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Abstract 18 

With the rapid development in advanced imaging techniques, massive image data have been acquired for 19 

various biomedical applications, posing significant challenges to their efficient storage, transmission, 20 

and sharing. Classical model- or learning-based compression algorithms are optimized for specific 21 

dimensional data and neglect the semantic redundancy in multidimensional biomedical data, resulting 22 

limited compression performance. Here, we propose a Semantic redundancy based Implicit Neural 23 

Compression guided with Saliency map (SINCS) approach which achieves high-performance 24 

compression of various types of multi-dimensional biomedical images. Based on the first-proved 25 

semantic redundancy of biomedical data in the implicit neural function domain, we accomplished 26 

saliency-guided implicit neural compression, thereby notably improving the compression efficiency for 27 

large-scale image data in arbitrary dimensions. We have demonstrated that SINCS surpasses the 28 

alternative compression approaches in terms of image quality, compression ratio, and structure fidelity. 29 

Moreover, with using weight transfer and residual entropy coding strategies, SINCS improves 30 

compression speed while maintaining high-quality compression. It yields near-lossless compression with 31 

over 2000-fold compression ratio on 2D, 2D-T, 3D, 4D biomedical images of diverse targets ranging 32 

from single virus to entire human organs, and ensures reliable downstream tasks, such as object 33 

segmentation and quantitative analyses, to be conducted at high efficiency.  34 

 35 

 36 

Introduction 37 

Advanced imaging techniques in conjunction with efficient image processing approaches makes big 38 

impact on modern life science. Many biomedical applications currently require a vast amount of 39 

experimental data to be generated for various image-based analysis. For instance, studying the cytotoxic 40 

mechanisms of CAR-T cells through long-term live-cell imaging of cell morphological changes can 41 

produce several terabytes (TB) to tens of terabytes image data using high-resolution and high-throughput 42 
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fluorescence microscopy systems 1, 2. For another instance, volumetric imaging of a mesoscale mouse 43 

brain at single-cell resolution to create a whole-brain neuron connectivity map will yield tens of terabytes 44 

image data3. Such a vast amount of image data places significant burdens on data storage, computation 45 

and sharing. For storage at limited space, these massive raw data have to be saved partially, with 46 

increased risk of data loss. Besides, due to the limited transmission bandwidth, researchers have to 47 

transfer and share data in an inefficient manner. Meanwhile, in contrast to centralized cloud storage and 48 

exchange technologies, it is crucial to achieve effective and data-specific storage compression directly at 49 

the user terminal. To this end, storage optimization on the data generation source4 and more importantly, 50 

on the downstream compression side should be studied. 51 

The essence of compression lies in the removal of redundancy brought by the internal correlation 52 

among signals. Traditional compression methods based on analytical or statistical model explicitly 53 

remove spatial and temporal redundancy through transformations and coding, such as domain 54 

transformations 5 and entropy coding 6, 7, to substantially compress the data. Besides the spatial and 55 

temporal redundancies, there are also plenty of semantical similarities— for example, visually-similar 56 

cells in a microscopic image or a video containing the dynamic changes of the same target, which are 57 

widely existed in diverse biomedical image data. Experiments reveal that within these visually similar 58 

images, there is also a form of redundancy which is different from classic temporal and spatial 59 

redundancies, and  termed as semantic redundancy 8, 9. It’s difficult for traditional model-based methods  60 

to capture these relatively abstract semantic correlations, thus leaving ample space for further enhancing 61 

the compression efficiency. Meanwhile, classic compression methods, such as JPEG 10, H.264 11, H.265 62 
12 are designed for natural images/videos and thus perform poorly in  compression of high dynamic range 63 

biomedical images. Moreover, frequency-domain-based compression methods may suffer from spectral 64 

truncation or blocking artifacts 13, which  affects the accuracy of downstream analysis tasks. Therefore, 65 

for biomedical images characterized by high dimensions (time, 3D space, spectrum), high dynamic range, 66 

and high structural similarities, conventional compression techniques often show limited fidelity 67 

insufficient for subsequent quantitative analyses.  68 

Unlike model-based approaches, deep learning-based data compression techniques, such as 69 

Autoencoders 14 ,VAE 15, GAN 16 etc. have recently emerged to interrogate the semantic correlation 70 

among signals. These approaches compress input data into a low-dimensional space representation which 71 

aims to eliminate semantic redundancy among data information by learning deep feature representations, 72 

and then reconstruct the original data using a decoder. Nevertheless, capturing essential data features, 73 

reducing dimensionality for optimal latent representation, and handling the burden of training with 74 

massive data for a single decoder remain highly challenging. Furthermore, when dealing with complex 75 

biomedical data, these deep learning-based supervised methods exhibit limited generalization 76 

capabilities and significant performance degradation due to generalization errors. The latest development 77 

of implicit neural representation (INR) 17  utilizes a neural network to parameterize a continuous function 78 

based on the data dimensions, enabling advanced representations of 3D scenes 18, images 19, and videos 79 
20. Unlike traditional CNN-based approaches that utilize discrete, grid-like representations of image data, 80 

the grid-free feature of INR representation naturally fits with the continuity of target visual information. 81 

This facilitates the generation of continuous representations that enable seamless and arbitrary 82 

interpolation of visual data. In addition, with the universal approximation theorem of neural networks 21, 83 
22, INR implemented with Multi-Layer Perceptron (MLP) can fit any complex function with a sufficient 84 

number of parameters, resulting in high-fidelity compression representation. INR currently has been 85 

demonstrated to be applicable for compressing natural image scenes 23 as well as various multi-86 
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dimensional biomedical data for biomedical research and clinical diagnosis, including 2D images, 3D 87 

volumes 24, and 4D data. By controlling the network parameters across different samples, stable 88 

compression rates and compression quality can be achieved. Moreover, INR exhibits stable performance 89 

for various data compression without the requirement of modifying the network structure specifically, 90 

which is can’t be achieved by other supervised learning-based approaches due to the generalization errors. 91 

However, existing INR-based compression approaches require massive training time 25-27 due to the 92 

processing of a large number of input coordinates when representing compression data by network 93 

optimization. As the dimensions increase, the network parameters of INR also grow exponentially, 94 

resulting in significantly increased computation 28.Also, these INR approaches can’t effectively leverage 95 

the correlations between data, such as the inter-frame correlation in dynamic biomedical data and highly 96 

similar local features. Furthermore, INR fits the entire image region without specific optimization for 97 

particular signals. These challenges prevent the INR-based compression from surpassing the alternative 98 

techniques and also spurred the development of our new INR approach to overcome the limitations.  99 

In this study, based on our first-proved semantic redundancy of biomedical data in implicit neural 100 

function domain, we propose the Semantic redundancy based Implicit Neural Compression guided with 101 

Saliency map (SINCS) approach, which explores the weight clustering effect in the implicit neural 102 

function domain and substantially accelerates the compression time of the algorithm through weight 103 

transfer. We also introduce saliency-guided compression mechanism to adaptively capture the specific 104 

structure information, thus facilitating high-fidelity compression of multi-modal biomedical images, and 105 

design residual-based entropy coding to further compress the optimized INR weights. Taken together, 106 

SINCS efficiently achieves high-fidelity compression with a high ratio up to 2000 folds for diverse 107 

multidimensional images. We have demonstrated SINCS’s superior compression performance on several 108 

large-scale biomedical image sets (2D, 2D video, 3D and 3D video) obtained from different imaging 109 

techniques (optical microscope, electron microscope, CT), proving its strong potentials for advancing a 110 

broad range of biomedical applications. 111 

 112 

Results  113 

 114 

High semantic correlation in implicit neural function domain of biomedical imaging data 115 

The essence of compression is to eliminate the redundancy caused by the internal correlation among 116 

signals. Most of the existed compression methods only explore and eliminate temporal and spatial 117 

redundancy among data, ignoring semantic redundancy, which is common in multidimensional data, 118 

such as 2D picture, 2D video, 3D video, etc. The features in multidimensional biomedical images, such 119 

as organelles in the time-lapse video of a live cell, neurons in different regions of a large brain tissue 120 

image,  are also correlated with semantic redundancy at both spatial and temporal dimensions. Here, we 121 

used zebrafish embryo heart as target to classify the biomedical image data into three modes for analyzing 122 

the sematic redundancy at different dimensions. In Mode 1, we analyzed the semantic redundancy along 123 

lateral dimensions using 2D plane image of the embryo heart. We employed the “patch sliding” to obtain 124 

the small patches from whole zebrafish embryo heart. Then we selected adjacent patches for compression 125 

using INR. By computing the Wilson Coefficient (Method section) to measure the distribution 126 

discrepancy of all the network parameters, we validated distributional correlation between the patches. 127 

In the domain of Implicit Neural Function (INF), the central tendency of the distribution is much more 128 

similar, whereas in the spatial domain, it presents a multi-modal distribution, as comparatively shown  in 129 

Fig. 1a. The lower Average Wilson Coefficient (AWC) values calculated in INF domain, as compared 130 
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with those in spatial domain, indicate much stronger sematic correlations found in INF domain. With 131 

discrepancy distribution and AWC metrics, we also analyzed the semantic redundancy along axial 132 

dimension (Mode 2) and temporal dimension (Mode 3) using the 3D image stack and 4D image video of 133 

the embryo heart, respectively. The results (2nd and 3rd rows) are consistent with those from lateral 134 

dimension (1st row), validating that biomedical images with arbitrary dimensions are all suited for being 135 

represented and compressed in the INF domain of INR. In addition to the correlation measurement of all 136 

network parameters, we calculated correlation of the different layers, and found that the hidden layers 137 

showed relatively high correlation (Supplementary Fig. 1). 138 

We further explored this internal correlation in INF domain on  typical  point-like (cell nuclei) and 139 

line-like signals (blood vessels), which belong to basic components in most of the biomedical data. 140 

Through “block partitioning” of large-scale data, we generated three thousand patches containing local 141 

features from different spatial positions or time points. Then we applied T-distributed Stochastic 142 

Neighbor Embedding (t-SNE)29 dimensionality reduction (Method section) to compare the clustering 143 

patterns of these images in both the spatial domain and the INF domain (Fig. 1b). In sharp contrast to the 144 

muti-model distributions in the spatial domain (right part), very unimodal  distributions were found in 145 

the INF domain (left part). The Rayleigh Entropy (RE) was calculated to quantitatively evaluate their 146 

clustering characteristics (Method section). The significantly lower RE values indicated a much more 147 

compact clustering of massive samples in INF domain, also suggesting that different samples of the same 148 

type could be rapidly compressed using Meta-learning through weight transfer in the INF domain. 149 

Furthermore, such high semantic correlation represented by low AWC and RE metrics in INF domain 150 

also proved wide existence in arbitrary-dimensional images (2D, 2D-T, 3D, 4D) of diverse biomedical 151 

targets (virus, organelles, cells, animal tissues, Human organs) with different size (nano-, micro-, meso-, 152 

macro-scale) and from different imaging techniques (electron microscope, light microscope, CT, MRI), 153 

as shown in Fig. 1c. More comprehensive quantifications are provided in Supplementary Note 1 and 154 

Supplementary Fig. 2 and 3 to cross-validate this universal INF domain correlation inside and between 155 

biomedical images. In the following step, we designed saliency map-informed and meta-learning-156 

enabled SINCS to fully utilize such implicit semantic correlations to realize high-fidelity, high-ratio 157 

compression with improved speed. 158 

 159 
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 160 

Figure 1. Validation of semantic redundancy in implicit neural function domain correlation. (a) Comparison of  semantic correlations 161 

in three image modes. 2D, 3D  and 4D (3D+T) images of the same zebrafish embryo heart were used as target, to evaluate the lateral (mode 162 

1, top), axial (mode 2, middle), and temporal (mode 3, bottom) semantic correlations, respectively. In each mode, the images’ semantic 163 

correlations in the implicit neural function domain and spatial domain are compared through calculating  their parameter histograms. The 164 

Average Wilson Coefficient (AWC) values are used as correlation metric with lower value indicating higher correlation. (b)  Clusterings 165 

for structurally-similar data in implicit neural function and spatial domain. Blood vessels and cell nuclei are chosen to represent line-like 166 

and point-like signals, respectively. The Rayleigh Entropy (RE) values are calculated to quantify the clusterings, with lower value indicating 167 

more compact clustering of the images. (c) Comparison of image correlations in  implicit neural function domain (AWC metric), and in 168 

spatial domain (SSIM metric). Multi-scale samples captured by different imaging techniques are compared to validate the universally-high 169 

correlations in implicit neural function domain. The human skeleton, human brain images are obtained from CT (Multi-Slice Spiral CT, 170 

Medium slices with 2.5mm thickness) and MRI (T1-weighted MRI), respectively; the 3D images of zebrafish embryo heart and mouse 171 

brain neurons are obtained by light-sheet microscope (4×/0.13 NA illumination and 20×/0.5 NA detection for heart, 4×/0.28 NA illumination 172 

and 10×/0.3 NA detection for mouse brain neurons); the 2D subcellular images of cell nuclei and  mitochondrial are captured by light-sheet 173 

microscope (20×/0.45 NA detection objective for cell nuclei and 60×/1.1 NA detection objective for mitochondrial), and the 4D subcellular 174 

images of dynamics microtubes are obtained from single objective light-sheet microscope (100×/1.5 NA for illumination and detection); 175 

the virus images are obtained from electron microscopy (an LEO (Zeiss, Oberkochen, Germany) with a Morada (Olympus) camera).  176 

 177 

The principle of SINCS 178 

Biomedical images can be considered as discrete sampling results of continuous spatiotemporal signals. 179 
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The continuity representation ability of INR is suited for fitting the arbitrary-dimensional signals so that 180 

we can map the sampling result to high-dimensional functions, achieving “data-to-function” encoding. 181 

However, the large size of biomedical data poses a big challenge for INR network fitting. A simple 182 

solution is to increase the parameters of the INR, nevertheless this amplifies the computational 183 

complexity and leads to compromised compression efficiency. Based on the locality and repeatability of 184 

correlations, we first introduced an interlace group strategy which mitigated this issue through 185 

decomposing the massive high-dimensional functions (data) in INR. We used an adaptive grouping 186 

strategy to divide the original data into groups (Fig. 2a(ⅰ)). For time series data, we specifically made an 187 

interlace sampling along time series to divide the original data into N groups, for which both the global 188 

motion trend within groups and the high cross-correlation between groups can be retained due to the 189 

frame continuity. This temporal grouping strategy helps to reduce temporal redundancy and achieve a 190 

higher rate of compression. For patches that lack temporal correlation (obtained by "patch sliding"), the 191 

abovementioned grouping strategy can be modified to have ni=1 in each group, which is also helpful to 192 

the elimination of spatial redundancy. With decomposition, we achieve highly-efficient compression by 193 

utilizing multiple simple implicit neural representations (Supplementary Fig. 4). 194 

Then, we designed a saliency-guided sampling to catch structural information of biomedical data. 195 

For each pre-defined data group, we proposed a training sampling strategy based on saliency mechanisms 196 

(Method section), permitting an adaptive compression that fitted the biomedical data with high-197 

dimension structural features. A pre-trained saliency detection network, as illustrated in Fig. 2a(ⅱ), 198 

generated saliency hot maps that serve as discrete probability distributions for coordinates query, thus 199 

incorporating the structure information into network optimization. This adaptive sampling strategy 200 

contributed to contrast improvement in decompressed results, as compared with conventional weighted 201 

loss optimization strategy with saliency map (Supplementary Fig. 5). 202 

In the following step, the sampled coordination was converted to corresponding voxels’ value by 203 

Multi-Layer Perceptron (MLP), which was a parameterized mapping function to fit data of each group. 204 

After saliency-guided sampling, the selected coordinates were encoded to vectors with high-frequency 205 

by positional encoding (Fig. 2a(ⅱ)), and then fed into the MLP. During the training process, the 206 

parameters of network were updated by the L2 loss computed from the network outputs and original 207 

inputs (see Supplementary Note 2, Supplementary Video 1 and Supplementary Table 1 for more training 208 

details). 209 

After creating the high correlations between pre-partitioned groups, we designed a weight transfer 210 

fine-tuning strategy that adopt sequential fitting of each group data to accelerate network’s convergence. 211 

We compressed the data from the first group and obtained the optimized parameters (θ1’) for the initial 212 

network. Instead of introducing a new model, these optimized parameters served as the starting point for 213 

compressing the data from the second group. This meta-learning compression strategy minimizes the 214 

distance in INF domain between initial parameters (θ2) and optimized ones (θ2
’) of the 2nd group data 215 

(Supplementary Fig. 6). It yielded significantly faster network convergence as compared with direct 216 

compression of individual groups. We have demonstrated significant correlation between the weights 217 

across various time points in the INF domain, making this weight transfer possible. 218 

With the abovementioned procedure, SINCS successfully achieved rapid compression of arbitrary-219 

dimensional biomedical images into INR weights in a manner of “data-function”. We further increased 220 

the compression ratio using weight-residual entropy coding based on the semantic correlation between 221 

each group data (Fig. 2a(ⅳ)). SINCS encoded the residuals by subtracting the network parameters 222 

between neighboring networks and applying entropy coding to obtain the encoded initial parameters and 223 
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residual ones for subsequent streamlining storage and transmission processes.  224 

At image decompression stage (Fig. 2b), weight-residual entropy decoding was adopted to convert 225 

the highly-zipped bitstream to original initial parameter (θ1) and remaining residual parameters (△θi). 226 

After successively adding the residuals to the initial weight parameters, we obtained the original weight 227 

parameters of each network for each group data. Through model forward inference and regrouping, the 228 

decompressed data can be reordered by the pre-defined grouping strategy. It is noteworthy that with the 229 

advantage of coordinate-based representation of INR, region-specific decompression and visualization 230 

can be readily achieved for flexible downstream biomedical tasks (Fig. 2c).  231 

232 

Fig. 2 The workflow of SINCS compression and decompression. (a) Compression pipeline of SINCS. For a given large-scale biomedical 233 

dataset, the pipelie contains: (i) the data is first effectively partitioned into several groups through an adaptive grouping strategy; (ii) saliency 234 

mechanism was introduced to realize adaptive compression fitting for biomedical data. This mechanism leverages saliency hot maps (serve 235 

as discrete probability distributions for coordinates query) to optimize the compression process,enabling targeted learning of crucial 236 

information in the dataset; (iii) Multi-Layer Perceptron (MLP) was constructed as a parameterized mapping function to fit each group data. 237 

After saliency-guided sampling, the selected coordinates are first encoded to vectors with high-frequency by positional encoding, and then 238 

fed into the MLP,achieving “data-function(weights)” encoding. Subsequently, a weight transfer with trianed parameters θ1 of 1st group data 239 

as the initial parameters and θ2 of 2nd group data for starting optimization was applied to promote network’s rapid convergence based on 240 

the high correlation between groups; (iv) after global fitting of the original data, a higher compression ratio can be further realized  using 241 

weight-residual entropy coding strategy. Specifically, SINCS encoded residuals by subtracting the network parameters between neighboring 242 

networks and applying entropy coding to obtain the encoded initial parameters and residual ones.  This step produces a bitstream at last. (b) 243 

Decompression pipeline of SINCS. In the decompression process, the weight-residual entropy decoding is adopted to convert the  bitstream 244 

to original initial parameters θ1 and remaining residual  parameters △θi. Subsequently, by successively adding the residuals to the initial 245 

weight parameters, the original weight parameters are obtained for each network corresponding to each group data. By modeling forward 246 

inference and regrouping, the decompressed data can be reordered by the pre-defined grouping strategy. (c) The decompression procedure 247 
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showing that the region-specific decompression and visualization can be readily achieved in SINCS with flexibility, owing to its coordinate-248 

based representation. 249 

SINCS achieves high-fidelity and high-ratio compression of multidimensional biomedical data 250 

 251 

High structural fidelity compression for 2D and 3D biomedical images. Bright-field microscopic 252 

imaging has been frequently used in biomedical research, generating huge amounts of image data30. 253 

However, bright-field images typically exhibit low contrast or contain less gradient information, making 254 

it more vulnerable to the loss of such gradient structural information during large data compression. 255 

Therefore, bright-filed images especially need compression algorithms that can offer both high-fidelity 256 

representation and high compression ratios for efficient data storage enabling convenient downstream 257 

image-based tasks such as cell segmentation. Here, we applied the SINCS to compress large field-of-258 

view (FOV) 2D imaging data acquired by an inverted light microscope. The field of view of entire two-259 

dimensional plane is 2.67 × 3.99 mm2, and we divided the plane into 48 patches using patch sliding, as 260 

illustrated in Fig. 3a. Each patch was then compressed using the SINCS algorithm guided by saliency 261 

map. Considering the large field-of-view information of bright-field imaging, here we take the learnable 262 

saliency map to better prioritize the signal information. This learnable saliency map is also applicable to 263 

a variety of other modalities of biomedical data, such as CT, MRI, TEM, as shown in Supplementary 264 

Fig. 7. To showcase the compression capability, we selected two representative patches for visualization. 265 

We further enlarged the regions of interest (ROIs) within these patches in Fig. 3b. Meanwhile, we 266 

compared our method with JPEG compression, conventional INR compression and autoencoder-based 267 

compression methods (CAE) 14, 22-24, demonstrating the superior visual fidelity achieved by our approach. 268 

In addition, we applied SINCS to 3D cell data. We partitioned it into multiple blocks using block sliding 269 

and rapidly compressed them through weight transfer, as illustrated in Fig. 3a. We visualized the 2D / 270 

3D decompression results of SINCS and those from other compression approaches, showing that our 271 

approach offers higher visual fidelity and better preserved cellular details (Fig. 3b). We also quantified 272 

the SINCS results using several well-established metrics, showing that it achieved big compression rate 273 

of 80 (2D) and 580 (3D), high Peak Signal-to-Noise Ratio (PSNR) of 34.5 (2D) and 38 (3D), and high 274 

Structural Similarity Index (SSIM) of 0.94 (2D) and 0.96 (3D). The comparative results in Fig. 3c have 275 

shown that SINCS have outperformed the alternative compression approaches in term of these metrics. 276 

Furthermore, we conducted image-based cell segmentation using the open-source software “Cellpose”31 , 277 

to validate that the superior compression quality by SINCS also necessarily led to more accurate 278 

downstream cell analysis (Fig. 3d). This advantage is further consolidated by quantitatively comparing 279 

the Intersection over Union (IoU) scores of the segmented images and the cell counting accuracy (Fig. 280 

3e, Method section).  In addition, SINCS with meta-learning also enabled much faster compression as 281 

compared to the INR SIREN (INR-S) method that compresses the entire dataset (Supplementary Fig. 8).  282 

 283 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 25, 2023. ; https://doi.org/10.1101/2023.08.22.554284doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.22.554284
http://creativecommons.org/licenses/by-nc-nd/4.0/


284 

Fig. 3 Demonstration of SINCS compression capability on 2D bright field / 3D fluorescence images and performance on downstream 285 

tasks. (a) Brief illustration of 2D data patch grouping and 3D data block grouping (The respective saliency maps are shown in the bottom 286 

right corner). Scale bars from top to bottom: 100 μm, 40 μm. (b) Comparison of bright-field 2D cell data and 3D cell nuclei data (labeled 287 

by GFP) reconstructed by different image compression methods. Since JPEG cannot compress 3D data, we convert 3D to 2D data for batch 288 

compression, where the data compression ratio is 130× for JPEG (limitation) and 580× for other methods. Scale bar:  5μm. (c) Overall 289 

performance rating using PSNR and SSIM metrics, to show that SINCS surpass alternative compression approaches in terms of higher 290 

structural fidelity. (d) Comparative segmentations of 2D cells and intersection over union (IoU) scores of 3D cell nuclei by different 291 

compression methods. The IoU scores are used as fidelity metric with higher score indicating higher visual fidelty. TP (True Positive): the 292 

correctly reconstructed structures; FP (FalsePositive): the incorrectly hallucinated structures; FN (False Negative): the missing details. 293 

Metrics from top to bottom: Counting accuracy, and IoU score comparision. (e) Histograms comparing the reconstruction accuracy of 294 

different compression methods with using 2D counting accuracy (top) and 3D IoU scores as metric (bottom). 295 

 296 

 297 

High intensity fidelity SINCS compression on quantitative imaging data of neural activities in 298 

moving C. elegans. Long-term and high-speed Ca2+ imaging of neurons in moving specimens at high 299 

spatiotemporal resolution is useful to interrogate the behavior-related neural activities through tracking 300 

the Ca2+ density change indicated by fluorescence intensity variations32, 33. Therefore, compression 301 

algorithm retaining the signal intensity profile is required in this case, to reduce the data size and also 302 

reflect the neural activity state of the samples accurately. 303 

We used SINCS to compress the sequential images of moving C. elegans captured by light-field 304 

microscopy at a high imaging rate of 100 Hz. we achieved a compression ratio of 1500 folds (From 305 

1.6GB to1.1MB). We further compared the SINCS performance with H.265 and conventional INR on 306 

the decompression of Ca2+ indicator-labelled motor neurons. The comparative ROIs showed that while 307 

H.265 and INR-S lost some weak signals owing to the abrupt intensity variations, SINCS better fit these 308 

intensity changes because of the signal enhancement by saliency map (Fig. 4a). It should be also noted 309 
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that considering the sparsity of neuron signals, we also adopted a conventional threshold-based saliency 310 

map to prevent the loss of weak signals (Supplementary Fig. 9). SINCS also outperformed other 311 

approaches with showing better resolved dense signals. Then we conducted trajectory tracking of 4 motor 312 

neurons (VB1, VB4, VB8, VA7) to investigate their intensity fluctuations during C. elegans movement 313 

(Fig. 4b). When using the intensity profiles extracted from the raw data as references, we validated that 314 

SINCS retained the intensity changes of the dynamic Ca2+signals well, surpassing the results from 315 

alternative H.265 and INR-S approaches. We further quantified the PSNR, signal preservation rate and 316 

intensity correlation based on all the motor neurons (Fig. 4c, Methods section). The inherent mapping 317 

function from coordinates to signal values and the adaptability of the saliency map for identifying low-318 

intensity signals together allow SINCS to demonstrate intensity accuracy much higher than other 319 

approaches, thereby ensuring authentic representation of dynamic biomedical data and seamless 320 

continuation of subsequent tasks (Supplementary Video 2). 321 

 322 

 323 
Figure 4. High intensity fidelity SINCS compression on sequential Ca2+ images of moving C. elegans allowing downstream 324 

quantification of neural activities. (a) The motor neurons in an entire L4 C. elegans larva reconstructed by different compression 325 

approaches (The top right corner shows the C. elegans  crawling trend with a time-coded trace). The magnified views of indicated regions 326 

show that  H.265 and INR-S lose a considerable amount of weak signals, owing to  the high signal dynamic range. In sharp contrast, SINCS 327 

preserves these weak signals perfectly. Meanwhile, SINCS reconstruction also shows spatial resolution higher than the other two approachs, 328 

notably contributing to the resolving of dense signals. The SSIM are used as structral fidelity metric with higher value indicating higher 329 

fidelity. Scale bar: 10μm. (b) Spatio-termporal patterns of 4 motor neurons (VB1, VB4, VB8, VA7) reconstructed by different image 330 

compression methods. The neuron tracing trajectories are displayed on the left, indicating the dynamics of neuronal signals in spatial domain. 331 

The Ca2+ activity curves of corresponding neurons reconstructed by SINCS (red), INR-S (green) and H.265 (gray) approaches are shown 332 

on the right, and compared with the ground truth curve plotted by raw data (yellow) . The intensity correlations are used as metrics to 333 
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quantify the intensity fidelity of the reconstructions by diverse methods, with a higher correlation value indicating  a higher stability in 334 

intensity fidelity. (c) Overall performance rating using PSNR (top), signal preservation (middle) and intensity correlation (bottom) metrics, 335 

to show that  SINCS surpass the H.265 and INR-S in term of both high structural and intensity fidelities.   336 

 337 

SINCS compression on high-dimensional images of live cells. In long-term live biomedical imaging, 338 

a variety of dynamic biological processes, such as blood flow, heartbeat, and cell-cell interactions, occur 339 

in four (3D space + time) or even five (3D space + time + spectrum) dimensions and tend to generate 340 

tremendous amounts of data which intrinsically need to be compressed. Meanwhile, such types of high-341 

dimensional data are accompanied with complex variations in both temporal and spatial domains, making 342 

high-fidelity and high-ratio compression especially challenging and necessary to ensure the downstream 343 

tasks being conducted accurately. We applied SINCS to 4D cell super-resolution data which were 344 

acquired using our lab-built light-sheet fluorescence microscope (LSFM) with a near isotropic resolution 345 

of ~100 nm. The entire 4D image dataset contains 180 consecutive volumes with totally generating 244 346 

giga voxels (488 gigabytes) to record the 3D dynamics of mitochondrial within a single cell across 3 347 

minutes. SINCS then  achieved a 700-fold near lossless compression that drastically reduced the size of 348 

the data into 697 megabytes while retained the complex outer membrane morphology. We visualized the 349 

decompressed data and the raw data in the same 3D volume rendering (Imaris 9.0) to visually examine 350 

the overall high structural fidelity by SINC compression (Fig. 5a). Then we selected three time points of 351 

the same small ROI and magnified them to compare the reconstructed details by SINCS, H.265 and INR-352 

S (Fig. 5b). It’s noted that due to the limitation of directly compressing 4D data by H.265, we 353 

concatenated all temporal axis data along the axial axis to fit it into 3D format for testing H.265 354 

compression (referring to H.265-S). In visual comparison, SINCS significantly outperformed other 355 

approaches, accurately visualizing the transient process of a single mitochondrion fission. The error maps 356 

and SSIM metric calculated with using raw image as references further validated that SINCS achieved 357 

significantly higher structural fidelity as compared to other approaches. The incomplete mitochondrial 358 

fission observed in the results of H.265-S might be from the concatenation of temporal and axial 359 

dimensions that led to non-uniform signal distribution and signal residues (Fig. 5b). Meanwhile, since 360 

INR-S lacked sufficient fitting ability to learn regions with low signal intensity, it also led to suboptimal 361 

structural fidelity (Fig. 5b). 362 

We analyzed the dynamics of a selected mitochondrion at its cross-section plane to further validate 363 

the reconstruction fidelity in four dimensions. H.265-S exhibited significant morphological aberrations, 364 

likely because of its forced concatenation and fitting along the axial and temporal directions (Fig. 5c, 365 

left). In the meantime, INR-S could hardly discern the inner and outer membranes, preventing the 366 

subsequent quantitative analyses (Fig. 5c, middle). In contrast, only SINCS achieved smooth 367 

morphological changes which are nearly identical with the changes in raw image data. We further 368 

quantified the reconstruction accuracy at mitochondrial fission site (metric: European distance) and 369 

cross-section plane (metric: area) over time, as shown in the top and bottom of Fig. 5d, respectively. The 370 

results verified that the structural fidelity and time signal continuity by SINCS compression were both 371 

higher than other approaches. These advances came from our novel interlace grouping strategy that 372 

ensured global continuity and inter-frame continuity for accurate compression over time (Supplementary 373 

Video 3).  374 

We went deeper with applying SINCS to the light-sheet fluorescence microscopy data recording 375 

the interactions between CAR-T and Nalm6 tumor cells, in which the subcellular changes of CAR-T 376 

immune synapses and tumor membranes in space, time and spectrum domains together formed a highly 377 
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complex task for data compression. As we can see in Fig. 5e, while SINCS achieved an impressive 378 

compression ratio of 2302 folds, from 1TB to 455.5MB, it also enabled precise cellular morphology 379 

reconstruction and thereby accurately reproduced the complete Immunotherapy processes (Fig. 5e). We 380 

computed the variation of synaptic areas (Method section) during the interaction between CAR-T cells 381 

and Nalm6 T cells to evaluate the temporal compression quality over time. In addition, we calculated the 382 

SSIM values within the ROIs across different spectral channels (Fig. 5f), demonstrating that our approach 383 

consistently maintains high-fidelity compression performance across various spectral channels and 384 

permits reliable data analysis and validation in downstream tasks (Supplementary Video 4). 385 

 386 

 387 
Figure 5. SINCS compression on 4D super-resolution images of  mitochondrial dynamics and 5D light-sheet images of CAR-T cell 388 

/ tumor cell interaction. (a)  3D volume renderings of GT (top) and 700× SINCS compression result (bottom) showing the overall high 389 

structural similarity by SINCS. Scale bar: 10 μm. (b) Comparison of mitochondrion fission process reconstructed by H.265-S, INR-S and 390 

SINCS.The red arrows indicate the mitochondrion fission site over 4 seconds. As compared to the GT from raw images, only SINCS results 391 

are capable of resolving the  fine structural changes. The SSIM  scores of  the reconstructions by three approaches are calculated, with 392 

higher value indicating higher fidelity. Scale bar: 1μm. (c) Comparative results of mitochondrion morphological changes in reconstructed 393 

cross section plane. The cross sention plane  at different time points demonstrate the mitochondrion contraction and expansion at nanoscale. 394 

The IoU scores are used as fidelity metric with higher score indicating higher reconstruction fidelty during the morphological and cross-395 

sectional area changes. TP (True Positive): the correctly reconstructed structures; FP (FalsePositive): the incorrectly hallucinated structures; 396 

FN (False Negative): the missing details. Scale bar: 1μm. (d) Quantitative comparison of  reconstruction accuracy at mitochondrial fission 397 
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site with using European distance as metric（top）and cross-section plane using area as metric (bottom). (e) Visual comparison of GT and 398 

2302× SINCS compression result  of 5D light-sheet fluorescence microscopy data recording the interactions between CAR-T (labeled by 399 

GFP) and Nalm6 tumor cells (labeled by Dsred) in 20 minutes.  Scale bar: 5 μm. (f) Comparison of synaptic area variation and SSIM values 400 

between GT and SINCS result. 401 

 402 

Conclusion and Discussion 403 

Both conventional model-based and emerging learning-based approaches show limited performance on 404 

the compression of biomedical images that have the features of high dimension, high dynamic range, and 405 

often require accurate downstream analysis. SINCS greatly improves the compression of biomedical data 406 

in term of performance and applicability by initiating the study on semantic redundancy of biomedical 407 

image data in INF domain. After verifying the semantic redundancy in INF domain, we then designed 408 

weight transfer optimization strategy and included saliency-guided mechanism adapted to the structural 409 

characteristics of multimodal images, making SINCS capable of high-fidelity compression of diverse 410 

biomedical data with high compression ratio and improved speed provided. 411 

SINCS applies different grouping strategies for network training and coding based on data types 412 

(please refer to Supplementary Note 3, Supplementary Fig. 10 and Supplementary Table 2 and 3 for more 413 

details). Then, it generates saliency maps according to the signal distribution of each group of data, which 414 

adjust the network training sampling strategy to guide better parameter allocation and achieve adaptive 415 

high-fidelity compression. Moreover, since SINCS is an implicit neural function mapping from spatial 416 

coordinates to signal values, it can innately incorporate saliency-guided mechanism within it, with 417 

significantly-improved fidelity in lateral, axial, and temporal dimensions. Though SINCS is currently 418 

not as fast as traditional compression methods yet, its introduction of weight transfer optimization has 419 

effectively reduced the model’s training time, as compared with other INR-based compression methods. 420 

Also, this reduction in training time will become much more significant, and could be over one order of 421 

magnitude when processing increasingly bigger data. In the following decompression process, SINCS 422 

only requires simple forward propagation of neural networks, making the decompression speed nearly 423 

an-order-of-magnitude faster than H.265, as shown in Supplementary Table 4. It is also worth noting 424 

that, for the downstream visualization or quantitative analysis of large-scale biomedical images, multiple 425 

transmissions and decompressions may be necessary given the constraints of limited bandwidth. In a lot 426 

of practical applications, the high-quality, large-ratio compression as well as high-speed decompression 427 

by SINCS makes it outstanding from the alternative approaches.  428 

We validate the capabilities of SINCS on several types of biomedical images, especially on 4D 429 

super-resolution microscopy data of live cells whereas high-resolution, high-fidelity, efficient 430 

compression are all required. When facing these challenging data with large size, dynamic structures and 431 

high resolution, SINCS approach notably outperforms traditional H.265 and INR-based method, 432 

rendering itself a powerful and versatile data compression and transmission tool for diverse biomedical 433 

applications. Moreover, to specifically address the loss issue for certain types of medical datasets, SINCS 434 

can achieve true lossless compression by further incorporating image residuals, as demonstrated in 435 

Supplementary Fig. 11. We envision that the INR-based compression could be more versatile with  436 

obtaining image priors of diverse samples through meta learning.34 We also anticipate the further 437 

reduction of  compression training time by continuously optimizing the network design strategies.35 438 

 439 
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 521 

Methods 522 

Network optimization strategy based on saliency mechanism.  523 

We introduce a saliency mechanism with learnable or hard saliency maps to guide the adaptive allocation 524 

of parameters in INR, bridging the gap between INR and data and achieving improved data compression 525 

fidelity, as shown in Supplementary Fig. 12. Considering the characteristics of the signal distribution, 526 

we have two different saliency maps to cope with signals of different distribution types. Specifically, for 527 

data with multiple ROIs, dense signal distributions, and a demand for high structural detail, we use 528 

Gradient-weight Class Activation Mapping (Grad-CAM) 36 and Multi-Structure Region of Interest (MS-529 
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ROI) 37 techniques to create learnable saliency maps for the corresponding data, assigning probability 530 

values to each grid coordinate point, reflecting its proportionate importance in the data. In the process of 531 

generating saliency maps, we first apply a convolutional layer to the original data, denoted as x (with a 532 

size of a×b), using a convolution filter of size n×n. The convolution operation is represented by Equation 533 

1, where W represents the learned filter. 534 

𝑦𝑖𝑗 = ∑ ∑ 𝑊𝑎𝑏𝑥(𝑖+𝑎)(𝑗+𝑏)

𝑛

𝑏=0

𝑛

𝑎=0

 535 

In practice, multiple filters within each layer are learned in parallel, resulting in a three-dimensional 536 

feature map as the output of the convolutional layer, where the depth represents the number of filters. 537 

Subsequently, by utilizing the learned weights between the predicted class c and the feature map d, we 538 

train the Class Activation Maps (CAM) model to obtain saliency maps that capture the significance of 539 

the predicted class distribution. 540 

𝑀𝑐(𝑥，𝑦) = ∑ 𝑤𝑑
𝑐𝑓𝑑(𝑥, 𝑦)

𝑑∈𝐷

 541 

       𝑃(𝑐) =
𝑒𝑥𝑝(∑ 𝑀𝑐(𝑥,𝑦)𝑥𝑦 )

∑ 𝑒𝑥𝑝(∑ 𝑀𝑐(𝑥,𝑦)𝑥𝑦 )𝑐
 542 

where 𝑤𝑑
𝑐 is the learned weight of class c for feature map d. Training for CAM minimizes the cross 543 

entropy between objects’ true probability distribution over classes (all mass given to the true class) and 544 

the predicted distribution. The probability Pc represents the likelihood of selecting the corresponding 545 

coordinate point for each training iteration. Besides, for sparse signals with faint intensity and lack of 546 

structural details, since the subsequent task analysis focuses only on their spatial location or intensity 547 

information, we use hard saliency maps based on threshold divisions to prevent the loss of weak signals. 548 

After obtaining the saliency maps, the coordinate vectors V guided by saliency maps are further mapped 549 

to a high-dimensional embedding space using position encoding, enhancing perceptual quality. Formally, 550 

the encoding function employed in our approach is as follows: 551 

γ(v) = (sin(20πv), cos(20πv), … , sin(2L−1πv), sin(2L−1πv)). 552 

Here γ is the mapping of the original coordinate vector V from R to R2L and L is the number of frequencies 553 

used. 554 

 555 

TSNE clustering dimensionality reduction and correlation analysis.  556 

For correlation analysis in implicit neural function domain and spatial domain, we adopt Average Wilson 557 

Coefficient (AWC) to compare the correlation between two discrete distributions.  WC can be computed 558 

from the Kolmogorov Smirnov (KS) test formula as follows: 559 

𝑊𝐶 = 𝑠𝑢𝑝𝑥|𝐹1(𝑥) − 𝐹2(𝑥)| 560 

where F1(x) and F2(x) are the Empirical Cumulative Distribution Function (ECDF) of the two 561 

distributions, respectively. In this paper, the distributions were defined as the one-dimensional vectors 562 

reshaped from the compressed network weights and the original images, respectively. The network 563 

parameter values and image pixel values are all normalized to 0 to 1. The smaller value of AWC indicates 564 

the higher correlation in the parameter value distributions between the two samples.  565 

To interrogate the statistic correlation among sample, we use  t-SNE29 dimensionality reduction and 566 

clustering to get the data distribution, and we adapt Rayleigh entropy to quantify the degree of clustering, 567 

which is calculated as follows: 568 

𝐻 = − ∑(𝑃𝑖 ∗ 𝑙𝑜𝑔(𝑃𝑖))

𝑛

𝑖=1

 569 
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where Pi is the probability that the sample point belongs to a category in the clustering result. A lower 570 

Raleigh entropy value indicates that the data distributions are more concentrated in the clustering result. 571 

 572 

Evaluation Metrics 573 

PSNR, SSIM and IoU scores were used in our work to evaluate the compression quality of the 574 

decompressed data with respect to the original data. (PSNR, SSIM and IoU scores are all based on single 575 

channel images.) Denoting 𝑓 ∈ ℝNW
×NH as the decompressed data, and 𝑔 ∈ ℝNW

×NH as the original data, 576 

PSNR and SSIM values were calculated using the following equations (Take a 2D image as an example):  577 

𝑃𝑆𝑁𝑅 = 10𝑙𝑔 [
𝑀𝐴𝑋2𝑁𝑊𝑁𝐻

∑ ∑ (𝑓𝑖𝑗 − 𝑔𝑖𝑗)
2𝑁𝐻

𝑗=1
𝑁𝑊

𝑖=1

] 578 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 579 

Here MAX stands for the dynamic range of the original data. Μx, μy and σx, σy are the mean value and the 580 
standard deviation of the original data and decompressed data, respectively. And C1 and C2 are constants 581 
to avoid a zero denominator. It can be deduced that compression quality is better when the SSIM is closer 582 
to 1. 583 
 584 

And the Intersection over Union (IoU) scores: 585 

𝐼𝑜𝑈 =
|𝑓 ∩ 𝑔|

|𝑓 ∪ 𝑔|
 586 

Here  |𝑓 ∩ 𝑔|  represents the size of the intersection between the decompressed data region and the 587 

original data region. |𝑓 ∪ 𝑔| represents the size of the union between the decompressed data region and 588 

the original data region. IoU takes values between 0 and 1, with values closer to 1 indicating a higher 589 

degree of overlap between the decompressed data and the original data. 590 

 591 

Quantitative intensity correlation analysis of worms 592 

We performed semi-automatic tracking of motion and intensity fluctuations in each neuron of the GT 593 

using the TrackMate Fiji Plugin38. Neurons in each volume were automatically detected by applying a 594 

circular ROI through a Difference of Gaussian (DoG) detector and then tracked using a Kalman filter. If 595 

the automatic tracking failed due to rapid neuronal movement, manual correction of missing detections 596 

and tracking errors was required. After tracking neurons in the GT dataset, we export the corresponding 597 

neuron’s position coordinates to Excel. Subsequently, leveraging a custom localization algorithm, we 598 

perform localization on results under different compression methods. This process entails extracting the 599 

average intensity value 𝐹𝑖 of all pixels within the ROI surrounding the neuron’s coordinates, effectively 600 

representing the fluorescence intensity of that neuron. Finally, employing the same approach outlined 601 

above, we generate intensity change curves  𝐿𝑇  for neurons under different methods and compare them 602 

to the ground truth intensity change curves 𝐿𝑅.The intensity correlation is calculated as 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =603 

𝐿𝑇 𝐿𝑅⁄  , representing the degree of intensity correlation. 604 

 605 

Cell contact area analysis 606 

We designed an algorithm to quantitatively analyze the contact area between immune cells and cancer 607 

cells during their interaction. Initially, a deep learning-based segmentation network39 is employed to 608 

segment immune cells and target cells. Subsequently, based on the segmentation results, the image is 609 

divided into four regions: immune cells, cancer cells, background, and the boundary region. Finally, in 610 

the boundary region, distance transformation and watershed algorithms are used to obtain the segmented 611 
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results of the contact area between immune cells and cancer cells. The segmentation results ensure a 612 

single-pixel thickness, enabling the conversion of pixel count into the contact area. 613 

 614 

Sample preparation 615 

Transgenic zebrafish lines Tg(gata 1a:dsRed;cmlc2:gfp) was used in our experiments. Embryonic fish 616 

were maintained at 3-4days post-fertilization in standard E3 medium, which was supplemented with 617 

extra 1-phenyl 2-thiourea (Sigma Aldrich) to inhibit melanogenesis. Then, the larvae were anesthetized 618 

with tricaine (3-aminobenzoic acid ethyl ester, Sigma Aldrich) and immobilized in 1% low-melting-point 619 

agarose inside a fluorinated ethylene propylene tube for further imaging. 620 

For 2D cell data, cell cultures were prepared using homemade microchips. T-cell medium was used 621 

to replace the sterile water, and 500μL of the medium was kept in the confocal dish to submerge the chip. 622 

Then, 60μL of CAR-T cells at a density of 1×106/mL was taken and dropped in. We waited for 10 minutes 623 

to allow the cells to fall into the chamber. Subsequently, an equal amount of target cells was taken, and 624 

the above operation was repeated. 625 

MCF-7 cell line that expresses GFP endogenously was used in 3D cell nuclei data compression 626 

experiment, MCF-7 cells were grown in Dulbecco’s modified eagle medium (DMEM), which were 627 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. Once the cells had 628 

grown to 80–90% confluence, they were harvested by 0.25% Trypsin-EDTA treatment and resuspended 629 

in the complete medium to a suspension volume of 1× 106 cells/mL . 630 

The strain ZM9128 hpIs595[Pacr-2(s)::GcaMP6(f)::wCherry], expressing GcaMP6f in A- and B- class 631 

motor neurons, was used to detect neuronal activity in the moving worm. The C. elegans were cultured 632 

on standard nematode growth medium plates seeded with OP50 and maintained at 22℃ incubators until 633 

the L4 stage. 634 

To label microtubules in live U2OS cells, we followed a previously described protocol40, in which 635 

the cells were coincubated with 4 μM PV-1 and 5 μM Tubulin-Atto 488 at 37 °C for 1 h, then the cells 636 

were washed three times with culture medium (warmed to 37 °C) and cultured at 37 °C for another 1 h. 637 

Finally, the medium was replaced with phenol red free McCoy’s 5A medium and imaged via DR–SPIM. 638 

For labeling mitochondria in fixed cells, U2OS cells were first transfected with Tomm20-EGFP (mito 639 

OM) or Cox4-EGFP (mitochondrial matrix) using Lipofectamine LTX according to the standard protocol 640 

and cultured at 37 °C with 5% CO2 for an additional 24 h. Before imaging, the cells were fixed with 2% 641 

glutaraldehyde for 20 min. 642 

For multi-channel 4D biomedical data compression experiment, Acute B-lymphocytic leukemia cell 643 

line Nalm6 were cultured in RPMI 1640 medium (Gibco, Grand Island, NY, USA) containing 10% fetal 644 

bovine serum (FBS; Gibco, Grand Island, NY, USA). The lentivirus packaging cell line LentiX™293T 645 

was cultured in DMEM medium (Gibco, Grand Island, NY, USA) supplemented with 10% FBS. CAR-646 

T cells were pretreated with 50 nM dasatinib (Selleck, Shanghai, China) for 24 h. Due to the reversible 647 

effect of dasatinib, 50 nM dasatinib was also added to all subsequent staining, imaging, and other 648 

experimental solutions.To label microtubules, CAR-T cells were stained with the SiR-tubulin probe 649 

(SpiroChrome, Switzerland) at 2 μM final concentration and incubating for 1 h in a humidified 5% CO2 650 

incubator at 37 °C. The cells were then washed twice with warm phosphate buffer saline (PBS) and 651 

resuspended with imaging solution, consisting of the phenol red-free 1640 medium (Gibco, Grand Island, 652 

NY, USA) supplemented 10% FBS, 25 mM HEPES (Gibco, Grand Island, NY, USA), 100 U/ml 653 

penicillin and streptomycin (Gibco, Grand Island, NY, USA), and 1 μM SYTOX™ Blue stain (Invitrogen, 654 

Waltham, MA, USA). 655 
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Data acquisition 656 

For moving C. elegans data compression experiment, the calcium signals of worms were captured using 657 

a customed-built light-field microscope (LFM)41. A water immersion objective (LUMPlanFLN 40×/0.8w, 658 

Olympus) was used to collect the epifluorescence signals from samples with scientific camera sensor 659 

(Flash 4.0 V2, Hamamatsu). The captured light-field sequences were subsequently reconstructed by the 660 

trained VCD model41 to yield the 3D videos of the calcium signals in moving worms. The max intensity 661 

projection of the 3D reconstructions was then used for the compression. 662 

For 2D and multi-channel 4D biomedical data compression experiment, the multi-channel 663 

fluorescently labeled Car-T cell images and bright-field cell images were captured using a customed 664 

single objective light sheet microscopy compatible with both fluorescence and bright-field capabilities, 665 

based on the IX83(Olympus) framework. The primary optical elements in this configuration include the 666 

following: Objective O1 (UPLSAPO 60×/1.35, silicone, Olympus), Objective O2 (UPLXAPO 40×/0.95, 667 

air, Olympus), and Objective O3 (AMS-AGY v2.0). This system attains a spatial resolution of 0.35 × 668 

0.35 × 1μm (with axial resolution enhancement through post-processing). For bright-field cell data, 669 

illumination was provided by LED light sources, and image acquisition was performed using an Andor 670 

camera with an exposure time of 20ms. For multi-channel fluorescently labeled Car-T cell data, 671 

excitation was conducted using lasers at 488 and 561 nm, with the 488-channel being captured by a 672 

Hamamatsu camera with a 200-ms exposure time, and the 561-channel requiring a 2000-ms exposure 673 

time. The color filter for channel 488 is MF525-39, and the color filter for channel 561 is FBH600-40.     674 

For static 3D biomedical data experiment, the 3D cell nuclei data was collected by a customed dual-675 

objective light sheet microscopy. The primary optical elements in this configuration include the following: 676 

illumination objective (Mitutoyo Plan Apo Infinity Corrected Long WD Objective 20×/0.42, air), and 677 

detection objective (UPLFLN20XPH 20×/0.5, Olympus). This system attains a spatial resolution of 678 

0.325 × 0.325 × 0.5μm. The excitation source of the system is a laser with a wavelength of 405nm, while 679 

the sCMOS camera (Orca Flash4.0 v.3, Hamamatsu) acquires data with an exposure time of 20ms. 680 

For 4D biomedical data experiment, 4D cell super-resolution data was collected by a customed 681 

dual-objective light sheet microscopy, followed by post-processing image enhancement using an ID 682 

neural network42. The fluorescence signals generated within the specimen were collected by a detection 683 

objective (LUMFLN 60×/1.1 W, Olympus). The resolution of the system is 97×97×450nm. The sCMOS 684 

camera (Orca Flash4.0 v.3, Hamamatsu) exposure was precisely triggered with a minimal 2-ms delay to 685 

effectively reduce motion blur, and the camera recorded the plane images at a rate of up to 1,000 fps. 686 

The CT, MRI, and TEM data used in our experiments were taken from publicly available datasets. 687 

The CT images from the publicly available dataset on http://headctstudy.qure.ai/dataset, MRI images 688 

from the publicly available dataset on http://adni.loni.usc.edu/data-samples/access-data/, and TEM 689 

images from the Virus Image Dataset (aggle.com). 690 

 691 

Data availability. The datasets generated and analyzed in this study are available 692 

from the corresponding authors upon reasonable request. 693 

 694 

Code Availability. The data and code that support the findings of this study are 695 

available from the corresponding author upon reasonable request. 696 
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