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18  Abstract

19 With the rapid development in advanced imaging techniques, massive image data have been acquired for
20 various biomedical applications, posing significant challenges to their efficient storage, transmission,
21 and sharing. Classical model- or learning-based compression algorithms are optimized for specific
22 dimensional data and neglect the semantic redundancy in multidimensional biomedical data, resulting
23 limited compression performance. Here, we propose a Semantic redundancy based Implicit Neural
24 Compression guided with Saliency map (SINCS) approach which achieves high-performance
25 compression of various types of multi-dimensional biomedical images. Based on the first-proved
26 semantic redundancy of biomedical data in the implicit neural function domain, we accomplished
27 saliency-guided implicit neural compression, thereby notably improving the compression efficiency for
28 large-scale image data in arbitrary dimensions. We have demonstrated that SINCS surpasses the
29 alternative compression approaches in terms of image quality, compression ratio, and structure fidelity.
30 Moreover, with using weight transfer and residual entropy coding strategies, SINCS improves
31 compression speed while maintaining high-quality compression. It yields near-lossless compression with
32 over 2000-fold compression ratio on 2D, 2D-T, 3D, 4D biomedical images of diverse targets ranging
33  from single virus to entire human organs, and ensures reliable downstream tasks, such as object

34 segmentation and quantitative analyses, to be conducted at high efficiency.

35

36

37  Introduction

38  Advanced imaging techniques in conjunction with efficient image processing approaches makes big
39 impact on modern life science. Many biomedical applications currently require a vast amount of
40  experimental data to be generated for various image-based analysis. For instance, studying the cytotoxic
41 mechanisms of CAR-T cells through long-term live-cell imaging of cell morphological changes can
42 produce several terabytes (TB) to tens of terabytes image data using high-resolution and high-throughput


mailto:feipeng@hust.edu.cn
mailto:li_dongyu@hust.edu.cn
https://doi.org/10.1101/2023.08.22.554284
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.22.554284; this version posted December 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

43 fluorescence microscopy systems 2, For another instance, volumetric imaging of a mesoscale mouse
44 brain at single-cell resolution to create a whole-brain neuron connectivity map will yield tens of terabytes
45 image data®. Such a vast amount of image data places significant burdens on data storage, computation
46  and sharing. For storage at limited space, these massive raw data have to be saved partially, with
47 increased risk of data loss. Besides, due to the limited transmission bandwidth, researchers have to
48  transfer and share data in an inefficient manner. Meanwhile, in contrast to centralized cloud storage and
49  exchange technologies, it is crucial to achieve effective and data-specific storage compression directly at
50 the user terminal. To this end, storage optimization on the data generation source* and more importantly,
51 on the downstream compression side should be studied.

52 The essence of compression lies in the removal of redundancy brought by the internal correlation
53  among signals. Traditional compression methods based on analytical or statistical model explicitly
54 remove spatial and temporal redundancy through transformations and coding, such as domain
55 transformations 5 and entropy coding & 7, to substantially compress the data. Besides the spatial and
56  temporal redundancies, there are also plenty of semantical similarities— for example, visually-similar
57 cells in a microscopic image or a video containing the dynamic changes of the same target, which are
58 widely existed in diverse biomedical image data. Experiments reveal that within these visually similar
59 images, there is also a form of redundancy which is different from classic temporal and spatial
60 redundancies, and termed as semantic redundancy & °. It’s difficult for traditional model-based methods
61 to capture these relatively abstract semantic correlations, thus leaving ample space for further enhancing
62 the compression efficiency. Meanwhile, classic compression methods, such as JPEG °, H.264 1, H.265
63 12 are designed for natural images/videos and thus perform poorly in compression of high dynamic range
64 biomedical images. Moreover, frequency-domain-based compression methods may suffer from spectral
65 truncation or blocking artifacts 3, which affects the accuracy of downstream analysis tasks. Therefore,
66 for biomedical images characterized by high dimensions (time, 3D space, spectrum), high dynamic range,
67 and high structural similarities, conventional compression techniques often show limited fidelity
68 insufficient for subsequent quantitative analyses.

69 Unlike model-based approaches, deep learning-based data compression techniques, such as
70 Autoencoders * VAE 5, GAN *° etc. have recently emerged to interrogate the semantic correlation
71 among signals. These approaches compress input data into a low-dimensional space representation which
72 aims to eliminate semantic redundancy among data information by learning deep feature representations,
73 and then reconstruct the original data using a decoder. Nevertheless, capturing essential data features,
74 reducing dimensionality for optimal latent representation, and handling the burden of training with
75 massive data for a single decoder remain highly challenging. Furthermore, when dealing with complex
76 biomedical data, these deep learning-based supervised methods exhibit limited generalization
77 capabilities and significant performance degradation due to generalization errors. The latest development
78 of implicit neural representation (INR) 7 utilizes a neural network to parameterize a continuous function
79 based on the data dimensions, enabling advanced representations of 3D scenes 8, images *°, and videos
80 2. Unlike traditional CNN-based approaches that utilize discrete, grid-like representations of image data,
81 the grid-free feature of INR representation naturally fits with the continuity of target visual information.
82  This facilitates the generation of continuous representations that enable seamless and arbitrary
83 interpolation of visual data. In addition, with the universal approximation theorem of neural networks 2%
84 2 INR implemented with Multi-Layer Perceptron (MLP) can fit any complex function with a sufficient
85 number of parameters, resulting in high-fidelity compression representation. INR currently has been
86 demonstrated to be applicable for compressing natural image scenes 2 as well as various multi-
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87 dimensional biomedical data for biomedical research and clinical diagnosis, including 2D images, 3D
88  volumes 24, and 4D data. By controlling the network parameters across different samples, stable
89 compression rates and compression quality can be achieved. Moreover, INR exhibits stable performance
90  for various data compression without the requirement of modifying the network structure specifically,
91  which is can’tbe achieved by other supervised learning-based approaches due to the generalization errors.
92 However, existing INR-based compression approaches require massive training time 252’ due to the
93 processing of a large number of input coordinates when representing compression data by network
94 optimization. As the dimensions increase, the network parameters of INR also grow exponentially,
95 resulting in significantly increased computation 28, Also, these INR approaches can’t effectively leverage
96  the correlations between data, such as the inter-frame correlation in dynamic biomedical data and highly
97  similar local features. Furthermore, INR fits the entire image region without specific optimization for
98 particular signals. These challenges prevent the INR-based compression from surpassing the alternative
99 techniques and also spurred the development of our new INR approach to overcome the limitations.
100 In this study, based on our first-proved semantic redundancy of biomedical data in implicit neural
101 function domain, we propose the Semantic redundancy based Implicit Neural Compression guided with
102 Saliency map (SINCS) approach, which explores the weight clustering effect in the implicit neural
103 function domain and substantially accelerates the compression time of the algorithm through weight
104 transfer. We also introduce saliency-guided compression mechanism to adaptively capture the specific
105 structure information, thus facilitating high-fidelity compression of multi-modal biomedical images, and
106 design residual-based entropy coding to further compress the optimized INR weights. Taken together,
107 SINCS efficiently achieves high-fidelity compression with a high ratio up to 2000 folds for diverse
108 multidimensional images. We have demonstrated SINCS’s superior compression performance on several
109 large-scale biomedical image sets (2D, 2D video, 3D and 3D video) obtained from different imaging
110 techniques (optical microscope, electron microscope, CT), proving its strong potentials for advancing a
111 broad range of biomedical applications.
112
113 Results
114
115 High semantic correlation in implicit neural function domain of biomedical imaging data
116 The essence of compression is to eliminate the redundancy caused by the internal correlation among
117 signals. Most of the existed compression methods only explore and eliminate temporal and spatial
118 redundancy among data, ignoring semantic redundancy, which is common in multidimensional data,
119 such as 2D picture, 2D video, 3D video, etc. The features in multidimensional biomedical images, such
120 as organelles in the time-lapse video of a live cell, neurons in different regions of a large brain tissue
121 image, are also correlated with semantic redundancy at both spatial and temporal dimensions. Here, we
122 used zebrafish embryo heart as target to classify the biomedical image data into three modes for analyzing
123 the sematic redundancy at different dimensions. In Mode 1, we analyzed the semantic redundancy along
124 lateral dimensions using 2D plane image of the embryo heart. We employed the “patch sliding” to obtain
125  the small patches from whole zebrafish embryo heart. Then we selected adjacent patches for compression
126 using INR. By computing the Wilson Coefficient (Method section) to measure the distribution
127 discrepancy of all the network parameters, we validated distributional correlation between the patches.
128 In the domain of Implicit Neural Function (INF), the central tendency of the distribution is much more
129  similar, whereas in the spatial domain, it presents a multi-modal distribution, as comparatively shown in
130 Fig. 1a. The lower Average Wilson Coefficient (AWC) values calculated in INF domain, as compared


https://doi.org/10.1101/2023.08.22.554284
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.22.554284; this version posted December 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

131  with those in spatial domain, indicate much stronger sematic correlations found in INF domain. With
132 discrepancy distribution and AWC metrics, we also analyzed the semantic redundancy along axial
133 dimension (Mode 2) and temporal dimension (Mode 3) using the 3D image stack and 4D image video of
134  the embryo heart, respectively. The results (2" and 3™ rows) are consistent with those from lateral
135 dimension (1% row), validating that biomedical images with arbitrary dimensions are all suited for being
136 represented and compressed in the INF domain of INR. In addition to the correlation measurement of all
137 network parameters, we calculated correlation of the different layers, and found that the hidden layers
138  showed relatively high correlation (Supplementary Fig. 1).

139 We further explored this internal correlation in INF domain on typical point-like (cell nuclei) and
140 line-like signals (blood vessels), which belong to basic components in most of the biomedical data.
141 Through “block partitioning™ of large-scale data, we generated three thousand patches containing local
142  features from different spatial positions or time points. Then we applied T-distributed Stochastic
143 Neighbor Embedding (t-SNE)? dimensionality reduction (Method section) to compare the clustering
144 patterns of these images in both the spatial domain and the INF domain (Fig. 1b). In sharp contrast to the
145 muti-model distributions in the spatial domain (right part), very unimodal distributions were found in
146 the INF domain (left part). The Rayleigh Entropy (RE) was calculated to quantitatively evaluate their
147 clustering characteristics (Method section). The significantly lower RE values indicated a much more
148 compact clustering of massive samples in INF domain, also suggesting that different samples of the same
149 type could be rapidly compressed using Meta-learning through weight transfer in the INF domain.
150 Furthermore, such high semantic correlation represented by low AWC and RE metrics in INF domain
151 also proved wide existence in arbitrary-dimensional images (2D, 2D-T, 3D, 4D) of diverse biomedical
152 targets (virus, organelles, cells, animal tissues, Human organs) with different size (nano-, micro-, meso-,
153 macro-scale) and from different imaging techniques (electron microscope, light microscope, CT, MRI),
154 as shown in Fig. 1c. More comprehensive quantifications are provided in Supplementary Note 1 and
155 Supplementary Fig. 2 and 3 to cross-validate this universal INF domain correlation inside and between
156 biomedical images. In the following step, we designed saliency map-informed and meta-learning-
157  enabled SINCS to fully utilize such implicit semantic correlations to realize high-fidelity, high-ratio
158 compression with improved speed.

159
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161 Figure 1. Validation of semantic redundancy in implicit neural function domain correlation. (a) Comparison of semantic correlations
162 in three image modes. 2D, 3D and 4D (3D+T) images of the same zebrafish embryo heart were used as target, to evaluate the lateral (mode
163 1, top), axial (mode 2, middle), and temporal (mode 3, bottom) semantic correlations, respectively. In each mode, the images” semantic
164 correlations in the implicit neural function domain and spatial domain are compared through calculating their parameter histograms. The
165 Average Wilson Coefficient (AWC) values are used as correlation metric with lower value indicating higher correlation. (b) Clusterings
166 for structurally-similar data in implicit neural function and spatial domain. Blood vessels and cell nuclei are chosen to represent line-like
167 and point-like signals, respectively. The Rayleigh Entropy (RE) values are calculated to quantify the clusterings, with lower value indicating
168 more compact clustering of the images. (c) Comparison of image correlations in implicit neural function domain (AWC metric), and in
169 spatial domain (SSIM metric). Multi-scale samples captured by different imaging techniques are compared to validate the universally-high
170 correlations in implicit neural function domain. The human skeleton, human brain images are obtained from CT (Multi-Slice Spiral CT,

171 Medium slices with 2.5mm thickness) and MRI (T1-weighted MRI), respectively; the 3D images of zebrafish embryo heart and mouse
172 brain neurons are obtained by light-sheet microscope (4x/0.13 NA illumination and 20x/0.5 NA detection for heart, 4x/0.28 NA illumination
173 and 10x/0.3 NA detection for mouse brain neurons); the 2D subcellular images of cell nuclei and mitochondrial are captured by light-sheet

174 microscope (20%/0.45 NA detection objective for cell nuclei and 60x/1.1 NA detection objective for mitochondrial), and the 4D subcellular

175 images of dynamics microtubes are obtained from single objective light-sheet microscope (100x/1.5 NA for illumination and detection);
176 the virus images are obtained from electron microscopy (an LEO (Zeiss, Oberkochen, Germany) with a Morada (Olympus) camera).
177

178  The principle of SINCS
179  Biomedical images can be considered as discrete sampling results of continuous spatiotemporal signals.
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180  The continuity representation ability of INR is suited for fitting the arbitrary-dimensional signals so that
181  we can map the sampling result to high-dimensional functions, achieving “data-to-function” encoding.
182 However, the large size of biomedical data poses a big challenge for INR network fitting. A simple
183  solution is to increase the parameters of the INR, nevertheless this amplifies the computational
184 complexity and leads to compromised compression efficiency. Based on the locality and repeatability of
185 correlations, we first introduced an interlace group strategy which mitigated this issue through
186 decomposing the massive high-dimensional functions (data) in INR. We used an adaptive grouping
187  strategy to divide the original data into groups (Fig. 2a(i)). For time series data, we specifically made an
188 interlace sampling along time series to divide the original data into N groups, for which both the global
189 motion trend within groups and the high cross-correlation between groups can be retained due to the
190  frame continuity. This temporal grouping strategy helps to reduce temporal redundancy and achieve a
191 higher rate of compression. For patches that lack temporal correlation (obtained by “patch sliding™), the
192 abovementioned grouping strategy can be modified to have ni=1 in each group, which is also helpful to
193 the elimination of spatial redundancy. With decomposition, we achieve highly-efficient compression by
194 utilizing multiple simple implicit neural representations (Supplementary Fig. 4).

195 Then, we designed a saliency-guided sampling to catch structural information of biomedical data.
196 For each pre-defined data group, we proposed a training sampling strategy based on saliency mechanisms
197 (Method section), permitting an adaptive compression that fitted the biomedical data with high-
198 dimension structural features. A pre-trained saliency detection network, as illustrated in Fig. 2a(ii),
199 generated saliency hot maps that serve as discrete probability distributions for coordinates query, thus
200 incorporating the structure information into network optimization. This adaptive sampling strategy
201 contributed to contrast improvement in decompressed results, as compared with conventional weighted
202 loss optimization strategy with saliency map (Supplementary Fig. 5).

203 In the following step, the sampled coordination was converted to corresponding voxels’ value by
204 Multi-Layer Perceptron (MLP), which was a parameterized mapping function to fit data of each group.
205 After saliency-guided sampling, the selected coordinates were encoded to vectors with high-frequency
206 by positional encoding (Fig. 2a(ii)), and then fed into the MLP. During the training process, the
207 parameters of network were updated by the L2 loss computed from the network outputs and original
208 inputs (see Supplementary Note 2, Supplementary Video 1 and Supplementary Table 1 for more training
209 details).

210 After creating the high correlations between pre-partitioned groups, we designed a weight transfer
211 fine-tuning strategy that adopt sequential fitting of each group data to accelerate network’s convergence.
212 We compressed the data from the first group and obtained the optimized parameters (61°) for the initial
213 network. Instead of introducing a new model, these optimized parameters served as the starting point for
214 compressing the data from the second group. This meta-learning compression strategy minimizes the
215 distance in INF domain between initial parameters (¢-) and optimized ones (6> of the 2" group data
216 (Supplementary Fig. 6). It yielded significantly faster network convergence as compared with direct
217 compression of individual groups. We have demonstrated significant correlation between the weights
218  across various time points in the INF domain, making this weight transfer possible.

219 With the abovementioned procedure, SINCS successfully achieved rapid compression of arbitrary-
220  dimensional biomedical images into INR weights in a manner of “data-function”. We further increased
221 the compression ratio using weight-residual entropy coding based on the semantic correlation between
222  each group data (Fig. 2a(iv)). SINCS encoded the residuals by subtracting the network parameters
223 between neighboring networks and applying entropy coding to obtain the encoded initial parameters and
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224 residual ones for subsequent streamlining storage and transmission processes.

225 At image decompression stage (Fig. 2b), weight-residual entropy decoding was adopted to convert
226 the highly-zipped bitstream to original initial parameter (61) and remaining residual parameters (A8;).
227  After successively adding the residuals to the initial weight parameters, we obtained the original weight
228 parameters of each network for each group data. Through model forward inference and regrouping, the
229 decompressed data can be reordered by the pre-defined grouping strategy. It is noteworthy that with the
230  advantage of coordinate-based representation of INR, region-specific decompression and visualization
231 can be readily achieved for flexible downstream biomedical tasks (Fig. 2c).
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233 Fig. 2 The workflow of SINCS compression and decompression. (a) Compression pipeline of SINCS. For a given large-scale biomedical
234 dataset, the pipelie contains: (i) the data is first effectively partitioned into several groups through an adaptive grouping strategy; (ii) saliency
235 mechanism was introduced to realize adaptive compression fitting for biomedical data. This mechanism leverages saliency hot maps (serve
236 as discrete probability distributions for coordinates query) to optimize the compression process,enabling targeted learning of crucial
237 information in the dataset; (iii) Multi-Layer Perceptron (MLP) was constructed as a parameterized mapping function to fit each group data.
238 After saliency-guided sampling, the selected coordinates are first encoded to vectors with high-frequency by positional encoding, and then

239 fed into the MLP,achieving “data-function(weights)” encoding. Subsequently, a weight transfer with trianed parameters 6, of 1% group data
240 as the initial parameters and 6, of 2" group data for starting optimization was applied to promote network’s rapid convergence based on
241 the high correlation between groups; (iv) after global fitting of the original data, a higher compression ratio can be further realized using

242 weight-residual entropy coding strategy. Specifically, SINCS encoded residuals by subtracting the network parameters between neighboring

243 networks and applying entropy coding to obtain the encoded initial parameters and residual ones. This step produces a bitstream at last. (b)
244 Decompression pipeline of SINCS. In the decompression process, the weight-residual entropy decoding is adopted to convert the bitstream
245 to original initial parameters ¢; and remaining residual parameters A6;. Subsequently, by successively adding the residuals to the initial
246 weight parameters, the original weight parameters are obtained for each network corresponding to each group data. By modeling forward

247 inference and regrouping, the decompressed data can be reordered by the pre-defined grouping strategy. (c) The decompression procedure
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248 showing that the region-specific decompression and visualization can be readily achieved in SINCS with flexibility, owing to its coordinate-
249 based representation.

250 SINCS achieves high-fidelity and high-ratio compression of multidimensional biomedical data
251

252 High structural fidelity compression for 2D and 3D biomedical images. Bright-field microscopic
253 imaging has been frequently used in biomedical research, generating huge amounts of image data®.
254 However, bright-field images typically exhibit low contrast or contain less gradient information, making
255 it more vulnerable to the loss of such gradient structural information during large data compression.
256  Therefore, bright-filed images especially need compression algorithms that can offer both high-fidelity
257 representation and high compression ratios for efficient data storage enabling convenient downstream
258 image-based tasks such as cell segmentation. Here, we applied the SINCS to compress large field-of-
259  view (FOV) 2D imaging data acquired by an inverted light microscope. The field of view of entire two-
260 dimensional plane is 2.67 %<3.99 mm?, and we divided the plane into 48 patches using patch sliding, as
261 illustrated in Fig. 3a. Each patch was then compressed using the SINCS algorithm guided by saliency
262 map. Considering the large field-of-view information of bright-field imaging, here we take the learnable
263 saliency map to better prioritize the signal information. This learnable saliency map is also applicable to
264 a variety of other modalities of biomedical data, such as CT, MRI, TEM, as shown in Supplementary
265 Fig. 7. To showcase the compression capability, we selected two representative patches for visualization.
266 We further enlarged the regions of interest (ROISs) within these patches in Fig. 3b. Meanwhile, we
267 compared our method with JPEG compression, conventional INR compression and autoencoder-based
268 compression methods (CAE) 2224 demonstrating the superior visual fidelity achieved by our approach.
269 In addition, we applied SINCS to 3D cell data. We partitioned it into multiple blocks using block sliding
270 and rapidly compressed them through weight transfer, as illustrated in Fig. 3a. We visualized the 2D /
271 3D decompression results of SINCS and those from other compression approaches, showing that our
272 approach offers higher visual fidelity and better preserved cellular details (Fig. 3b). We also quantified
273 the SINCS results using several well-established metrics, showing that it achieved big compression rate
274 of 80 (2D) and 580 (3D), high Peak Signal-to-Noise Ratio (PSNR) of 34.5 (2D) and 38 (3D), and high
275 Structural Similarity Index (SSIM) of 0.94 (2D) and 0.96 (3D). The comparative results in Fig. 3c have
276 shown that SINCS have outperformed the alternative compression approaches in term of these metrics.
277 Furthermore, we conducted image-based cell segmentation using the open-source software “Cellpose’™!
278 to validate that the superior compression quality by SINCS also necessarily led to more accurate
279 downstream cell analysis (Fig. 3d). This advantage is further consolidated by quantitatively comparing
280 the Intersection over Union (loU) scores of the segmented images and the cell counting accuracy (Fig.
281 3e, Method section). In addition, SINCS with meta-learning also enabled much faster compression as
282 compared to the INR SIREN (INR-S) method that compresses the entire dataset (Supplementary Fig. 8).
283


https://doi.org/10.1101/2023.08.22.554284
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.22.554284; this version posted December 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(b) GT JPEG CAE INR-S  SINCS () PSNR Statistics
A"ot : ok o : > W] 2 1 3D N
Prleds® e
it e
: D OIRDAOO EEC . SSIM Statistics
D panaces Tog?T o
y NS5 OO BE &y ; 2D E 3D
BenoBbhoRt D g
=ie e i S
Block Sliding (e) sCm.r;ing Accuracy(2D)
il
ool
284 TP mFN m FP e cAE ks sics
285 Fig. 3 Demonstration of SINCS compression capability on 2D bright field / 3D fluorescence images and performance on downstream
286 tasks. (a) Brief illustration of 2D data patch grouping and 3D data block grouping (The respective saliency maps are shown in the bottom
287 right corner). Scale bars from top to bottom: 100 wm, 40 um. (b) Comparison of bright-field 2D cell data and 3D cell nuclei data (labeled
288 by GFP) reconstructed by different image compression methods. Since JPEG cannot compress 3D data, we convert 3D to 2D data for batch
289 compression, where the data compression ratio is 130 for JPEG (limitation) and 580 for other methods. Scale bar: 5um. (c) Overall
290 performance rating using PSNR and SSIM metrics, to show that SINCS surpass alternative compression approaches in terms of higher
291 structural fidelity. (d) Comparative segmentations of 2D cells and intersection over union (loU) scores of 3D cell nuclei by different
292 compression methods. The loU scores are used as fidelity metric with higher score indicating higher visual fidelty. TP (True Positive): the
293 correctly reconstructed structures; FP (FalsePositive): the incorrectly hallucinated structures; FN (False Negative): the missing details.
294 Metrics from top to bottom: Counting accuracy, and loU score comparision. (e) Histograms comparing the reconstruction accuracy of
295 different compression methods with using 2D counting accuracy (top) and 3D loU scores as metric (bottom).
296
297
298 High intensity fidelity SINCS compression on quantitative imaging data of neural activities in
299 moving C. elegans. Long-term and high-speed Ca?* imaging of neurons in moving specimens at high
300  spatiotemporal resolution is useful to interrogate the behavior-related neural activities through tracking
301  the Ca* density change indicated by fluorescence intensity variations®* 3. Therefore, compression
302  algorithm retaining the signal intensity profile is required in this case, to reduce the data size and also
303  reflect the neural activity state of the samples accurately.
304 We used SINCS to compress the sequential images of moving C. elegans captured by light-field
305 microscopy at a high imaging rate of 100 Hz. we achieved a compression ratio of 1500 folds (From
306 1.6GB to1.1MB). We further compared the SINCS performance with H.265 and conventional INR on
307  the decompression of Ca?* indicator-labelled motor neurons. The comparative ROIls showed that while
308 H.265 and INR-S lost some weak signals owing to the abrupt intensity variations, SINCS better fit these
309 intensity changes because of the signal enhancement by saliency map (Fig. 4a). It should be also noted
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310  that considering the sparsity of neuron signals, we also adopted a conventional threshold-based saliency
311 map to prevent the loss of weak signals (Supplementary Fig. 9). SINCS also outperformed other
312  approaches with showing better resolved dense signals. Then we conducted trajectory tracking of 4 motor
313 neurons (VB1, VB4, VB8, VA7) to investigate their intensity fluctuations during C. elegans movement
314 (Fig. 4b). When using the intensity profiles extracted from the raw data as references, we validated that
315 SINCS retained the intensity changes of the dynamic Ca?*signals well, surpassing the results from
316  alternative H.265 and INR-S approaches. We further quantified the PSNR, signal preservation rate and
317 intensity correlation based on all the motor neurons (Fig. 4c, Methods section). The inherent mapping
318  function from coordinates to signal values and the adaptability of the saliency map for identifying low-
319 intensity signals together allow SINCS to demonstrate intensity accuracy much higher than other
320  approaches, thereby ensuring authentic representation of dynamic biomedical data and seamless
321 continuation of subsequent tasks (Supplementary Video 2).
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324 Figure 4. High intensity fidelity SINCS compression on sequential Ca®" images of moving C. elegans allowing downstream
325 quantification of neural activities. (a) The motor neurons in an entire L4 C. elegans larva reconstructed by different compression
326 approaches (The top right corner shows the C. elegans crawling trend with a time-coded trace). The magnified views of indicated regions
327 show that H.265 and INR-S lose a considerable amount of weak signals, owing to the high signal dynamic range. In sharp contrast, SINCS
328 preserves these weak signals perfectly. Meanwhile, SINCS reconstruction also shows spatial resolution higher than the other two approachs,
329 notably contributing to the resolving of dense signals. The SSIM are used as structral fidelity metric with higher value indicating higher

330 fidelity. Scale bar: 10um. (b) Spatio-termporal patterns of 4 motor neurons (VB1, VB4, VB8, VA7) reconstructed by different image
331 compression methods. The neuron tracing trajectories are displayed on the left, indicating the dynamics of neuronal signals in spatial domain.
332 The Ca?* activity curves of corresponding neurons reconstructed by SINCS (red), INR-S (green) and H.265 (gray) approaches are shown

333 on the right, and compared with the ground truth curve plotted by raw data (yellow) . The intensity correlations are used as metrics to
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334 quantify the intensity fidelity of the reconstructions by diverse methods, with a higher correlation value indicating a higher stability in
335 intensity fidelity. (c) Overall performance rating using PSNR (top), signal preservation (middle) and intensity correlation (bottom) metrics,
336 to show that SINCS surpass the H.265 and INR-S in term of both high structural and intensity fidelities.

337

338  SINCS compression on high-dimensional images of live cells. In long-term live biomedical imaging,
339 a variety of dynamic biological processes, such as blood flow, heartbeat, and cell-cell interactions, occur
340 in four (3D space + time) or even five (3D space + time + spectrum) dimensions and tend to generate
341 tremendous amounts of data which intrinsically need to be compressed. Meanwhile, such types of high-
342 dimensional data are accompanied with complex variations in both temporal and spatial domains, making
343 high-fidelity and high-ratio compression especially challenging and necessary to ensure the downstream
344  tasks being conducted accurately. We applied SINCS to 4D cell super-resolution data which were
345  acquired using our lab-built light-sheet fluorescence microscope (LSFM) with a near isotropic resolution
346 of ~100 nm. The entire 4D image dataset contains 180 consecutive volumes with totally generating 244
347 giga voxels (488 gigabytes) to record the 3D dynamics of mitochondrial within a single cell across 3
348 minutes. SINCS then achieved a 700-fold near lossless compression that drastically reduced the size of
349 the data into 697 megabytes while retained the complex outer membrane morphology. We visualized the
350 decompressed data and the raw data in the same 3D volume rendering (Imaris 9.0) to visually examine
351 the overall high structural fidelity by SINC compression (Fig. 5a). Then we selected three time points of
352 the same small ROl and magnified them to compare the reconstructed details by SINCS, H.265 and INR-
353 S (Fig. 5b). It’s noted that due to the limitation of directly compressing 4D data by H.265, we
354 concatenated all temporal axis data along the axial axis to fit it into 3D format for testing H.265
355 compression (referring to H.265-S). In visual comparison, SINCS significantly outperformed other
356 approaches, accurately visualizing the transient process of a single mitochondrion fission. The error maps
357 and SSIM metric calculated with using raw image as references further validated that SINCS achieved
358 significantly higher structural fidelity as compared to other approaches. The incomplete mitochondrial
359  fission observed in the results of H.265-S might be from the concatenation of temporal and axial
360 dimensions that led to non-uniform signal distribution and signal residues (Fig. 5b). Meanwhile, since
361 INR-S lacked sufficient fitting ability to learn regions with low signal intensity, it also led to suboptimal
362  structural fidelity (Fig. 5b).

363 We analyzed the dynamics of a selected mitochondrion at its cross-section plane to further validate
364 the reconstruction fidelity in four dimensions. H.265-S exhibited significant morphological aberrations,
365 likely because of its forced concatenation and fitting along the axial and temporal directions (Fig. 5c,

366 left). In the meantime, INR-S could hardly discern the inner and outer membranes, preventing the
367 subsequent quantitative analyses (Fig. 5c, middle). In contrast, only SINCS achieved smooth
368 morphological changes which are nearly identical with the changes in raw image data. We further
369  quantified the reconstruction accuracy at mitochondrial fission site (metric: European distance) and
370  cross-section plane (metric: area) over time, as shown in the top and bottom of Fig. 5d, respectively. The
371 results verified that the structural fidelity and time signal continuity by SINCS compression were both
372 higher than other approaches. These advances came from our novel interlace grouping strategy that
373 ensured global continuity and inter-frame continuity for accurate compression over time (Supplementary
374  Video 3).

375 We went deeper with applying SINCS to the light-sheet fluorescence microscopy data recording
376  the interactions between CAR-T and Nalm6 tumor cells, in which the subcellular changes of CAR-T
377 immune synapses and tumor membranes in space, time and spectrum domains together formed a highly
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378 complex task for data compression. As we can see in Fig. 5e, while SINCS achieved an impressive
379  compression ratio of 2302 folds, from 1TB to 455.5MB, it also enabled precise cellular morphology
380  reconstruction and thereby accurately reproduced the complete Immunotherapy processes (Fig. 5e). We
381 computed the variation of synaptic areas (Method section) during the interaction between CAR-T cells
382  and Nalm6 T cells to evaluate the temporal compression quality over time. In addition, we calculated the
383 SSIM values within the ROIs across different spectral channels (Fig. 5f), demonstrating that our approach
384 consistently maintains high-fidelity compression performance across various spectral channels and
385  permits reliable data analysis and validation in downstream tasks (Supplementary Video 4).
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388 Figure 5. SINCS compression on 4D super-resolution images of mitochondrial dynamics and 5D light-sheet images of CAR-T cell

389 / tumor cell interaction. (a) 3D volume renderings of GT (top) and 700x SINCS compression result (bottom) showing the overall high

390 structural similarity by SINCS. Scale bar: 10 um. (b) Comparison of mitochondrion fission process reconstructed by H.265-S, INR-S and

391 SINCS.The red arrows indicate the mitochondrion fission site over 4 seconds. As compared to the GT from raw images, only SINCS results
392 are capable of resolving the fine structural changes. The SSIM scores of the reconstructions by three approaches are calculated, with
393 higher value indicating higher fidelity. Scale bar: 1um. (c) Comparative results of mitochondrion morphological changes in reconstructed
394 cross section plane. The cross sention plane at different time points demonstrate the mitochondrion contraction and expansion at nanoscale.
395 The 10U scores are used as fidelity metric with higher score indicating higher reconstruction fidelty during the morphological and cross-
396 sectional area changes. TP (True Positive): the correctly reconstructed structures; FP (FalsePositive): the incorrectly hallucinated structures;

397 FN (False Negative): the missing details. Scale bar: 1.m. (d) Quantitative comparison of reconstruction accuracy at mitochondrial fission
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398 site with using European distance as metric (top) and cross-section plane using area as metric (bottom). (e) Visual comparison of GT and
399 2302x SINCS compression result of 5D light-sheet fluorescence microscopy data recording the interactions between CAR-T (labeled by
400 GFP) and Nalmé tumor cells (labeled by Dsred) in 20 minutes. Scale bar: 5 um. (f) Comparison of synaptic area variation and SSIM values
401 between GT and SINCS result.

402

403  Conclusion and Discussion

404 Both conventional model-based and emerging learning-based approaches show limited performance on
405  the compression of biomedical images that have the features of high dimension, high dynamic range, and
406 often require accurate downstream analysis. SINCS greatly improves the compression of biomedical data
407 in term of performance and applicability by initiating the study on semantic redundancy of biomedical
408 image data in INF domain. After verifying the semantic redundancy in INF domain, we then designed
409  weight transfer optimization strategy and included saliency-guided mechanism adapted to the structural
410 characteristics of multimodal images, making SINCS capable of high-fidelity compression of diverse
411 biomedical data with high compression ratio and improved speed provided.

412 SINCS applies different grouping strategies for network training and coding based on data types
413 (please refer to Supplementary Note 3, Supplementary Fig. 10 and Supplementary Table 2 and 3 for more
414 details). Then, it generates saliency maps according to the signal distribution of each group of data, which
415 adjust the network training sampling strategy to guide better parameter allocation and achieve adaptive
416 high-fidelity compression. Moreover, since SINCS is an implicit neural function mapping from spatial
417 coordinates to signal values, it can innately incorporate saliency-guided mechanism within it, with
418 significantly-improved fidelity in lateral, axial, and temporal dimensions. Though SINCS is currently
419 not as fast as traditional compression methods yet, its introduction of weight transfer optimization has
420 effectively reduced the model’s training time, as compared with other INR-based compression methods.
421 Also, this reduction in training time will become much more significant, and could be over one order of
422 magnitude when processing increasingly bigger data. In the following decompression process, SINCS
423 only requires simple forward propagation of neural networks, making the decompression speed nearly
424 an-order-of-magnitude faster than H.265, as shown in Supplementary Table 4. It is also worth noting
425 that, for the downstream visualization or quantitative analysis of large-scale biomedical images, multiple
426 transmissions and decompressions may be necessary given the constraints of limited bandwidth. In a lot
427 of practical applications, the high-quality, large-ratio compression as well as high-speed decompression
428 by SINCS makes it outstanding from the alternative approaches.

429 We validate the capabilities of SINCS on several types of biomedical images, especially on 4D
430 super-resolution microscopy data of live cells whereas high-resolution, high-fidelity, efficient
431 compression are all required. When facing these challenging data with large size, dynamic structures and
432 high resolution, SINCS approach notably outperforms traditional H.265 and INR-based method,
433 rendering itself a powerful and versatile data compression and transmission tool for diverse biomedical
434 applications. Moreover, to specifically address the loss issue for certain types of medical datasets, SINCS
435 can achieve true lossless compression by further incorporating image residuals, as demonstrated in
436 Supplementary Fig. 11. We envision that the INR-based compression could be more versatile with
437 obtaining image priors of diverse samples through meta learning.3* We also anticipate the further
438 reduction of compression training time by continuously optimizing the network design strategies.®
439
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521

522  Methods

523  Network optimization strategy based on saliency mechanism.

524 We introduce a saliency mechanism with learnable or hard saliency maps to guide the adaptive allocation
525 of parameters in INR, bridging the gap between INR and data and achieving improved data compression
526  fidelity, as shown in Supplementary Fig. 12. Considering the characteristics of the signal distribution,
527  we have two different saliency maps to cope with signals of different distribution types. Specifically, for
528 data with multiple ROIs, dense signal distributions, and a demand for high structural detail, we use
529 Gradient-weight Class Activation Mapping (Grad-CAM) ¢ and Multi-Structure Region of Interest (MS-


https://doi.org/10.1101/2023.08.22.554284
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.08.22.554284; this version posted December 25, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

530  ROI) * techniques to create learnable saliency maps for the corresponding data, assigning probability
531 values to each grid coordinate point, reflecting its proportionate importance in the data. In the process of
532 generating saliency maps, we first apply a convolutional layer to the original data, denoted as x (with a
533  size of axb), using a convolution filter of size nxn. The convolution operation is represented by Equation
534 1, where W represents the learned filter.
535 YVij = Z z WapX(i+a)(j+b)

=0 b=0

a

536 In practice, multiple filters within each layer are learned in parallel, resulting in a three-dimensional
537  feature map as the output of the convolutional layer, where the depth represents the number of filters.
538 Subsequently, by utilizing the learned weights between the predicted class ¢ and the feature map d, we
539  train the Class Activation Maps (CAM) model to obtain saliency maps that capture the significance of
540  the predicted class distribution.

541 M(xs ¥) = ) wifa(x,y)
deD
__exp(Txy Mc(xy))
542 P(e) = Zcexp(Zinc(x,y))

543  where w{ is the learned weight of class ¢ for feature map d. Training for CAM minimizes the cross
544 entropy between objects’ true probability distribution over classes (all mass given to the true class) and
545  the predicted distribution. The probability P. represents the likelihood of selecting the corresponding
546 coordinate point for each training iteration. Besides, for sparse signals with faint intensity and lack of
547 structural details, since the subsequent task analysis focuses only on their spatial location or intensity
548 information, we use hard saliency maps based on threshold divisions to prevent the loss of weak signals.
549 After obtaining the saliency maps, the coordinate vectors V guided by saliency maps are further mapped
550 to a high-dimensional embedding space using position encoding, enhancing perceptual quality. Formally,
551 the encoding function employed in our approach is as follows:

552 Y(v) = (sin(2°1v), cos(2°1v), ..., sin(24"1mv), sin(241v)).

553 Here y is the mapping of the original coordinate vector V from R to R?- and L is the number of frequencies
554 used.

555

556  TSNE clustering dimensionality reduction and correlation analysis.

557 For correlation analysis in implicit neural function domain and spatial domain, we adopt Average Wilson
558 Coefficient (AWC) to compare the correlation between two discrete distributions. WC can be computed
559  from the Kolmogorov Smirnov (KS) test formula as follows:

560 WC = sup,|F,(x) — F,(x)|

561  where Fi(x) and Fx(x) are the Empirical Cumulative Distribution Function (ECDF) of the two
562 distributions, respectively. In this paper, the distributions were defined as the one-dimensional vectors
563 reshaped from the compressed network weights and the original images, respectively. The network
564 parameter values and image pixel values are all normalized to 0 to 1. The smaller value of AWC indicates
565  the higher correlation in the parameter value distributions between the two samples.

566 To interrogate the statistic correlation among sample, we use t-SNE?® dimensionality reduction and
567 clustering to get the data distribution, and we adapt Rayleigh entropy to quantify the degree of clustering,
568  which is calculated as follows:

569 H == (P, +log(P))
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570 where P; is the probability that the sample point belongs to a category in the clustering result. A lower
571 Raleigh entropy value indicates that the data distributions are more concentrated in the clustering result.
572

573  Evaluation Metrics

574  PSNR, SSIM and IoU scores were used in our work to evaluate the compression quality of the
575 decompressed data with respect to the original data. (PSNR, SSIM and IoU scores are all based on single
576  channel images.) Denoting f € RY*V as the decompressed data, and g € RY"V+ as the original data,
S77 PSNR and SSIM values were calculated using the following equations (Take a 2D image as an example):

MAX?Ny,Ny

578 PSNR = 10lg | ——— W
s (f - g4)”

(2;1 " +Cl)(a +(,'2)
579 SSIM = —2 c o c
(12 + 12+ C1) (02 + 02 + Cy)

580 Here MAX stands for the dynamic range of the original data. M,, u, and oy, o, are the mean value and the
581 standard deviation of the original data and decompressed data, respectively. And C; and C; are constants
582 to avoid a zero denominator. It can be deduced that compression quality is better when the SSIM is closer
583 tol.

584

585 And the Intersection over Union (IoU) scores:
_Ifngl
If v gl
587 Here |f N g| represents the size of the intersection between the decompressed data region and the

586 IoU

588 original data region. |f U g| represents the size of the union between the decompressed data region and
589  the original data region. loU takes values between 0 and 1, with values closer to 1 indicating a higher
590 degree of overlap between the decompressed data and the original data.

591

592 Quantitative intensity correlation analysis of worms

593 We performed semi-automatic tracking of motion and intensity fluctuations in each neuron of the GT
594  using the TrackMate Fiji Plugin’®. Neurons in each volume were automatically detected by applying a
595 circular ROI through a Difference of Gaussian (DoG) detector and then tracked using a Kalman filter. If
596 the automatic tracking failed due to rapid neuronal movement, manual correction of missing detections
597 and tracking errors was required. After tracking neurons in the GT dataset, we export the corresponding
598 neuron’s position coordinates to Excel. Subsequently, leveraging a custom localization algorithm, we
599  perform localization on results under different compression methods. This process entails extracting the
600 average intensity value F; of all pixels within the ROI surrounding the neuron’s coordinates, effectively
601 representing the fluorescence intensity of that neuron. Finally, employing the same approach outlined
602 above, we generate intensity change curves L; for neurons under different methods and compare them
603 to the ground truth intensity change curves Lg.The intensity correlation is calculated as Correlation =
604 Ly/Lg , representing the degree of intensity correlation.

605

606  Cell contact area analysis

607 We designed an algorithm to quantitatively analyze the contact area between immune cells and cancer
608 cells during their interaction. Initially, a deep learning-based segmentation network?®® is employed to
609 segment immune cells and target cells. Subsequently, based on the segmentation results, the image is
610 divided into four regions: immune cells, cancer cells, background, and the boundary region. Finally, in

611 the boundary region, distance transformation and watershed algorithms are used to obtain the segmented
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612 results of the contact area between immune cells and cancer cells. The segmentation results ensure a
613 single-pixel thickness, enabling the conversion of pixel count into the contact area.

614

615  Sample preparation

616  Transgenic zebrafish lines 7g(gata la:dsRed,;cmlc2:gfp) was used in our experiments. Embryonic fish
617 were maintained at 3-4days post-fertilization in standard E3 medium, which was supplemented with
618 extra 1-phenyl 2-thiourea (Sigma Aldrich) to inhibit melanogenesis. Then, the larvae were anesthetized
619  with tricaine (3-aminobenzoic acid ethyl ester, Sigma Aldrich) and immobilized in 1% low-melting-point
620 agarose inside a fluorinated ethylene propylene tube for further imaging.

621 For 2D cell data, cell cultures were prepared using homemade microchips. T-cell medium was used
622 to replace the sterile water, and 500pL of the medium was kept in the confocal dish to submerge the chip.
623  Then, 60uL of CAR-T cells at a density of 1x10%mL was taken and dropped in. We waited for 10 minutes
624 to allow the cells to fall into the chamber. Subsequently, an equal amount of target cells was taken, and
625  the above operation was repeated.

626 MCEF-7 cell line that expresses GFP endogenously was used in 3D cell nuclei data compression
627 experiment, MCF-7 cells were grown in Dulbecco’s modified eagle medium (DMEM), which were
628 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. Once the cells had
629 grown to 80-90% confluence, they were harvested by 0.25% Trypsin-EDTA treatment and resuspended
630  in the complete medium to a suspension volume of 1x 10 cells/mL .

631 The strain ZM9128 hpls595[Pacr-2(s)::GecaMP6(f)::wCherry], expressing GcaMP6f in A- and B- class
632 motor neurons, was used to detect neuronal activity in the moving worm. The C. elegans were cultured
633 on standard nematode growth medium plates seeded with OP50 and maintained at 22°C incubators until
634  the L4 stage.

635 To label microtubules in live U20S cells, we followed a previously described protocol*’, in which
636  the cells were coincubated with 4 uM PV-1 and 5 uM Tubulin-Atto 488 at 37 °C for 1 h, then the cells
637 were washed three times with culture medium (warmed to 37 °C) and cultured at 37 °C for another 1 h.
638 Finally, the medium was replaced with phenol red free McCoy’s 5A medium and imaged via DR—SPIM.
639 For labeling mitochondria in fixed cells, U20S cells were first transfected with Tomm20-EGFP (mito
640 OM) or Cox4-EGFP (mitochondrial matrix) using Lipofectamine LTX according to the standard protocol
641  and cultured at 37 °C with 5% CO; for an additional 24 h. Before imaging, the cells were fixed with 2%
642  glutaraldehyde for 20 min.

643 For multi-channel 4D biomedical data compression experiment, Acute B-lymphocytic leukemia cell
644 line Nalm6 were cultured in RPMI 1640 medium (Gibco, Grand Island, NY, USA) containing 10% fetal
645  bovine serum (FBS; Gibco, Grand Island, NY, USA). The lentivirus packaging cell line LentiX™293T
646  was cultured in DMEM medium (Gibco, Grand Island, NY, USA) supplemented with 10% FBS. CAR-
647 T cells were pretreated with 50 nM dasatinib (Selleck, Shanghai, China) for 24 h. Due to the reversible
648  effect of dasatinib, 50 nM dasatinib was also added to all subsequent staining, imaging, and other
649  experimental solutions.To label microtubules, CAR-T cells were stained with the SiR-tubulin probe
650 (SpiroChrome, Switzerland) at 2 uM final concentration and incubating for 1 h in a humidified 5% CO2
651 incubator at 37 <C. The cells were then washed twice with warm phosphate buffer saline (PBS) and
652 resuspended with imaging solution, consisting of the phenol red-free 1640 medium (Gibco, Grand Island,
653 NY, USA) supplemented 10% FBS, 25 mM HEPES (Gibco, Grand Island, NY, USA), 100 U/ml
654 penicillin and streptomycin (Gibco, Grand Island, NY, USA), and 1 uM SYTOX™ BJue stain (Invitrogen,
655  Waltham, MA, USA).
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656  Data acquisition

657 For moving C. elegans data compression experiment, the calcium signals of worms were captured using
658  acustomed-built light-field microscope (LFM)*!. A water immersion objective (LUMPlanFLN 40x/0.8w,
659 Olympus) was used to collect the epifluorescence signals from samples with scientific camera sensor
660 (Flash 4.0 V2, Hamamatsu). The captured light-field sequences were subsequently reconstructed by the
661 trained VCD model*! to yield the 3D videos of the calcium signals in moving worms. The max intensity
662 projection of the 3D reconstructions was then used for the compression.

663 For 2D and multi-channel 4D biomedical data compression experiment, the multi-channel
664 fluorescently labeled Car-T cell images and bright-field cell images were captured using a customed
665 single objective light sheet microscopy compatible with both fluorescence and bright-field capabilities,
666 based on the IX83(Olympus) framework. The primary optical elements in this configuration include the
667 following: Objective O1 (UPLSAPO 60x/1.35, silicone, Olympus), Objective O2 (UPLXAPO 40x%/0.95,
668 air, Olympus), and Objective O3 (AMS-AGY v2.0). This system attains a spatial resolution of 0.35 x
669 0.35 x Ipm (with axial resolution enhancement through post-processing). For bright-field cell data,
670 illumination was provided by LED light sources, and image acquisition was performed using an Andor
671 camera with an exposure time of 20ms. For multi-channel fluorescently labeled Car-T cell data,
672 excitation was conducted using lasers at 488 and 561 nm, with the 488-channel being captured by a
673  Hamamatsu camera with a 200-ms exposure time, and the 561-channel requiring a 2000-ms exposure
674 time. The color filter for channel 488 is MF525-39, and the color filter for channel 561 is FBH600-40.
675 For static 3D biomedical data experiment, the 3D cell nuclei data was collected by a customed dual-
676 objective light sheet microscopy. The primary optical elements in this configuration include the following:
677 illumination objective (Mitutoyo Plan Apo Infinity Corrected Long WD Objective 20%/0.42, air), and
678 detection objective (UPLFLN20XPH 20x%/0.5, Olympus). This system attains a spatial resolution of
679 0.325 x 0.325 x 0.5um. The excitation source of the system is a laser with a wavelength of 405nm, while
680 the SCMOS camera (Orca Flash4.0 v.3, Hamamatsu) acquires data with an exposure time of 20ms.

681 For 4D biomedical data experiment, 4D cell super-resolution data was collected by a customed
682 dual-objective light sheet microscopy, followed by post-processing image enhancement using an ID
683 neural network*?. The fluorescence signals generated within the specimen were collected by a detection
684  objective (LUMFLN 60x/1.1 W, Olympus). The resolution of the system is 97x97x450nm. The sCMOS
685 camera (Orca Flash4.0 v.3, Hamamatsu) exposure was precisely triggered with a minimal 2-ms delay to
686 effectively reduce motion blur, and the camera recorded the plane images at a rate of up to 1,000 fps.
687 The CT, MRI, and TEM data used in our experiments were taken from publicly available datasets.
688 The CT images from the publicly available dataset on http://headctstudy.qure.ai/dataset, MRI images
689 from the publicly available dataset on http://adni.loni.usc.edu/data-samples/access-data/, and TEM
690  images from the Virus Image Dataset (aggle.com).

691

692  Data availability. The datasets generated and analyzed in this study are available

693  from the corresponding authors upon reasonable request.

694

695  Code Availability. The data and code that support the findings of this study are

696  available from the corresponding author upon reasonable request.
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