on the resulting
graphs. Using two open-access EEG datasets, we show that
learned graphs provide superior fingerprinting performance
over standard functional connectomes. The remainder of the
paper is organized as follows. Section II gives an overview of
fundamental concepts and the proposed method. Section III
presents the experimental setup, the results, and a discussion.
Our concluding remarks are presented in Section IV.

II. METHODS

A. Graph Learning via Enforcing Graph Signal Smoothness

Let G denote an undirected, weighted graph with no self-
loops, represented by an N ×N adjacency matrix A, where
N denotes the number of vertices, with elements Ai,j repre-
senting a measure of similarity of connection strength between
vertices i and j, with Ai,i = 0. A graph signal f ∈ RN can
be seen as a function residing on the vertices of the graph,
whose i-th component is the signal value at the i-th vertex.
The graph degree matrix D is given as Di,i =

∑
j Ai,j ,

and the graph’s combinatorial Laplacian matrix L is given
as L = D − A. Eigendecomposing L gives L = UΛUT

where U = [u1,u2, . . . ,uN ] concatenates the orthonormal
eigenvectors in its columns, and Λ is the diagonal matrix
of the corresponding eigenvalues Λ = diag(λ1, . . . , λN ).
The eigenvalues define the graph Laplacian spectrum. Each
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eigenvalue represents the extent of variability of the associated
eigenvector relative to the graph structure. In particular, the
variability of a graph signal f—where graph Laplacian eigen-
vectors may also be seen as graph signals—can be quantified
using a measure of total variation (TV) as [21]:

TV(f) =
∑

(i,j)∈E

Ai,j(f [i]− f [j])2 = fTLf . (1)

Given two graph signals f1 and f2, if TV(f1) < TV(f2), then f1
is a smoother graph signal than f2 as it exhibits less variability
on the graph.

A major paradigm in graph structure learning exploits this
notion of smoothness to infer a sparse graph from a given set
of observations [11], [22]. Specifically, a graph combinatorial
Laplacian matrix can be inferred via the following optimiza-
tion [22]:

min
L

trace(FTLF) + α∥L∥2F ,

s.t. trace(L) = N,

Li,j = Lj.i ≤ 0, i ̸= j,

L1 = 0, (2)

where F is an N × M matrix of M graph signals, α is
regularization parameter, ∥·∥F denotes the Frobenius norm
and 1 = [1, . . . , 1]T . Minimizing the first term guarantees
smoothness of the signals on the learned graph, which can
be seen via invoking (1): trace(FTLF) =

∑M
k=1 f

T
k Lfk =∑M

k=1 TV(fk). The Frobenius norm controls graph sparsity
by shrinking edge weights. The imposed constraints in the
optimization ensure finding a valid Laplacian matrix. Noting
that ∥L∥2F = ∥A1∥22+∥A∥2F [11], replacing the ℓ2-norm with
a logarithmic barrier, the optimization in (2) can be solved
more efficiently via a more general-purpose formulation with
respect to the graph’s adjacency matrix [11]:

min
A

∥A ◦ Z∥1 − α1T log(A1) +
β

2
∥A∥2F ,

s.t. diag(A) = 0,

Ai,j = Aj.i ≥ 0, i ̸= j, (3)

where Z is an N × N matrix with elements Zi,j = ∥Fi,: −
Fj,:∥2, i.e., Euclidean distance between signal values on elec-
trodes i and j. The first term in (3) enforces the smoothness
constraint in similar way as in the first term in (2), which
is based on the equivalence trace(FTLF) = 0.5∥A ◦ Z∥1,
where ◦ is the Hadamard product [20]. Intuitively, if smooth
graph signals reside on well-connected vertices, it is expected
that these vertices have smaller distances Zi,j . The second
term enforces graph degrees to be positive and improves the
overall connectivity of the graph. α and β are regularization
parameters, the constraints guarantee to obtain a valid adja-
cency matrix, and the last term controls the graph sparsity.

B. Differential identifiability

The underlying assumption in the maximization of human
functional connectome fingerprinting is that the connectivity

profiles related to the same subject should be more similar
than they are across different subjects. In order to evaluate our
method, we utilized the approach provided in [9], in which, the
identifiability capability is quantified by defining the concept
of “level of identifiability” on a set of FCs. In particular,
we consider a generalized definition of identifiability for any
desired feature set, not just FC. Given S subjects, let y(test)

i

and y(retest)
i denote the test and the retest feature vectors of

subject i where i = 1, . . . , S and S denotes the number of
subjects. An S × S identifiability matrix M for the given
feature set can then be defined, with elements Mk,l equal to the
Pearson correlation between y(test)

k and y(retest)
l . Note that this

matrix is not symmetric, because of the test/retest encoding.
Given M, a scalar value Iself can be defined as the average
of the main diagonal elements—the correlation between test
and retest feature sets of same subjects—that indicates the
average self-similarity across subjects. Accordingly, a scalar
value Iothers can be defined as the average of the off-diagonal
elements—the correlation between different subjects’ test and
retest feature sets—that quantifies the average cross-subject
similarity based on the feature set at hand. A third scalar
value is defined as Idiff = (Iself -Iothers)×100, providing a
robust group level-estimate of identifiability at the individual
connectome level, where a higher value indicates greater
individual fingerprinting [9].

It is insightful to quantify the influence of individual graph
edges to fingerprinting. Considering that subject identity is de-
termined based on the largest value of the Pearson’s correlation
between the test and all the retest feature sets, the contribution
of each edge in computing the correlation can be treated as
edge significance [1], [9]. In particular, let y(test)

k ∈ RE and
y(retest)
l ∈ RE denote two z-score normalized feature vectors,

where k, l = 1, . . . , S, and E = (N2 − N)/2. A measure of
fingerprinting strength of each edge can be defined as:

Qi =
1

S

∑
k=l

y(test)
k [i]y(retest)

l [i]− 1

S2 − S

∑
k ̸=l

y(test)
k [i]y(retest)

l [i],

(4)
where i = 1, . . . , E denotes edge index. The higher the value
of Qi, the higher the impact of edge i overall along the
population in fingerprinting. Consequently, using {Qi}i=1,...,E

a measure of nodal fingerprinting strength can be obtained
for each graph node n = 1, . . . , N by averaging Qi values
associated to each node.

C. Datasets

We used EEG data from two publicly available datasets:
i) motor-imagery task data from the BCI Competition III-
Dataset IVa1 [23], and ii) a resting-state data of 109 subejcts
2 [24], [25]. In the remainder of this paper we denote these
two datasets as Dataset-1 and Dataset-2, respectively. Dataset-
1 contains EEG signals from five subjects, acquired using
118 electrodes at a sampling rate of 100 Hz. The data for
each subject consists of 280 trials, for two different classes

1https://www.bbci.de
2https://physionet.org/content/eegmmidb/1.0.0/
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of motor imagery tasks (right hand and right foot), 140 trials
per class; each trial lasted for 3.5 seconds, each of which
contained rest intervals of varying lengths from 1.75 to 2.25
seconds at the end. Dataset-2 contains EEG signals from 109
subjects, by 64 electrodes using BCI2000 system [24] with
a sampling rate of 160 Hz. Each subject performed fourteen
different experimental runs, including two one-minute resting-
state runs (in “eyes open” and “eyes closed” modes), and three
two-minute runs of real and imagery movements. In order to
prevent the possible bias of different sessions and tasks, we
used the resting-state recording in both eyes-open and eyes-
closed conditions for our fingerprinting purposes.

D. EEG-based fingerprinting

For each subject in each of the two datasets, we infer
a Functional Learned Graph (FLG), using different sets of
EEG maps from each subject; detail on sets given below. In
each graph, vertices represent EEG electrodes (same definition
across subjects for each dataset), whereas edges and their
weights were derived by estimating the graph’s weighted
adjacency matrix using the optimisation in (3). As a means
of comparison, using the EEG data used for each graph
learning setting, we also defined a fully connected FC Graph
(FCG) in which edge weights were defined based on the
absolute value of the Pearson’s correlation between pairs of
electrodes. In Dataset-1, we extract from each trial the 0.5-
2.5 second interval after the visual cue [26], and treat these
as a task-active trial, and we treat the 1.75 seconds interval
after the trials as a rest trial. Given that motor activity (real or
imagined) modulates the sensorimotor mu rhythm (8-13 Hz)
and beta rhythm (13-30 Hz), we bandpass filtered the extracted
signals with a third-order Butterworth filter to retain 8-30 Hz
frequencies. We compared four different settings for the set of
EEG signals used for building FCG and FLG, namely, using
trials of both tasks, just task 1, just task 2, and rest trials. In
each setting, we treat half of the signals as the test set and the
other half as the retest set. In Dataset-2, the resting-state EEG
signals from two modes were temporally bandpass filtered into
six canonical frequency bands: delta (0.5-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), low beta (13-20 Hz), high beta (20-30 Hz)
and gamma (30-50 Hz). In each band, the first 30 seconds
were treated as test set, whereas the remaining 30 seconds
were treated as retest set. FLG and FCG were derived for the
test and retest sets of each subject and the vectorized version
of the upper triangular part of them were considered as feature
sets.

III. RESULTS

EEG functional learned graph: Fig. 1 shows representative
graphs and their related adjacency matrices obtained using
FLG and FCG. The FLG is a much sparser representation
compared to the FCG, which is a complete graph. This prop-
erty can be better observed by inspecting the corresponding
adjacency matrices that are shown in Fig. 1(c); given that the
matrices are symmetric, only the lower/upper triangular parts
of them are shown.
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Fig. 1: A representative subject-specific (a) FCG, and (b) FLG.
(c) Adjacency matrices of the graphs shown in (a) and (b);
the lower triangular section is for the FCG whereas the upper
triangular section is for the FLG.

Fingerprinting power of FLG over FCG: TABLE I and
TABLE II show fingerprinting results using FCG and FLG
on Dataset-1 and Dataset-2, respectively. The results indicate
the superior performance of learned graphs compared to
conventional correlation-based connectivity graphs in both Idiff
and accuracy measures. In Dataset-1, for all four settings, Idiff
values obtained from using FLG are substantially higher than
the values of FCG, and subjects are identified with absolute
accuracy using both FLG and FCG. Similarly, in Dataset-2,
for all frequency bands, FLG outperforms FCG. Specifically,
all subjects are identified in the Eyes Open mode in the last
four bands, as well as in the alpha and low beta bands in
the Eyes Closed mode, which outperform the results of the
state-of-the-art methods [5], [27].

TABLE I: Fingerprinting Idiff (%)/accuracy(%) on Dataset-1.

Both Tasks Task 1 Task 2 Rest
FLG 21.9/100 21.7/100 22.1/100 21.8/100
FCG 10.6/100 11.4/100 10.3/100 11.1/100

The impact of EEG duration on fingerprinting: In order
to investigate the effect of the size of EEG time series
on fingerprinting, we performed identification using different
numbers of trials in Dataset-1 and different lengths of epochs
in Dataset-2. In particular, in Dataset-1, we used 280 trials
from both tasks and rest (half of them for test and half for
retest sets), and differential identifiability was obtained as the
average of 100 bootstraps for each instance of number of trials;
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TABLE II: Fingerprinting Idiff (%)/accuracy(%) on Dataset-2.

Eyes Open Eyes Closed
FLG FCG FLG FCG

Delta 29.3/95.4 26.90/82.6 32.0/99.1 29.2/90.8
Theta 25.4/95.4 16.28/87.2 26.6/99.1 17.0/90.8
Alpha 26.1/100 17.9/83.5 23.0/100 20.0/82.6

Low Beta 26.7/100 20.7/96.3 23.8/100 16.35/92.7
High Beta 27.4/100 22.9/98.2 23.6/99.1 17.3/96.3

Gamma 26.2/100 25.6/98.2 23.1/97.2 23.2/96.3
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Fig. 2: Differential identifiability power of FCG and FLG as
a function of the number of trials used to build and learn
the graphs, respectively; results on (a) both tasks, and (b)
rest trials of Database-1. The error bars show the standard
deviation across 100 bootstrap iterations.

that is, in each bootstrap iteration we randomly selected n
trials and then derived the FCG and the FLG. In Dataset-2,
given that there were no trials available, we varied the length
of the EEG epochs used for deriving the graphs from 2 to
30 seconds for both the test and retest sets. The results are
presented in Fig. 3. On both Eyes Open and Eyes Closed
rest data, fingerprinting performance enhances as a function
of length of epochs in all frequency bands with the exception
of the Gamma band for which the performance reaches a light
plateau after around eight seconds. FLG clearly outperform
FCG across all setting, once again, with the exception of
the Gamma bound for which the performances are alsmot
identical; the largest difference in performance between FLG
and FCG is within the Theta band, a pattern that is consistent
along different epoch lengths.

Significance of individual graph edges in fingerprinting:
Fig. 4 shows electrode maps specifying the significance of
individual electrodes/cortical-regions for fingerprinting, where
significance was computed using the method described in
Section II-B. In all six frequency bands, results show spatially
localized patterns that are mainly in the frontal lobe, areas
of the fronto-parietal network that have previously also been
linked to fingerprinting in related work on fMRI data [1], [28].

IV. CONCLUSIONS

We proposed the use of brain graphs learned from EEG
data for the purpose of identifying individuals, as an alterna-
tive to conventional correlation-based functional connectomes.
Results showed superior performance of the proposed graphs
over FC graphs on two datasets. The fingerprinting potential
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Fig. 3: Differential identifiability power of FCG and FLG as
a function of the length of epochs used to derive the graphs
for six frequency bands on the (a) Eyes Open and (b) Eyes
Closed datasets; results on Database-2. The error bars show
the standard deviation across 30 bootstrap iterations.
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Fig. 4: Significance of brain regions for fingerprinting.
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of learned EEG graphs may be further explored in future
work with EEG source-reconstructed functional connectomes,
as well as to leverage latent space embedding schemes [9],
[10]. Future work should also explore the potentials of this
methodology in other neuroimaging modalities (e.g. MEG [6],
fMRI [9]), or to study the effect of brain stimulation on
individual identifiability (e.g., after Transcranial Magnetic
Stimulation). Finally, the eigenbases of EEG learned graphs
may prove beneficial in providing a more compact feature
space [29] for fingerprinting, in particular, their distance to a
common harmonic basis [30], [31] derived from a large sample
of subjects.
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[9] E. Amico and J. Goñi, “The quest for identifiability in human functional
connectomes,” Scientific Reports, vol. 8, no. 1, pp. 1–14, 2018.

[10] K. Abbas, E. Amico, D. O. Svaldi, U. Tipnis, D. A. Duong-Tran,
M. Liu, M. Rajapandian, J. Harezlak, B. M. Ances, and J. Goñi, “GEFF:
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