

1 **Unravelling Biosynthesis and Biodegradation Potentials of**
2 **Microbial Dark Matters in Hypersaline Lakes**
3

4 Zhiguang Qiu^{a,b}, Yuanyuan Zhu^a, Qing Zhang^a, Xuejiao Qiao^a, Rong Mu^a, Zheng Xu^{c,d}, Yan Yan^e, Fan
5 Wang^f, Tong Zhang^g, Wei-Qin Zhuang^h, Ke Yu^{a,b*}
6

7 ^a *School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China*

8 ^b *AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, 518055, China*

9 ^c *Southern University of Sciences and Technology Yantian Hospital, Shenzhen, 518081, China*

10 ^d *Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of
11 Sciences, Shenzhen, 518055, China*

12 ^e *State Key Laboratory of Isotope Geochemistry, CAS Center for Excellence in Deep Earth Science, Guangzhou
13 Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China*

14 ^f *School of Atmospheric Sciences, Sun Yat-sen University, Southern Marine Science and Engineering
15 Guangdong Laboratory (Zhuhai), Zhuhai 519082, China*

16 ^g *Department of Civil Engineering, University of Hong Kong, Hong Kong, 999077, China*

17 ^h *Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, New
18 Zealand*

19

20 *Corresponding author: Ke Yu

21 E-mail address: yu_ke.sz@pku.edu.cn

22

23 **Abstract**

24 Biosynthesis and biodegradation of microorganisms critically underpin the development of
25 biotechnology, new drugs and therapies, and environmental remediation. However, the vast majority
26 of uncultured microbial species along with their metabolic capacities in extreme environments remain
27 obscured. To unravel the metabolic potentials of these microbial dark matters (MDMs), we
28 investigated four deep-inland hypersaline lakes with largely diversified environmental parameters in
29 Xinjiang Uygur Zizhiqu, China. Metagenomic binning obtained 3,030 metagenome-assembled
30 genomes (MAGs) spanning 82 phyla, of which 2,363 MAGs could not be assigned to a known genus.
31 These unknown MAGs were abundantly observed with distinct taxa among lakes, possibly linked to
32 the diversification of physiochemical conditions. Analysis of biosynthetic potentials identified 9,635
33 biosynthesis gene clusters (BGCs), of which 9,403 BGCs were considered novel. We found that some
34 MAGs from putatively novel phyla consistently comprised enriched BGCs, which may have
35 substantial potentials in biotechnological applications. In addition, biodegradation potentials such as
36 dehalogenation, anaerobic ammonium oxidation (Anammox), polycyclic aromatic hydrocarbon (PAH),
37 and plastic degradation were found in new microbial clades from hypersaline lakes. These findings
38 substantially expanded the genetic repository of biosynthesis and biodegradation potentials, which can
39 further assist the development of new and innovative applications in biotechnology.

40

41 **Keywords**

42 Biosynthesis; Biodegradation; Hypersaline Lakes; Metagenome-assembled Genomes; Microbial
43 Dark Matters

44

45 1. Introduction

46 Microorganisms are vital in global ecosystems that underpin life on Earth, as they play essential roles
47 in contributing to biogeochemical cycling, supporting food webs, and maintaining the fitness of plants
48 and animals [1-4]. Particularly, the microbial metabolic capabilities such as decomposing pollutants
49 and producing secondary metabolites like natural products have fostered the development of
50 biosynthesis and biodegradation, thereby propelled biotechnological processes and addressed
51 environmental challenges [5-8]. Nonetheless, most microbial species are unculturable, leading to the
52 inefficient exploration of metabolic capacities across diverse environments.

53 To address this issue, a series of state-of-the-art sequencing technologies along with bioinformatic
54 tools, such as metagenomic sequencing and binning, have revolutionised our ability to investigate and
55 decode the metabolic pathways of uncultured microorganisms. Employing such approaches, we can
56 unveil previously uncharacterised microorganisms within an underexplored environment, considerably
57 expanding our recognition of the specific microbial roles and functions in biosynthesis and
58 biodegradation. This knowledge could be instrumental in harnessing more efficient and sustainable
59 methods for producing natural products or devising more effective pathways for contaminant
60 degradation [9]. However, current progress in applying microbial resources for biosynthesis is still
61 hindered by the efficiency of the enzymes for large-scale production, the sustainability of
62 methodologies, and the financial demands of culturing [10, 11]. On the other hand, environmental
63 variability, the complexity of microbial communities, and the high pre-treatment costs are the main
64 issues that obstructed biodegradation efficiency [12, 13]. Furthermore, our understanding of the
65 underlying microbial mechanisms of biosynthesis and biodegradation, including novel enzymes and
66 metabolic pathways involved in these processes, remain considerably limited. Therefore, to enhance
67 our understanding of these mechanisms and facilitate more efficient and effective biosynthesis and
68 biodegradation processes, it is imperative to investigate uncultured microbial species and their
69 metabolic capacities in extreme environments. Such exploration can deepen the knowledge of novel
70 enzymes and metabolic pathways, leading to more sustainable and environmentally friendly solutions
71 across various applications.

72 Hypersaline lakes are typical examples of extreme environments, usually characterised by high salinity
73 ($\geq 35 \text{ g L}^{-1}$), elevated aridity and evaporation, poor nutrients such as organic carbon, and some even
74 exhibiting high alkalinity [14-16]. Within these harsh conditions, unique extremophilic microbial
75 communities have thrived, showcasing an exceptional ability to acclimate to environments
76 inhospitable for other living organisms [17, 18]. The distinctive environmental parameters of deep
77 inland hypersaline lakes vary significantly from one lake to another, shaped by climate, geology, and
78 human activities. Consequently, many microbial communities in these hypersaline habitats remain

79 unexplored, presenting potential resources for biotechnological applications [19-22]. Genome-
80 resolved analyses indicates that these deep inland hypersaline lakes many uncultured microorganisms,
81 namely microbial dark matters (MDMs), such as DPANN archaea and CPR bacteria [15, 23, 24]. These
82 findings substantially broadened our recognition of MDMs from an evolutionary perspective. However,
83 these pioneering studies merely scratched the surface of hypersaline lake microbiomes, restricted by
84 the scope of study areas and limitations in bioinformatic analysis techniques. Therefore, to
85 comprehensively uncover the microbial niches within hypersaline lake microbiomes and further reveal
86 metabolic capacities in these extreme ecosystems, more in-depth and expansive investigations on
87 hypersaline lake microbial genomes should be envisaged.

88 In this study, we examined four saline lakes in Xinjiang Uygur Zizhiqu, China, each with distinct
89 salinity (1.5–237 g L⁻¹) and altitude (−153 to 1,585 m). A previous study observed that salinity
90 significantly influences the microbial assemblages of saline lake microbiota [25]. However, the roles
91 lakewater and sediment microbial communities devote to biosynthesis and biodegradation resolved
92 from metagenomes remain uncertain. Given such a diverse range of geographic and environmental
93 parameters, we assembled over 3,000 metagenome-assembled genomes (MAGs) from these four lakes,
94 aiming to unearth new uncultured microbial lineages and decode the biosynthetic and biodegradative
95 potentials of hypersaline lake prokaryotes.

96

97 **2. Methods**

98 **2.1. Sampling and measurement of physiochemical parameters**

99 Hypersaline lake samples were collected in July 2018 from Aiding Lake (ADH), Barkol Lake (BLK),
100 Dabancheng Lake (DBC), and Qijiaojing Lake (QJJ) (Fig. S1), Xinjiang Uygur Zizhiqu, China.
101 Detailed sampling and geographic information were recorded in Table S1. Briefly, four water samples
102 ($n = 4$) and four sediment samples ($n = 4$) were collected from each lake, at least 50 m apart between
103 two sampling sites. For each water sample, 5 L of lake water from the upper 50 cm surface was
104 randomly collected into a 5 L sterile container. Lake water was firstly filtered through a filter paper
105 (Whatman, GE Healthcare, NY, USA) to remove large particles before filtering through 0.22 μ m PES
106 (Polyethersulfone) membranes (Millipore, Billerica, MA, USA) to enrich lakewater microorganisms.
107 For each sediment sample, about 50 grams of sediments were randomly collected at 0–10 cm depth at
108 the bottom of the lake into sterile 50 mL falcon tubes. Membranes and sediment samples were
109 immediately placed on dry ice before being brought to the laboratory and transferred to a −80 °C
110 freezer until further DNA extraction was performed.

111 The salinity and pH of lake water were measured *in situ* using a Hydrolab DS5 multiparameter water
112 quality meter (Hach Company, Loveland, CO, USA). Total organic carbon (TOC) was analysed with
113 a TOC/TN-VCPh analyser (Shimadzu, Tokyo, Japan). The concentrations of lithium (Li^+), sodium
114 (Na^+), ammonium (NH_4^+), potassium (K^+), magnesium (Mg^{2+}), calcium (Ca^{2+}), chloridion (Cl^-), and
115 sulphate (SO_4^{2-}) were determined using an inductively coupled plasma mass spectrometry (Agilent
116 Technologies Inc., Bellevue, WA, USA).

117 **2.2. DNA extraction and metagenomic sequencing**

118 Total DNA was extracted from frozen filtered membrane or sediment samples using the DNeasy
119 PowerSoil Pro Kit (Qiagen, Hilden, Germany), following the manufacturer's instructions. Extracted
120 DNA was quality checked by NanoDrop 2000 (Thermo Fisher Scientific, Waltham, Massachusetts,
121 US) and quantity checked by Qubit Fluorometer (Thermo Fisher Scientific, USA). Next-generation
122 metagenomic sequencing was performed at Novogene (Tianjin, China) on an Illumina NovaSeq 6000
123 platform using the PE150 strategy.

124 **2.3. Assembly, binning, and phylogenetic analyses**

125 Raw paired-end reads were initially filtered using fastp with default parameters [26]. Clean reads were
126 individually and co-assembled using SPAdes (v3.15.2) [27] under “--meta” mode into contigs
127 specifying k-mer sizes of 21, 33, 55, 77, and finally reserved contigs $> 1,000$ bps. Metagenomic
128 binning was applied to both single sample assembly and co-assembly using BASALT (v1.0) under
129 default mode [28]. The completeness and contamination of bins were assessed using CheckM v1.0.2
130 with “lineage_wf” workflow and default parameters [29], with only medium and high-quality bins that
131 meet the MIMAG standard (completeness ≥ 50 , contamination ≤ 10) [30] kept as MAGs for further
132 analysis.

133 Taxonomic classification was conducted using GTDB-Tk (v1.5.0, database release r202) [31]. MAGs
134 not classified to any reference genomes in GTDB were defined as unknown at certain taxonomic levels
135 (i.e., species, genus, family, etc.). Phylogenetic analysis of bacteria and archaea MAGs was performed
136 based on a multiple sequence alignment of 120 bacterial- and 122 archaeal-specific single-copy marker
137 proteins, respectively. A concatenated alignment of these marker proteins was created using HMMER
138 v3.1.b2 with default parameters [32]. Bacterial and archaeal phylogenetic trees were inferred using IQ-
139 TREE under the best-fitted models with 1,000 bootstrap replications [33] before being visualised and
140 annotated in iTOL v6 [34].

141 **2.4. Identification of non-coding RNA genes and functional annotation**

142 Non-coding RNA genes, including transfer RNA genes and ribosomal RNA genes, were identified to
143 evaluate the integrity of MAGs. Briefly, tRNA genes were predicted using tRNAscan-SE (v2.0.9) [35],

144 while rRNA genes, including 5S rRNA, 16S rRNA, and 23S rRNA, were predicted using Barrnap
145 (v0.9, <https://github.com/tseemann/barrnap>). For genetic analysis, Opening Reading Frames (ORFs)
146 of assembled contigs were predicted using Prodigal (v2.6.3) with default parameters [36]. Predicted
147 ORFs were dereplicated with CD-HIT (v4.6) at 90% identity [37]. Dereplicated ORFs were annotated
148 against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (version 58) and National
149 Center for Biotechnology Information – Non-redundant (NCBI-NR) database (version 20220806),
150 respectively, with Diamond (v2.0.11.149) [38] using “more-sensitive” mode and e-value at 1×10^{-10} . In
151 addition, dereplicated ORFs were further annotated against Pfam (v34.0) and TIGRFAM (v15.0)
152 databases using InterProScan (v5.54-87.0) [39]. To estimate the relative abundance of each gene,
153 dereplicated FASTA sequences of ORFs were mapped against raw sequence reads by Bowtie2 (v2.4.2)
154 [40]. Then, the depth of aligned reads was calculated using SAMtools (v1.7) [41] and summarised with
155 a Perl script ‘calc.coverage.in.bam.depth.pl’ from a previous study [42]. Finally, coverage-normalised
156 KOs were clustered into modules and pathways using a Python script “pathway_pipeline.py” in
157 PICRUSt2 [43]. For genome-centric analysis, each MAG was predicted using Prodigal with default
158 parameters and annotated against the KEGG database using the same parameter described above.

159 2.5. Annotation of Biosynthetic Gene Clusters (BGCs)

160 Genome sequences were used as input using antiSMASH (v.6.1.1) [44] to identify BGCs from saline
161 lake MAGs. The gbk-formatted output of each MAG was further processed using BiG-SCAPE (v1.1.2)
162 [45] to cluster saline lake BGCs with reference BGCs from the MIBiG database [46]. Gene Cluster
163 Families (GCFs) were clustered at 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 distance thresholds, respectively.
164 To determine the novelty of BGCs, we followed the criteria described by Navarro-Muñozet et al. [45]
165 using 0.5 distance for clustering. Any BGC not related to MIBiG BGCs were described as unknown
166 BGC.

167

168 2.6. Detection of Biodegradation potentials

169 To identify MAGs with potential biodegradation functions, including dechlorinating, nitrogen removal,
170 and degradation of polycyclic aromatic hydrocarbons (PAHs), dereplicated MAG ORFs were further
171 annotated against two homebrew databases, including EDB-DHG and EDB-Ncyc for dechlorinating
172 and nitrogen removal. Concurrently, Darhd Database and PlasticDB were employed to assess PAH
173 degradation [47] and plastic degradation [48], respectively. The annotation process utilised Diamond
174 with the same parameter described above, reserving matched sequences at identity $\geq 50\%$. As the
175 Darhd database only contained nucleotide sequences, we pre-treated all sequences by translating them
176 into amino acids with Prodigal to maintain consistency with other databases. Annotated sequences
177 were checked by comparing results with KEGG, NCBI-NR, and InterProScan to avoid false annotation.

178 EDB-DHG and EDB-Ncyc Databases are available for download in FigShare
179 (<https://figshare.com/ndownloader/articles/23504874/versions/1>).

180 **2.7. Statistical analysis and data visualisation**

181 Data organisation and formatting were conducted using the R packages “tibble”, “dplyr”, “tidyr”, and
182 “stringr”. Statistical analyses, including Kruskal-Wallis tests, Dunn tests, and RDA analysis, were
183 conducted using the R packages “vegan”, “stats”, and “FSA”. Data visualisation, including dot plots,
184 bar graphs (including pie charts), and boxplots, were performed using the R package “ggplot2” with
185 functions “geom_point”, “geom_bar”, and “geom_boxplot”, respectively. nMDS plots and RDA plots
186 were performed using the R packages “ggplot2” with functions “geom_point”, “geom_hline”,
187 “geom_vline”, and “geom_segment”, respectively. Heatmap was generated using “pheatmap” with z-
188 score normalised using “scale = row”, and multiple panels were generated using “cowplot”.

189

190 **3. Results**

191 **3.1. A large proportion of metagenome-assembled genomes from hypersaline lakes were
192 considered novel**

193 Metagenomic sequencing generated ~1.2 Terabytes of DNA sequence data from 30 samples from four
194 hypersaline lakes. Two samples (one from DBC water and the other from QJJ sediment) were excluded
195 from this study due to the unsuccessful preparation of the sequencing library. The metagenomic
196 assembly generated 26 Gigabytes of contig data with sequence length > 1,000 bp. After metagenomic
197 binning, we recovered 3,030 non-redundant bins that meet the MIMAG standard (completeness \geq
198 50%, purity \geq 90%, mean completeness = $79.8 \pm 14.8\%$, mean purity = $97.8 \pm 2.0\%$) [30]. These bins
199 were considered as MAGs for the following analyses (Fig. 1a). There were 76.9%, 51.5%, and 44.6%
200 of the MAGs contained 5S, 16S, and 23S rRNA genes, respectively, while 23.7% possessed all three
201 types of rRNA genes (Fig. 1b). In terms of tRNA genes, 75% of the MAGs contained more than 13
202 types of tRNA genes (Fig. 1c). There were 97.1%, 78.0% and 56.7% of MAGs affiliated with
203 unclassified or close to a tentatively assigned species, genera, and families, respectively, suggesting
204 that a high proportion of the genomes discovered in the hypersaline lakes were unknown or candidates
205 for future identification (Fig. 1d). Details of the sequencing data size, contig summary, number of
206 genomes, and specifics of the MAGs were supplied in Table S1.

207 **3.2. Distinct genetic composition and functional potential among lakes**

208 Among functional genes from all assembled contigs, distinct genetic compositions were identified
209 among the lakes and sample types. Overall, the lakewater genetic richness in the Chao1 index of ADH

210 and DBC was significantly higher than that of QJJ, while the genetic richness and evenness in the
211 Shannon index of DBC was significantly higher than that of QJJ ($P < 0.05$). However, no significant
212 difference was found between lakes in sedimentary samples (Fig. 2a). Genetic compositions of lake
213 lakewater and sedimentary communities were significantly different ($P < 0.05$, Fig. S2), which were
214 mainly driven by salinity including Li^+ , Na^+ , SO_4^{2-} , Ca^{2+} , Mg^{2+} , and K^+ in lakewater communities, and
215 TOC, SO_4^{2-} , and Na^+ in sedimentary communities (Fig. 2b). Functional capacity profiles suggested
216 that microbial genetic potentials varied distinctly among sample types and lakes, particularly in aspects
217 such as nitrogen and sulphur metabolisms, carbon fixation, methanogenesis, and multidrug resistance,
218 among others (Fig. 2c). Specific analysis within pathways showed that in carbon fixation,
219 Dicarboxylate–hydroxybutyrate cycle was mainly enriched in QJJ planktons, while rTCA cycle,
220 Hydroxypropionate–hydroxybutyrate cycle, and 3–Hydroxypropionate bi-cycle were enriched in QJJ
221 sediments. On the other hand, BLK sediment communities mainly performed the Reductive pentose
222 phosphate cycle (CBB cycle) and Wood–Ljungdahl pathway for carbon fixation. For methane
223 metabolism, BLK was found to be enriched in Methanogenesis in sediments, while DBC and QJJ were
224 enriched in methane oxidation in sediments. F420 biosynthesis was found to be abundant in QJJ
225 plankton, possibly due to the high relative abundance of archaea communities. Nitrogen cycle-related
226 modules, including nitrogen fixation, nitrification, and denitrification, were mainly found enriched in
227 QJJ sediments, while dissimilatory nitrate reduction and assimilatory nitrate reduction modules were
228 found enriched in DBC and QJJ plankton, respectively. For sulphur metabolism, thiosulfate oxidation
229 was found to be abundant in DBC plankton, while dissimilatory sulphate reduction was found enriched
230 in BLK sediments (Fig. 2d). These findings suggest that distinct differences in microbial metabolic
231 pathways were found among these four lakes.

232 3.3. Microbial dark matters were highly diverse in the hypersaline lakes

233 Among the 3,030 non-redundant MAGs, 2,685 were classified as bacteria spanning 70 phyla, with 18
234 (25.7%) considered as putatively novel phyla. Here, a novel phylum was defined when the majority of
235 microbial species within this phylum were not amenable to being isolated under standard laboratory
236 techniques. The remaining 345 MAGs were identified as archaea, spanning 12 phyla, including eight
237 putatively novel phyla. While a vast majority of MAGs were assigned to known phyla (96.6% in
238 plankton and 92.5% in sediment in relative abundance), those minority MAGs in putatively novel
239 phyla demonstrated higher diversity that comprised 16.7% and 30.1% of total MAGs in numbers in
240 the plankton and sediments, respectively (Fig. 2a). This observation suggested that these putatively
241 novel MAGs could exhibit considerable diversity in hypersaline environments. Lineages of common
242 phyla were ubiquitously found across most samples, but distinct distributions of putatively novel phyla
243 (except Patescibacteria) were only identified in specific lakes or sample types (Fig. 2b). These
244 putatively novel phyla were predominantly located in samples with high microbial diversity (i.e., ADH

245 and BLK sediment, Fig. 2b,c), but low relative abundance (<0.5%) among recovered MAGs, indicating
246 that a considerable number of unknown microorganisms inhabitant in these environments were yet to
247 be discovered.

248 **3.4. Biosynthetic Potentials of putatively novel MAGs in saline lakes**

249 In the 3,030 hypersaline lake MAGs, we identified 9,635 biosynthetic gene clusters (BGCs), including
250 232 BGCs clustered into known gene cluster families (GCFs) at 0.5 distance cutoff. A total of 9,403
251 BGCs (97.6% of overall BGCs) that were not clustered to MiBIG BGCs were described as unknown
252 BGCs (Fig. 4a). Notably, several putatively novel bacterial phyla were enriched in BGCs (BGCs per
253 MAG > 5), including OLB16, Moduliflexota, KSB1, Fibrobacterota, and B130-G9. This enrichment
254 was only observed in Planctomycetota, Myxococcota, and Acidobacteriota among the known phyla
255 (Fig. 4b), suggesting that putatively novel bacterial MAGs in these saline lakes may possess abundant
256 biosynthetic potentials. Fewer BGCs were found in archaeal MAGs (BGCs per MAG < 2), possibly
257 due to the insufficient data collected in the database.

258 To further explore biosynthetic potentials of putatively novel MAGs, bacterial and archaeal
259 phylogenetic trees were constructed, selecting MAGs with Completeness \geq 70% or BGCs \geq 5. Sixteen
260 bacterial and two archaeal phyla contained MAG(s) with BGCs \geq 5, suggesting potential biosynthetic
261 enrichment in these phyla. Bacterial and archaeal phyla with small genome sizes (i.e., Patescibacteria
262 and Nanoarchaeota) generally lacked BGCs, except one MAG from Nanoarchaeota, considered an
263 outlier. Some phyla with only a single MAG obtained from saline lake metagenomes, such as B130-
264 G9, Moduliflexota, UBP6, etc. (labelled individually on the tree, Fig. 4b), were not further discussed
265 in this study as their biosynthetic pattern and consistency cannot be validated due to insufficient data.
266 However, other putatively novel phyla consistently demonstrated enrichment with specific BGC
267 Classes. For example, phylum Armatimonadota primarily consisted of RiPPs, Terpene and Other BGC
268 classes, while phylum OLB16 was enriched in NRPS, RiPPs, and Terpene. Most of the MAGs in
269 phylum Bdellovibrionota had BGCs in Terpene, RiPPs, and Other BGC classes, whereas KSB1 MAGs
270 featured NRPS, PKS-NRPS hybrid, and Terpene classes (Fig. 4c). These observations suggest that
271 MAGs within these phyla may have similar biosynthetic potentials. Two Asgardarchaeota MAGs were
272 found to be enriched with BGCs, although this pattern was not consistent across the entire phyla,
273 necessitating more genome analysis for further exploration.

274 **3.5. Biodegradation potentials of putatively novel MAGs in saline lakes**

275 To dissect the biodegradation potentials of hypersaline lake microorganisms, we analysed genes
276 involved in the nitrogen cycle, dehalogenation, plastics degradation, and PAHs degradation within
277 putatively novel MAGs. Several putatively novel bacterial phyla were found to be rich in nitrogen
278 metabolism genes, such as GCA-001730085, Hydrogenedentota, OLB16, Fibrobacterota,

279 Krumholzibacteriota, FEN-1099, RBG-13-61-14, and Zixibacteria (Fig. 5a), suggesting that these
280 putatively novel MAGs may play a crucial role in the nitrogen cycle in hypersaline lakes. Interestingly,
281 although MAGs belong to typical anaerobic ammonium oxidizing bacteria (AnAOB), i.e., families
282 Scalinduaceae and Brocadiaceae in the order Brocadales, class Brocadae, were not found in this study,
283 anaerobic ammonium oxidation (Anammox)-related genes (i.e., genes *hzs* and *hdh*) were found in
284 several putatively novel phyla in addition to the known AnAOB groups, such as GCA-001730085,
285 Hydrogenedentota, Calditrichota, KSB1, FEN-1099, and SAR324 (Fig. 5a). While fewer nitrogen
286 cycle related genes were found in archaea than bacteria, we found that Asgard archaea universally
287 contain *nirBD* and *norBC* genes, suggesting that they might be functionally involved in the nitrogen
288 cycle in hypersaline lakes (Fig. 5b). In terms of the dehalogenation genes *rdh*, we found a number of
289 putatively novel lineages with *rdh* genes in the hypersaline lake MAGs, such as bacterial phyla
290 Eisenbacteria, Krumholzibacteriota, Zixibacteria, KSB1, and Marinisomatota (Fig. 5a). In archaeal
291 taxa, *rdh* gene were found in classes Thorarchaeia, Lokiarchaeia, and phylum Hadarchaeota (Fig. 5b).
292 These findings suggested that these putatively novel MAGs may have dehalogenation capacity in
293 hypersaline lakes.

294 To explore plastic degradation and PAHs potentials of saline lake MAGs, dereplicated ORFs were
295 annotated against the PlasticDB and Darhd databases. Results showed that putatively novel MAGs
296 with plastic degradation capabilities distributed in most of the phyla, including for previously known
297 as non-biodegradable plastics, such as polyethylene (PE), polyethylene terephthalate (PET), polyamide
298 (Nylon), polystyrene (PS), and polyurethane (PU), were found in phyla GCA-001730085,
299 Hydrogenedentota, Krumholzibacteriota, Fibrobacterota, Marinisomatota, KSB1, Moduliflexota,
300 FEN-1099, SAR324, RBG-13-61-14, and class Lokiarchaeia (Fig. 5a,b). For PAHs degradation
301 potentials, genes such as aromatic ring-hydroxylating dioxygenase, phenylpropionate dioxygenase,
302 and benzoate dioxygenase were found across putatively novel MAGs, spanning phyla Sumerlaeota,
303 Krumholzibacteriota, Calditrichota, and class Lokiarchaeia (Fig. 5a,b), suggesting that many
304 putatively novel MAGs may also have the potential to degrade microbially degradable plastics and
305 PAHs.

306

307 4. Discussion

308 Uncharacterised microorganisms possess a vast repository of undiscovered enzymes and metabolic
309 pathways that hold the potential for applications in various fields, including biotechnology, medicine,
310 agriculture, and environmental remediation [49-54]. Hypersaline lakes are physiochemically diverse,
311 leading to high complexity of microbial communities [55-59]. Thus, more microbial information with
312 a broader range of genetic diversity could be unravelled from hypersaline lakes compared to

313 engineered environments where specialised microbes were enriched [60-62]. In this study, we
314 investigated four hypersaline lakes with distinct biochemical characteristics and successfully
315 uncovered over 3,000 MAGs, providing valuable microbial resources at the genome-scale. Although
316 salinity is typically found to have a negative correlation with microbial diversity [59, 63], halophilic
317 archaea, such as Nanohaloarchaeota archaea, are uniquely present in some environments with
318 extremely high salinity, such as QJJ lake (Fig. 3d). These archaea have been considered as symbionts,
319 exhibiting intracellular lifestyles with other prokaryotic cells [24, 64]. Several putatively novel phyla
320 were exclusively identified in ADH and BLK sediments (Fig. 3c,d). These putatively novel MAGs
321 might correlate with TOC (in BLK) or other unknown environmental factors (in ADH), necessitating
322 further exploration. Sulphate reduction bacteria (SRBs), such as Desulfobacterota and Zixibacteria,
323 were abundant in BLK sediment, possibly due to the high concentration of SO_4^{2-} and anaerobic
324 conditions in the sediments. Furthermore, building upon our previous study on recovering
325 Asgardarchaeota MAGs from ADH sediments [28], we have acquired new Asgardarchaeota MAGs
326 from BLK sediments, which makes it the second where Asgardarchaeota MAGs have been recovered
327 from deep-inland saline environments.

328 The recovery of 3,030 MAGs also provided valuable information on biosynthesis and biodegradation
329 potentials. Although a metatranscriptomic analysis was not included in this study to confirm
330 biosynthetic activity, our metagenomic analyses revealed nearly 10,000 potential BGCs, including ~80%
331 of which were considered novel. Notably, our findings concerning putatively novel phyla that are
332 enriched in BGCs aligned with previous studies that included metatranscriptomic analysis from marine
333 environments [65, 66], such as Omnitrophota, KSB1, OLB16, and FEN-1099, etc., further validated
334 our findings in the biosynthetic analysis. On the other hand, biodegradation capabilities such as
335 nitrogen removals (especially Anammox), dehalogenation, plastic degradation, and PAHs degradation
336 are areas of intense interest for environmental remediation efforts [67-72]. The presence of
337 biodegradation genes in putatively novel MAGs observed in this study offered new potentials for the
338 degradation of pollutants, plastics, and toxic compounds. Biodegradation genes in a hypersaline lake
339 environment may not be directly linked to microbial functionalities or serve as a bioindicator to plastics
340 or PAHs pollution, given the absence of metatranscriptomic analyses. Nonetheless, our findings
341 offered a genetic reservoir with the potentials for future biotechnological applications. Future studies
342 should include metatranscriptomic analysis to confirm the expression of functional genes, and
343 experimental validation is indispensable to substantiate specific microbial functions. Overall, these
344 findings vastly improved our understanding of the putatively novel genomes in hypersaline lake
345 environments, as well as the metabolic potentials of novel microbial species in developing biosynthetic
346 and biodegradation capabilities, which can contribute to a broad range of applications, including
347 biofuels, medicine, agricultural and industrial applications, as well as environmental remediation

348 efforts. Moreover, the recovery of MAGs provided valuable genomic resources that enable insights
349 into microbial evolution, potentially expanding our understanding of the Tree of Life [73].

350 Extreme environments are typically inhospitable to a large proportion of known microorganisms [17,
351 74]. However, such environments offer a group of specialised extremophiles that have evolved unique
352 strategies to maintain their stability and functionality under such extreme conditions [75-77]. Recent
353 studies have uncovered dozens of thousands of MAGs from various extreme environments, including
354 deserts, oil fields, hydrothermal vents, cold seeps, hypersaline lakes, glaciers, etc. [15, 78-83]. Within
355 putatively novel phyla, a higher diversity of Patescibacteria and Nanoarchaeota has been observed in
356 hypersaline lake environments compared to other environments, aligning with previous findings of
357 saline lake studies [15, 24]. Some MAGs, such as Caldatribacteriota and KSB1, were rarely reported
358 in other environments except marine sediments [84, 85] or, as is the case of Margulisbacteria in
359 underground water environments [86]. These observations may be possibly attributable to the low
360 abundance of such microorganisms in specific environments. Microorganisms in hypersaline lakes are
361 known as halotolerant or halophilic live forms, with distinct physiological and biochemical features
362 that enable them to adapt to such extreme environments [87, 88]. Interestingly, while hypersaline lakes
363 were previously known to be nutrient-poor, recent studies revealed that some of them are nutrient-rich,
364 particularly in the lake sediment [89-91], which aligns with the results of this study. The remarkable
365 adaptations and compatibilities of these organisms to high salinity environments, along with
366 specialised functions including osmoregulation, “salt-in” strategy, membrane formation, and
367 halophilic enzymes, etc. [92-96], offer exceptional opportunities for biotechnological applications.
368 These applications range from non-sterile bioproduction and bioremediation of high salinity wastes to
369 salt production and desalination. Collectively, mining and utilising microbial resources from
370 hypersaline lakes can significantly advance our understanding of the metabolic potentials of
371 extremophiles. This knowledge can be harnessed for applications in biotechnological industries and
372 environmental management practices, broadening the spectrum of practical applications and
373 contributing to sustainable development and environmental preservation.

374 Despite the promising potentials of exploiting uncultured hypersaline microorganisms (namely MDMs)
375 for various applications, the limitations of exploiting these MDMs cannot be overlooked. One key
376 challenge is that MDMs often contain undocumented genes or enzymes in the current databases. This
377 can affect the accuracy of predictions, annotations, or classification in genomic analyses [49, 97, 98].
378 While advancements in state-of-art sequencing technologies and bioinformatic tools, such as long-read
379 sequencing [99, 100], single-cell sequencing [101], deep refinement [28], and machine learning [102]
380 approaches, have assisted in mitigating these discrepancies, each of these technologies has its
381 limitations. These still hampers the robust *de novo* assembly of low abundant putatively novel MAGs
382 from the microbial communities. Moreover, since successfully culturing a microorganism is still

383 considered the “gold standard” approach of microbial characterisation, it is still challenging to replicate
384 extreme conditions such as hypersaline environments under laboratory conditions, making it difficult
385 to culture putatively novel MAGs. Even if the culturing approaches can be managed, validating their
386 functional and metabolic properties to confirm biosynthesis and biodegradation potentials remains a
387 major challenge. Cutting-edge technologies and in-depth analysis tools, such as multi-omics
388 approaches [103], Raman spectroscopy methods [104], and high-throughput single-cell sequencing
389 technologies [105], may assist in the isolation and culturing of uncharacterised microorganisms.
390 However, most of these techniques have been sophisticatedly applied to human gut microbiome studies;
391 thus, such application to extreme environmental samples remains challenging, both in terms of
392 laboratory experiments and *in silico* analyses.

393 Based on the current findings of biodegradation potentials in this study, future research is proposed to
394 be conducted on targeted culture enrichment. For example, potential Anammox bacteria could be
395 enriched from specific lakes where MAGs with Anammox signature genes were found. To achieve
396 this, multi-omics analysis approaches could be applied to assist the enrichment to reveal the nutrient
397 requirement of target species, expression of key genes, and interactions with other microorganisms in
398 the enrichment systems [106, 107]. However, further exploration of putatively novel microorganisms
399 from hypersaline lakes and other extreme environments is complex, with numerous technical
400 challenges to be addressed. One of the key conundrums lies in the increase of resolution for low
401 coverage of microbial genomes, which is difficult to recover via binning. The successful enrichment
402 of these putatively novel microorganisms is also hindered by intricate nutrient requirements, complex
403 microbial interactions, and slow growth rates associated with these extremophiles [108-110]. Possible
404 solutions might be conceived such as (1) the utilisation of advanced sequencing technologies, such as
405 Hi-C, Pore-C, and HiFi sequencing [111-113], which could potentially yield higher-quality and more
406 complete genomic assemblies from metagenomic datasets, offering a more detailed and accurate view
407 of the landscape of putatively novel genomes; (2) the development of new bioinformatic tools to
408 enhance the accuracy and resolution of recovered genomes from metagenomic datasets, potentially
409 achieved through the application of machine learning algorithms or the improvement of existing
410 bioinformatic tools; (3) the upgraded laboratory techniques for culture enrichment (e.g., machine
411 learning-based high-throughput microbial culturomics) [114] or “counterselection” strategy on
412 extreme environmental metagenomes. Nevertheless, successfully developing and applying these
413 approaches could significantly advance our discovery of MDMs and their associated biotechnological
414 potentials. It could also unfold possibilities for exploration of life in the most extreme environments
415 on Earth, including abyssal, hadal, deep subsurface, and even beyond, into extraterrestrial
416 environments.

418 **5. Conclusions**

419 Our study implemented genome-centric analyses on over 3,000 MAGs recovered from four
420 hypersaline lakes in Xinjiang Uygur Zizhiqu, China, each characterised by distinct environmental
421 parameters. This effort has significantly augmented the repository of genomic data and valuable
422 insights into microbial life in extreme environments, particularly hypersaline lakes. We found over
423 8,000 potential BGCs and uncovered several putatively novel phyla that may be enriched in
424 biosynthetic capacities, substantially supporting future research in biotechnological applications. In
425 addition, the discovery of biodegradation genes within certain putatively novel lineages also suggests
426 promising prospects for environmental remediation strategies. In summary, this study expands our
427 knowledge of microbial diversity and function in extreme environments, paving the path to the future
428 discovery of uncultured microorganisms. This research deepens our understanding of the Tree of Life
429 and unveils avenues for diverse applications in biotechnology and environmental remediation.

430

431 **CRedit authorship contribution statement**

432 **Zhiguang Qiu:** Conceptualisation, Methodology, Formal analysis, Writing – Original Draft, Writing
433 – Review & Editing, Visualisation, Validation. **Yuanyuan Zhu:** Formal analysis, Visualisation. **Qing**
434 **Zhang:** Formal analysis. **Xuejiao Qiao:** Conceptualisation, Resources. **Rong Mu:** Investigation.
435 **Zheng Xu:** Conceptualisation, Visualisation. **Yan Yan:** Resources. **Fan Wang:** Resources. **Tong**
436 **Zhang:** Writing – Review & Editing. **Wei-Qin Zhuang:** Writing – Review & Editing. **Ke Yu:**
437 Conceptualisation, Resources, Project administration, Funding acquisition.

438

439 **Declaration of competing interests**

440 The authors declare that they have no known competing financial interests or personal relationships
441 that could have appeared to influence the work reported in this paper.

442

443 **Acknowledgements**

444 This research was supported by the National Key Research and Development Program of China
445 (2021YFA1301300), Nature Science Foundation of China (62202014 and 61972217), Shenzhen Basic
446 Research Programs (JCYJ20190808183205731, JCYJ20220812103301001, and
447 JCYJ20220813151736001), the Shenzhen Knowledge Innovation Program Basic Research Project
448 (JCYJ20190808183205731), and Science and Technology Planning Project of Shenzhen Municipality

449 (JCYJ20200109120416654). The authors would like to thank Dr. Luhua Xie, Dr. Bing Li, Ms. Liyu
450 Zhang, and Ms. Xiaoling Gao for their technical assistance and valuable discussion.

451

452 Availability of data and materials

453 Metagenomic sequence data of saline lakes are available in the CNCB-NGDC database under project
454 PRJCA014712.

455

456 References

- 457 [1] M. Bahram, F. Hildebrand, S. K. Forslund, J. L. Anderson, N. A. Soudzilovskaia, P. M. Bodegom, J.
458 Bengtsson-Palme, S. Anslan, L. P. Coelho and H. Harend. Structure and function of the global topsoil
459 microbiome. *Nature* 560(7717) (2018), 233-237.
- 460 [2] P. G. Falkowski, T. Fenchel and E. F. Delong. The microbial engines that drive Earth's biogeochemical
461 cycles. *science* 320(5879) (2008), 1034-1039.
- 462 [3] S. Louca, L. W. Parfrey and M. Doebeli. Decoupling function and taxonomy in the global ocean
463 microbiome. *Science* 353(6305) (2016), 1272-1277.
- 464 [4] R. Sender, S. Fuchs and R. Milo. Revised estimates for the number of human and bacteria cells in the
465 body. *PLoS Biol.* 14(8) (2016), e1002533.
- 466 [5] H. Barabadi, B. Tajani, M. Moradi, K. Damavandi Kamali, R. Meena, S. Honary, M. A. Mahjoub and
467 M. Saravanan. Penicillium family as emerging nanofactory for biosynthesis of green nanomaterials: a
468 journey into the world of microorganisms. *Journal of Cluster Science* 30 (2019), 843-856.
- 469 [6] J. A. Chemler and M. A. Koffas. Metabolic engineering for plant natural product biosynthesis in
470 microbes. *Curr. Opin. Biotechnol.* 19(6) (2008), 597-605.
- 471 [7] J. Zhang, Y. Peng, X. Li and R. Du. Feasibility of partial-denitrification/anammox for pharmaceutical
472 wastewater treatment in a hybrid biofilm reactor. *Water Res.* 208 (2022), 117856.
- 473 [8] S. Wang, K. R. Chng, A. Wilm, S. Zhao, K.-L. Yang, N. Nagarajan and J. He. Genomic characterization
474 of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. *Proceedings of*
475 *the National Academy of Sciences* 111(33) (2014), 12103-12108.
- 476 [9] R. Zallot, N. Oberg and J. A. Gerlt. Discovery of new enzymatic functions and metabolic pathways
477 using genomic enzymology web tools. *Curr. Opin. Biotechnol.* 69 (2021), 77-90.
- 478 [10] A. Saravanan, P. S. Kumar, S. Karishma, D.-V. N. Vo, S. Jeevanantham, P. Yaashikaa and C. S. George.
479 A review on biosynthesis of metal nanoparticles and its environmental applications. *Chemosphere* 264
480 (2021), 128580.
- 481 [11] J. Wu, G. Du, J. Zhou and J. Chen. Systems metabolic engineering of microorganisms to achieve large-
482 scale production of flavonoid scaffolds. *J. Biotechnol.* 188 (2014), 72-80.
- 483 [12] N. Taghavi, I. A. Udugama, W.-Q. Zhuang and S. Baroutian. Challenges in biodegradation of non-
484 degradable thermoplastic waste: From environmental impact to operational readiness. *Biotechnol. Adv.*
485 49 (2021), 107731.
- 486 [13] C. C. Azubuike, C. B. Chikere and G. C. Okpokwasili. Bioremediation techniques—classification based
487 on site of application: principles, advantages, limitations and prospects. *World Journal of Microbiology*
488 and Biotechnology
- 489 [14] 32 (2016), 1-18.
- 490 [15] A. Ventosa, R. R. de la Haba, C. Sanchez-Porro and R. T. Papke. Microbial diversity of hypersaline
491 environments: a metagenomic approach. *Curr. Opin. Microbiol.* 25 (2015), 80-87.
- 492 [16] C. D. Vavourakis, A.-S. Andrei, M. Mehrshad, R. Ghai, D. Y. Sorokin and G. Muyzer. A metagenomics
493 roadmap to the uncultured genome diversity in hypersaline soda lake sediments. *Microbiome* 6(1)
494 (2018), 1-18.
- 495 [17] D. Y. Sorokin, T. Berben, E. D. Melton, L. Overmars, C. D. Vavourakis and G. Muyzer. Microbial
496 diversity and biogeochemical cycling in soda lakes. *Extremophiles* 18 (2014), 791-809.
- 497 [18] L. J. Rothschild and R. L. Mancinelli. Life in extreme environments. *Nature* 409(6823) (2001), 1092-
1101.

498 [18] W.-S. Shu and L.-N. Huang. Microbial diversity in extreme environments. *Nature Reviews Microbiology* 20(4) (2022), 219-235.

499 [19] L. Krienitz and K. Kotut. Fluctuating algal food populations and the occurrence of lesser flamingos (*Phoeniconaias minor*) in three Kenyan rift valley lakes 1. *J. Phycol.* 46(6) (2010), 1088-1096.

500 [20] P. Rojas, N. Rodríguez, V. de la Fuente, D. Sánchez-Mata, R. Amils and J. L. Sanz. Microbial diversity associated with the anaerobic sediments of a soda lake (Mono Lake, California, USA). *Canadian journal of microbiology* 64(6) (2018), 385-392.

501 [21] N. M. Mesbah and J. Wiegel. Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. *Appl. Environ. Microbiol.* 78(12) (2012), 4074-4082.

502 [22] J. Schultz and A. S. Rosado. Extreme environments: a source of biosurfactants for biotechnological applications. *Extremophiles* 24 (2020), 189-206.

503 [23] D. Zhao, S. Zhang, Q. Xue, J. Chen, J. Zhou, F. Cheng, M. Li, Y. Zhu, H. Yu and S. Hu. Abundant taxa and favorable pathways in the microbiome of soda-saline lakes in Inner Mongolia. *Frontiers in microbiology* 11 (2020), 1740.

504 [24] Y.-G. Xie, Z.-H. Luo, B.-Z. Fang, J.-Y. Jiao, Q.-J. Xie, X.-R. Cao, Y.-N. Qu, Y.-L. Qi, Y.-Z. Rao and Y.-X. Li. Functional differentiation determines the molecular basis of the symbiotic lifestyle of *Ca. Nanohaloarchaeota*. *Microbiome* 10(1) (2022), 1-13.

505 [25] M. Ji, W. Kong, L. Yue, J. Wang, Y. Deng and L. Zhu. Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes. *FEMS Microbiol. Ecol.* 95(12) (2019), fiz190.

506 [26] S. Chen, Y. Zhou, Y. Chen and J. Gu. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* 34(17) (2018), i884-i890.

507 [27] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I. Nikolenko, S. Pham and A. D. Prjibelski. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.* 19(5) (2012), 455-477.

508 [28] K. Yu, Z. Qiu, R. Mu, X. Qiao, L. Zhang, C.-A. Lian, C. Deng, Y. Wu, Z. Xu, B. Li, B. Pan, Y. Zhang, L. Fan, Y.-x. Liu, H. Cao, T. Jin, B. Chen, F. Wang, Y. Yan, L. Xie, L. Zhou, S. Yi, S. Chi, C. Zhang, T. Zhang and W. Zhuang. Recovery of high-quality Genomes from a deep-inland Salt Lake Using BASALT. *bioRxiv* (2021), 2021.2003.2005.434042.

509 [29] D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz and G. W. Tyson. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res.* 25(7) (2015), 1043-1055.

510 [30] R. M. Bowers, N. C. Kyrpides, R. Stepanauskas, M. Harmon-Smith, D. Doud, T. Reddy, F. Schulz, J. Jarett, A. R. Rivers and E. A. Eloe-Fadrosh. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. *Nat. Biotechnol.* 35(8) (2017), 725-731.

511 [31] P.-A. Chaumeil, A. J. Mussig, P. Hugenholtz and D. H. Parks. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. *Bioinformatics* (2020).

512 [32] S. R. Eddy. Accelerated profile HMM searches. *PLoS Comp. Biol.* 7(10) (2011), e1002195.

513 [33] B. Q. Minh, H. A. Schmidt, O. Chernomor, D. Schrempf, M. D. Woodhams, A. Von Haeseler and R. Lanfear. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. *Mol. Biol. Evol.* 37(5) (2020), 1530-1534.

514 [34] I. Letunic and P. Bork. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. *Nucleic Acids Res.* 49(W1) (2021), W293-W296.

515 [35] P. P. Chan, B. Y. Lin, A. J. Mak and T. M. Lowe. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. *Nucleic Acids Res.* 49(16) (2021), 9077-9096.

516 [36] D. Hyatt, G.-L. Chen, P. F. LoCascio, M. L. Land, F. W. Larimer and L. J. Hauser. Prodigal: prokaryotic gene recognition and translation initiation site identification. *Bioinformatics* 11(1) (2010), 119.

517 [37] W. Li and A. Godzik. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. *Bioinformatics* 22 (2006).

518 [38] B. Buchfink, C. Xie and D. H. Huson. Fast and sensitive protein alignment using DIAMOND. *Nature Methods* 12(1) (2015), 59.

519 [39] P. Jones, D. Binns, H.-Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell and G. Nuka. InterProScan 5: genome-scale protein function classification. *Bioinformatics* 30(9) (2014), 1236-1240.

520 [40] W. B. Langdon. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. *BioData mining* 8(1) (2015), 1-7.

521 [41] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis and R. Durbin. The sequence alignment/map format and SAMtools. *Bioinformatics* 25 (2009).

556 [42] M. Albertsen, P. Hugenholtz, A. Skarszewski, K. L. Nielsen, G. W. Tyson and P. H. Nielsen. Genome
557 sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple
558 metagenomes. *Nat. Biotechnol.* 31(6) (2013), 533-538.

559 [43] G. M. Douglas, V. J. Maffei, J. R. Zaneveld, S. N. Yurgel, J. R. Brown, C. M. Taylor, C. Huttenhower
560 and M. G. I. Langille. PICRUSt2 for prediction of metagenome functions. *Nat. Biotechnol.* 38(6) (2020),
561 685-688.

562 [44] K. Blin, S. Shaw, A. M. Kloosterman, Z. Charlop-Powers, G. P. Van Wezel, M. H. Medema and T.
563 Weber. antiSMASH 6.0: improving cluster detection and comparison capabilities. *Nucleic Acids Res.*
564 49(W1) (2021), W29-W35.

565 [45] J. C. Navarro-Muñoz, N. Selem-Mojica, M. W. Mullowney, S. A. Kautsar, J. H. Tryon, E. I. Parkinson,
566 E. L. De Los Santos, M. Yeong, P. Cruz-Morales and S. Abubucker. A computational framework to
567 explore large-scale biosynthetic diversity. *Nat. Chem. Biol.* 16(1) (2020), 60-68.

568 [46] S. A. Kautsar, K. Blin, S. Shaw, J. C. Navarro-Muñoz, B. R. Terlouw, J. J. Van Der Hooft, J. A. Van
569 Santen, V. Tracanna, H. G. Suarez Duran and V. Pascal Andreu. MIBiG 2.0: a repository for
570 biosynthetic gene clusters of known function. *Nucleic Acids Res.* 48(D1) (2020), D454-D458.

571 [47] S. Li, W. Shen, S. Lian, Y. Wu, Y. Qu and Y. Deng. Darhd: A sequence database for aromatic ring-
572 hydroxylating dioxygenase analysis and primer evaluation. *J. Hazard. Mater.* 436 (2022), 129230.

573 [48] V. Gambarini, O. Pantos, J. M. Kingsbury, L. Weaver, K. M. Handley and G. Lear. PlasticDB: a
574 database of microorganisms and proteins linked to plastic biodegradation. *Database* 2022 (2022).

575 [49] C. Rinke, P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson, J.-F. Cheng, A. Darling, S. Malfatti,
576 B. K. Swan and E. A. Gies. Insights into the phylogeny and coding potential of microbial dark matter.
577 *Nature* 499(7459) (2013), 431-437.

578 [50] A. Bhushan, P. J. Egli, E. E. Peters, M. F. Freeman and J. Piel. Genome mining-and synthetic biology-
579 enabled production of hypermodified peptides. *Nature chemistry* 11(10) (2019), 931-939.

580 [51] V. Waschulin, C. Borsetto, R. James, K. K. Newsham, S. Donadio, C. Corre and E. Wellington.
581 Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic
582 sequencing. *The ISME journal* 16(1) (2022), 101-111.

583 [52] A. G. Atanasov, S. B. Zotchev, V. M. Dirsch and C. T. Supuran. Natural products in drug discovery:
584 advances and opportunities. *Nature reviews Drug discovery* 20(3) (2021), 200-216.

585 [53] Z. Xu, T.-J. Park and H. Cao. Advances in mining and expressing microbial biosynthetic gene clusters.
586 *Crit. Rev. Microbiol.* (2022), 1-20.

587 [54] S.-C. Chen, R. Budhraja, L. Adrian, F. Calabrese, H. Stryhanyuk, N. Musat, H.-H. Richnow, G.-L.
588 Duan, Y.-G. Zhu and F. Musat. Novel clades of soil biphenyl degraders revealed by integrating isotope
589 probing, multi-omics, and single-cell analyses. *The ISME Journal* 15(12) (2021), 3508-3521.

590 [55] R. Han, X. Zhang, J. Liu, Q. Long, L. Chen, D. Liu and D. Zhu. Microbial community structure and
591 diversity within hypersaline Keke Salt Lake environments. *Canadian journal of microbiology* 63(11)
592 (2017), 895-908.

593 [56] A.-Ş. Andrei, M. S. Robeson, A. Baricz, C. Coman, V. Muntean, A. Ionescu, G. Etiope, M. Alexe, C.
594 I. Sicora and M. Podar. Contrasting taxonomic stratification of microbial communities in two
595 hypersaline meromictic lakes. *The ISME journal* 9(12) (2015), 2642-2656.

596 [57] A. Baricz, C. M. Chiriac, A. Ş. Andrei, P. A. Bulzu, E. A. Levei, O. Cadar, K. P. Battes, M. Cîmpean,
597 M. Şenilă and A. Cristea. Spatio-temporal insights into microbiology of the freshwater-to-hypersaline,
598 oxic-hypoxic-euxinic waters of Ursu Lake. *Environ. Microbiol.* 23(7) (2021), 3523-3540.

599 [58] Y. Zhang, K. Yang, H. Chen, Y. Dong and W. Li. Origin, composition, and accumulation of dissolved
600 organic matter in a hypersaline lake of the Qinghai-Tibet Plateau. *Sci. Total Environ.* 868 (2023),
601 161612.

602 [59] L. Wang, C. Lian, W. Wan, Z. Qiu, X. Luo, Q. Huang, Y. Deng, T. Zhang and K. Yu. Salinity-triggered
603 homogeneous selection constrains the microbial function and stability in lakes. *Appl. Microbiol.*
604 *Biotechnol.* (2023), 1-15.

605 [60] M. Naufal, J.-H. Wu and Y.-H. Shao. Glutamate enhances osmoadaptation of anammox bacteria under
606 high salinity: genomic analysis and experimental evidence. *Environ. Sci. Technol.* 56(16) (2022),
607 11310-11322.

608 [61] K. Hu, D. Xu and Y. Chen. An assessment of sulfate reducing bacteria on treating sulfate-rich metal-
609 laden wastewater from electroplating plant. *J. Hazard. Mater.* 393 (2020), 122376.

610 [62] H. A. Oyewusi, R. A. Wahab, Y. Kaya, M. F. Edbeib and F. Huyop. Alternative bioremediation agents
611 against haloacids, haloacetates and chlorpyrifos using novel halogen-degrading bacterial isolates from
612 the hypersaline lake Tuz. *Catalysts* 10(6) (2020), 651.

613 [63] J. Yang, L. a. Ma, H. Jiang, G. Wu and H. Dong. Salinity shapes microbial diversity and community
614 structure in surface sediments of the Qinghai-Tibetan Lakes. *Scientific reports* 6(1) (2016), 25078.
615 [64] J. Hamm, Y. Liao, A. von Kügelgen, N. Dombrowski, E. Landers, C. Brownlee, E. Johansson, R. Whan,
616 M. Baker and B. Baum. The intracellular lifestyle of an archaeal symbiont. (2023).
617 [65] D. Geller-McGrath, P. Mara, G. T. Taylor, E. Suter, V. Edgcomb and M. Pachiadaki. Diverse secondary
618 metabolites are expressed in particle-associated and free-living microorganisms of the permanently
619 anoxic Cariaco Basin. *Nature Communications* 14(1) (2023), 656.
620 [66] L. Paoli, H.-J. Ruscheweyh, C. C. Forneris, F. Hubrich, S. Kautsar, A. Bhushan, A. Lotti, Q. Clayssen,
621 G. Salazar and A. Milanese. Biosynthetic potential of the global ocean microbiome. *Nature* 607(7917)
622 (2022), 111-118.
623 [67] L. Liu, Y. Wang, Y. Che, Y. Chen, Y. Xia, R. Luo, S. H. Cheng, C. Zheng and T. Zhang. High-quality
624 bacterial genomes of a partial-nitritation/anammox system by an iterative hybrid assembly method.
625 *Microbiome* 8 (2020), 1-17.
626 [68] X. Qiao, C. Fu, Y. Chen, F. Fang, Y. Zhang, L. Ding, K. Yang, B. Pan, N. Xu and K. Yu. Molecular
627 insights into enhanced nitrogen removal induced by trace fluoroquinolone antibiotics in an anammox
628 system. *Bioresour. Technol.* 374 (2023), 128784.
629 [69] H. He, Y. Li, R. Shen, H. Shim, Y. Zeng, S. Zhao, Q. Lu, B. Mai and S. Wang. Environmental
630 occurrence and remediation of emerging organohalides: A review. *Environ. Pollut.* 290 (2021), 118060.
631 [70] J. Liu, G. Xu, S. Zhao, C. Chen, M. J. Rogers and J. He. Mechanistic and microbial ecological insights
632 into the impacts of micro-and nano-plastics on microbial reductive dehalogenation of organohalide
633 pollutants. *J. Hazard. Mater.* 448 (2023), 130895.
634 [71] S. Zhang, Z. Hu and H. Wang. Metagenomic analysis exhibited the co-metabolism of polycyclic
635 aromatic hydrocarbons by bacterial community from estuarine sediment. *Environ. Int.* 129 (2019), 308-
636 319.
637 [72] J. Zrimec, M. Kokina, S. Jonasson, F. Zorrilla and A. Zelezniak. Plastic-degrading potential across the
638 global microbiome correlates with recent pollution trends. *MBio* 12(5) (2021), e02155-02121.
639 [73] L. A. Hug, B. J. Baker, K. Anantharaman, C. T. Brown, A. J. Probst, C. J. Castelle, C. N. Butterfield,
640 A. W. Hernsdorf, Y. Amano and K. Ise. A new view of the tree of life. *Nature microbiology* 1(5) (2016),
641 1-6.
642 [74] Y. S. Lee and W. Park. Current challenges and future directions for bacterial self-healing concrete. *Appl.*
643 *Microbiol. Biotechnol.* 102 (2018), 3059-3070.
644 [75] V. Malavasi, S. Soru and G. Cao. Extremophile microalgae: the potential for biotechnological
645 application. *J. Phycol.* 56(3) (2020), 559-573.
646 [76] W. Yin, Y. Wang, L. Liu and J. He. Biofilms: the microbial “protective clothing” in extreme
647 environments. *International journal of molecular sciences* 20(14) (2019), 3423.
648 [77] S. Wang, J. Wang, Z. Liu and B. Zhang. Unraveling diverse survival strategies of microorganisms to
649 vanadium stress in aquatic environments. *Water Res.* 221 (2022), 118813.
650 [78] K. M. Finstad, A. J. Probst, B. C. Thomas, G. L. Andersen, C. Demergasso, A. Echeverría, R. G.
651 Amundson and J. F. Banfield. Microbial community structure and the persistence of cyanobacterial
652 populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics.
653 *Frontiers in microbiology* 8 (2017), 1435.
654 [79] M. O. Eze, S. A. Lütgert, H. Neubauer, A. Balouri, A. A. Kraft, A. Sieven, R. Daniel and B. Wemheuer.
655 Metagenome assembly and metagenome-assembled genome sequences from a historical oil field
656 located in Wietze, Germany. *Microbiology Resource Announcements* 9(21) (2020).
657 [80] R. E. Anderson, J. Reveillaud, E. Reddington, T. O. Delmont, A. M. Eren, J. M. McDermott, J. S.
658 Seewald and J. A. Huber. Genomic variation in microbial populations inhabiting the marine subseafloor
659 at deep-sea hydrothermal vents. *Nature communications* 8(1) (2017), 1-11.
660 [81] X. Dong, C. Zhang, Y. Peng, H.-X. Zhang, L.-D. Shi, G. Wei, C. R. Hubert, Y. Wang and C. Greening.
661 Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. *Nature
662 Communications* 13(1) (2022), 4885.
663 [82] J. Liu, Y. Zheng, H. Lin, X. Wang, M. Li, Y. Liu, M. Yu, M. Zhao, N. Pedentchouk and D. J. Lea-
664 Smith. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench.
665 *Microbiome* 7(1) (2019), 1-13.
666 [83] Y. Liu, M. Ji, T. Yu, J. Zaugg, A. M. Anesio, Z. Zhang, S. Hu, P. Hugenholtz, K. Liu and P. Liu. A
667 genome and gene catalog of glacier microbiomes. *Nat. Biotechnol.* 40(9) (2022), 1341-1348.
668 [84] Q. Li, Y. Zhou, R. Lu, P. Zheng and Y. Wang. Phylogeny, distribution and potential metabolism of
669 candidate bacterial phylum KSB1. *PeerJ* 10 (2022), e13241.

670 [85] T. R. Iasakov, T. A. Kanapatskiy, S. V. Toshchakov, A. A. Korzhenkov, M. O. Ulyanova and N. V.
671 Pimenov. The Baltic Sea methane pockmark microbiome: The new insights into the patterns of relative
672 abundance and ANME niche separation. *Mar. Environ. Res.* 173 (2022), 105533.

673 [86] P. B. Matheus Carnevali, F. Schulz, C. J. Castelle, R. S. Kantor, P. M. Shih, I. Sharon, J. M. Santini, M.
674 R. Olm, Y. Amano and B. C. Thomas. Hydrogen-based metabolism as an ancestral trait in lineages
675 sibling to the Cyanobacteria. *Nature communications* 10(1) (2019), 463.

676 [87] D.-S. Mu, S. Wang, Q.-Y. Liang, Z.-Z. Du, R. Tian, Y. Ouyang, X.-P. Wang, A. Zhou, Y. Gong and
677 G.-J. Chen. *Bradyomonabacteria*, a novel bacterial predator group with versatile survival strategies in
678 saline environments. *Microbiome* 8 (2020), 1-15.

679 [88] Y.-H. Liu, O. A. A. Mohamad, L. Gao, Y.-G. Xie, R. Abdugheni, Y. Huang, L. Li, B.-Z. Fang and W.-
680 J. Li. Sediment prokaryotic microbial community and potential biogeochemical cycle from saline lakes
681 shaped by habitat. *Microbiol. Res.* 270 (2023), 127342.

682 [89] Z. Zhao, S. Grohmann, L. Zieger, W. Dai and R. Littke. Evolution of organic matter quantity and quality
683 in a warm, hypersaline, alkaline lake: The example of the Miocene Nördlinger Ries impact crater,
684 Germany. *Frontiers in Earth Science* 10 (2022).

685 [90] L. Yue, W. Kong, M. Ji, J. Liu and R. M. Morgan-Kiss. Community response of microbial primary
686 producers to salinity is primarily driven by nutrients in lakes. *Sci. Total Environ.* 696 (2019), 134001.

687 [91] X. Kong, Z. Jiang, Y. Zheng, M. Xiao, C. Chen, H. Yuan, F. Chen, S. Wu, J. Zhang and C. Han. Organic
688 geochemical characteristics and organic matter enrichment of mudstones in an Eocene saline lake,
689 Qianjiang Depression, Hubei Province, China. *Mar. Pet. Geol.* 114 (2020), 104194.

690 [92] N. Gunde-Cimerman, A. Plemenitaš and A. Oren. Strategies of adaptation of microorganisms of the
691 three domains of life to high salt concentrations. *FEMS Microbiol. Rev.* 42(3) (2018), 353-375.

692 [93] A. Oren. Molecular ecology of extremely halophilic Archaea and Bacteria. *FEMS Microbiol. Ecol.* 39(1)
693 (2002), 1-7.

694 [94] A. Oren, Ecology of extremely halophilic microorganisms, *The biology of halophilic bacteria*, CRC
695 Press2020, pp. 25-53.

696 [95] F. Rodriguez-Valera, Introduction to saline environments, *The biology of halophilic bacteria*, CRC
697 Press2020, pp. 1-23.

698 [96] M. Salma and M. K. A. andMehnaz Samina. Osmoadaptation in halophilic bacteria and archaea.
699 *Research Journal of Biotechnology* Vol 15 (2020), 5.

700 [97] J. Dröge and A. C. McHardy. Taxonomic binning of metagenome samples generated by next-generation
701 sequencing technologies. *Briefings in bioinformatics* 13(6) (2012), 646-655.

702 [98] B. Lobb, B. J.-M. Tremblay, G. Moreno-Hagelsieb and A. C. Doxey. An assessment of genome
703 annotation coverage across the bacterial tree of life. *Microbial Genomics* 6(3) (2020).

704 [99] M. Jain, H. E. Olsen, B. Paten and M. Akeson. The Oxford Nanopore MinION: delivery of nanopore
705 sequencing to the genomics community. *Genome biology* 17(1) (2016), 1-11.

706 [100] M. Wang, C. R. Beck, A. C. English, Q. Meng, C. Buhay, Y. Han, H. V. Doddapaneni, F. Yu, E.
707 Boerwinkle and J. R. Lupski. PacBio-LITS: a large-insert targeted sequencing method for
708 characterization of human disease-associated chromosomal structural variations. *BMC Genomics* 16(1)
709 (2015), 1-12.

710 [101] T. Nawy. Single-cell sequencing. *Nat. Methods* 11(1) (2014), 18-18.

711 [102] A. Hoarfrost, A. Aptekmann, G. Farfañuk and Y. Bromberg. Deep learning of a bacterial and archaeal
712 universal language of life enables transfer learning and illuminates microbial dark matter. *Nature
713 communications* 13(1) (2022), 2606.

714 [103] J. Gutleben, M. Chaib De Mares, J. D. Van Elsas, H. Smidt, J. Overmann and D. Sipkema. The multi-
715 omics promise in context: from sequence to microbial isolate. *Crit. Rev. Microbiol.* 44(2) (2018), 212-
716 229.

717 [104] D. Cui, L. Kong, Y. Wang, Y. Zhu and C. Zhang. In situ identification of environmental microorganisms
718 with Raman spectroscopy. *Environmental Science and Ecotechnology* (2022), 100187.

719 [105] W. Zheng, S. Zhao, Y. Yin, H. Zhang, D. M. Needham, E. D. Evans, C. L. Dai, P. J. Lu, E. J. Alm and
720 D. A. Weitz. High-throughput, single-microbe genomics with strain resolution, applied to a human gut
721 microbiome. *Science* 376(6597) (2022), eabm1483.

722 [106] K. Yu, S. Yi, B. Li, F. Guo, X. Peng, Z. Wang, Y. Wu, L. Alvarez-Cohen and T. Zhang. An integrated
723 meta-omics approach reveals substrates involved in synergistic interactions in a bisphenol A (BPA)-
724 degrading microbial community. *Microbiome* 7(1) (2019), 16.

725 [107] S. Banerjee, A. Bedics, P. Harkai, B. Kriszt, N. Alpula and A. Táncsics. Evaluating the aerobic xylene-
726 degrading potential of the intrinsic microbial community of a legacy BTEX-contaminated aquifer by

727 enrichment culturing coupled with multi-omics analysis: uncovering the role of *Hydrogenophaga* strains
728 in xylene degradation. *Environmental Science and Pollution Research* 29(19) (2022), 28431-28445.

729 [108] W. H. Lewis, G. Tahon, P. Geesink, D. Z. Sousa and T. J. Ettema. Innovations to culturing the
730 uncultured microbial majority. *Nature Reviews Microbiology* 19(4) (2021), 225-240.

731 [109] H. Imachi, M. K. Nobu, N. Nakahara, Y. Morono, M. Ogawara, Y. Takaki, Y. Takano, K. Uematsu, T.
732 Ikuta and M. Ito. Isolation of an archaeon at the prokaryote–eukaryote interface. *Nature* 577(7791)
733 (2020), 519-525.

734 [110] S. N. Dedysh. Cultivating uncultured bacteria from northern wetlands: knowledge gained and remaining
735 gaps. *Frontiers in microbiology* 2 (2011), 184.

736 [111] A. M. Wenger, P. Peluso, W. J. Rowell, P.-C. Chang, R. J. Hall, G. T. Concepcion, J. Ebler, A.
737 Fungtammasan, A. Kolesnikov, N. D. Olson, A. Töpfer, M. Alonge, M. Mahmoud, Y. Qian, C.-S. Chin,
738 A. M. Phillippy, M. C. Schatz, G. Myers, M. A. DePristo, J. Ruan, T. Marschall, F. J. Sedlazeck, J. M.
739 Zook, H. Li, S. Koren, A. Carroll, D. R. Rank and M. W. Hunkapiller. Accurate circular consensus
740 long-read sequencing improves variant detection and assembly of a human genome. *Nat. Biotechnol.*
741 37(10) (2019), 1155-1162.

742 [112] D. M. Bickhart, M. Kolmogorov, E. Tseng, D. M. Portik, A. Korobeynikov, I. Tolstoganov, G. Uritskiy,
743 I. Liachko, S. T. Sullivan, S. B. Shin, A. Zorea, V. P. Andreu, K. Panke-Buisse, M. H. Medema, I.
744 Mizrahi, P. A. Pevzner and T. P. L. Smith. Generating lineage-resolved, complete metagenome-
745 assembled genomes from complex microbial communities. *Nat. Biotechnol.* (2022).

746 [113] A. S. Deshpande, N. Ulahannan, M. Pendleton, X. Dai, L. Ly, J. M. Behr, S. Schwenk, W. Liao, M. A.
747 Augello and C. Tyer. Identifying synergistic high-order 3D chromatin conformations from genome-
748 scale nanopore concatemer sequencing. *Nat. Biotechnol.* 40(10) (2022), 1488-1499.

749 [114] Y. Huang, R. U. Sheth, S. Zhao, L. A. Cohen, K. Dabaghi, T. Moody, Y. Sun, D. Ricaurte, M.
750 Richardson and F. Velez-Cortes. High-throughput microbial culturomics using automation and machine
751 learning. *Nat. Biotechnol.* (2023), 1-10.

752

753

754 **Figure captions**

755 **Fig. 1.** Summary of MAGs obtained from hypersaline lakes. **a**, A breakdown of completeness and
756 purity of recovered MAGs. Red: medium-quality MAGs; Green: high-quality MAGs; Blue: Near-
757 complete (NC) MAGs. **b**, The proportion of 5S, 16S, 23S, and all three types of rRNA genes predicted
758 in MAGs. **c**, Summary of genes encoding standard tRNAs predicted in MAGs. **d**, Proportion of MAGs
759 affiliated with a classified, candidate, or unknown taxon at different levels.

760

761 **Fig. 2.** Microbial composition and genetic characteristics of four saline lakes. **a**, Alpha indices of
762 predicted genes from lakewater and sedimentary communities in different lakes. Red: ADH (Aiding
763 Lake), blue: BLK (Barkol Lake), green: DBC (Dabancheng Lake), purple: QJJ (Qijiaojing Lake).
764 Asterisks indicate statistical significance ($P < 0.05$). NS: No statistical significance ($P > 0.05$). **b**,
765 Distance-based Redundancy Analysis (dbRDA) of predicted genes from lakewater and sedimentary
766 communities in different lakes. TOC: Total Organic Carbon, Li^+ : lithium, Na^+ : sodium, NH_4^+ :
767 ammonium, K^+ : potassium, Mg^{2+} : magnesium, Ca^{2+} : calcium, Cl^- : chloridion, SO_4^{2-} : sulphate. **c**,
768 Relative abundance of genes involved in key pathways, including carbon fixation, fatty acid
769 metabolism, methane metabolism, nitrogen metabolism, photosynthesis, and sulfur metabolism. **d**, Z-
770 score normalised relative abundance of modules in carbon fixation, methane, nitrogen, and sulfur
771 metabolism.

772

773 **Fig. 3.** Phylogenetic analysis of MDM MAGs. Unrooted maximum likelihood trees of archaeal and
774 bacterial MAGs were constructed with 122 and 120 concatenated marker genes in IQ-TREE using
775 Q.pfam+R10 and LG+F+R10 models, respectively. **a**, MDM proportion of lakewater and sedimentary
776 communities in terms of relative abundance and number of MAGs. Red: MDMs; Grey: non-MDMs.
777 **b**, Microbial structure of lakewater and sedimentary communities in different lakes regarding relative
778 abundance and number of MAGs classified at the phylum level. **c,d**, Phylogenetic tree of bacterial (**c**)
779 and archaeal (**d**) MAGs. MDM lineages (bacterial) or phyla (archaeal) were highlighted in red, and
780 MDM MAG(s) present in the corresponding lineages/phyla were indicated with shapes. ADH: square,
781 BLK: circle, DBC: triangle, QJJ: diamond, solid symbol: sediment, hallowed symbol: plankton.

782

783 **Fig. 4.** Analysis of biosynthetic potentials of hypersaline lake MAGs. **a**, A summary of predicted BGCs.
784 In the pie chart on top, blue indicates that predicted BGCs were clustered to known BGCs in the MiBIG
785 database; grey indicates that BGCs were not clustered to a known BGC in the MiBIG database. The
786 pie chart at the bottom summarised the number of BGCs annotated to a BGC class. **b**, Normalised

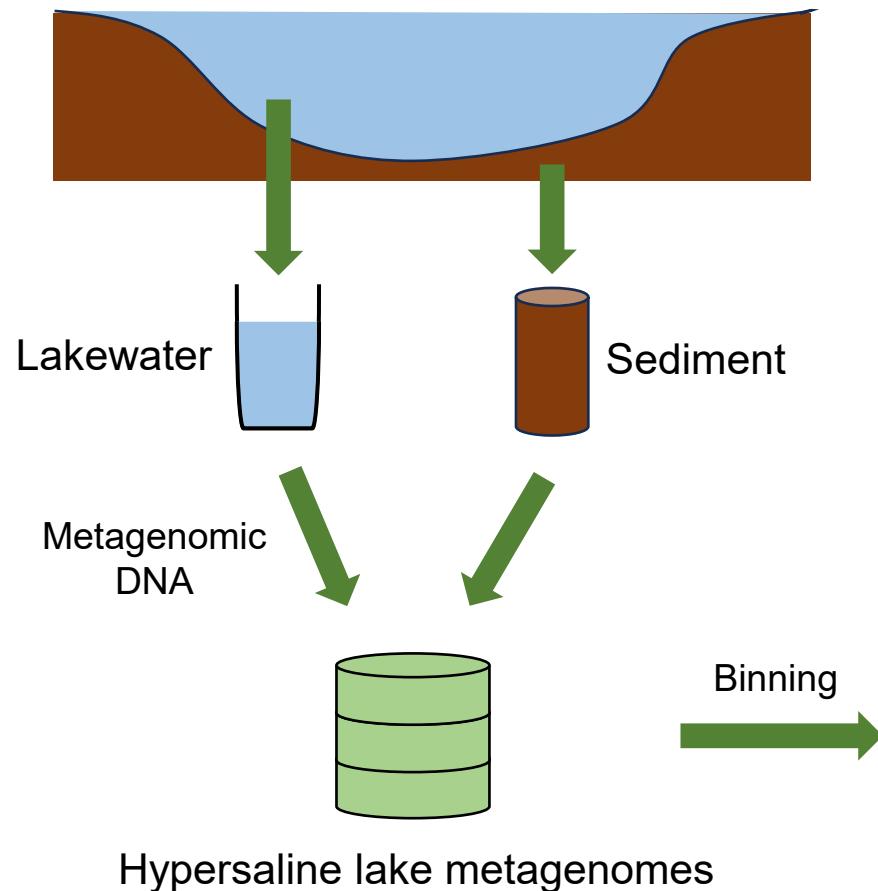
787 number of BGCs per MAG in each phylum. **c**, Phylogenetic trees of archaeal and bacterial MAGs with
788 completeness ≥ 70 , or number of BGCs ≥ 5 . Midpoint-rooted maximum likelihood trees of archaeal
789 and bacterial MAGs were constructed with 122 and 120 concatenated marker genes in IQ-TREE using
790 Q.pfam+R10 and LG+F+R10 models, respectively. Black branches indicate bacterial MAGs, while
791 purple branches indicate archaeal MAGs.

792

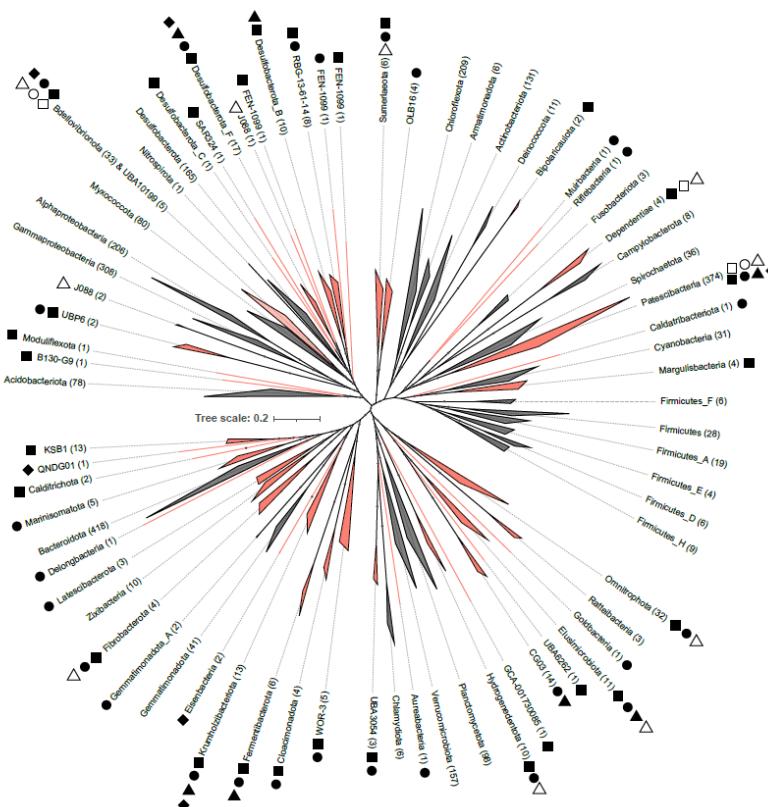
793 **Fig. 5.** Phylogenetic analysis of biodegradative potentials in bacterial (**a**) and archaeal (**b**) MDM
794 MAGs. Maximum likelihood trees of bacterial and archaeal MAGs were constructed with 120 and 122
795 concatenated marker genes in IQ-TREE using LG+F+R10 and Q.pfam+R10 models, respectively. The
796 bacterial and archaeal trees were rooted with phylum GCA-001730085 and class Thorarchaeia,
797 respectively. Key biodegradative genes were annotated in orange (nitrogen metabolism), green
798 (dehalogenation), blue (plastics degradation), and purple (PAHs degradation).

799

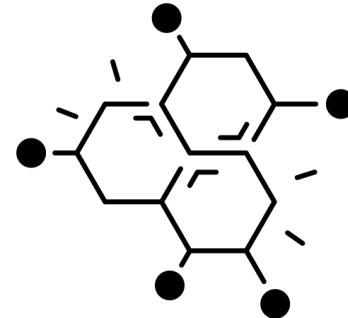
800 **Fig. S1.** Location of Aiding Lake (ADH), Barkol Lake (BLK), Dabancheng Lake (DBC), and
801 Qijiaojing Lake (QJJ).

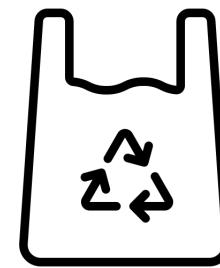

802

803 **Fig. S2.** NMDS plot of genetic diversities analysed in Bray-Curtis dissimilarities. Different colours
804 indicate different lakes, including red (ADH), cyan (BLK), green (DBC), and purple (QJJ), while
805 different shapes indicate different lake compartments, including sediment (solid circle) and plankton
806 (hollowed circle).

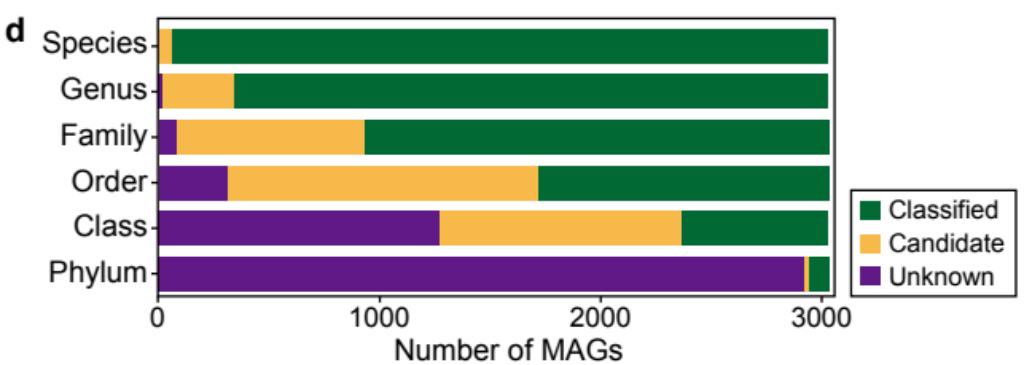
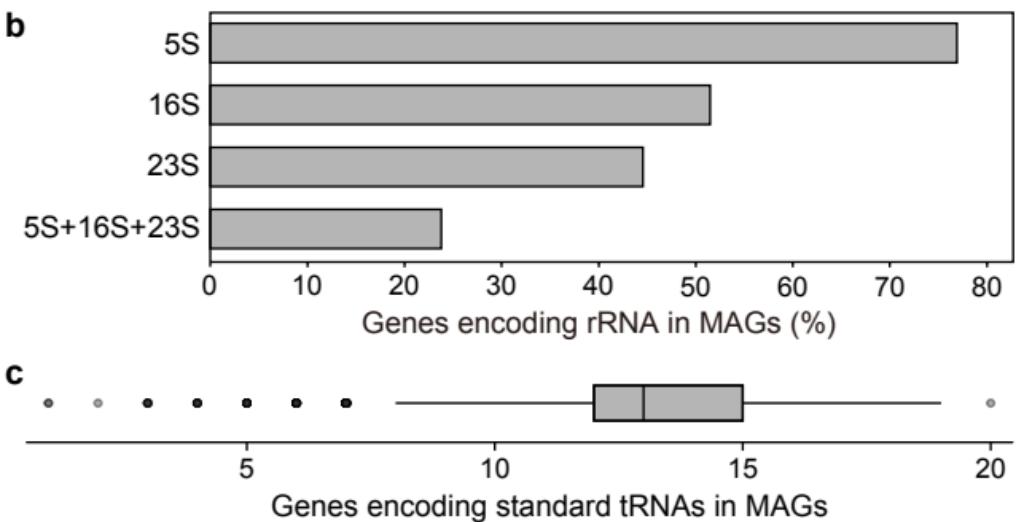
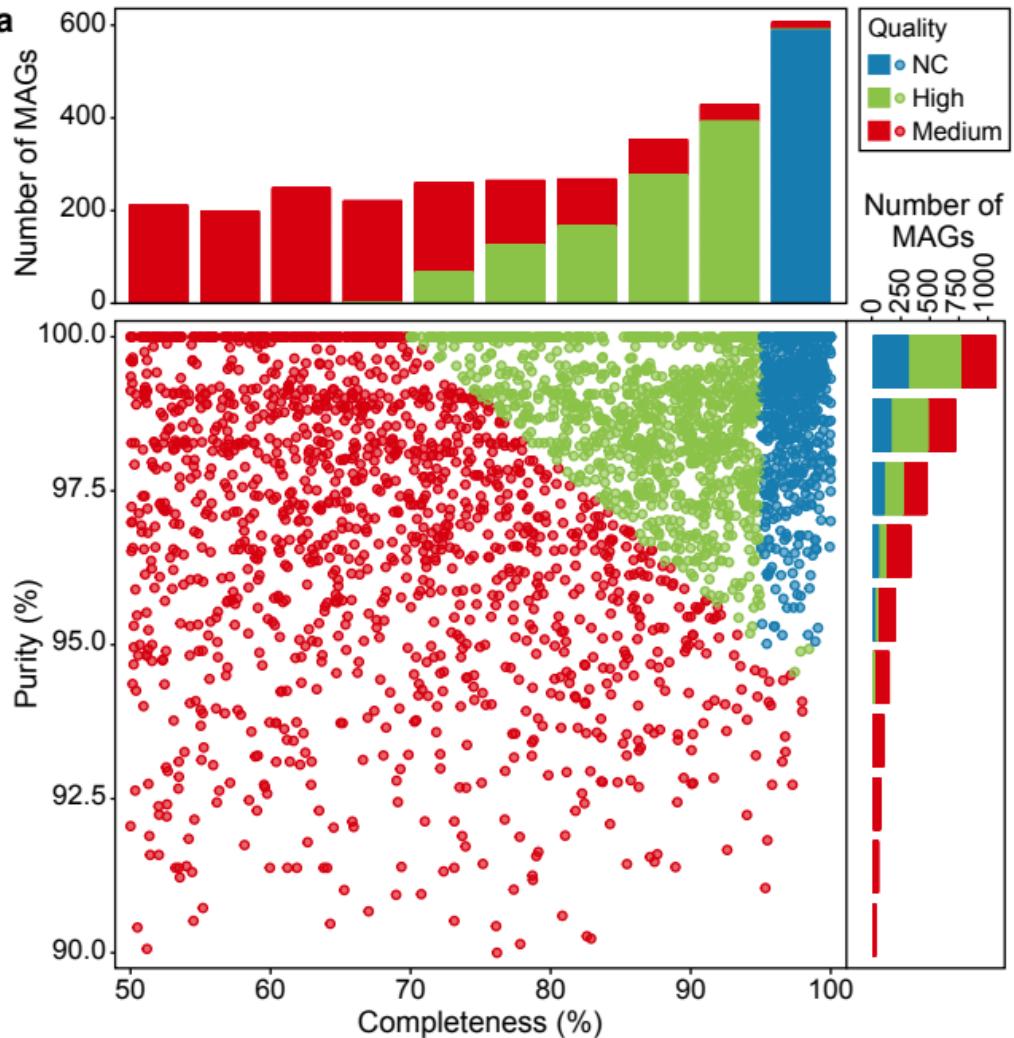

807

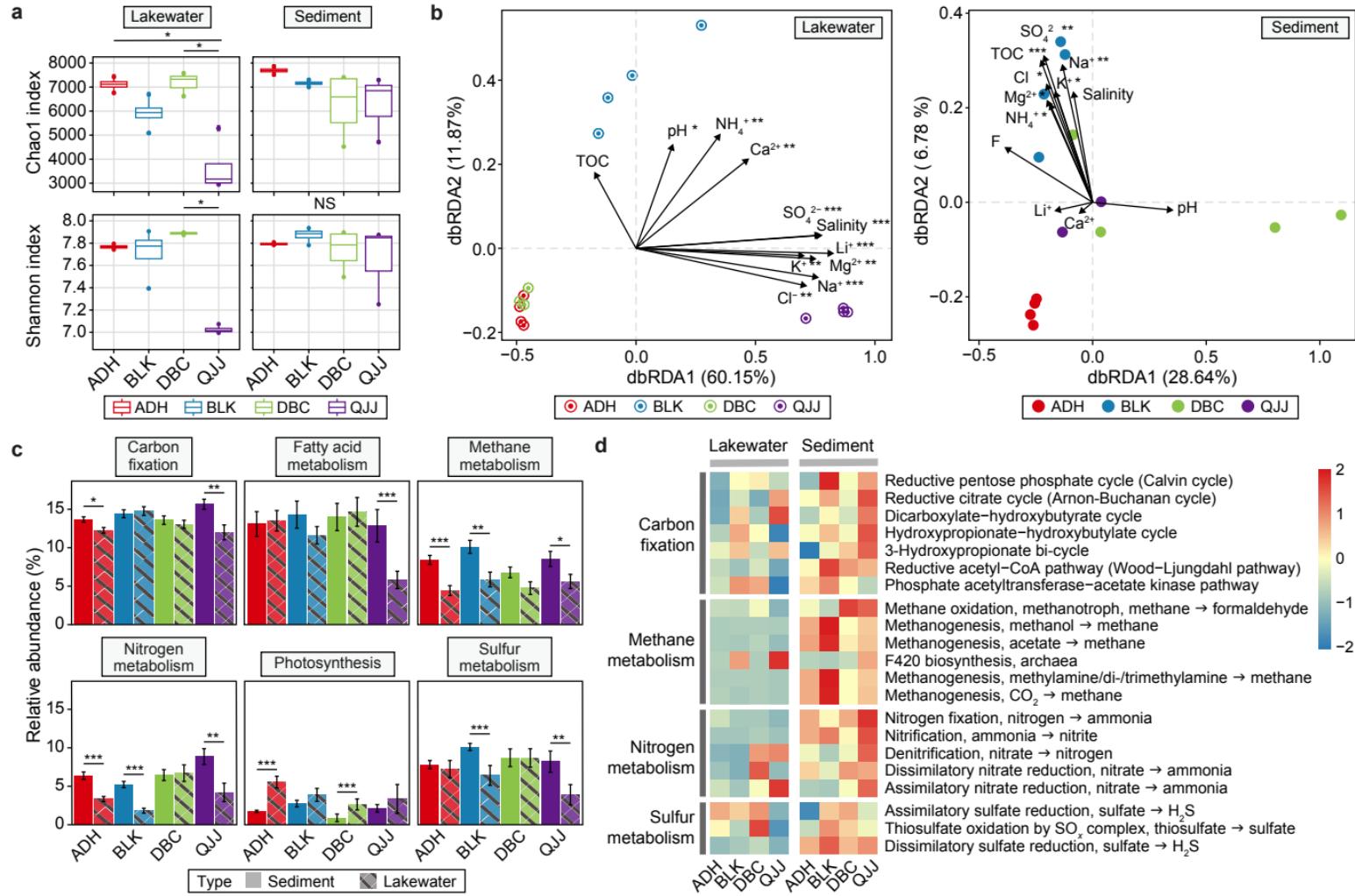
Biosynthetic and biodegradative potentials in hypersaline lakes

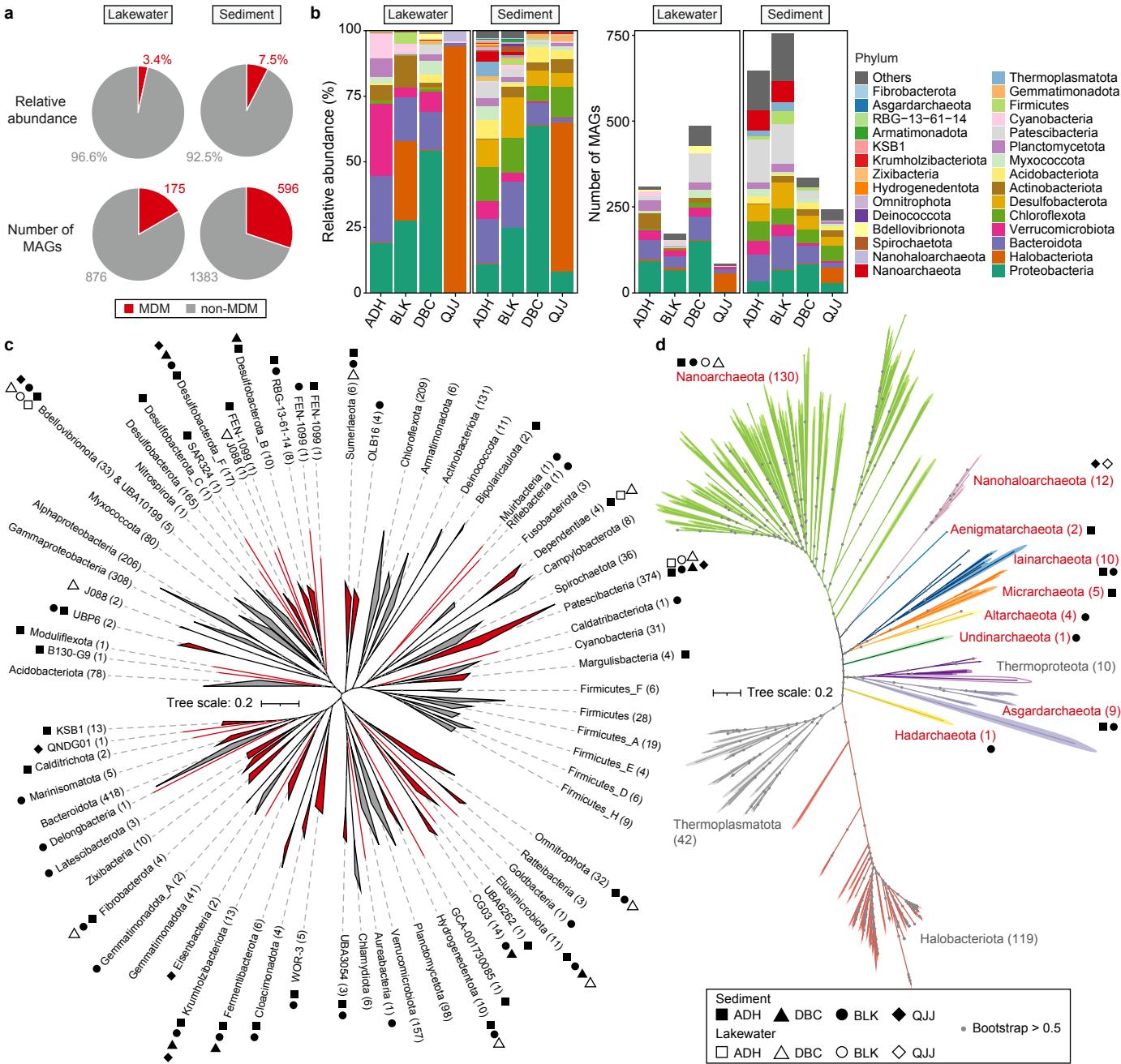

Hypersaline lakes from Xinjiang, China

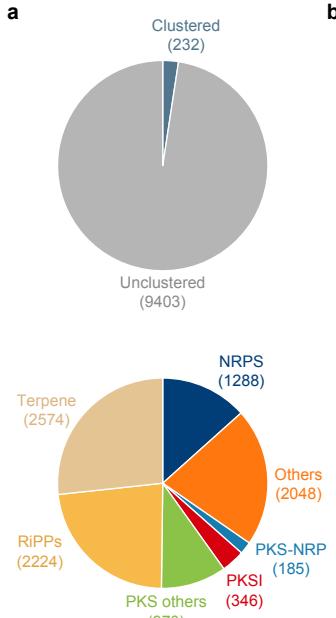
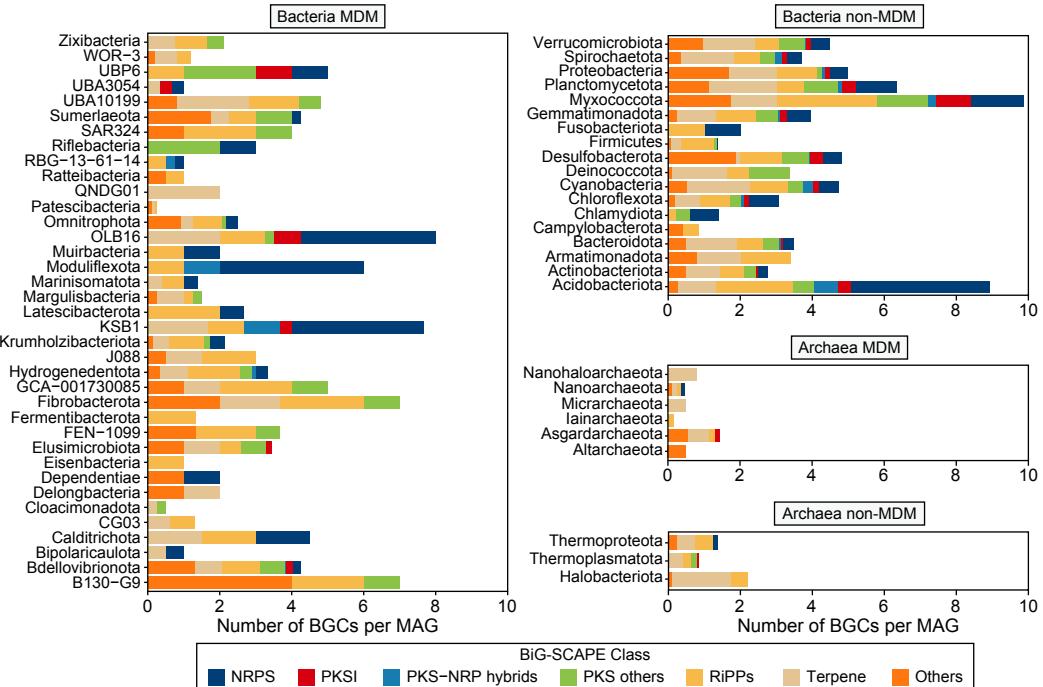
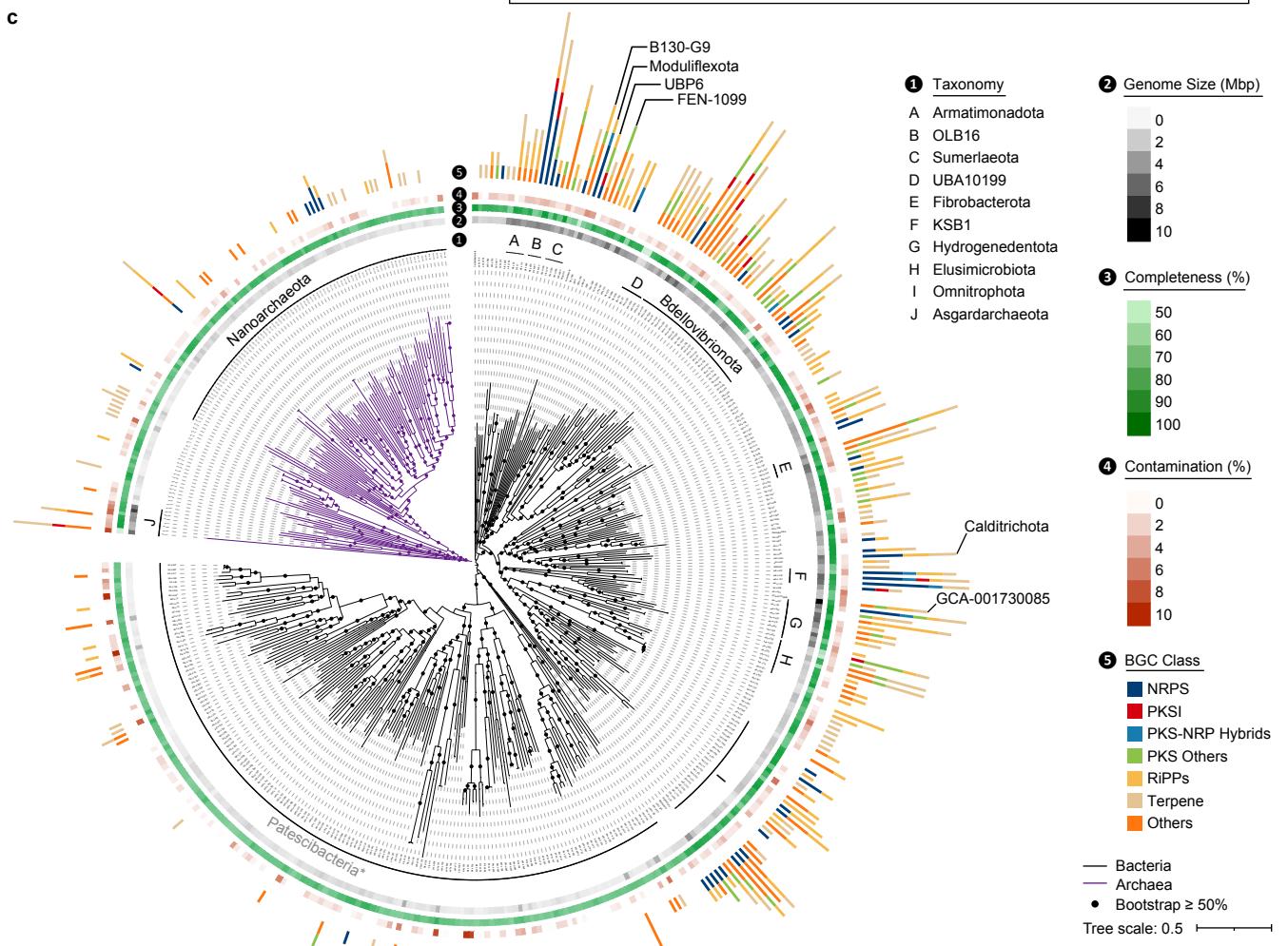

Over 3,000 MAGs
recovered

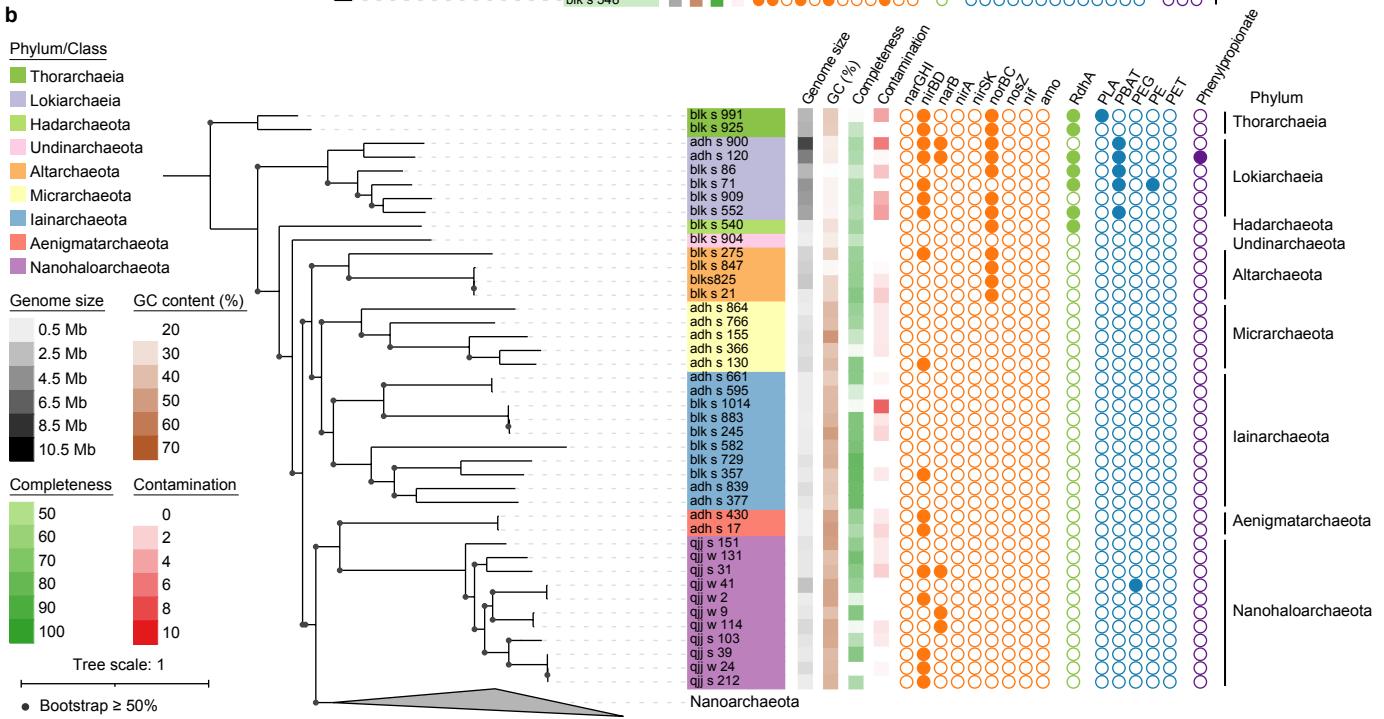
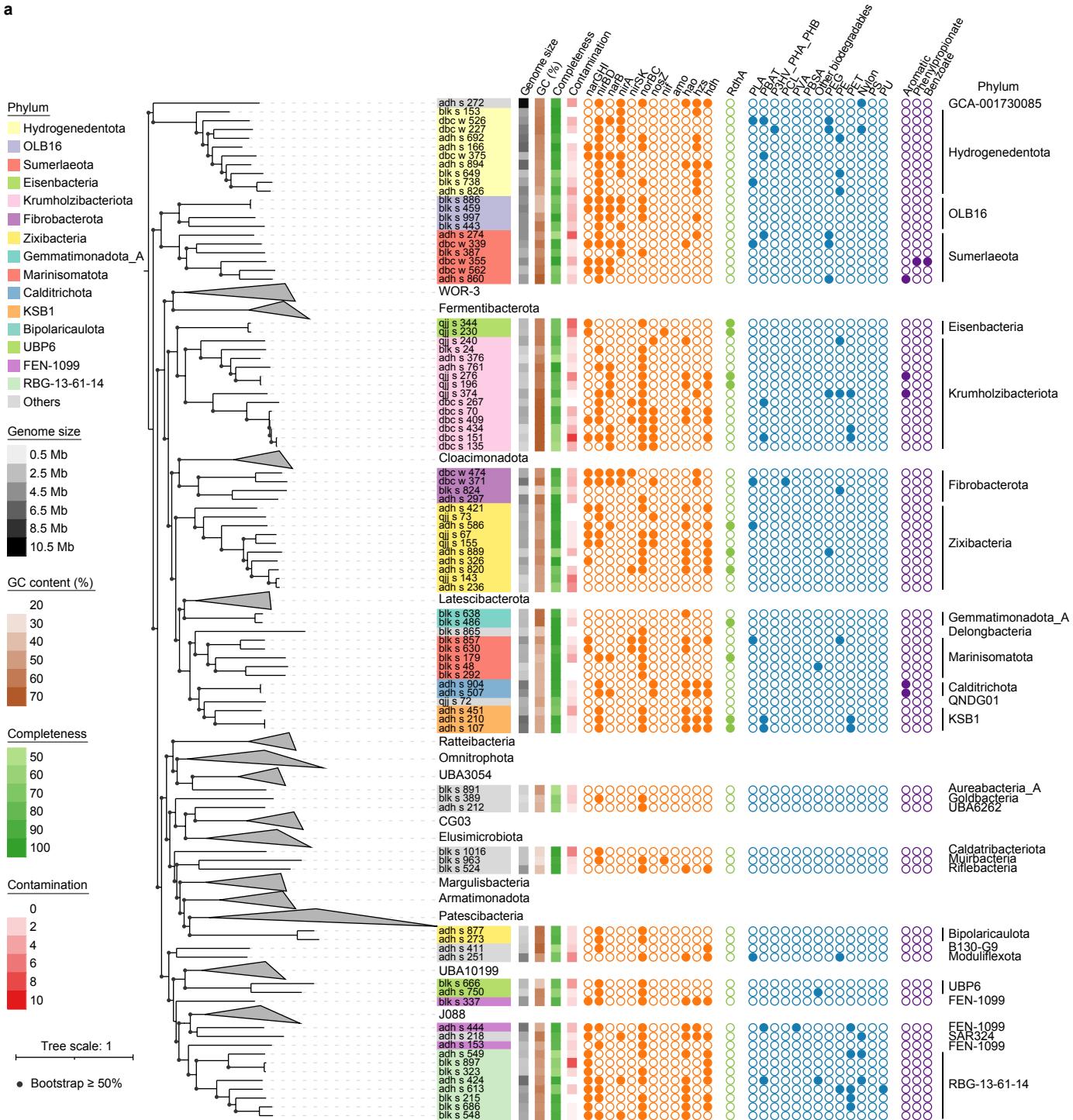
Biosynthetic potentials (97.6% were unknown)




Biosynthetic Gene Clusters




Metabolic pathways




Key biodegradative potentials in ammonia removal, dehalogenation, plastics degradation, etc.



Conclusion: Expanded genetic repository of biosynthesis and biodegradation potentials in hypersaline lake microbiome to further assist the development of new and innovative applications in biotechnology.

a**b****c**

