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Graphical abstract: In this study, using spatial digital profiling transcriptomic approaches,
we demonstrate that SARS-CoV -2 infection in pregnancy disrupts optimal placental function

by altering the genomic architecture of trophoblasts and villous core stromal cells.

ABSTRACT

Objectives: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus
infection in pregnancy is associated with higher incidence of placental dysfunction, referred
to by a few studies as a “preeclampsialike syndrome’. However, the mechanisms

underpinning SARS-CoV-2-induced placental malfunction are ill unclear. Here, we
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48  investigated whether the transcriptional architecture of the placenta is atered in response to

49  SARS-CoV-2 infection.

so0 Methods. We utilized whole-transcriptome, digital spatial profiling, to examine gene
51  expression patterns in placental tissues from participants who contracted SARS-CoV-2 in the
52  third trimester of their pregnancy (n=7) and those collected prior to the start of the

53  coronavirus disease 2019 (COVID-19) pandemic (n=9).

54  Results: Through comprehensive spatial transcriptomic analyses of the trophoblast and
55  villous core stromal cell subpopulations in the placenta, we identified signatures associated
s6  with hypoxia and placental dysfunction during SARS-CoV-2 infection in pregnancy.
57 Notably, genes associated with vasodilation (NOS3), oxidative stress (GDF15, CRH), and
58  preeclampsia (FLT1, EGFR, KISSL, PAPPA2), were enriched with SARS-CoV-2. Pathways
59  related to increased nutrient uptake, vascular tension, hypertension, and inflammation, were

60  also enriched in SARS-CoV -2 samples compared to uninfected controls.

61  Conclusions. Our findings demonstrate the utility of spatially resolved transcriptomic
62 anaysis in defining the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy,
63  particularly its role in placental dysfunction. Furthermore, this study highlights the
64 dignificance of digital spatial profiling in mapping the intricate crosstalk between
65  trophoblasts and villous core stromal cells, thus shedding light on pathways associated with

66  placental dysfunction in pregnancies with SARS-CoV -2 infection.

67

68 KEYWORDS: Placental dysfunction, SARS-CoV-2, COVID-19, digital spatia profiling,

69  gene expression profiling, trophoblasts, villous core stroma.
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71 INTRODUCTION

72 Vird infections in pregnancy can disrupt placental function and predispose pregnancy
73 complications, including late-onset preeclampsia, preterm birth, stillbirth, and intrauterine
74 fetal demise™. Recent studies have revealed that pregnant women who contract Severe Acute
75  Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, which causes coronavirus disease 2019
76  [COVID-19]), can experience placental dysfunction and what has been referred to as

77 “preeclampsialike syndrome” >

. Placental tissues from COVID-19 patients exhibit
78  increased vasculopathy and inflammation, which are characteristic pathological features of
79 preeclampsia '*. Moreover, clinical manifestations observed in COVID-19 patients, such as
80 COVID-19-associated hypoxia, hypertension, endothelial dysfunction, kidney disease,
g1 thrombocytopenia, and liver injury, overlap with those observed in preeclampsia® *2
82  However, mechanisms through which SARS-CoV-2 infection predisposes pregnancies to

83  these preeclampsia-like pathological features are largely unclear.
84

85 The placenta is vital for fetal development and growth throughout gestation as it is a
g6  functional interface between the mother and fetus®. This interface comprises various
87  anatomically distinct sites, including the decidua basalis, where maternal immune cells and
g8  decidual stromal cells interact with fetal extravillous trophoblasts'®. The maternal-fetal
89 interface also consists of the placenta intervillous space, where maternal immune cells
90 interact with fetal syncytiotrophoblasts, and the boundary between the parietalis and the
91  chorion laeve in the chorioamniotic membranes™. Other cell types within this interface, such
92  as villous cytotrophoblasts, column cytotrophoblasts, fibroblasts, endothelial cells, and
93  Hofbauer cells, contribute to nutrient and waste exchange, hormone production, protection

94  from pathogens, and maternal immune responses essential for fetal development *> .
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95  Whether SARS-CoV-2 infection modifies the transcriptomic architecture and functional

96 characteristics of different cell types within these distinct placental sitesis still unclear.
97

98 In this study, we utilised digital spatial whole-transcriptomic analysis of human placental
99 tissue to delineate molecular pathways associated with SARS-CoV-2 infection-induced
100 placental pathology in pregnancy. Specifically, we focused our analysis on defining the
101 distinct transcriptional profiles of trophoblasts and villous core stromal cell populations (the
102 latter including endothelial, fibroblast, and immune cells), in the context of SARS-CoV-2
103 infection. We identified several pivotal pathways that underlie the development of a

104  “preeclampsialike syndrome’ associated with SARS-CoV-2 infection in pregnancy.

105

106 RESULTS

107 Characterization of patient demographics and histopathology in collected placentae.

108  Tissue microarrays were constructed using placental cores that were collected immediately
109  after birth from unvaccinated participants who had tested positive within 15 days prior to
110  delivery (Alpha strain, April 2020, n=7), and unvaccinated participants who were negative
111 for SARS-CoV-2 throughout their pregnancy (n=9; Table 1). There were no significant
112 differences in placental weight, fetal weight, gestational age, comorbidities, or maternal age
113 between the two groups (Table 1). Within the SARS-CoV-2 group, 3/7 newborns were born

114  preterm, compared to 4/9 in the control group (Table 1).

115  No SARS-CoV-2 vira load was detected in the placental cores from the SARS-CoV-2
116  infected group through examination by RNAscope of the SARS-CoV-2 spike mRNA (data

117 not shown). With the aid of a trained placental pathologist, an area featuring an anchoring


https://doi.org/10.1101/2023.01.20.524893
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.20.524893; this version posted December 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

118 villus, and an area featuring a cluster of termina villi, were designated as two areas of
119  interest (AOI) within each placental core (Figure 1a). AOIs where immunofluorescently
120  stained with PanCK to identify trophoblast populations, and vimentin to identify stromal
121 populations (i.e., fibroblasts, endothelial cells). Transcriptional expression was collected
122 separately for PanCK positive and separately for vimentin positive cells within each AOI
123 using the Whole Transcriptome Atlas kit (Nanostring; Figure 1a). Subsequent cell
124  deconvolution was performed to assess the purity of each collection (Figure 1b). As expected,
125  transcriptional expression from PanCK pasitive regions within the AOIs had high proportion
126  of trophoblast populations, compared to vimentin positive regions that had higher proportions
127  of fibroblast and endothelial cells (Figure 1b-f). Due to the overlapping nature of cells, all
128  samples captured a proportion of immune cell types (macrophages, monocytes, Hofbauer
129  cells), except for the PanCK positive regions that displaying a proportion of granulocytes that
130  was absent from the vimentin positive regions within the AOIs (Figure 1b, g-j). SARS-CoV-2
131 infection did not significantly alter the transcriptional proportion of any cell type assessed
132 when compared to controls (Figure 1b-j). In subsequent analyses, the PanCK positive regions
133 within the AOIs will be referred to as “Trophoblasts’ and the vimentin positive regions will
134  bereferred to as “Villous Core Stroma’ compartments, due to the predominant enriched cell

135  typethey represent.

136 SARS-CoV-2 infection related pathways enriched in the placenta despite absence of

137  detectableviral particles.

138 Unsupervised clustering of the normalised gene counts by principal component analysis
139 showed that SARS-CoV-2 samples clustered separately to control samples in dimension 1,
140 and further by phenotype in dimension 2, supporting that infection with SARS-CoV-2
141 markedly alters the transcriptional profiles of the trophoblast and villous core stroma cell

142 populations (Figure 2a-b). Notably, there was very high overlap of genes differentially
6
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143 expressed between the anchoring and the terminal villi; for instance, trophoblasts at the
144  anchoring villi had 1,791 differentially expressed genes versus 493 at the terminal villi, with
145 405 genes in common between them (82% overlap; Supplementary table 1, Figure 2c).
146 Similarly, the villous core stroma cells at the anchoring villi had 1,139 differentialy
147 expressed genes versus 601 at the terminal villi, with 458 genes in common between them
148 (76% overlap; Supplementary table 1, Figure 2c). As expected, there was minimal overlap in
149  differential gene expression between the trophoblasts and villous core stroma compartments,

150  which highlights their distinct cell phenotypes (Figure 2c).

151 Despite the SARS-CoV-2 samples showing undetectable SARS-CoV-2 by RNA-scope,
152 transcriptional profiling showed positive enrichment of SARS-CoV-2 related pathways in the
153  SARS-CoV-2 samples, such as “SARS COV_2 INFECTION", and
154  “SARS _COV_2 HOST_INTERACTIONS' from the Reactome database, as well as the
155  Interferon Alpha Response pathway from the Hallmark database, which is afirst-line immune
156  response pathway that has been associated with SARS-CoV-2 infection (Figure 2d-f)*° .
157  These pathways were supported by increased expression of genes that have been associated
158 with SARS-CoV-2, such as the inflammatory marker 1F116%, disease progression marker
159 IFI27", disease prognosticator B2M™, activation of Janus Kinases (i.e., JAK1), and
160  expression of STAT3™ (Figure 2 g-). Notably, gene expression for these markers was
161  elevated predominantly in the villous core stroma cell compartment, presumably stemming
162 from the immune subpopulation within the stroma. Indeed, specific analysis of the villus core
163  stroma compartment revealed enrichment of several immune related pathways from the
164  Hallmarks database such as IL6/JAK/STAT3 signalling, IL2/STATS signalling, TNF-alpha
165  signalling, inflammatory response, and complement pathways (Figure 3a), supporting that the

166 immune cells within the placental villi are actively responding to SARS-CoV-2 infection.

167  SARS-CoV-2 infection enriches hypoxia and placental dysfunction pathways.
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168  Pathway enrichment analysis of the genes differentially expressed in response to SARS-CoV-
169 2 infection, revealed pathways related to placental disfunction, in both the trophoblast and
170  villous core stroma compartments. For instance, hypoxia and oxidative phosphorylation
171 pathways were enriched in the villous core stroma (Figure 3a), both of which have been
172 previously linked with placental dysfunction and increased incidence of developing
173 preeclampsia®. Hypoxia triggers TGF-p signalling and angiogenesis ?!, and both TGF- f
174  dgnalling and angiogenesis related pathways were enriched in the villous core stroma in
175 response to SARSCoV-2 infection (Figure 3b). Furthermore, pathways related to
176  haemorrhage were upregulated and pathways related to vascular tension, such as
177 hyperaldosteronin/renin pathways, acetylcholine channels, and olfactory receptors, were
178 downregulated in the villous core stroma (Figure 3b). Trophoblast cells exhibited enrichment
179 of pathways related to nitric oxide production (Figure 3c), which is a potent vasodilator®.
180  Conversely, pathways related to calcium import® and vasoconstriction were downregulated
181  in trophoblasts (Figure 3c), supporting the notion that the placenta actively reduces vascular
182  tension during SARS-CoV-2 infection. In parallel, trophoblasts showed an increase in cell-
183  cell adherence, communication, and transmembrane amino acid transport, including
184 MTORC1 signalling®, suggesting that nutritional uptake to the foetus is enhanced in
185  response to SARS-CoV-2 infection (Figure 3a and 3c). Further, pathways related to allograft
186  regjection and MHC molecules were decreased, suggestive of a defensive mechanism by the

187  trophoblast layer to protect gestation (Figure 3aand 3c).
188  Markersassociated with preeclampsia ar e elevated with SARS-CoV-2

189  Placentae from the SARS-CoV-2 group showed several markers that have been previously
190 associated with hypoxia and placental dysfunction. For instance, the hypoxia and
191  preeclampsia associated markers Fms Related Receptor Tyrosine Kinase 1 (FLT1) , FLT4,

192  epidermal growth factor receptor (EGFR), and pappalysin-2 (PAPPA2) were increased in
8
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193 trophoblasts from the SARS-CoV-2 group (Figure 3e-i)*%. Additionally, markers associated
194  with placental dysfunction and oxidative stress such as Nitric oxide synthase 3 (NOS3)%,
195 corticotrophin-releasing hormone (CRH)®, kisspeptin 1 (KISS1)*, Growth Differentiation
196  Factor 15 (GDF15)*, and tissue factor pathway inhibitor 2 (TFPI-2)*, were also elevated in
197  the trophoblasts from the SARS-CoV-2 group (Figure 3e, 3j-k). Transforming growth factor
198 bl (TGFp-1), and the PAPP-A2 substrates IGFBP4/5 (Figure 3d and 3l), were also elevated

199 inthevillous core stroma, both markers associated with increased preeclampsia risk® .,

200

201 Given that anumber of these pathways and genes are associated with preeclampsia, as well as
202 severa recent studies reporting SARS-CoV-2 in predisposing pregnant individuals to

203 preeclampsia®™®®

, we next assessed the enrichment of a preeclampsia-specific gene set
204 generated from published patient cohorts®. The gene set was generated by Moslehi et al.,
205  where they found 419 genes to be common between four studies examining preeclampsia
206 versus healthy pregnancies™. These 419 genes are involved in pathways relevant to
207  preeclampsia, such as oxidative stress, hypoxia, and immune response®™ . In our data, this
208  preeclampsia signature was positively enriched in patient samples from the SARS-CoV-2
209 group (NES 3.49, FDR <0.001; Figure 3m), which aligns with the positive enrichment of

210  hypoxia, immune, and oxidative stress, related pathways we observed in our studies (Figure

211 3a).
212
213 DISCUSSION

214  Using digital spatia profiling, we quantified the expression of key markers within distinct
215  cellular compartments of the placenta, providing a detailed picture of the molecular changes

216 occurring in response to SARS-CoV-2 infection. Although our study is limited by its
9


https://doi.org/10.1101/2023.01.20.524893
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.20.524893; this version posted December 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

217  relatively small cohort, cross-sectiona nature, and low availability of clinical data, it offers
218  valuable insights into the interplay between trophoblasts and the cells within the villous core
219  stroma in the placenta and how this relationship is influenced by SARS-CoV-2 infection.
220  Close examination of the transcriptional alterations occurring in the placental trophoblast and
221 villous core stromain response to SARS-CoV -2, revealed a notable number of genes that are

222 enriched in biological pathways previously associated with placental dysfunction.
223

224 Trophoblasts from the SARS-CoV-2-infected group had significantly higher levels of NOS3
225  compared to the control group (Figure 3j). The upregulation of NOS3 is associated with
226 increased endogenous production of the vasodilator nitric oxide, as a response to altered
227  vascular reactivity, endothelial dysfunction, and hypertension® . Interestingly, NOS has
228  been previously found to be highly upregulated to supraphysiological levelsin anima models
229  of infection-mediated inflammation during pregnancy, leading researchers to hypothesise that

230  increased NOS may play arole in placenta inflammation®**

. In response to increased NOS
231 by the trophoblasts, the villous core stromal showed increased expression in biological
232 pathways related to systemic pressure and vasodilation. This included the downregulation of
233 olfactory receptors, acetylcholine channels, and hyperaldosteronin/renin pathways, alongside

234  upregulated hypoxia pathways, suggesting deregulation of the vascular tone and blood

235 pressure due to a hypoxic environment™.
236

237  Additional transcriptional analysis of trophoblast and villous core stromal compartments from
238  SARS-CoV-2-infected samples identified several transcriptional variations that have been
239 previously associated with preeclampsia (Figure 3). Trophoblasts had higher expression of
240 EGFR, a marker that increases with hypoxia and is known to upregulate FLT1, where

10
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241 excessive release of soluble FLT1 by syncytiotrophoblasts is a characteristic marker of late
242 onset preeclampsia®. There was prominent increase of PAPPA2 in the trophoblasts, the
243 latter considered to become upregulated in response to hypoxia, and placental pathologies,
244 including preeclampsia®. Notably, the PAPPA2 substrates IGFBP4 and IGFBP5 were
245  concurrently upregulated in the villous core stromal compartment, whereby the interaction of
246 PAPPA2 with IGFBP4/5 increases levels of IGF2, which was aso increased in the villous
247  core stromal cells in the SARS-CoV-2-infected group (Figure 3d)*. Additionally, the villous
248  core stroma compartment had decreased levels of Isthmin-2 (ISM2), a placental marker that
249 is downregulated with preeclampsia®. GDF15, TFPI-2, KISSL, and CRH genes were also
250  upregulated in SARS-CoV-2-infected trophoblasts, all previously associated with placental

251 oxidative stress, hypertension, and preeclampsia® “**,

252 In conclusion, our data suggest that the placenta from pregnancies with SARS-CoV -2 adopts
253  a transcriptional profile aligning with placental dysfunction that has been observed in
254  pregnant participants who develop ‘preeclampsialike’ syndrome. Using digital spatial
255 profiling, our studies showcased the crosstalk between the trophoblast and villous core
256  stromal cell populations, and how this is enriched with pathways associated with placental
257 dysfunction. Our findings set the foundation for a more comprehensive understanding of
258  placental dysfunction in pregnant individuals with SARS-CoV-2 infection and offer
259 important insights into the potential mechanisms through which SARS-CoV-2 may impact

260  pregnancy outcomes and fetal development.
261
262 METHODS

263  Study Design

11


https://doi.org/10.1101/2023.01.20.524893
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.20.524893; this version posted December 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

264 The SARS-CoV-2 group (n=7) consisted of pregnant, unvaccinated participants, who were
265  symptomatic with COVID-19 in their third trimester (confirmed by RT-gPCR from
266 nasopharyngeal swabs). Placental tissue samples were collected at birth at the Hospital de
267  Clinicas (HC) and Hospital Nossa Senhora das Gragas, Brazil, with ethics approval from the
268 National Commission for Research Ethics (CONEP) wunder approval number
269 30188020.7.1001.0020™. The control group was comprised of archived placentae from nine
270  COVID19-negative people collected during delivery at the Complexo Hospital de Clinicas,
271 Universidade Federal do Parang, Curitiba, Brazil between 2016 and 2018. To account for
272 maternal co-morbidities, maternal age, and gestational age, the control group was selected to
273 match these clinical features as presented in the SARS-CoV-2 group. Participant cohort and
274  their clinical characteristics are summarised in Table 1. Morphological anaysis was
275  performed in al placentas from SARS-CoV-2-infected and control groups using the
276  Amsterdam Placental Workshop Group Consensus Statement™. Histological sections were
277  systematically identified and evaluated by two experienced pathologists to obtain samples for
278 tissue microarray (TMA) construction, as described in a previous work*. Two TMAs were

279  prepared from the placental samples, following the workflow demonstrated in Figure 1.
280 RNAscope

281 A serid section from the TMAs (4 um) was incubated with RNAscope probes targeting
282 SARS-CoV-2 spike mRNA (nCoV2019, #848568-C3, ACDBio, CA, USA), as per
283  manufacturer's instructions for automation on Leica Bond RX. DNA was visualised with
284  Sytol3 (500 nM, #S7575, ThermoFisher Scientific, MA, USA), and SARS-CoV-2
285  spike mMRNA with TSA Plus CY5 (1:1500, #NEL745001K T, Akoya Biosciences, MA, USA).

286  Fluorescent images were acquired with NanoString GeoM X DSP at 20x.

287

12
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288  Digital spatial profiling with Nanostring GeoM X platform

289  TMA dlides were freshly sectioned (4 um thick serial sections) and prepared according to the
290  Nanostring GeoMX Digital Spatial Profiler (DSP) slide preparation for RNA profiling
291 (NanoString, WA, USA). Slides were hybridised with the NanoString Technologies Whole
292 Transcriptome Atlas (WTA) barcoded probe set (~18,000 genes), followed by fluorescent
2903  daining with Pan-Cytokeratin (PanCK, clone AE-1/AE-3, AF488, Santa Cruz NBP2-
294  33200AF488, [2 ug/mL], CA, USA) to identify trophoblasts, vimentin (VIM, clone E-5,
295  AF594, Santa Cruz sc-373717, [1 pg/mL], CA, USA) to identify endothelial and
296  mesenchymal stromal cells, and SYTO83 to identify nuclei. With the aid of a trained
297  placental pathologist, an area featuring an anchoring villus, and an area featuring a cluster of
2908  terminal villi, were designated as two areas of interest (AOI) within each placental core.
299  Oligonucleotides linked to hybridized mRNA targets were cleaved separately for PanCK
300 positive regions within each AOI, and separately for vimentin positive regions. Cleaved
301 oligonucleotides were collected for counting using Illumina i5 and i7 dua indexing as
302 described previously™" *2. Paired-end sequencing (21 x[175) was performed using an Illumina
303 NextSeg550 up to 400M total aligned reads. Fastq files were processed using the Nanostring
304 DND system and uploaded to the GeoM X DSP system where raw counts were aligned with

305  their respective AQOIs.
306 Data normalisation, differential expression analysis, and pathway enrichment analysis

307 Raw data were normalised to the 134 negative probes in the Human Whole Transcriptome
308 Atlas probe set followed by upper quantile normalisation using the R package RUVseq™.
309  Transcriptional data from PanCK positive regions within each AOI were normalised
310 separately to the vimentin positive regions. Differential gene expression analysis between

311 SARS-CoV-2 positive and negative groups was performed separately for PanCK positive

13
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regions within each AOI, and separately for vimentin positive regions, using the R package
limma™. Bayesian adjusted t-statistic method was used where foetal sex and TMA slide
number were considered as co-variants. A fold change of +/- 1.5 and P-value <1 0.05
(adjusted for a false discovery rate of 5%) was considered significant. Pathway enrichment
analysis was performed using the Gene Set Enrichment Analysis program (GSEA, v4.3.2,
Broad Institute, MA, USA) for biological pathways obtained from the Molecular Signatures
Database (MSIgDB, Broad Institute, Human v2022.1, MA, USA). The preeclampsia gene-set
was obtained from Moslehi et al®. GSEA parameters: 1000 permutations, weighted analysis.
Gene set enrichment data were further clustered and visualised using the R package vissE
with the parameters: computeMsigOverlap (thresh = 0.25), findMsigClusters (alg =

cluster_walktrap, minSize =2)*.
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Patient Def Sample | Participant | Gestational . SARS CoV-2 Fetal . FETEI Placx.antal Macroscopic
i Group Code Age Age Comorbidities sympm.ms/ Fetal sex Outcome Delivery Method | Weight Weight observations
severity (grams) | (grams)
20-3504 | SARS-Cov-2 | 2 | 2530 | 30-35 Hypothyroidism and hypertensive 4 Male | Preterm na 2450 | aag | !Marcts and intenvlous
disorder in pregnancy thrombosis (<5%)
20-3561 | SARS-CoV-2 4 35-40 25-30 Hypothyroidism ++ Female | Preterm C-section na 245 -
20-3744 | SARS-CoV-2 8 25-30 30-35 Ghjzf::‘?/?gl d?::?::sb'g; :: T:z‘;{gsr' +- Female | Preterm C-section na 412 Infarcts (<5%)
20-5105 | SARS-CoV-2 12 25-30 35-40 None - Female Term C-section 2960 462 -
Gestational diabetes and . Retroplacental and
20-3369 | SARS-CoV-2 13 25-30 35-40 +- Female Term |Assisted Vaginal| 2600 358 marginal hematoma,
hyperthyroidism .
infarcts (<5%)
20-5869 | SARS-CoV-2 18 25-30 35-40 None +- Male Term C-section 2345 370 -
20-2916 | SARS-CoV-2 22 20-25 35-40 None - Female Term |Assisted Vaginal| 3030 650 -
16-7859 | CONTROL 1 20-25 30-35 Hypothyroidism Male Preterm C-section 1180 270 Placental hypoplasia
18-13016| CONTROL 3 20-25 35-40 Hypothyroidism and hypertension Female | Preterm |Assisted Vaginal| 2223 498 -
16-8315 | CONTROL 5 15-20 35-40 Obesity Female Term [Assisted Vaginal| 3810 514
18-4906 | CONTROL 9 20-25 25-30 None Male | Preterm |Assisted Vaginal| 1205 248 -
18-14057| CONTROL 10 40-45 30-35 Diabetes, hypertension, bipolar disorder Male Preterm C-section 1650 243 Placental hypoplasia
16-7599 | CONTROL 11 25-30 35-40 Gestational diabetes Male Term C-section 3460 480 -
16-3340 | CONTROL 15 35-40 35-40 None Female | Term C-section 3005 395
18-9951 | CONTROL 16 20-25 35-40 None Male Term C-section 3690 574
494 16-6144 | CONTROL | 19 25-30 35-40 None Male | Term C-section 3345 394

495  Table1: Clinical information of the SARS-CoV-2 and control cohort

496

497  Figure 1: Study design and cell deconvolution. (a) 1. Placental cores collected at delivery
498  from the SARS-CoV-2 (n=7) and control (n=9) groups were assembled into tissue microarray
499  dlides (TMAs). 2. TMAs were stained with fluorescent markers to differentiate cell types
so0  within anchoring (pink outline) and terminal villi (red outline). Barcodes were cleaved and
s01  collected from each region of interest by UV light. 3. Cleaved barcodes were sequenced and
502 counted using an lllumina® sequencer in preparation for transcriptomic analysis. Data were
503 normalised before downstream differential expression analysis. (b) Transcriptiona cell
504  deconvolution map. (c-j) Box-plots of indicated cell type proportions from 1b. AV: anchoring

s05  villi, TV: terminal villi, SARS-CoV-2 group is n=7 and control group is n=9.

506

507 Figure 2: Enrichment of SARS-CoV-2 related pathways. (a) Principal component analysis
s08  of normalised gene counts from trophoblasts and villous core stromal compartments from
509 SARS-CoV-2 (n=7) and control (n=9) groups at the anchoring or terminal villi (AV; TV). (b)
510 Principal component dimensions. (c) Upset plot of differential gene expression in

511  trophoblasts and villous core stromal compartments from the AV and TV in response to
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512  SARS-CoV-2 infection. The bar charts on the left indicate the total number of differentialy
513  expressed genes for the indicated sample group and the bar charts on the top show the gene
514  overlap for the comparisons indicated by the purple lines. Black dots denote differentially
515  expressed genes that are unique for the indicated sample group. Fold change +/- 1.5, P-value
516 <= 0.05, FDR < 0.05. (d) Enrichment of significant SARS-CoV-2 related pathways from the
517 Reactome database, in the SARS-CoV-2 and control samples. Blue: significantly negatively
518  enriched, red: significantly positively enriched, grey: not significant. The full list of enriched
519  pathways from the Reactome database can be found in Supplementary table 2 and table 3. (€)
520  Gene set enrichment analysis (GSEA) plot of the SARS _COV_2 INFECTION pathway from
521  the Reactome database and (f) INTERFERON_ALPHA_RESPONSE from the Hallmark
522  database, in SARS-CoV-2 samples versus controls. (g-j) Normalised expression counts of
523 IFI27, B2M, JAK1, and STAT3 genes, in trophoblast (TB) or villous core stroma (VCS)
524  compartments from the SARS-CoV-2 (n=7) and control samples (n=9). ** P-value < 0.01,

525  *** P.yalue < 0.001.

526

527 Figure 3. Enrichment of placental dysfunction pathways with SARS-CoV-2. (a)
528  Differentialy enriched pathways form the Hallmarks database in trophoblasts (TB) and
529  villous core stroma (VCS) compartments in SARS-CoV-2 (n=7) vs control group (n=9).
530 Colour gradient refers to the normalised enrichment score. (b) Enriched gene ontology
531  biological processes (GO-BP) pathway clusters from the Molecular Signatures Database
532 (MSigDb) generated using vissk, in the VCS and (c) TB. Top row depicts upregulated
533  pathways, bottom row depicts downregulated pathways. (d) Volcano plot of gene expression
534  from VCS or (e) TB in response to SARS-CoV-2 infection. Fold change (FC) +/- 1.5, P-
535  value <= 0.05, FDR < 0.05, the full list of differentially expressed genes can be found in

536  Supplementary table 4. (f-1) Normalised expression counts of indicated genesin TB or VCS
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compartments from the SARS-CoV-2 (n=7) and control samples (n=9). * P-value < 0.05, **
P-value < 0.01, *** P-value < 0.001, NS: not significant. (m) Gene set enrichment analysis
(GSEA) plot of the preeclampsia signature generated by Moslehi et a, in SARS-CoV-2

samples versus controls.
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Figure 1: Study design and"¢@1' e GTHGOR * Gy I P cores collected at delivery
from the SARS-CoV-2 (n=7) and control (n=9) groups were assembled into tissue microarray
slides (TMAs). 2. TMAs were stained with fluorescent markers to differentiate cell types
within anchoring (pink outline) and terminal villi (red outline). Barcodes were cleaved and
collected from each region of interest by UV light. 3. Cleaved barcodes were sequenced and
counted using an Illumina® sequencer in preparation for transcriptomic analysis. Data were
normalised before downstream differential expression analysis. (b) Transcriptional cell
deconvolution map. (c-j) Box-plots of indicated cell type proportions from 1b. AV: anchoring

villi, TV: terminal villi, SARS-CoV-2 group is n=7 and control group is n=9.
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Figure 2: Enrichment of SARSPE4VERFEIREP pRAWHRS {d§Pincipal component analysis
of normalised gene counts from trophoblasts and villous core stromal compartments from
SARS-CoV-2 (n=7) and control (n=9) groups at the anchoring or terminal villi (AV; TV). (b)
Principal component dimensions. (¢) Upset plot of differential gene expression in trophoblasts
and villous core stromal compartments from the AV and TV in response to SARS-CoV-2
infection. The bar charts on the left indicate the total number of differentially expressed genes
for the indicated sample group and the bar charts on the top show the gene overlap for the
comparisons indicated by the purple lines. Black dots denote differentially expressed genes
that are unique for the indicated sample group. Fold change +/- 1.5, P-value <= 0.05, FDR <
0.05. (d) Enrichment of significant SARS-CoV-2 related pathways from the Reactome
database, in the SARS-CoV-2 and control samples. Blue: significantly negatively enriched,
red: significantly positively enriched, grey: not significant. The full list of enriched pathways
from the Reactome database can be found in Supplementary table 2 and table 3. (e) Gene set
enrichment analysis (GSEA) plot of the SARS COV_2 INFECTION pathway from the
Reactome database and (f) INTERFERON ALPHA RESPONSE from the Hallmark database,
in SARS-CoV-2 samples versus controls. (g-j) Normalised expression counts of I[FI27, B2M,
JAK1, and STATS3 genes, in trophoblast (TB) or villous core stroma (VCS) compartments from

the SARS-CoV-2 (n=7) and control samples (n=9). ** P-value < 0.01, *** P-value <0.001.
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Figure 3: Enrichment of plA@aII§stunttion pAtHWaRWItHSARS-CoV-2.

(a) Differentially enriched pathways form the Hallmarks database in trophoblasts (TB) and
villous core stroma (VCS) compartments in SARS-CoV-2 (n=7) vs control group (n=9). Colour
gradient refers to the normalised enrichment score. (b) Enriched gene ontology biological
processes (GO-BP) pathway clusters from the Molecular Signatures Database (MSigDb)
generated using vissE, in the VCS and (¢) TB. Top row depicts upregulated pathways, bottom
row depicts downregulated pathways. (d) Volcano plot of gene expression from VCS or (e) TB
in response to SARS-CoV-2 infection. Fold change (FC) +/- 1.5, P-value <= 0.05, FDR < 0.05,
the full list of differentially expressed genes can be found in Supplementary table 4. (f-1)
Normalised expression counts of indicated genes in TB or VCS compartments from the SARS-
CoV-2 (n=7) and control samples (n=9). * P-value < 0.05, ** P-value < 0.01, *** P-value <
0.001, NS: not significant. (m) Gene set enrichment analysis (GSEA) plot of the preeclampsia

signature generated by Moslehi et al, in SARS-CoV-2 samples versus controls.
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. o . SARS-CoV-2 Fetal Placental ;
s Group e e e Comorbidities symptoms/ | Fetal sex Sl Delivery Method | Weight Weight Macroscopic
id. Code Age Age ) Outcome observations
severity (grams) | (grams)
20-3594 | SARS-CoV-2 | 2 25.30 30-35 FpLIYICIST Hh HyBErEnEve ++ Male | Preterm na 2450 g | MRS IEEmans
disorder in pregnancy thrombosis (<5%)

20-3561 | SARS-CoV-2 4 3540 25-30 Hypothyroidism +/+ Female | Preterm C-section na 245 -

203744 | SARS-Cov2 | 8 | 25:30 | 30-35 | Costationaldiabetes, bipolardisorder, |, | gopaie | preterm | C-section a | 412 Infarcts (<5%)

hypothyroidism and syphilis (treated)
20-5105 | SARS-CoV-2 12 25-30 35-40 None - Female Term C-section 2960 462 -
Gestational diabetes and : : Retrpplacental and
20-3369 | SARS-CoV-2 13 25-30 35-40 it +/- Female Term |Assisted Vaginal| 2600 358 marginal hematoma,
hyperthyroidism :
infarcts (<5%)

20-5869 | SARS-CoV-2 18 25-30 35-40 None +/- Male Term C-section 2345 370 -

20-2916 | SARS-CoV-2 22 20-25 35-40 None - Female Term |Assisted Vaginal| 3030 650 -

16-7859 | CONTROL 1 20-25 30-35 Hypothyroidism Male Preterm C-section 1180 270 Placental hypoplasia
18-13016| CONTROL 3 20-25 35-40 Hypothyroidism and hypertension Female | Preterm |Assisted Vaginal| 2223 498 -

16-8315 | CONTROL ) 15-20 35-40 Obesity Female Term |Assisted Vaginal| 3810 514 -

184906 | CONTROL 9 20-25 25-30 None Male Preterm |Assisted Vaginal| 1205 248 -
18-14057| CONTROL 10 4045 30-35 Diabetes, hypertension, bipolar disorder Male Preterm C-section 1650 243 Placental hypoplasia
16-7599 | CONTROL 11 25-30 35-40 Gestational diabetes Male Term C-section 3460 480 -

16-3340 | CONTROL 15 35-40 35-40 None Female Term C-section 3005 395 -

18-9951 | CONTROL 16 20-25 35-40 None Male Term C-section 3690 574 -

16-6144 | CONTROL 19 25-30 35-40 None Male Term C-section 3345 394 -
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