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Abstract 23 

Biosynthesis and biodegradation of microorganisms critically underpin the development of 24 

biotechnology, new drugs and therapies, and environmental remediation. However, the vast majority 25 

of uncultured microbial species along with their metabolic capacities in extreme environments remain 26 

obscured. To unravel the metabolic potentials of these microbial dark matters (MDMs), we 27 

investigated four deep-inland hypersaline lakes with largely diversified environmental parameters in 28 

Xinjiang Uygur Zizhiqu, China. Metagenomic binning obtained 3,030 metagenome-assembled 29 

genomes (MAGs) spanning 82 phyla, of which 2,363 MAGs could not be assigned to a known genus. 30 

These unknown MAGs were abundantly observed with distinct taxa among lakes, possibly linked to 31 

the diversification of physiochemical conditions. Analysis of biosynthetic potentials identified 9,635 32 

biosynthesis gene clusters (BGCs), of which 9,403 BGCs were considered novel. We found that some 33 

MAGs from putatively novel phyla consistently comprised enriched BGCs, which may have 34 

substantial potentials in biotechnological applications. In addition, biodegradation potentials such as 35 

dehalogenation, anaerobic ammonium oxidation (Anammox), polycyclic aromatic hydrocarbon (PAH), 36 

and plastic degradation were found in new microbial clades from hypersaline lakes. These findings 37 

substantially expanded the genetic repository of biosynthesis and biodegradation potentials, which can 38 

further assist the development of new and innovative applications in biotechnology. 39 
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1. Introduction 45 

Microorganisms are vital in global ecosystems that underpin life on Earth, as they play essential roles 46 

in contributing to biogeochemical cycling, supporting food webs, and maintaining the fitness of plants 47 

and animals [1-4]. Particularly, the microbial metabolic capabilities such as decomposing pollutants 48 

and producing secondary metabolites like natural products have fostered the development of 49 

biosynthesis and biodegradation, thereby propelled biotechnological processes and addressed 50 

environmental challenges [5-8]. Nonetheless, most microbial species are unculturable, leading to the 51 

inefficient exploration of metabolic capacities across diverse environments. 52 

To address this issue, a series of state-of-the-art sequencing technologies along with bioinformatic 53 

tools, such as metagenomic sequencing and binning, have revolutionised our ability to investigate and 54 

decode the metabolic pathways of uncultured microorganisms. Employing such approaches, we can 55 

unveil previously uncharacterised microorganisms within an underexplored environment, considerably 56 

expanding our recognition of the specific microbial roles and functions in biosynthesis and 57 

biodegradation. This knowledge could be instrumental in harnessing more efficient and sustainable 58 

methods for producing natural products or devising more effective pathways for contaminant 59 

degradation [9]. However, current progress in applying microbial resources for biosynthesis is still 60 

hindered by the efficiency of the enzymes for large-scale production, the sustainability of 61 

methodologies, and the financial demands of culturing [10, 11]. On the other hand, environmental 62 

variability, the complexity of microbial communities, and the high pre-treatment costs are the main 63 

issues that obstructed biodegradation efficiency [12, 13]. Furthermore, our understanding of the 64 

underlying microbial mechanisms of biosynthesis and biodegradation, including novel enzymes and 65 

metabolic pathways involved in these processes, remain considerably limited. Therefore, to enhance 66 

our understanding of these mechanisms and facilitate more efficient and effective biosynthesis and 67 

biodegradation processes, it is imperative to investigate uncultured microbial species and their 68 

metabolic capacities in extreme environments. Such exploration can deepen the knowledge of novel 69 

enzymes and metabolic pathways, leading to more sustainable and environmentally friendly solutions 70 

across various applications. 71 

Hypersaline lakes are typical examples of extreme environments, usually characterised by high salinity 72 

(≥ 35 g L−1), elevated aridity and evaporation, poor nutrients such as organic carbon, and some even 73 

exhibiting high alkalinity [14-16]. Within these harsh conditions, unique extremophilic microbial 74 

communities have thrived, showcasing an exceptional ability to acclimate to environments 75 

inhospitable for other living organisms [17, 18]. The distinctive environmental parameters of deep 76 

inland hypersaline lakes vary significantly from one lake to another, shaped by climate, geology, and 77 

human activities. Consequently, many microbial communities in these hypersaline habitats remain 78 
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unexplored, presenting potential resources for biotechnological applications [19-22]. Genome-79 

resolved analyses indicates that these deep inland hypersaline lakes many uncultured microorganisms, 80 

namely microbial dark matters (MDMs), such as DPANN archaea and CPR bacteria [15, 23, 24]. These 81 

findings substantially broadened our recognition of MDMs from an evolutionary perspective. However, 82 

these pioneering studies merely scratched the surface of hypersaline lake microbiomes, restricted by 83 

the scope of study areas and limitations in bioinformatic analysis techniques. Therefore, to 84 

comprehensively uncover the microbial niches within hypersaline lake microbiomes and further reveal 85 

metabolic capacities in these extreme ecosystems, more in-depth and expansive investigations on 86 

hypersaline lake microbial genomes should be envisaged. 87 

In this study, we examined four saline lakes in Xinjiang Uygur Zizhiqu, China, each with distinct 88 

salinity (1.5–237 g L−1) and altitude (−153 to 1,585 m). A previous study observed that salinity 89 

significantly influences the microbial assemblages of saline lake microbiota [25]. However, the roles 90 

lakewater and sediment microbial communities devote to biosynthesis and biodegradation resolved 91 

from metagenomes remain uncertain. Given such a diverse range of geographic and environmental 92 

parameters, we assembled over 3,000 metagenome-assembled genomes (MAGs) from these four lakes, 93 

aiming to unearth new uncultured microbial lineages and decode the biosynthetic and biodegradative 94 

potentials of hypersaline lake prokaryotes. 95 

 96 

2. Methods 97 

2.1. Sampling and measurement of physiochemical parameters 98 

Hypersaline lake samples were collected in July 2018 from Aiding Lake (ADH), Barkol Lake (BLK), 99 

Dabancheng Lake (DBC), and Qijiaojing Lake (QJJ) (Fig. S1), Xinjiang Uygur Zizhiqu, China. 100 

Detailed sampling and geographic information were recorded in Table S1. Briefly, four water samples 101 

(n = 4) and four sediment samples (n = 4) were collected from each lake, at least 50 m apart between 102 

two sampling sites. For each water sample, 5 L of lake water from the upper 50 cm surface was 103 

randomly collected into a 5 L sterile container. Lake water was firstly filtered through a filter paper 104 

(Whatman, GE Healthcare, NY, USA) to remove large particles before filtering through 0.22 μm PES 105 

(Polyethersulfone) membranes (Millipore, Billerica, MA, USA) to enrich lakewater microorganisms. 106 

For each sediment sample, about 50 grams of sediments were randomly collected at 0–10 cm depth at 107 

the bottom of the lake into sterile 50 mL falcon tubes. Membranes and sediment samples were 108 

immediately placed on dry ice before being brought to the laboratory and transferred to a –80 °C 109 

freezer until further DNA extraction was performed. 110 
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The salinity and pH of lake water were measured in situ using a Hydrolab DS5 multiparameter water 111 

quality meter (Hach Company, Loveland, CO, USA). Total organic carbon (TOC) was analysed with 112 

a TOC/TN-VCPH analyser (Shimadzu, Tokyo, Japan). The concentrations of lithium (Li+), sodium 113 

(Na+), ammonium (NH4
+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), chloridion (Cl−), and 114 

sulphate (SO4
2−) were determined using an inductively coupled plasma mass spectrometry (Agilent 115 

Technologies Inc., Bellevue, WA, USA). 116 

2.2. DNA extraction and metagenomic sequencing 117 

Total DNA was extracted from frozen filtered membrane or sediment samples using the DNeasy 118 

PowerSoil Pro Kit (Qiagen, Hilden, Germany), following the manufacturer’s instructions. Extracted 119 

DNA was quality checked by NanoDrop 2000 (Thermo Fisher Scientific, Waltham, Massachusetts, 120 

US) and quantity checked by Qubit Fluorometer (Thermo Fisher Scientific, USA). Next-generation 121 

metagenomic sequencing was performed at Novogene (Tianjin, China) on an Illumina NovaSeq 6000 122 

platform using the PE150 strategy. 123 

2.3. Assembly, binning, and phylogenetic analyses 124 

Raw paired-end reads were initially filtered using fastp with default parameters [26]. Clean reads were 125 

individually and co-assembled using SPAdes (v3.15.2) [27] under “--meta” mode into contigs 126 

specifying k-mer sizes of 21, 33, 55, 77, and finally reserved contigs > 1,000 bps. Metagenomic 127 

binning was applied to both single sample assembly and co-assembly using BASALT (v1.0) under 128 

default mode [28]. The completeness and contamination of bins were assessed using CheckM v1.0.2 129 

with “lineage_wf” workflow and default parameters [29], with only medium and high-quality bins that 130 

meet the MIMAG standard (completeness ≥ 50, contamination ≤ 10) [30] kept as MAGs for further 131 

analysis. 132 

Taxonomic classification was conducted using GTDB-Tk (v1.5.0, database release r202) [31]. MAGs 133 

not classified to any reference genomes in GTDB were defined as unknown at certain taxonomic levels 134 

(i.e., species, genus, family, etc.). Phylogenetic analysis of bacteria and archaea MAGs was performed 135 

based on a multiple sequence alignment of 120 bacterial- and 122 archaeal-specific single-copy marker 136 

proteins, respectively. A concatenated alignment of these marker proteins was created using HMMER 137 

v3.1.b2 with default parameters [32]. Bacterial and archaeal phylogenetic trees were inferred using IQ-138 

TREE under the best-fitted models with 1,000 bootstrap replications [33] before being visualised and 139 

annotated in iTOL v6 [34].  140 

2.4. Identification of non-coding RNA genes and functional annotation 141 

Non-coding RNA genes, including transfer RNA genes and ribosomal RNA genes, were identified to 142 

evaluate the integrity of MAGs. Briefly, tRNA genes were predicted using tRNAscan-SE (v2.0.9) [35], 143 
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while rRNA genes, including 5S rRNA, 16S rRNA, and 23S rRNA, were predicted using Barrnap 144 

(v0.9, https://github.com/tseemann/barrnap). For genetic analysis, Opening Reading Frames (ORFs) 145 

of assembled contigs were predicted using Prodigal (v2.6.3) with default parameters [36]. Predicted 146 

ORFs were dereplicated with CD-HIT (v4.6) at 90% identity [37]. Dereplicated ORFs were annotated 147 

against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (version 58) and National 148 

Center for Biotechnology Information – Non-redundant (NCBI-NR) database (version 20220806), 149 

respectively, with Diamond (v2.0.11.149) [38] using “more-sensitive” mode and e-value at 1×10-10. In 150 

addition, dereplicated ORFs were further annotated against Pfam (v34.0) and TIGRFAM (v15.0) 151 

databases using InterProScan (v5.54-87.0) [39]. To estimate the relative abundance of each gene, 152 

dereplicated FASTA sequences of ORFs were mapped against raw sequence reads by Bowtie2 (v2.4.2) 153 

[40]. Then, the depth of aligned reads was calculated using SAMtools (v1.7) [41] and summarised with 154 

a Perl script ‘calc.coverage.in.bam.depth.pl’ from a previous study [42]. Finally, coverage-normalised 155 

KOs were clustered into modules and pathways using a Python script “pathway_pipeline.py” in 156 

PICRUSt2 [43]. For genome-centric analysis, each MAG was predicted using Prodigal with default 157 

parameters and annotated against the KEGG database using the same parameter described above. 158 

2.5. Annotation of Biosynthetic Gene Clusters (BGCs) 159 

Genome sequences were used as input using antiSMASH (v.6.1.1) [44] to identify BGCs from saline 160 

lake MAGs. The gbk-formatted output of each MAG was further processed using BiG-SCAPE (v1.1.2) 161 

[45] to cluster saline lake BGCs with reference BGCs from the MIBiG database [46]. Gene Cluster 162 

Families (GCFs) were clustered at 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 distance thresholds, respectively. 163 

To determine the novelty of BGCs, we followed the criteria described by Navarro-Muñozet et al. [45] 164 

using 0.5 distance for clustering. Any BGC not related to MIBiG BGCs were described as unknown 165 

BGC. 166 

 167 

2.6. Detection of Biodegradation potentials 168 

To identify MAGs with potential biodegradation functions, including dechlorinating, nitrogen removal, 169 

and degradation of polycyclic aromatic hydrocarbons (PAHs), dereplicated MAG ORFs were further 170 

annotated against two homebrew databases, including EDB-DHG and EDB-Ncyc for dechlorinating 171 

and nitrogen removal. Concurrently, Darhd Database and PlasticDB were employed to assess PAH 172 

degradation [47] and plastic degradation [48], respectively. The annotation process utilised Diamond 173 

with the same parameter described above, reserving matched sequences at identity ≥ 50%. As the 174 

Darhd database only contained nucleotide sequences, we pre-treated all sequences by translating them 175 

into amino acids with Prodigal to maintain consistency with other databases. Annotated sequences 176 

were checked by comparing results with KEGG, NCBI-NR, and InterProScan to avoid false annotation. 177 
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EDB-DHG and EDB-Ncyc Databases are available for download in FigShare 178 

(https://figshare.com/ndownloader/articles/23504874/versions/1). 179 

2.7. Statistical analysis and data visualisation 180 

Data organisation and formatting were conducted using the R packages “tibble”, “dplyr”, “tidyr”, and 181 

“stringr”. Statistical analyses, including Kruskal-Wallis tests, Dunn tests, and RDA analysis, were 182 

conducted using the R packages “vegan”, “stats”, and “FSA”. Data visualisation, including dot plots, 183 

bar graphs (including pie charts), and boxplots, were performed using the R package “ggplot2” with 184 

functions “geom_point”, “geom_bar”, and “geom_boxplot”, respectively. nMDS plots and RDA plots 185 

were performed using the R packages “ggplot2” with functions “geom_point”, “geom_hline”, 186 

“geom_vline”, and “geom_segment”, respectively. Heatmap was generated using “pheatmap” with z-187 

score normalised using “scale = row”, and multiple panels were generated using “cowplot”. 188 

 189 

3. Results 190 

3.1. A large proportion of metagenome-assembled genomes from hypersaline lakes were 191 
considered novel 192 

Metagenomic sequencing generated ~1.2 Terabytes of DNA sequence data from 30 samples from four 193 

hypersaline lakes. Two samples (one from DBC water and the other from QJJ sediment) were excluded 194 

from this study due to the unsuccessful preparation of the sequencing library. The metagenomic 195 

assembly generated 26 Gigabytes of contig data with sequence length > 1,000 bp. After metagenomic 196 

binning, we recovered 3,030 non-redundant bins that meet the MIMAG standard (completeness ≥ 197 

50%, purity ≥ 90%, mean completeness = 79.8 ± 14.8%, mean purity = 97.8 ± 2.0%) [30]. These bins 198 

were considered as MAGs for the following analyses (Fig. 1a). There were 76.9%, 51.5%, and 44.6% 199 

of the MAGs contained 5S, 16S, and 23S rRNA genes, respectively, while 23.7% possessed all three 200 

types of rRNA genes (Fig. 1b). In terms of tRNA genes, 75% of the MAGs contained more than 13 201 

types of tRNA genes (Fig. 1c). There were 97.1%, 78.0% and 56.7% of MAGs affiliated with 202 

unclassified or close to a tentatively assigned species, genera, and families, respectively, suggesting 203 

that a high proportion of the genomes discovered in the hypersaline lakes were unknown or candidates 204 

for future identification (Fig. 1d). Details of the sequencing data size, contig summary, number of 205 

genomes, and specifics of the MAGs were supplied in Table S1. 206 

3.2. Distinct genetic composition and functional potential among lakes 207 

Among functional genes from all assembled contigs, distinct genetic compositions were identified 208 

among the lakes and sample types. Overall, the lakewater genetic richness in the Chao1 index of ADH 209 
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and DBC was significantly higher than that of QJJ, while the genetic richness and evenness in the 210 

Shannon index of DBC was significantly higher than that of QJJ (P < 0.05). However, no significant 211 

difference was found between lakes in sedimentary samples (Fig. 2a). Genetic compositions of lake 212 

lakewater and sedimentary communities were significantly different (P < 0.05, Fig. S2), which were 213 

mainly driven by salinity including Li+, Na+, SO4
2−, Ca2+, Mg2+, and K+ in lakewater communities, and 214 

TOC, SO4
2−, and Na+ in sedimentary communities (Fig. 2b). Functional capacity profiles suggested 215 

that microbial genetic potentials varied distinctly among sample types and lakes, particularly in aspects 216 

such as nitrogen and sulphur metabolisms, carbon fixation, methanogenesis, and multidrug resistance, 217 

among others (Fig. 2c). Specific analysis within pathways showed that in carbon fixation, 218 

Dicarboxylate−hydroxybutyrate cycle was mainly enriched in QJJ planktons, while rTCA cycle, 219 

Hydroxypropionate−hydroxybutylate cycle, and 3−Hydroxypropionate bi-cycle were enriched in QJJ 220 

sediments. On the other hand, BLK sediment communities mainly performed the Reductive pentose 221 

phosphate cycle (CBB cycle) and Wood−Ljungdahl pathway for carbon fixation. For methane 222 

metabolism, BLK was found to be enriched in Methanogenesis in sediments, while DBC and QJJ were 223 

enriched in methane oxidation in sediments. F420 biosynthesis was found to be abundant in QJJ 224 

plankton, possibly due to the high relative abundance of archaea communities. Nitrogen cycle-related 225 

modules, including nitrogen fixation, nitrification, and denitrification, were mainly found enriched in 226 

QJJ sediments, while dissimilatory nitrate reduction and assimilatory nitrate reduction modules were 227 

found enriched in DBC and QJJ plankton, respectively. For sulphur metabolism, thiosulfate oxidation 228 

was found to be abundant in DBC plankton, while dissimilatory sulphate reduction was found enriched 229 

in BLK sediments (Fig. 2d). These findings suggest that distinct differences in microbial metabolic 230 

pathways were found among these four lakes. 231 

3.3. Microbial dark matters were highly diverse in the hypersaline lakes 232 

Among the 3,030 non-redundant MAGs, 2,685 were classified as bacteria spanning 70 phyla, with 18 233 

(25.7%) considered as putatively novel phyla. Here, a novel phylum was defined when the majority of 234 

microbial species within this phylum were not amenable to being isolated under standard laboratory 235 

techniques. The remaining 345 MAGs were identified as archaea, spanning 12 phyla, including eight 236 

putatively novel phyla. While a vast majority of MAGs were assigned to known phyla (96.6% in 237 

plankton and 92.5% in sediment in relative abundance), those minority MAGs in putatively novel 238 

phyla demonstrated higher diversity that comprised 16.7% and 30.1% of total MAGs in numbers in 239 

the plankton and sediments, respectively (Fig. 2a). This observation suggested that these putatively 240 

novel MAGs could exhibit considerable diversity in hypersaline environments. Lineages of common 241 

phyla were ubiquitously found across most samples, but distinct distributions of putatively novel phyla 242 

(except Patescibacteria) were only identified in specific lakes or sample types (Fig. 2b). These 243 

putatively novel phyla were predominantly located in samples with high microbial diversity (i.e., ADH 244 
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and BLK sediment, Fig. 2b,c), but low relative abundance (<0.5%) among recovered MAGs, indicating 245 

that a considerable number of unknown microorganisms inhabitant in these environments were yet to 246 

be discovered. 247 

3.4. Biosynthetic Potentials of putatively novel MAGs in saline lakes 248 

In the 3,030 hypersaline lake MAGs, we identified 9,635 biosynthetic gene clusters (BGCs), including 249 

232 BGCs clustered into known gene cluster families (GCFs) at 0.5 distance cutoff. A total of 9,403 250 

BGCs (97.6% of overall BGCs) that were not clustered to MiBIG BGCs were described as unknown 251 

BGCs (Fig. 4a). Notably, several putatively novel bacterial phyla were enriched in BGCs (BGCs per 252 

MAG > 5), including OLB16, Moduliflexota, KSB1, Fibrobacterota, and B130-G9. This enrichment 253 

was only observed in Planctomycetota, Myxococcota, and Acidobacteriota among the known phyla 254 

(Fig. 4b), suggesting that putatively novel bacterial MAGs in these saline lakes may possess abundant 255 

biosynthetic potentials. Fewer BGCs were found in archaeal MAGs (BGCs per MAG < 2), possibly 256 

due to the insufficient data collected in the database. 257 

To further explore biosynthetic potentials of putatively novel MAGs, bacterial and archaeal 258 

phylogenetic trees were constructed, selecting MAGs with Completeness ≥ 70% or BGCs ≥ 5. Sixteen 259 

bacterial and two archaeal phyla contained MAG(s) with BGCs ≥ 5, suggesting potential biosynthetic 260 

enrichment in these phyla. Bacterial and archaeal phyla with small genome sizes (i.e., Patescibacteria 261 

and Nanoarchaeota) generally lacked BGCs, except one MAG from Nanoarchaeota, considered an 262 

outlier. Some phyla with only a single MAG obtained from saline lake metagenomes, such as B130-263 

G9, Moduliflexota, UBP6, etc. (labelled individually on the tree, Fig. 4b), were not further discussed 264 

in this study as their biosynthetic pattern and consistency cannot be validated due to insufficient data. 265 

However, other putatively novel phyla consistently demonstrated enrichment with specific BGC 266 

Classes. For example, phylum Armatimonadota primarily consisted of RiPPs, Terpene and Other BGC 267 

classes, while phylum OLB16 was enriched in NRPS, RiPPs, and Terpene. Most of the MAGs in 268 

phylum Bdellovibrionota had BGCs in Terpene, RiPPs, and Other BGC classes, whereas KSB1 MAGs 269 

featured NRPS, PKS-NRPS hybrid, and Terpene classes (Fig. 4c). These observations suggest that 270 

MAGs within these phyla may have similar biosynthetic potentials. Two Asgardarchaeota MAGs were 271 

found to be enriched with BGCs, although this pattern was not consistent across the entire phyla, 272 

necessitating more genome analysis for further exploration. 273 

3.5. Biodegradation potentials of putatively novel MAGs in saline lakes 274 

To dissect the biodegradation potentials of hypersaline lake microorganisms, we analysed genes 275 

involved in the nitrogen cycle, dehalogenation, plastics degradation, and PAHs degradation within 276 

putatively novel MAGs. Several putatively novel bacterial phyla were found to be rich in nitrogen 277 

metabolism genes, such as GCA-001730085, Hydrogenedentota, OLB16, Fibrobacterota, 278 
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Krumholzibacteriota, FEN-1099, RBG-13-61-14, and Zixibacteria (Fig. 5a), suggesting that these 279 

putatively novel MAGs may play a crucial role in the nitrogen cycle in hypersaline lakes. Interestingly, 280 

although MAGs belong to typical anaerobic ammonium oxidizing bacteria (AnAOB), i.e., families 281 

Scalinduaceae and Brocadiaceae in the order Brocadiales, class Brocadiae, were not found in this study, 282 

anaerobic ammonium oxidation (Anammox)-related genes (i.e., genes hzs and hdh) were found in 283 

several putatively novel phyla in addition to the known AnAOB groups, such as GCA-001730085, 284 

Hydrogenedentota, Calditrichota, KSB1, FEN-1099, and SAR324 (Fig. 5a). While fewer nitrogen 285 

cycle related genes were found in archaea than bacteria, we found that Asgard archaea universally 286 

contain nirBD and norBC genes, suggesting that they might be functionally involved in the nitrogen 287 

cycle in hypersaline lakes (Fig. 5b). In terms of the dehalogenation genes rdh, we found a number of 288 

putatively novel lineages with rdh genes in the hypersaline lake MAGs, such as bacterial phyla 289 

Eisenbacteria, Krumholzibacteriota, Zixibacteria, KSB1, and Marinisomatota (Fig. 5a). In archaeal 290 

taxa, rdh gene were found in classes Thorarchaeia, Lokiarchaeia, and phylum Hadarchaeota (Fig. 5b). 291 

These findings suggested that these putatively novel MAGs may have dehalogenation capacity in 292 

hypersaline lakes. 293 

To explore plastic degradation and PAHs potentials of saline lake MAGs, dereplicated ORFs were 294 

annotated against the PlasticDB and Darhd databases. Results showed that putatively novel MAGs 295 

with plastic degradation capabilities distributed in most of the phyla, including for previously known 296 

as non-biodegradable plastics, such as polyethylene (PE), polyethylene terephthalate (PET), polyamide 297 

(Nylon), polystyrene (PS), and polyurethane (PU), were found in phyla GCA-001730085, 298 

Hydrogenedentota, Krumholzibacteriota, Fibrobacterota, Marinisomatota, KSB1, Moduliflexota, 299 

FEN-1099, SAR324, RBG-13-61-14, and class Lokiarchaeia (Fig. 5a,b). For PAHs degradation 300 

potentials, genes such as aromatic ring-hydroxylating dioxygenase, phenylpropionate dioxygenase, 301 

and benzoate dioxygenase were found across putatively novel MAGs, spanning phyla Sumerlaeota, 302 

Krumholzibacteriota, Calditrichota, and class Lokiarchaeia (Fig. 5a,b), suggesting that many 303 

putatively novel MAGs may also have the potential to degrade microbially degradable plastics and 304 

PAHs. 305 

 306 

4. Discussion 307 

Uncharacterised microorganisms possess a vast repository of undiscovered enzymes and metabolic 308 

pathways that hold the potential for applications in various fields, including biotechnology, medicine, 309 

agriculture, and environmental remediation [49-54]. Hypersaline lakes are physiochemically diverse, 310 

leading to high complexity of microbial communities [55-59]. Thus, more microbial information with 311 

a broader range of genetic diversity could be unravelled from hypersaline lakes compared to 312 
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engineered environments where specialised microbes were enriched [60-62]. In this study, we 313 

investigated four hypersaline lakes with distinct biochemical characteristics and successfully 314 

uncovered over 3,000 MAGs, providing valuable microbial resources at the genome-scale. Although 315 

salinity is typically found to have a negative correlation with microbial diversity [59, 63], halophilic 316 

archaea, such as Nanohaloarchaeota archaea, are uniquely present in some environments with 317 

extremely high salinity, such as QJJ lake (Fig. 3d). These archaea have been considered as symbionts, 318 

exhibiting intracellular lifestyles with other prokaryotic cells [24, 64]. Several putatively novel phyla 319 

were exclusively identified in ADH and BLK sediments (Fig. 3c,d). These putatively novel MAGs 320 

might correlate with TOC (in BLK) or other unknown environmental factors (in ADH), necessitating 321 

further exploration. Sulphate reduction bacteria (SRBs), such as Desulfobacterota and Zixibacteria, 322 

were abundant in BLK sediment, possibly due to the high concentration of SO4
2− and anaerobic 323 

conditions in the sediments. Furthermore, building upon our previous study on recovering 324 

Asgardarchaeota MAGs from ADH sediments [28], we have acquired new Asgardarchaeota MAGs 325 

from BLK sediments, which makes it the second where Asgardarchaeota MAGs have been recovered 326 

from deep-inland saline environments.  327 

The recovery of 3,030 MAGs also provided valuable information on biosynthesis and biodegradation 328 

potentials. Although a metatranscriptomic analysis was not included in this study to confirm 329 

biosynthetic activity, our metagenomic analyses revealed nearly 10,000 potential BGCs, including ~80% 330 

of which were considered novel. Notably, our findings concerning putatively novel phyla that are 331 

enriched in BGCs aligned with previous studies that included metatranscriptomic analysis from marine 332 

environments [65, 66], such as Omnitrophota, KSB1, OLB16, and FEN-1099, etc., further validated 333 

our findings in the biosynthetic analysis. On the other hand, biodegradation capabilities such as 334 

nitrogen removals (especially Anammox), dehalogenation, plastic degradation, and PAHs degradation 335 

are areas of intense interest for environmental remediation efforts [67-72]. The presence of 336 

biodegradation genes in putatively novel MAGs observed in this study offered new potentials for the 337 

degradation of pollutants, plastics, and toxic compounds. Biodegradation genes in a hypersaline lake 338 

environment may not be directly linked to microbial functionalities or serve as a bioindicator to plastics 339 

or PAHs pollution, given the absence of metatranscriptomic analyses. Nonetheless, our findings 340 

offered a genetic reservoir with the potentials for future biotechnological applications. Future studies 341 

should include metatranscriptomic analysis to confirm the expression of functional genes, and 342 

experimental validation is indispensable to substantiate specific microbial functions. Overall, these 343 

findings vastly improved our understanding of the putatively novel genomes in hypersaline lake 344 

environments, as well as the metabolic potentials of novel microbial species in developing biosynthetic 345 

and biodegradation capabilities, which can contribute to a broad range of applications, including 346 

biofuels, medicine, agricultural and industrial applications, as well as environmental remediation 347 
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efforts. Moreover, the recovery of MAGs provided valuable genomic resources that enable insights 348 

into microbial evolution, potentially expanding our understanding of the Tree of Life [73]. 349 

Extreme environments are typically inhospitable to a large proportion of known microorganisms [17, 350 

74]. However, such environments offer a group of specialised extremophiles that have evolved unique 351 

strategies to maintain their stability and functionality under such extreme conditions [75-77]. Recent 352 

studies have uncovered dozens of thousands of MAGs from various extreme environments, including 353 

deserts, oil fields, hydrothermal vents, cold seeps, hypersaline lakes, glaciers, etc. [15, 78-83]. Within 354 

putatively novel phyla, a higher diversity of Patescibacteria and Nanoarchaeota has been observed in 355 

hypersaline lake environments compared to other environments, aligning with previous findings of 356 

saline lake studies [15, 24]. Some MAGs, such as Caldatribacteriota and KSB1, were rarely reported 357 

in other environments except marine sediments [84, 85] or, as is the case of Margulisbacteria in 358 

underground water environments [86]. These observations may be possibly attributable to the low 359 

abundance of such microorganisms in specific environments. Microorganisms in hypersaline lakes are 360 

known as halotolerant or halophilic live forms, with distinct physiological and biochemical features 361 

that enable them to adapt to such extreme environments [87, 88]. Interestingly, while hypersaline lakes 362 

were previously known to be nutrient-poor, recent studies revealed that some of them are nutrient-rich, 363 

particularly in the lake sediment [89-91], which aligns with the results of this study. The remarkable 364 

adaptations and compatibilities of these organisms to high salinity environments, along with 365 

specialised functions including osmoregulation, “salt-in” strategy, membrane formation, and 366 

halophilic enzymes, etc. [92-96], offer exceptional opportunities for biotechnological applications. 367 

These applications range from non-sterile bioproduction and bioremediation of high salinity wastes to 368 

salt production and desalination. Collectively, mining and utilising microbial resources from 369 

hypersaline lakes can significantly advance our understanding of the metabolic potentials of 370 

extremophiles. This knowledge can be harnessed for applications in biotechnological industries and 371 

environmental management practices, broadening the spectrum of practical applications and 372 

contributing to sustainable development and environmental preservation. 373 

Despite the promising potentials of exploiting uncultured hypersaline microorganisms (namely MDMs) 374 

for various applications, the limitations of exploiting these MDMs cannot be overlooked. One key 375 

challenge is that MDMs often contain undocumented genes or enzymes in the current databases. This 376 

can affect the accuracy of predictions, annotations, or classification in genomic analyses [49, 97, 98]. 377 

While advancements in state-of-art sequencing technologies and bioinformatic tools, such as long-read 378 

sequencing [99, 100], single-cell sequencing [101], deep refinement [28], and machine learning [102] 379 

approaches, have assisted in mitigating these discrepancies, each of these technologies has its 380 

limitations. These still hampers the robust de novo assembly of low abundant putatively novel MAGs 381 

from the microbial communities. Moreover, since successfully culturing a microorganism is still 382 
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considered the “gold standard” approach of microbial characterisation, it is still challenging to replicate 383 

extreme conditions such as hypersaline environments under laboratory conditions, making it difficult 384 

to culture putatively novel MAGs. Even if the culturing approaches can be managed, validating their 385 

functional and metabolic properties to confirm biosynthesis and biodegradation potentials remains a 386 

major challenge. Cutting-edge technologies and in-depth analysis tools, such as multi-omics 387 

approaches [103], Raman spectroscopy methods [104], and high-throughput single-cell sequencing 388 

technologies [105], may assist in the isolation and culturing of uncharacterised microorganisms. 389 

However, most of these techniques have been sophisticatedly applied to human gut microbiome studies; 390 

thus, such application to extreme environmental samples remains challenging, both in terms of 391 

laboratory experiments and in silico analyses. 392 

Based on the current findings of biodegradation potentials in this study, future research is proposed to 393 

be conducted on targeted culture enrichment. For example, potential Anammox bacteria could be 394 

enriched from specific lakes where MAGs with Anammox signature genes were found. To achieve 395 

this, multi-omics analysis approaches could be applied to assist the enrichment to reveal the nutrient 396 

requirement of target species, expression of key genes, and interactions with other microorganisms in 397 

the enrichment systems [106, 107]. However, further exploration of putatively novel microorganisms 398 

from hypersaline lakes and other extreme environments is complex, with numerous technical 399 

challenges to be addressed. One of the key conundrums lies in the increase of resolution for low 400 

coverage of microbial genomes, which is difficult to recover via binning. The successful enrichment 401 

of these putatively novel microorganisms is also hindered by intricate nutrient requirements, complex 402 

microbial interactions, and slow growth rates associated with these extremophiles [108-110]. Possible 403 

solutions might be conceived such as (1) the utilisation of advanced sequencing technologies, such as 404 

Hi-C, Pore-C, and HiFi sequencing [111-113], which could potentially yield higher-quality and more 405 

complete genomic assemblies from metagenomic datasets, offering a more detailed and accurate view 406 

of the landscape of putatively novel genomes; (2) the development of new bioinformatic tools to 407 

enhance the accuracy and resolution of recovered genomes from metagenomic datasets, potentially 408 

achieved through the application of machine learning algorithms or the improvement of existing 409 

bioinformatic tools; (3) the upgraded laboratory techniques for culture enrichment (e.g., machine 410 

learning-based high-throughput microbial culturomics) [114] or “counterselection” strategy on 411 

extreme environmental metagenomes. Nevertheless, successfully developing and applying these 412 

approaches could significantly advance our discovery of MDMs and their associated biotechnological 413 

potentials. It could also unfold possibilities for exploration of life in the most extreme environments 414 

on Earth, including abyssal, hadal, deep subsurface, and even beyond, into extraterrestrial 415 

environments. 416 

 417 
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5. Conclusions 418 

Our study implemented genome-centric analyses on over 3,000 MAGs recovered from four 419 

hypersaline lakes in Xinjiang Uygur Zizhiqu, China, each characterised by distinct environmental 420 

parameters. This effort has significantly augmented the repository of genomic data and valuable 421 

insights into microbial life in extreme environments, particularly hypersaline lakes. We found over 422 

8,000 potential BGCs and uncovered several putatively novel phyla that may be enriched in 423 

biosynthetic capacities, substantially supporting future research in biotechnological applications. In 424 

addition, the discovery of biodegradation genes within certain putatively novel lineages also suggests 425 

promising prospects for environmental remediation strategies. In summary, this study expands our 426 

knowledge of microbial diversity and function in extreme environments, paving the path to the future 427 

discovery of uncultured microorganisms. This research deepens our understanding of the Tree of Life 428 

and unveils avenues for diverse applications in biotechnology and environmental remediation. 429 
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Figure captions 754 

Fig. 1. Summary of MAGs obtained from hypersaline lakes. a, A breakdown of completeness and 755 

purity of recovered MAGs. Red: medium-quality MAGs; Green: high-quality MAGs; Blue: Near-756 

complete (NC) MAGs. b, The proportion of 5S, 16S, 23S, and all three types of rRNA genes predicted 757 

in MAGs. c, Summary of genes encoding standard tRNAs predicted in MAGs. d, Proportion of MAGs 758 

affiliated with a classified, candidate, or unknown taxon at different levels. 759 

 760 

Fig. 2. Microbial composition and genetic characteristics of four saline lakes. a, Alpha indices of 761 

predicted genes from lakewater and sedimentary communities in different lakes. Red: ADH (Aiding 762 

Lake), blue: BLK (Barkol Lake), green: DBC (Dabancheng Lake), purple: QJJ (Qijiaojing Lake). 763 

Asterisks indicate statistical significance (P < 0.05). NS: No statistical significance (P > 0.05). b, 764 

Distance-based Redundancy Analysis (dbRDA) of predicted genes from lakewater and sedimentary 765 

communities in different lakes. TOC: Total Organic Carbon, Li+: lithium, Na+: sodium, NH4
+: 766 

ammonium, K+: potassium, Mg2+: magnesium, Ca2+: calcium, Cl−: chloridion, SO4
2−: sulphate. c, 767 

Relative abundance of genes involved in key pathways, including carbon fixation, fatty acid 768 

metabolism, methane metabolism, nitrogen metabolism, photosynthesis, and sulfur metabolism. d, Z-769 

score normalised relative abundance of modules in carbon fixation, methane, nitrogen, and sulfur 770 

metabolism. 771 

 772 

Fig. 3. Phylogenetic analysis of MDM MAGs. Unrooted maximum likelihood trees of archaeal and 773 

bacterial MAGs were constructed with 122 and 120 concatenated marker genes in IQ-TREE using 774 

Q.pfam+R10 and LG+F+R10 models, respectively. a, MDM proportion of lakewater and sedimentary 775 

communities in terms of relative abundance and number of MAGs. Red: MDMs; Grey: non-MDMs. 776 

b, Microbial structure of lakewater and sedimentary communities in different lakes regarding relative 777 

abundance and number of MAGs classified at the phylum level. c,d, Phylogenetic tree of bacterial (c) 778 

and archaeal (d) MAGs. MDM lineages (bacterial) or phyla (archaeal) were highlighted in red, and 779 

MDM MAG(s) present in the corresponding lineages/phyla were indicated with shapes. ADH: square, 780 

BLK: circle, DBC: triangle, QJJ: diamond, solid symbol: sediment, hallowed symbol: plankton. 781 

 782 

Fig. 4. Analysis of biosynthetic potentials of hypersaline lake MAGs. a, A summary of predicted BGCs. 783 

In the pie chart on top, blue indicates that predicted BGCs were clustered to known BGCs in the MiBIG 784 

database; grey indicates that BGCs were not clustered to a known BGC in the MiBIG database. The 785 

pie chart at the bottom summarised the number of BGCs annotated to a BGC class. b, Normalised 786 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 23, 2023. ; https://doi.org/10.1101/2023.06.28.546814doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.28.546814
http://creativecommons.org/licenses/by-nc/4.0/


number of BGCs per MAG in each phylum. c, Phylogenetic trees of archaeal and bacterial MAGs with 787 

completeness ≥ 70, or number of BGCs ≥ 5. Midpoint-rooted maximum likelihood trees of archaeal 788 

and bacterial MAGs were constructed with 122 and 120 concatenated marker genes in IQ-TREE using 789 

Q.pfam+R10 and LG+F+R10 models, respectively. Black branches indicate bacterial MAGs, while 790 

purple branches indicate archaeal MAGs. 791 

 792 

Fig. 5. Phylogenetic analysis of biodegradative potentials in bacterial (a) and archaeal (b) MDM 793 

MAGs. Maximum likelihood trees of bacterial and archaeal MAGs were constructed with 120 and 122 794 

concatenated marker genes in IQ-TREE using LG+F+R10 and Q.pfam+R10 models, respectively. The 795 

bacterial and archaeal trees were rooted with phylum GCA-001730085 and class Thorarchaeia, 796 

respectively. Key biodegradative genes were annotated in orange (nitrogen metabolism), green 797 

(dehalogenation), blue (plastics degradation), and purple (PAHs degradation). 798 

 799 

Fig. S1. Location of Aiding Lake (ADH), Barkol Lake (BLK), Dabancheng Lake (DBC), and 800 

Qijiaojing Lake (QJJ). 801 

 802 

Fig. S2. NMDS plot of genetic diversities analysed in Bray-Curtis dissimilarities. Different colours 803 

indicate different lakes, including red (ADH), cyan (BLK), green (DBC), and purple (QJJ), while 804 

different shapes indicate different lake compartments, including sediment (solid circle) and plankton 805 

(hollowed circle). 806 

 807 
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Hypersaline lake metagenomes

Hypersaline lakes from 
Xinjiang, China

Over 3,000 MAGs 
recovered

Binning

Biosynthetic potentials
(97.6% were unknown)

Key biodegradative potentials in 
ammonia removal, dehalogenation, 

plastics degradation, etc.

Biosynthetic and biodegradative potentials in hypersaline lakes 

Biosynthetic 
Gene 

Clusters

Metabolic 
pathways

Conclusion: Expanded genetic repository of biosynthesis and biodegradation potentials in hypersaline lake microbiome to further 
assist the development of new and innovative applications in biotechnology.
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