

1 **Whole transcriptome profiling of placental pathobiology in SARS-CoV-2 pregnancies**
2 **identifies placental dysfunction signatures.**

3 Nataly Stylianou^{1#}, Ismail Sebina^{2#}, Nicholas Matigian³, James Monkman², Hadeel Doehler¹,
4 Joan Röhl⁴, Mark Allenby⁵, Andy Nam⁶, Liuliu Pan⁶, Anja Rockstroh¹, Habib Sadeghirad²,
5 Kimberly Chung², Thais Sobanski¹, Ken O'Byrne¹, Ana Clara Simoes Florido Almeida⁷,
6 Patricia Zadorosnei Rebutini⁷, Cleber Machado-Souza⁸, Emanuele Therezinha Schueda
7 Stonoga⁹, Majid E Warkiani¹⁰, Carlos Salomon¹¹, Kirsty Short¹², Lana McClements¹⁰, Lucia
8 de Noronha⁷, Ruby Huang¹³, Gabrielle T. Belz², Fernando Souza-Fonseca-Guimaraes², Vicki
9 Clifton¹⁴, Arutha Kulasinghe^{2*}.

10 ¹ *Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland*
11 *University of Technology, Brisbane, QLD 4102, Australia*

12 ² *Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102,*
13 *Australia.*

14 ³ *QCIF Bioinformatics, St Lucia, QLD 4102, Australia*

15 ⁴⁵ *Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia*

16 ⁵ *BioMimetic Systems Engineering Lab, School of Chemical Engineering, University of*
17 *Queensland (UQ), St Lucia, QLD, Australia*

18 ⁶ *Nanostring Technologies, Inc, Seattle, WA, USA*

19 ⁷ *Postgraduate Program of Health Sciences, School of Medicine, Pontifícia Universidade*
20 *Católica do Paraná -PUCPR, Curitiba, Brazil.*

21 ⁸ *Postgraduate Program in Biotechnology Applied in Health of Children and Adolescent,*
22 *Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil*

23 ⁹ *Department of Medical Pathology, Clinical Hospital, Universidade Federal do Paraná -*
24 *UFPR, Curitiba, Brazil.*

25 ¹⁰ *School of Life Sciences & Institute for Biomedical Materials and Devices, Faculty of*
26 *Science, University of Technology Sydney, NSW, Australia.*

27 ¹¹ *Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland*
28 *Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine,*
29 *The University of Queensland, Brisbane, Australia.*

30 ¹² *School of Chemistry and Molecular Biosciences, Faculty of Science, The University of*
31 *Queensland, St Lucia QLD 4067, Australia.*

32 ¹³ *School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.*

33 ¹⁴ *Mater Medical Research Institute – University of Queensland, Brisbane, Australia.*

34 *# These authors contributed equally*

35 *Correspondence: Dr Arutha Kulasinghe, Frazer Institute, Faculty of Medicine, The
36 University of Queensland. 37 Kent Street, Woolloongabba, Queensland 4012, Australia. E:
37 arutha.kulasinghe@uq.edu.au

38

39 **Graphical abstract:** In this study, using spatial digital profiling transcriptomic approaches,
40 we demonstrate that SARS-CoV-2 infection in pregnancy disrupts optimal placental function
41 by altering the genomic architecture of trophoblasts and villous core stromal cells.

42

43 ABSTRACT

44 **Objectives:** Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus
45 infection in pregnancy is associated with higher incidence of placental dysfunction, referred
46 to by a few studies as a “preeclampsia-like syndrome”. However, the mechanisms
47 underpinning SARS-CoV-2-induced placental malfunction are still unclear. Here, we

48 investigated whether the transcriptional architecture of the placenta is altered in response to
49 SARS-CoV-2 infection.

50 **Methods:** We utilized whole-transcriptome, digital spatial profiling, to examine gene
51 expression patterns in placental tissues from participants who contracted SARS-CoV-2 in the
52 third trimester of their pregnancy (n=7) and those collected prior to the start of the
53 coronavirus disease 2019 (COVID-19) pandemic (n=9).

54 **Results:** Through comprehensive spatial transcriptomic analyses of the trophoblast and
55 villous core stromal cell subpopulations in the placenta, we identified signatures associated
56 with hypoxia and placental dysfunction during SARS-CoV-2 infection in pregnancy.
57 Notably, genes associated with vasodilation (*NOS3*), oxidative stress (*GDF15*, *CRH*), and
58 preeclampsia (*FLT1*, *EGFR*, *KISS1*, *PAPPA2*), were enriched with SARS-CoV-2. Pathways
59 related to increased nutrient uptake, vascular tension, hypertension, and inflammation, were
60 also enriched in SARS-CoV-2 samples compared to uninfected controls.

61 **Conclusions:** Our findings demonstrate the utility of spatially resolved transcriptomic
62 analysis in defining the underlying pathogenic mechanisms of SARS-CoV-2 in pregnancy,
63 particularly its role in placental dysfunction. Furthermore, this study highlights the
64 significance of digital spatial profiling in mapping the intricate crosstalk between
65 trophoblasts and villous core stromal cells, thus shedding light on pathways associated with
66 placental dysfunction in pregnancies with SARS-CoV-2 infection.

67

68 **KEYWORDS:** Placental dysfunction, SARS-CoV-2, COVID-19, digital spatial profiling,
69 gene expression profiling, trophoblasts, villous core stroma.

70

71 **INTRODUCTION**

72 Viral infections in pregnancy can disrupt placental function and predispose pregnancy
73 complications, including late-onset preeclampsia, preterm birth, stillbirth, and intrauterine
74 fetal demise¹⁻⁴. Recent studies have revealed that pregnant women who contract Severe Acute
75 Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, which causes coronavirus disease 2019
76 [COVID-19]), can experience placental dysfunction and what has been referred to as
77 “preeclampsia-like syndrome”⁵⁻¹⁰. Placental tissues from COVID-19 patients exhibit
78 increased vasculopathy and inflammation, which are characteristic pathological features of
79 preeclampsia¹¹. Moreover, clinical manifestations observed in COVID-19 patients, such as
80 COVID-19-associated hypoxia, hypertension, endothelial dysfunction, kidney disease,
81 thrombocytopenia, and liver injury, overlap with those observed in preeclampsia^{5, 12}.
82 However, mechanisms through which SARS-CoV-2 infection predisposes pregnancies to
83 these preeclampsia-like pathological features are largely unclear.

84

85 The placenta is vital for fetal development and growth throughout gestation as it is a
86 functional interface between the mother and fetus¹³. This interface comprises various
87 anatomically distinct sites, including the decidua basalis, where maternal immune cells and
88 decidual stromal cells interact with fetal extravillous trophoblasts¹⁴. The maternal-fetal
89 interface also consists of the placental intervillous space, where maternal immune cells
90 interact with fetal syncytiotrophoblasts, and the boundary between the parietalis and the
91 chorion laeve in the chorioamniotic membranes¹⁴. Other cell types within this interface, such
92 as villous cytotrophoblasts, column cytotrophoblasts, fibroblasts, endothelial cells, and
93 Hofbauer cells, contribute to nutrient and waste exchange, hormone production, protection
94 from pathogens, and maternal immune responses essential for fetal development^{13, 14}.

95 Whether SARS-CoV-2 infection modifies the transcriptomic architecture and functional
96 characteristics of different cell types within these distinct placental sites is still unclear.

97

98 In this study, we utilised digital spatial whole-transcriptomic analysis of human placental
99 tissue to delineate molecular pathways associated with SARS-CoV-2 infection-induced
100 placental pathology in pregnancy. Specifically, we focused our analysis on defining the
101 distinct transcriptional profiles of trophoblasts and villous core stromal cell populations (the
102 latter including endothelial, fibroblast, and immune cells), in the context of SARS-CoV-2
103 infection. We identified several pivotal pathways that underlie the development of a
104 “preeclampsia-like syndrome” associated with SARS-CoV-2 infection in pregnancy.

105

106 **RESULTS**

107 **Characterization of patient demographics and histopathology in collected placentae.**

108 Tissue microarrays were constructed using placental cores that were collected immediately
109 after birth from unvaccinated participants who had tested positive within 15 days prior to
110 delivery (Alpha strain, April 2020, n=7), and unvaccinated participants who were negative
111 for SARS-CoV-2 throughout their pregnancy (n=9; Table 1). There were no significant
112 differences in placental weight, fetal weight, gestational age, comorbidities, or maternal age
113 between the two groups (Table 1). Within the SARS-CoV-2 group, 3/7 newborns were born
114 preterm, compared to 4/9 in the control group (Table 1).

115 No SARS-CoV-2 viral load was detected in the placental cores from the SARS-CoV-2
116 infected group through examination by RNAscope of the SARS-CoV-2 spike mRNA (data
117 not shown). With the aid of a trained placental pathologist, an area featuring an anchoring

118 villus, and an area featuring a cluster of terminal villi, were designated as two areas of
119 interest (AOI) within each placental core (Figure 1a). AOIs where immunofluorescently
120 stained with PanCK to identify trophoblast populations, and vimentin to identify stromal
121 populations (i.e., fibroblasts, endothelial cells). Transcriptional expression was collected
122 separately for PanCK positive and separately for vimentin positive cells within each AOI
123 using the Whole Transcriptome Atlas kit (Nanostring; Figure 1a). Subsequent cell
124 deconvolution was performed to assess the purity of each collection (Figure 1b). As expected,
125 transcriptional expression from PanCK positive regions within the AOIs had high proportion
126 of trophoblast populations, compared to vimentin positive regions that had higher proportions
127 of fibroblast and endothelial cells (Figure 1b-f). Due to the overlapping nature of cells, all
128 samples captured a proportion of immune cell types (macrophages, monocytes, Hofbauer
129 cells), except for the PanCK positive regions that displaying a proportion of granulocytes that
130 was absent from the vimentin positive regions within the AOIs (Figure 1b, g-j). SARS-CoV-2
131 infection did not significantly alter the transcriptional proportion of any cell type assessed
132 when compared to controls (Figure 1b-j). In subsequent analyses, the PanCK positive regions
133 within the AOIs will be referred to as “Trophoblasts” and the vimentin positive regions will
134 be referred to as “Villous Core Stroma” compartments, due to the predominant enriched cell
135 type they represent.

136 **SARS-CoV-2 infection related pathways enriched in the placenta despite absence of
137 detectable viral particles.**

138 Unsupervised clustering of the normalised gene counts by principal component analysis
139 showed that SARS-CoV-2 samples clustered separately to control samples in dimension 1,
140 and further by phenotype in dimension 2, supporting that infection with SARS-CoV-2
141 markedly alters the transcriptional profiles of the trophoblast and villous core stroma cell
142 populations (Figure 2a-b). Notably, there was very high overlap of genes differentially

143 expressed between the anchoring and the terminal villi; for instance, trophoblasts at the
144 anchoring villi had 1,791 differentially expressed genes versus 493 at the terminal villi, with
145 405 genes in common between them (82% overlap; Supplementary table 1, Figure 2c).
146 Similarly, the villous core stroma cells at the anchoring villi had 1,139 differentially
147 expressed genes versus 601 at the terminal villi, with 458 genes in common between them
148 (76% overlap; Supplementary table 1, Figure 2c). As expected, there was minimal overlap in
149 differential gene expression between the trophoblasts and villous core stroma compartments,
150 which highlights their distinct cell phenotypes (Figure 2c).

151 Despite the SARS-CoV-2 samples showing undetectable SARS-CoV-2 by RNA-scope,
152 transcriptional profiling showed positive enrichment of SARS-CoV-2 related pathways in the
153 SARS-CoV-2 samples, such as “SARS_COV_2_INFECTON”, and
154 “SARS_COV_2_HOST_INTERACTIONS” from the Reactome database, as well as the
155 Interferon Alpha Response pathway from the Hallmark database, which is a first-line immune
156 response pathway that has been associated with SARS-CoV-2 infection (Figure 2d-f)¹⁵.
157 These pathways were supported by increased expression of genes that have been associated
158 with SARS-CoV-2, such as the inflammatory marker *IFI16*¹⁶, disease progression marker
159 *IFI27*¹⁷, disease prognosticator *B2M*¹⁸, activation of Janus Kinases (i.e., *JAK1*), and
160 expression of *STAT3*¹⁹ (Figure 2 g-j). Notably, gene expression for these markers was
161 elevated predominantly in the villous core stroma cell compartment, presumably stemming
162 from the immune subpopulation within the stroma. Indeed, specific analysis of the villus core
163 stroma compartment revealed enrichment of several immune related pathways from the
164 Hallmarks database such as IL6/JAK/STAT3 signalling, IL2/STAT5 signalling, TNF-alpha
165 signalling, inflammatory response, and complement pathways (Figure 3a), supporting that the
166 immune cells within the placental villi are actively responding to SARS-CoV-2 infection.

167 **SARS-CoV-2 infection enriches hypoxia and placental dysfunction pathways.**

168 Pathway enrichment analysis of the genes differentially expressed in response to SARS-CoV-
169 2 infection, revealed pathways related to placental dysfunction, in both the trophoblast and
170 villous core stroma compartments. For instance, hypoxia and oxidative phosphorylation
171 pathways were enriched in the villous core stroma (Figure 3a), both of which have been
172 previously linked with placental dysfunction and increased incidence of developing
173 preeclampsia²⁰. Hypoxia triggers TGF-β signalling and angiogenesis²¹, and both TGF- β
174 signalling and angiogenesis related pathways were enriched in the villous core stroma in
175 response to SARS-CoV-2 infection (Figure 3b). Furthermore, pathways related to
176 haemorrhage were upregulated and pathways related to vascular tension, such as
177 hyperaldosteronin/renin pathways, acetylcholine channels, and olfactory receptors, were
178 downregulated in the villous core stroma (Figure 3b). Trophoblast cells exhibited enrichment
179 of pathways related to nitric oxide production (Figure 3c), which is a potent vasodilator²².
180 Conversely, pathways related to calcium import²³ and vasoconstriction were downregulated
181 in trophoblasts (Figure 3c), supporting the notion that the placenta actively reduces vascular
182 tension during SARS-CoV-2 infection. In parallel, trophoblasts showed an increase in cell-
183 cell adherence, communication, and transmembrane amino acid transport, including
184 MTORC1 signalling²⁴, suggesting that nutritional uptake to the foetus is enhanced in
185 response to SARS-CoV-2 infection (Figure 3a and 3c). Further, pathways related to allograft
186 rejection and MHC molecules were decreased, suggestive of a defensive mechanism by the
187 trophoblast layer to protect gestation (Figure 3a and 3c).

188 **Markers associated with preeclampsia are elevated with SARS-CoV-2**

189 Placentae from the SARS-CoV-2 group showed several markers that have been previously
190 associated with hypoxia and placental dysfunction. For instance, the hypoxia and
191 preeclampsia associated markers Fms Related Receptor Tyrosine Kinase 1 (*FLT1*), *FLT4*,
192 epidermal growth factor receptor (*EGFR*), and pappalysin-2 (*PAPPA2*) were increased in

193 trophoblasts from the SARS-CoV-2 group (Figure 3e-i)²⁵⁻²⁸. Additionally, markers associated
194 with placental dysfunction and oxidative stress such as Nitric oxide synthase 3 (*NOS3*)²⁹,
195 corticotrophin-releasing hormone (*CRH*)³⁰, kisspeptin 1 (*KISS1*)³¹, Growth Differentiation
196 Factor 15 (*GDF15*)³², and tissue factor pathway inhibitor 2 (*TFPI-2*)³³, were also elevated in
197 the trophoblasts from the SARS-CoV-2 group (Figure 3e, 3j-k). Transforming growth factor
198 b1 (*TGF β -I*), and the PAPP-A2 substrates *IGFBP4/5* (Figure 3d and 3l), were also elevated
199 in the villous core stroma, both markers associated with increased preeclampsia risk^{21, 34}.

200

201 Given that a number of these pathways and genes are associated with preeclampsia, as well as
202 several recent studies reporting SARS-CoV-2 in predisposing pregnant individuals to
203 preeclampsia⁵⁻¹⁰, we next assessed the enrichment of a preeclampsia-specific gene set
204 generated from published patient cohorts³⁵. The gene set was generated by Moslehi et al.,
205 where they found 419 genes to be common between four studies examining preeclampsia
206 versus healthy pregnancies³⁵. These 419 genes are involved in pathways relevant to
207 preeclampsia, such as oxidative stress, hypoxia, and immune response³⁵⁻³⁷. In our data, this
208 preeclampsia signature was positively enriched in patient samples from the SARS-CoV-2
209 group (NES 3.49, FDR <0.001; Figure 3m), which aligns with the positive enrichment of
210 hypoxia, immune, and oxidative stress, related pathways we observed in our studies (Figure
211 3a).

212

213 **DISCUSSION**

214 Using digital spatial profiling, we quantified the expression of key markers within distinct
215 cellular compartments of the placenta, providing a detailed picture of the molecular changes
216 occurring in response to SARS-CoV-2 infection. Although our study is limited by its

217 relatively small cohort, cross-sectional nature, and low availability of clinical data, it offers
218 valuable insights into the interplay between trophoblasts and the cells within the villous core
219 stroma in the placenta and how this relationship is influenced by SARS-CoV-2 infection.
220 Close examination of the transcriptional alterations occurring in the placental trophoblast and
221 villous core stroma in response to SARS-CoV-2, revealed a notable number of genes that are
222 enriched in biological pathways previously associated with placental dysfunction.

223

224 Trophoblasts from the SARS-CoV-2-infected group had significantly higher levels of *NOS3*
225 compared to the control group (Figure 3j). The upregulation of NOS3 is associated with
226 increased endogenous production of the vasodilator nitric oxide, as a response to altered
227 vascular reactivity, endothelial dysfunction, and hypertension^{22, 38}. Interestingly, NOS has
228 been previously found to be highly upregulated to supraphysiological levels in animal models
229 of infection-mediated inflammation during pregnancy, leading researchers to hypothesise that
230 increased NOS may play a role in placental inflammation³⁹⁻⁴¹. In response to increased NOS
231 by the trophoblasts, the villous core stromal showed increased expression in biological
232 pathways related to systemic pressure and vasodilation. This included the downregulation of
233 olfactory receptors, acetylcholine channels, and hyperaldosteronin/renin pathways, alongside
234 upregulated hypoxia pathways, suggesting deregulation of the vascular tone and blood
235 pressure due to a hypoxic environment⁴².

236

237 Additional transcriptional analysis of trophoblast and villous core stromal compartments from
238 SARS-CoV-2-infected samples identified several transcriptional variations that have been
239 previously associated with preeclampsia (Figure 3). Trophoblasts had higher expression of
240 *EGFR*, a marker that increases with hypoxia and is known to upregulate *FLT1*, where

241 excessive release of soluble FLT1 by syncytiotrophoblasts is a characteristic marker of late
242 onset preeclampsia⁴³. There was prominent increase of *PAPPA2* in the trophoblasts, the
243 latter considered to become upregulated in response to hypoxia, and placental pathologies,
244 including preeclampsia⁴⁴. Notably, the *PAPPA2* substrates *IGFBP4* and *IGFBP5* were
245 concurrently upregulated in the villous core stromal compartment, whereby the interaction of
246 *PAPPA2* with *IGFBP4/5* increases levels of *IGF2*, which was also increased in the villous
247 core stromal cells in the SARS-CoV-2-infected group (Figure 3d)³⁴. Additionally, the villous
248 core stromal compartment had decreased levels of *Isthmin-2* (*ISM2*), a placental marker that
249 is downregulated with preeclampsia⁴⁵. *GDF15*, *TFPI-2*, *KISS1*, and *CRH* genes were also
250 upregulated in SARS-CoV-2-infected trophoblasts, all previously associated with placental
251 oxidative stress, hypertension, and preeclampsia^{34, 46-48}.

252 In conclusion, our data suggest that the placenta from pregnancies with SARS-CoV-2 adopts
253 a transcriptional profile aligning with placental dysfunction that has been observed in
254 pregnant participants who develop ‘preeclampsia-like’ syndrome. Using digital spatial
255 profiling, our studies showcased the crosstalk between the trophoblast and villous core
256 stromal cell populations, and how this is enriched with pathways associated with placental
257 dysfunction. Our findings set the foundation for a more comprehensive understanding of
258 placental dysfunction in pregnant individuals with SARS-CoV-2 infection and offer
259 important insights into the potential mechanisms through which SARS-CoV-2 may impact
260 pregnancy outcomes and fetal development.

261

262 **METHODS**

263 **Study Design**

264 The SARS-CoV-2 group (n=7) consisted of pregnant, unvaccinated participants, who were
265 symptomatic with COVID-19 in their third trimester (confirmed by RT-qPCR from
266 nasopharyngeal swabs). Placental tissue samples were collected at birth at the Hospital de
267 Clínicas (HC) and Hospital Nossa Senhora das Graças, Brazil, with ethics approval from the
268 National Commission for Research Ethics (CONEP) under approval number
269 30188020.7.1001.0020⁴⁹. The control group was comprised of archived placentae from nine
270 COVID19-negative people collected during delivery at the Complexo Hospital de Clínicas,
271 Universidade Federal do Paraná, Curitiba, Brazil between 2016 and 2018. To account for
272 maternal co-morbidities, maternal age, and gestational age, the control group was selected to
273 match these clinical features as presented in the SARS-CoV-2 group. Participant cohort and
274 their clinical characteristics are summarised in Table 1. Morphological analysis was
275 performed in all placentas from SARS-CoV-2-infected and control groups using the
276 Amsterdam Placental Workshop Group Consensus Statement⁵⁰. Histological sections were
277 systematically identified and evaluated by two experienced pathologists to obtain samples for
278 tissue microarray (TMA) construction, as described in a previous work⁴⁹. Two TMAs were
279 prepared from the placental samples, following the workflow demonstrated in Figure 1.

280 **RNAscope**

281 A serial section from the TMAs (4 um) was incubated with RNAscope probes targeting
282 SARS-CoV-2 spike mRNA (nCoV2019, #848568-C3, ACDBio, CA, USA), as per
283 manufacturer's instructions for automation on Leica Bond RX. DNA was visualised with
284 Syto13 (500 nM, #S7575, ThermoFisher Scientific, MA, USA), and SARS-CoV-2
285 spike mRNA with TSA Plus CY5 (1:1500, #NEL745001KT, Akoya Biosciences, MA, USA).
286 Fluorescent images were acquired with NanoString GeoMX DSP at 20×.

287

288 **Digital spatial profiling with Nanostring GeoMX platform**

289 TMA slides were freshly sectioned (4 um thick serial sections) and prepared according to the
290 Nanostring GeoMX Digital Spatial Profiler (DSP) slide preparation for RNA profiling
291 (NanoString, WA, USA). Slides were hybridised with the NanoString Technologies Whole
292 Transcriptome Atlas (WTA) barcoded probe set (~18,000 genes), followed by fluorescent
293 staining with Pan-Cytokeratin (PanCK, clone AE-1/AE-3, AF488, Santa Cruz NBP2-
294 33200AF488, [2 µg/mL], CA, USA) to identify trophoblasts, vimentin (VIM, clone E-5,
295 AF594, Santa Cruz sc-373717, [1 µg/mL], CA, USA) to identify endothelial and
296 mesenchymal stromal cells, and SYTO83 to identify nuclei. With the aid of a trained
297 placental pathologist, an area featuring an anchoring villus, and an area featuring a cluster of
298 terminal villi, were designated as two areas of interest (AOI) within each placental core.
299 Oligonucleotides linked to hybridized mRNA targets were cleaved separately for PanCK
300 positive regions within each AOI, and separately for vimentin positive regions. Cleaved
301 oligonucleotides were collected for counting using Illumina i5 and i7 dual indexing as
302 described previously^{51, 52}. Paired-end sequencing (2□×□75) was performed using an Illumina
303 NextSeq550 up to 400M total aligned reads. Fastq files were processed using the Nanostring
304 DND system and uploaded to the GeoMX DSP system where raw counts were aligned with
305 their respective AOIs.

306 **Data normalisation, differential expression analysis, and pathway enrichment analysis**

307 Raw data were normalised to the 134 negative probes in the Human Whole Transcriptome
308 Atlas probe set followed by upper quantile normalisation using the R package RUVseq⁵³.
309 Transcriptional data from PanCK positive regions within each AOI were normalised
310 separately to the vimentin positive regions. Differential gene expression analysis between
311 SARS-CoV-2 positive and negative groups was performed separately for PanCK positive

312 regions within each AOI, and separately for vimentin positive regions, using the R package
313 limma⁵⁴. Bayesian adjusted t-statistic method was used where foetal sex and TMA slide
314 number were considered as co-variants. A fold change of +/- 1.5 and *P*-value ≤ 0.05
315 (adjusted for a false discovery rate of 5%) was considered significant. Pathway enrichment
316 analysis was performed using the Gene Set Enrichment Analysis program (GSEA, v4.3.2,
317 Broad Institute, MA, USA) for biological pathways obtained from the Molecular Signatures
318 Database (MSigDB, Broad Institute, Human v2022.1, MA, USA). The preeclampsia gene-set
319 was obtained from Moslehi et al³⁵. GSEA parameters: 1000 permutations, weighted analysis.
320 Gene set enrichment data were further clustered and visualised using the R package vissE
321 with the parameters: computeMsigOverlap (thresh = 0.25), findMsigClusters (alg =
322 cluster_walktrap, minSize =2)⁵⁵.

323

324 **AUTHOR CONTRIBUTIONS**

325 **Designing research study:** NS, JR, MA, LdN, AK. **Conducting experiments:** NS, JM, AN,
326 LP, PZR, CMS, ETSS, LdN

327 **Acquiring data:** JM, AN, LP. **Analyzing data:** NS, IS, NM, AR, LM, GTB, FSFG, VC, AK.
328 **Writing the manuscript:** all authors

329

330 **ACKNOWLEDGMENTS**

331 This study was funded by the Queensland University of Technology ECR funds for AK, JR,
332 MA, NS. The following authors are supported by fellowships from the NHMRC (AK –
333 1157741, GB - 2008542 and 1135898), US DOD (NS – PC190533). The authors thank Fred
334 Hutch pathology (Miki Haraguchi & Stephanie Weaver) for histology assistance.

335

336 **DATA AVAILABILITY**

337 The data generated in this study are available in the Gene Expression Omnibus (GEO) under
338 GSE223612.

339

340 **CONFLICTS OF INTEREST**

341 Andy Nam and Liiliu Pan are employed by Nanostring Technologies. Nicolas Matigian is
342 employed by QCIF Bioinformatics.

343

344 **REFERENCES**

- 345 1. Bordt EA, Shook LL, Atyeo C, *et al.* Maternal SARS-CoV-2 infection elicits sexually
346 dimorphic placental immune responses. *Sci Transl Med* 2021; **13**: eabi7428.
- 347 2. Edlow AG, Li JZ, Collier AY, *et al.* Assessment of Maternal and Neonatal SARS-
348 CoV-2 Viral Load, Transplacental Antibody Transfer, and Placental Pathology in
349 Pregnancies During the COVID-19 Pandemic. *JAMA Netw Open* 2020; **3**: e2030455.
- 350 3. Schwartz DA, Mulkey SB, Roberts DJ. SARS-CoV-2 Placentitis, Stillbirth and
351 Maternal COVID-19 Vaccination: Clinical-Pathological Correlations. *Am J Obstet
352 Gynecol* 2022.
- 353 4. Racicot K, Mor G. Risks associated with viral infections during pregnancy. *J Clin
354 Invest* 2017; **127**: 1591-1599.
- 355 5. Palomo M, Youssef L, Ramos A, *et al.* Differences and similarities in endothelial and
356 angiogenic profiles of preeclampsia and COVID-19 in pregnancy. *Am J Obstet
357 Gynecol* 2022; **227**: 277 e271-277 e216.

358 6. Mendoza M, Garcia-Ruiz I, Maiz N, *et al.* Pre-eclampsia-like syndrome induced by
359 severe COVID-19: a prospective observational study. *Bjog* 2020; **127**: 1374-1380.

360 7. Serrano B, Bonacina E, Garcia-Ruiz I, *et al.* Confirmation of preeclampsia-like
361 syndrome induced by severe COVID-19: an observational study. *Am J Obstet
362 Gynecol MFM* 2022; **5**: 100760.

363 8. Naeh A, Berezowsky A, Yudin MH, Dhalla IA, Berger H. Preeclampsia-Like
364 Syndrome in a Pregnant Patient With Coronavirus Disease 2019 (COVID-19). *J
365 Obstet Gynaecol Can* 2022; **44**: 193-195.

366 9. Celewicz A, Celewicz M, Michalczyk M, *et al.* SARS CoV-2 infection as a risk factor
367 of preeclampsia and pre-term birth. An interplay between viral infection, pregnancy-
368 specific immune shift and endothelial dysfunction may lead to negative pregnancy
369 outcomes. *Ann Med* 2023; **55**: 2197289.

370 10. Gonzalez-Vanegas O, Martinez-Perez O. SARS-CoV-2 Infection and Preeclampsia-
371 How an Infection Can Help Us to Know More about an Obstetric Condition. *Viruses*
372 2023; **15**.

373 11. Schwartz DA, Avvad-Portari E, Babál P, *et al.* Placental Tissue Destruction and
374 Insufficiency From COVID-19 Causes Stillbirth and Neonatal Death From Hypoxic-
375 Ischemic Injury. *Arch Pathol Lab Med* 2022; **146**: 660-676.

376 12. Huang C, Wang Y, Li X, *et al.* Clinical features of patients infected with 2019 novel
377 coronavirus in Wuhan, China. *The Lancet* 2020; **395**: 497-506.

378 13. Maltepe E, Fisher SJ. Placenta: the forgotten organ. *Annu Rev Cell Dev Biol* 2015; **31**:
379 523-552.

380 14. Buchrieser J, Degrelle SA, Couderc T, *et al.* IFITM proteins inhibit placental
381 syncytiotrophoblast formation and promote fetal demise. *Science* 2019; **365**: 176-180.

382 15. Wedenoja S, Yoshihara M, Teder H, *et al.* Fetal HLA-G mediated immune tolerance
383 and interferon response in preeclampsia. *EBioMedicine* 2020; **59**: 102872.

384 16. Hamldar S, Kiani SJ, Khoshmirsa M, *et al.* Expression profiling of inflammation-
385 related genes including IFI-16, NOTCH2, CXCL8, THBS1 in COVID-19 patients.
386 *Biologicals* 2022; **80**: 27-34.

387 17. Kulasinghe A, Tan CW, Ribeiro Dos Santos Miggioraro AF, *et al.* Profiling of lung
388 SARS-CoV-2 and influenza virus infection dissects virus-specific host responses and
389 gene signatures. *Eur Respir J* 2022; **59**.

390 18. Conca W, Alabdely M, Albaiz F, *et al.* Serum beta2-microglobulin levels in
391 Coronavirus disease 2019 (Covid-19): Another prognosticator of disease severity?
392 *PLoS One* 2021; **16**: e0247758.

393 19. Jain NK, Tailang M, Jain HK, *et al.* Therapeutic implications of current Janus kinase
394 inhibitors as anti-COVID agents: A review. *Front Pharmacol* 2023; **14**: 1135145.

395 20. Hu XQ, Zhang L. Hypoxia and Mitochondrial Dysfunction in Pregnancy
396 Complications. *Antioxidants (Basel)* 2021; **10**.

397 21. Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in
398 the pathophysiology of preeclampsia and related disorders. *Am J Obstet Gynecol*
399 2022; **226**: S1019-S1034.

400 22. Mukosera GT, Clark TC, Ngo L, *et al.* Nitric oxide metabolism in the human placenta
401 during aberrant maternal inflammation. *J Physiol* 2020; **598**: 2223-2241.

402 23. Van Hove CE, Van der Donckt C, Herman AG, Bult H, Fransen P. Vasodilator
403 efficacy of nitric oxide depends on mechanisms of intracellular calcium mobilization
404 in mouse aortic smooth muscle cells. *Br J Pharmacol* 2009; **158**: 920-930.

405 24. Jansson T, Aye IL, Goberdhan DC. The emerging role of mTORC1 signaling in
406 placental nutrient-sensing. *Placenta* 2012; **33 Suppl 2**: e23-29.

407 25. Hastie R, Brownfoot FC, Pritchard N, *et al.* EGFR (Epidermal Growth Factor
408 Receptor) Signaling and the Mitochondria Regulate sFlt-1 (Soluble FMS-Like
409 Tyrosine Kinase-1) Secretion. *Hypertension* 2019; **73**: 659-670.

410 26. Kramer AW, Lamale-Smith LM, Winn VD. Differential expression of human
411 placental PAPP-A2 over gestation and in preeclampsia. *Placenta* 2016; **37**: 19-25.

412 27. Neuman RI, Alblas van der Meer MM, Nieboer D, *et al.* PAPP-A2 and Inhibin A as
413 Novel Predictors for Pregnancy Complications in Women With Suspected or
414 Confirmed Preeclampsia. *J Am Heart Assoc* 2020; **9**: e018219.

415 28. Lamale-Smith LM, Gumina DL, Kramer AW, *et al.* Uteroplacental Ischemia Is
416 Associated with Increased PAPP-A2. *Reprod Sci* 2020; **27**: 529-536.

417 29. Guerby P, Tasta O, Swiader A, *et al.* Role of oxidative stress in the dysfunction of the
418 placental endothelial nitric oxide synthase in preeclampsia. *Redox Biol* 2021; **40**:
419 101861.

420 30. Karteris E, Vatish M, Hillhouse EW, Grammatopoulos DK. Preeclampsia is
421 associated with impaired regulation of the placental nitric oxide-cyclic guanosine
422 monophosphate pathway by corticotropin-releasing hormone (CRH) and CRH-related
423 peptides. *J Clin Endocrinol Metab* 2005; **90**: 3680-3687.

424 31. Ibanoglu MC, Oskovi-Kaplan ZA, Ozgu-Erdinc AS, Kara O, Sahin D. Comparison of
425 the Kisspeptin levels in early onset preeclampsia and late-onset preeclampsia. *Arch
426 Gynecol Obstet* 2022; **306**: 991-996.

427 32. Cruickshank T, MacDonald TM, Walker SP, *et al.* Circulating Growth Differentiation
428 Factor 15 Is Increased Preceding Preeclampsia Diagnosis: Implications as a Disease
429 Biomarker. *J Am Heart Assoc* 2021; **10**: e020302.

430 33. Kobayashi H, Matsubara S, Yoshimoto C, Shigetomi H, Imanaka S. Tissue Factor
431 Pathway Inhibitors as Potential Targets for Understanding the Pathophysiology of
432 Preeclampsia. *Biomedicines* 2023; **11**.

433 34. Nishizawa H, Pryor-Koishi K, Suzuki M, *et al.* Increased levels of pregnancy-
434 associated plasma protein-A2 in the serum of pre-eclamptic patients. *Mol Hum
435 Reprod* 2008; **14**: 595-602.

436 35. Moslehi R, Mills JL, Signore C, Kumar A, Ambroggio X, Dzutsev A. Integrative
437 transcriptome analysis reveals dysregulation of canonical cancer molecular pathways
438 in placenta leading to preeclampsia. *Sci Rep* 2013; **3**: 2407.

439 36. Aouache R, Biquard L, Vaiman D, Miralles F. Oxidative Stress in Preeclampsia and
440 Placental Diseases. *Int J Mol Sci* 2018; **19**.

441 37. Redman CW, Staff AC. Preeclampsia, biomarkers, syncytiotrophoblast stress, and
442 placental capacity. *Am J Obstet Gynecol* 2015; **213**: S9 e1, S9-11.

443 38. Mistry HD, Czajka AN, Kurlak LO, Pipkin FB, Taggart MJ, Tribe RT. Differential
444 placental caveolin-1 gene expression in women with pre-eclampsia. *Archives of
445 Disease in Childhood - Fetal and Neonatal Edition* 2011; **96**: Fa125-Fa126.

446 39. Nowicki B, Singhal J, Fang L, Nowicki S, Yallampalli C. Inverse relationship
447 between severity of experimental pyelonephritis and nitric oxide production in
448 C3H/HeJ mice. *Infect Immun* 1999; **67**: 2421-2427.

449 40. Ogando DG, Paz D, Celli M, Franchi AM. The fundamental role of increased
450 production of nitric oxide in lipopolysaccharide-induced embryonic resorption in
451 mice. *Reproduction* 2003; **125**: 95-110.

452 41. Kong L, Zhang Q, Chao J, *et al.* Polarization of macrophages induced by Toxoplasma
453 gondii and its impact on abnormal pregnancy in rats. *Acta Trop* 2015; **143**: 1-7.

454 42. Wareing M, Bai X, Seghier F, *et al.* Expression and function of potassium channels in
455 the human placental vasculature. *Am J Physiol Regul Integr Comp Physiol* 2006; **291**:
456 R437-446.

457 43. Roberts JM, Rich-Edwards JW, McElrath TF, Garmire L, Myatt L, Global Pregnancy
458 C. Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness.
459 *Hypertension* 2021; **77**: 1430-1441.

460 44. Wagner PK, Otomo A, Christians JK. Regulation of pregnancy-associated plasma
461 protein A2 (PAPPA2) in a human placental trophoblast cell line (BeWo). *Reprod Biol
462 Endocrinol* 2011; **9**: 48.

463 45. Martinez C, Gonzalez-Ramirez J, Marin ME, *et al.* Isthmin 2 is decreased in
464 preeclampsia and highly expressed in choriocarcinoma. *Heliyon* 2020; **6**: e05096.

465 46. Sugulle M, Dechend R, Herse F, *et al.* Circulating and placental growth-
466 differentiation factor 15 in preeclampsia and in pregnancy complicated by diabetes
467 mellitus. *Hypertension* 2009; **54**: 106-112.

468 47. Hogg K, Blair JD, McFadden DE, von Dadelszen P, Robinson WP. Early onset pre-
469 eclampsia is associated with altered DNA methylation of cortisol-signalling and
470 steroidogenic genes in the placenta. *PLoS One* 2013; **8**: e62969.

471 48. Zheng L, Huang J, Su Y, Wang F, Kong H, Xin H. Overexpression of tissue factor
472 pathway inhibitor 2 attenuates trophoblast proliferation and invasion in preeclampsia.
473 *Hum Cell* 2020; **33**: 512-520.

474 49. Rebutini PZ, Zanchettin AC, Stonoga ETS, *et al.* Association Between COVID-19
475 Pregnant Women Symptoms Severity and Placental Morphologic Features. *Front
476 Immunol* 2021; **12**: 685919.

477 50. Khong TY, Mooney EE, Ariel I, *et al.* Sampling and Definitions of Placental Lesions:
478 Amsterdam Placental Workshop Group Consensus Statement. *Arch Pathol Lab Med*
479 2016; **140**: 698-713.

480 51. Merritt CR, Ong GT, Church SE, *et al.* Multiplex digital spatial profiling of proteins
481 and RNA in fixed tissue. *Nat Biotechnol* 2020; **38**: 586-599.

482 52. Jerby-Arnon L, Neftel C, Shore ME, *et al.* Opposing immune and genetic mechanisms
483 shape oncogenic programs in synovial sarcoma. *Nat Med* 2021; **27**: 289-300.

484 53. Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor
485 analysis of control genes or samples. *Nat Biotechnol* 2014; **32**: 896-902.

486 54. Ritchie ME, Phipson B, Wu D, *et al.* limma powers differential expression analyses
487 for RNA-sequencing and microarray studies. *Nucleic Acids Res* 2015; **43**: e47.

488 55. Dharmesh D, Bhuva CWT, Ning Liu, Holly J. Whitfield, Nicholas Papachristos, Sam
489 Lee, Malvika Kharbanda, Ahmed Mohamed, Melissa J. Davis. vissE: A versatile tool
490 to identify and visualise higher-order molecular phenotypes from functional
491 enrichment analysis. *bioRxiv* 2022.

492

493 **TABLES AND FIGURE LEGENDS**

Patient De- id.	Group	Sample Code	Participant Age	Gestational Age	Comorbidities	SARS-CoV-2 symptoms/ severity	Fetal sex	Fetal Outcome	Delivery Method	Fetal Weight (grams)	Placental Weight (grams)	Macroscopic observations
20-3594	SARS-CoV-2	2	25-30	30-35	Hypothyroidism and hypertensive disorder in pregnancy	++	Male	Preterm	na	2450	448	Infarcts and intervillous thrombosis (<5%)
20-3561	SARS-CoV-2	4	35-40	25-30	Hypothyroidism	++	Female	Preterm	C-section	na	245	-
20-3744	SARS-CoV-2	8	25-30	30-35	Gestational diabetes, bipolar disorder, hypothyroidism and syphilis (treated)	+-	Female	Preterm	C-section	na	412	Infarcts (<5%)
20-5105	SARS-CoV-2	12	25-30	35-40	None	-	Female	Term	C-section	2960	462	-
20-3369	SARS-CoV-2	13	25-30	35-40	Gestational diabetes and hyperthyroidism	+-	Female	Term	Assisted Vaginal	2600	358	Retroplacental and marginal hematoma, infarcts (<5%)
20-5869	SARS-CoV-2	18	25-30	35-40	None	+-	Male	Term	C-section	2345	370	-
20-2916	SARS-CoV-2	22	20-25	35-40	None	-	Female	Term	Assisted Vaginal	3030	650	-
16-7859	CONTROL	1	20-25	30-35	Hypothyroidism	-	Male	Preterm	C-section	1180	270	Placental hypoplasia
18-13016	CONTROL	3	20-25	35-40	Hypothyroidism and hypertension	-	Female	Preterm	Assisted Vaginal	2223	498	-
16-8315	CONTROL	5	15-20	35-40	Obesity	-	Female	Term	Assisted Vaginal	3810	514	-
18-4906	CONTROL	9	20-25	25-30	None	-	Male	Preterm	Assisted Vaginal	1205	248	-
18-14057	CONTROL	10	40-45	30-35	Diabetes, hypertension, bipolar disorder	-	Male	Preterm	C-section	1650	243	Placental hypoplasia
16-7599	CONTROL	11	25-30	35-40	Gestational diabetes	-	Male	Term	C-section	3460	480	-
16-3340	CONTROL	15	35-40	35-40	None	-	Female	Term	C-section	3005	395	-
18-9951	CONTROL	16	20-25	35-40	None	-	Male	Term	C-section	3690	574	-
494	CONTROL	19	25-30	35-40	None	-	Male	Term	C-section	3345	394	-

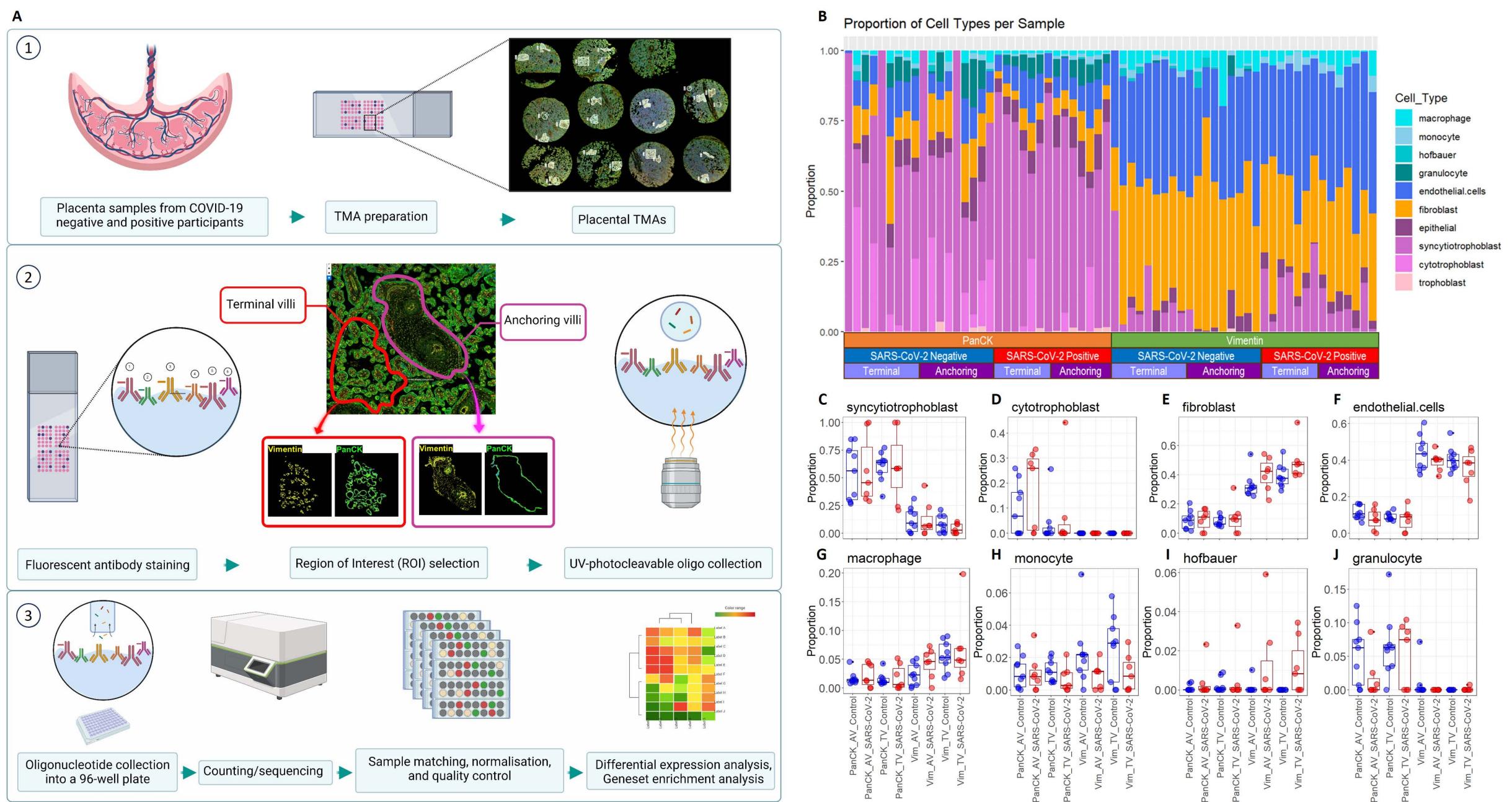
495 **Table 1: Clinical information of the SARS-CoV-2 and control cohort**

496

497 **Figure 1: Study design and cell deconvolution.** (a) 1. Placental cores collected at delivery
498 from the SARS-CoV-2 (n=7) and control (n=9) groups were assembled into tissue microarray
499 slides (TMAs). 2. TMAs were stained with fluorescent markers to differentiate cell types
500 within anchoring (pink outline) and terminal villi (red outline). Barcodes were cleaved and
501 collected from each region of interest by UV light. 3. Cleaved barcodes were sequenced and
502 counted using an Illumina® sequencer in preparation for transcriptomic analysis. Data were
503 normalised before downstream differential expression analysis. (b) Transcriptional cell
504 deconvolution map. (c-j) Box-plots of indicated cell type proportions from 1b. AV: anchoring
505 villi, TV: terminal villi, SARS-CoV-2 group is n=7 and control group is n=9.

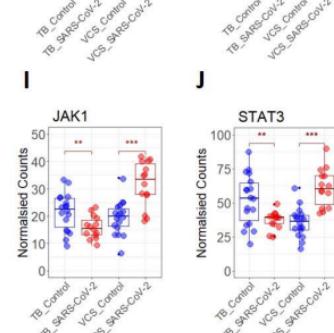
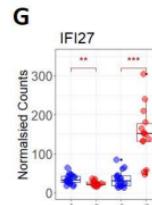
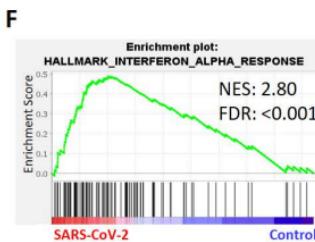
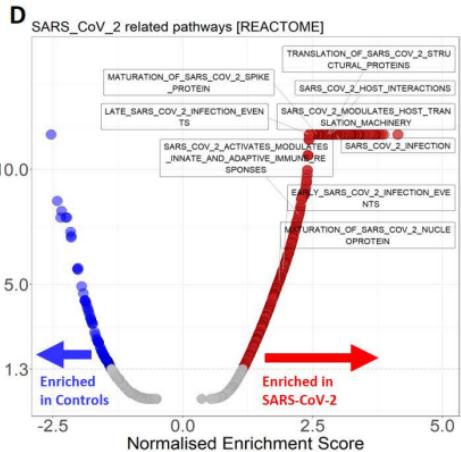
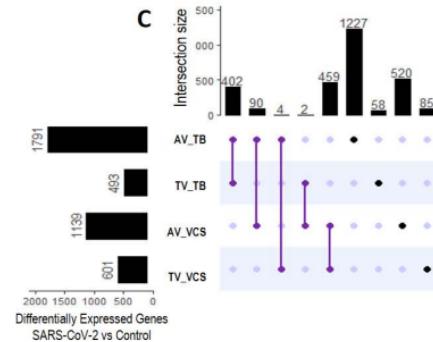
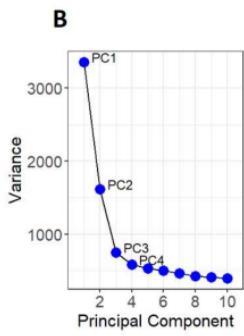
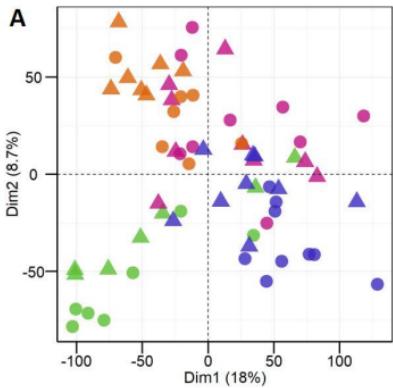
506

507 **Figure 2: Enrichment of SARS-CoV-2 related pathways.** (a) Principal component analysis
508 of normalised gene counts from trophoblasts and villous core stromal compartments from
509 SARS-CoV-2 (n=7) and control (n=9) groups at the anchoring or terminal villi (AV; TV). (b)
510 Principal component dimensions. (c) Upset plot of differential gene expression in
511 trophoblasts and villous core stromal compartments from the AV and TV in response to

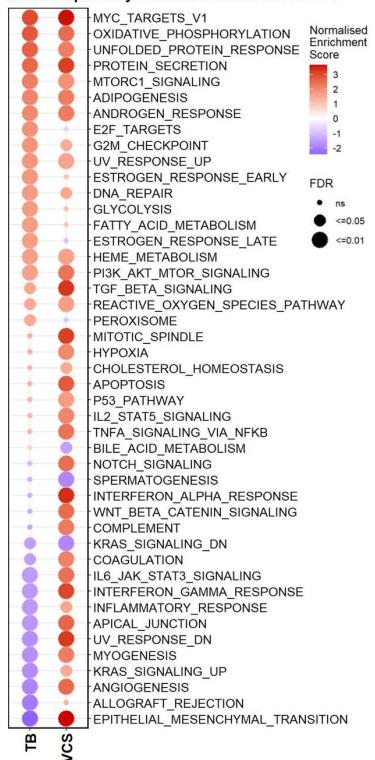

512 SARS-CoV-2 infection. The bar charts on the left indicate the total number of differentially
513 expressed genes for the indicated sample group and the bar charts on the top show the gene
514 overlap for the comparisons indicated by the purple lines. Black dots denote differentially
515 expressed genes that are unique for the indicated sample group. Fold change $+/ - 1.5$, P -value
516 ≤ 0.05 , FDR < 0.05 . (d) Enrichment of significant SARS-CoV-2 related pathways from the
517 Reactome database, in the SARS-CoV-2 and control samples. Blue: significantly negatively
518 enriched, red: significantly positively enriched, grey: not significant. The full list of enriched
519 pathways from the Reactome database can be found in Supplementary table 2 and table 3. (e)
520 Gene set enrichment analysis (GSEA) plot of the SARS_COV_2_INFECTON pathway from
521 the Reactome database and (f) INTERFERON_ALPHA_RESPONSE from the Hallmark
522 database, in SARS-CoV-2 samples versus controls. (g-j) Normalised expression counts of
523 IFI27, B2M, JAK1, and STAT3 genes, in trophoblast (TB) or villous core stroma (VCS)
524 compartments from the SARS-CoV-2 (n=7) and control samples (n=9). ** P -value < 0.01 ,
525 *** P -value < 0.001 .

526

527 **Figure 3: Enrichment of placental dysfunction pathways with SARS-CoV-2. (a)**
528 Differentially enriched pathways form the Hallmarks database in trophoblasts (TB) and
529 villous core stroma (VCS) compartments in SARS-CoV-2 (n=7) vs control group (n=9).
530 Colour gradient refers to the normalised enrichment score. (b) Enriched gene ontology
531 biological processes (GO-BP) pathway clusters from the Molecular Signatures Database
532 (MSigDb) generated using vissE, in the VCS and (c) TB. Top row depicts upregulated
533 pathways, bottom row depicts downregulated pathways. (d) Volcano plot of gene expression
534 from VCS or (e) TB in response to SARS-CoV-2 infection. Fold change (FC) $+/ - 1.5$, P -
535 value ≤ 0.05 , FDR < 0.05 , the full list of differentially expressed genes can be found in
536 Supplementary table 4. (f-l) Normalised expression counts of indicated genes in TB or VCS








537 compartments from the SARS-CoV-2 (n=7) and control samples (n=9). * P -value < 0.05, **
538 P -value < 0.01, *** P -value < 0.001, NS: not significant. (m) Gene set enrichment analysis
539 (GSEA) plot of the preeclampsia signature generated by Moslehi et al, in SARS-CoV-2
540 samples versus controls.

541


Figure 1: Study design and cell deconvolution. (a)

1. Placental cores collected at delivery from the SARS-CoV-2 (n=7) and control (n=9) groups were assembled into tissue microarray slides (TMAs). 2. TMAs were stained with fluorescent markers to differentiate cell types within anchoring (pink outline) and terminal villi (red outline). Barcodes were cleaved and collected from each region of interest by UV light. 3. Cleaved barcodes were sequenced and counted using an Illumina® sequencer in preparation for transcriptomic analysis. Data were normalised before downstream differential expression analysis. **(b)** Transcriptional cell deconvolution map. **(c-j)** Box-plots of indicated cell type proportions from 1b. AV: anchoring villi, TV: terminal villi, SARS-CoV-2 group is n=7 and control group is n=9.

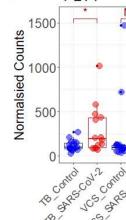
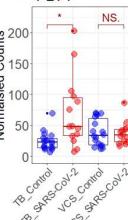
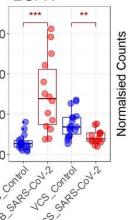
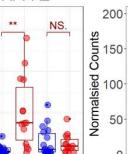
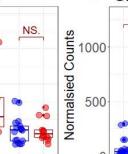
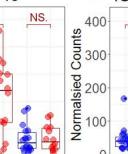
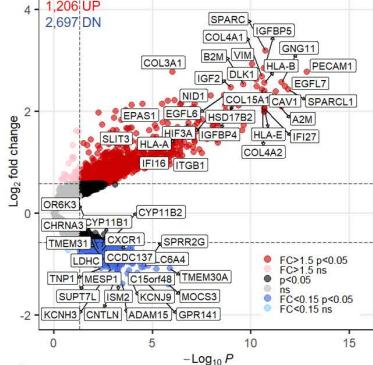
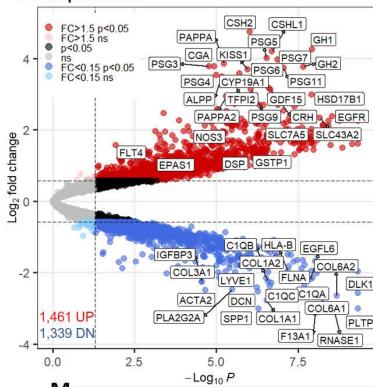
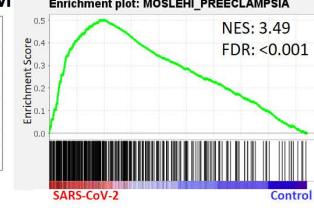
Figure 2: Enrichment of SARS-CoV-2 related pathways. (a) Principal component analysis

of normalised gene counts from trophoblasts and villous core stromal compartments from SARS-CoV-2 (n=7) and control (n=9) groups at the anchoring or terminal villi (AV; TV). **(b)** Principal component dimensions. **(c)** Upset plot of differential gene expression in trophoblasts and villous core stromal compartments from the AV and TV in response to SARS-CoV-2 infection. The bar charts on the left indicate the total number of differentially expressed genes for the indicated sample group and the bar charts on the top show the gene overlap for the comparisons indicated by the purple lines. Black dots denote differentially expressed genes that are unique for the indicated sample group. Fold change $+\text{-} 1.5$, $P\text{-value} \leq 0.05$, FDR < 0.05 . **(d)** Enrichment of significant SARS-CoV-2 related pathways from the Reactome database, in the SARS-CoV-2 and control samples. Blue: significantly negatively enriched, red: significantly positively enriched, grey: not significant. The full list of enriched pathways from the Reactome database can be found in Supplementary table 2 and table 3. **(e)** Gene set enrichment analysis (GSEA) plot of the SARS_COV_2_INFECTON pathway from the Reactome database and **(f)** INTERFERON_ALPHA_RESPONSE from the Hallmark database, in SARS-CoV-2 samples versus controls. **(g-j)** Normalised expression counts of IFI27, B2M, JAK1, and STAT3 genes, in trophoblast (TB) or villous core stroma (VCS) compartments from the SARS-CoV-2 (n=7) and control samples (n=9). ** $P\text{-value} < 0.01$, *** $P\text{-value} < 0.001$.

A Hallmark pathways enriched with SARS-CoV-2**B****VCS – Upregulated pathway clusters**

1 (n = 25)	2 (n = 14)	3 (n = 19)
proliferation endothelial sprout migration positive vessel epithelial inflammation/inflammation	vasculature angiogenesis addictive bleeding angiogenesis hemorrhage bleeding bone petechia disseminate oral echymosis pain	negative protein threonine stimulus beta transform growth kinase receptor enzyme

VCS – Downregulated pathway clusters










2 (n = 13)	5 (n = 79)	7 (n = 25)
olfactory perception stimulus receptor system transduction	histamine neurotransmission plasma nicotinic ion receptor anion acetylcholine gaba channel import chloride highly postsynaptic synaptic	goiter grave circulate primary angiotensin hyperaldosteronism renin system abnormal periodic waste episodic potassium diffuse paresis

C**TB – Upregulated pathway clusters**

2 (n = 15)	6 (n = 14)	8 (n = 18)
aldosterone purkinje myocyte deformity adhesive infectious shock desmosome hallux adhesion hallux right protein bundle anchor heterotypic bilateral external	acute adhesive infectious shock desmosome cartilage hallux right protein bundle anchor heterotypic bilateral external	acute adhesive infectious shock desmosome cartilage hallux right protein bundle anchor heterotypic bilateral external

TB – Downregulated pathway clusters

1 (n = 42)	4 (n = 8)	5 (n = 9)
helper versus rejection citr4 citr mhc disease gaunier assembly inflam	eryth ascobill allograft citr mhc disease gaunier assembly inflam	caroepi sequester calcium import reliculum transport release ion positive muscle contraction associate vascular

F**G****H****I****J****K****D****Villous core stroma cells****E** **Trophoblasts****M**

Figure 3: Enrichment of placental dysfunction pathways with SARS-CoV-2.

(a) Differentially enriched pathways form the Hallmarks database in trophoblasts (TB) and villous core stroma (VCS) compartments in SARS-CoV-2 (n=7) vs control group (n=9). Colour gradient refers to the normalised enrichment score. **(b)** Enriched gene ontology biological processes (GO-BP) pathway clusters from the Molecular Signatures Database (MSigDb) generated using vissE, in the VCS and **(c)** TB. Top row depicts upregulated pathways, bottom row depicts downregulated pathways. **(d)** Volcano plot of gene expression from VCS or **(e)** TB in response to SARS-CoV-2 infection. Fold change (FC) +/- 1.5, P -value ≤ 0.05 , FDR < 0.05 , the full list of differentially expressed genes can be found in Supplementary table 4. **(f-l)** Normalised expression counts of indicated genes in TB or VCS compartments from the SARS-CoV-2 (n=7) and control samples (n=9). * P -value < 0.05 , ** P -value < 0.01 , *** P -value < 0.001 , NS: not significant. **(m)** Gene set enrichment analysis (GSEA) plot of the preeclampsia signature generated by Moslehi et al, in SARS-CoV-2 samples versus controls.

Patient De- id.	Group	Sample Code	Participant Age	Gestational Age	Comorbidities	SARS-CoV-2 symptoms/ severity	Fetal sex	Fetal Outcome	Delivery Method	Fetal Weight (grams)	Placental Weight (grams)	Macroscopic observations
20-3594	SARS-CoV-2	2	25-30	30-35	Hypothyroidism and hypertensive disorder in pregnancy	+/+	Male	Preterm	na	2450	448	Infarcts and intervillous thrombosis (<5%)
20-3561	SARS-CoV-2	4	35-40	25-30	Hypothyroidism	+/+	Female	Preterm	C-section	na	245	-
20-3744	SARS-CoV-2	8	25-30	30-35	Gestational diabetes, bipolar disorder, hypothyroidism and syphilis (treated)	+/-	Female	Preterm	C-section	na	412	Infarcts (<5%)
20-5105	SARS-CoV-2	12	25-30	35-40	None	-	Female	Term	C-section	2960	462	-
20-3369	SARS-CoV-2	13	25-30	35-40	Gestational diabetes and hyperthyroidism	+/-	Female	Term	Assisted Vaginal	2600	358	Retroplacental and marginal hematoma, infarcts (<5%)
20-5869	SARS-CoV-2	18	25-30	35-40	None	+/-	Male	Term	C-section	2345	370	-
20-2916	SARS-CoV-2	22	20-25	35-40	None	-	Female	Term	Assisted Vaginal	3030	650	-
16-7859	CONTROL	1	20-25	30-35	Hypothyroidism		Male	Preterm	C-section	1180	270	Placental hypoplasia
18-13016	CONTROL	3	20-25	35-40	Hypothyroidism and hypertension		Female	Preterm	Assisted Vaginal	2223	498	-
16-8315	CONTROL	5	15-20	35-40	Obesity		Female	Term	Assisted Vaginal	3810	514	-
18-4906	CONTROL	9	20-25	25-30	None		Male	Preterm	Assisted Vaginal	1205	248	-
18-14057	CONTROL	10	40-45	30-35	Diabetes, hypertension, bipolar disorder		Male	Preterm	C-section	1650	243	Placental hypoplasia
16-7599	CONTROL	11	25-30	35-40	Gestational diabetes		Male	Term	C-section	3460	480	-
16-3340	CONTROL	15	35-40	35-40	None		Female	Term	C-section	3005	395	-
18-9951	CONTROL	16	20-25	35-40	None		Male	Term	C-section	3690	574	-
16-6144	CONTROL	19	25-30	35-40	None		Male	Term	C-section	3345	394	-

Table 1: Clinical information of the SARS-CoV-2 and control cohort