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ABSTRACT

A limited subset of HIV-1 infected adult individuals typically after at least 2-3 years of chronic
infection, develop broadly neutralizing antibodies (bnAbs), suggesting that highly conserved
neutralizing epitopes on the HIV-1 envelope glycoprotein are difficult for B cell receptors to
effectively target, during natural infection. Recent studies have shown the evolution of bnAbs in
HIV-1 infected infants. We used bulk BCR sequencing (BCR-seq) to profile the B cell receptors from
longitudinal samples (3 time points) collected from a rare pair of antiretroviral-naive, HIV-1
infected pediatric monozygotic twins (AIIMS_329 and AIIMS_330) who displayed elite plasma
neutralizing activity against HIV-1. BCR-seq of both twins revealed convergent antibody
characteristics including V-gene use, CDRH3 lengths and somatic hypermutation (SHM). Further,
antibody clonotypes with genetic features similar to highly potent bnAbs isolated from adults
showed ongoing development in donor AIIMS_330 but not in AIIMS_329, corroborating our earlier
findings based on plasma bnAbs responses. An increase in SHM was observed in sequences of the
IgA isotype from AIIMS_330. This study suggests that children living with chronic HIV-1 can
develop clonotypes of HIV-1 bnAbs against multiple envelope epitopes similar to those isolated
from adults, highlighting that such B cells could be steered to elicit bnAbs responses through
vaccines aimed to induce bnAbs against HIV-1 in a broad range of people including children.
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INTRODUCTION

Human immunodeficiency virus type 1 (HIV-1) infections are a global health problem that has
affected an estimated 38.4 million people worldwide including children(1). The integration of virus
into the host cell genome and tremendous level of viral mutation observed in individuals living
with HIV-1 are major obstacles to developing effective therapeutics and vaccines againstHIV-
1(2,3). During HIV-1 infection, neutralizing antibodies (nAbs) and non-nAbs are elicited against
multiple epitopes of the HIV-1 envelope glycoprotein(4-6). In the past 15 years, the invention of
high-throughput technologies for antibody generation i.e. single B cell sorting, high-throughput
antibody screening by micro-neutralization methods and single cell sequencing, have led to the
discovery and molecular characterization of highly potent second-generation HIV-1 broadly
neutralizing antibodies (bnAbs) both from adults and children living with HIV-1(5-7). Presently,
researchers around the globe are leveraging our understanding of the genetic, functional, and
structural properties of these bnAbs to develop HIV-1 vaccines that reliably induce broad and
potently neutralizing antibody responses(8,9).

The characteristic features of HIV-1 bnAbs targeting multiple envelope epitopes that are isolated
from adult donors have been extensively studied and are well-known(5,6). However, the
understanding of genetic and molecular features of HIV-1 bnAbs from children is still limited. So
far, only two HIV-1 pediatric bnAbs have been identified, BF520.1 by Simonich et.al.(10) and
AIIMS-P01 by us (Kumar et. al.)(11). Further insights into the pediatric B cell repertoire are
urgently needed to support next-generation vaccine design and vaccination strategies aiming to
elicit protective bnAbs responses in a wide range of individuals including children. It has been
reported in multiple studies that children living with HIV-1 showed broader and more potent
bnAbs responses with multiple epitope specificities as compared to bnAbs from adults even within
one-year of age, suggesting that bnAb responses in children are developed from different
maturation mechanisms/pathways(10-21). This is supported by the discovery of BF520.1 and
AIIMS-P01:pediatric bnAbs which exhibit comparable HIV-1 neutralization breadth and potency
to adult bnAbs but with limited somatic hypermutation (SHM)(10,11).

In the past 15 years, we have established a rare cohort of HIV-1 clade C chronically infected
pediatric donors including infants(11,14,16,17,21-25). Recently, we reported the identification of
infant and adolescent pediatric elite-neutralizers (AIIMS_329 and AIIMS_330) from
characterization of their plasma HIV-1 bnAbs responses at a single and longitudinal time points,
respectively(14,21). We observed the development of bnAbs targeting the V1/V2 apex, glycan
supersite, andCD4 binding site (CD4bs) in AIIMS_330. We also noted V1/V2 apex- and glycan
supersite-dependent bnAbs in AIIMS_329, but at a lower potency and breadth in comparison to
AIIMS_330(21). Herein, we performed deep sequencing of the bulk B cell repertoires (BCR-seq) of
two monozygotic twin HIV-1 pediatric elite-neutralizers (AIIMS_329 and AIIMS_330). BCR-seq of
both AIIMS_329 and AIIMS_330 showed convergent antibody characteristics including Variable
gene use, heavy chain complementarity determining region (HCDR3) lengths, SHM frequency.
Mapping BCR-seq data to knownHIV-1 bnAbs, allowed us to identify antibody clonotypes with
similar features to potent HIV-1 bnAbs in AIIMS_330 but not in AIIMS_329, corroborating with our
previous serological findings. This study is an important step toward defining specific features of
the antibody repertoire and shared clonotype maturation that are associated with the
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development of HIV-1 elite-neutralizing activity. Some of the shared lineages identified in this pair
of identical twins, who had acquired HIV-1 infection by vertical transmission, may have been
elicited by exposure to common HIV-1 antigens. Defining the sequences of such shared clonotypes
in a large number of children can shed light on the role of specific B cell receptor features in the
response to HIV-1 infection.

MATERIALS AND METHODS
Patients Characteristics and Ethics Statement

Monozygotic twin antiretroviral naive HIV-1 clade C pediatric elite-neutralizers (AIIMS_329 and
AIIMS_330) were recruited from the Outdoor Patient Department of the Department of Pediatrics,
All India Institute of Medical Sciences (AIIMS), New Delhi, India for this study at the age of 9 years
and were followed for a total period of 60 months. Blood was drawn in 5-ml EDTA vials, and plasma
was aliquoted and stored for plasma antibody-based HIV-1 neutralization assays, viral RNA
isolation, and viral load determinations. The study was approved by the Institute Ethics Committee
(IEC/59/08.01.16,1EC/NP-536/04.11.2013,IEC/NP-295/2011 and RP-15/2011). All experiments
were conducted in accordance with the Institutional guidelines and protocols.

Next-generation sequencing of HIV-1 pediatric B cell antibody repertoires

The deep sequencing of bulk BCR was performed using primers and protocols as described
previously by Briney et.al.(38) Briefly, total RNA from 2 or 3 million peripheral blood mononuclear
cells (PBMCs) was extracted (RNeasy Maxi Kit, Qiagen) from each time point (2015 (112 months
p.i), 2016 (117 months p.i) and 2018 (138 months p.i)) and antibody sequences were amplified
using methods and primers as previously described. The PCR product sizes were verified on
agarose gel (E-Gel EX; Invitrogen) and quantified with fluorometry (Qubit; Life Technologies),
pooled at approximately equimolar concentrations and each sample pool was re-quantified before
sequencing on an [llumina MiSeq (MiSeq Reagent Kit v3, 600-cycle).

Processing of next-generation sequencing data

The Abstar analysis pipeline was used as previously described to quality trim, remove adapters
and merge paired sequences(38). Sequences were then annotated with Abstar in combination with
UMI based error correction by AbCorrect (https://github.com/briney/abtools/). For comparison
of frequencies, read counts were scaled for each repertoire as previously described due to the large
differences in the number of reads between each group. Somatic hypermutation (SHM) was
calculated using the R package Shazam(44).

Clonotype analysis

Clonotype analysis was performed using Immcantation pipeline(44,45). Sequences were grouped
into clonotypes based on nucleotide hamming distance of 0.16 calculated based on bimodal
distribution of distance of each sequence with its nearest neighbor. Alternatively, sequences were
also clustered into clonal groups using an in-house script. The criteria used for clonal assignment
was sequences having same V and ] gene usage, same CDRH3 length and atleast 80% CDRH3 amino
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acid identity. Germline V(D)] sequence was reconstructed using IMGT-gapped reference V, D and ]
sequences.

Deep mapping of HIV-1 mAbs to B cell repertoire sequencing data

List of HIV-1mAbs which have been reported previously was compiled from CATNAP database and
literature(5-7,42). Antibodies for which the gene usage information and CDRH3 amino acid
sequence was available were selected for downstream analysis. The list of selected mAbs is given
in Supplementary Table 7. Each mAb was mapped to all the sequences to identify the ones which
have the same V and ] gene usage, same CDRH3 length and at least 50% identity in CDRH3 amino
acid sequence.

Alignment and phylogeny

Alignment was performed using R package MSA. Sequence logos were made using R package
ggseqlogo. Distance between sequences were calculated using the neighbor joining method.
Phylogenetic tree was constructed using R package ape.

Statistical analysis

All analysis was performed using R programming language (version 4.1.0). Statistical significance
between groups was estimated using Wilcox rank sum test. The following packages were used for
the analyses: scatterpie (0.1.7), nortest (1.0-4), scales (1.1.1), ggrepel (0.9.1), stringr (1.4.0), tigger
(1.0.0), ComplexUpset (1.3.0), ggpubr (0.4.0), alakazam (1.1.0), shazam (1.1.0), patchwork (1.1.1),
writexl (1.4.0), readxl (1.3.1), dplyr (1.0.6), reshape2 (1.4.4) and ggplot2 (3.3.5).

DATA AND CODE AVAILABILITY STATEMENT

Raw sequence data that support the findings in this study are available at the NCBI Sequencing
Read Archive (www.ncbi.nlm.nih.gov/sra) under BioProjectnumber: PRJNA999025. Processed
datasets are available at https://github.com/prashantbajpai/HIV_BCR_Analysis. All bash and R
scripts required for reproducing the data can be found on github repository
(https://github.com/prashantbajpai/HIV_BCR_Analysis). Raw data used for generating the figures
are available at the github page or in the supplementary files.

RESULTS
Deep BCR sequencing of HIV-1 pediatric elite-neutralizers

AIIMS_329 and AIIMS_330 are monozygotic twins, and both display elite HIV-1 plasma
neutralization. Longitudinal samples were obtained from both twins prior to their initiation of
combined antiretroviral therapy (cART) in 2018. The total number of sequences obtained for each
subject after sequencing and annotation ranged from approximately 1.0x10° to 4.0x10° sequences
(Supplementary Table 1). Inmunogenetic analysis of heavy chain Variable (VH) genes identified
IGHV3-21, IGHV3-23, and IGHV-34 to be predominant gene usages in both AIIMS_329 and
AIIMS_330 groups in the three timepoints of their sample collection in the years 2015 (112 months
p.i.), 2016 (117 months p.i.), and 2018 (138 months p.i.). Within IGHV3-21, AIIMS_330 from the
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three timepoints showed a trend towards higher frequency compared to AIIMS_329,and 330_2015
had the highest frequency (25.6% compared to compared to approx. 13 other groups, Figure 1A,
Supplementary Table 2). No major differences in the VH gene frequency of the two groups-at any
time point was observed (Figure 1A, Supplementary Table 2). Consistent with previous studies,
IGHD3-22, IGHD3-10, IGHD6-13 were found to be major D genes and IGHJ4 was found to be
predominant heavy ] gene. No noteworthy differences were observed in the frequencies of heavy
chain Diversity (D)or Joining (J) genes (Figure 1B and IC). In the light chain, IGKV4-1 and IGKV3-
20 were the predominant gene usages. We observed a trend towards higher frequency of IGKV4-1
in AIIMS_330 compared to AIIMS_329 (14.54%, 20.35%, 14.16% in 330_2015, 330_2016 and
330_2018 compared to 8.89%, 10.27%, 12.99% in 329_2015, 329_2016 and 329_2018). We also
observed frequency of IGLV2-14 to be lower in AIIMS_330 compared to AIIMS_329 (2%, 2.09%,
2.13% in 330_2015, 330_2016 and 330_2018 compared to 4.63%, 7.91%, 5.09% in 329_2015,
329 2016 and 329_2018) (Figure 1D, Supplementary Table 3). We also observed marked
differences in the light chain ] gene use between the two groups. Gene usage IGKJ2 showed a trend
towards higher frequency in AIIMS_330 at three timepoints. Further, the frequency of IGL]3 was
markedly lower in AIIMS_330 compared to AIIMS_329.0verall, though heavy chain V, D, and ] gene
frequencies were similar in AIIMS_329 and AIIMS_330, we observed marked differences in lambda
and kappa light chains between the two groups at all timepoints.

Shared immunogenetic features between AIIMS_329 and AIIMS_330

The CDRH3 length distributions were similar for AIIMS_329 and AIIMS_330 at all time points, with
mean CDHR3 length being lower in the AIIMS_330(12.91, 13.22 and 12.66 in 330_2015, 330_2016,
and 330_2018, respectively, compared to 12.97, 13.37, and 12.97 in 329_2015, 329_2016, and
329_2018) (Figure 2A, Supplementary Table 4). A similar trend was observed in the distribution
of light chain CDR3 lengths (Supplementary Fig 1). SHM frequency was significantly higher in
AIIMS_330 at all three timepoints compared to AIIMS_329 group. In the 2018 timepoint, median
SHM in AIIMS_330 was 2.42% compared to 0.41% in AIIMS_329 (Figure 2B, Supplementary
Table 5). Interestingly, when the sequences were segregated into isotypes, sequences from IgA
isotype were observed to have significantly higher SHM in AIIMS_330 compared to AIIMS_329. The
median SHM in IgA sequences was found to be 11.74%, 6.97%, and 6.94% in 330_2015, 330_2016,
and 330_2018, respectively, compared to 7.63%, 6.05%, and 4.72% in 329_2015, 329_2016, and
329_2018. No significant changes were observed in other isotypes (Figure 2C, Supplementary
Table 6).

Shared clonotype analysis identified distinct features between AIIMS_330 and AIIMS_329

Sequences were subsampled before performing the clonotype analysis (more detail of the
subsetting approach can be found in the methods section). Frequency of total shared clonotypes
between any two groups was found to be less than 0.07% (77 shared clonotypes across 10918 total
clonotypes, Figure 3A bottom panel). Of all the clonotypes identified in each group, clones in
330_2018 timepoint had the highest SHM compared to others. Most of the clonotypes in 330_2018
timepoint had mean SHM >10%. We also observed higher expansion in 2018 timepoint in
AIIMS_330 compared to AIIMS_329 as observed from lower number of clonotypes and higher
number of sequences in each clonotype. Interestingly, the overall clonotypes in 2018 timepoint in
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both groups were higher compared to 2015 and 2016 timepoints (Figure 3A middle panels). No
notable differences were observed in the V-family distribution of shared clonotypes (Figure 3A
top panel). We also analyzed the clones shared between each sample and timepoints. We did not
observe any clonotypes shared between all the groups or even between AIIMS_330 and AIIMS_329
at all three timepoints. Interestingly, the highest number of shared clonotypes were identified
between 330_2016 and 330_2018 timepoints (39 shared clonotypes) but not between any
timepoints in AIIMS_329. Of these 39 clonotypes, only 3 had mean SHM greater than 10%.
However, those 3 clonotypes did not have any significant differences in their CDR3 amino acid
(Figure 3B). We identified 12 clonotypes that were shared between AIIMS_330 and AIIMS_329 at
2016 timepoint of which 5 clonotypes had mean SHM greater than 10%. These 5 clonotypes were
found to have accumulated higher mutations in CDR3 compared to the 3 clonotypes shared
between 330_2016 and 330_2018 (Figure 3C). None of these shared clonotypes were predicted to
encode sequence insertions or deletions which are frequently found in HIV bnAbs and thought to
be difficult to elicit by vaccination. Such BCRs could plausibly define a more efficient path for bnAb
maturation that can be exploited by rational HIV vaccine immunogens. We also observed 21
clonotypes in common between 2018 timepoint between AIIMS_330 and AIIMS_329. Of these, only
one clonotype had >10% SHM. CDR3 of sequences from these clonotypes were observed to harbor
higher number of mutations in 330_2018 timepoint compared to 329_2018 (Figure 3D).

Mapping of sequences to published adult HIV bnAbs identified 330_2018 to be capable of
producing bnAbs with characteristics of adult bnAbs

To identify if either of the two children could generate known HIV-1 bnAbs at any timepoint, we
mapped the sequences from each group to known HIV mAbs compiled from HIV neutralizing
antibody database (CATNAP) and published studies. A total of 347 mAbs were compiled
(Supplementary Table 7) and mapped to sequences from each group. The criteria for calling a
sequence a successful hit is described in the methods. Of the total 347 mAbs, 78 mAbs mapped to
at least one of the sequences in at least one of the groups. Surprisingly, majority of the sequences
that mapped to these mAbs were from 330_2018 timepoint but no other timepoints. Moreover, we
observed the expansion/more frequency of the following HIV-1 bnAbs like sequences in
AIIMS_330:VRC38.01 (V2 apex)(26), VRC34.01 (fusion peptide)(27), HGN194 (V3)(28), HK20
(gp41 HR)(29), DH270 (glycan supersite)(30), BG505.m27 (V3)(31), BANC131 (CD4bs)(32), 2558
(V3)(33), and VRC33.01 (CD4bs)(34) (Figure 4A). Strikingly, except DH511.1, DH511.6
(MPER)(35)and BG505.m27 HIV-1 bnAbs, no other mapped sequences from AIIMS_330 only
showed SHM >10%, however, such high SHMs were not observed for any of the mapped sequences
from AIIMS_329. The 78 mAbs that were mapped to heavy chain sequences were also mapped to
the light chain sequences. Using the same mapping criteria, it was found that 28 of the mAbs also
mapped to light chain sequences and sequences from AIIMS_330 showed higher SHM compared to
other timepoints (Figure 4B-C). In summary, we show that both heavy and light chain sequences
mapped to similar set of mAbs and showed higher SHM and number in AIIMS_330.

DISCUSSION

An understanding of pediatric HIV-1 bnAb responses elicited during chronic infection can provide
critical insights for the design and development of effective universal HIV-1 vaccines for both
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adults and children capable of eliciting potent HIV-1 bnAb responses(36,37). Human antibody
repertoire comprises a whole group of antibody genes generated in an individual since birth, which
can be specific to an antigen during an infection/disease and vaccination. BCR-seq is a powerful
method that has enabled the in-depth analysis of genetic features of antibody responses and
tracking of antibody evolution during an infection/vaccination(38). Studying such antibody
repertoires could reveal important information that include germline antibody genes, junctional
diversity, SHM, clonotypes and allows identification of rare antibody lineage genes specific to a
particular antigen.

Recently, in a study based on longitudinal characterization of plasma samples we reported the
identification of adolescent pediatric elite-neutralizers who were HAART-naive and living with
chronic HIV-1 clade-C infection for more than 11 years(21). We evaluated the V1/V2 apex, glycan
supersite, and CD4bs specific responses in AIIMS_329 and AIIMS_330, using ELISA and point
mutated HIV-1 pseudoviruses based neutralization assays(21). We showed a longitudinal
development of HIV-1 bnAbs targeting V1V2, N332 and CD4bs in AIIMS_330, whereas V1V2 and
N332-supersite dependent HIV-1 bnAbs in AIIMS_329, but at a lower potency and breadth in
comparison to AIIMS_330(21). Herein, we performed bulk BCR-seq of these two monozygotic
twins HIV-1 pediatric elite-neutralizers (AIIMS_329 and AIIMS_330) to understand their BCR
repertoire. Analysis of three time points (112, 117 and 138 months p.i.) from these pediatric elite-
neutralizers showed high convergence of antibody gene-usage, CDRH3 lengths, SHM, and
clonotypes. Though a higher IgA SHM was observed in AIIMS_330, no other isotype showed
differential mutation patterns. The development of HIV-specific IgA responses with affinity
maturation have been shown to in association with anti-gp41 IgA antibodies that occurs to a
greater extent in elite controllers than in individuals on HAART(39), suggesting IgA in AIIMS_330
could be associated with lower viral load as compared to AIIMS_329.

Current common strategies to generate antigen specific antibodies and evaluating humoral vaccine
responses are: 1) high-throughput sorting antigen-specific B cells followed by paired heavy and
light chain gene amplification and sequencing, 2) barcoded antigen approaches like LIBRA-seq
which leverage single cell microfluidics to link antibody genetics and binding specificity in high
throughput, and 3) activation and culture of primary B cells followed by functional supernatant
screening to identify B cell clones with desirable functional profiles. Such methods are labor-and
time-intensive ways of identifying antigen-specific antibodies. Mapping sequences to well-known
established antibody CDR3 information can provide templates or blueprints to identify important
antibody genes in a distinct set of individual populations, antibody discovery, and vaccine response
evaluation without the need for antigen-specific sorting(40). Similar methodologies have been
used successfully to identify potent antibodies against Dengue, HIV-1, SARS-CoV-2, and
influenza(41).

Here, we mapped BCR sequencing data against datasets of known HIV-1 bnAbs(42). Interestingly,
this analysis led to the identification of multiple HIV-1 specific antibody clonotypes isolated from
both adults and children in our BCR-seq data. AIIMS_330 showed clonotypes similar to several HIV-
1 bnAbs identified in adults which are known to target multiple epitopes including MPER, CD4bs,
N332, FP and V1V2, suggesting that antibody data mining based on CDRH3 sequences could help
in bnAbs lineage identification to a particular antigen, as recently observed by an Al-based pipeline
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developed by Wu et.al.(41) for COVID-19 and Flu antibody genes and DENV specific mAbs by
Durham et.al.(43) Our analysis of these bnAb lineages showed the evolution/more frequency
(Figure 4) of these antibodies in AIIMS_330 donor, which corroborates with our previous findings
based on plasma characterization and evolution of multi-epitope specific antibodies including
CD4bs bnAbs in AIIMS_330 than AIIMS_329(21). Overall, the observation of some the shared
lineages in this pair of identical pediatric twins, who had acquired HIV-1 infection by vertical
transmission, suggest that they could evolve in response to common antigenic stimulus. Defining
the sequences of such shared clonotypes, in a large number of children living with chronic HIV-1
infection worldwide, can shed light in understanding the role of specific B cell receptor repertoires
in HIV-1 infection.

Our study provides insight into the BCR repertoires of pediatric twins capable of exceptionally
broad and potent HIV-1 neutralization. We noted the presence of clonotypes with genetic similarity
to known adults’ HIV-1 bnAbs targeting multiple epitope specificities in children, which
corroborated the results of our previous study which characterized the plasma neutralization
breadth, potency, and epitope specificity from the same pair of donors(21). We anticipate this data
will be useful for the design and development of effective vaccine candidates and strategies for
both adults and children to combat HIV-1. Our BCR-seq findings from this unique pair of pediatric
elite-neutralizers suggests that multivalent HIV-1 vaccine development strategies focused on
inducing a diverse range of HIV-1 bnAb specificities is likely superior to approaches that focus
solely on a single epitope.
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FIGURE LEGENDS

Figurel: Gene usage of heavy and light chains. V-gene (A), D-gene (B) and J-gene (C) usage of
heavy chains of genes shown as percentage of total sequences and arranged by descending
frequency. V-gene (E) and D-gene (F) of light chains are shown.

Figure 2: Immunogenetics characteristics of heavy chain sequences. (A) CDRH3 length
distribution of heavy chains in each group. The dotted horizontal line shows the median of each
group. (B) Violin plot shows somatic hypermutation (SHM) in each group. The dot represents the
median in each group. (C) Violin plot shows the SHM in each group segregated by isotype. The dot
represents the mean in each group.

Figure 3: Shared clonotypes between the groups. (A) Upset plot illustrating the intersection of
clonotypes between the subject 329 and 330 at the three time points (2015, 2016 and 2018). Only
the clonotypes which were not singlets with more than one sequences were selected for the
analysis. Each vertical bar shows the number of clonotypes present in each group indicated by the
intersection matrix below it (where a single dot in the matrix is a single group). The number above
the bars show the number of common clonotypes between the groups of intersecting sets of
clonotypes marked below the bars. For each intersection the dot plot above indicates the CDRH3
length distribution for each clonotype. Size of each dot indicates the number of sequences present
in each clonotype and the color shows the somatic hypermutation (SHM) frequency. The vertical
bar above it shows the distribution of VH genes for each intersection. Within the shared clonotypes,
the clones with SHM >= 10% are labelled and shown. (B) Sequence logo representing alignment of
CDRH3 region of clones common between 2016 and 2018 timepoint of subject 330 with >= 10%
SHM. (C) Sequence logo representing alignment of CDRH3 region of clones common between 2016
and subject 329 and 330 with >= 10% SHM. (D) Sequence logo representing alignment of CDRH3
region of clones common between 2018 timepoint of subject 329 and 330 with >= 10% SHM.

Figure 4: Sequences shared with publicly available HIV bnAbs. Publicly available mAbs
mapped to the heavy chain (A) and light chain (B) sequences are shown. Each HIV mAb is shown
on the x-axis while and each dot represents the number of sequences mapped to the respective
mAb. The criteria for calling mAb a hit was same V and ] gene, more that 50% identity in the CDHR3
amino acid and same CDRH3 length. The size of the dot represents the number of sequences
mapped and color represents the group. On y-axis mean somatic hypermutation (SHM) is shown.
(C) Venn diagram showing the overlap of mAbs that mapped in both heavy and light chain
sequences.
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