

1 **The Alk receptor tyrosine kinase regulates Sparkly, a novel activity regulating
2 neuropeptide precursor in the *Drosophila* CNS.**

3

4 Sanjay Kumar Sukumar¹ (ORCID [0000-0001-9543-3113](https://orcid.org/0000-0001-9543-3113)), Vimala Antonydhason¹ (ORCID
5 [0000-0001-6982-4030](https://orcid.org/0000-0001-6982-4030)), Linnea Molander¹ (ORCID [0009-0009-9266-1036](https://orcid.org/0009-0009-9266-1036)), Jawdat Sandakly²
6 (ORCID [0000-0002-5739-793X](https://orcid.org/0000-0002-5739-793X)), Malak Kleit² (ORCID [0009-0004-2039-3507](https://orcid.org/0009-0004-2039-3507)), Ganesh
7 Umapathy¹ (ORCID [0000-0003-2324-8300](https://orcid.org/0000-0003-2324-8300)), Patricia Mendoza-Garcia¹ (ORCID [0000-0002-6084-7962](https://orcid.org/0000-0002-6084-7962)), Tafheem Masudi¹ (ORCID [0000-0001-7406-9084](https://orcid.org/0000-0001-7406-9084)), Andreas Schlosser³ (ORCID
9 [0000-0003-0612-9932](https://orcid.org/0000-0003-0612-9932)), Dick R. Nässel⁴ (ORCID [0000-0002-1147-7766](https://orcid.org/0000-0002-1147-7766)), Christian Wegener⁵
10 (ORCID [0000-0003-4481-3567](https://orcid.org/0000-0003-4481-3567)), Margret Shirinian² (ORCID [0000-0003-4666-2758](https://orcid.org/0000-0003-4666-2758)) and Ruth
11 H. Palmer¹ (ORCID [0000-0002-2735-8470](https://orcid.org/0000-0002-2735-8470))*

12

13 **Affiliation:**

14 ¹*Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of
15 Gothenburg, SE-405 30 Gothenburg, Sweden.* ²*Department of Experimental Pathology,
16 Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 1107
17 2020, Lebanon.* ³*Julius-Maximilians-Universität Würzburg, Rudolf-Virchow-Center, Center for
18 Integrative and Translational Bioimaging, 97080 Würzburg, Germany.* ⁴*Department of
19 Zoology, Stockholm University, SE-106 91 Stockholm, Sweden.* ⁵*Julius-Maximilians-
20 Universität Würzburg, Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, 97074
21 Würzburg, Germany.*

22 ***Correspondance:** ruth.palmer@gu.se

23

24 **Running title:** Sparkly is a target of Alk signaling in *Drosophila*

25 **Keywords:** TaDa, Alk signaling, Larval CNS, neuroendocrine cells, neuropeptides, sleep

26

1 **Abstract**

2 Numerous roles for the Alk receptor tyrosine kinase have been described in
3 *Drosophila*, including functions in the central nervous system (CNS), however the
4 molecular details are poorly understood. To gain mechanistic insight, we employed
5 Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in
6 the larval CNS. TaDa was employed in larval CNS tissues, while genetically
7 manipulating Alk signaling output. The resulting TaDa data were analysed together
8 with larval CNS scRNA-seq datasets performed under similar conditions, identifying a
9 role for Alk in the transcriptional regulation of neuroendocrine gene expression.
10 Further integration with bulk/scRNA-seq and protein datasets from larval brains in
11 which Alk signaling was manipulated, identified a previously uncharacterized
12 *Drosophila* neuropeptide precursor encoded by CG4577 as an Alk signaling
13 transcriptional target. CG4577, which we named *Sparkly* (*Spar*), is expressed in a
14 subset of Alk-positive neuroendocrine cells in the developing larval CNS, including
15 circadian clock neurons. In agreement with our TaDa analysis, overexpression of the
16 *Drosophila* Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS.
17 We show that Spar protein is expressed in circadian (Clock) neurons, and flies lacking
18 Spar exhibit defects in sleep and circadian activity control. In summary, we report a
19 novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling
20 in the *Drosophila* CNS.

21
22

1 **Introduction**

2 Receptor tyrosine kinases (RTK) are involved in wide range of developmental
3 processes. In humans, the Anaplastic Lymphoma Kinase (ALK) RTK is expressed in
4 the central and peripheral nervous system and its role as an oncogene in the childhood
5 cancer neuroblastoma, which arises from the peripheral nervous system, is well
6 described (Iwahara *et al*, 1997; Matthay *et al*, 2016; Umapathy *et al*, 2019; Vernersson
7 *et al*, 2006).

8 In *Drosophila melanogaster*, Alk is expressed in the visceral mesoderm, central
9 nervous system (CNS) and at neuromuscular junctions (NMJ). The critical role of
10 *Drosophila* Alk and its ligand Jelly belly (Jeb) in the development of the embryonic
11 visceral mesoderm has been extensively studied (Englund *et al*, 2003; Jin *et al*, 2013;
12 Lee *et al*, 2003; Loren *et al*, 2003; Mendoza-Garcia *et al*, 2021; Mendoza-Garcia *et al*,
13 2017; Pfeifer *et al*, 2022; Popichenko *et al*, 2013; Reim *et al*, 2012; Schaub & Frasch,
14 2013; Shirinian *et al*, 2007; Stute *et al*, 2004; Varshney & Palmer, 2006; Wolfstetter *et*
15 *al*, 2017). In the CNS, Alk signaling has been implicated in diverse functions, including
16 targeting of photoreceptor axons in the developing optic lobes (Bazigou *et al*, 2007),
17 regulation of NMJ synaptogenesis and architecture (Rohrbough & Broadie, 2010;
18 Rohrbough *et al*, 2013) and mushroom body neuronal differentiation (Pfeifer *et al*,
19 2022). In addition, roles for Alk in neuronal regulation of growth and metabolism, organ
20 sparing and proliferation of neuroblast clones, as well as sleep and long-term memory
21 formation in the CNS have been reported (Bai & Sehgal, 2015; Cheng *et al*, 2011;
22 Gouzi *et al*, 2011; Orthofer *et al*, 2020). The molecular mechanisms underlying these
23 Alk-driven phenotypes are currently under investigation, with some molecular
24 components of *Drosophila* Alk signaling in the larval CNS, such as the protein tyrosine

1 phosphatase Corkscrew (Csw), identified in recent BioID-based *in vivo* proximity
2 labeling analyses (Uckun *et al*, 2021).

3 In this work, we aimed to capture Alk-signaling dependent transcriptional events
4 in the *Drosophila* larval CNS using Targeted DamID (TaDa) that profiles RNA
5 polymerase II (Pol II) occupancy. TaDa employs a prokaryotic DNA adenine
6 methyltransferase (Dam) to specifically methylate adenines within GATC sequences
7 present in the genome, creating unique GA^{me}TC marks. In TaDa, expression of Dam
8 fused to Pol II results in GA^{me}TC marks on sequences adjacent to the Pol II binding
9 site and can be combined with the Gal4/UAS system to achieve cell-type specific
10 transcriptional profiling (Southall *et al*, 2013). Tissue specific TaDa analysis of Alk
11 signaling, while genetically manipulating Alk signaling output, has previously been
12 used to identify Alk transcriptional targets in the embryonic visceral mesoderm, such
13 as the transcriptional regulator *Kahuli* (*Kah*) (Mendoza-Garcia *et al.*, 2021). Here, we
14 employed this strategy to identify Alk transcriptional targets in *Drosophila* larval brain
15 tissue. These Alk TaDa identified transcripts were enriched in neuroendocrine cells.
16 Further integration with bulk RNA-seq datasets generated from *Alk* gain-of-function
17 and loss-of-function alleles, identified the uncharacterized neuropeptide precursor
18 (*CG4577*), as an Alk target in the *Drosophila* brain, that we have named *Sparkly* (*Spar*)
19 based on its protein expression pattern. *Spar* is expressed in a subset of Alk-
20 expressing cells in the central brain and ventral nerve cord, overlapping with the
21 expression pattern of neuroendocrine specific transcription factor Dimmed (*Dimm*)
22 (Hewes *et al*, 2003). Further, using genetic manipulation of Alk we show that *Spar*
23 levels in the CNS respond to Alk signaling output, validating *Spar* as a transcriptional
24 target of Alk. *Spar* mutant flies showed significant reduction in life-span, and
25 behavioral phenotypes including defects in activity, sleep, and circadian activity.

1 Notably, *Alk* loss-of-function alleles displayed similar behavioral defects, suggesting
2 that *Alk*-dependant regulation of *Spar* in peptidergic neuroendocrine cells modulates
3 activity and sleep/rest behavior. Interestingly, *Alk* and its ligand *Alkal2* play a role in
4 regulation of behavioral and neuroendocrine function in vertebrates (Ahmed *et al*,
5 2022; Bilsland *et al*, 2008; Borenas *et al*, 2021; Lasek *et al*, 2011a; Lasek *et al*, 2011b;
6 Orthofer *et al.*, 2020; Weiss *et al*, 2012; Witek *et al*, 2015). Taken together, our findings
7 suggest an evolutionarily conserved role of *Alk* signaling in the regulation of
8 neuroendocrine cell function and identify *Spar* as the first molecular target of *Alk* to be
9 described in the regulation of activity and circadian control in the fly.

10

1 **Results**

2

3 **TaDa identifies Alk-regulated genes in *Drosophila* larval CNS**

4 To characterize Alk transcriptional targets in the *Drosophila* CNS we employed
5 Targeted DamID (TaDa). Briefly, transgenic DNA adenine methyltransferase (Dam)
6 fused with RNA-Pol II (here after referred as Dam-Pol II) (Southall *et al.*, 2013) (**Figure**
7 **1a-b**), was driven using the pan neuronal C155-Ga4 driver. To inhibit Alk signaling we
8 employed a dominant negative Alk transgene, which encodes the Alk extracellular and
9 transmembrane domain (here after referred as *UAS-Alk*^{DN}) (Bazigou *et al.*, 2007)
10 (**Figure 1a**). Flies expressing Dam-Pol II alone in a wild-type background were used
11 as control. Expression of Dam-Pol II was confirmed by expression of mCherry, which
12 is encoded by the primary ORF of the TaDa construct (Southall *et al.*, 2013) (**Figure**
13 **1b, Figure 1 – figure supplement 1a-b'**). CNS from third instar wandering larvae
14 were dissected and genomic DNA was extracted, fragmented at GA^{me}TC marked sites
15 using methylation specific DpnI restriction endonuclease. The resulting GATC
16 fragments were subsequently amplified for library preparation and NGS sequencing
17 (**Figure 1 – figure supplement 1c**). Bioinformatic data analysis was performed based
18 on a previously described pipeline (Marshall & Brand, 2017; Mendoza-Garcia *et al.*,
19 2021). Initial quality control analysis indicated comparable numbers of quality reads
20 between samples and replicates, identifying >20 million raw reads per sample that
21 aligned to the *Drosophila* genome (**Figure 1 – figure supplement 1d-d'**). No
22 significant inter-replicate variability was observed (**Figure 1 – figure supplement 1e**).
23 Meta-analysis of reads associated with GATC borders showed a tendency to
24 accumulate close to Transcription Start Sites (TSS) indicating the ability of TaDa to
25 detect transcriptionally active regions (**Figure 1 – figure supplement 1f**). A closer

1 look at the Pol II occupancy profile of *Alk* shows a clear increase in Pol II occupancy
2 from Exon 1 to Exon 7 (encoding the extracellular and transmembrane domain) in
3 *Alk^{DN}* samples reflecting the expression of the dominant negative *Alk* transgene
4 (**Figure 1 – figure supplement 1g**).

5 To detect differential Pol II occupancy between Dam-Pol II control (C155-
6 *Gal4>UAS-LT3-Dam::Pol II*) and *UAS-Alk^{DN}* (C155-*Gal4>UAS-LT3-Dam::Pol II*; *UAS-*
7 *Alk^{DN}*) samples, neighbouring GATC associated reads, maximum 350 bp apart
8 (median GATC fragment distance in the *Drosophila* genome) were clustered in peaks
9 (Tosti *et al*, 2018). More than 10 million reads in both control and *Alk^{DN}* samples were
10 identified as GATC associated reads (**Figure 1 – figure supplement 1d'**), and those
11 loci displaying differential Pol II occupancy were defined by logFC and FDR (as
12 detailed in materials and methods). Greater than 50% of aligned reads were in
13 promoter regions, with 33.55% within a 1 kb range (**Figure 1c, Table S1**).

14 To further analyse transcriptional targets of Alk signaling we focused on loci
15 exhibiting decreased Pol II occupancy when compared with controls, identifying 2502
16 loci with logFC<-2, FDR<0.05 (**Figure 1d, Table S1**). Genes previously known to be
17 associated with Alk signaling, such as *kirre*, *RhoGAP15B*, *C3G*, *mib2* and *mamo*, were
18 identified among downregulated loci (**Figure 1d**). We compared CNS TaDa Alk targets
19 with our previously published embryonic visceral mesoderm TaDa datasets that were
20 derived under similar experimental conditions (Mendoza-Garcia *et al.*, 2021) and
21 found 775 common genes (**Figure 1e, Table S1**). Gene ontology (GO) analysis
22 identified GO terms in agreement with previously reported Alk functions in the CNS
23 (Bai & Sehgal, 2015; Bazigou *et al.*, 2007; Cheng *et al.*, 2011; Gouzi *et al.*, 2011;
24 Orthofer *et al.*, 2020; Pfeifer *et al.*, 2022; Rohrbough & Broadie, 2010; Rohrbough *et*
25 *al.*, 2013; Woodling *et al*, 2020) such as axon guidance, determination of adult

1 lifespan, nervous system development, regulation of gene expression, mushroom
2 body development, behavioral response to ethanol and locomotor rhythm (**Figure 1f**).
3 Many of the differentially regulated identified loci have not previously been associated
4 with Alk signaling and represent candidates for future characterisation.

5

6 **TaDa targets are enriched for neuroendocrine transcripts**

7 To further characterize Alk-regulated TaDa loci, we set out to examine their
8 expression in scRNA-seq data from wild-type third instar larval CNS (Pfeifer *et al.*,
9 2022). Enrichment of TaDa loci were identified by using AUCell, an area-under-the-
10 curve based enrichment score method, employing the top 500 TaDa hits (Aibar *et al.*,
11 2017) (**Figure 2a-b, Table S1**). This analysis identified 786 cells (out of 3598), mainly
12 located in a distinct cluster of mature neurons that robustly express both *Alk* and *jeb*
13 (**Figure 2b, red circle; Figure 2c**). This cluster was defined as neuroendocrine cells
14 based on canonical markers, such as the neuropeptides *Lk* (*Leucokinin*), *Nplp1*
15 (*Neuropeptide-like precursor 1*), *Dh44* (*Diuretic hormone 44*), *Dh31* (*Diuretic hormone*
16 *31*), *sNPF* (*short neuropeptide F*), *AstA* (*Allatostatin A*), and the enzyme *Pal2*
17 (*Peptidyl- α -hydroxyglycine- α -amidating lyase 2*) as well as *Eip74EF* (*Ecdysone-*
18 *induced protein 74EF*), and *Rdl* (*resistance to dieldrin*) (Guo *et al.*, 2019; Huckesfeld
19 *et al.*, 2021; Takeda & Suzuki, 2022; Torii, 2009) (**Figure 2d-f**). Overall, the TaDa-
20 scRNAseq data integration analysis suggests a role of Alk signaling in regulation of
21 gene expression in neuroendocrine cells.

22 To further explore the observed enrichment of Alk-regulated TaDa loci in
23 neuroendocrine cells, we used a Dimmed (Dimm) transcription factor reporter (*Dimm-*
24 *Gal4>UAS-GFPcaax*), as a neuroendocrine marker (Park *et al.*, 2008), to confirm Alk
25 protein expression in a subset of neuroendocrine cells in the larval central brain,

1 ventral nerve cord and neuroendocrine corpora cardiaca cells (**Figure 2g, Figure 2 –**
2 **figure supplement 1**). This could not be confirmed at the RNA level, due to low
3 expression of *dimm* in both our and publicly available single cell RNASeq datasets
4 (Brunet Avalos *et al*, 2019; Michki *et al*, 2021; Pfeifer *et al.*, 2022).

5

6 **Multi-omics integration identifies CG4577 as an Alk transcriptional target**

7 Loci potentially subject to Alk-dependent transcriptional regulation were further
8 refined by integration of the Alk-regulated TaDa dataset with previously collected RNA-
9 seq datasets (**Figure 3a**). Specifically, *w¹¹¹⁸* (control), *Alk^{Y1355S}* (Alk gain-of-function)
10 and *Alk^{ΔRA}* (Alk loss-of-function) RNA-seq datasets (Pfeifer *et al.*, 2022) were
11 compared to identify genes that exhibited both significantly increased expression in
12 Alk gain-of-function conditions (*w¹¹¹⁸* vs *Alk^{Y1355S}*) and significantly decreased
13 expression in Alk loss-of-function conditions (*w¹¹¹⁸* vs *Alk^{ΔRA}* and control vs *C155-Ga4*
14 driven expression of *UAS-Alk^{DN}*). Finally, we positively selected for candidates
15 expressed in *Alk*-positive cells in our scRNA-seq dataset. Notably, the only candidate
16 which met these stringent criteria was *CG4577*, which encodes an uncharacterized
17 putative neuropeptide precursor (**Figure 3b**). *CG4577* exhibited decreased Pol II
18 occupancy in *Alk^{DN}* samples (**Figure 3c**), and *CG4577* transcripts were upregulated
19 in *Alk^{Y1355S}* gain-of-function conditions and downregulated in *Alk^{ΔRA}* loss-of-function
20 conditions (**Figure 3d, Table S1**). In agreement with a potential role as a neuropeptide
21 precursor, expression of *CG4577* was almost exclusively restricted to neuroendocrine
22 cell clusters in our scRNA-seq dataset (**Figure 3e**). Examination of additional publicly
23 available first instar larval and adult CNS scRNASeq datasets (Brunet Avalos *et al.*,
24 2019; Davie *et al*, 2018) confirmed the expression of *CG4577* in Alk-expressing cells
25 (**Figure 3 – figure supplement 1a-b**). *CG4577-RA* encodes a 445 amino acid

1 prepropeptide with a 27 aa N-terminal signal peptide sequence as predicted by
2 SignalP-5.0 (**Figure 3f**) (Almagro Armenteros *et al*, 2019). Analysis of CG4577-PA at
3 the amino acid level identified a high percentage of glutamine residues (43 of 445;
4 9%), including six tandem glutamine repeats (amino acids 48-56, 59-62, 64-71, 116-
5 118, 120-122 and 148-150) of unknown function as well as a lack of cysteine residues.
6 The preproprotein has an acidic pI of 5.1 and carries a net negative charge of 6.
7 Several poly- and di-basic prohormone convertase (PC) cleavage sites were also
8 predicted (KR, KK, RR, RK) (Pauls *et al*, 2014; Southey *et al*, 2006; Veenstra, 2000)
9 (**Figure 3f**). Since the propeptide does not contain cysteine residues it is unable to
10 form intracellular or dimeric disulfide bridges. A second transcript, *CG4577-RB*,
11 encodes a 446 amino acid protein with only two amino acid changes (**Figure 3 – figure**
12 **supplement 1c**). Phylogenetic analysis of *CG4577* relative to known *Drosophila*
13 neuropeptide precursors failed to identify strong homology in keeping with the known
14 low sequence conservation of neuropeptide prepropeptides outside the bioactive
15 peptide stretches. However, we were also unable to find sequence homologies with
16 other known invertebrate or vertebrate peptides. Next, we searched for *CG4577*
17 orthologs across Metazoa. We obtained orthologs across the Drosophilids,
18 Brachyceran flies and Dipterans. No orthologs were found at higher taxonomic levels,
19 suggesting that *CG4577* either originated in Dipterans, or has a high sequence
20 variability at higher taxonomic levels. To identify conserved peptide stretches
21 indicating putative bioactive peptide sequences, we aligned the predicted aa
22 sequences of the Dipteran *CG4577* orthologs. This revealed several conserved
23 peptide stretches (**Figure 3 – figure supplement 2**) framed by canonical prohormone
24 cleavage sites that might represent bioactive peptide sequences. BLAST searches
25 against these conserved sequences did not yield hits outside of the Diptera.

1

2 **CG4577/Spar is expressed in neuroendocrine cells**

3 To further characterize CG4577 we generated polyclonal antibodies that are
4 predicted to recognize both CG4577-PA and CG4577-PB and investigated protein
5 expression. CG4577 protein was expressed in a “sparkly” pattern in neurons of the
6 third instar central brain as well as in distinct cell bodies and neuronal processes in
7 the ventral nerve cord, prompting us to name CG4577 as Sparkly (Spar) (**Figure 4a-**
8 **b**). Co-labeling of Spar and Alk confirmed expression of Spar in a subset of Alk-
9 expressing cells, in agreement with our transcriptomics analyses (**Figure 4a, Figure**
10 **4 – figure supplement 1**). In addition, we also observed expression of Spar in
11 neuronal processes which emerge from the ventral nerve cord and appear to innervate
12 larval body wall muscle number 8, that may be either Leukokinin (Lk) or cystine-knot
13 glycoprotein hormone GPB5 expressing neurons (**Figure 4b**) (Cantera & Nässel,
14 1992; Sellami *et al*, 2011). Spar antibody specificity was confirmed in both C155-
15 *Gal4>UAS-Spar-RNAi* larvae, where RNAi-mediated knock down of Spar resulted in
16 loss of detectable signal (**Figure 4c-c'**), and in C155-*Gal4>UAS-Spar* larvae,
17 exhibiting ectopic Spar expression in the larval CNS and photoreceptors of the eye
18 disc (**Figure 4d-d'**). To further address Spar expression in the neuroendocrine system,
19 we co-labelled with antibodies against Dimm to identify peptidergic neuronal somata
20 (Allan et al., 2005) in a *Dimm-Gal4>UAS-GFPcaax* background. This further confirmed
21 the expression of Spar in Dimm-positive peptidergic neuroendocrine cells in the larval
22 CNS (**Figure 4e-e'', Figure 4 – Movie supplements 1 and 2**). Moreover, co-staining
23 of Spar and Dimm in the adult CNS showed similar results (**Figure 4 – figure**
24 **supplement 2**).

25

1 **Spar expression is modulated in response to Alk signaling activity**

2 Our initial integrated analysis predicted *Spar* as a locus responsive to Alk
3 signaling. To test this hypothesis, we examined Spar protein expression in *w¹¹¹⁸*,
4 *Alk^{Y1355S}* and *Alk^{ΔRA}* genetic backgrounds, in which Alk signaling output is either
5 upregulated (*Alk^{Y1355S}*) or downregulated (*Alk^{ΔRA}*) (Pfeifer *et al.*, 2022). We observed
6 a significant increase in Spar protein in *Alk^{Y1355S}* CNS, while levels of Spar in *Alk^{ΔRA}*
7 CNS were not significantly altered (**Figure 4f-h**, quantified in **I**). In agreement,
8 overexpression of Jeb (*C155-Ga4>jeb*) significantly increased Spar levels when
9 compared with controls (*C155-Ga4>UAS-GFPcaax*) (**Figure 4j-l**, quantified in **m**).
10 Again, overexpression of dominant-negative Alk (*C155-Ga4>UAS-Alk^{DN}*) did not
11 result in significantly decreased Spar levels (**Figure 4l**, quantified in **m**). Thus
12 activation of Alk signaling increases Spar protein levels. However, while our bulk RNA-
13 seq and TaDa datasets show a reduction in *Spar* transcript levels in Alk loss-of-
14 function conditions, this reduction is not reflected at the protein level. This observation
15 may reflect additional uncharacterized pathways that regulate *Spar* mRNA levels as
16 well as translation and protein stability, since and notably *Spar* transcript levels are
17 decreased but not absent in *Alk^{ΔRA}* (**Figure 3d**). Taken together, these observations
18 confirm that *Spar* expression is responsive to Alk signaling in CNS, although Alk is not
19 critically required to maintain Spar protein levels.

20

21 **Spar encodes a canonically processed neurosecretory protein**

22 To provide biochemical evidence for the expression of Spar, we re-analysed data
23 from a previous LC-MS peptidomic analysis of brain extracts from five day old male
24 control flies and flies deficient for carboxypeptidase D (dCPD, SILVER) (Pauls *et al*,
25 2019), an enzyme that removes the basic C-terminal aa of peptides originating from

1 proprotein convertases (PCs) cleavage of the proprotein. This analysis identified
2 several peptides derived from the Spar propeptide by mass matching in non-digested
3 extracts from genetic control brains (**Figure 5**). These included peptides that are
4 framed by dibasic prohormone cleavage sequences in the propeptide, one of which
5 (SEEASAVPTAD) was also obtained by *de-novo* sequencing (**Figure 5**). This result
6 demonstrates that the Spar precursor is expressed and is processed into multiple
7 peptides by PCs and possibly also other proteases. Analysis of the brain of *svr* mutant
8 flies yielded similar results, but further revealed peptides C-terminally extended by the
9 dibasic cleavage sequence (SEEASAVPTADKK, FNDMRLKR) (**Figure 5**), thereby
10 confirming canonical PC processing of the Spar propeptide. Of note, the
11 phylogenetically most conserved peptide sequence of the Spar precursor
12 (DTQLNPADMLALVALVEAGERA, **Figure 3 - figure supplement 2**) framed by
13 dibasic cleavage sites was among the identified peptides yet occurred only in control
14 but not *svr* mutant brains (**Figure 5**).

15 Additionally, we performed co-labeling with known *Drosophila* neuropeptides,
16 Pigment-dispersing factor (PDF), Dh44, Insulin-like peptide 2 (Ilp2), AstA and Lk,
17 observing Spar expression in subsets of all these populations (**Figure 6**). These
18 included the PDF-positive LNV clock neurons (**Figure 6a-b''**), Dh44-positive neurons
19 (**Figure 6c-d''**), a subset of Ilp2 neurons in the central brain (**Figure 6e-f''**) and several
20 AstA-positive neurons in the central brain and ventral nerve cord (**Figure 6g-h''**). We
21 also noted co-expression in some Lk-positive neurons in the central brain and ventral
22 nerve cord, that include the neuronal processes converging on body wall muscle 8
23 (**Figure 6i-l''**) (Cantera & Nässel, 1992). Similar Spar co-expression with PDF, Dh44,
24 Ilp2, and AstA was observed in adult CNS (**Figure 6 – figure supplement 1**).
25

1 **CRISPR/Cas9 generated *Spar* mutants are viable**

2 Since previous reports have shown that *Jeb* overexpression in the larval CNS
3 results in a small pupal size (Gouzi *et al.*, 2011), we measured pupal size on ectopic
4 expression of *Spar* (*C155-Gal4>Spar*) and *Spar RNAi* (*C155-Gal4>Spar RNAi*), noting
5 no significant difference compared to controls (*C155-Gal4>+* and *C155-Gal4>jeb*)
6 (**Figure 7 – figure supplement 1**). These results suggest that *Spar* may be involved
7 in an additional Alk-dependant function in the CNS. Further, experiments
8 overexpressing *Spar* did not reveal any obvious phenotypes. To further investigate the
9 function of *Spar* we generated a *Spar* loss of function allele by CRISPR/Cas9-
10 mediated non-homologous end-joining, resulting in the deletion of a 716bp region
11 including the *Spar* transcription start site and exon 1 (hereafter referred as *Spar^{ΔExon1}*)
12 (**Figure 7a**). Immunoblotting analysis indicated a 35kDa protein present in the wild-
13 type (*w¹¹¹⁸*) controls that was absent in *Spar^{ΔExon1}* mutant CNS lysates (**Figure 7b**).
14 The *Spar^{ΔExon1}* mutant allele was further characterized using immunohistochemistry
15 (**Figure 7c-d'**). *Spar^{ΔExon1}* shows a complete abrogation of larval and adult *Spar*
16 expression, consistent with the reduction observed when *Spar RNAi* was employed
17 (**Figure 7c-d'**). *Spar^{ΔExon1}* flies were viable, and no gross morphological phenotypes
18 were observed, similar to loss of function mutants in several previously characterized
19 neuropeptides such as Pigment-dispersing factor (PDF), Drosulfakinin (Dsk) and
20 Neuropeptide F (NPF) (Liu *et al*, 2019; Renn *et al*, 1999; Wu *et al*, 2020).

21

22 ***Spar* is expressed in a subset of clock-neurons in the larval and adult CNS**

23 A previous report noted expression of *Spar* in the ventral lateral neuron (LN_v),
24 dorsal lateral neuron (LN_d) and dorsal neuron 1 (DN1) populations of adult *Drosophila*
25 circadian clock neurons (Abruzzi *et al*, 2017) (**Figure 7e, Table S1**). A meta-analysis

1 of the publicly available single-cell transcriptomics of circadian clock neurons indicated
2 that almost all adult cluster of clock neurons express *Spar* (Ma *et al*, 2021) (**Figure**
3 **7f**). Additionally, we noted that the expression of *Spar* peaks around Zeitgeber time
4 10 (ZT10) (coinciding with the evening peak of locomotor activity) (**Figure 7g-h**),
5 although the differences in expression level around the clock with LD or DD cycle were
6 not dramatic (**Figure 7 – figure supplement 2a-c**). To confirm the expression of *Spar*
7 in circadian neurons at the protein level we co-stained *Spar* with a clock neuron
8 reporter (*Clk856-Gal4>UAS-GFP*). A subset of *Spar*-positive larval CNS neurons
9 appeared to be *Clk856-Gal4>UAS-GFP* positive (**Figure 7i-j''**). Similarly, a subset of
10 *Spar*-positive neurons in adults were GFP-positive (**Figure 7k-l''**), confirming the
11 expression of *Spar* protein in LNv clock neurons. Taken together, these findings
12 suggest a potential function of the Alk-regulated TaDa-identified target *Spar* in the
13 maintenance of circadian activity in *Drosophila*.

14

15 ***Spar*^{ΔExon1} mutants exhibit reduced adult lifespan, activity and circadian**
16 **disturbances**

17 Given the expression of *Spar* in circadian neurons of the larval CNS, and the
18 previous observations of a role of Alk mutations in sleep dysregulation in flies (Bai &
19 Sehgal, 2015), we hypothesised that *Spar*^{ΔExon1} mutants may exhibit activity/circadian
20 rhythm-related phenotypes. To test this, we first investigated the effects of loss of *Spar*
21 (employing *Spar*^{ΔExon1}) and loss of *Alk* (employing a CNS specific loss of function allele
22 of *Alk*, *Alk*^{ΔRA} (Pfeifer *et al.*, 2022)) on adult lifespan and sleep/activity behaviour using
23 the DAM (*Drosophila* activity monitor) system (Trikinetics Inc.). Both *Alk*^{ΔRA} and
24 *Spar*^{ΔExon1} mutant flies displayed a significantly reduced lifespan when compared to
25 *w¹¹¹⁸* controls, with the *Spar*^{ΔExon1} group exhibiting a significant reduction in survival at

1 25 days (**Figure 8a**). Activity analysis in *Alk^{ΔRA}* and *Spar^{ΔExon1}* flies under 12 h light:

2 12 h dark (LD) conditions indicated that both *Alk^{ΔRA}* and *Spar^{ΔExon1}* flies exhibited two

3 major activity peaks, the first centered around Zeitgeber time 0 (ZT0), the beginning

4 of the light phase, the so-called morning peak, and the second around Zeitgeber time

5 12 (ZT12), the beginning of the dark phase that is called the evening peak (**Figure 8b**,

6 **black arrows**). Overall activity and sleep profiles per 24 h showed increased activity

7 in *Spar^{ΔExon1}* flies (**Figure 8b-d, Figure 8 – figure supplement 1**), that was more

8 prominent during the light phase, with an increase in the anticipatory activity preceding

9 both the night-day and the day-night transition in comparison to *Alk^{ΔRA}* and *w¹¹¹⁸*

10 (**Figure 8b, empty arrows**). Actogram analysis over 30 days showed an increased

11 number of activity peaks in the mutant groups, indicating a hyperactivity phenotype, in

12 comparison to wild-type (**Figure 8d**). Furthermore, mean activity and sleep were also

13 affected; the two mutant groups (*Alk^{ΔRA}* and *Spar^{ΔExon1}*) displayed significant variations

14 in activity means (**Figure 8e, h-h'**; **Figure 8 – figure supplement 2**). Analysis of

15 anticipatory activity by quantifying the ratio of activity in the 3 h period preceding light

16 transition relative to activity in the 6 h period preceding light transition as previously

17 described (Harris singh *et al*, 2007), failed to identify conclusive effects on anticipatory

18 activity in *Spar^{ΔExon1}* flies (**Figure 8f-g**). Furthermore, both *Alk^{ΔRA}* and *Spar^{ΔExon1}*

19 exhibited significant decrease in average sleep during the day per 12 h at young ages

20 (days 5 to 7) (**Figure 8h, Figure 8 – figure supplement 2a**). In contrast, older flies

21 (days 20 to 22) did not show any significant differences in sleep patterns during the

22 day and per 12 h (**Figure 8h', Figure 8 – figure supplement 2a'**). The decrease in

23 average sleep in both *Alk^{ΔRA}* and *Spar^{ΔExon1}* was accompanied by an increase in

24 number of sleep bouts per 12 hours at young age (days 5 to 7) (**Figure 8 – figure**

25 **supplement 2b**) with no difference in number of sleep bouts at older age (**Figure 8 –**

1 **figure supplement 2b'**). Rhythmicity analysis showed that *Alk^{ΔRA}* and *w¹¹¹⁸* are more
2 rhythmic in LD compared to *Spar^{ΔExon1}* flies (**Figure 8 – figure supplement 3a**),
3 however when comparing percentage of rhythmic flies among all groups the
4 differences were not significant (**Figure 8 – figure supplement 3a'**). Moreover, free-
5 running period calculation by Chi-square periodograms showed that both *w¹¹¹⁸* and
6 *Spar^{ΔExon1}* flies exhibit a longer circadian period (higher than 1440 minutes), with 13%
7 of the latter group having a shorter period (**Figure 8 – figure supplement 4a-a'**).
8 These results demonstrate that Spar is important for normal fly activity and loss of spar
9 affects adult sleep/wake activity.

10 Since *Spar^{ΔExon1}* flies exhibited a hyperactive phenotype during both day and
11 night hours, we sought to investigate a potential role of *Spar* in regulating the
12 endogenous fly clock by assessing fly activity after shift to dark conditions. While
13 control flies adapted to the light-dark shift without any effect on mean activity and
14 sleep, *Spar^{ΔExon1}* flies exhibited striking defects in circadian clock regulation (**Figure**
15 **9a-b'**, **Figure 8 – figure supplement 1a-d'**). Comparison of average activity and sleep
16 during 5 days of LD (light-dark) versus 5 days of DD (dark-dark) cycles, identified a
17 reduction in mean activity under DD conditions in *Spar^{ΔExon1}* flies (**Figure 9b-b'**).
18 Actogram profiling showed that *Spar^{ΔExon1}* flies exhibit a hyperactive profile consistent
19 with our previous data in LD conditions and maintain this hyperactivity when shifted
20 into DD conditions (**Figure 9c**, **Figure 8 – figure supplement 1**). Further, anticipatory
21 peaks were largely absent on transition to DD cycle in *Spar^{ΔExon1}* mutants with no
22 activity peaks observed at either CT0 or at CT12 (**Figure 9b**, **empty arrows**),
23 consistent with a significant decrease in the a.m. and p.m. anticipatory activity (**Figure**
24 **8g**) and altered activity and sleep bouts in these mutants (**Figure 9d**, **Figure 8 – figure**
25 **supplement 2**). To confirm that the circadian clock activity defects observed here

1 were specific to loss of *Spar* we conducted a targeted knockdown of *Spar* in clock
2 neurons, employing *Clk856-Gal4*. *Clk856-Gal4>Spar-RNAi* flies exhibited a significant
3 disruption in both activity and sleep during the DD transition period, consistent with a
4 hyperactivity phenotype (**Figure 9e-g'**, **Figure 9 – figure supplement 1**). Further
5 comparison of *Clk856-Gal4>Spar-RNAi* flies relative to controls identified a consistent
6 increase in activity in both LD and DD conditions upon *Spar* knockdown, with a
7 decrease in sleep observed in DD conditions (**Figure 9 – figure supplement 2**).
8 These findings agree with the expression pattern of *Spar* in clock neurons (**Figure 7**),
9 indicating a role for *Spar* in circadian clock regulation. Rhythmicity analysis comparing
10 LD and DD cycles in *Spar^{ΔExon1}* did not show a significant change indicating that
11 *Spar^{ΔExon1}* flies are mostly rhythmic in LD and DD conditions, whereas as expected,
12 control *w¹¹¹⁸* flies were less rhythmic in DD conditions (**Figure 9 – figure supplement**
13 **3a-a'**). This was also consistent when percentages of rhythmicity were determined,
14 both *w¹¹¹⁸* and *Spar^{ΔExon1}* flies were rhythmic (**Figure 9 – figure supplement 3b-b'**).
15 In terms of circadian period, the majority of *w¹¹¹⁸* and *Spar^{ΔExon1}* flies exhibited a longer
16 free running period in DD (**Figure 9 – figure supplement 3c-d**).

17

18

1 **Discussion**

2 With the advent of multiple omics approaches, data integration represents a
3 powerful, yet challenging approach to identify novel components and targets of
4 signaling pathways. The availability of various genetic tools for manipulating Alk
5 signaling in *Drosophila* along with previously gathered omics dataset provides an
6 excellent basis for Alk centered data acquisition. We complemented this with TaDa
7 transcriptional profiling allowing us to generate a rich dataset of Alk-responsive loci
8 with the potential to improve our mechanistic understanding of Alk signaling in the
9 CNS. A striking observation revealed by integrating our TaDa study with scRNAseq
10 data was the enrichment of Alk-responsive genes expressed in neuroendocrine cells.
11 These results are consistent with previous studies reporting expression of Alk in the
12 *Drosophila* larval prothoracic gland (Pan & O'Connor, 2021), the neuroendocrine
13 functions of Alk in mice (Ahmed *et al.*, 2022; Reshetnyak *et al.*, 2015; Witek *et al.*,
14 2015) and the role of oncogenic ALK in neuroblastoma, a childhood cancer which
15 arises from the neuroendocrine system (Matthay *et al.*, 2016; Umapathy *et al.*, 2019).
16 In this study, we focused on one target of interest downstream of Alk, however, many
17 additional interesting candidates remain to be explored. These include CG12594,
18 *complexin* (*cpx*) and the *vesicular glutamate transporter* (*VGlut*) that also exhibit a high
19 ratio of co-expression with *Alk* in scRNAseq data (**Supplementary Figure 1**). A
20 potential drawback of our TaDa dataset is the identification of false positives, due to
21 non-specific methylation of GATC sites at accessible regions in the genome by Dam
22 protein. Hence, our experimental approach likely more reliably identifies candidates
23 which are downregulated upon Alk inhibition. In our analysis, we have limited this
24 drawback by focusing on genes downregulated upon Alk inhibition and integrating our
25 analysis with additional datasets, followed by experimental validation. This approach

1 is supported by the identification of numerous previously identified Alk targets in our
2 TaDa candidate list.

3 Employing a strict context dependent filter on our integrated omics datasets
4 identified Spar as a previously uncharacterized Alk regulated neuropeptide precursor.
5 Spar amino acid sequence analysis predicts an N-terminal signal peptide and multiple
6 canonical dibasic PC cleavage sites which are hallmarks of neuropeptide precursors.
7 This is strong indication that Spar is shuttled to the secretory pathway and is post-
8 translationally processed within the Golgi or transport vesicles. Moreover, using mass
9 spectrometry, we were able to identify predicted canonically processed peptides from
10 the Spar precursor in undigested fly brain extracts. While all this points towards a
11 neuropeptide-like function of Spar, other features appear rather unusual for a typical
12 insect neuropeptide. First, the Spar propeptide is quite large for a neuropeptide
13 precursor, and the predicted peptides do not represent paracopies of each other and
14 do not carry a C-terminal amidation signal as is typical for *Drosophila* and other insect
15 peptides (Nässel & Zandawala, 2019; Wegener & Gorbashov, 2008). Moreover, there
16 are no obvious Spar or Spar peptide orthologues in animals outside the Diptera. We
17 noted, however, that Spar is an acidic protein with a pI of 5.1 that lacks any cysteine
18 residue. These features are reminiscent of vertebrate secretogranins, which are
19 packaged and cleaved by PCs and other proteases inside dense vesicles in the
20 regulated secretory pathway in neurosecretory cells (Helle, 2004). Secretogranins
21 have so far not been identified in the *Drosophila* genome (Hart *et al*, 2017). Therefore,
22 the identification of the neurosecretory protein Spar downstream of Alk in the
23 *Drosophila* CNS is particularly interesting in light of previous findings, where VGF (aka
24 secretogranin VII) has been identified as one of the strongest transcriptional targets
25 regulated by ALK in both cell lines and mouse neuroblastoma models (Borenas *et al*.,

1 2021; Cazes *et al*, 2014). VGF encodes a precursor polypeptide, which is processed
2 by PCs generating an array of secreted peptide products with multiple functions that
3 are not yet fully understood at this time (Lewis *et al*, 2015; Quinn *et al*, 2021).

4 Using a newly generated antibody we characterized the expression of Spar in
5 the *Drosophila* CNS, showing that its expression overlaps with the Dimm transcription
6 factor that is expressed in the fly neuroendocrine system (Hewes *et al.*, 2003),
7 suggesting that Spar is expressed along with multiple other neuropeptides in pro-
8 secretory cells of the CNS (Park *et al.*, 2008). Spar is also expressed in well-
9 established structures such as the mushroom bodies (Crocker *et al*, 2016) (Table 1),
10 which are known to be important in learning and memory and regulate food attraction
11 and sleep (Joiner *et al*, 2006; Pitman *et al*, 2006), and where Alk is also known to
12 function (Bai & Sehgal, 2015; Gouzi *et al.*, 2011; Pfeifer *et al.*, 2022). Interestingly,
13 Spar is expressed in a subset of peptidergic neurons which emerge from the ventral
14 nerve cord (VNC) and innervate larval body wall muscle number 8. In larvae, these
15 Lk-expressing neurons of the VNC, known as ABLKs, are part of the circuitry that
16 regulates locomotion and nociception, and in adults they regulate water and ion
17 homeostasis (Imambucus *et al*, 2022; Okusawa *et al*, 2014; Zandawala *et al*, 2018).
18 The role of Spar in this context is unknown and requires further investigation. The
19 identity of the Spar receptor, as well as its location, both within the CNS and without,
20 as suggested by the expression of Spar in neurons innervating the larval body wall is
21 another interesting question for a future study. In our current study we focused on
22 characterising Spar in the *Drosophila* CNS. To functionally characterize Spar in this
23 context we generated null alleles with CRISPR/Cas9 and investigated the resulting
24 viable *Spar*^{ΔExon1} mutant.

1 *Spar* transcript expression in *Drosophila* clock neurons has been noted in a
2 previous study investigating neuropeptides in clock neurons, however Spar had not
3 been functionally characterized at the time (Abruzzi *et al.*, 2017, Ma *et al*, 2021). We
4 have been able to show that Spar protein is expressed in clock neurons of the larval
5 and adult CNS, findings that prompted us to study the effect of Spar in activity and
6 circadian rhythms of flies. *Drosophila* activity monitoring experiments with *Spar*^{ΔExon1}
7 and Alk loss of function (*Alk*^{ΔRA}) mutants revealed striking phenotypes in life span,
8 activity and sleep. In *Drosophila* a number of genes and neural circuits involved in the
9 regulation of sleep have been identified (Shafer & Keene, 2021). The role of Alk in
10 sleep has previously been described in the fly, where Alk and the Ras GTPase
11 Neurofibromin1 (Nf1), function together to regulate sleep (Bai and Sehgal, 2015).
12 Indeed, a study in mice has reported an evolutionarily conserved role for Alk and Nf1
13 in circadian function (Weiss *et al*, 2017). While these studies place Alk and Nf1
14 together in a signaling pathway that regulates sleep and circadian rhythms, no
15 downstream effectors transcriptionally regulated by the Alk pathway have been
16 identified that could explain its regulation of *Drosophila* sleep/activity. Our data
17 suggest that one way in which Alk signaling regulates sleep is through the control of
18 Spar, as *Spar*^{ΔExon1} mutants exhibit a striking activity phenotype. The role of clock
19 neurons and the involvement of circadian input in maintenance of long term memory
20 (LTM) involving neuropeptides such as PDF has been previously described (Inami *et*
21 *al*, 2022). Since both Alk and Nf1 are also implicated in LTM formation in mushroom
22 body neurons (Gouzi, Bouraimi *et al* 2018), the potential role of Nf1 in Spar regulation
23 and the effect of Spar loss on LTM will be interesting to test in future work. It can be
24 noted that insulin producing cells (IPCs), DH44 cells of the pars intercerebralis, the Lk
25 producing LHLK neurons of the brain and certain AstA neurons in the brain are

1 involved in regulation of aspects of metabolism and sleep (Barber *et al*, 2021; Cavey
2 *et al*, 2016; Chen *et al*, 2016; Cong *et al*, 2015; Donlea *et al*, 2018; Nässel &
3 Zandawala, 2022; Yurgel *et al*, 2019). Furthermore, the DH44 cells of the pars
4 intercerebralis are major players in regulation feeding and courtship in adults (Barber
5 *et al.*, 2021; Cavanaugh *et al*, 2014; Dus *et al*, 2015; King *et al*, 2017; Oh *et al*, 2021).

6 In conclusion, our TaDa analysis identifies a role for Alk in regulation of endocrine
7 function in *Drosophila*. These results agree with the previously reported broad role of
8 Alk in functions such as sleep, metabolism, and olfaction in the fly and in the
9 hypothalamic-pituitary-gonadal axis and Alk-driven neuroblastoma responses in mice.
10 Finally, we identify *Spar* as the first neuropeptide precursor downstream of Alk to be
11 described that regulates activity and circadian function in the fly.

1 **Materials and methods**

2

3 ***Drosophila stocks and Genetics***

4 Standard *Drosophila* husbandry procedures were followed. Flies were fed on Nutri-
5 Fly® Bloomington Formulation food (Genesee Scientific, Inc.) cooked according to the
6 manufacturer's instruction. Crosses were reared at 25°C. The following stocks were
7 obtained from Bloomington *Drosophila* Stock Center (BDSC): *w¹¹¹⁸* (BL3605), *Dimm-*
8 *Gal4* (also known as *C929-Gal4*) (BL25373), *Clk856-Gal4* (BL93198) and *C155-Gal4*
9 (BL458). The *UAS-Spar RNAi* (v37830) line was obtained from Vienna *Drosophila*
10 Resource Center. Additional stocks used in this study are the following: *UAS-LT3-*
11 *NDam-Pol II* (Southall *et al.*, 2013), *UAS-Alk^{DN}* (*P{UAS-Alk.EC.MYC}*) (Bazigou *et al.*,
12 2007)), *UAS-Jeb* (Varshney & Palmer, 2006), *UAS-GFPcaax* (Finley *et al.*, 1998),
13 *Alk^{Y1335S}* (Pfeifer *et al.*, 2022), *Alk^{ΔRA}* (Pfeifer *et al.*, 2022), *Spar^{ΔExon1}* (this study), *UAS-*
14 *Spar* (this study). .

15

16 **TaDa Sample preparation**

17 Pan neuronal *C155-Gal4* expressing animals were crossed with either *UAS-LT3-*
18 *Dam::Pol II* (Control) or *UAS-LT3-Dam::Pol II*; *UAS-Alk^{EC}* (Alk dominant negative
19 sample) and crosses were reared at 25°C. Approximately 100-150 third instar larval
20 brains were dissected in cold PBS for each technical replicate. Genomic DNA was
21 extracted using a QIAGEN blood and tissue DNA extraction kit and methylated DNA
22 was processed and amplified as previously described (Choksi *et al.*, 2006; Sun *et al.*,
23 2003) with the following modifications; after genomic DNA extraction, non-sheared
24 gDNA was verified on 1.5% agarose gel, and an overnight DpnI digestion reaction set
25 up in a 50 µl reaction volume. The digestion product was subsequently purified using

1 QIAGEN MiniElute PCR purified Kit and eluted in 50 μ l MQ water. 50 μ l of DpnI
2 digested and purified DNA was further used for adaptor ligation. Adaptor ligated DNA
3 was amplified using the adaptor specific primer to generate the TaDa-seq library.
4 Amplified DNA from all experimental conditions was repurified (QIAGEN MiniElute
5 PCR purification kit) into 20 μ l of MQ water and 200 ng aliquots were run on 1%
6 agarose gel to verify amplification of TaDa library (DNA fragments ranging from 500
7 bp to 3 kb). The TaDa library was used for PCR-free library preparation followed by
8 paired-end sequencing on an Illumina HiSeq 10x platform (BGI Tech Solutions, Hong
9 Kong).

10

11 **TaDa bioinformatics data analysis**

12 TaDa FASTQ paired-end reads of the control sample with three biological replicates
13 and dominant negative samples with two biological replicates (with two technical
14 replicates for both control and dominant negative samples) were obtained for a total
15 of 10 samples and used for subsequent analysis. After base quality assessment, reads
16 were mapped to the Dm6 reference genome of *Drosophila melanogaster* using
17 Bowtie2 (--very-sensitive-local) (Langmead & Salzberg, 2012) and post alignment
18 processes were performed with sam tools and BED tools (Barnett *et al*, 2011; Quinlan,
19 2014). The *Drosophila melanogaster* reference sequence (FASTA) and gene
20 annotation files were downloaded from Flybase and all GATC coordinates were
21 extracted using fuzznuc (Rice *et al*, 2000) in BED format. Replicates were merged
22 using Sambamba (merge) (Tarasov *et al*, 2015), and fold changes between control
23 and dominant negative samples, obtained by deeptools bamCompare (--centerReads
24 --scaleFactorsMethod readCount --effectiveGenomeSize 142573017 --smoothLength
25 5 -bs 1) (Ramirez *et al*, 2014) for BIGWIG (BW) file generation. Counts of reads

1 mapped to GATC border fragments were generated using a perl script
2 (GATC_mapper.pl) from DamID-Seq pipeline (Maksimov *et al*, 2016). GATC level
3 counts were converted to gene level counts using Bedtools (intersectBed) (Quinlan,
4 2014). GATC sites were merged into peaks based on a previous study (Tosti *et al.*,
5 2018). Log2FC for individual GATC sites were generated using Limma for dominant
6 negative vs control ($P < 1e-5$) and GATC sites were merged into peaks based on
7 median GATC fragment size in the *Drosophila* genome assembly using
8 mergeWindows (tol=195, max.width=5000) and combineTests function from the csaw
9 package (Lun & Smyth, 2016). Peaks were assigned to overlapping genes and filtered
10 for FDR smaller than 0.05 and mean log2FC less than -2. All peak calling and
11 statistical analysis was performed using the R programming environment. TaDa data
12 can also be visualized using a custom UCSC (University of California, Santa Cruz)
13 Genome Browser session (<https://genome-euro.ucsc.edu/s/vimalajeno/dm6>).
14 WebGestaltR (Liao *et al*, 2019) was used for GO (Gene Ontology) for significantly
15 downregulated TaDa candidates.

16

17 **Integration of TaDa data with scRNA-seq and other omics data**

18 Previously published wild-type third instar larval brain scRNA-Seq data (GSE198850)
19 was employed (Pfeifer *et al.*, 2022). Cellular heterogeneity was determined with eight
20 different types of cells, including immature neurons, mature neurons, early neuroblast,
21 NB-enriched cells, NB proliferating cells, optic lobe epithelium (OLE), Repo-positive
22 cells and Wrapper-positive cells. The mature neuron population was divided into two
23 groups for the current study: mature neurons and neuroendocrine cells. The
24 neuroendocrine cell cluster was determined based on canonical markers (Guo *et al.*,
25 2019; Huckesfeld *et al.*, 2021; Nässel, 2018; Takeda & Suzuki, 2022; Torii, 2009).

1 Subsequent analysis, including dimensionality reduction/projection or cluster
2 visualization and marker identification was performed using R (Seurat) (Stuart *et al*,
3 2019) and Python (Scanpy) (Wolf *et al*, 2018) packages. Marker genes for each cluster
4 were identified by FindAllMarkers function (Seurat) (Stuart *et al.*, 2019). Clusters were
5 visualized using two-dimensional Uniform Manifold Approximation and Projection
6 (UMAP). The top 500 significantly downregulated genes from TaDa data (FDR<0.05
7 and mean logFC≤-2) were analysed in the third instar larval brain scRNAseq data.
8 These 500 candidates were used as gene signatures, and signature enrichment
9 analysis carried out using AUCell to determine whether a subset of the input gene set
10 was enriched for each cell (with an enrichment threshold set at >0.196), and the
11 clusters projected in UMAP based on the signature score (AUC score) (Aibar *et al.*,
12 2017). Violin plots, dot plots, feature plots, heatmaps and matrix plots were used to
13 visualize gene expression in the scRNAseq data. Functional enrichment analysis for
14 the common significantly downregulated genes from the TaDa analysis was compared
15 to neuroendocrine cell markers using WebGestaltR (Liao *et al.*, 2019).
16

17 **Circadian neuron scRNA-Seq data analysis**

18 Publicly available circadian neuron scRNA-Seq data (10x) from the GEO database
19 (GSE157504) was employed to investigate expression of CG4577 in circadian
20 neurons (Ma *et al.*, 2021). The dataset includes two conditions: LD (Light and Dark)
21 and DD (Dark and Dark), as well as six time points: 2 hours, 6 hours, 10 hours, 14
22 hours, and 22 hours. After preprocessing, 3172 and 4269 cells remained for the LD
23 and DD samples respectively, with a total of 15,743 and 15,461 RNA features.
24 Subsequent analysis, including integration, dimensionality reduction/projection and
25 cluster visualization was performed using R (Seurat) (Stuart *et al.*, 2019). Based on

1 clustering, 17 clusters were defined and visualized using two-dimensional Uniform
2 Manifold Approximation and Projection (UMAP). Violin plots, dot plots, and feature
3 plots were employed to visualize gene expression.

4

5 **Immunohistochemistry**

6 Relevant tissue (larval CNS or body wall muscle preparation) was dissected in cold
7 PBS and tissues fixed in 4% formaldehyde at 4°C for 1 hour. Samples were washed
8 3 times with 0.1% PBS Triton X-100, followed by overnight incubation in 4% goat
9 serum, 0.1% PBS Triton X-100. The following primary antibodies were used: guinea
10 pig anti-Alk (1:1000, (Loren *et al.*, 2003)), rabbit anti-Alk (1:1000, (Loren *et al.*, 2003)),
11 and rabbit anti-Dimm (1:1000 (Allan *et al.*, 2005)), chicken anti-GFP (1:1000, Abcam
12 #ab13970), mouse mAb anti-PDF (1:1000, DSHB: C7), rabbit anti-Ilp2 (1:1000,
13 (Veenstra *et al.*, 2008)), anti-Dh44 (1:1000, (Cabrero *et al.*, 2002)), rabbit anti-AstA
14 (1:3000, (Stay *et al.*, 1992) (Vitzthum *et al.*, 1996), Jena Bioscience GmbH), rabbit anti-
15 Lk (1:1000, (Cantera & Nässel, 1992)), guinea pig anti-Spar (1:2000, this study), and
16 Alexa Fluor®-conjugated secondary antibodies were from Jackson Immuno Research.

17

18 **Image Analysis**

19 Spar fluorescence intensity (Figures 4I and M) was quantified for the minimum
20 complete confocal z-series of each third instar larval brain using Fiji (Schindelin *et al.*,
21 2012). Confocal images from the 488 nm wavelength channel were analyzed as a Z
22 project. Using a selection tool, Spar positive areas were demarcated, and
23 measurements recorded. Corrected total cell fluorescence (CTCF), in arbitrary units,
24 was measured for each third instar brain as follows: CTCF = integrated density – (area
25 of selected cell × mean fluorescence of background readings) (McCloy RA, *et al.* Cell

1 Cycle. 2014; Bora P, et al. Commun Biol 2021). Calculated CTCFs were represented
2 in the form of boxplots (n = 12 each for w^{1118} , Alk^{Y1255S} , Alk^{RA} , n = 5 each for C155-
3 $Gal4>UAS-GFPcaax$ and C155- $Gal4>UAS-Alk^{DN}$, n = 7 for C155- $Gal4>UAS-Jeb$).

4

5 **Immunoblotting**

6 Third instar larval brains were dissected and lysed in cell lysis buffer (50 mM Tris-Cl,
7 pH7.4, 250 mM NaCl, 1 mM EDTA, 1 mM EGTA, 0.5% Triton X-100, complete
8 protease inhibitor cocktail and PhosSTOP phosphatase inhibitor cocktail) on ice for 20
9 minutes prior to clarification by centrifugation at 14,000 rpm at 4°C for 15 minutes.
10 Protein samples were then subjected to SDS-PAGE and immunoblotting analysis.
11 Primary antibodies used were: guinea pig anti-Spar (1:1000) (this study) and anti-
12 tubulin (Cell Signaling #2125, 1:20,000). Secondary Antibodies used were:
13 Peroxidase Affinipure Donkey Anti-Guinea Pig IgG (Jackson ImmunoResearch #706-
14 035-148) and goat anti-rabbit IgG (Thermo Fisher Scientific # 32260, 1:5000).

15

16 **Generation of anti-Spar antibodies**

17 Polyclonal antibodies against Spar (CG4577) were custom generated in guinea pigs
18 by Eurogentec. Two Spar peptides corresponding to epitopes LQEIDDYVPERRVSS
19 (amino acids 212-226) and PVAERGSGYNGEKYF (amino acids 432-446) of Spar-PA
20 were injected simultaneously.

21

22 **Biochemical identification of Spar peptides and phylogenetic analysis**

23 Peptidomic data from our previous study on the role of *Drosophila* carboxypeptidase
24 D (SILVER) in neuropeptide processing (Pauls *et al.*, 2019) was re-examined for the
25 occurrence of Spar. Peptides were extracted from brains from 5 d old male flies and

1 analyzed on an Orbitrap Fusion mass spectrometer (Thermo Scientific) equipped with
2 a PicoView ion source (New Objective) and coupled to an EASY-nLC 1000 system
3 (Thermo Scientific). Three (controls) and two (mutants) biological samples (pooled
4 brain extracts from 30 flies) were measured in technical duplicates. The raw data is
5 freely available at Dryad (<https://doi.org/10.5061/dryad.82pr5td>, for details see (Pauls
6 *et al.*, 2019)). Database search was performed against the UniProt *Drosophila*
7 melanogaster database (UP000000803; 22070 protein entries) with PEAKS XPro 10.6
8 software (Bioinformatics solution) with the following parameters: peptide mass
9 tolerance: 8 ppm, MS/MS mass tolerance: 0.02 Da, enzyme: “none”; variable
10 modifications: Oxidation (M), Carbamidomethylation (C), Pyro-glu from Q, Amidation
11 (peptide C-term). Results were filtered to 1% PSM-FDR.

12
13 To identify *Spar* precursor sequences in other insects and arthropods, tblastn
14 searches with the PAM30 matrix and a low expectation threshold against the whole
15 *Drosophila* *Spar* precursor or partial peptides flanked by canonical cleavage sites were
16 performed against the NCBI databank (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>). The
17 obtained sequences were aligned by the MUSCLE algorithm and plotted using JalView
18 2(Waterhouse *et al*, 2009).

19
20
21 **CRISPR/Cas9 mediated generation of the *Spar*^{ΔExon1} mutant**
22 The *Spar*^{ΔExon1} mutant was generated using CRISPR/Cas9 genome editing. Design
23 and evaluation of CRISPR target sites was performed using the flyCRISPR Optimal
24 Target Finder tool (Gratz *et al.*, 2015). Single guide RNA (sgRNA) targeting sequences
25 (sequences available in **Table S1**) were cloned into the pU6-BbsI-chiRNA vector

1 (Addgene, Cat. No. 45946) and injected into *vasa-Cas9* (BDSC, #51323) embryos
2 (BestGene Inc.). Injected flies were crossed to second chromosome balancer flies
3 (BDSC, #9120) and their progeny were PCR-screened for a deletion event. Mutant
4 candidates were confirmed by Sanger sequencing (Eurofins Genomics).

5

6 **Generation of *UAS-Spar* fly lines**

7 *UAS-Spar* was generated by cloning (GeneScript) the coding sequence of CG4577-
8 *RA* into EcoRI/XbaI-cut *pUASTattB* vector followed by injection into fly embryos
9 (BestGene Inc.) using attP1 (2nd chromosome, BDSC#8621) and attP2 (3rd
10 chromosome, BDSC#8622) docking sites for phiC31 integrase-mediated
11 transformation. Injected flies were crossed to second or third chromosome balancer
12 flies, and transgenic progeny identified based on the presence of mini-white marker.

13

14 **Measurement of pupal size**

15 Late pupae of the indicated genotype were collected and placed on glass slides with
16 double-sided tape. Puparium were imaged with a Zeiss Axio Zoom.V16 stereo zoom
17 microscope with a light-emitting diode ring light and measured using Zen Blue edition
18 software. Both female and male pupae, picked randomly, were used for
19 measurements.

20

21 ***Drosophila* activity monitor assay**

22 Up to 32 newly eclosed male flies were transferred into individual glass tubes
23 containing food media (1% agar and 5% sucrose), which were each placed into a
24 DAM2 *Drosophila* activity monitor (Trikinetics Inc). Monitors were then placed in a 25
25 °C incubator running a 12:12h light:dark cycle, at a constant 60% humidity. Activity

1 was detected by an infrared light beam emitted by the monitor across the center of
2 each glass tube. The experiment was carried out for one month, and the raw binary
3 data was acquired by the DAMSystem310 software (Trikinetics Inc.). The LD/DD
4 experiment was performed according to previously published work (Chiu *et al*, 2010);
5 adult flies were first entrained for 5 days in normal light:dark cycle and on the last day
6 (LD5), the light parameters were switched off and flies were then conditioned in
7 complete dark:dark settings for 7 days. Raw data analysis was carried out using a
8 Microsoft Excel macro (Berlandi *et al*, 2017) taking into consideration 5 min of inactivity
9 as sleep and more than 24 h of immobility as a death event. The activity and sleep
10 parameters are calculated for each day of the experiment as average from data of all
11 living animals at this time and are displayed over the duration of the experiment.
12 Calculation of anticipatory activity was performed accordingly to previously published
13 work (Harris *et al.*, 2007) by quantifying the ratio of activity in the 3h preceding
14 light transition to activity in the 6h preceding light transition, defined as a.m and p.m
15 anticipation for the 6h period before lights-on and 6h period before lights-off,
16 respectively. Actogram activity profile charts were generated using ActogramJ 1.0
17 (<https://bene51.github.io/ActogramJ/index.html>) and ImageJ software
18 (<https://imagej.nih.gov/ij/>). ActogramJ was further used to generate the chi-square
19 periodogram for each single fly in order to calculate the power value of rhythmicity and
20 the percentage of rhythmic flies. All statistical analysis were performed using
21 GraphPad Prism 8.4.2.

22

23 **Data visualization and schematics**

1 Schematics were generated at Biorender.com and Bioicons.com. The pipeline icon by
2 Simon Dürr <https://twitter.com/simonduerr> is licensed under CC0
3 <https://creativecommons.org/publicdomain/zero/1.0/>. Boxplots in Figure 3d and Figure
4 7 – figure supplement 1 were generated using BoxplotR
5 (<http://shiny.chemgrid.org/boxplotr/>). Boxplots in Figure 4 were generated using
6 GraphPad Prism 9.

7

8 **Datasets used in this study**

Dataset name	Brief description	Reference	NCBI gene Expression omnibus ID/database IDs
Targeted DamID (TaDa) dataset	Pol II occupancy of control (<i>UAS-Dam-Pol II</i>) and <i>Alk</i> knockdown (<i>UAS-Dam-Pol II; Alk^{DN}</i>) conditions in 3rd instar <i>Drosophila</i> larval CNS.	This study	GSE229518
Bulk RNA-seq dataset - <i>Drosophila Alk</i> alleles	Transcripomes of <i>Alk</i> gain-of-function (<i>Alk^{Y135S}</i>), <i>Alk</i> CNS specific loss-of-function (<i>Alk^{RA}</i>) and control (<i>w¹¹¹⁸</i>) 3rd instar <i>Drosophila</i> larval CNS.	Pfeifer <i>et al.</i> , 2022	GSE198812
3rd instar Larval CNS Single cell RNA-seq dataset	Single cell transcriptome of control (<i>w¹¹¹⁸</i>) <i>Drosophila</i> 3rd instar larval CNS.	Pfeifer <i>et al.</i> , 2022	GSE198850
1st instar larval CNS Single cell RNA-seq dataset	Single cell transcriptome of control (<i>Canton-S</i>) <i>Drosophila</i> 1st instar larval CNS.	Brunet Avalos <i>et al.</i> , 2019	GSE134722
Adult CNS single cell RNA-seq dataset	Single cell transcriptome of control (<i>w¹¹¹⁸</i>) <i>Drosophila</i> adult brains.	Davie <i>et al.</i> , 2018	GSE107451
Adult CNS peptidomics data	Peptidomic mass spectrometry analysis of control (<i>FM7h;hs-svr</i>) and SILVER processing mutant (<i>svr^{PG33};hs-svr</i>) in <i>Drosophila</i> adult brains.	Pauls <i>et al.</i> , 2019	Dryad: https://doi.org/10.5061/dryad.82pr5td
Bulk RNA-seq dataset - <i>Drosophila</i> circadian clock neurons	Transcriptome of circadian clock neurons from <i>Drosophila</i> adult brains.	Abruzzi <i>et al.</i> , 2017	GSE77451
Single cell RNA-seq dataset - <i>Drosophila</i> circadian clock neurons	Single cell transcriptome of circadian clock neurons (<i>Cik856-Gal4> EGFP</i>) in <i>Drosophila</i> adult brains.	Ma <i>et al.</i> , 2021	GSE157504

9

1 **Acknowledgements**

2 The authors thank Jonathan Benito Sipos and Stefan Thor for the kind gift of anti-
3 Dimmed antibodies, as well as Jan Veenstra for kindly gifting anti-Dh44 and anti-llp2.
4 C7 anti-PDF (developed by J. Blau) was obtained from the Developmental Studies
5 Hybridoma Bank, created by the NICHD of the NIH and maintained at The University
6 of Iowa, Department of Biology, Iowa City, IA 52242. We acknowledge Bloomington
7 Drosophila Stock Center (NIH P40OD018537) for fly stocks used in this study. We
8 thank Hisae Mori for providing support for fly lab maintenance. We thank members of
9 the Palmer, Hallberg lab and Anne Uv for critical feedback on the manuscript. This
10 work has been supported by grants from the Swedish Cancer Society (RHP
11 CAN21/01549), the Children's Cancer Foundation (RHP 2019-0078), the Swedish
12 Research Council (RHP 2019-03914), the Swedish Foundation for Strategic Research
13 (RB13-0204), the Göran Gustafsson Foundation (RHP2016) and the Knut and Alice
14 Wallenberg Foundation (KAW 2015.0144). MS and JS are supported by the Medical
15 Practice Plan (MPP) at the American University of Beirut.

16

17 Author contributions: SKS and RHP conceived the research. Wet lab experiments
18 were conducted by SKS, LM, JS, MK, GU, PM-G, and TM. VA carried out all
19 bioinformatics analysis. LM assisted with *Spar* mutant generation, validation, and
20 immunohistochemistry. JS and MK performed and analyzed all *Drosophila* activity
21 monitoring experiments under the supervision of MS. GU performed immunoblotting.
22 PM-G assisted in optimizing and performing TaDa experiments, and TM performed
23 image analysis and assisted with immunohistochemistry. AS and CW analyzed mass
24 spectrometry peptidomic data and performed the phylogenetic analysis. DN provided

1 critical feedback and design input. RHP, CW and MS supervised the project. SKS and
2 RHP wrote the first manuscript draft that was further developed with all authors.

3

4 **Competing interests:** The authors declare that they have no competing interests

5

6 **Data Availability Statement**

7 The original contributions presented in the study are included in the
8 article/Supplementary Material. The TaDa dataset has been deposited in Gene
9 Expression Omnibus (GEO) under the accession number GSE229518. The genome
10 browser tracks for the TaDa peak analysis can be found at: <https://genome-euro.ucsc.edu/s/vimalajeno/dm6>.
11

1 **Figure legends**

2

3 **Figure 1. TaDa-seq identifies novel Alk-regulated genes in the *Drosophila* larval**

4 **CNS. a.** Schematic overview of experimental conditions comparing wild-type Alk (Ctrl)

5 with Alk dominant-negative (Alk^{DN}) conditions. The *Drosophila* Alk RTK is comprised

6 of extracellular, transmembrane and intracellular kinase (red) domains. Upon Jelly

7 belly (Jeb, blue dots) ligand stimulation the Alk kinase domain is auto-phosphorylated

8 (yellow circles) and downstream signaling is initiated. In Alk^{DN} experimental conditions,

9 Alk signaling is inhibited due to overexpression of the Alk extracellular domain. **b.** The

10 TaDa system (expressing *Dam::RNA Pol II*) leads to the methylation of GATC sites in

11 the genome, allowing transcriptional profiling based on RNA Pol II occupancy. **c.** Pie

12 chart indicating the distribution of TaDa peaks on various genomic features such as

13 promoters, 5' UTRs, 3' UTRs, exons and introns. **d.** Volcano plot of TaDa-positive loci

14 enriched in Alk^{DN} experimental conditions compared to control loci exhibiting

15 $\text{Log2FC} < -2$, $p \geq 0.05$ are shown in blue. Alk-associated genes such as *mamo*, *C3G*,

16 *Kirre*, *RhoGAP15B* and *mib2* are highlighted in purple. **e.** Venn diagram indicating Alk-

17 dependant TaDa downregulated genes from the current study compared with

18 previously identified Alk-dependant TaDa loci in the embryonic VM (Mendoza-Garcia

19 *et al.*, 2021). **f.** Enrichment of Gene Ontology (GO) terms associated with significantly

20 down-regulated genes in Alk^{DN} experimental conditions.

21

22 **Figure 2. Integration of TaDa data with scRNA-seq identifies an enrichment of**

23 **Alk-regulated genes in neuroendocrine cells. a.** UMAP feature plot indicating Alk

24 (in red) and Jeb (in green) mRNA expression in a control (w^{1118}) whole third instar

25 larval CNS scRNA-seq dataset (Pfeifer *et al.*, 2022). **b.** UMAP visualizing AUCell

1 enrichment analysis of the top 500 TaDa downregulated genes in the third instar larval
2 CNS scRNA-seq dataset. Cells exhibiting an enrichment (threshold >0.196) are
3 depicted in red. One highly enriched cell cluster is highlighted (red circle). **c.** Heatmap
4 representing expression of the top 500 genes downregulated in TaDa *Alk^{DN}* samples
5 across larval CNS scRNA-seq clusters identifies enrichment in neuroendocrine cells.
6 **d.** UMAP indicating third instar larval CNS annotated clusters (Pfeifer *et al.*, 2022),
7 including the annotated neuroendocrine cell cluster (in orange). **e.** Matrix plot
8 displaying expression of canonical neuroendocrine cell markers. **f.** Feature plot
9 visualizing mRNA expression of *Dh44*, *Dh31*, *sNPF* and *AstA* neuropeptides across
10 the scRNA population. **g.** Alk staining in *Dimm-Gal4>UAS-GFPcaax* third instar larval
11 CNS confirms Alk expression in *Dimm*-positive cells. Alk (in magenta) and GFP (in
12 green), close-ups indicated by boxed regions and arrows indicating overlapping cells
13 in the central brain and ventral nerve cord. Scale bars: 100 μ m.

14

15 **Figure 3. TaDa and RNA-seq identifies CG4577 as a novel Alk-regulated**
16 **neuropeptide. a.** Flowchart representation of the multi-omics approach employed in
17 the study and the context dependent filter used to integrate TaDa, bulk RNA-seq and
18 scRNA-seq datasets. **b.** Venn diagram comparing bulk RNA-seq ($\text{Log2FC}>1.5$,
19 $p<0.05$) and TaDa datasets ($\text{Log2FC}<-2$, $p<0.05$). A single candidate (*CG4577/Spar*)
20 is identified as responsive to Alk signaling. **c.** TaDa Pol II occupancy of *CG4577/Spar*
21 shows decreased occupancy in *Alk^{DN}* experimental conditions compared to control. **d.**
22 Expression of *CG4577/Spar* in *w¹¹¹⁸* (control), *Alk^{ΔRA}* (*Alk* loss-of-function allele) and
23 *Alk^{Y1355S}* (*Alk* gain-of-function allele) larval CNS. Boxplot with normalized counts,
24 $**p<0.01$, $***p<0.001$. **e.** Feature plot showing mRNA expression of *CG4577/Spar* and
25 *Alk* in third instar larval CNS scRNA-seq data. Neuroendocrine cluster is highlighted

1 (red circle). **f.** CG4577/Spar-PA amino acid sequence indicating the signal peptide
2 (amino acids 1-26, in red), glutamine repeats (in green) and the anti-CG4577/Spar
3 antibody epitopes (amino acids 211-225 and 430-445, underlined). Center lines in
4 boxplots indicate medians; box limits indicate the 25th and 75th percentiles; crosses
5 represent sample means; whiskers extend to the maximum or minimum.

6

7 **Figure 4. Spar expression in the *Drosophila* larval brain. a.** Immunostaining of
8 *w¹¹¹⁸* third instar larval brains with Spar (green) and Alk (magenta) revealing
9 overlapping expression in central brain and ventral nerve cord. **a'-a''.** Close-up of Spar
10 expression (green) in ventral nerve cord (a') and central brain (a''). **b.** Immunostaining
11 of *w¹¹¹⁸* third instar larval CNS together with the body wall muscles, showing Spar
12 (green) expression in neuronal processes (white arrowheads) which emerge from the
13 ventral nerve cord and innervate larval body wall muscle number 8. **c-c'.** Decreased
14 expression of Spar in third instar larval brains expressing *spar* RNAi (*C155-Gal4>Spar*
15 *RNAi*) compared to control (*C155-Gal4>UAS-GFPcaax*) confirms Spar antibody
16 specificity (Spar in green). **d-d'.** Spar overexpression (*C155-Gal4>UAS-Spar*)
17 showing increased Spar expression (in green) compared to control (*C155-Gal4>+*)
18 larval CNS. **e-e''.** Immunostaining of *Dimm-Gal4>UAS-GFPcaax* third instar larval
19 brains with Spar (in magenta), GFP and Dimm (in blue) confirms Spar expression in
20 Dimm-positive neuroendocrine cells (white arrowheads). **f-i.** Spar protein expression
21 in *w¹¹¹⁸*, *Alk^{Y1355S}*, and *Alk^{ΔRA}* third instar larval brains. Quantification of Spar levels
22 (corrected total cell fluorescence, CTCF) in **i.** **j-m.** Overexpression of Jeb in the third
23 instar CNS (*C155-Gal4>UAS-Jeb*) leads to increased Spar protein expression
24 compared to controls (*C155-Gal4>UAS-GFPcaax*). Quantification of Spar levels
25 (corrected total cell fluorescence, CTCF) in **m.** (**p<0.01; ***p<0.001) Scale bars: 100

1 μ m. Center lines in boxplots indicate medians; box limits indicate the 25th and 75th
2 percentiles; whiskers extend to the maximum or minimum.

3

4 **Figure 5. Identification of Spar peptides in *Drosophila* CNS tissues.**

5 Peptides derived from the Spar prepropeptide identified by mass spectrometry in wild-
6 type-like control flies (*FM7h;hs-svr*, upper panel) and *svr* mutant (*svrPG33;hs-svr*,
7 lower panel) flies. The predicted amino acid sequence of the CG4577-PA Spar isoform
8 is depicted for each genetic experimental background. Peptides identified by database
9 searching (UniProt *Drosophila melanogaster*, 1% FDR) are marked by blue bars below
10 the sequence. In addition, peptides correctly identified by *de novo* sequencing are
11 marked by orange bars above the sequence. Red bars indicate basic prohormone
12 convertase cleavage sites, green bar indicates the signal peptide.

13

14 **Figure 6. Spar expression in larval neuropeptide expressing neuronal**
15 **populations. a.** Immunostaining of *w¹¹¹⁸* third instar larval CNS with Spar (in magenta)
16 and PDF (in green). Closeups (**b-b''**) showing PDF- and Spar-positive neurons in
17 central brain indicated by white arrowheads. **c.** Immunostaining of *w¹¹¹⁸* third instar
18 larval CNS with Spar (in magenta) and Dh44 (in green). Closeups (**d-d''**) showing
19 Dh44- and Spar-positive neurons in central brain indicated by white arrowheads. **e.**
20 Immunostaining of *w¹¹¹⁸* third instar larval CNS with Spar (in magenta) and Ilp2 (in
21 green). Closeups (**f-f''**) showing Ilp2- and Spar-positive neurons in central brain
22 indicated by white arrowheads. **g.** Immunostaining of *w¹¹¹⁸* third instar larval CNS with
23 Spar (in magenta) and AstA (in green). Closeups (**h-h''**) showing AstA- and Spar-
24 positive neurons in central brain indicated by white arrowheads. **i.** Immunostaining of
25 *w¹¹¹⁸* third instar larval CNS with Spar (in magenta) and Lk (in green). Closeups (**j-j''**)

1 showing Lk (LHLK neurons)- and Spar-positive neurons in central brain indicated by
2 white arrowheads. **k.** Immunostaining of *w¹¹¹⁸* third instar larval CNS together with the
3 body wall muscles, showing Spar (in magenta) expressing Lk (in green) (ABLK
4 neurons) in neuronal processes, which emerge from the ventral nerve cord and
5 innervate the larval body wall muscle. Closeups (**l-l''**) showing co-expression of Lk
6 and Spar in neurons which attach to the body wall number 8 indicated by white arrow
7 heads. Scale bars: 100 μ m.

8

9 **Figure 7. Generation of *Spar*^{ΔExon1} mutant and expression of *Spar* in circadian**

10 neurons. a. Schematic overview of the *Spar* gene locus and the *Spar*^{ΔExon1} mutant.
11 Black dotted lines indicate the deleted region, which includes the transcriptional start
12 and exon 1. **b.** Immunoblotting for Spar. Spar protein (35 kDa) is present in larval CNS
13 lysates from wild-type (*w¹¹¹⁸*) controls but absent in *Spar*^{ΔExon1} mutants. **c-d'.**
14 Immunostaining confirms loss of Spar protein expression in the *Spar*^{ΔExon1} mutant.
15 Third instar larval (**c-c'**) and adult (**d-d'**) CNS stained for Spar (in magenta). Spar
16 signal is undetectable in *Spar*^{ΔExon1}. **e.** Expression of Spar in LNV, LND and DN1
17 circadian neuronal populations, employing publicly available RNA-seq data (Abruzzi
18 *et al.*, 2017). **f.** Feature plot of Spar expression in circadian neurons, employing
19 publicly available scRNA-seq data (Ma *et al.*, 2021). **g.** Violin plot indicating Spar
20 expression throughout the LD cycle, showing light phase (ZT02, ZT06 and ZT10) and
21 dark phase (ZT14, ZT18 and ZT22) expression. **h.** Dotplot comparing Spar expression
22 throughout the LD cycle with the previously characterized circadian-associated
23 neuropeptide pigment dispersion factor (*Pdf*) and the core clock gene *Period* (*per*).
24 Expression levels and percentage of expressing cells are indicated. **i-j.** Spar
25 expression in clock neurons (*Clk856-Gal4>UAS-GFPcaax*) of the larval CNS (**i-j**),

1 visualized by immunostaining for Spar (magenta), Alk (in blue) and clock neurons
2 (GFP, in green). **j'-j''**. Close up of central brain regions (yellow dashed box in **j**)
3 indicating expression of Spar in *Clk856*-positive neurons (white arrowheads). **k-l**.
4 Immunostaining of *Clk856-Ga4>UAS-GFPcaax* in adult CNS with GFP (in green),
5 Spar (in magenta) and Alk (in blue). **l'-l''**. Close ups of CNS regions (yellow dashed
6 box in **l**) stained with GFP (in green) and Spar (in red) showing a subset of clock-
7 positive neurons expressing Spar (white arrowheads). Scale bars: 100 μ m.

8

9 **Figure 8. Lifespan and activity plots of *Spar*^{ΔExon1} mutants. a.** Kaplan-Meier
10 survival curve comparing *Alk*^{ΔRA} (n=31) and *Spar*^{ΔExon1} (n=30) flies to *w*¹¹¹⁸ controls
11 (n=27). Outliers from each group were determined by Tukey's test, and statistical
12 significance was analyzed by Log-rank Mantel-Cox test (****p<0.0001). **b.**
13 Representative activity profile graph illustrating average activity count measured every
14 5 min across a 24 h span. Black arrows indicate morning and evening activity peaks.
15 Empty arrows indicate anticipatory increase in locomotor activity of *Spar*^{ΔExon1} mutant
16 flies occurring before light transition. One-way ANOVA followed by Tukey's multiple
17 comparisons post-hoc test was used to determine significance between groups
18 (****p<0.0001). *w*¹¹¹⁸ (n=27), *Spar*^{ΔExon1} (n=30), *Alk*^{ΔRA} (n=31). **c.** Representative sleep
19 profile, demonstrating the proportion of flies engaged in sleep measured at 5-minute
20 intervals over a 24-hour period. One-way ANOVA followed by Tukey's multiple
21 comparisons post-hoc test was used to determine significance between groups
22 (****p<0.0001; *p<0.05). *w*¹¹¹⁸ (n=27), *Spar*^{ΔExon1} (n=30), *Alk*^{ΔRA} (n=31). **d.**
23 Representative average actogram of individual flies in each group. Each row
24 corresponds to one day, visualized as 288 bars each representing one 5 min interval.
25 Yellow bar represents the time of the day when the lights are turned on, with ZT0

1 indicating the morning peak and ZT12 the evening peak. **e.** Mean locomotor activity
2 per day over 30 days. One-way ANOVA followed by Tukey's multiple comparisons
3 post-hoc test was used to determine significance between groups (** $p<0.001$). w^{1118}
4 ($n=27$), $Spar^{\Delta Exon1}$ ($n=30$), $Alk^{\Delta RA}$ ($n=31$). **f.** Ratio of the mean activity in the 3 h
5 preceding light transition over the mean activity in the 6h preceding light transition.
6 Activity data is measured over 30 days. a.m. anticipation and p.m. anticipation depict
7 the ratio preceding lights on and lights off respectively. Unpaired student t-test was
8 used to determine the significance between control and $Spar^{\Delta Exon1}$ (**** $p<0.0001$).
9 w^{1118} ($n=27$), $Spar^{\Delta Exon1}$ ($n=30$). **g.** Ratio of the mean activity in the 3 h preceding light
10 transition over the mean activity in the 6h preceding light transition. Activity data is
11 measured over 5 days in LD/DD. a.m. anticipation and p.m. anticipation depict the
12 ratio preceding lights on (or subjective lights on) and lights off (or subjective lights off)
13 respectively. Unpaired student t-test was used to determine the significance between
14 $Spar^{\Delta Exon1}$ and controls (**** $p<0.0001$; ** $p<0.01$); paired student t-test was used to
15 determine significance in each group between the two experimental conditions
16 (**** $p<0.0001$; *** $p<0.001$; ** $p<0.01$). w^{1118} ($n=32$), $Spar^{\Delta Exon1}$ ($n=31$). **h-h'**. Mean
17 sleep per day across a 3-day average (Day 5-7 (h), Day 20-22 (h')). One-way ANOVA
18 followed by Tukey's multiple comparisons post-hoc test was used to determine
19 significance between groups (**** $p<0.0001$). w^{1118} ($n=27$), $Spar^{\Delta Exon1}$ ($n=30$), $Alk^{\Delta RA}$
20 ($n=31$). The error bars in the bar graphs represents standard deviation.

21

22

23 **Figure 9. $Spar^{\Delta Exon1}$ mutants exhibit circadian activity disturbances**

1 **a.** Representative activity profile for w^{1118} controls, illustrating the average activity
2 count measured every 5 min across a 24 h span for Light-Dark (LD) for 5 cycles (black
3 line), subsequently switching to Dark-Dark (DD) for 5 cycles (gray lines). ZT0 and
4 ZT12 represent the start and end of the photoperiod respectively. CT0 and CT12
5 represent the start and end of the subjective day in constant dark conditions. Empty
6 arrows indicate morning and evening peaks at CT0 and CT12 respectively. Paired
7 student t-test was used to determine significance. w^{1118} (n=32). **a'.** Mean locomotor
8 activity per day in controls obtained by averaging 5 days in light/dark conditions (LD1-
9 LD5) and 5 days in dark/dark conditions (DD1-DD5). Paired student t-test was used
10 to determine significance. w^{1118} (n=32) **b.** Representative activity profile graph of
11 *Spar^{ΔExon1}* illustrating the average activity count measured every 5 min across 24 h
12 obtained by averaging 5 days in light/dark conditions (LD1-LD5) and 5 days in
13 dark/dark conditions (DD1-DD5). Empty arrows indicate morning and evening peaks
14 at CT0 and CT12 respectively. Paired student t-test was used to determine
15 significance between the two experimental conditions (****p<0.0001). *Spar^{ΔExon1}*
16 (n=31). **b'.** Mean locomotor activity per day of *Spar^{ΔExon1}* obtained by averaging 5 days
17 in light/dark conditions (LD1-LD5) and 5 days in dark/dark conditions (DD1-DD5).
18 Paired student t-test was used to determine significance (****p<0.0001). *Spar^{ΔExon1}*
19 (n=31). **c.** Representative average actograms of individual w^{1118} flies (n=32) and
20 *Spar^{ΔExon1}* flies (n=31) in LD and DD conditions. Each row corresponds to one day,
21 visualized in 288 bars each representing one 5 min interval. ZT0 and ZT12 represent
22 the start and end of the photoperiod respectively. CT0 and CT12 represent the start
23 and end of the subjective day in constant dark conditions. **d.** Average number of sleep
24 bouts for 12 h photophase over 5 days in LD and the corresponding time over 5 days
25 in DD. Unpaired student t-test was used to determine significance between control

1 (*w¹¹¹⁸*) and *Spar^{ΔExon1}* (***p*<0.001). Paired student t-test was used to determine
2 significance between the two experimental conditions (***p*<0.001; ***p*<0.01). *w¹¹¹⁸*
3 (*n*=32), *Spar^{ΔExon1}* (*n*=31). **e.** Representative activity profile graph of *Clk856-Gal4>+*
4 illustrating the average activity count measured every 5 min across a 24 h span for
5 Light-Dark (LD) for 5 cycles (black line) and subsequently switching to Dark-Dark (DD)
6 for 5 cycles (gray lines). Paired student t-test was used to determine significance
7 (***p*<0.0001). *Clk856-Gal4>+* (*n*=32). **e'.** Mean locomotor activity per day of *Clk856-*
8 *Gal4>+* obtained by averaging 5 days in light/dark conditions (LD1-LD5) and 5 days in
9 dark/dark conditions (DD1- DD5). Paired student t-test was used to determine
10 significance (***p*<0.0001). *Clk856-Gal4>+* (*n*=32). *Clk856-GAL4>UAS-Spar RNAi*
11 (*n*=27). **f.** Representative activity profile graph of *UAS-Spar RNAi>+* illustrating the
12 average activity count measured every 5 min across 24-hour span obtained by
13 averaging 5 days in light/dark conditions (LD1-LD5) and 5 days in dark/dark conditions
14 (DD1-DD5). A paired student t-test was used to determine the significance between
15 the two experimental conditions. *UAS-Spar RNAi>+* (*n*=32). **f'.** Graph illustrating the
16 mean locomotor activity per day of *UAS-Spar RNAi>+* obtained by averaging 5 days
17 in light/dark conditions (LD1-LD5) and 5 days in dark/dark conditions (DD1-DD5). A
18 paired student t-test was used to determine the significance between the two
19 experimental conditions. *UAS-Spar RNAi>+* (*n*=32). **g.** Representative activity profile
20 graph of *Clk856-Gal4>UAS-Spar RNAi* illustrating the average activity count
21 measured every 5 min across 24 h span obtained by averaging 5 days in light/dark
22 conditions (LD1-LD5) and 5 days in dark/dark conditions (DD1-DD5). Paired student
23 t-test was used to determine significance (***p*<0.0001). *Clk856-GAL4>UAS-Spar*
24 *RNAi* (*n*=27). **g'.** Mean locomotor activity per day for *Clk856-Gal4>UAS-Spar RNAi*
25 obtained by averaging 5 days in light/dark conditions (LD1-LD5) and 5 days in

1 dark/dark conditions (DD1-DD5). Paired student t-test was used to determine the
2 significance (**** $p<0.0001$). Error bars represent standard deviation.

3

1 **Supplementary figure legends**

2

3 **Figure 1 – figure supplement 1. TaDa third instar larval CNS sample validation**

4 **and additional data analysis. a-b'.** Expression of mCherry in the larval CNS reflects

5 Dam-PolII expression. Third instar larval brains were stained for Alk (in green) and

6 mCherry (in red) confirming expression of Dam-PolII in the TaDa system. Scale bars:

7 100 μ m. **c.** Schematic overview of the TaDa analysis experimental workflow. Brains

8 from third instar wandering larvae were dissected, and methylated DNA digested with

9 Dpn1 restriction endonuclease. The resulting DNA fragment library was amplified,

10 sequenced and analysed through TaDa bioinformatics pipelines. **d.** Bar graph

11 showing total number of reads in each replicate of the TaDa dataset. **d'.** Bar graph

12 showing percentage of reads aligned to *Drosophila* genome in each replicate. **e.**

13 Correlation plot of samples (*control* and *Alk^{DN}*) and replicates shows no significant

14 intra-replicate differences. **f.** Line graph indicating the relative distance to TSS of

15 different samples compared to random regions. **g.** Pol II occupancy profile of *Alk* in

16 *Alk^{DN}* compared to control indicates a higher pol II occupancy in exons 1 to exon 7, in

17 agreement with the expression of the *Alk^{DN}* transgene.

18

19 **Figure 2 – figure supplement 1. a-a''.** Alk staining in *Dimm-Gal4>UAS-GFPcaax*

20 third instar larval CNS confirms Alk expression in Dimm-positive cells. Alk (in magenta)

21 and GFP (in green), close-ups indicating overlapping cells (indicated by yellow

22 arrowheads) in the larval ring gland corpora cardiaca cells (**b-b''**) central brain (**c-c''**)

23 and ventral nerve cord (**d-d''**). Scale bars: 100 μ m.

24

1 **Figure 3 – figure supplement 1. Co-expression of *Alk* and *Spar* in publicly**
2 **available *Drosophila* CNS scRNA-seq datasets.** UMAP showing co-expression of
3 *Alk* and CG4577 in different cell clusters in publicly available scRNA-seq datasets
4 (Brunet Avalos *et al.*, 2019) from first instar larval CNS **(a)** and **(b)** adult CNS (Davie
5 *et al.*, 2018). **c.** Pairwise alignment of CG4577-PA and CG4577-PB showing isoform-
6 specific differences at amino acid positions 405 and 406 (highlighted in yellow).

7

8 **Figure 3 – figure supplement 2. Alignment of CG4577 orthologs in flies**
9 **(Brachycera).** **a.** Alignment of *Drosophila melanogaster* CG4577 orthologs in the
10 family *Drosophilidae* (vinegar flies, including the fruit fly *Drosophila melanogaster*). **b.**
11 Alignment of *Drosophila melanogaster* CG4577 orthologs in other brachyceran taxa.

12

13 **Figure 4 – figure supplement 1. a-a”** Immunostaining of *w¹¹¹⁸* third instar larval
14 brains with Spar (green) and Alk (magenta) revealing overlapping expression
15 (indicated by yellow arrowheads) in central brain, ring gland corpora cardiaca and
16 ventral nerve cord. Close-ups indicating overlapping cells in central brain **(b-b”**,
17 corresponding to dashed box on left in A) and ring gland corpora cardiaca cells **(c-c”**,
18 corresponding to dashed box on right in A). Scale bars: 100 μ m.

19

20 **Figure 4 – movie supplement 1.** Z-stack projection video of Figure 4e'

21

22 **Figure 4 – movie supplement 2.** Z-stack projection video of Figure 4e”

23

24 **Figure 4 – figure supplement 2. a-a”** Adult CNS showing Spar expression in Dimm-
25 positive cells. Spar (in magenta) and Dimm (in green), close-ups **(b-b”**) indicated by

1 boxed region and white arrows indicating representative co-expressed markers cells.

2 Scale bars: 100 μ m.

3

4 **Figure 6 – figure supplement 1. Spar expression in adult neuropeptide
5 expressing neuronal populations. a.** Immunostaining of w^{1118} adult CNS with anti-
6 Spar (in magenta) and anti-PDF (in green). Closeups (**b-b''**) of PDF- and Spar-positive
7 LNv neurons, indicated by white arrowheads. **c.** Immunostaining of w^{1118} adult CNS
8 with Spar (in magenta) and Dh44 (in green). Closeups (**d-d''**) of Dh44- and Spar-
9 positive neurons, indicated by white arrowheads. **e.** Immunostaining of w^{1118} adult
10 CNS with Spar (in magenta) and Ilp2 (in green). Closeups (**f-f''**) showing the close
11 proximity and overlap of Ilp2-positive and Spar-positive neurons in central brain,
12 indicated by white arrowheads. **g.** Immunostaining of w^{1118} adult CNS with Spar (in
13 magenta) and AstA (in green). Closeups (**h-h''**) showing AstA- and Spar-positive
14 neurons in central brain indicated by white arrowheads. Scale bars: 100 μ m.

15

16 **Figure 7 – figure supplement 1. Spar does not affect the Alk-regulated pupal size
17 phenotype.** Overexpression of Spar (*C155-Gal4>UAS-Spar*) or *Spar RNAi* (*C155-
18 Gal4>UAS-Spar RNAi*) in CNS does not significantly affect pupal size compared to
19 previously characterized controls such as *Alk^{DN}* (*C155-Gal4>UAS-Alk^{DN}*), which
20 significantly increases pupal size and overexpression of *Jeb* (*C155-Gal4>UAS-Alk^{DN}*),
21 which significantly decreases pupal size compared to controls (*C155-Gal4>+*) (n.s =
22 not significant, ** $p < 0.05$, *** $p < 0.01$). Center lines in boxplots indicate medians; box
23 limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile
24 range from the 25th and 75th percentiles, crosses represent sample means; grey bars
25 indicate 83% confidence intervals of the means; data points are plotted as grey circles.

1

2 **Figure 7 – figure supplement 2. *Spar* expression in circadian neuronal clusters.**

3 **a-b.** Feature plots depicting the expression of *Spar* in publicly available circadian
4 neuronal scRNA-seq data (Ma *et al.*, 2021) throughout the LD cycle (Zeitgeber time)
5 (**a**) and DD cycle (Circadian time) (**b**). **c.** Dotplot showing *Spar* expression throughout
6 the DD cycle along with the previously characterized circadian associated
7 neuropeptide *Pdf* and the core clock gene *Per*. Peak expression of *Spar* and *Per* is
8 observed at CT10.

9

10 **Figure 8 – figure supplement 1. a.** Representative activity profile graph of control
11 (*w*¹¹¹⁸) and *Spar*^{ΔExon1} illustrating average activity count measured every 5 min across
12 a 24 h span obtained by averaging 5 days in light/dark conditions (LD1-LD5). Unpaired
13 student t-test was used to determine significance (*****p*<0.0001). *w*¹¹¹⁸ (n=32),
14 *Spar*^{ΔExon1} (n=31). **a'.** Mean locomotor activity per day of control and *Spar*^{ΔExon1}
15 obtained by averaging 5 days in light/dark conditions (LD1-LD5). Unpaired student t-
16 test was used to determine significance (*****p*<0.0001). **b.** Representative activity
17 profile graph of control and *Spar*^{ΔExon1} illustrating the average activity count measured
18 every 5 min across a 24 h span obtained by averaging 5 days in dark/dark conditions
19 (DD1-DD5). CT0 and CT12 represent the start and end of the subjective day in
20 constant dark conditions respectively. Unpaired student t-test was used to determine
21 significance (*****p*<0.0001). *w*¹¹¹⁸ (n=32), *Spar*^{ΔExon1} (n=31). **b'.** Mean locomotor
22 activity per day for control and *Spar*^{ΔExon1} obtained by averaging 5 days in dark/dark
23 conditions (DD1-DD5). Unpaired student t-test was used to determine significance
24 (*****p*<0.0001). *w*¹¹¹⁸ (n=32), *Spar*^{ΔExon1} (n=31). **c.** Representative sleep profile graph
25 of control and *Spar*^{ΔExon1} illustrating the average activity count measured every 5 min

1 across a 24 h span obtained by averaging 5 days in light/dark conditions (LD1-LD5).
2 Unpaired student t-test was used to determine significance (**** $p<0.0001$). **c'**. Graph
3 illustrating mean sleep per day of control and *Spar^{ΔExon1}* obtained by averaging 5 days
4 in light/dark conditions (LD1-LD5). Unpaired student t-test was used to determine
5 significance (**** $p<0.0001$). *w¹¹¹⁸* (n=32), *Spar^{ΔExon1}* (n=31). **d**. Representative sleep
6 profiles of controls and *Spar^{ΔExon1}* illustrating the average activity count measured
7 every 5 min across a 24 h span obtained by averaging 5 days in dark/dark conditions
8 (DD1-DD5). Unpaired student t-test was used to determine significance (**** $p<0.0001$). *w¹¹¹⁸* (n=32),
9 *Spar^{ΔExon1}* (n=31). **d'**. Mean sleep per day of control and
10 *Spar^{ΔExon1}* obtained by averaging 5 days in dark/dark conditions (DD1-DD5). Unpaired
11 student t-test was used to determine significance (**** $p<0.0001$). *w¹¹¹⁸* (n=32),
12 *Spar^{ΔExon1}* (n=31). Error bars represent standard deviation.

13
14 **Figure 8 – figure supplement 2. a-a'**. Mean sleep per 12 h photophase over 3 days
15 (Day 5-7 (**a**), Day 20-22 (**a'**)). One-way ANOVA followed by Tukey's multiple
16 comparisons post-hoc test was used to determine significance groups (**** $p<0.0001$).
17 *w¹¹¹⁸* (n=27), *Spar^{ΔExon1}* (n=30), *Alk^{ΔRA}* (n=31). **b-b'**. Graph illustrating the average
18 number of sleep bouts for 12 h photophase over 3 days (Day 5-7 (**b**), Day 20-22 (**b'**)).
19 A one-way ANOVA followed by Tukey's multiple comparisons post-hoc test was used
20 to determine the significance between groups (**** $p<0.0001$). *w¹¹¹⁸* (n=27), *Spar^{ΔExon1}*
21 (n=30), *Alk^{ΔRA}* (n=31). Error bars represent standard deviation.

22
23 **Figure 8 – figure supplement 3. *Spar^{ΔExon1}* flies retain a hyperactive profile when**
24 **shifted to dark/dark conditions. a**. Graph illustrating the Qp statistical value
25 (rhythmicity power) obtained by generating Chi-square periodograms of control

1 (w^{1118}), $Spar^{\Delta Exon1}$, and $Alk^{\Delta RA}$ flies. One-way ANOVA followed by Tukey's multiple
2 comparisons post-hoc test was used to determine significance between groups
3 (**** $p<0.0001$). w^{1118} (n=27), $Spar^{\Delta Exon1}$ (n=30), $Alk^{\Delta RA}$ (n=31). **a'**. Representative
4 graph of percentage of rhythmicity of w^{1118} , $Spar^{\Delta Exon1}$, and $Alk^{\Delta RA}$ flies. w^{1118} (n=27),
5 $Spar^{\Delta Exon1}$ (n=30), $Alk^{\Delta RA}$ (n=31). Error bars represent standard deviation.

6

7 **Figure 8 – figure supplement 4. a.** Graph illustrating the percentage of arrhythmic
8 flies, and flies with a period higher or lower than 1440 minutes (24 h). Flies were
9 maintained under LD conditions and 14 days were selected to calculate the period by
10 generating Chi-Square periodograms for each fly in the group. Only data from rhythmic
11 flies was selected to calculate the percentage of flies having a higher or lower period
12 than 1440 minutes. **a'**. Average periods of flies over 14 days in LD conditions. Flies
13 with an arrhythmic profile were not selected for statistical analysis. Unpaired student
14 t-test was used to determine significance between the two groups. Error bars
15 represent standard deviation.

16

17 **Figure 9 – figure supplement 1. a.** Representative sleep profile graph of $Clk856-$
18 $Gal4>+$ illustrating the percentage of time sleeping measured every 5 min across a 24
19 h span obtained by averaging 5 days in light/dark conditions (LD1-LD5) and 5 days in
20 dark/dark conditions (DD1- DD5). Paired student t-test was used to determine
21 significance (**** $p<0.0001$). $Clk856-Gal4>+$ (n=32). **a'**. Mean sleep per day of $Clk856-$
22 $Gal4>+$ obtained by averaging 5 days in light/dark conditions (LD1-LD5) and 5 days in
23 dark/dark conditions (DD1-DD5). Paired student t-test was used to determine
24 significance (**** $p<0.0001$). $Clk856-Gal4>+$ (n=32). **b.** Representative sleep profile of

1 *UAS-Spar RNAi*>+ illustrating the percentage of time that flies spend sleeping
2 measured every 5 min across a 24-hour span obtained by averaging 5 days in
3 light/dark conditions (LD1- LD5) and 5 days in dark/dark conditions (DD1-DD5). Paired
4 student t-test was used to determine the significance between the two experimental
5 conditions (**** $p<0.0001$). *UAS-Spar RNAi*/+ (n=32). **b'**. Mean sleep per day of *UAS-*
6 *Spar RNAi*/+ obtained by averaging 5 days in light/dark conditions (LD1-LD5) and 5
7 days in dark/dark conditions (DD1-DD5). Paired student t-test was used to determine
8 the significance between the two experimental conditions (**** $p<0.0001$). *UAS-Spar*
9 *RNAi*/+ (n=32). **c**. Representative sleep profile graph of *Clk856-Gal4>Spar RNAi*
10 illustrating the percentage of time sleeping measured every 5 min across a 24 h span
11 obtained by averaging 5 days in light/dark conditions (LD1-LD5) and 5 days in
12 dark/dark conditions (DD1-DD5). Paired student t-test was used to determine
13 significance (**** $p<0.0001$). *Clk856-Gal4>UAS-Spar RNAi* (n=27). **c'**. Mean sleep per
14 day of *Clk856-Gal4>Spar RNAi* obtained by averaging 5 days in light/dark conditions
15 (LD1-LD5) and 5 days in dark/dark conditions (DD1-DD5). Paired student t-test was
16 used to determine significance (**** $p<0.0001$). *Clk856-Gal4>UAS-Spar RNAi* (n=27).
17 Error bars represent standard deviation.
18

19 **Figure 9 – figure supplement 2. a.** Representative activity profile graph of *UAS-Spar*
20 *RNAi* driven by *Clk856-Gal4* and the two control groups *Clk856-Gal4>+* and *UAS-Spar*
21 *RNAi*/+ illustrating the average activity count measured every 5 min across 24-hour
22 obtained by averaging 5 days in light/dark conditions (LD1-LD5). One-way ANOVA
23 followed by Tukey's multiple comparisons post-hoc test was used to determine the
24 significance between groups (* $p<0.05$, *** $p<0.001$). *Clk856-Gal4>+* (n=32), *Clk856-*
25 *Gal4>UAS-Spar RNAi* (n=27), and *UAS-Spar RNAi*/+ (n=32). **a'**. Graph illustrating

1 mean locomotor activity per day of *Clk856-Ga4>+*, *Clk856-Ga4>UAS-Spar RNAi* and
2 *UAS-Spar RNAi/+* obtained by averaging 5 days in light/dark conditions (LD1-LD5).
3 One-way ANOVA followed by Tukey's multiple comparison post-hoc test was used to
4 determine the significance between groups (** $p<0.001$, *** $p<0.0001$). *Clk856-*
5 *Ga4>+* (n=32), *Clk856-GAL4>UAS-Spar RNAi* (n=27), and *UAS-Spar RNAi/+* (n=32).
6 **b.** Representative activity profile graph of *UAS-Spar RNAi* driven by *Clk856-Ga4* and
7 the two control groups *Clk856-Ga4>+* and *UAS-Spar RNAi/+* illustrating the average
8 activity count measured every 5 min across a 24-hour span obtained by averaging 5
9 days in dark/dark conditions (DD1-DD5). One-way ANOVA followed by Tukey's
10 multiple comparison post-hoc test was used to determine the significance between
11 groups (**** $p<0.0001$). *Clk856-Ga4>+* (n=32), *Clk856-Ga4>UAS-Spar RNAi* (n=27),
12 and *UAS-Spar RNAi/+* (n=32). **b'**. Graph illustrating the mean locomotor activity per
13 day of *Clk856-Ga4>+*, *Clk856-Ga4>UAS-Spar RNAi* and *UAS-Spar RNAi/+* obtained
14 by averaging 5 days in dark/dark conditions (DD1-DD5). One-way ANOVA followed by
15 Tukey's multiple comparison post-hoc test was used to determine the significance
16 between groups (**** $p<0.0001$). *Clk856-Ga4>+* (n=32), *Clk856-Ga4>UAS-Spar*
17 *RNAi* (n=27), and *UAS-Spar RNAi/+* (n=32). **c.** Representative sleep profile graph of
18 *UAS-Spar RNAi* driven by *Clk856-Ga4* and the two control groups *Clk856-Ga4>+* and
19 *UAS-Spar RNAi/+* illustrating the average activity count measured every 5 min across
20 a 24-hour span obtained by averaging 5 days in light/dark conditions (LD1-LD5). One-
21 way ANOVA followed by Tukey's multiple comparison post-hoc test was used to
22 determine the significance between groups (** $p<0.01$). *Clk856-Ga4>+* (n=32),
23 *Clk856-GAL4>UAS-Spar RNAi* (n=27), and *UAS-Spar RNAi>+* (n=32). **c'**. Graph
24 illustrating the mean sleep per day of *Clk856-Ga4>+*, *Clk856-Ga4>UAS-Spar RNAi*
25 and *UAS-Spar RNAi/+* obtained by averaging 5 days in light/dark conditions (LD1-

1 LD5). One-way ANOVA followed by Tukey's multiple comparison post-hoc test was
2 used to determine the significance between groups (**** $p<0.0001$). **d**. Representative
3 sleep profile graph of *UAS-Spar RNAi* driven by *Clk856-Gal4* and the two control
4 groups *Clk856-Gal4>+* and *UAS-Spar RNAi/+* illustrating the average activity count
5 measured every 5 min across a 24-hour span obtained by averaging 5 days in
6 dark/dark conditions (DD1-DD5). One-way ANOVA followed by Tukey's multiple
7 comparison post-hoc test was used to determine the significance between groups (*
8 $p<0.005$, **** $p<0.0001$). *Clk856-Gal4>+* (n=32), *Clk856-Gal4>UAS-Spar RNAi*
9 (n=27), and *UAS-Spar RNAi/+* (n=32). **d'**. Graph illustrating the mean sleep per day of
10 *Clk856-Gal4>+*, *Clk856-Gal4>UAS-Spar RNAi* and *UAS-Spar RNAi/+* obtained by
11 averaging 5 days in dark/dark conditions (DD1-DD5). One-way ANOVA followed by
12 Tukey's multiple comparisons post-hoc test was used to determine the significance
13 between groups (* $p<0.05$, **** $p<0.0001$). *Clk856-Gal4>+* (n=32), *Clk856-Gal4>UAS-*
14 *Spar RNAi* (n=27), and *UAS-Spar RNAi/+* (n=32). Error bars represent standard
15 deviation.

16

17 **Figure 9 – figure supplement 3.** **a**. Qp statistical value obtained by generating Chi-
18 square periodograms of control (*w¹¹¹⁸*) flies in 5 days LD and 7 days DD conditions.
19 Paired student t-test was used to determine significance (*** $p<0.001$). *w¹¹¹⁸* (n=32). **a'**.
20 Qp statistical value obtained by generating Chi-square periodograms of *Spar^{ΔExon1}* flies
21 in 5 days LD and 7 days DD conditions. Paired student t-test was used to determine
22 significance. *Spar^{ΔExon1}* (n=31). **b**. Percentage rhythmicity of control (*w¹¹¹⁸*) flies in LD
23 vs DD conditions. *w¹¹¹⁸* (n=32). **b'**. Percentage rhythmicity of *Spar^{ΔExon1}* flies in LD vs
24 DD conditions. *Spar^{ΔExon1}* (n=31). **c**. Percentage of flies with a period higher or lower
25 than 1440 minutes (24 h). Flies were maintained for 5 days under LD conditions and

1 shifted to 7 days under DD (free-run). The period was calculated by generating Chi-
2 Square periodograms for each fly in the group. Only data from rhythmic flies was
3 selected to calculate the percentage of flies having a period higher or lower than 1440
4 minutes. w^{1118} (n=32), $Spar^{\Delta Exon1}$ (n=31). **d.** Graph illustrating the average periods of
5 flies over 5 days in LD and 7 days in DD (free-run). Flies with an arrhythmic profile
6 were not selected for the statistical analysis. An unpaired student t-test was used to
7 determine the significance between the two groups (** $p<0.01$). w^{1118} (n=32), $Spar^{\Delta Exon1}$
8 (n=31). Error bars represent standard deviation.

9

1 **Additional Supplementary information**

2

3 **Supplementary Figure 1.** Feature plots visualizing expression of TaDa-identified
4 genes expressed in neuroendocrine cells in scRNA-seq from third instar larval CNS
5 (Pfeifer *et al.*, 2022). TaDa candidates *CG12594*, *cpx* and *VGluT* are shown.

6

7 **Supplementary Table 1.** TaDa data *Alk*^{DN} downregulated genes (Sheet 1). RNASeq
8 normalized read count data of *CG4577* in control (*w*¹¹¹⁸), *Alk*^{RA} and *Alk*^{Y1355S} conditions
9 (Sheet 2). RNAseq average normalized read count data of *Spar* in LNv, LNd and DN1
10 clock neuronal cells (Sheet 3). *Spar*^{ΔExon1} mutant CRISPR single guide RNA target and
11 screening primer information (Sheet 4).

12

13

14

15

16

17

1 References

2 Abruzzi KC, Zadina A, Luo W, Wiyanto E, Rahman R, Guo F, Shafer O, Rosbash M (2017) RNA-seq
3 analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate
4 neuropeptides. *PLoS Genet* 13: e1006613

5 Ahmed M, Kaur N, Cheng Q, Shanabrough M, Tretiakov EO, Harkany T, Horvath TL, Schlessinger J
6 (2022) A hypothalamic pathway for Augmentor alpha-controlled body weight regulation. *Proc Natl
7 Acad Sci U S A* 119: e2200476119

8 Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine
9 JC, Geurts P, Aerts J *et al* (2017) SCENIC: single-cell regulatory network inference and clustering. *Nat
10 Methods* 14: 1083-1086

11 Allan DW, Park D, St Pierre SE, Taghert PH, Thor S (2005) Regulators acting in combinatorial codes also
12 act independently in single differentiating neurons. *Neuron* 45: 689-700

13 Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, von Heijne G,
14 Nielsen H (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. *Nat
15 Biotechnol* 37: 420-423

16 Bai L, Sehgal A (2015) Anaplastic Lymphoma Kinase Acts in the Drosophila Mushroom Body to
17 Negatively Regulate Sleep. *PLoS Genet* 11: e1005611

18 Barber AF, Fong SY, Kolesnik A, Fetchko M, Sehgal A (2021) Drosophila clock cells use multiple
19 mechanisms to transmit time-of-day signals in the brain. *Proc Natl Acad Sci U S A* 118

20 Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT (2011) BamTools: a C++ API and toolkit
21 for analyzing and managing BAM files. *Bioinformatics (Oxford, England)* 27: 1691-1692

22 Bazigou E, Apitz H, Johansson J, Loren CE, Hirst EM, Chen PL, Palmer RH, Salecker I (2007) Anterograde
23 Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. *Cell*
24 128: 961-975

25 Berlandi J, Lin FJ, Ambree O, Rieger D, Paulus W, Jeibmann A (2017) Swing Boat: Inducing and
26 Recording Locomotor Activity in a Drosophila melanogaster Model of Alzheimer's Disease. *Front Behav
27 Neurosci* 11: 159

28 Bilsland JG, Wheeldon A, Mead A, Znamenskiy P, Almond S, Waters KA, Thakur M, Beaumont V,
29 Bonnert TP, Heavens R *et al* (2008) Behavioral and neurochemical alterations in mice deficient in
30 anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications.
31 *Neuropsychopharmacology* 33: 685-700

32 Borenas M, Umapathy G, Lai WY, Lind DE, Witek B, Guan J, Mendoza-Garcia P, Masudi T, Claeys A,
33 Chuang TP *et al* (2021) ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of
34 ALK mutation. *EMBO J* 40: e105784

35 Brunet Avalos C, Maier GL, Bruggmann R, Sprecher SG (2019) Single cell transcriptome atlas of the
36 Drosophila larval brain. *Elife* 8

37 Cabrero P, Radford JC, Broderick KE, Costes L, Veenstra JA, Spana EP, Davies SA, Dow JA (2002) The Dh
38 gene of Drosophila melanogaster encodes a diuretic peptide that acts through cyclic AMP. *J Exp Biol*
39 205: 3799-3807

40 Cantera R, Nässel DR (1992) Segmental peptidergic innervation of abdominal targets in larval and adult
41 dipteran insects revealed with an antiserum against leucokinin I. *Cell Tissue Res* 269: 459-471

42 Cavanaugh DJ, Geratowski JD, Wooltorton JR, Spaethling JM, Hector CE, Zheng X, Johnson EC,
43 Eberwine JH, Sehgal A (2014) Identification of a circadian output circuit for rest:activity rhythms in
44 Drosophila. *Cell* 157: 689-701

45 Cavey M, Collins B, Bertet C, Blau J (2016) Circadian rhythms in neuronal activity propagate through
46 output circuits. *Nat Neurosci* 19: 587-595

47 Cazes A, Lopez-Delisle L, Tsarovina K, Pierre-Eugene C, De Preter K, Peuchmaur M, Nicolas A, Provost
48 C, Louis-Brennetot C, Daveau R *et al* (2014) Activated Alk triggers prolonged neurogenesis and Ret
49 upregulation providing a therapeutic target in ALK-mutated neuroblastoma. *Oncotarget* 5: 2688-2702

1 Chen J, Reiher W, Hermann-Luibl C, Sellami A, Cognigni P, Kondo S, Helfrich-Forster C, Veenstra JA,
2 Wegener C (2016) Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is
3 Modulated by PDF. *PLoS Genet* 12: e1006346

4 Cheng LY, Bailey AP, Leavers SJ, Ragan TJ, Driscoll PC, Gould AP (2011) Anaplastic lymphoma kinase
5 spares organ growth during nutrient restriction in Drosophila. *Cell* 146: 435-447

6 Chiu JC, Low KH, Pike DH, Yildirim E, Edery I (2010) Assaying locomotor activity to study circadian
7 rhythms and sleep parameters in Drosophila. *J Vis Exp*

8 Choksi SP, Southall TD, Bossing T, Edoff K, de Wit E, Fischer BE, van Steensel B, Micklem G, Brand AH
9 (2006) Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural
10 stem cells. *Dev Cell* 11: 775-789

11 Cong X, Wang H, Liu Z, He C, An C, Zhao Z (2015) Regulation of Sleep by Insulin-like Peptide System in
12 Drosophila melanogaster. *Sleep* 38: 1075-1083

13 Crocker A, Guan XJ, Murphy CT, Murthy M (2016) Cell-Type-Specific Transcriptome Analysis in the
14 Mushroom Body Reveals Memory-Related Changes in Gene Expression. *Cell Reports* 15: 1580-1596

15 Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft L, Aibar S, Makhzami S, Christiaens V,
16 Bravo Gonzalez-Blas C et al (2018) A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. *Cell*
17 174: 982-998 e920

18 Donlea JM, Pimentel D, Talbot CB, Kempf A, Omoto JJ, Hartenstein V, Miesenbock G (2018) Recurrent
19 Circuitry for Balancing Sleep Need and Sleep. *Neuron* 97: 378-389 e374

20 Dus M, Lai JS, Gunapala KM, Min S, Tayler TD, Hergarden AC, Geraud E, Joseph CM, Suh GS (2015)
21 Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila. *Neuron* 87: 139-
22 151

23 Englund C, Loren CE, Grabbe C, Varshney GK, Deleuil F, Hallberg B, Palmer RH (2003) Jeb signals
24 through the Alk receptor tyrosine kinase to drive visceral muscle fusion. *Nature* 425: 512-516

25 Finley KD, Edeen PT, Foss M, Gross E, Ghbeish N, Palmer RH, Taylor BJ, McKeown M (1998)
26 Dissatisfaction encodes a tailless-like nuclear receptor expressed in a subset of CNS neurons
27 controlling Drosophila sexual behavior. *Neuron* 21: 1363-1374

28 Gouzi JY, Moressis A, Walker JA, Apostolopoulou AA, Palmer RH, Bernards A, Skoulakis EM (2011) The
29 receptor tyrosine kinase Alk controls neurofibromin functions in Drosophila growth and learning. *PLoS
30 Genet* 7: e1002281

31 Guo X, Yin C, Yang F, Zhang Y, Huang H, Wang J, Deng B, Cai T, Rao Y, Xi R (2019) The Cellular Diversity
32 and Transcription Factor Code of Drosophila Enteroendocrine Cells. *Cell Rep* 29: 4172-4185 e4175

33 Harrisingh MC, Wu Y, Lnenicka GA, Nitabach MN (2007) Intracellular Ca²⁺ regulates free-running
34 circadian clock oscillation in vivo. *J Neurosci* 27: 12489-12499

35 Hart JE, Clarke IJ, Risbridger GP, Ferneyhough B, Vega-Hernandez M (2017) Mysterious inhibitory cell
36 regulator investigated and found likely to be secretogranin II related. *PeerJ* 5: e3833

37 Helle KB (2004) The granin family of uniquely acidic proteins of the diffuse neuroendocrine system:
38 comparative and functional aspects. *Biol Rev Camb Philos Soc* 79: 769-794

39 Hewes RS, Park D, Gauthier SA, Schaefer AM, Taghert PH (2003) The bHLH protein Dimmed controls
40 neuroendocrine cell differentiation in Drosophila. *Development* 130: 1771-1781

41 Huckesfeld S, Schlegel P, Mirochnikow A, Schoofs A, Zinke I, Haubrich AN, Schneider-Mizell CM,
42 Truman JW, Fetter RD, Cardona A et al (2021) Unveiling the sensory and interneuronal pathways of
43 the neuroendocrine connectome in Drosophila. *Elife* 10

44 Imambucus BN, Zhou F, Formozov A, Wittich A, Tenedini FM, Hu C, Sauter K, Macarenhas Varela E,
45 Heredia F, Casimiro AP et al (2022) A neuropeptidergic circuit gates selective escape behavior of
46 Drosophila larvae. *Curr Biol* 32: 149-163 e148

47 Inami S, Sato T, Sakai T (2022) Circadian Neuropeptide-Expressing Clock Neurons as Regulators of
48 Long-Term Memory: Molecular and Cellular Perspectives. *Front Mol Neurosci* 15: 934222

49 Iwahara T, Fujimoto J, Wen D, Cupples R, Bucay N, Arakawa T, Mori S, Ratzkin B, Yamamoto T (1997)
50 Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous
51 system. *Oncogene* 14: 439-449

1 Jin H, Stojnic R, Adryan B, Ozdemir A, Stathopoulos A, Frasch M (2013) Genome-Wide Screens for
2 Tinman Binding Sites Identify Cardiac Enhancers with Diverse Functional Architectures. *Plos Genetics*
3 9

4 Joiner WJ, Crocker A, White BH, Sehgal A (2006) Sleep in Drosophila is regulated by adult mushroom
5 bodies. *Nature* 441: 757-760

6 King AN, Barber AF, Smith AE, Dreyer AP, Sitaraman D, Nitabach MN, Cavanaugh DJ, Sehgal A (2017)
7 A Peptidergic Circuit Links the Circadian Clock to Locomotor Activity. *Curr Biol* 27: 1915-1927 e1915

8 Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9: 357-359

9 Lasek AW, Gesch J, Giorgetti F, Kharazia V, Heberlein U (2011a) Alk is a transcriptional target of LMO4
10 and ERalpha that promotes cocaine sensitization and reward. *J Neurosci* 31: 14134-14141

11 Lasek AW, Lim J, Kliethermes CL, Berger KH, Joslyn G, Brush G, Xue L, Robertson M, Moore MS,
12 Vranizan K *et al* (2011b) An evolutionary conserved role for anaplastic lymphoma kinase in behavioral
13 responses to ethanol. *PLoS One* 6: e22636

14 Lee HH, Norris A, Weiss JB, Frasch M (2003) Jelly belly protein activates the receptor tyrosine kinase
15 Alk to specify visceral muscle pioneers. *Nature* 425: 507-512

16 Lewis JE, Brameld JM, Jethwa PH (2015) Neuroendocrine Role for VGF. *Front Endocrinol (Lausanne)* 6:
17 3

18 Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B (2019) WebGestalt 2019: gene set analysis toolkit with
19 revamped UIs and APIs. *Nucleic Acids Res* 47: W199-W205

20 Liu W, Ganguly A, Huang J, Wang Y, Ni JD, Gurav AS, Aguilar MA, Montell C (2019) Neuropeptide F
21 regulates courtship in Drosophila through a male-specific neuronal circuit. *Elife* 8

22 Loren CE, Englund C, Grabbe C, Hallberg B, Hunter T, Palmer RH (2003) A crucial role for the Anaplastic
23 lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. *EMBO Rep*
24 4: 781-786

25 Lun AT, Smyth GK (2016) csaaw: a Bioconductor package for differential binding analysis of ChIP-seq
26 data using sliding windows. *Nucleic Acids Res* 44: e45

27 Ma D, Przybylski D, Abruzzi KC, Schlichting M, Li Q, Long X, Rosbash M (2021) A transcriptomic
28 taxonomy of Drosophila circadian neurons around the clock. *Elife* 10

29 Maksimov DA, Laktionov PP, Belyakin SN (2016) Data analysis algorithm for DamID-seq profiling of
30 chromatin proteins in Drosophila melanogaster. *Chromosome Res* 24: 481-494

31 Marshall OJ, Brand AH (2017) Chromatin state changes during neural development revealed by in vivo
32 cell-type specific profiling. *Nat Commun* 8: 2271

33 Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA (2016)
34 Neuroblastoma. *Nature Reviews Disease Primers* 2: 16078

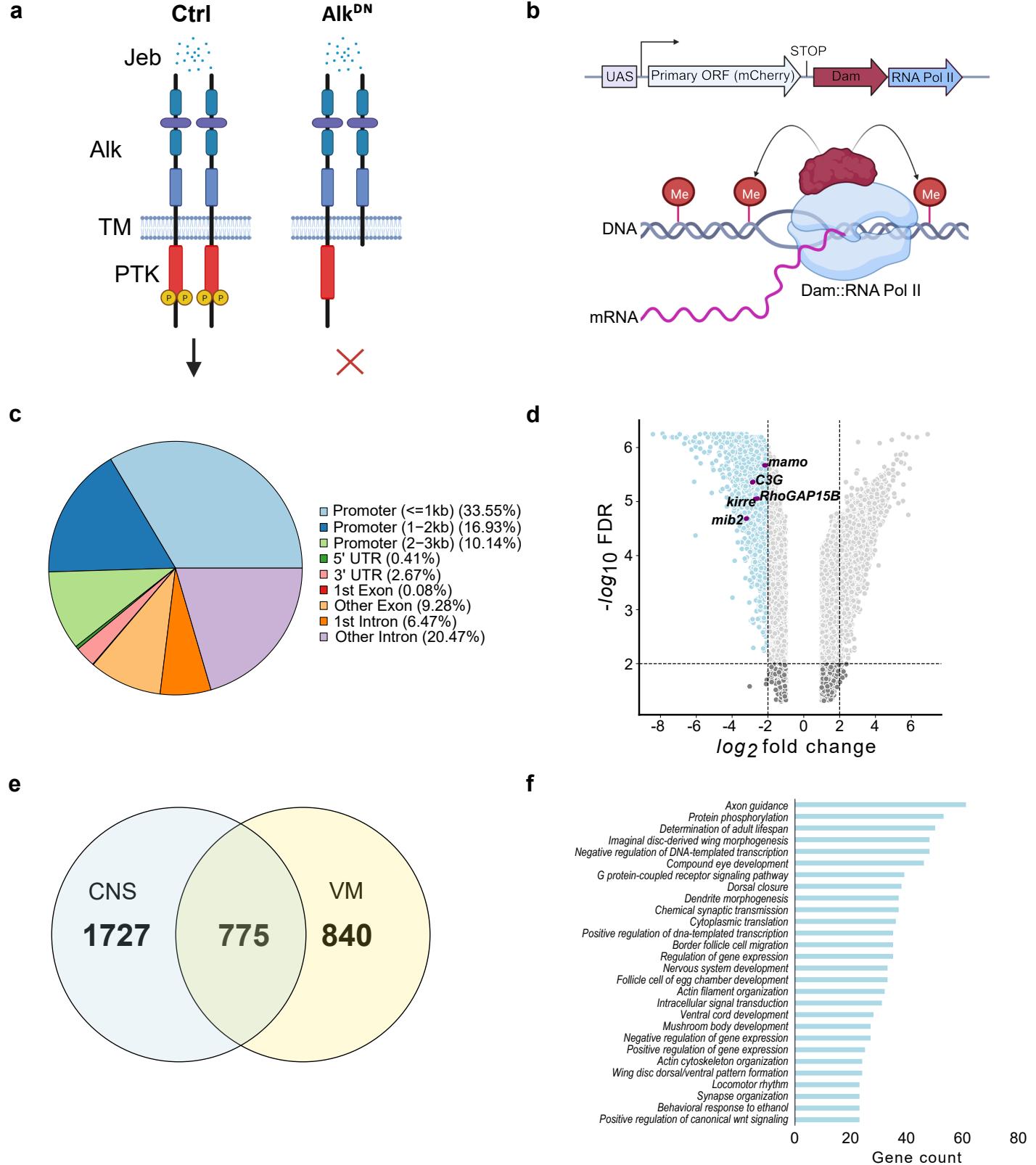
35 Mendoza-Garcia P, Basu S, Sukumar SK, Arefin B, Wolfstetter G, Anthonydhason V, Molander L, Uckun
36 E, Lindehell H, Lebrero-Fernandez C *et al* (2021) DamID transcriptional profiling identifies the
37 Snail/Scratch transcription factor Kahuli as an Alk target in the Drosophila visceral mesoderm.
38 *Development* 148

39 Mendoza-Garcia P, Hugosson F, Fallah M, Higgins ML, Iwasaki Y, Pfeifer K, Wolfstetter G, Varshney G,
40 Popichenko D, Gergen JP *et al* (2017) The Zic family homologue Odd-paired regulates Alk expression
41 in Drosophila. *PLoS Genet* 13: e1006617

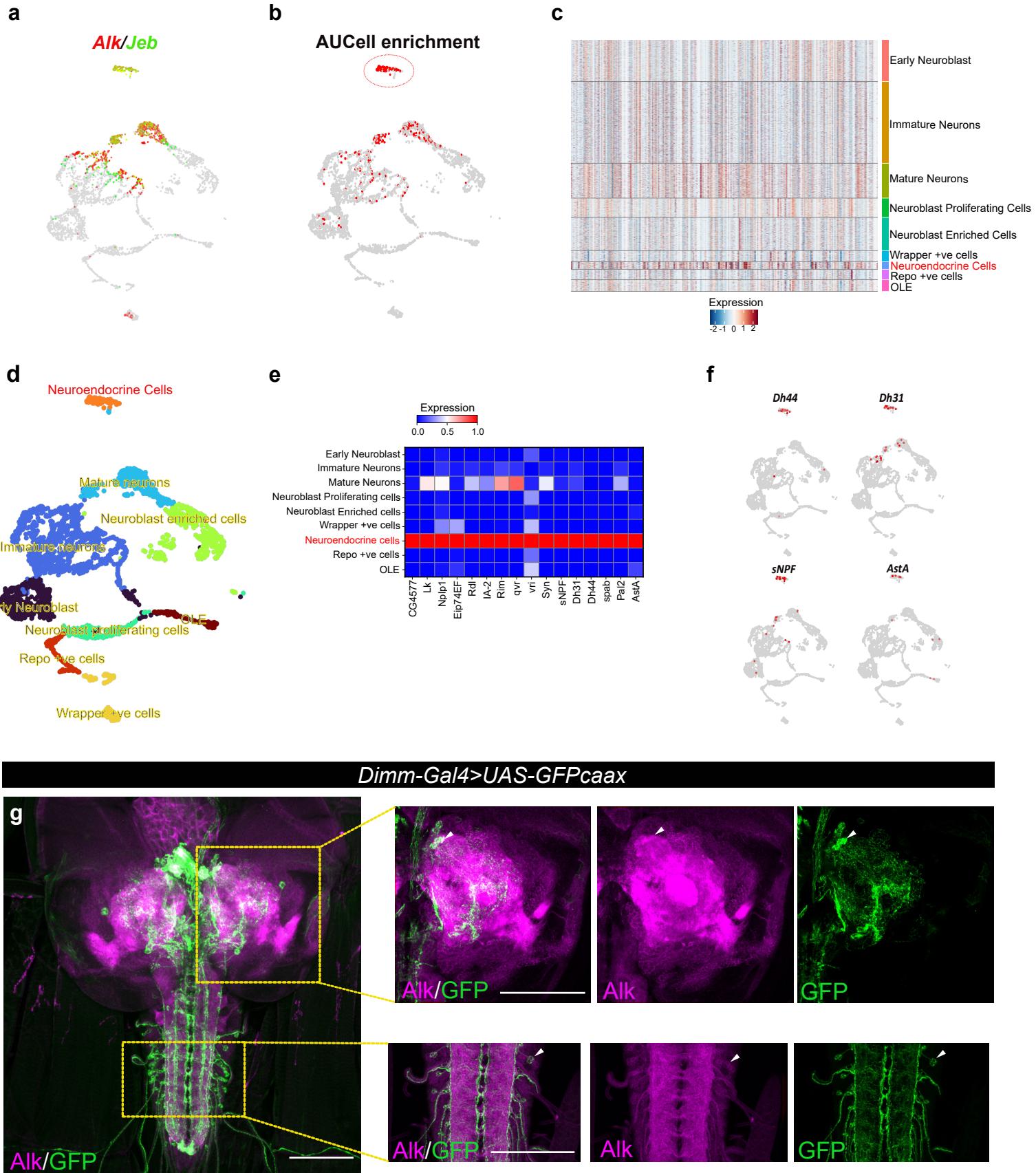
42 Michki NS, Li Y, Sanjasaz K, Zhao Y, Shen FY, Walker LA, Cao W, Lee CY, Cai D (2021) The molecular
43 landscape of neural differentiation in the developing Drosophila brain revealed by targeted scRNA-
44 seq and multi-informatic analysis. *Cell Rep* 35: 109039

45 Nässel DR (2018) Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule
46 Neurotransmitters in Drosophila. *Front Cell Neurosci* 12: 83

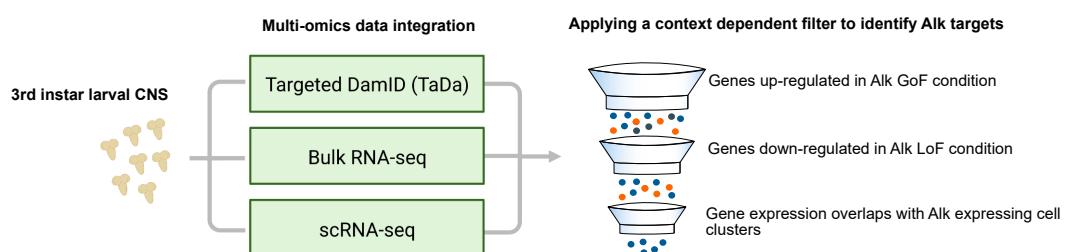
47 Nässel DR, Zandawala M (2019) Recent advances in neuropeptide signaling in Drosophila, from genes
48 to physiology and behavior. *Prog Neurobiol* 179: 101607

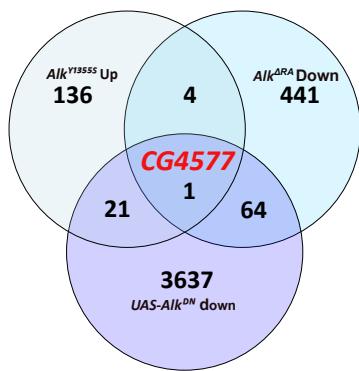

49 Nässel DR, Zandawala M (2022) Endocrine cybernetics: neuropeptides as molecular switches in
50 behavioural decisions. *Open Biol* 12: 220174

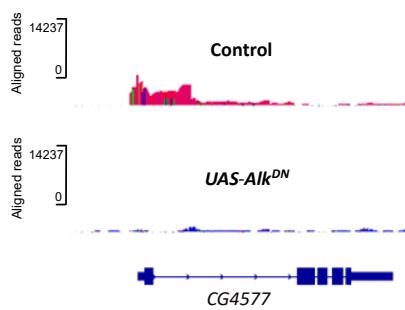
1 Oh Y, Lai JS, Min S, Huang HW, Liberles SD, Ryoo HD, Suh GSB (2021) Periphery signals generated by
2 Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila
3 brain nutrient sensor. *Neuron* 109: 1979-1995 e1976
4 Okusawa S, Kohsaka H, Nose A (2014) Serotonin and downstream leucokinin neurons modulate larval
5 turning behavior in Drosophila. *J Neurosci* 34: 2544-2558
6 Orthofer M, Valsesia A, Magi R, Wang QP, Kaczanowska J, Kozieradzki I, Leopoldi A, Cikes D, Zopf LM,
7 Tretiakov EO *et al* (2020) Identification of ALK in Thinness. *Cell* 181: 1246-1262 e1222
8 Pan X, O'Connor MB (2021) Coordination among multiple receptor tyrosine kinase signals controls
9 Drosophila developmental timing and body size. *Cell Rep* 36: 109644
10 Park D, Veenstra JA, Park JH, Taghert PH (2008) Mapping peptidergic cells in Drosophila: where DIMM
11 fits in. *PLoS One* 3: e1896
12 Pauls D, Chen J, Reiher W, Vanselow JT, Schlosser A, Kahnt J, Wegener C (2014) Peptidomics and
13 processing of regulatory peptides in the fruit fly Drosophila. *EuPA Open Proteomics* 3: 114-127
14 Pauls D, Hamarat Y, Trufasu L, Schendzielorz TM, Gramlich G, Kahnt J, Vanselow JT, Schlosser A,
15 Wegener C (2019) Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing
16 required to maintain locomotor activity levels and survival rate. *Eur J Neurosci* 50: 3502-3519
17 Pfeifer K, Wolfstetter G, Anthonydhason V, Masudi T, Arefin B, Bemark M, Mendoza-Garcia P, Palmer
18 RH (2022) Patient-associated mutations in Drosophila Alk perturb neuronal differentiation and
19 promote survival. *Dis Model Mech* 15
20 Pitman JL, McGill JJ, Keegan KP, Allada R (2006) A dynamic role for the mushroom bodies in promoting
21 sleep in Drosophila. *Nature* 441: 753-756
22 Popichenko D, Hugosson F, Sjogren C, Dogru M, Yamazaki Y, Wolfstetter G, Schonherr C, Fallah M,
23 Hallberg B, Nguyen H *et al* (2013) Jeb/Alk signalling regulates the Lame duck GLI family transcription
24 factor in the Drosophila visceral mesoderm. *Development* 140: 3156-3166
25 Quinlan AR (2014) BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Curr Protoc*
26 *Bioinformatics* 47: 11 12 11-34
27 Quinn JP, Kandigian SE, Trombetta BA, Arnold SE, Carlyle BC (2021) VGF as a biomarker and
28 therapeutic target in neurodegenerative and psychiatric diseases. *Brain Commun* 3: fcab261
29 Ramirez F, Dundar F, Diehl S, Grunig BA, Manke T (2014) deepTools: a flexible platform for exploring
30 deep-sequencing data. *Nucleic Acids Res* 42: W187-191
31 Reim I, Hollfelder D, Ismat A, Frasch M (2012) The FGF8-related signals Pyramus and Thisbe promote
32 pathfinding, substrate adhesion, and survival of migrating longitudinal gut muscle founder cells.
33 *Developmental Biology* 368: 28-43
34 Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and
35 ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in
36 Drosophila. *Cell* 99: 791-802
37 Reshetnyak AV, Murray PB, Shi X, Mo ES, Mohanty J, Tome F, Bai H, Gunel M, Lax I, Schlessinger J
38 (2015) Augmentor alpha and beta (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK:
39 Hierarchy and specificity of ligand-receptor interactions. *Proc Natl Acad Sci U S A* 112: 15862-15867
40 Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite.
41 *Trends Genet* 16: 276-277
42 Rohrbough J, Broadie K (2010) Anterograde Jelly belly ligand to Alk receptor signaling at developing
43 synapses is regulated by Mind the gap. *Development* 137: 3523-3533
44 Rohrbough J, Kent KS, Broadie K, Weiss JB (2013) Jelly Belly trans-synaptic signaling to anaplastic
45 lymphoma kinase regulates neurotransmission strength and synapse architecture. *Dev Neurobiol* 73:
46 189-208
47 Schaub C, Frasch M (2013) Org-1 is required for the diversification of circular visceral muscle founder
48 cells and normal midgut morphogenesis. *Dev Biol* 376: 245-259
49 Sellami A, Agricola HJ, Veenstra JA (2011) Neuroendocrine cells in Drosophila melanogaster producing
50 GPA2/GPB5, a hormone with homology to LH, FSH and TSH. *Gen Comp Endocrinol* 170: 582-588
51 Shafer OT, Keene AC (2021) The Regulation of Drosophila Sleep. *Curr Biol* 31: R38-R49

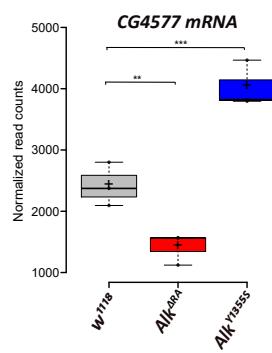

1 Shirinian M, Varshney G, Loren CE, Grabbe C, Palmer RH (2007) Drosophila Anaplastic Lymphoma
2 Kinase regulates Dpp signalling in the developing embryonic gut. *Differentiation* 75: 418-426
3 Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH (2013) Cell-type-specific
4 profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II
5 occupancy in neural stem cells. *Dev Cell* 26: 101-112
6 Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) NeuroPred: a tool to
7 predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides.
8 *Nucleic Acids Res* 34: W267-272
9 Stay B, Chan KK, Woodhead AP (1992) Allatostatin-immunoreactive neurons projecting to the corpora
10 allata of adult Diptera punctata. *Cell Tissue Res* 270: 15-23
11 Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, Hao Y, Stoeckius M, Smibert
12 P, Satija R (2019) Comprehensive Integration of Single-Cell Data. *Cell* 177: 1888-1902 e1821
13 Stute C, Schimmelpfeng K, Renkawitz-Pohl R, Palmer RH, Holz A (2004) Myoblast determination in the
14 somatic and visceral mesoderm depends on Notch signalling as well as on milliways(mili(Alk)) as
15 receptor for Jeb signalling. *Development* 131: 743-754
16 Sun LV, Chen L, Greil F, Negre N, Li TR, Cavalli G, Zhao H, Van Steensel B, White KP (2003) Protein-DNA
17 interaction mapping using genomic tiling path microarrays in Drosophila. *Proc Natl Acad Sci U S A* 100:
18 9428-9433
19 Takeda M, Suzuki T (2022) Circadian and Neuroendocrine Basis of Photoperiodism Controlling
20 Diapause in Insects and Mites: A Review. *Front Physiol* 13: 867621
21 Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba: fast processing of NGS alignment
22 formats. *Bioinformatics (Oxford, England)* 31: 2032-2034
23 Torii S (2009) Expression and function of IA-2 family proteins, unique neuroendocrine-specific protein-
24 tyrosine phosphatases. *Endocr J* 56: 639-648
25 Tosti L, Ashmore J, Tan BSN, Carbone B, Mistri TK, Wilson V, Tomlinson SR, Kaji K (2018) Mapping
26 transcription factor occupancy using minimal numbers of cells in vitro and in vivo. *Genome Res* 28:
27 592-605
28 Uckun E, Wolfstetter G, Anthonydhason V, Sukumar SK, Umapathy G, Molander L, Fuchs J, Palmer RH
29 (2021) In vivo Profiling of the Alk Proximitome in the Developing Drosophila Brain. *J Mol Biol* 433:
30 167282
31 Umapathy G, Mendoza-Garcia P, Hallberg B, Palmer RH (2019) Targeting anaplastic lymphoma kinase
32 in neuroblastoma. *APMIS*
33 Varshney GK, Palmer RH (2006) The bHLH transcription factor Hand is regulated by Alk in the
34 Drosophila embryonic gut. *Biochem Biophys Res Commun* 351: 839-846
35 Veenstra JA (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide
36 precursors. *Arch Insect Biochem Physiol* 43: 49-63
37 Veenstra JA, Agricola HJ, Sellami A (2008) Regulatory peptides in fruit fly midgut. *Cell Tissue Res* 334:
38 499-516
39 Vernersson E, Khoo NK, Henriksson ML, Roos G, Palmer RH, Hallberg B (2006) Characterization of the
40 expression of the ALK receptor tyrosine kinase in mice. *Gene Expr Patterns* 6: 448-461
41 Vitzthum H, Homberg U, Agricola H (1996) Distribution of Dip-allatostatin I-like immunoreactivity in
42 the brain of the locust *Schistocerca gregaria* with detailed analysis of immunostaining in the central
43 complex. *The Journal of comparative neurology* 369: 419-437
44 Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2--a multiple
45 sequence alignment editor and analysis workbench. *Bioinformatics (Oxford, England)* 25: 1189-1191
46 Wegener C, Gorbashov A (2008) Molecular evolution of neuropeptides in the genus Drosophila.
47 *Genome Biol* 9: R131
48 Weiss JB, Weber SJ, Torres ERS, Marzulla T, Raber J (2017) Genetic inhibition of Anaplastic Lymphoma
49 Kinase rescues cognitive impairments in Neurofibromatosis 1 mutant mice. *Behav Brain Res* 321: 148-
50 156

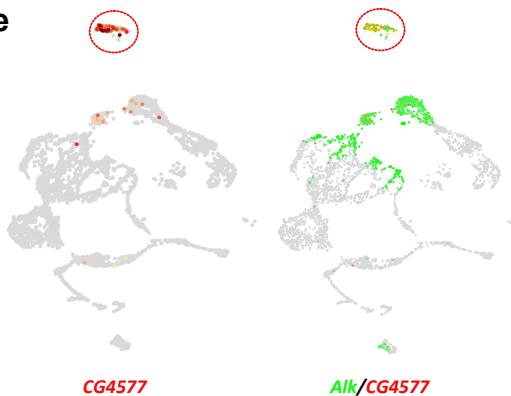
1 Weiss JB, Xue C, Benice T, Xue L, Morris SW, Raber J (2012) Anaplastic Lymphoma Kinase and
2 Leukocyte Tyrosine Kinase: Functions and genetic interactions in learning, memory and adult
3 neurogenesis. *Pharmacol Biochem Behav* 100: 566-574
4 Witek B, El Wakil A, Nord C, Ahlgren U, Eriksson M, Vernersson-Lindahl E, Helland A, Alexeyev OA,
5 Hallberg B, Palmer RH (2015) Targeted Disruption of ALK Reveals a Potential Role in Hypogonadotropic
6 Hypogonadism. *PLoS One* 10: e0123542
7 Wolf FA, Angerer P, Theis FJ (2018) SCANPY: large-scale single-cell gene expression data analysis.
8 *Genome Biol* 19: 15
9 Wolfstetter G, Pfeifer K, van Dijk JR, Hugosson F, Lu X, Palmer RH (2017) The scaffolding protein Cnk
10 binds to the receptor tyrosine kinase Alk to promote visceral founder cell specification in Drosophila.
11 *Science signaling* 10
12 Woodling NS, Aleyakpo B, Dyson MC, Minkley LJ, Rajasingam A, Dobson AJ, Leung KHC, Pomposova S,
13 Fuentealba M, Alic N *et al* (2020) The neuronal receptor tyrosine kinase Alk is a target for longevity.
14 *Aging Cell* 19: e13137
15 Wu F, Deng B, Xiao N, Wang T, Li Y, Wang R, Shi K, Luo DG, Rao Y, Zhou C (2020) A neuropeptide
16 regulates fighting behavior in *Drosophila melanogaster*. *Elife* 9
17 Yurgel ME, Kakad P, Zandawala M, Nässel DR, Godenschwege TA, Keene AC (2019) A single pair of
18 leucokinin neurons are modulated by feeding state and regulate sleep-metabolism interactions. *PLoS*
19 *Biol* 17: e2006409
20 Zandawala M, Marley R, Davies SA, Nässel DR (2018) Characterization of a set of abdominal
21 neuroendocrine cells that regulate stress physiology using colocalized diuretic peptides in *Drosophila*.
22 *Cell Mol Life Sci* 75: 1099-1115
23


Sukumar et al., 2024 – Figure 1


Sukumar et al., 2024 - Figure 2


a

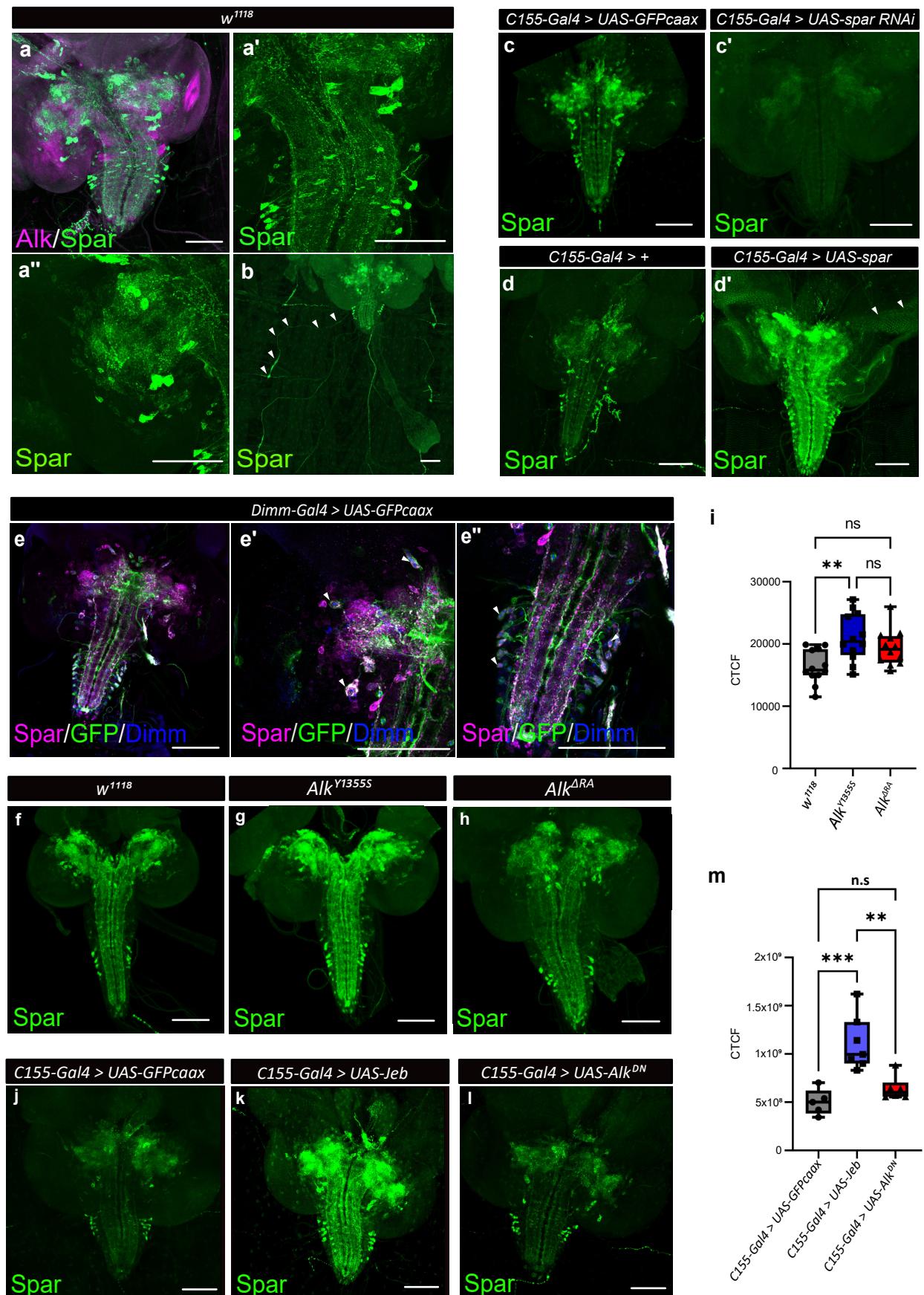

b


c

d

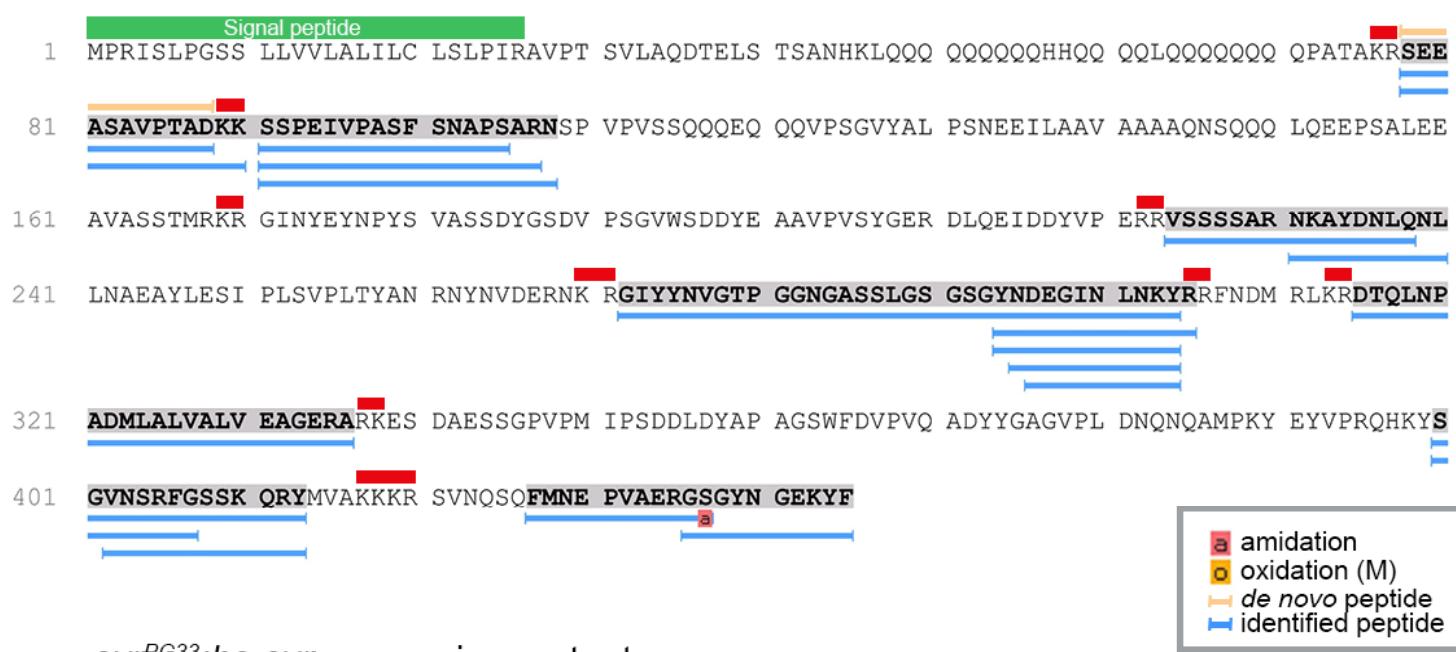
e

f

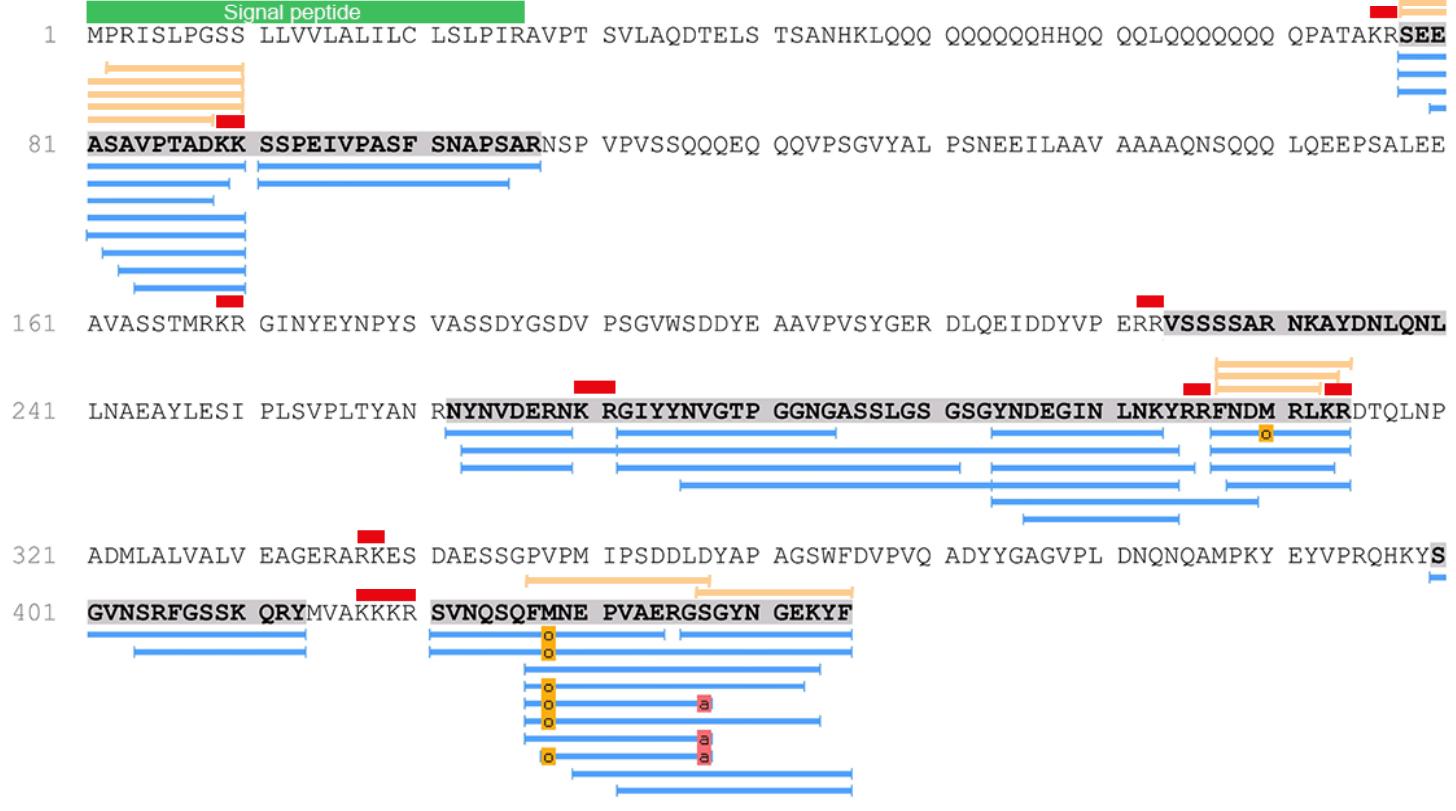

CG4577-PA

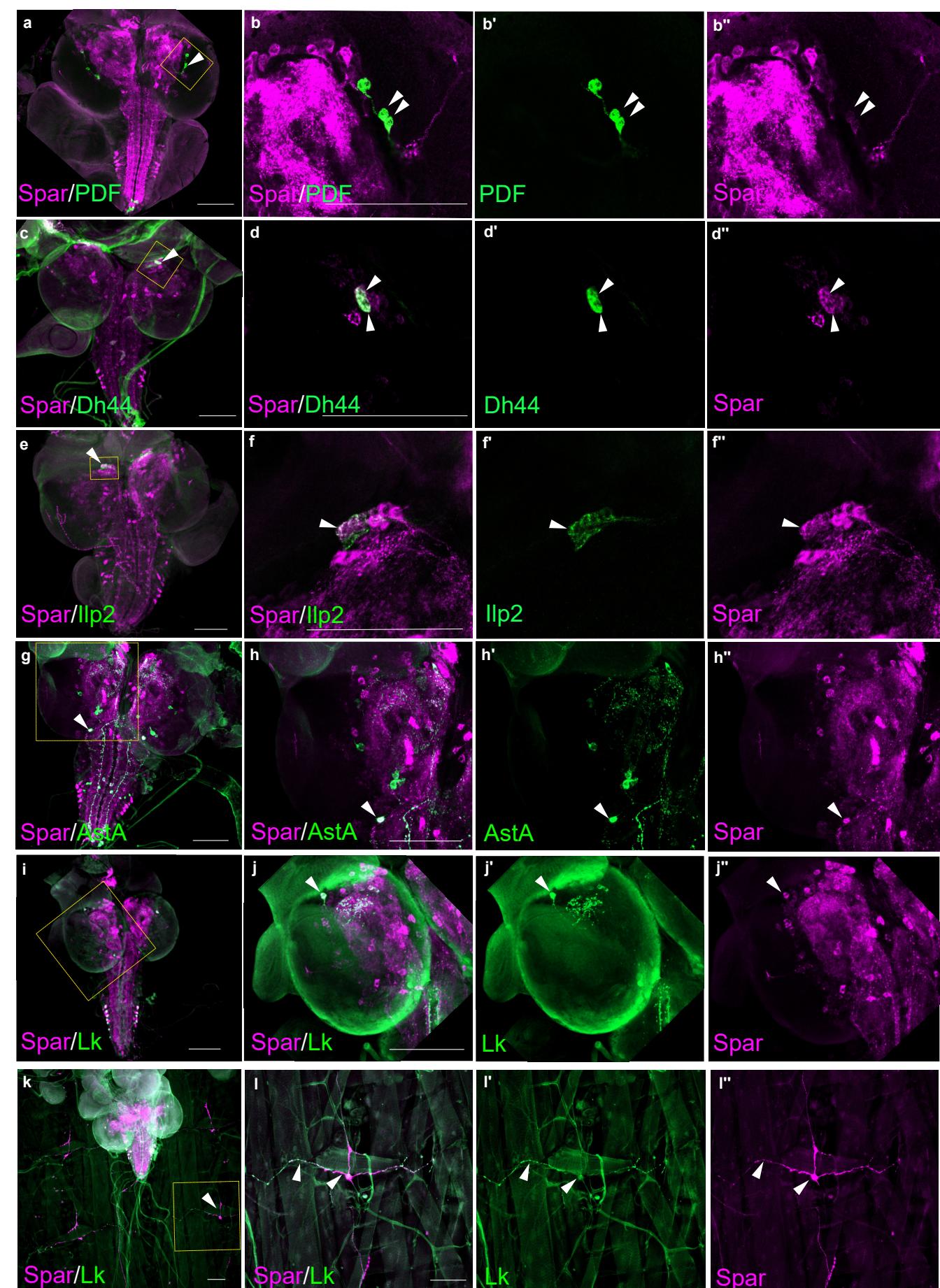
```

1-40      MPRISLPGSS LLVVVLALILC LSLPIRAVPT SVLAQDTELS
41-80      TSANHKLQQQ QQQQQQHHQQ QQLQQQQQQ QPATAKRSEE
81-120     ASAVENTADKK SSPEIVPASF SNAPSARNSP VFPVSSQQEQ
121-160    QQVPSGVYAL PSNEEILAAV AAAAQNSQQQ LQEEPSALEE
161-200    AVASSTMKR GINYEYNPYS VASSDYGSDV PSGVWSDDYE
201-240    AAVPVSYGER DLQEIDDYVP ERRVSSSSAR NKAYDNLQNL
241-280    LNAEAYLESI PLSVPLTYAN RNYNVDERNK RGIYVNVGTP
281-320    GGNAGASSLGS GSGYNDEGIN LNKYRRFNDM RLKRDTQLNP
321-360    ADMIALVALV EAGERARKES DAESSGFVPM IPSDDLDYAP
361-400    AGSWFDFVFQ ADYYGAGVPL DNQNQAMPKY EYVPRQHKYS
401-440    GVNSRFGSSK QRYMVAKKKR SVNQSQFMNE PVAERGSGYN
441-445    GEKYF

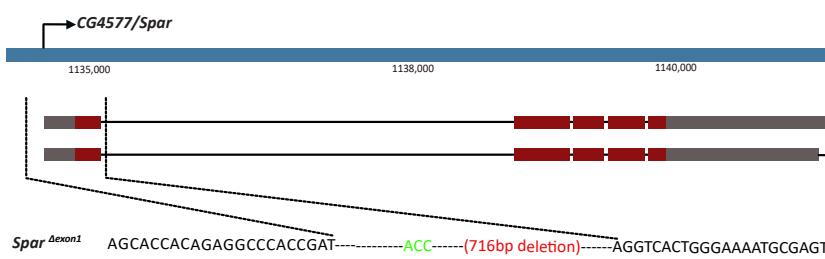

```

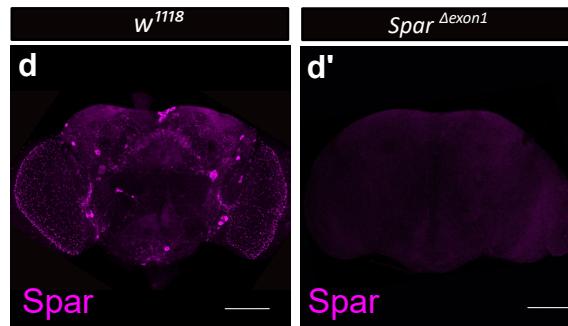
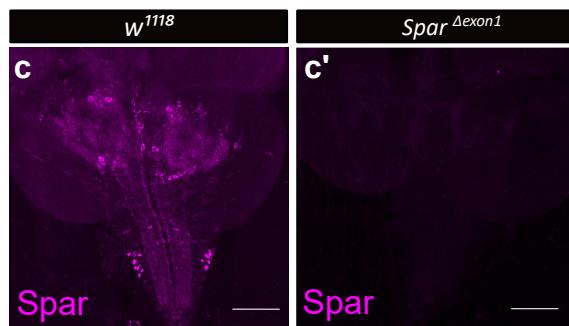
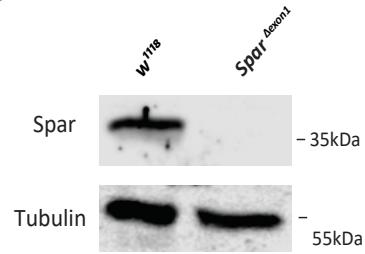
Sukumar et al., 2024 • Figure 4


Sukumar et al., 2024 - Figure 5

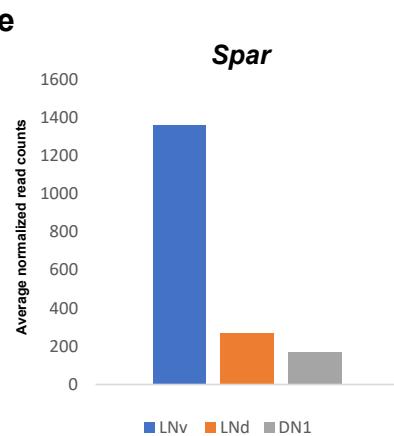

FM7h;hs-svr control

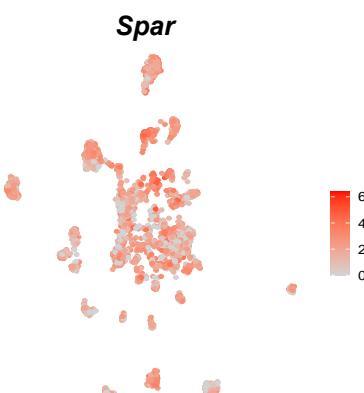
█ amidation
█ oxidation (M)
█ de novo peptide
█ identified peptide

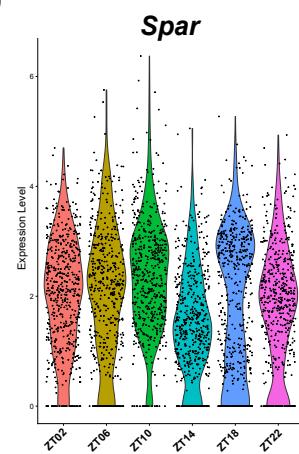

SVR^{PG33};hs-svr processing mutant

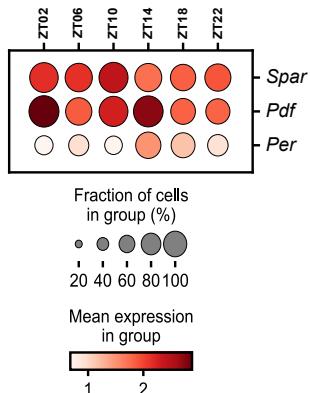




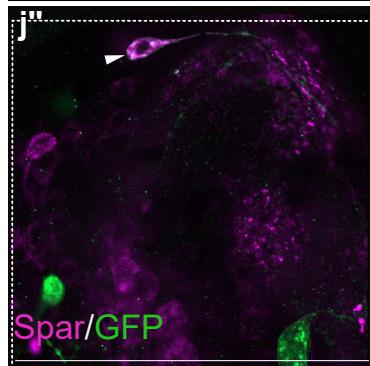
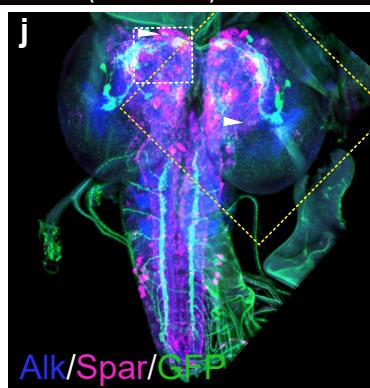
Sukumari et al., 2024 - Figure 7

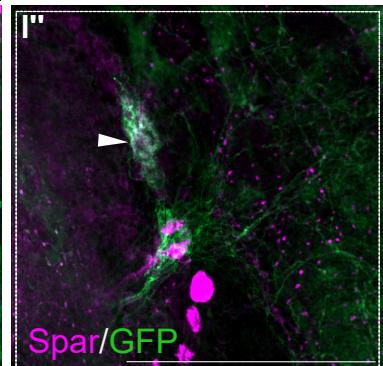

a

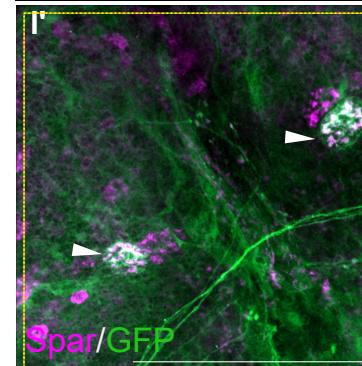
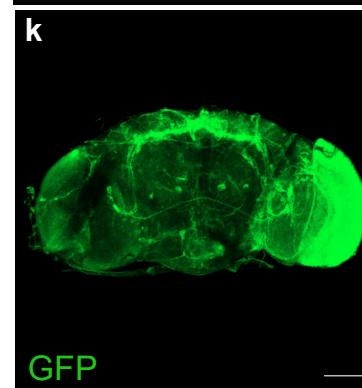

b

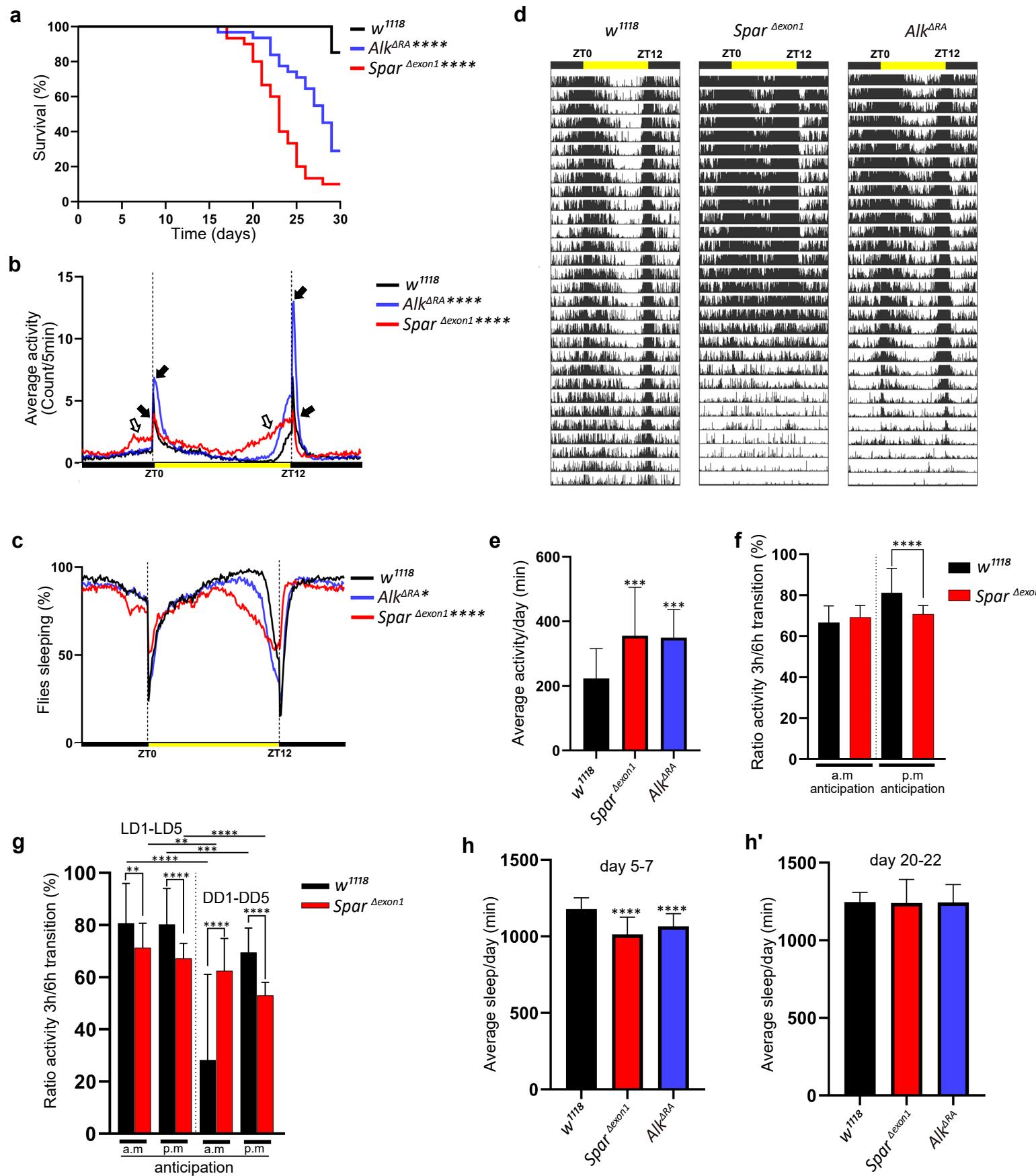

e

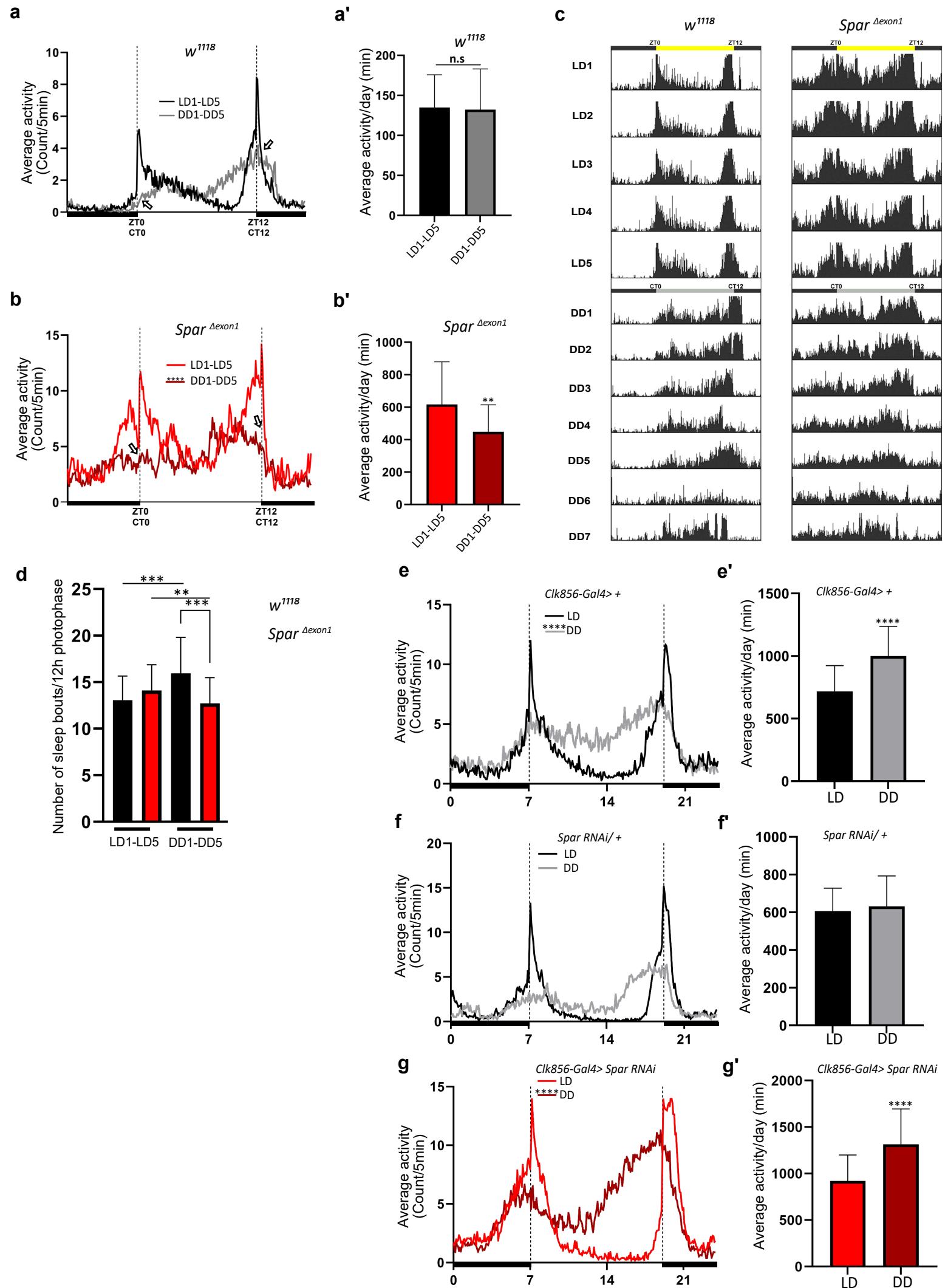

f



g





h


Clk856-Gal4 > UAS-GFPcaax (Larval CNS)



Clk856-Gal4 > UAS-GFPcaax (Adult CNS)

Sukumar et al., 2023 – Figure 8

