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Abstract

In high-throughput spatial transcriptomics (ST) studies, it is of great interest to
identify the genes whose level of expression in a tissue covaries with the spatial
location of cells/spots. Such genes, also known as spatially variable genes
(SVGs), can be crucial to the biological understanding of both structural and
functional characteristics of complex tissues. Existing methods for detecting
SVGs either suffer from huge computational demand or significantly lack
statistical power. We propose a non-parametric method termed SMASH that
achieves a balance between the above two problems. We compare SMASH with
other existing methods in varying simulation scenarios demonstrating its superior
statistical power and robustness. We apply the method to four ST datasets from
different platforms revealing interesting biological insights.

Keywords: Spatial transcriptomics; Single cell imaging datasets; Spatially
variable genes; Non-paramteric method; Covariance Modelling; Slide-seq V2;
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Background
Spatial transcriptomics (ST) performs high-throughput measurement of transcrip-

tomes in complex biological tissues at single-cell or subcellular resolution, preserv-

ing spatial information [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In the past decade, the rapid

development of ST technologies has facilitated exciting discoveries in different do-

mains, including neuroscience [11, 12, 13] and cancer research [14, 15, 16]. Early

ST technologies, such as smFISH [17], seqFISH [18] and MERFISH [19], operate at

relatively low spatial resolution, whereas recent technologies, such as Slide-seq [20],

Slide-seq V2 [21], 10X Visium [22] and HDST [23], have enabled transcriptome-wide

profiling at a much finer spatial resolution on multiple thousands of locations. Be-

cause of such huge spatial profiles, deriving biological insights from these datasets

not only poses a plethora of statistical challenges but also demands maximal com-

putational efficiency [24].

A critical step in the analysis of ST datasets is to identify the genes whose level

of expression co-varies with the spatial locations across the tissue. These genes,

often referred to as spatially variable genes (SVGs), can be used in downstream

analyses, such as identifying potential markers for biological processes and defining

areas in the tissue that dictate cellular differentiation and function [25, 26, 27, 28,

29]. For example, Wang et al. (2020) [30] analyzed an ST dataset on the tumor

microenvironment (TME) of three tissue sections from a prostate cancer subject
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[31]. In every tissue section, a unique set of spatially variable metabolic genes were

identified, which they argued, can be used to guide targeted tissue-specific therapy.

A simplistic approach for detecting SVGs could be to identify spatially located layers

or cell types (if any) based on either a priori biological knowledge or using popular

softwares, such as RCTD [32] and Seurat [33], with the transcriptional profiles, and

then check which genes are enriched more in a particular spatial layer or cell type.

However, such an approach would only work if the cell types are spatially well-

separated, and always be sensitive to the quality of the cell type-identification step

[34]. In recent years, more sophisticated methods have been developed to identify

SVGs, a systematic overview of some of which can be found in Li et al. (2021)

[35]. The methods can be broadly classified into two types: a) methods based on

statistical modeling and b) methods based on graphical modeling. The methods of

type (a) are based on parametric or non-parametric statistical model assumptions,

whereas the methods of type (b) are usually model-free and based on graphical

networks, constructed directly from the spatial locations or using simplified spatial

grids. Some of the notable methods of type (a) include Trendsceek [36], SpatialDE

[34], SPARK [37], and SPARK-X [38]. Some of the methods of type (b) are HMRF

[39], MERINGUE [40], SpaGCN [41] and SpaGene [42]. Being model-based, type (a)

methods allow adjusting for covariates such as cell type, whereas type (b) methods

claim to be more flexible in the sense of being model-free.

The statistical power of both types of methods greatly varies based on gene ex-

pression patterns and the spatial structure of an ST dataset. The methods encounter

different levels of computational complexity based on two quantities, N and K, cor-

responding to the numbers of cells/spots and genes, respectively. SpatialDE [34] is

one of the earliest methods of type (a). It employs a Gaussian process (GP) regres-

sion model [43] with kernel-based covariance matrices [44] of multiple types, such

as linear, Gaussian, and cosine, computed using the distance between the spatial

coordinates of the cells. The model decomposes the total variability of a gene ex-

pression into two components, spatial and error variance. A significantly large value

of the spatial variance would imply that the gene is spatially variable. Borrowing an

efficient estimation algorithm from the statistical genetics literature [45], SpatialDE

manages to estimate the variance components with a reasonable degree of compu-

tational efficiency, requiring O(N3 + N2K) floating point operations (FLOPS). A

newer method named SPARK [37] extends the framework of SpatialDE by consider-

ing a generalized linear spatial model (GLSM) [46] with a Poisson distribution, argu-

ing to be better suited for modeling the raw count data usually obtained from most

of the ST platforms. However, the penalized quasi-likelihood (PQL) approach [47]

used for parameter estimation in SPARK is extremely computationally demanding

with a complexity of O(N3K), making it unusable for a transcriptome-wide analy-

sis when N is moderately large (N > 3, 000). To this end, a non-parametric highly

scalable method named SPARK-X [38] has been recently developed requiring just

linear complexity w.r.t. N . It is based on the robust covariance testing framework

[48] that compares the linear kernel-based covariance matrices of the gene expres-

sion and the spatial coordinates. However, using a linear kernel makes SPARK-X

equivalent to fitting a multiple linear regression model [49] with the gene expression

as the dependent variable and the spatial coordinates (or, some transformation of
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these) as the predictors and testing if the fixed effect coefficients differ from zero.

Thus, it is only capable of detecting spatial dependencies or patterns that mani-

fest linearly in the mean or expected value of the gene expression, also known as

first-order dependencies, and drastically loses power in complex scenarios as to be

shown later. Zhu et al. (2021) [38] have partially acknowledged this issue with their

main focus being computational scalability.

On the other side, a popular method of type (b), MERINGUE [40] considers

spatial autocorrelation and cross-correlation based on spatial neighborhood graphs

to identify SVGs. Improving hugely on the complexity of MERINGUE, another

model-free method named SpaGene [42] has been recently developed. It constructs

a spatial network between cells/spots using the k-nearest neighbors approach, and

then for each gene, extracts the subnetwork whose nodes have high gene expres-

sion. Then, it compares the observed degree distribution of the subnetwork to a

distribution from a fully connected network using the earth mover’s distance [50].

It considers a permutation test [51] to obtain the p-value for every gene. SpaGene

is highly comparable to SPARK-X w.r.t. computational complexity and thus ap-

plicable to ST datasets with large N . However, the method is harder to interpret

than the methods of type (a), can not readily accommodate additional covariates,

and also lacks power in various scenarios (see Simulations section).

We propose a non-parametric method, named SMASH, which achieves superior

statistical power than both SPARK-X and SpaGene, while remaining computation-

ally tractable. It augments the idea of SPARK-X in its use of the robust covariance

testing framework [48] coupled with more general kernel-based spatial covariance

matrices. With a computational complexity quadratic in N , SMASH sacrifices some

degree of computational efficiency in favor of significantly higher detection power

than both SPARK-X and SpaGene. However, it is worth highlighting that SMASH

is notably faster than other type (a) methods, such as SpatialDE and SPARK,

and can thus be thought of as a balanced alternative, fusing high detection power

with a moderate degree of scalability. In varying simulation scenarios, we demon-

strate that SMASH achieves highly consistent and superior performance as com-

pared to the methods SPARK-X and SpaGene. Finally, our analysis of four large ST

datasets from platforms like SlideSeq V2, 10X Visium, and MERFISH using these

three methods not only reveals exciting biological insights but also demonstrates

SMASH’s capability of detecting SVGs that will be otherwise missed by either of

the other two methods. A Python-based software implementation of SMASH is

available at, https://github.com/sealx017/SMASH-package, which returns the lists

of SVGs detected by both SMASH and SPARK-X, allowing users to investigate the

overlap between them.

Results
Simulations

We evaluated the performance of SMASH, SPARK, and SpaGene in three different

simulation setups. We omitted SpatialDE and SPARK from the power comparison

for two reasons: a) high computational requirements and b) these two methods have

already been greatly studied in previous works [38, 42]. In simulation setup (1), we

followed the procedure described in the SPARK-X manuscript [38]. In setups (2) and
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(3), we considered the Gaussian process (GP)-based spatial regression model from

the SpatialDE manuscript [34], respectively with the Gaussian and cosine kernel-

based covariance functions (see Equation (2)). In all the setups, three values of

the number of cells (N) were considered, N = 1000, 5000, and 10,000. The spatial

coordinates of the cells were simulated first and then the expression levels of K

(500 or 1000) genes with varying levels of dependence. In setup (1), the expression

levels were simulated using a negative binomial distribution, while in setups (2) and

(3), those are simulated using a multivariate normal distribution. In all the setups,

distinct spatial patterns were ensured to be present in the expression levels. Further

details regarding the simulation setups are provided at the end of the Methods

section. Figures 1, 2, and 3 respectively correspond to the three simulation setups,

in which we display the simulated spatial patterns and the statistical power of the

three methods for different parameter combinations.

In simulation setup (1), SMASH, and SPARK-X performed much better than

SpaGene for all four spatial patterns, namely streak, reverse streak, hotspot, and

reverse hotspot (Figure 1). SpaGene was particularly poor for the patterns: streak

and hotspot. The power of SMASH and SPARK-X steadily increased as N and the

fold-change parameter increased. Note that a fold value of 1 stood for no spatial

association while a larger value indicated higher spatial association. This partic-

ular simulation setup favored SPARK-X in the sense that the spatial variability

of the expression was of the first order, manifesting entirely through the mean or

expectation. Even then SMASH could achieve similar power.

In simulation setups (2) and (3), the spatial variability of the expression was

of higher order, manifesting through the covariance. In setup (2), which had the

Gaussian covariance function, SMASH performed the best followed by SPARK-

X and then SpaGene in most cases. SMASH performed the best in setup (3) as

well. However, SpaGene achieved better power than SPARK-X here. SPARK-X

had almost zero power in many of the cases, especially when the period p was

small (p = 0.5, 1), demonstrating its lack of robustness under complicated spatial

dependency structures.

We compared the run-time of the methods in the simulation setup (2) for varying

numbers of cells, N = 1000, 5000, and 10000 (Table 1). Since the computational

complexity of the algorithms mainly differ w.r.t. N and not the number of genes K,

we kept K = 1000. We noticed that the run-time of SMASH expectedly increased

in an almost squared order w.r.t. N . SPARK-X and SpaGene were both extremely

fast for just having linear complexity w.r.t. N . We also added SpatialDE to this

comparison just to show how computationally intensive it can be to fit a fully

parametric model in such a context. We omitted SPARK entirely as it is much

slower than even SpatialDE with a computational complexity of O(N3K).

Application to real data

We applied the methods, SMASH, SPARK-X, and SpaGene to four datasets: 1)

mouse cerebellum data collected using Slide-seq V2 [21], 2) human dorsolateral pre-

frontal cortex (DLPFC) data collected using 10X Visium [12], 3) small cell ovarian

carcinoma of the ovary hypercalcemic type (SCCOHT) data collected using 10X

Visium [12], and 4) mouse hypothalamus data collected using MERFISH [52]. The

datasets have varying numbers of genes and spots/cells.
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Figure 1 Simulation following the SPARK-X manuscript. A Four spatial expression patterns that
the genes were assumed to follow. B Statistical power plots of the three methods, SMASH,
SPARK-X, and SpaGene under varying values of N and fold-size, for K = 500 genes at a level of
α = 0.05. The results were averaged over five replications.
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Figure 2 Simulation using Gaussian process-based regression model with the Gaussian
covariance. A) Four spatial expression patterns that were generated using Gaussian covariance
matrices with four different values of the lengthscale l. B) Statistical power plots of the three
methods under varying values of N and effect-size (h) for K = 1000 genes at a level of α = 0.05.
The results were averaged over five replications.
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Figure 3 Simulation using Gaussian process-based regression model with the cosine covariance.
A) Four spatial expression patterns that were generated using cosine covariance matrices with four
different values of the period p. B) Statistical power plots of the three methods under varying
values of N and effect-size (h) for K = 1000 genes at a level of α = 0.05. The results were
averaged over five replications.
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Table 1 Computational complexity and run-time comparison. The table lists the theoretical
complexity and run-time (in seconds) of the four methods, SMASH, SPARK-X, SpaGene and
SpatialDE in a simulation setup with K = 1000 genes and varying number of cells N . The
number of spatial co-ordinates d was equal to 2. ∗ SpaGene constructs multiple kNN graphs and
performs permutation tests. We are only listing the complexity of the KNN algorithm.

Method Complexity N = 1000 N = 5000 N = 10000
SMASH O(N2K) 0.9 18.5 97.5
SPARK-X O(NKd2) 0.72 4.1 4.3
SpaGene O(NKd)∗ 0.2 1.1 2.1
SpatialDE O(N3 +N2K) 24.5 245 971.7

Mouse cerebellum by Slide-seqV2

The mouse cerebellum data [21] has 20,117 genes and 11,626 spots. We restricted

our focus to the 7,653 genes that express in more than 1% of the spots. The mouse

cerebellum is made of four spatial layers, white matter layer (WML), granule layer

(GL), Purkinje layer (PL), and molecular layer (ML) [53]. These layers consist of

different types of cells. For example, WML contains oligodendrocytes, GL contains

granule cells, PL contains Purkinje neurons and Bergmann gila, and ML contains

intra-neurons MLI. These cell types can be inferred based on just the transcriptional

profiles using cell clustering software like RCTD [32]. We display the inferred cell

types overlayed on the spatial locations in Figure 4. Out of the 7,653 genes, SMASH

identified 1173 genes to be spatially variable (adjusted p-value: padjust < 0.05).

SPARK-X and SpaGene respectively detected 608 and 518 genes, and the overlaps

between the detected SVGs by the three methods are displayed in a Venn diagram

(Figure 4). We noted that SPARK-X and SpaGene had many of the SVGs uncom-

mon. SMASH, on the other hand, could identify almost all the detected genes by

those two methods, especially SPARK-X, while detecting an additional 363 SVGs.

Next, we performed two types of enrichment analysis. First, we compared the per-

formance of the methods in different layers by computing their enrichment scores

(ES) following Liu et al. (2022) [42]. It is based on the expectation that the genes

which abundantly express themselves in the four spatial layers, should be identified

and ranked top by the methods. In that regard, we noticed that SPARK-X per-

formed poorly in the PL, whereas SpaGene performed poorly in the WML. SMASH,

on the other hand, consistently achieved similar or better performance compared

to the other two methods in all four layers. Next, we individually performed func-

tional enrichment analysis on the following four sets of SVGs: a) the common genes

identified by all three methods, b) the genes identified by SMASH and SpaGene but

not by SPARK-X, c) the genes identified by SMASH and SPARK-X but not by Spa-

Gene, and d) the genes identified only by SMASH. The expression pattern of three

representative genes of the enriched pathways for each of these four sets of genes,

are shown in Figure 5. For set (a), top enriched Gene Ontology (GO) terms, such as

GO: 0098916 (anterograde trans-synaptic signaling), GO: 0007268 (chemical synap-

tic transmission ), and GO: 0099536 (synaptic signaling), were broadly associated

with synaptic regulation. The protein-coding genes Fam107a, Ppp3ca, and Calm1

appeared in these top pathways. Fam107a seems to express in the PL, whereas the

other two express in the GL (Figure 5). For set (b), the top GO terms including

GO: 0006873 (intracellular monoatomic ion homeostasis), GO: 0030003 (intracellu-

lar monoatomic cation homeostasis), and GO: 0098771 (inorganic ion homeostasis)

were associated with ion homeostasis. The representative genes Atp1a3 and Thy1
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Figure 4 Analysis of mouse cerebellum data. A) Location of the major cell types corresponding
to the four spatial layers of the mouse cerebellum. B) Overlap between the detected SVGs by the
three methods. C) Enrichment scores of the methods in the four spatial layers.
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express in the PL while Calm3 expresses in the GL. For set (c), the top pathways in-

cluding GO: 0006811 (monoatomic ion transport), GO: 0006812 (monoatomic cation

transport), and GO: 0098655 (monoatomic cation transmembrane transport) were

associated with ion transportation. The representative genes Pllp and Efnb3 ex-

press in the WML, whereas Cox7a2 expresses roughly in the GL. For set (d), the

top enriched GO terms, such as GO: 0044057 (regulation of system process) and

GO: 0050877 (nervous system process), were associated with regulating different

types of system processes. The representative genes Gls, Tmem36a, and Coro2b

roughly express in the GL.

Figure 5 Expression patterns in mouse cerebellum data. Three representative genes from the
detected pathways for the four sets of genes: a) the common genes identified by all three methods,
b) the genes identified by SMASH and SpaGene but not by SPARK-X, c) the genes identified by
SMASH and SPARK-X but not by SpaGene, and d) the genes identified only by SMASH.

Human DLPFC by 10X Visium

The human dorsolateral prefrontal cortex (DLPFC) data [12] has 33,538 and 3,639

spots. We focused on the 13,783 genes which express in more than 1% of the spots.

Every spot belongs to one of the six manually labeled cortical layers or the white
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matter layer (WML) (Figure 6). SMASH and SPARK-X identified 10,871 and 10,416

SVGs respectively (padjust < 0.05), whereas SpaGene identified only 2379. The

overlaps between the detected SVGs by the three methods are displayed in a Venn

diagram (Figure 6). We noted that almost all the genes detected by SpaGene were

also detected by both SMASH and SPARK-X. SMASH and SPARK-X detected a

lot of additional SVGs. We performed functional enrichment analysis on the two

sets of detected genes: a) the common genes identified by all three methods and b)

the genes identified only by SMASH and SPARK-X but not by SpaGene. For set

(a), top enriched GO terms, such as GO: 0099537 (trans-synaptic signaling ) and

GO: 0099177 (regulation of trans-synaptic signaling), were associated with synaptic

signaling. For set (b), top enriched GO terms like GO: 0006397 (mRNA processing)

and GO: 0000375 (RNA splicing, via transesterification reactions), were associated

with RNA processing. The expression of three representative genes from the set (b)

are displayed in Figure 6. There seemed to be a gradient spatial pattern of expression

for all three genes which SpaGene failed to detect. Similar to the previous section,

we computed the enrichment score (ES) of every method in the seven manually

labeled spatial layers. From Figure 6, we noticed that SpaGene performed poorly

in terms of ES, especially in Layers 1 and 6. We also performed an additional check

as follows. There are three cortical-layer associated SVGs, MOBP, SNAP25, and

PCP4, and three blood and immune-related SVGs, HBB, IGKC, and NPY, known

to be spatially variable from previous studies [12]. We checked how many of these

genes appeared in the lists of the top thousand SVGs (in terms of padjust) by the

three methods. SMASH and SpaGene respectively ranked five and six of these SVGs,

whereas SPARK-X ranked only two cortical-layer associated genes.

SCCOHT by 10X Visium

The small cell carcinoma of the ovary hypercalcemic type (SCCOHT) data [54]

has 15,229 genes and 2071 cells. We restricted our focus to the 12,001 genes that

express in more than 5% of the cells. Sanders et al. (2022) [54] grouped the cells into

twelve clusters based on the expression profile of a selected few genes, using Seurat

[33], which we display in Figure 7. SMASH, SPARK-X, and SpaGene respectively

detected 9361, 6564, and 6899 SVGs (padjust < 0.05). The overlaps between the

detected SVGs by the three methods are displayed in a Venn diagram (Figure 7).

SMASH could detect most of the SVGs identified by at least one of the other

two methods and an additional 1634 genes. Similar to the analysis of the Mouse

cerebellum data, we checked if the methods could identify the top genes that show

enriched expression in the twelve spatially well-separated clusters found by Sanders

et al. (2022). We computed the enrichment scores (ES) of the methods for each of

the clusters (Figure 7). SMASH achieved consistently higher ES for all the clusters

while SpaGene was the second best in most cases. Additionally, in Figure 8, we

show the expression of three chosen genes from each of the following four sets of

SVGs, a) the common genes identified by all three methods, b) the genes identified

by SMASH and SpaGene but not by SPARK-X, c) the genes identified by SMASH

and SPARK-X but not by SpaGene, and d) the genes identified only by SMASH.

We also checked the clinical relevance of these genes in the existing literature. For

example, CITED4, which was detected to be an SVG by all three methods, has been
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Figure 6 Analysis of human DLPFC data. A) Manually labeled cortical layers (layers 1-6) and
white matter layer (WML). B) Overlap between the detected SVGs by the three methods. C)
Expression of three representative genes identified only by SMASH and SPARK-X. D) Enrichment
scores of the methods in different layers.
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found to be associated with lung adenocarcinoma [55]. From the set (b), ELF4A1

has been found to be associated with gastric cancer [56]. EZH2, from the set (c), is

a well-known marker for being associated with the development and progression of

different types of cancer [57, 58]. Sanders et al. (2022) [54] also found the expression

of EZH2 to be highly variable across their identified spatial clusters. Finally, from

the set (d), SEMA4F has been found to be associated with endometrial cancer [59].

Figure 7 Analysis of SCCOHT data. A) Pre-identified clusters of cells using Seurat. B) Overlap
between the detected SVGs by the three methods. C) Enrichment scores of the methods in
different clusters.

Mouse hypothalamus by MERFISH

The mouse hypothalamus data [52] has 161 genes and 5665 cells. 156 genes are

pre-selected markers for different cell types and can thus be expected to be highly

variable, whereas the other five are control genes. The cell types, such as endothelial,

ependymal, and inhibitory, can be identified based on the transcriptional profiles

of the markers. The spatial organizations of a few major cell types are shown in
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Figure 8 Expression patterns in SCCOHT data. Three representative genes from the four sets of
SVGs: a) the common genes identified by all three methods, b) the genes identified by SMASH
and SpaGene but not by SPARK-X, c) the genes identified by SMASH and SPARK-X but not by
SpaGene, and d) the genes identified only by SMASH.
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Figure 9. SMASH was able to detect 139 genes, whereas SPARK-X and SpaGene

detected 127 and 124 genes, respectively (padjust < 0.01). The overlaps between the

SVGs detected by the three methods are shown in Figure 9. SMASH identified all

the SVGs SPARK-X could detect, while SpaGene identified one additional SVG. It

should be highlighted that all the methods assigned the five control genes to not

be spatially variable. We display the expression of two representative genes from

three sets of genes, a) the genes identified only by SMASH and SpaGene, b) the

genes identified only by SMASH and SPARK-X, and c) the genes identified only by

SMASH. We did not focus on the common genes because they have been extensively

studied in earlier literature, such as the work of Liu. et al. (2022)[42]. The genes

Npy1r and Cplx3 belonged to set (a), and are known to be enriched in inhibitory

and excitatory neurons [60, 61]. Rxfp1 and Ntsr1 belonged to set b). Even though

both genes are known to express in inhibitory and excitatory neurons, Rxfp1 seems

to express in ependymal cells as well. Galr2 and Crhr1 are two genes from set c)

which express in multiple cell types including inhibitory cells and astrocytes.

Discussion
We have proposed a novel non-parametric method SMASH for detecting spatially

variable genes (SVGs) in the context of large-scale spatial transcriptomics (ST)

datasets. In comparison to existing scalable approaches, SMASH achieves superior

power in both complex simulation scenarios and real data analyses while remaining

computationally tractable.

Recently developed spatial transcriptomics platforms produce high-dimensional

datasets [20, 21, 23] in terms of the number of cells and the number of genes. In

such large datasets, fully parametric approaches for detecting SVGs, such as Spa-

tialDE [34] and SPARK [37], albeit statistically powerful, become unusable for their

high computational demand. Computationally efficient alternative non-parametric

approaches, such as SPARK-X [38] and SpaGene [35], on the other hand, can often

turn out to be significantly less powerful. In our method SMASH, we strive to find a

balance between these two issues, meaning that we achieve higher statistical power

while achieving a moderate degree of scalability. We augment the kernel-based co-

variance testing framework [48], used before in SPARK-X, by accounting for more

complex spatial dependencies.

In three different simulation setups, one following the SPARK-X manuscript [38]

and the other two following the framework of SpatialDE [34], we evaluated the per-

formance of SMASH, along with two other methods: SPARK-X and SpaGene, in

terms of type 1 error and power. SMASH achieved consistently similar or better

power than the other two methods in all the simulation setups for all combina-

tions of the varying parameters. In contrast, both SPARK-X and SpaGene be-

haved unpredictably, achieving almost zero detection power in many of the cases. It

demonstrated their lack of statistical robustness and failure to capture complicated

structures of spatial dependency in the gene expression. In the run-time compari-

son of the methods, we showed that SMASH, although slower than SPARK-X and

SpaGene, remained fairly tractable and was almost ten times faster than a fully

parametric approach like SpatialDE. SMASH, SPARK-X, and SpaGene were then

applied to four real datasets: 1) mouse cerebellum data collected using Slide-seq
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Figure 9 Analysis of mouse hypothalamus data. A) Overlap between the detected SVGs by the
three methods. B) Spatial organization of a few major cell types. C) Expression of two
representative genes from each of the three sets, a) the genes identified only by SMASH and
SpaGene, b) the genes identified only by SMASH and SPARK-X, and c) the genes identified only
by SMASH.
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V2 [21], 2) human dorsolateral prefrontal cortex data collected using 10X Visium

[12], 3) small cell ovarian carcinoma of the ovary hypercalcemic type data collected

using 10X Visium [12], and 4) mouse hypothalamus data collected using MERFISH

[52]. We compared the methods via a number of avenues: a) checking the overlap

between the detected SVGs by the three methods, b) computing enrichment scores

(ES) of the methods in different spatial layers or cell types identified based on the

transcriptional profiles using popular softwares, such as RCTD [32] and Seurat [33],

and c) investigating the functional enrichment of the genes that were detected by

SMASH but remained undetected by at least one of the other two methods. For

all the datasets, SMASH detected more SVGs than the other two methods, which

included nearly all of the SVGs detected by SPARK-X. SMASH could also detect

most of the SVGs that were identified by SpaGene but not by SPARK-X. For ex-

ample, in data (1), from the 7,653 genes after quality control, SMASH identified

1173 SVGs which included 607 out of the 608 SVGs SPARK-X could detect. Out

of the 518 SVGs detected by SpaGene, only 248 were also detected by SPARK-X,

while SMASH detected 451 of them. It is important to highlight that SMASH pro-

duced calibrated p-values in the null simulations from all of these datasets, lending

credibility to these higher numbers of detected SVGs. In the same dataset, SMASH

achieved a higher enrichment score (ES) than the other two methods in different

pre-identified spatially separated layers or cell types of the mouse cerebellum. A

higher ES meant better capability to identify the genes that showed highly variable

expression in a particular spatial layer compared to the rest. In the other datasets

as well, SMASH consistently achieved better ES in different spatially localized cell

types. We also studied the functional properties and clinical significance of the iden-

tified SVGs. For example, in data (3), the gene EZH2 was detected to be spatially

variable by SMASH and SPARK-X. EZH2 is a known marker for the progression of

multiple types of cancers [57, 58]. It has also previously been found to be highly vari-

able in some particular spatially localized cell clusters by the group of researchers

who performed the original experiment [54].

In all the methods we have discussed, including SMASH, the biology of a single

tissue section from a single subject is explored at a time. It means that if we either

have multiple tissue sections from the same subject or from multiple subjects, the

methods will have to identify SVGs individually, disregarding the potential of har-

nessing shared information between and across the subjects. Thus, we would like to

extend SMASH in a hierarchical fashion for jointly analyzing more than one tissue

section or subject in the future. One more important functionality that we would

like to incorporate would be the ability to classify the genes based on their similarity

of spatial expression patterns. For example, SpatialDE [34] considers a hierarchical

Bayesian mixture model approach that suffers from extremely high computational

demand. SpaGene [42] considers a non-negative matrix factorization [62] of the

expression data to identify similarly expressed genes. This approach, although com-

putationally feasible, does not take into account the spatial locations directly and

can thus be suboptimal in capturing truly spatial patterns. In the future, we would

like to study this problem with a deeper focus and pursue methodological develop-

ment in this area. Finally, we would like to explore the possibility of using SMASH

in the context of multiplex immunohistochemistry (mIHC) datasets [63, 64] where

the goal is to identify spatially variable cell types and their interaction.
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Methods
We briefly discuss some of the existing methods such as SpatialDE [34], SPARK [37],

SPARK-X [38], and SpaGene [35], and then present the proposed method SMASH.

Note that we did not compare SMASH to either SpatialDE or SPARK in our Results

section except for the time comparison, primarily due to their high computational

demand and the fact that these have already been studied in great detail in earlier

works. However, it is crucial to talk about their modeling frameworks for the sake of

understanding the other methods better. Let us introduce a few relevant notations.

Suppose there is a single subject (image) with N cells/spots and the expression

profile of K genes is observed in the cells. For the i-th cell, let si denote its location

i.e., a vector of spatial (two or three-dimensional) coordinates, and yki denote the

expression of the k-th gene in the cell. Let us also define, yk = (yk1, . . . , ykN )T

and S = (s1, . . . , sN )T . For the sake of simplicity, we are assuming that there are

no additional covariates but in all the methods, except SpaGene, covariates can be

readily incorporated.

A brief overview of existing methods

SpatialDE

SpatialDE uses a Gaussian process (GP)-based spatial regression model [43, 65]. It

assumes that at every location s ∈ S ⊆ R3 , the expression of the k-th gene is a

process yk(s) of the following form,

yk(s) = µk+wk(s)+ ϵk(s); wk(s) ∼ GP(0, τ2kC(s, s′)); ϵk(s) ∼ N(0, σ2
k); (1)

where wk(s) is a zero-centered GP with variance τ2k and covariance function C(s, s′)

for s′ ∈ S. A popular choice for covariance function is the Gaussian kernel-based

covariance, C(s, s′) = exp
[
−||s− s′||2/2l2

]
, where ||.|| denotes the Euclidean norm,

and the hyperparameter l, known as the characteristic lengthscale [66], controls the

rapidness at which the covariance decays as a function of the spatial distance. ϵk(s)

is an independent process with variance σ2
k. With the observed values of s and yk(s),

the data likelihood corresponding to Equation (1) can then be written as,

yk ∼ N(µk1, τ
2
kΣ+ σ2

kI)); Σ = [[Σij ]]N×N ; Σij = exp

[
−||si − sj ||2

2l2

]
; (2)

where 1 denotes the n-length vector of all 1’s, I denotes the n-dimensional identity

matrix and Σ denotes the corresponding Gaussian covariance matrix. The fixed ef-

fect µk accounts for the mean expression level and τ2k accounts for the expression

variance attributable to spatial effects. A large value of τ2k should imply that the gene

shows differential spatial expression. To formally test the hypothesis, H0 : τ2k = 0

against H1 : τ2k > 0, SpatialDE considers the likelihood ratio test (LRT) [67]. To es-

timate the model parameters under the full model, the log-likelihood corresponding

to Equation (2) is optimized w.r.t. (µk, τ
2
k , σ

2
k) using an efficient algorithm by Lip-

pert et al. (2011) [45]. Ideally, it is desirable to optimize over the hyperparameter l

as well but for the sake of computational feasibility, l is kept fixed at a few carefully

chosen values. For every choice of Σ, to analyze all K genes, the efficient algorithm

requires just one computationally demanding step with a complexity of O(N3),
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instead of O(N3K) as incurred in naive algorithms. Along with the Gaussian co-

variance function, SpatialDE also considers linear and cosine covariance functions

to construct Σ, and finally, combines all the LRT values corresponding to different

choices of Σ for the inference. For a particular Σ, the computational complexity of

SpatialDE is of O(N3 +N2K).

Note that, SpatialDE essentially assumes that gene expression is a continuous

random variable (r.v.) and follows a normal distribution. However, for most tech-

nologies, gene expression is obtained as count data. Normalizing the count data has

been shown to be sub-optimal in several omics studies [68, 69]. Improving upon

that, newer methods named SPARK [37] and SPARK-X [38] have been proposed

which we discuss next.

SPARK and SPARK-X

SPARK [37] considers a generalized linear spatial model (GLSM) [46] with Poisson

distribution, which is a generalization of Equation (1) with the following form,

yk(s) ∼ Poi(N(s)λk(s)); log(λk(s)) = µk + wk(s) + ϵk(s); (3)

For cell i, λk(si) is an unknown Poisson rate parameter that represents the un-

derlying gene expression. The processes wk(s) and ϵk(s) are defined as earlier and

the variance parameters, τ2k and σ2
k have a similar interpretation as earlier. To test

H0 : τ2k = 0, SPARK uses the score test [70]. Parameter estimation and inference

are incredibly hard in GLSM which is why SPARK uses an approximate algorithm

based on the penalized quasi-likelihood (PQL) approach [47, 71]. The approach has

the computational complexity of O(N3) for every trait, or O(N3K) in total. Thus,

it lacks severely in terms of scalability. The SPARK R package also has a Gaus-

sian model option (instead of Poisson) which is equivalent to SpatialDE and has a

similar computational requirement.

Improving upon SPARK’s scalability, a recent non-parametric method named

SPARK-X [38] has been proposed. The method is built on a simple intuition: if yk
is independent of S, the spatial distance between two locations i and j should

be independent of the difference in gene expression between the two locations.

It computes the expression covariance matrix, Ek = yk(y
T
k yk)

−1yTk and the dis-

tance covariance matrix, D = S(STS)−1ST and constructs the test statistic as,

T SPARKX
k ≡ tr(EkD)/N where tr() denotes the trace operator. We assume yk to be

mean-standardized here for the sake of simplicity. Under the null hypothesis of no

association, Tk asymptotically follows a weighted mixture of independent χ2
1 distri-

butions. The weights are the products of the ordered eigenvalues of the matrices,

Ek, and D. This test falls under a general class of covariance tests [48], includ-

ing the Hilbert-Schmidt independence criteria test [72] and the distance covariance

statistic [73]. SPARK-X requires the computational complexity of just O(Nd2) for

every gene, or O(NKd2) in total, where d is the dimension of the location-space

S, e.g., d = 3 if S = R3. Linearity of the complexity w.r.t. N makes SPARK-X

easily applicable to large-scale transcriptomics datasets. To capture more complex

dependencies between yk and S, SPARK-X also considers several element-wise non-

linear transformations of S as g(S), where g is a Gaussian or cosine transformation

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.23.533980doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.533980
http://creativecommons.org/licenses/by/4.0/


Seal, et al. Page 20 of 25

with fixed scale or period parameters. Then, it repeats the above testing procedure

replacing S with g(S), and finally, combines all the corresponding p-values using

Cauchy p-value combination rule [74].

However, the form of D corresponds to a linear covariance function [75]. It makes

SPARK-X equivalent to performing a multiple linear regression of yk on S or g(S)

and testing if the fixed effect parameters differ from zero. Thus, SPARK-X is only

capable of detecting first-order spatial dependencies and as shown in the Results

section, severely lacks power for higher-order dependencies. Refer to the supplemen-

tary information for more discussion on this topic.

SpaGene

A very recently developed method, SpaGene [42] is quite different from the rest

of the methods in the sense of being model-free and based on graphs. The intu-

ition behind the method is that the cells/spots with high gene expression are more

likely to be spatially connected than random. It constructs the k-nearest neighbor

(kNN) graph based on spatial locations. Then, for each gene, it extracts a subnet-

work comprising only cells/spots with high expression from the kNN graph. Spa-

Gene quantifies the connectivity of the subnetwork using the earth mover’s distance

(EMD) [50] between degree distributions of the subnetwork and a fully connected

one. To generate the null distribution of the EMD for inference, a permutation test

is considered. For further details, we refer the readers to [41].

Proposed method: SMASH

We consider a test statistic based on the kernel-based test of independence developed

by Zhang et al. (2012) [48] as, T SMASH
k ≡ tr(EkH(S))/N , where Ek is defined as

earlier andH(S) is any N×N kernel-based covariance matrix based on the locations

S. In this work, we consider H(S) to have three forms: a) the Gaussian kernel-based

covariance matrix, Σ defined in Equation (2), b) a cosine kernel-based covariance

matrix of the form, H(S) = [[cos(2π||si−sj ||/p)]]N×N , where parameter p is known

as the period, and c) the linear kernel-based covariance matrix D considered in

SPARK-X (Gaussian and cosine transformations of S: g(S) are considered as well

in constructing D). For the Gaussian covariance matrix, we consider ten data-

driven fixed values of the lengthscale l [66], and for the cosine covariance matrix,

we consider ten data-driven fixed values of the period p. For detailed discussions

on the relevance of using these types of covariance matrices in the context of ST

datasets, we refer the readers to [34] and [37].

Similar to the SPARK-X test statistic, T SPARKX
k , the asymptotic null distribution

of T SMASH
k will be a weighted mixture of independent χ2

1 distributions, where the

weights are the products of the ordered eigenvalues of the matrices, Ek, and H(S).

However, H(S) does not always have a form like D and thus, its eigenvalues can not

be computed with the complexity of O(Nd2). Instead, it requires the complexity

of O(N3), which becomes intractable as N increases. It has been shown that the

asymptotic null distribution of T SMASH
k can be well approximated by a gamma
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distribution [48] as below,

T SMASH
k ∼ Γ(θ1, θ2); θ1 =

E(T SMASH
k )2

V(T SMASH
k )

; θ2 =
V(T SMASH

k )

E(T SMASH
k )

;

E(T SMASH
k ) =

1

N2
tr(Ek)tr(H(S)); V(T SMASH

k ) =
2

N4
tr(E2

k)tr(H(S)2);

where E() and V() denote the expectation and variance, respectively. It is easy

to verify that tr(Ek) = tr(E2
k) = 1. Notice that we can now avoid any opera-

tion of complexity O(N3). Computation of tr(H(S)2) just requires the complexity

of O(N2) using the property that tr(AB) =
∑N

i=1

∑N
j=1 aijbij for two matrices,

A = [[aij ]]N×N and B = [[bij ]]N×N . Thus, for a particular choice of H(S), to ana-

lyze all K genes, SMASH requires the complexity of O(N2K). This computational

complexity is higher than SPARK-X. But we are making that sacrifice to gain sig-

nificantly more power, as shown in both simulation studies and real data analyses

while still achieving a moderate degree of scalability. It is worth pointing out that

even though SMASH is non-parametric and does not make any distributional as-

sumptions, T SMASH
k shares a close connection with the SpatialDE model under some

additional assumptions (see the supplementary information).

As mentioned earlier, we consider multiple (say, R) choices for H(S), to construct

multiple test statistics: T SMASH
kr , r = 1, . . . , R. Finally, we combine the p-values cor-

responding to these test statistics using the minimum p-value combination rule [74]

(see the supplementary information for more details). Note that we have assumed

that yk is mean-standardized and there are no additional covariates to be taken into

account. In presence of covariates, we would regress the covariates out from the gene

expression vector yk, prior to performing the test, using a multiple linear regression

model. To further elaborate, letting X be the corresponding matrix of covariates, we

would compute the projection matrix PX = X(XTX)−1XT , and substitute the vec-

tor yk with y∗k = [I−PX ]yk, in our proposed test statistic. A Python-based software

implementation of SMASH is available at, https://github.com/sealx017/SMASH-

package. The software returns the SVGs detected by both SMASH and SPARK-X

giving users a chance to examine the overlap between the methods.

FDR control

In the real data analysis, we used Benjamini-Yekutieli [76] procedure to control

the false discovery rate (FDR) at 0.05 (or, 0.01) for all the methods. In the Results

section, padjust refers to the adjusted p-values. It was shown by Zhu et al. (2021) [38]

that parametric methods like SpatialDE and SPARK often produce highly inflated

p-values for most ST datasets, and hence need additional testing correction. To

check if our p-values were inflated in the four real datasets, we randomly permuted

the spatial locations of the cells/spots five times and then performed the tests using

the three methods. Thus, we obtained the empirical null distribution of the p-values

for each method which we displayed as quantile-quantile plots (see Figure S1 in the

supplementary information). In all four cases, SMASH showed no sign of inflation

with rather slightly conservative p-values which is expected since the minimum p-

value combination rule used for combining the p-values in our method, is known to

be conservative [77].
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Enrichment scores

In the real data analysis, we computed the enrichment scores (ES) of the three

methods following the procedure outlined in Liu et al. (2022) [42]. Cell clustering

based on biological knowledge or using popular softwares, such as RCTD [32] and

Seurat [33], with the transcriptional profiles, can often identify spatially localized

layers or cell types. Therefore, marker genes in those spatially-restricted cell types

should ideally be identified as SVGs. Suppose there are M cell types. For every

cell type m, the gene set Gm is built from the top 50 markers based on the fold

change between the expression in the cell type m compared to the others. The SVGs

detected by the three methods are ranked from the most to the least significant.

Finally, unweighted gene set enrichment analysis [78] is implemented to evaluate the

enrichment of the gene sets, Gm,m = 1, . . . ,M , in the high ranking of the ranked

SVG lists of the methods.

Simulation description

In simulation setup (1), we generated the spatial coordinates for varying numbers

of cells, N = 1000, 5000, and 10,000 using a random point-pattern Poisson process

[79]. The expression values of K = 500 genes in these cells were simulated based on

a negative binomial distribution displaying one of the four spatial patterns: streak,

reverse streak, hotspot, and reverse hotspot as shown in Figure 1. For each of the

patterns, 80% of the spatial locations were assumed to be background locations,

while the rest 20% were assumed to be part of the pattern. The difference between

the mean expression of a gene on a background location and a patterned location

was captured through a fold-change parameter. Several values of fold-change were

considered where a value of 1 implied a null scenario i.e., no spatial pattern, and a

high value implied a prominent spatial pattern. We refer to Zhu et al. (2021) [38]

for more details.

For simulation setup (2), we considered the Gaussian process (GP)-based spatial

regression model from SpatialDE [34]. The locations were simulated based on Uni-

form distribution, which were then used to construct Gaussian covariance matrices

with varying lengthscale (l) parameters as in Equation (2). The expression levels of

genes were independently and identically simulated from the multivariate normal

distribution described in Equation (2) for different values of the variance parame-

ters τ2k and σ2
k. We fixed the total variance, τ2k + σ2

k = 1, and varied the individual

values as τ2k = h and σ2
k = 1 − h, where “effect-size” h ranged from zero to larger

values implyinh null to an increasingly stronger spatial pattern. In simulation setup

(3), we followed setup (2) replacing the Gaussian covariance with the cosine covari-

ance for varying values of the period parameter p. In all three setups, we compared

SMASH, SPARK-X, and SpaGene in terms of type 1 error and power.

Additional Files
Additional file 1: Supplementary information. It includes additional mathematical discussions pertaining to the

proposed method, and one figure displaying the empirical null p-values of the three methods, SMASH, SPARK-X,

and SpaGene in the four real datasets in consideration.
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Availability of data and materials

A Python-based software implementation of SMASH is available at, https://github.com/sealx017/SMASH-package.

The package provides two detailed notebooks to perform the analysis on the mouse hypothalamus data by

MERFISH and the human DLPFC data by 10X Visium (along with the datasets as compressed Python objects).

Both the mouse cerebellum data by Slide-seqV2 and the human DLPFC data by 10X Visium are available in the R

Bioconductor package: STexampleData [80], available at,

https://bioconductor.org/packages/release/data/experiment/html/STexampleData.html. The full mouse

hypothalamus data by MERFISH is available at, https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248,

from which we focused on only “Replicate 6”, as it had the largest number of cells and highest confluency [34]. The

SCCOHT dataset by 10X Visium was collected at the University of Colorado Denver - Anschutz Medical Campus,

and is available upon request.
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36. Edsgärd, D., Johnsson, P., Sandberg, R.: Identification of spatial expression trends in single-cell gene expression

data. Nature methods 15(5), 339–342 (2018)

37. Sun, S., Zhu, J., Zhou, X.: Statistical analysis of spatial expression patterns for spatially resolved transcriptomic

studies. Nature methods 17(2), 193–200 (2020)

38. Zhu, J., Sun, S., Zhou, X.: Spark-x: non-parametric modeling enables scalable and robust detection of spatial

expression patterns for large spatial transcriptomic studies. Genome Biology 22(1), 1–25 (2021)

39. Zhu, Q., Shah, S., Dries, R., Cai, L., Yuan, G.-C.: Identification of spatially associated subpopulations by

combining scrnaseq and sequential fluorescence in situ hybridization data. Nature biotechnology 36(12),
1183–1190 (2018)

40. Miller, B.F., Bambah-Mukku, D., Dulac, C., Zhuang, X., Fan, J.: Characterizing spatial gene expression

heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities. Genome

research 31(10), 1843–1855 (2021)

41. Hu, J., Li, X., Coleman, K., Schroeder, A., Ma, N., Irwin, D.J., Lee, E.B., Shinohara, R.T., Li, M.: Spagcn:

Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable

genes by graph convolutional network. Nature methods 18(11), 1342–1351 (2021)

42. Liu, Q., Hsu, C.-Y., Shyr, Y.: Scalable and model-free detection of spatial patterns and colocalization. Genome

research 32(9), 1736–1745 (2022)

43. Banerjee, S., Gelfand, A.E., Finley, A.O., Sang, H.: Gaussian predictive process models for large spatial data

sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70(4), 825–848 (2008)

44. Liu, D., Lin, X., Ghosh, D.: Semiparametric regression of multidimensional genetic pathway data: Least-squares

kernel machines and linear mixed models. Biometrics 63(4), 1079–1088 (2007)

45. Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I., Heckerman, D.: Fast linear mixed models for

genome-wide association studies. Nature methods 8(10), 833–835 (2011)

46. Christensen, O.F., Waagepetersen, R.: Bayesian prediction of spatial count data using generalized linear mixed

models. Biometrics 58(2), 280–286 (2002)

47. Dean, C.B., Ugarte, M.D., Militino, A.F.: Penalized quasi-likelihood with spatially correlated data.

Computational statistics & data analysis 45(2), 235–248 (2004)

48. Zhang, K., Peters, J., Janzing, D., Schölkopf, B.: Kernel-based conditional independence test and application in

causal discovery. arXiv preprint arXiv:1202.3775 (2012)

49. Rencher, A.C.: A review of “Methods of Multivariate Analysis, ”. Taylor & Francis (2005)

50. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International

journal of computer vision 40(2), 99–121 (2000)

51. Odén, A., Wedel, H.: Arguments for fisher’s permutation test. The Annals of Statistics, 518–520 (1975)

52. Moffitt, J.R., Bambah-Mukku, D., Eichhorn, S.W., Vaughn, E., Shekhar, K., Perez, J.D., Rubinstein, N.D.,

Hao, J., Regev, A., Dulac, C., et al.: Molecular, spatial, and functional single-cell profiling of the hypothalamic

preoptic region. Science 362(6416), 5324 (2018)

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.23.533980doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.23.533980
http://creativecommons.org/licenses/by/4.0/


Seal, et al. Page 25 of 25

53. Kirsch, L., Liscovitch, N., Chechik, G.: Localizing genes to cerebellar layers by classifying ish images. PLOS

computational biology 8(12), 1002790 (2012)

54. Sanders, B.E., Wolsky, R., Doughty, E.S., Wells, K.L., Ghosh, D., Ku, L., Pressey, J.G., Bitler, B.B., Brubaker,

L.W.: Small cell carcinoma of the ovary hypercalcemic type (sccoht): A review and novel case with dual

germline smarca4 and brca2 mutations. Gynecologic Oncology Reports, 101077 (2022)

55. Zhang, L., Wang, Y., Sha, Y., Zhang, B., Zhang, R., Zhang, H., Xu, S., Wang, H., Xu, Y., Chen, Y., et al.:

Cited4 enhances the metastatic potential of lung adenocarcinoma. Thoracic Cancer 12(9), 1291–1302 (2021)

56. Gao, C., Guo, X., Xue, A., Ruan, Y., Wang, H., Gao, X.: High intratumoral expression of eif4a1 promotes

epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Acta Biochimica et

Biophysica Sinica 52(3), 310–319 (2020)

57. Gan, L., Yang, Y., Li, Q., Feng, Y., Liu, T., Guo, W.: Epigenetic regulation of cancer progression by ezh2: from

biological insights to therapeutic potential. Biomarker research 6(1), 1–10 (2018)

58. Duan, R., Du, W., Guo, W.: Ezh2: a novel target for cancer treatment. Journal of hematology & oncology

13(1), 1–12 (2020)

59. Chen, F., Qin, T., Zhang, Y., Wei, L., Dang, Y., Liu, P., Jin, W.: Reclassification of endometrial cancer and

identification of key genes based on neural-related genes. Frontiers in Oncology 12 (2022)

60. Nelson, T.S., Taylor, B.K.: Targeting spinal neuropeptide y1 receptor-expressing interneurons to alleviate

chronic pain and itch. Progress in neurobiology 196, 101894 (2021)

61. Viswanathan, S., Bandyopadhyay, S., Kao, J.P., Kanold, P.O.: Changing microcircuits in the subplate of the

developing cortex. Journal of Neuroscience 32(5), 1589–1601 (2012)

62. Wang, Y.-X., Zhang, Y.-J.: Nonnegative matrix factorization: A comprehensive review. IEEE Transactions on

knowledge and data engineering 25(6), 1336–1353 (2012)

63. Seal, S., Wrobel, J., Johnson, A.M., Nemenoff, R.A., Schenk, E.L., Bitler, B.G., Jordan, K.R., Ghosh, D.: On

clustering for cell phenotyping in multiplex immunohistochemistry (mihc) and multiplexed ion beam imaging

(mibi) data. BMC Research Notes 15(1), 215 (2022)

64. Seal, S., Ghosh, D.: MIAMI: mutual information-based analysis of multiplex imaging data. Bioinformatics

38(15), 3818–3826 (2022). doi:10.1093/bioinformatics/btac414.

https://academic.oup.com/bioinformatics/article-pdf/38/15/3818/45213227/btac414.pdf

65. Seal, S., Datta, A., Basu, S.: Efficient estimation of snp heritability using gaussian predictive process in large

scale cohort studies. PLoS genetics 18(4), 1010151 (2022)

66. CKI, R.C.W.: Gaussian processes for machine learning. International Journal of Neural Systems 14 (2006)

67. Gourieroux, C., Holly, A., Monfort, A.: Likelihood ratio test, wald test, and kuhn-tucker test in linear models

with inequality constraints on the regression parameters. Econometrica: journal of the Econometric Society,

63–80 (1982)

68. Lea, A.J., Tung, J., Zhou, X.: A flexible, efficient binomial mixed model for identifying differential dna

methylation in bisulfite sequencing data. PLoS genetics 11(11), 1005650 (2015)

69. Sun, S., Hood, M., Scott, L., Peng, Q., Mukherjee, S., Tung, J., Zhou, X.: Differential expression analysis for

rnaseq using poisson mixed models. Nucleic acids research 45(11), 106–106 (2017)

70. Rao, C.R.: In: Balakrishnan, N., Nagaraja, H.N., Kannan, N. (eds.) Score Test: Historical Review and Recent

Developments, pp. 3–20. Birkhäuser Boston, Boston, MA (2005)
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