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 38 

Graphical abstract: In this study, using spatial digital profiling transcriptomic approaches, 39 

we demonstrate that SARS-CoV-2 infection in pregnancy disrupts optimal placental function 40 

by altering the genomic architecture of trophoblasts and villous core stromal cells.  41 

 42 

ABSTRACT 43 

Objectives: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus 44 

infection in pregnancy is associated with higher incidence of placental dysfunction, referred 45 

to by a few studies as a “preeclampsia-like syndrome”. However, the mechanisms 46 

underpinning SARS-CoV-2-induced placental malfunction are still unclear. Here, we 47 
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investigated whether the transcriptional architecture of the placenta is altered in response to 48 

SARS-CoV-2 infection. 49 

Methods: We utilized whole-transcriptome, digital spatial profiling, to examine gene 50 

expression patterns in placental tissues from participants who contracted SARS-CoV-2 in the 51 

third trimester of their pregnancy (n=7) and those collected prior to the start of the 52 

coronavirus disease 2019 (COVID-19) pandemic (n=9).  53 

Results: Through comprehensive spatial transcriptomic analyses of the trophoblast and 54 

villous core stromal cell subpopulations in the placenta, we identified signatures associated 55 

with hypoxia and placental dysfunction during SARS-CoV-2 infection in pregnancy. 56 

Notably, genes associated with vasodilation (NOS3), oxidative stress (GDF15, CRH), and 57 

preeclampsia (FLT1, EGFR, KISS1, PAPPA2), were enriched with SARS-CoV-2. Pathways 58 

related to increased nutrient uptake, vascular tension, hypertension, and inflammation, were 59 

also enriched in SARS-CoV-2 samples compared to uninfected controls. 60 

Conclusions: Our findings demonstrate the utility of spatially resolved transcriptomic 61 

analysis in defining the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy, 62 

particularly its role in placental dysfunction. Furthermore, this study highlights the 63 

significance of digital spatial profiling in mapping the intricate crosstalk between 64 

trophoblasts and villous core stromal cells, thus shedding light on pathways associated with 65 

placental dysfunction in pregnancies with SARS-CoV-2 infection.  66 

 67 

KEYWORDS: Placental dysfunction, SARS-CoV-2, COVID-19, digital spatial profiling, 68 

gene expression profiling, trophoblasts, villous core stroma.   69 

 70 
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INTRODUCTION 71 

Viral infections in pregnancy can disrupt placental function and predispose pregnancy 72 

complications, including late-onset preeclampsia, preterm birth, stillbirth, and intrauterine 73 

fetal demise1-4. Recent studies have revealed that pregnant women who contract Severe Acute 74 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, which causes coronavirus disease 2019 75 

[COVID-19]), can experience placental dysfunction and what has been referred to as 76 

“preeclampsia-like syndrome” 5-10. Placental tissues from COVID-19 patients exhibit 77 

increased vasculopathy and inflammation, which are characteristic pathological features of 78 

preeclampsia 11. Moreover, clinical manifestations observed in COVID-19 patients, such as 79 

COVID-19-associated hypoxia, hypertension, endothelial dysfunction, kidney disease, 80 

thrombocytopenia, and liver injury, overlap with those observed in preeclampsia5, 12. 81 

However, mechanisms through which SARS-CoV-2 infection predisposes pregnancies to 82 

these preeclampsia-like pathological features are largely unclear. 83 

 84 

The placenta is vital for fetal development and growth throughout gestation as it is a 85 

functional interface between the mother and fetus13. This interface comprises various 86 

anatomically distinct sites, including the decidua basalis, where maternal immune cells and 87 

decidual stromal cells interact with fetal extravillous trophoblasts14. The maternal-fetal 88 

interface also consists of the placental intervillous space, where maternal immune cells 89 

interact with fetal syncytiotrophoblasts, and the boundary between the parietalis and the 90 

chorion laeve in the chorioamniotic membranes14. Other cell types within this interface, such 91 

as villous cytotrophoblasts, column cytotrophoblasts, fibroblasts, endothelial cells, and 92 

Hofbauer cells, contribute to nutrient and waste exchange, hormone production, protection 93 

from pathogens, and maternal immune responses essential for fetal development 13, 14. 94 
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Whether SARS-CoV-2 infection modifies the transcriptomic architecture and functional 95 

characteristics of different cell types within these distinct placental sites is still unclear.  96 

 97 

In this study, we utilised digital spatial whole-transcriptomic analysis of human placental 98 

tissue to delineate molecular pathways associated with SARS-CoV-2 infection-induced 99 

placental pathology in pregnancy. Specifically, we focused our analysis on defining the 100 

distinct transcriptional profiles of trophoblasts and villous core stromal cell populations (the 101 

latter including endothelial, fibroblast, and immune cells), in the context of SARS-CoV-2 102 

infection. We identified several pivotal pathways that underlie the development of a 103 

“preeclampsia-like syndrome” associated with SARS-CoV-2 infection in pregnancy.  104 

 105 

RESULTS 106 

Characterization of patient demographics and histopathology in collected placentae. 107 

Tissue microarrays were constructed using placental cores that were collected immediately 108 

after birth from unvaccinated participants who had tested positive within 15 days prior to 109 

delivery (Alpha strain, April 2020, n=7), and unvaccinated participants who were negative 110 

for SARS-CoV-2 throughout their pregnancy (n=9; Table 1). There were no significant 111 

differences in placental weight, fetal weight, gestational age, comorbidities, or maternal age 112 

between the two groups (Table 1). Within the SARS-CoV-2 group, 3/7 newborns were born 113 

preterm, compared to 4/9 in the control group (Table 1).  114 

No SARS-CoV-2 viral load was detected in the placental cores from the SARS-CoV-2 115 

infected group through examination by RNAscope of the SARS-CoV-2 spike mRNA (data 116 

not shown). With the aid of a trained placental pathologist, an area featuring an anchoring 117 
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villus, and an area featuring a cluster of terminal villi, were designated as two areas of 118 

interest (AOI) within each placental core (Figure 1a). AOIs where immunofluorescently 119 

stained with PanCK to identify trophoblast populations, and vimentin to identify stromal 120 

populations (i.e., fibroblasts, endothelial cells).  Transcriptional expression was collected 121 

separately for PanCK positive and separately for vimentin positive cells within each AOI 122 

using the Whole Transcriptome Atlas kit (Nanostring; Figure 1a). Subsequent cell 123 

deconvolution was performed to assess the purity of each collection (Figure 1b). As expected, 124 

transcriptional expression from PanCK positive regions within the AOIs had high proportion 125 

of trophoblast populations, compared to vimentin positive regions that had higher proportions 126 

of fibroblast and endothelial cells (Figure 1b-f). Due to the overlapping nature of cells, all 127 

samples captured a proportion of immune cell types (macrophages, monocytes, Hofbauer 128 

cells), except for the PanCK positive regions that displaying a proportion of granulocytes that 129 

was absent from the vimentin positive regions within the AOIs (Figure 1b, g-j). SARS-CoV-2 130 

infection did not significantly alter the transcriptional proportion of any cell type assessed 131 

when compared to controls (Figure 1b-j). In subsequent analyses, the PanCK positive regions 132 

within the AOIs will be referred to as “Trophoblasts” and the vimentin positive regions will 133 

be referred to as “Villous Core Stroma” compartments, due to the predominant enriched cell 134 

type they represent.  135 

SARS-CoV-2 infection related pathways enriched in the placenta despite absence of 136 

detectable viral particles. 137 

Unsupervised clustering of the normalised gene counts by principal component analysis 138 

showed that SARS-CoV-2 samples clustered separately to control samples in dimension 1, 139 

and further by phenotype in dimension 2, supporting that infection with SARS-CoV-2 140 

markedly alters the transcriptional profiles of the trophoblast and villous core stroma cell 141 

populations (Figure 2a-b). Notably, there was very high overlap of genes differentially 142 
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expressed between the anchoring and the terminal villi; for instance, trophoblasts at the 143 

anchoring villi had 1,791 differentially expressed genes versus 493 at the terminal villi, with 144 

405 genes in common between them (82% overlap; Supplementary table 1, Figure 2c). 145 

Similarly, the villous core stroma cells at the anchoring villi had 1,139 differentially 146 

expressed genes versus 601 at the terminal villi, with 458 genes in common between them 147 

(76% overlap; Supplementary table 1, Figure 2c). As expected, there was minimal overlap in 148 

differential gene expression between the trophoblasts and villous core stroma compartments, 149 

which highlights their distinct cell phenotypes (Figure 2c). 150 

Despite the SARS-CoV-2 samples showing undetectable SARS-CoV-2 by RNA-scope, 151 

transcriptional profiling showed positive enrichment of SARS-CoV-2 related pathways in the 152 

SARS-CoV-2 samples, such as “SARS_COV_2_INFECTION”, and 153 

“SARS_COV_2_HOST_INTERACTIONS” from the Reactome database, as well as the 154 

Interferon Alpha Response pathway from the Hallmark database, which is a first-line immune 155 

response pathway that has been associated with SARS-CoV-2 infection  (Figure 2d-f)15 .  156 

These pathways were supported by increased expression of genes that have been associated 157 

with SARS-CoV-2, such as the inflammatory marker IFI1616, disease progression marker 158 

IFI2717, disease prognosticator B2M18, activation of  Janus Kinases (i.e., JAK1), and 159 

expression of STAT319 (Figure 2 g-j).  Notably, gene expression for these markers was 160 

elevated predominantly in the villous core stroma cell compartment, presumably stemming 161 

from the immune subpopulation within the stroma. Indeed, specific analysis of the villus core 162 

stroma compartment revealed enrichment of several immune related pathways from the 163 

Hallmarks database such as IL6/JAK/STAT3 signalling, IL2/STAT5 signalling, TNF-alpha 164 

signalling, inflammatory response, and complement pathways (Figure 3a), supporting that the 165 

immune cells within the placental villi are actively responding to SARS-CoV-2 infection.  166 

SARS-CoV-2 infection enriches hypoxia and placental dysfunction pathways.  167 
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Pathway enrichment analysis of the genes differentially expressed in response to SARS-CoV-168 

2 infection, revealed pathways related to placental disfunction, in both the trophoblast and 169 

villous core stroma compartments. For instance, hypoxia and oxidative phosphorylation 170 

pathways were enriched in the villous core stroma (Figure 3a), both of which have been 171 

previously linked with placental dysfunction and increased incidence of developing 172 

preeclampsia20. Hypoxia triggers TGF-β signalling and angiogenesis 21, and both TGF- β 173 

signalling and angiogenesis related pathways were enriched in the villous core stroma in 174 

response to SARS-CoV-2 infection (Figure 3b). Furthermore, pathways related to 175 

haemorrhage were upregulated and pathways related to vascular tension, such as 176 

hyperaldosteronin/renin pathways, acetylcholine channels, and olfactory receptors, were 177 

downregulated in the villous core stroma (Figure 3b). Trophoblast cells exhibited enrichment 178 

of pathways related to nitric oxide production (Figure 3c), which is a potent vasodilator22. 179 

Conversely, pathways related to calcium import23 and vasoconstriction were downregulated 180 

in trophoblasts (Figure 3c), supporting the notion that the placenta actively reduces vascular 181 

tension during SARS-CoV-2 infection. In parallel, trophoblasts showed an increase in cell-182 

cell adherence, communication, and transmembrane amino acid transport, including 183 

MTORC1 signalling24, suggesting that nutritional uptake to the foetus is enhanced in 184 

response to SARS-CoV-2 infection (Figure 3a and 3c). Further, pathways related to allograft 185 

rejection and MHC molecules were decreased, suggestive of a defensive mechanism by the 186 

trophoblast layer to protect gestation (Figure 3a and 3c).  187 

Markers associated with preeclampsia are elevated with SARS-CoV-2  188 

Placentae from the SARS-CoV-2 group showed several markers that have been previously 189 

associated with hypoxia and placental dysfunction. For instance, the hypoxia and 190 

preeclampsia associated markers Fms Related Receptor Tyrosine Kinase 1 (FLT1) , FLT4, 191 

epidermal growth factor receptor (EGFR), and pappalysin-2 (PAPPA2) were increased in 192 
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trophoblasts from the SARS-CoV-2 group (Figure 3e-i)25-28. Additionally, markers associated 193 

with placental dysfunction and oxidative stress such as Nitric oxide synthase 3 (NOS3)29, 194 

corticotrophin-releasing hormone (CRH)30, kisspeptin 1 (KISS1)31, Growth Differentiation 195 

Factor 15 (GDF15)32, and tissue factor pathway inhibitor 2 (TFPI-2)33, were also elevated in 196 

the trophoblasts from the SARS-CoV-2 group (Figure 3e, 3j-k). Transforming growth factor 197 

b1 (TGFβ-1), and the PAPP-A2 substrates IGFBP4/5 (Figure 3d and 3l), were also elevated 198 

in the villous core stroma, both markers associated with increased preeclampsia risk21, 34. 199 

 200 

Given that a number of these pathways and genes are associated with preeclampsia, as well as 201 

several recent studies reporting SARS-CoV-2 in predisposing pregnant individuals to 202 

preeclampsia5-10, we next assessed the enrichment of a preeclampsia-specific gene set 203 

generated from  published patient cohorts35. The gene set was generated by Moslehi et al., 204 

where they found 419 genes to be common between four studies examining preeclampsia 205 

versus healthy pregnancies35. These 419 genes are involved in pathways relevant to 206 

preeclampsia, such as oxidative stress, hypoxia, and immune response35-37. In our data, this 207 

preeclampsia signature was positively enriched in patient samples from the SARS-CoV-2 208 

group (NES 3.49, FDR <0.001; Figure 3m), which aligns with the positive enrichment of 209 

hypoxia, immune, and oxidative stress, related pathways we observed in our studies (Figure 210 

3a). 211 

 212 

DISCUSSION 213 

Using digital spatial profiling, we quantified the expression of key markers within distinct 214 

cellular compartments of the placenta, providing a detailed picture of the molecular changes 215 

occurring in response to SARS-CoV-2 infection. Although our study is limited by its 216 
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relatively small cohort, cross-sectional nature, and low availability of clinical data, it offers 217 

valuable insights into the interplay between trophoblasts and the cells within the villous core 218 

stroma in the placenta and how this relationship is influenced by SARS-CoV-2 infection.  219 

Close examination of the transcriptional alterations occurring in the placental trophoblast and 220 

villous core stroma in response to SARS-CoV-2, revealed a notable number of genes that are 221 

enriched in biological pathways previously associated with placental dysfunction.  222 

 223 

Trophoblasts from the SARS-CoV-2-infected group had significantly higher levels of NOS3 224 

compared to the control group (Figure 3j). The upregulation of NOS3 is associated with 225 

increased endogenous production of the vasodilator nitric oxide, as a response to altered 226 

vascular reactivity, endothelial dysfunction, and hypertension22, 38. Interestingly, NOS has 227 

been previously found to be highly upregulated to supraphysiological levels in animal models 228 

of infection-mediated inflammation during pregnancy, leading researchers to hypothesise that 229 

increased NOS may play a role in placental inflammation39-41. In response to increased NOS 230 

by the trophoblasts, the villous core stromal showed increased expression in biological 231 

pathways related to systemic pressure and vasodilation. This included the downregulation of 232 

olfactory receptors, acetylcholine channels, and hyperaldosteronin/renin pathways, alongside 233 

upregulated hypoxia pathways, suggesting deregulation of the vascular tone and blood 234 

pressure due to a hypoxic environment42.  235 

 236 

Additional transcriptional analysis of trophoblast and villous core stromal compartments from 237 

SARS-CoV-2-infected samples identified several transcriptional variations that have been 238 

previously associated with preeclampsia (Figure 3). Trophoblasts had higher expression of 239 

EGFR, a marker that increases with hypoxia and is known to upregulate FLT1, where 240 
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excessive release of soluble FLT1 by syncytiotrophoblasts is a characteristic marker of late 241 

onset preeclampsia43.  There was prominent increase of PAPPA2 in the trophoblasts, the 242 

latter considered to become upregulated in response to hypoxia, and placental pathologies, 243 

including preeclampsia44. Notably, the PAPPA2 substrates IGFBP4 and IGFBP5 were 244 

concurrently upregulated in the villous core stromal compartment, whereby the interaction of 245 

PAPPA2 with IGFBP4/5 increases levels of IGF2, which was also increased in the villous 246 

core stromal cells in the SARS-CoV-2-infected group (Figure 3d)34. Additionally, the villous 247 

core stromal compartment had decreased levels of Isthmin-2 (ISM2), a placental marker that 248 

is downregulated with preeclampsia45. GDF15, TFPI-2, KISS1, and CRH genes were also 249 

upregulated in SARS-CoV-2-infected trophoblasts, all previously associated with placental 250 

oxidative stress, hypertension, and preeclampsia34, 46-48.  251 

 In conclusion, our data suggest that the placenta from pregnancies with SARS-CoV-2 adopts 252 

a transcriptional profile aligning with placental dysfunction that has been observed in 253 

pregnant participants who develop ‘preeclampsia-like’ syndrome.  Using digital spatial 254 

profiling, our studies showcased the crosstalk between the trophoblast and villous core 255 

stromal cell populations, and how this is enriched with pathways associated with placental 256 

dysfunction. Our findings set the foundation for a more comprehensive understanding of 257 

placental dysfunction in pregnant individuals with SARS-CoV-2 infection and offer 258 

important insights into the potential mechanisms through which SARS-CoV-2 may impact 259 

pregnancy outcomes and fetal development.   260 

 261 

METHODS 262 

Study Design 263 
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The SARS-CoV-2 group (n=7) consisted of pregnant, unvaccinated participants, who were 264 

symptomatic with COVID-19 in their third trimester (confirmed by RT-qPCR from 265 

nasopharyngeal swabs). Placental tissue samples were collected at birth at the Hospital de 266 

Clínicas (HC) and Hospital Nossa Senhora das Graças, Brazil, with ethics approval from the 267 

National Commission for Research Ethics (CONEP) under approval number 268 

30188020.7.1001.002049. The control group was comprised of archived placentae from nine 269 

COVID19-negative people collected during delivery at the Complexo Hospital de Clínicas, 270 

Universidade Federal do Paraná, Curitiba, Brazil between 2016 and 2018. To account for 271 

maternal co-morbidities, maternal age, and gestational age, the control group was selected to 272 

match these clinical features as presented in the SARS-CoV-2 group. Participant cohort and 273 

their clinical characteristics are summarised in Table 1. Morphological analysis was 274 

performed in all placentas from SARS-CoV-2-infected and control groups using the 275 

Amsterdam Placental Workshop Group Consensus Statement50. Histological sections were 276 

systematically identified and evaluated by two experienced pathologists to obtain samples for 277 

tissue microarray (TMA) construction, as described in a previous work49. Two TMAs were 278 

prepared from the placental samples, following the workflow demonstrated in Figure 1.  279 

RNAscope 280 

A serial section from the TMAs (4 um) was incubated with RNAscope probes targeting 281 

SARS-CoV-2 spike mRNA (nCoV2019, #848568-C3, ACDBio, CA, USA), as per 282 

manufacturer's instructions for automation on Leica Bond RX. DNA was visualised with 283 

Syto13 (500 nM, #S7575, ThermoFisher Scientific, MA, USA), and SARS-CoV-2 284 

spike mRNA with TSA Plus CY5 (1:1500, #NEL745001KT, Akoya Biosciences, MA, USA). 285 

Fluorescent images were acquired with NanoString GeoMX DSP at 20×. 286 

 287 
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Digital spatial profiling with Nanostring GeoMX platform 288 

TMA slides were freshly sectioned (4 um thick serial sections) and prepared according to the 289 

Nanostring GeoMX Digital Spatial Profiler (DSP) slide preparation for RNA profiling 290 

(NanoString, WA, USA). Slides were hybridised with the NanoString Technologies Whole 291 

Transcriptome Atlas (WTA) barcoded probe set (~18,000 genes), followed by fluorescent 292 

staining with Pan-Cytokeratin (PanCK, clone AE-1/AE-3, AF488, Santa Cruz NBP2-293 

33200AF488, [2 µg/mL], CA, USA) to identify trophoblasts, vimentin (VIM, clone E-5, 294 

AF594, Santa Cruz sc-373717, [1 µg/mL], CA, USA) to identify endothelial and 295 

mesenchymal stromal cells, and SYTO83 to identify nuclei. With the aid of a trained 296 

placental pathologist, an area featuring an anchoring villus, and an area featuring a cluster of 297 

terminal villi, were designated as two areas of interest (AOI) within each placental core. 298 

Oligonucleotides linked to hybridized mRNA targets were cleaved separately for PanCK 299 

positive regions within each AOI, and separately for vimentin positive regions. Cleaved 300 

oligonucleotides were collected for counting using Illumina i5 and i7 dual indexing as 301 

described previously51, 52. Paired-end sequencing (2�×�75) was performed using an Illumina 302 

NextSeq550 up to 400M total aligned reads. Fastq files were processed using the Nanostring 303 

DND system and uploaded to the GeoMX DSP system where raw counts were aligned with 304 

their respective AOIs. 305 

Data normalisation, differential expression analysis, and pathway enrichment analysis  306 

Raw data were normalised to the 134 negative probes in the Human Whole Transcriptome 307 

Atlas probe set followed by upper quantile normalisation using the R package RUVseq53. 308 

Transcriptional data from PanCK positive regions within each AOI were normalised 309 

separately to the vimentin positive regions. Differential gene expression analysis between 310 

SARS-CoV-2 positive and negative groups was performed separately for PanCK positive 311 
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regions within each AOI, and separately for vimentin positive regions, using the R package 312 

limma54.  Bayesian adjusted t-statistic method was used where foetal sex and TMA slide 313 

number were considered as co-variants. A fold change of +/- 1.5 and P-value ≤� 0.05 314 

(adjusted for a false discovery rate of 5%) was considered significant. Pathway enrichment 315 

analysis was performed using the Gene Set Enrichment Analysis program (GSEA, v4.3.2, 316 

Broad Institute, MA, USA) for biological pathways obtained from the Molecular Signatures 317 

Database (MSigDB, Broad Institute, Human v2022.1, MA, USA). The preeclampsia gene-set 318 

was obtained from Moslehi et al35. GSEA parameters: 1000 permutations, weighted analysis. 319 

Gene set enrichment data were further clustered and visualised using the R package vissE 320 

with the parameters: computeMsigOverlap (thresh = 0.25), findMsigClusters (alg = 321 

cluster_walktrap, minSize =2)55.  322 
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 494 

Table 1: Clinical information of the SARS-CoV-2 and control cohort 495 

 496 

Figure 1: Study design and cell deconvolution. (a) 1. Placental cores collected at delivery 497 

from the SARS-CoV-2 (n=7) and control (n=9) groups were assembled into tissue microarray 498 

slides (TMAs).  2. TMAs were stained with fluorescent markers to differentiate cell types 499 

within anchoring (pink outline) and terminal villi (red outline).  Barcodes were cleaved and 500 

collected from each region of interest by UV light. 3. Cleaved barcodes were sequenced and 501 

counted using an Illumina® sequencer in preparation for transcriptomic analysis. Data were 502 

normalised before downstream differential expression analysis. (b) Transcriptional cell 503 

deconvolution map. (c-j) Box-plots of indicated cell type proportions from 1b. AV: anchoring 504 

villi, TV: terminal villi, SARS-CoV-2 group is n=7 and control group is n=9. 505 

 506 

Figure 2: Enrichment of SARS-CoV-2 related pathways. (a) Principal component analysis 507 

of normalised gene counts from trophoblasts and villous core stromal compartments from 508 

SARS-CoV-2 (n=7) and control (n=9) groups at the anchoring or terminal villi (AV; TV). (b) 509 

Principal component dimensions. (c) Upset plot of differential gene expression in 510 

trophoblasts and villous core stromal compartments from the AV and TV in response to 511 

Patient De-

id.
Group

Sample 

Code

Participant 

Age

Gestational 

Age
Comorbidities

SARS-CoV-2 

symptoms/

severity

Fetal sex
Fetal 

Outcome
Delivery Method 

Fetal 

Weight 

(grams)

Placental

Weight 

(grams)

Macroscopic 

observations

20-3594 SARS-CoV-2 2 25-30 30-35
Hypothyroidism and hypertensive 

disorder in pregnancy
+/+ Male Preterm na 2450 448

Infarcts and intervillous 
thrombosis (<5%)

20-3561 SARS-CoV-2 4 35-40 25-30 Hypothyroidism +/+ Female Preterm C-section na 245 -

20-3744 SARS-CoV-2 8 25-30 30-35
Gestational diabetes, bipolar disorder, 
hypothyroidism and syphilis (treated)

+/- Female Preterm C-section na 412 Infarcts (<5%)

20-5105 SARS-CoV-2 12 25-30 35-40 None - Female Term C-section 2960 462 -

20-3369 SARS-CoV-2 13 25-30 35-40
Gestational diabetes and 

hyperthyroidism
+/- Female Term Assisted Vaginal 2600 358

Retroplacental and 
marginal hematoma, 

infarcts (<5%)
20-5869 SARS-CoV-2 18 25-30 35-40 None +/- Male Term C-section 2345 370 -
20-2916 SARS-CoV-2 22 20-25 35-40 None - Female Term Assisted Vaginal 3030 650 -
16-7859 CONTROL 1 20-25 30-35 Hypothyroidism Male Preterm C-section 1180 270 Placental hypoplasia
18-13016 CONTROL 3 20-25 35-40 Hypothyroidism and hypertension Female Preterm Assisted Vaginal 2223 498 -
16-8315 CONTROL 5 15-20 35-40 Obesity Female Term Assisted Vaginal 3810 514 -
18-4906 CONTROL 9 20-25 25-30 None Male Preterm Assisted Vaginal 1205 248 -
18-14057 CONTROL 10 40-45 30-35 Diabetes, hypertension, bipolar disorder Male Preterm C-section 1650 243 Placental hypoplasia
16-7599 CONTROL 11 25-30 35-40 Gestational diabetes Male Term C-section 3460 480 -
16-3340 CONTROL 15 35-40 35-40 None Female Term C-section 3005 395 -
18-9951 CONTROL 16 20-25 35-40 None Male Term C-section 3690 574 -
16-6144 CONTROL 19 25-30 35-40 None Male Term C-section 3345 394 -
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SARS-CoV-2 infection. The bar charts on the left indicate the total number of differentially 512 

expressed genes for the indicated sample group and the bar charts on the top show the gene 513 

overlap for the comparisons indicated by the purple lines. Black dots denote differentially 514 

expressed genes that are unique for the indicated sample group. Fold change +/- 1.5, P-value 515 

<= 0.05, FDR < 0.05. (d) Enrichment of significant SARS-CoV-2 related pathways from the 516 

Reactome database, in the SARS-CoV-2 and control samples. Blue: significantly negatively 517 

enriched, red: significantly positively enriched, grey: not significant. The full list of enriched 518 

pathways from the Reactome database can be found in Supplementary table 2 and table 3. (e) 519 

Gene set enrichment analysis (GSEA) plot of the SARS_COV_2_INFECTION pathway from 520 

the Reactome database and (f) INTERFERON_ALPHA_RESPONSE from the Hallmark 521 

database, in SARS-CoV-2 samples versus controls. (g-j) Normalised expression counts of 522 

IFI27, B2M, JAK1, and STAT3 genes, in trophoblast (TB) or villous core stroma (VCS) 523 

compartments from the SARS-CoV-2 (n=7) and control samples (n=9). ** P-value < 0.01, 524 

*** P-value < 0.001.  525 

 526 

Figure 3: Enrichment of placental dysfunction pathways with SARS-CoV-2. (a) 527 

Differentially enriched pathways form the Hallmarks database in trophoblasts (TB) and 528 

villous core stroma (VCS) compartments in SARS-CoV-2 (n=7) vs control group (n=9). 529 

Colour gradient refers to the normalised enrichment score. (b) Enriched gene ontology 530 

biological processes (GO-BP) pathway clusters from the Molecular Signatures Database 531 

(MSigDb) generated using vissE, in the VCS and (c) TB. Top row depicts upregulated 532 

pathways, bottom row depicts downregulated pathways. (d) Volcano plot of gene expression 533 

from VCS or (e) TB in response to SARS-CoV-2 infection. Fold change (FC) +/- 1.5, P-534 

value <= 0.05, FDR < 0.05, the full list of differentially expressed genes can be found in 535 

Supplementary table 4. (f-l) Normalised expression counts of indicated genes in TB or VCS 536 
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compartments from the SARS-CoV-2 (n=7) and control samples (n=9). * P-value < 0.05, ** 537 

P-value < 0.01, *** P-value < 0.001, NS: not significant. (m) Gene set enrichment analysis 538 

(GSEA) plot of the preeclampsia signature generated by Moslehi et al, in SARS-CoV-2 539 

samples versus controls.  540 

 541 
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Figure 1: Study design and cell deconvolution. (a) 1. Placental cores collected at delivery 

from the SARS-CoV-2 (n=7) and control (n=9) groups were assembled into tissue microarray 

slides (TMAs).  2. TMAs were stained with fluorescent markers to differentiate cell types 

within anchoring (pink outline) and terminal villi (red outline).  Barcodes were cleaved and 

collected from each region of interest by UV light. 3. Cleaved barcodes were sequenced and 

counted using an Illumina® sequencer in preparation for transcriptomic analysis. Data were 

normalised before downstream differential expression analysis. (b) Transcriptional cell 

deconvolution map. (c-j) Box-plots of indicated cell type proportions from 1b. AV: anchoring 

villi, TV: terminal villi, SARS-CoV-2 group is n=7 and control group is n=9. 
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Figure 2: Enrichment of SARS-CoV-2 related pathways. (a) Principal component analysis 

of normalised gene counts from trophoblasts and villous core stromal compartments from 

SARS-CoV-2 (n=7) and control (n=9) groups at the anchoring or terminal villi (AV; TV). (b) 

Principal component dimensions. (c) Upset plot of differential gene expression in trophoblasts 

and villous core stromal compartments from the AV and TV in response to SARS-CoV-2 

infection. The bar charts on the left indicate the total number of differentially expressed genes 

for the indicated sample group and the bar charts on the top show the gene overlap for the 

comparisons indicated by the purple lines. Black dots denote differentially expressed genes 

that are unique for the indicated sample group. Fold change +/- 1.5, P-value <= 0.05, FDR < 

0.05. (d) Enrichment of significant SARS-CoV-2 related pathways from the Reactome 

database, in the SARS-CoV-2 and control samples. Blue: significantly negatively enriched, 

red: significantly positively enriched, grey: not significant. The full list of enriched pathways 

from the Reactome database can be found in Supplementary table 2 and table 3. (e) Gene set 

enrichment analysis (GSEA) plot of the SARS_COV_2_INFECTION pathway from the 

Reactome database and (f) INTERFERON_ALPHA_RESPONSE from the Hallmark database, 

in SARS-CoV-2 samples versus controls. (g-j) Normalised expression counts of IFI27, B2M, 

JAK1, and STAT3 genes, in trophoblast (TB) or villous core stroma (VCS) compartments from 

the SARS-CoV-2 (n=7) and control samples (n=9). ** P-value < 0.01, *** P-value < 0.001.  
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Figure 3: Enrichment of placental dysfunction pathways with SARS-CoV-2.  

(a) Differentially enriched pathways form the Hallmarks database in trophoblasts (TB) and 

villous core stroma (VCS) compartments in SARS-CoV-2 (n=7) vs control group (n=9). Colour 

gradient refers to the normalised enrichment score. (b) Enriched gene ontology biological 

processes (GO-BP) pathway clusters from the Molecular Signatures Database (MSigDb) 

generated using vissE, in the VCS and (c) TB. Top row depicts upregulated pathways, bottom 

row depicts downregulated pathways. (d) Volcano plot of gene expression from VCS or (e) TB 

in response to SARS-CoV-2 infection. Fold change (FC) +/- 1.5, P-value <= 0.05, FDR < 0.05, 

the full list of differentially expressed genes can be found in Supplementary table 4. (f-l) 

Normalised expression counts of indicated genes in TB or VCS compartments from the SARS-

CoV-2 (n=7) and control samples (n=9). * P-value < 0.05, ** P-value < 0.01, *** P-value < 

0.001, NS: not significant. (m) Gene set enrichment analysis (GSEA) plot of the preeclampsia 

signature generated by Moslehi et al, in SARS-CoV-2 samples versus controls.  
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Table 1: Clinical information of the SARS-CoV-2 and control cohort 
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