

1 B cell repertoire sequencing of HIV-1 pediatric elite-neutralizers identifies 2 multiple broadly neutralizing antibody clonotypes

3 Sanjeev Kumar^{1,2,3,4,5,†}, Prashant Bajpai^{6,†}, Collin Joyce^{2,3,4,5}, Sushil Kumar Kabra⁷, Rakesh Lodha⁷,
4 Dennis R. Burton^{2,3,4,5}, Bryan Briney^{2,3,4,8,*}, and Kalpana Luthra^{1,*}

5 ¹Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India

6 ²Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA

7 ³Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research
8 Institute, La Jolla, CA, USA

9 ⁴Center for Viral Systems Biology, The Scripps Research Institute, La Jolla, CA, USA

10 ⁵IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA

11 ⁶ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology,
12 New Delhi, India

13 ⁷Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India

14 ⁸Multi-omics Vaccine Evaluation Consortium, The Scripps Research Institute, La Jolla, CA, USA

15 [†]These authors contributed equally

16 *Correspondence: kalpanaluthra@gmail.com, briney@scripps.edu

17 ABSTRACT

18 A limited subset of HIV-1 infected adult individuals typically after at least 2-3 years of chronic
19 infection, develop broadly neutralizing antibodies (bnAbs), suggesting that highly conserved
20 neutralizing epitopes on the HIV-1 envelope glycoprotein are difficult for B cell receptors to
21 effectively target, during natural infection. Recent studies have shown the evolution of bnAbs in
22 HIV-1 infected infants. We used bulk BCR sequencing (BCR-seq) to profile the B cell receptors from
23 longitudinal samples (3 time points) collected from a rare pair of antiretroviral-naïve, HIV-1
24 infected pediatric monozygotic twins (AIIMS_329 and AIIMS_330) who displayed elite plasma
25 neutralizing activity against HIV-1. BCR-seq of both twins revealed convergent antibody
26 characteristics including V-gene use, CDRH3 lengths and somatic hypermutation (SHM). Further,
27 antibody clonotypes with genetic features similar to highly potent bnAbs isolated from adults
28 showed ongoing development in donor AIIMS_330 but not in AIIMS_329, corroborating our earlier
29 findings based on plasma bnAbs responses. An increase in SHM was observed in sequences of the
30 IgA isotype from AIIMS_330. This study suggests that children living with chronic HIV-1 can
31 develop clonotypes of HIV-1 bnAbs against multiple envelope epitopes similar to those isolated
32 from adults, highlighting that such B cells could be steered to elicit bnAbs responses through
33 vaccines aimed to induce bnAbs against HIV-1 in a broad range of people including children.

34 KEYWORDS

35 HIV-1, children, elite-neutralizers, B cell repertoire sequencing, bnAbs, clonotypes

36 INTRODUCTION

37 Human immunodeficiency virus type 1 (HIV-1) infections are a global health problem that has
38 affected an estimated 38.4 million people worldwide including children(1). The integration of virus
39 into the host cell genome and tremendous level of viral mutation observed in individuals living
40 with HIV-1 are major obstacles to developing effective therapeutics and vaccines against HIV-
41 (2,3). During HIV-1 infection, neutralizing antibodies (nAbs) and non-nAbs are elicited against
42 multiple epitopes of the HIV-1 envelope glycoprotein(4-6). In the past 15 years, the invention of
43 high-throughput technologies for antibody generation i.e. single B cell sorting, high-throughput
44 antibody screening by micro-neutralization methods and single cell sequencing, have led to the
45 discovery and molecular characterization of highly potent second-generation HIV-1 broadly
46 neutralizing antibodies (bnAbs) both from adults and children living with HIV-1(5-7). Presently,
47 researchers around the globe are leveraging our understanding of the genetic, functional, and
48 structural properties of these bnAbs to develop HIV-1 vaccines that reliably induce broad and
49 potently neutralizing antibody responses(8,9).

50 The characteristic features of HIV-1 bnAbs targeting multiple envelope epitopes that are isolated
51 from adult donors have been extensively studied and are well-known(5,6). However, the
52 understanding of genetic and molecular features of HIV-1 bnAbs from children is still limited. So
53 far, only two HIV-1 pediatric bnAbs have been identified, BF520.1 by Simonich et.al.(10) and
54 AIIMS-P01 by us (Kumar et. al.)(11). Further insights into the pediatric B cell repertoire are
55 urgently needed to support next-generation vaccine design and vaccination strategies aiming to
56 elicit protective bnAbs responses in a wide range of individuals including children. It has been
57 reported in multiple studies that children living with HIV-1 showed broader and more potent
58 bnAbs responses with multiple epitope specificities as compared to bnAbs from adults even within
59 one-year of age, suggesting that bnAb responses in children are developed from different
60 maturation mechanisms/pathways(10-21). This is supported by the discovery of BF520.1 and
61 AIIMS-P01:pediatric bnAbs which exhibit comparable HIV-1 neutralization breadth and potency
62 to adult bnAbs but with limited somatic hypermutation (SHM)(10,11).

63 In the past 15 years, we have established a rare cohort of HIV-1 clade C chronically infected
64 pediatric donors including infants(11,14,16,17,21-25). Recently, we reported the identification of
65 infant and adolescent pediatric elite-neutralizers (AIIMS_329 and AIIMS_330) from
66 characterization of their plasma HIV-1 bnAbs responses at a single and longitudinal time points,
67 respectively(14,21). We observed the development of bnAbs targeting the V1/V2 apex, glycan
68 supersite, and CD4 binding site (CD4bs) in AIIMS_330. We also noted V1/V2 apex- and glycan
69 supersite-dependent bnAbs in AIIMS_329, but at a lower potency and breadth in comparison to
70 AIIMS_330(21). Herein, we performed deep sequencing of the bulk B cell repertoires (BCR-seq) of
71 two monozygotic twin HIV-1 pediatric elite-neutralizers (AIIMS_329 and AIIMS_330). BCR-seq of
72 both AIIMS_329 and AIIMS_330 showed convergent antibody characteristics including Variable
73 gene use, heavy chain complementarity determining region (HCDR3) lengths, SHM frequency.
74 Mapping BCR-seq data to known HIV-1 bnAbs, allowed us to identify antibody clonotypes with
75 similar features to potent HIV-1 bnAbs in AIIMS_330 but not in AIIMS_329, corroborating with our
76 previous serological findings. This study is an important step toward defining specific features of
77 the antibody repertoire and shared clonotype maturation that are associated with the

78 development of HIV-1 elite-neutralizing activity. Some of the shared lineages identified in this pair
79 of identical twins, who had acquired HIV-1 infection by vertical transmission, may have been
80 elicited by exposure to common HIV-1 antigens. Defining the sequences of such shared clonotypes
81 in a large number of children can shed light on the role of specific B cell receptor features in the
82 response to HIV-1 infection.

83 MATERIALS AND METHODS

84 Patients Characteristics and Ethics Statement

85 Monozygotic twin antiretroviral naïve HIV-1 clade C pediatric elite-neutralizers (AIIMS_329 and
86 AIIMS_330) were recruited from the Outdoor Patient Department of the Department of Pediatrics,
87 All India Institute of Medical Sciences (AIIMS), New Delhi, India for this study at the age of 9 years
88 and were followed for a total period of 60 months. Blood was drawn in 5-ml EDTA vials, and plasma
89 was aliquoted and stored for plasma antibody-based HIV-1 neutralization assays, viral RNA
90 isolation, and viral load determinations. The study was approved by the Institute Ethics Committee
91 (IEC/59/08.01.16, IEC/NP-536/04.11.2013, IEC/NP-295/2011 and RP-15/2011). All experiments
92 were conducted in accordance with the Institutional guidelines and protocols.

93 Next-generation sequencing of HIV-1 pediatric B cell antibody repertoires

94 The deep sequencing of bulk BCR was performed using primers and protocols as described
95 previously by Briney et.al.(38) Briefly, total RNA from 2 or 3 million peripheral blood mononuclear
96 cells (PBMCs) was extracted (RNeasy Maxi Kit, Qiagen) from each time point (2015 (112 months
97 p.i), 2016 (117 months p.i) and 2018 (138 months p.i)) and antibody sequences were amplified
98 using methods and primers as previously described. The PCR product sizes were verified on
99 agarose gel (E-Gel EX; Invitrogen) and quantified with fluorometry (Qubit; Life Technologies),
100 pooled at approximately equimolar concentrations and each sample pool was re-quantified before
101 sequencing on an Illumina MiSeq (MiSeq Reagent Kit v3, 600-cycle).

102 Processing of next-generation sequencing data

103 The Abstar analysis pipeline was used as previously described to quality trim, remove adapters
104 and merge paired sequences(38). Sequences were then annotated with Abstar in combination with
105 UMI based error correction by AbCorrect (<https://github.com/briney/abtools/>). For comparison
106 of frequencies, read counts were scaled for each repertoire as previously described due to the large
107 differences in the number of reads between each group. Somatic hypermutation (SHM) was
108 calculated using the R package Shazam(44).

109 Clonotype analysis

110 Clonotype analysis was performed using Immcantation pipeline(44,45). Sequences were grouped
111 into clonotypes based on nucleotide hamming distance of 0.16 calculated based on bimodal
112 distribution of distance of each sequence with its nearest neighbor. Alternatively, sequences were
113 also clustered into clonal groups using an in-house script. The criteria used for clonal assignment
114 was sequences having same V and J gene usage, same CDRH3 length and at least 80% CDRH3 amino

115 acid identity. Germline V(D)J sequence was reconstructed using IMGT-gapped reference V, D and J
116 sequences.

117 Deep mapping of HIV-1 mAbs to B cell repertoire sequencing data

118 List of HIV-1mAbs which have been reported previously was compiled from CATNAP database and
119 literature(5-7,42). Antibodies for which the gene usage information and CDRH3 amino acid
120 sequence was available were selected for downstream analysis. The list of selected mAbs is given
121 in **Supplementary Table 7**. Each mAb was mapped to all the sequences to identify the ones which
122 have the same V and J gene usage, same CDRH3 length and at least 50% identity in CDRH3 amino
123 acid sequence.

124 Alignment and phylogeny

125 Alignment was performed using R package MSA. Sequence logos were made using R package
126 ggseqlogo. Distance between sequences were calculated using the neighbor joining method.
127 Phylogenetic tree was constructed using R package ape.

128 Statistical analysis

129 All analysis was performed using R programming language (version 4.1.0). Statistical significance
130 between groups was estimated using Wilcox rank sum test. The following packages were used for
131 the analyses: scatterpie (0.1.7), nortest (1.0-4), scales (1.1.1), ggrepel (0.9.1), stringr (1.4.0), tigrer
132 (1.0.0), ComplexUpset (1.3.0), ggpubr (0.4.0), alakazam (1.1.0), shazam (1.1.0), patchwork (1.1.1),
133 writexl (1.4.0), readxl (1.3.1), dplyr (1.0.6), reshape2 (1.4.4) and ggplot2 (3.3.5).

134 DATA AND CODE AVAILABILITY STATEMENT

135 Raw sequence data that support the findings in this study are available at the NCBI Sequencing
136 Read Archive (www.ncbi.nlm.nih.gov/sra) under BioProjectnumber: PRJNA999025. Processed
137 datasets are available at https://github.com/prashantbajpai/HIV_BCR_Analysis. All bash and R
138 scripts required for reproducing the data can be found on github repository
139 (https://github.com/prashantbajpai/HIV_BCR_Analysis). Raw data used for generating the figures
140 are available at the github page or in the supplementary files.

141 RESULTS

142 Deep BCR sequencing of HIV-1 pediatric elite-neutralizers

143 AIIMS_329 and AIIMS_330 are monozygotic twins, and both display elite HIV-1 plasma
144 neutralization. Longitudinal samples were obtained from both twins prior to their initiation of
145 combined antiretroviral therapy (cART) in 2018. The total number of sequences obtained for each
146 subject after sequencing and annotation ranged from approximately 1.0×10^5 to 4.0×10^5 sequences
147 (**Supplementary Table 1**). Immunogenetic analysis of heavy chain Variable (VH) genes identified
148 IGHV3-21, IGHV3-23, and IGHV-34 to be predominant gene usages in both AIIMS_329 and
149 AIIMS_330 groups in the three timepoints of their sample collection in the years 2015 (112 months
150 p.i.), 2016 (117 months p.i.), and 2018 (138 months p.i.). Within IGHV3-21, AIIMS_330 from the

151 three timepoints showed a trend towards higher frequency compared to AIIMS_329, and 330_2015
152 had the highest frequency (25.6% compared to compared to approx. 13 other groups, **Figure 1A**,
153 **Supplementary Table 2**). No major differences in the VH gene frequency of the two groups-at any
154 time point was observed (**Figure 1A, Supplementary Table 2**). Consistent with previous studies,
155IGHD3-22, IGHD3-10, IGHD6-13 were found to be major D genes and IGHJ4 was found to be
156 predominant heavy J gene. No noteworthy differences were observed in the frequencies of heavy
157 chain Diversity (D)or Joining (J) genes (**Figure 1B and IC**). In the light chain, IGKV4-1 and IGKV3-
158 20 were the predominant gene usages. We observed a trend towards higher frequency of IGKV4-1
159 in AIIMS_330 compared to AIIMS_329 (14.54%, 20.35%, 14.16% in 330_2015, 330_2016 and
160 330_2018 compared to 8.89%, 10.27%, 12.99% in 329_2015, 329_2016 and 329_2018). We also
161 observed frequency of IGLV2-14 to be lower in AIIMS_330 compared to AIIMS_329 (2%, 2.09%,
162 2.13% in 330_2015, 330_2016 and 330_2018 compared to 4.63%, 7.91%, 5.09% in 329_2015,
163 329_2016 and 329_2018) (**Figure 1D, Supplementary Table 3**). We also observed marked
164 differences in the light chain J gene use between the two groups. Gene usage IGKJ2 showed a trend
165 towards higher frequency in AIIMS_330 at three timepoints. Further, the frequency of IGLJ3 was
166 markedly lower in AIIMS_330 compared to AIIMS_329.Overall, though heavy chain V, D, and J gene
167 frequencies were similar in AIIMS_329 and AIIMS_330, we observed marked differences in lambda
168 and kappa light chains between the two groups at all timepoints.

169 **Shared immunogenetic features between AIIMS_329 and AIIMS_330**

170 The CDRH3 length distributions were similar for AIIMS_329 and AIIMS_330 at all time points, with
171 mean CDHR3 length being lower in the AIIMS_330(12.91, 13.22 and 12.66 in 330_2015, 330_2016,
172 and 330_2018, respectively, compared to 12.97, 13.37, and 12.97 in 329_2015, 329_2016, and
173 329_2018) (**Figure 2A, Supplementary Table 4**). A similar trend was observed in the distribution
174 of light chain CDR3 lengths (**Supplementary Fig 1**). SHM frequency was significantly higher in
175 AIIMS_330 at all three timepoints compared to AIIMS_329 group. In the 2018 timepoint, median
176 SHM in AIIMS_330 was 2.42% compared to 0.41% in AIIMS_329 (**Figure 2B, Supplementary**
177 **Table 5**). Interestingly, when the sequences were segregated into isotypes, sequences from IgA
178 isotype were observed to have significantly higher SHM in AIIMS_330 compared to AIIMS_329. The
179 median SHM in IgA sequences was found to be 11.74%, 6.97%, and 6.94% in 330_2015, 330_2016,
180 and 330_2018, respectively, compared to 7.63%, 6.05%, and 4.72% in 329_2015, 329_2016, and
181 329_2018. No significant changes were observed in other isotypes (**Figure 2C, Supplementary**
182 **Table 6**).

183 **Shared clonotype analysis identified distinct features between AIIMS_330 and AIIMS_329**

184 Sequences were subsampled before performing the clonotype analysis (more detail of the
185 subsetting approach can be found in the methods section). Frequency of total shared clonotypes
186 between any two groups was found to be less than 0.07% (77 shared clonotypes across 10918 total
187 clonotypes, **Figure 3A bottom panel**). Of all the clonotypes identified in each group, clones in
188 330_2018 timepoint had the highest SHM compared to others. Most of the clonotypes in 330_2018
189 timepoint had mean SHM >10%. We also observed higher expansion in 2018 timepoint in
190 AIIMS_330 compared to AIIMS_329 as observed from lower number of clonotypes and higher
191 number of sequences in each clonotype. Interestingly, the overall clonotypes in 2018 timepoint in

192 both groups were higher compared to 2015 and 2016 timepoints (**Figure 3A middle panels**). No
193 notable differences were observed in the V-family distribution of shared clonotypes (**Figure 3A**
194 **top panel**). We also analyzed the clones shared between each sample and timepoints. We did not
195 observe any clonotypes shared between all the groups or even between AIIMS_330 and AIIMS_329
196 at all three timepoints. Interestingly, the highest number of shared clonotypes were identified
197 between 330_2016 and 330_2018 timepoints (39 shared clonotypes) but not between any
198 timepoints in AIIMS_329. Of these 39 clonotypes, only 3 had mean SHM greater than 10%.
199 However, those 3 clonotypes did not have any significant differences in their CDR3 amino acid
200 (**Figure 3B**). We identified 12 clonotypes that were shared between AIIMS_330 and AIIMS_329 at
201 2016 timepoint of which 5 clonotypes had mean SHM greater than 10%. These 5 clonotypes were
202 found to have accumulated higher mutations in CDR3 compared to the 3 clonotypes shared
203 between 330_2016 and 330_2018 (**Figure 3C**). None of these shared clonotypes were predicted to
204 encode sequence insertions or deletions which are frequently found in HIV bnAbs and thought to
205 be difficult to elicit by vaccination. Such BCRs could plausibly define a more efficient path for bnAb
206 maturation that can be exploited by rational HIV vaccine immunogens. We also observed 21
207 clonotypes in common between 2018 timepoint between AIIMS_330 and AIIMS_329. Of these, only
208 one clonotype had >10% SHM. CDR3 of sequences from these clonotypes were observed to harbor
209 higher number of mutations in 330_2018 timepoint compared to 329_2018 (**Figure 3D**).

210 **211 Mapping of sequences to published adult HIV bnAbs identified 330_2018 to be capable of
producing bnAbs with characteristics of adult bnAbs**

212 To identify if either of the two children could generate known HIV-1 bnAbs at any timepoint, we
213 mapped the sequences from each group to known HIV mAbs compiled from HIV neutralizing
214 antibody database (CATNAP) and published studies. A total of 347 mAbs were compiled
215 (**Supplementary Table 7**) and mapped to sequences from each group. The criteria for calling a
216 sequence a successful hit is described in the methods. Of the total 347 mAbs, 78 mAbs mapped to
217 at least one of the sequences in at least one of the groups. Surprisingly, majority of the sequences
218 that mapped to these mAbs were from 330_2018 timepoint but no other timepoints. Moreover, we
219 observed the expansion/more frequency of the following HIV-1 bnAbs like sequences in
220 AIIMS_330: VRC38.01 (V2 apex)(26), VRC34.01 (fusion peptide)(27), HGN194 (V3)(28), HK20
221 (gp41 HR)(29), DH270 (glycan supersite)(30), BG505.m27 (V3)(31), 8ANC131 (CD4bs)(32), 2558
222 (V3)(33), and VRC33.01 (CD4bs)(34) (**Figure 4A**). Strikingly, except DH511.1, DH511.6
223 (MPER)(35) and BG505.m27 HIV-1 bnAbs, no other mapped sequences from AIIMS_330 only
224 showed SHM >10%, however, such high SHMs were not observed for any of the mapped sequences
225 from AIIMS_329. The 78 mAbs that were mapped to heavy chain sequences were also mapped to
226 the light chain sequences. Using the same mapping criteria, it was found that 28 of the mAbs also
227 mapped to light chain sequences and sequences from AIIMS_330 showed higher SHM compared to
228 other timepoints (**Figure 4B-C**). In summary, we show that both heavy and light chain sequences
229 mapped to similar set of mAbs and showed higher SHM and number in AIIMS_330.

230 **DISCUSSION**

231 An understanding of pediatric HIV-1 bnAb responses elicited during chronic infection can provide
232 critical insights for the design and development of effective universal HIV-1 vaccines for both

233 adults and children capable of eliciting potent HIV-1 bnAb responses(36,37). Human antibody
234 repertoire comprises a whole group of antibody genes generated in an individual since birth, which
235 can be specific to an antigen during an infection/disease and vaccination. BCR-seq is a powerful
236 method that has enabled the in-depth analysis of genetic features of antibody responses and
237 tracking of antibody evolution during an infection/vaccination(38). Studying such antibody
238 repertoires could reveal important information that include germline antibody genes, junctional
239 diversity, SHM, clonotypes and allows identification of rare antibody lineage genes specific to a
240 particular antigen.

241 Recently, in a study based on longitudinal characterization of plasma samples we reported the
242 identification of adolescent pediatric elite-neutralizers who were HAART-naïve and living with
243 chronic HIV-1 clade-C infection for more than 11 years(21). We evaluated the V1/V2 apex, glycan
244 supersite, and CD4bs specific responses in AIIMS_329 and AIIMS_330, using ELISA and point
245 mutated HIV-1 pseudoviruses based neutralization assays(21). We showed a longitudinal
246 development of HIV-1 bnAbs targeting V1V2, N332 and CD4bs in AIIMS_330, whereas V1V2 and
247 N332-supersite dependent HIV-1 bnAbs in AIIMS_329, but at a lower potency and breadth in
248 comparison to AIIMS_330(21). Herein, we performed bulk BCR-seq of these two monozygotic
249 twins HIV-1 pediatric elite-neutralizers (AIIMS_329 and AIIMS_330) to understand their BCR
250 repertoire. Analysis of three time points (112, 117 and 138 months p.i.) from these pediatric elite-
251 neutralizers showed high convergence of antibody gene-usage, CDRH3 lengths, SHM, and
252 clonotypes. Though a higher IgA SHM was observed in AIIMS_330, no other isotype showed
253 differential mutation patterns. The development of HIV-specific IgA responses with affinity
254 maturation have been shown to in association with anti-gp41 IgA antibodies that occurs to a
255 greater extent in elite controllers than in individuals on HAART(39), suggesting IgA in AIIMS_330
256 could be associated with lower viral load as compared to AIIMS_329.

257 Current common strategies to generate antigen specific antibodies and evaluating humoral vaccine
258 responses are: 1) high-throughput sorting antigen-specific B cells followed by paired heavy and
259 light chain gene amplification and sequencing, 2) barcoded antigen approaches like LIBRA-seq
260 which leverage single cell microfluidics to link antibody genetics and binding specificity in high
261 throughput, and 3) activation and culture of primary B cells followed by functional supernatant
262 screening to identify B cell clones with desirable functional profiles. Such methods are labor-and
263 time-intensive ways of identifying antigen-specific antibodies. Mapping sequences to well-known
264 established antibody CDR3 information can provide templates or blueprints to identify important
265 antibody genes in a distinct set of individual populations, antibody discovery, and vaccine response
266 evaluation without the need for antigen-specific sorting(40). Similar methodologies have been
267 used successfully to identify potent antibodies against Dengue, HIV-1, SARS-CoV-2, and
268 influenza(41).

269 Here, we mapped BCR sequencing data against datasets of known HIV-1 bnAbs(42). Interestingly,
270 this analysis led to the identification of multiple HIV-1 specific antibody clonotypes isolated from
271 both adults and children in our BCR-seq data. AIIMS_330 showed clonotypes similar to several HIV-
272 1 bnAbs identified in adults which are known to target multiple epitopes including MPER, CD4bs,
273 N332, FP and V1V2, suggesting that antibody data mining based on CDRH3 sequences could help
274 in bnAbs lineage identification to a particular antigen, as recently observed by an AI-based pipeline

275 developed by Wu et.al.(41) for COVID-19 and Flu antibody genes and DENV specific mAbs by
276 Durham et.al.(43) Our analysis of these bnAb lineages showed the evolution/more frequency
277 (**Figure 4**) of these antibodies in AIIMS_330 donor, which corroborates with our previous findings
278 based on plasma characterization and evolution of multi-epitope specific antibodies including
279 CD4bs bnAbs in AIIMS_330 than AIIMS_329(21). Overall, the observation of some the shared
280 lineages in this pair of identical pediatric twins, who had acquired HIV-1 infection by vertical
281 transmission, suggest that they could evolve in response to common antigenic stimulus. Defining
282 the sequences of such shared clonotypes, in a large number of children living with chronic HIV-1
283 infection worldwide, can shed light in understanding the role of specific B cell receptor repertoires
284 in HIV-1 infection.

285 Our study provides insight into the BCR repertoires of pediatric twins capable of exceptionally
286 broad and potent HIV-1 neutralization. We noted the presence of clonotypes with genetic similarity
287 to known adults' HIV-1 bnAbs targeting multiple epitope specificities in children, which
288 corroborated the results of our previous study which characterized the plasma neutralization
289 breadth, potency, and epitope specificity from the same pair of donors(21). We anticipate this data
290 will be useful for the design and development of effective vaccine candidates and strategies for
291 both adults and children to combat HIV-1. Our BCR-seq findings from this unique pair of pediatric
292 elite-neutralizers suggests that multivalent HIV-1 vaccine development strategies focused on
293 inducing a diverse range of HIV-1 bnAb specificities is likely superior to approaches that focus
294 solely on a single epitope.

295 **ACKNOWLEDGEMENTS**

296 We are thankful to the SERB, India (CRG/2021/003984), and Department of Biotechnology (DBT)
297 (BT/PR 24520/MED/29/1222/2017) for the funding provided to K.L. This study is supported in
298 part by ViiV Healthcare and the HIV Research Trust 2019 awarded to S.K. as part of his Graduate
299 (Ph.D.) work training and gaining expertise in Next Generation Sequencing based technologies to
300 sequence single B cell and bulk B cell repertoire sequencing. The funders had no role in the decision
301 to publish or the preparation of the manuscript.

302 **AUTHOR CONTRIBUTIONS**

303 Conceptualization: K.L., B.B., and S.K.; Methodology: B.B., C.C.J., and S.K.; Software: B.B., C.C.J., P.B.;
304 Validation: B.B.; Formal analysis: S.K., and P.B.; Investigation: S.K., and C.C.J.; Resources: D.R.B., R.L,
305 and S.K.K.; Data Curation: B.B., P.B., and C.C.J.; Management: S.K., P.B., and B.B.; Writing - Original
306 Draft: S.K., and P.B.,; Writing - Review & Editing: K.L., B.B., and D.R.B.; Visualization: S.K., and P.B.;
307 Supervision: K.L., B.B. and D.R.B.; Project administration: S.K.; Funding acquisition: K.L., B.B., and
308 S.K.

309 **DECLARATION OF INTERESTS**

310 All other authors declare no competing interests.

311

312 **FIGURE LEGENDS**

313 **Figure 1: Gene usage of heavy and light chains.** V-gene **(A)**, D-gene **(B)** and J-gene **(C)** usage of
314 heavy chains of genes shown as percentage of total sequences and arranged by descending
315 frequency. V-gene **(E)** and D-gene **(F)** of light chains are shown.

316 **Figure 2: Immunogenetics characteristics of heavy chain sequences.** **(A)** CDRH3 length
317 distribution of heavy chains in each group. The dotted horizontal line shows the median of each
318 group. **(B)** Violin plot shows somatic hypermutation (SHM) in each group. The dot represents the
319 median in each group. **(C)** Violin plot shows the SHM in each group segregated by isotype. The dot
320 represents the mean in each group.

321 **Figure 3: Shared clonotypes between the groups.** **(A)** Upset plot illustrating the intersection of
322 clonotypes between the subject 329 and 330 at the three time points (2015, 2016 and 2018). Only
323 the clonotypes which were not singlets with more than one sequences were selected for the
324 analysis. Each vertical bar shows the number of clonotypes present in each group indicated by the
325 intersection matrix below it (where a single dot in the matrix is a single group). The number above
326 the bars show the number of common clonotypes between the groups of intersecting sets of
327 clonotypes marked below the bars. For each intersection the dot plot above indicates the CDRH3
328 length distribution for each clonotype. Size of each dot indicates the number of sequences present
329 in each clonotype and the color shows the somatic hypermutation (SHM) frequency. The vertical
330 bar above it shows the distribution of VH genes for each intersection. Within the shared clonotypes,
331 the clones with SHM $\geq 10\%$ are labelled and shown. **(B)** Sequence logo representing alignment of
332 CDRH3 region of clones common between 2016 and 2018 timepoint of subject 330 with $\geq 10\%$
333 SHM. **(C)** Sequence logo representing alignment of CDRH3 region of clones common between 2016
334 and subject 329 and 330 with $\geq 10\%$ SHM. **(D)** Sequence logo representing alignment of CDRH3
335 region of clones common between 2018 timepoint of subject 329 and 330 with $\geq 10\%$ SHM.

336 **Figure 4: Sequences shared with publicly available HIV bnAbs.** Publicly available mAbs
337 mapped to the heavy chain **(A)** and light chain **(B)** sequences are shown. Each HIV mAb is shown
338 on the x-axis while each dot represents the number of sequences mapped to the respective
339 mAb. The criteria for calling mAb a hit was same V and J gene, more than 50% identity in the CDHR3
340 amino acid and same CDRH3 length. The size of the dot represents the number of sequences
341 mapped and color represents the group. On y-axis mean somatic hypermutation (SHM) is shown.
342 **(C)** Venn diagram showing the overlap of mAbs that mapped in both heavy and light chain
343 sequences.

344 **REFERENCES**

345 1. UNAIDS data 2022 [Internet]. [cited 2023 Jun 13]. Available from:
346 https://www.unaids.org/en/resources/documents/2023/2022_unaids_data

347 2. Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R. Extremely High Mutation Rate of HIV-
348 1 In Vivo. *PLOS Biology*. 2015 Sep 16;13(9):e1002251.

349 3. Cohn LB, Chomont N, Deeks SG. The Biology of the HIV-1 Latent Reservoir and Implications for
350 Cure Strategies. *Cell Host & Microbe*. 2020 Apr 8;27(4):519–30.

351 4. Pantophlet R, Burton DR. GP120: target for neutralizing HIV-1 antibodies. *Annu Rev Immunol*.
352 2006;24:739–69.

353 5. Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. *Nat Immunol*. 2018
354 Nov;19(11):1179–88.

355 6. Kumar S, Singh S, Luthra K. An Overview of Human Anti-HIV-1 Neutralizing Antibodies against
356 Diverse Epitopes of HIV-1. *ACS Omega*. 2023 Feb 28;8(8):7252–61.

357 7. Burton DR, Hangartner L. Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine
358 Design. *Annu Rev Immunol*. 2016 20;34:635–59.

359 8. del Moral-Sánchez I, Russell RA, Schermer EE, Cottrell CA, Allen JD, Torrents de la Peña A, et al.
360 High thermostability improves neutralizing antibody responses induced by native-like HIV-1
361 envelope trimers. *npj Vaccines*. 2022 Feb 28;7(1):1–12.

362 9. Sanders RW, Derking R, Cupo A, Julien JP, Yasmeen A, de Val N, et al. A next-generation cleaved,
363 soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly
364 neutralizing but not non-neutralizing antibodies. *PLoS Pathog*. 2013 Sep;9(9):e1003618.

365 10. Simonich CA, Williams KL, Verkerke HP, Williams JA, Nduati R, Lee KK, et al. HIV-1 Neutralizing
366 Antibodies with Limited Hypermutation from an Infant. *Cell*. 2016 Jun 30;166(1):77–87.

367 11. Kumar S, Panda H, Makhdoomi MA, Mishra N, Safdari HA, Chawla H, et al. An HIV-1 Broadly
368 Neutralizing Antibody from a Clade C-Infected Pediatric Elite Neutralizer Potently Neutralizes
369 the Contemporaneous and Autologous Evolving Viruses. *J Virol*. 2019 Feb 15;93(4).

370 12. Goo L, Chohan V, Nduati R, Overbaugh J. Early development of broadly neutralizing antibodies
371 in HIV-1-infected infants. *Nat Med*. 2014 Jun;20(6):655–8.

372 13. Kumar S, Batra H, Singh S, Chawla H, Singh R, Katpara S, et al. Effect of combination
373 antiretroviral therapy on human immunodeficiency virus 1 specific antibody responses in
374 subtype-C infected children. *Journal of General Virology*. 101(12):1289–99.

375 14. Mishra N, Sharma S, Dobhal A, Kumar S, Chawla H, Singh R, et al. Broadly neutralizing plasma
376 antibodies effective against autologous circulating viruses in infants with multivariant HIV-1
377 infection. *Nat Commun.* 2020 Sep 2;11(1):4409.

378 15. Mishra N, Sharma S, Dobhal A, Kumar S, Chawla H, Singh R, et al. A Rare Mutation in an Infant-
379 Derived HIV-1 Envelope Glycoprotein Alters Interprotomer Stability and Susceptibility to
380 Broadly Neutralizing Antibodies Targeting the Trimer Apex. *Journal of Virology.* 2020 Sep
381 15;94(19):e00814-20.

382 16. Aggarwal H, Khan L, Chaudhary O, Kumar S, Makhdoomi MA, Singh R, et al. Alterations in B Cell
383 Compartment Correlate with Poor Neutralization Response and Disease Progression in HIV-1
384 Infected Children. *Front Immunol.* 2017;8:1697.

385 17. Makhdoomi MA, Khan L, Kumar S, Aggarwal H, Singh R, Lodha R, et al. Evolution of cross-
386 neutralizing antibodies and mapping epitope specificity in plasma of chronic HIV-1-infected
387 antiretroviral therapy-naïve children from India. *J Gen Virol.* 2017 Jul;98(7):1879–91.

388 18. Ditse Z, Muenchhoff M, Adland E, Jooste P, Goulder P, Moore PL, et al. HIV-1 SUBTYPE C
389 INFECTED CHILDREN WITH EXCEPTIONAL NEUTRALIZATION BREADTH EXHIBIT
390 POLYCLONAL RESPONSES TARGETING KNOWN EPITOPES. *J Virol.* 2018 Jun 27;

391 19. Muenchhoff M, Adland E, Karimanzira O, Crowther C, Pace M, Csala A, et al. Nonprogressing
392 HIV-infected children share fundamental immunological features of nonpathogenic SIV
393 infection. *Sci Transl Med.* 2016 28;8(358):358ra125.

394 20. Muenchhoff M, Prendergast AJ, Goulder PJR. Immunity to HIV in Early Life. *Front Immunol.*
395 2014;5:391.

396 21. Mishra N, Makhdoomi MA, Sharma S, Kumar S, Dobhal A, Kumar D, et al. Viral characteristics
397 associated with maintenance of elite neutralizing activity in chronically HIV-1 clade C infected
398 monozygotic pediatric twins. *Journal of Virology.* 2019 Jun 19;JVI.00654-19.

399 22. Khan L, Makhdoomi MA, Kumar S, Nair A, Andrabi R, Clark BE, et al. Identification of CD4-
400 Binding Site Dependent Plasma Neutralizing Antibodies in an HIV-1 Infected Indian Individual.
401 *PLoS ONE.* 2015;10(5):e0125575.

402 23. Kumar S, Kumar R, Khan L, Makhdoomi MA, Thiruvengadam R, Mohata M, et al. CD4-Binding
403 Site Directed Cross-Neutralizing scFv Monoclonals from HIV-1 Subtype C Infected Indian
404 Children. *Front Immunol.* 2017;8:1568.

405 24. Khan L, Kumar R, Thiruvengadam R, Parray HA, Makhdoomi MA, Kumar S, et al. Cross-
406 neutralizing anti-HIV-1 human single chain variable fragments(scFvs) against CD4 binding site
407 and N332 glycan identified from a recombinant phage library. *Sci Rep.* 2017 Mar 23;7:45163.

408 25. Kumar S, Kumar R, Makhdoomi M, Khan L, Prakash S, Thiruvengadam R, et al. Production of
409 cross neutralizing single chain fragment variables (scFv) from HIV-1 infected Indian children.
410 *BMC Infectious Diseases.* 2014 May 27;14(3):E25.

411 26. Cale EM, Gorman J, Radakovich NA, Crooks ET, Osawa K, Tong T, et al. Virus-like Particles
412 Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop.
413 *Immunity*. 2017;16(5):777-791.e10.

414 27. Shen CH, DeKosky BJ, Guo Y, Xu K, Gu Y, Kilam D, et al. VRC34-Antibody Lineage Development
415 Reveals How a Required Rare Mutation Shapes the Maturation of a Broad HIV-Neutralizing
416 Lineage. *Cell Host Microbe*. 2020 Apr 8;27(4):531-543.e6.

417 28. Watkins JD, Siddappa NB, Lakhade SK, Humbert M, Sholukh A, Hemashettar G, et al. An Anti-
418 HIV-1 V3 Loop Antibody Fully Protects Cross-Clade and Elicits T-Cell Immunity in Macaques
419 Mucosally Challenged with an R5 Clade C SHIV. *PLOS ONE*. 2011 Mar 31;6(3):e18207.

420 29. Sabin C, Corti D, Buzon V, Seaman MS, Lutje Hulsik D, Hinz A, et al. Crystal structure and size-
421 dependent neutralization properties of HK20, a human monoclonal antibody binding to the
422 highly conserved heptad repeat 1 of gp41. *PLoS Pathog*. 2010 Nov 18;6(11):e1001195.

423 30. Bonsignori M, Kreider EF, Fera D, Meyerhoff RR, Bradley T, Wiehe K, et al. Staged induction of
424 HIV-1 glycan-dependent broadly neutralizing antibodies. *Sci Transl Med*. 2017;15(9):381.

425 31. Simonich C, Shipley MM, Doepper L, Gobillot T, Garrett M, Cale EM, et al. A diverse collection of
426 B cells responded to HIV infection in infant BG505. *Cell Rep Med*. 2021 Jun 15;2(6):100314.

427 32. Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F, Joyce MG, et al. Maturation Pathway from
428 Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. *Cell*. 2016 Apr 7;165(2):449-
429 63.

430 33. Andrabi R, Williams C, Wang XH, Li L, Choudhary AK, Wig N, et al. Cross-neutralizing activity of
431 human anti-V3 monoclonal antibodies derived from non-B clade HIV-1 infected individuals.
432 *Virology*. 2013 May 10;439(2):81-8.

433 34. Cottrell CA, Manne K, Kong R, Wang S, Zhou T, Chuang GY, et al. Structural basis of glycan276-
434 dependent recognition by HIV-1 broadly neutralizing antibodies. *Cell Rep*. 2021 Nov
435 2;37(5):109922.

436 35. Williams LD, Ofek G, Schätzle S, McDaniel JR, Lu X, Nicely NI, et al. Potent and broad HIV-
437 neutralizing antibodies in memory B cells and plasma. *Sci Immunol*. 2017 Jan 27;2(7):eaal2200.

438 36. Andrabi R, Bhiman JN, Burton DR. Strategies for a multi-stage neutralizing antibody-based HIV
439 vaccine. *Curr Opin Immunol*. 2018 May 15;53:143-51.

440 37. Burton DR. What Are the Most Powerful Immunogen Design Vaccine Strategies? Reverse
441 Vaccinology 2.0 Shows Great Promise. *Cold Spring Harb Perspect Biol*. 2017 Nov 1;9(11).

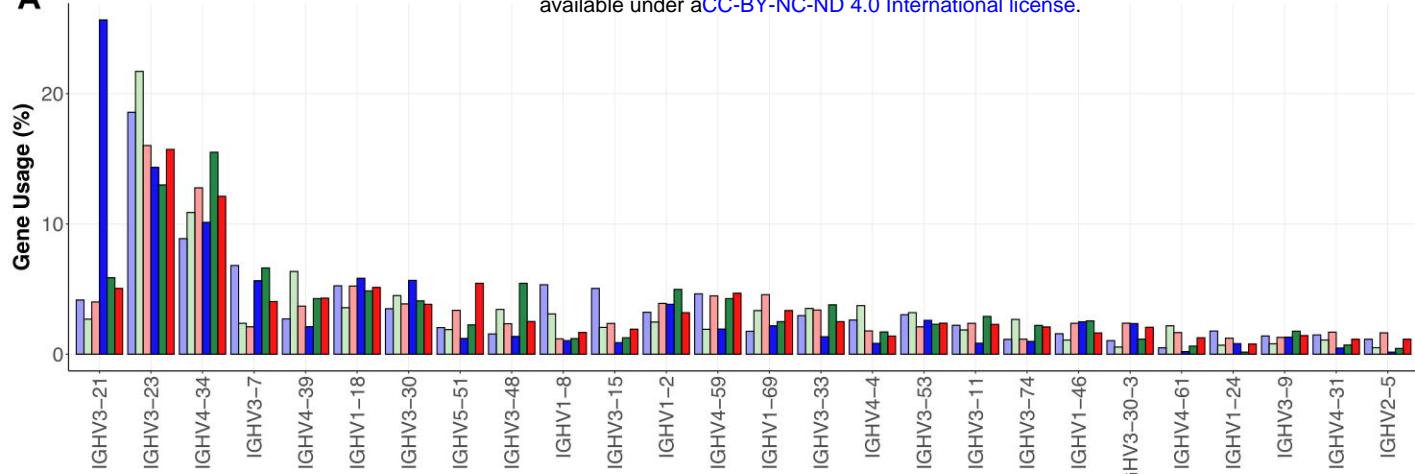
442 38. Briney B, Inderbitzin A, Joyce C, Burton DR. Commonality despite exceptional diversity in the
443 baseline human antibody repertoire. *Nature*. 2019 Feb;566(7744):393-7.

444 39. Nabi R, Moldoveanu Z, Wei Q, Golub ET, Durkin HG, Greenblatt RM, et al. Differences in serum
445 IgA responses to HIV-1 gp41 in elite controllers compared to viral suppressors on highly active
446 antiretroviral therapy. *PLoS One*. 2017 Jul 3;12(7):e0180245.

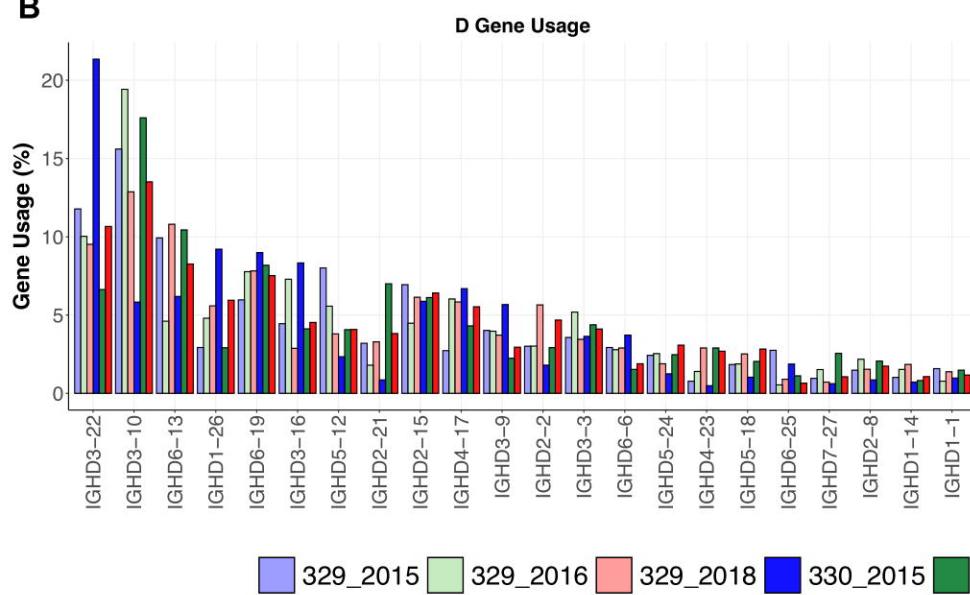
447 40. Xu Z, Ismanto HS, Zhou H, Saputri DS, Sugihara F, Standley DM. Advances in antibody discovery
448 from human BCR repertoires. *Frontiers in Bioinformatics* [Internet]. 2022 [cited 2023 Jun
449 13];2. Available from: <https://www.frontiersin.org/articles/10.3389/fbinf.2022.1044975>

450 41. Wang Y, Yuan M, Lv H, Peng J, Wilson IA, Wu NC. A large-scale systematic survey reveals
451 recurring molecular features of public antibody responses to SARS-CoV-2. *Immunity*. 2022 Mar
452 25;S1074-7613(22)00142-X.

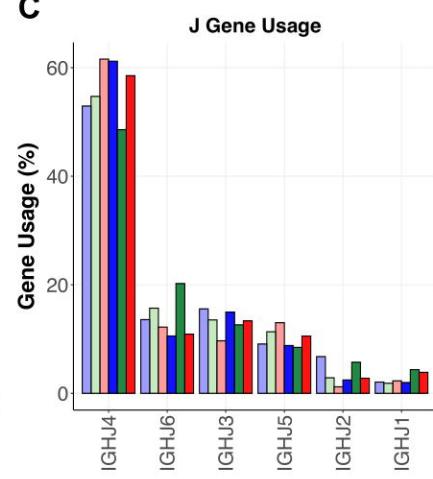
453 42. Yoon H, Macke J, West AP Jr, Foley B, Bjorkman PJ, Korber B, et al. CATNAP: a tool to compile,
454 analyze and tally neutralizing antibody panels. *Nucleic Acids Research*. 2015 Jul
455 1;43(W1):W213–9.

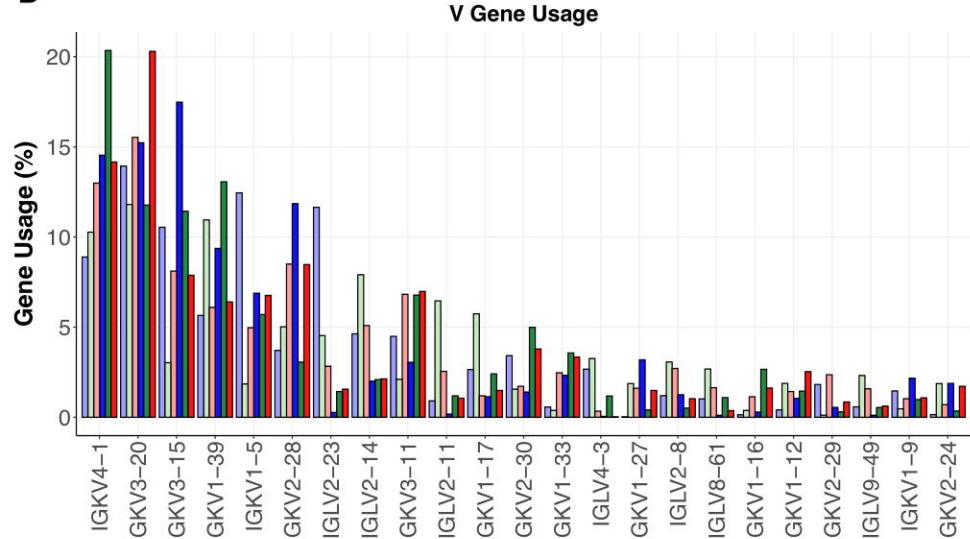

456 43. Durham ND, Agrawal A, Waltari E, Croote D, Zanini F, Fouch M, et al. Broadly neutralizing
457 human antibodies against dengue virus identified by single B cell transcriptomics. *Elife*. 2019
458 Dec 10;8:e52384.

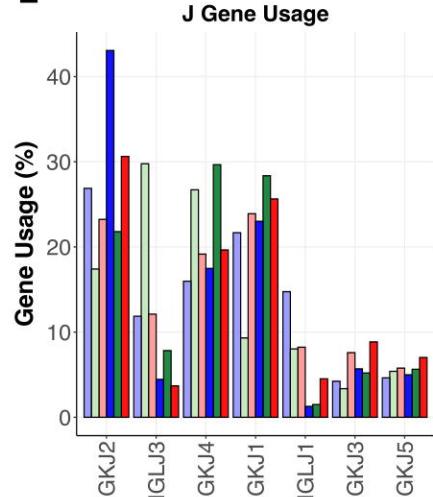
459 44. Gupta NT, Vander Heiden JA, Uduman M, Gadala-Maria D, Yaari G, Kleinstein SH. Change-O: a
460 toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data.
461 *Bioinformatics*. 2015 Oct 15;31(20):3356–8.

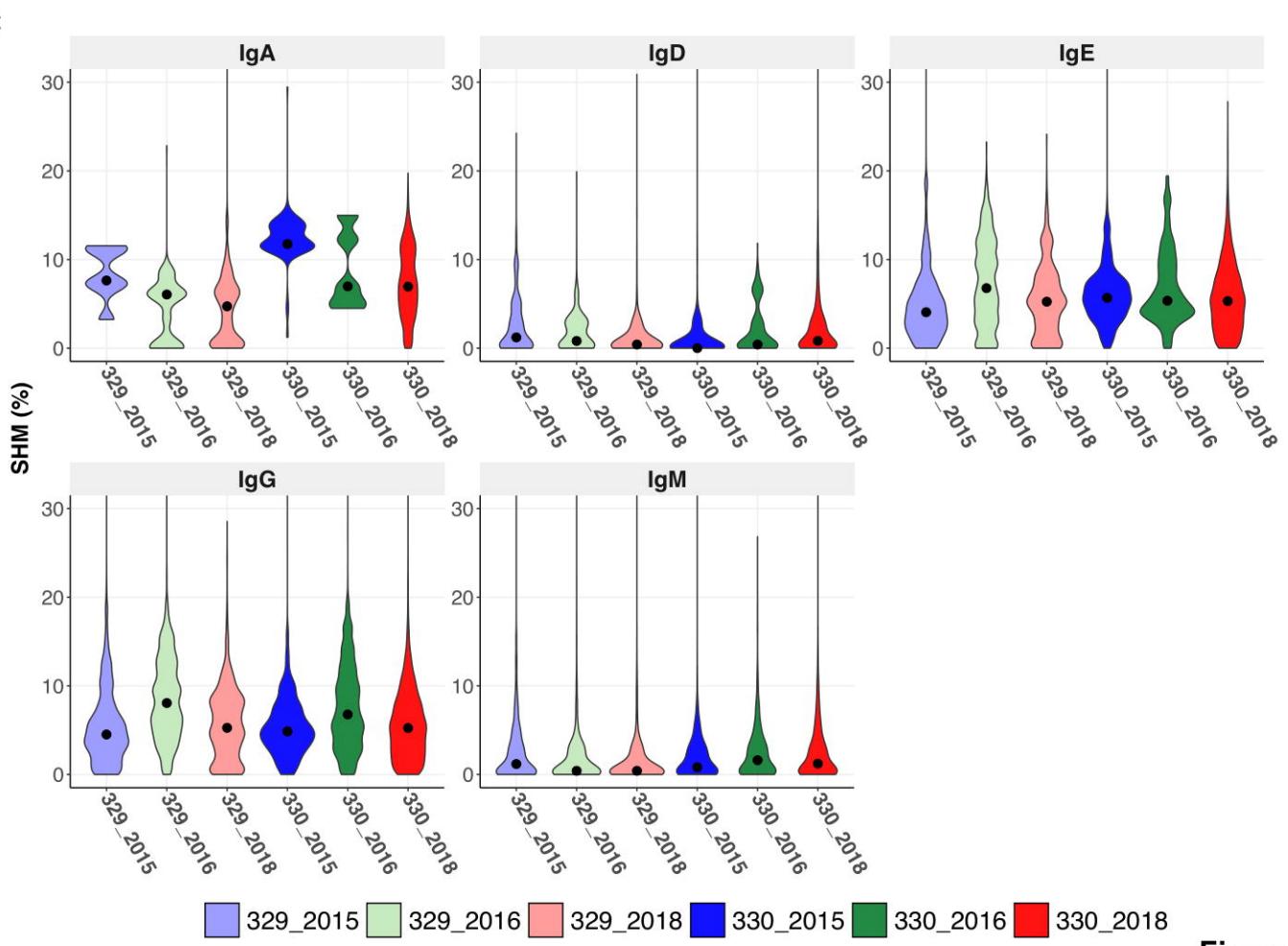
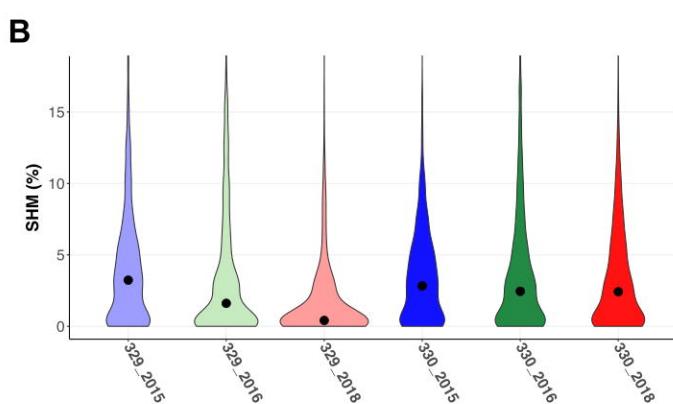
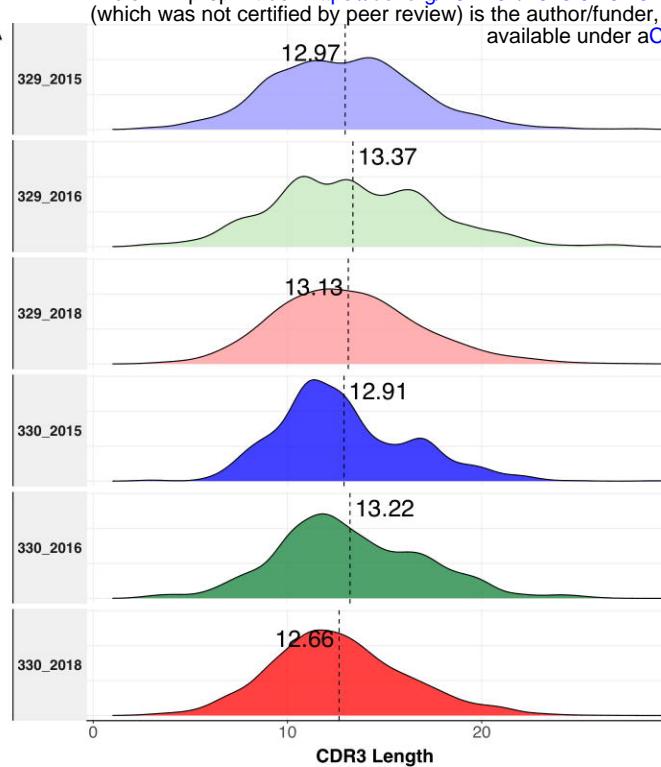

462 45. Vander Heiden JA, Yaari G, Uduman M, Stern JNH, O'Connor KC, Hafler DA, et al. pRESTO: a
463 toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor
464 repertoires. *Bioinformatics*. 2014 Jul 1;30(13):1930–2.

465


A


B


C




D

E

Figure 1

Figure 2

A

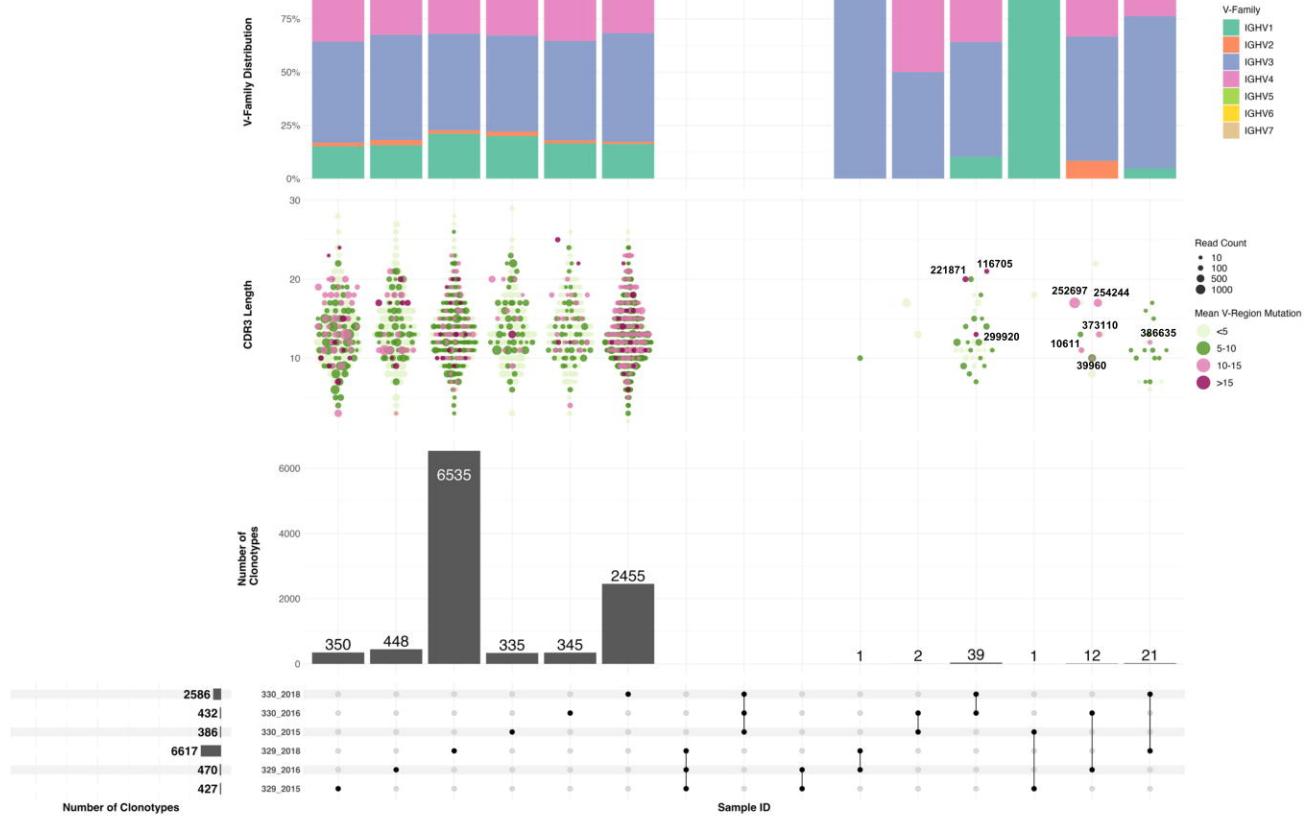
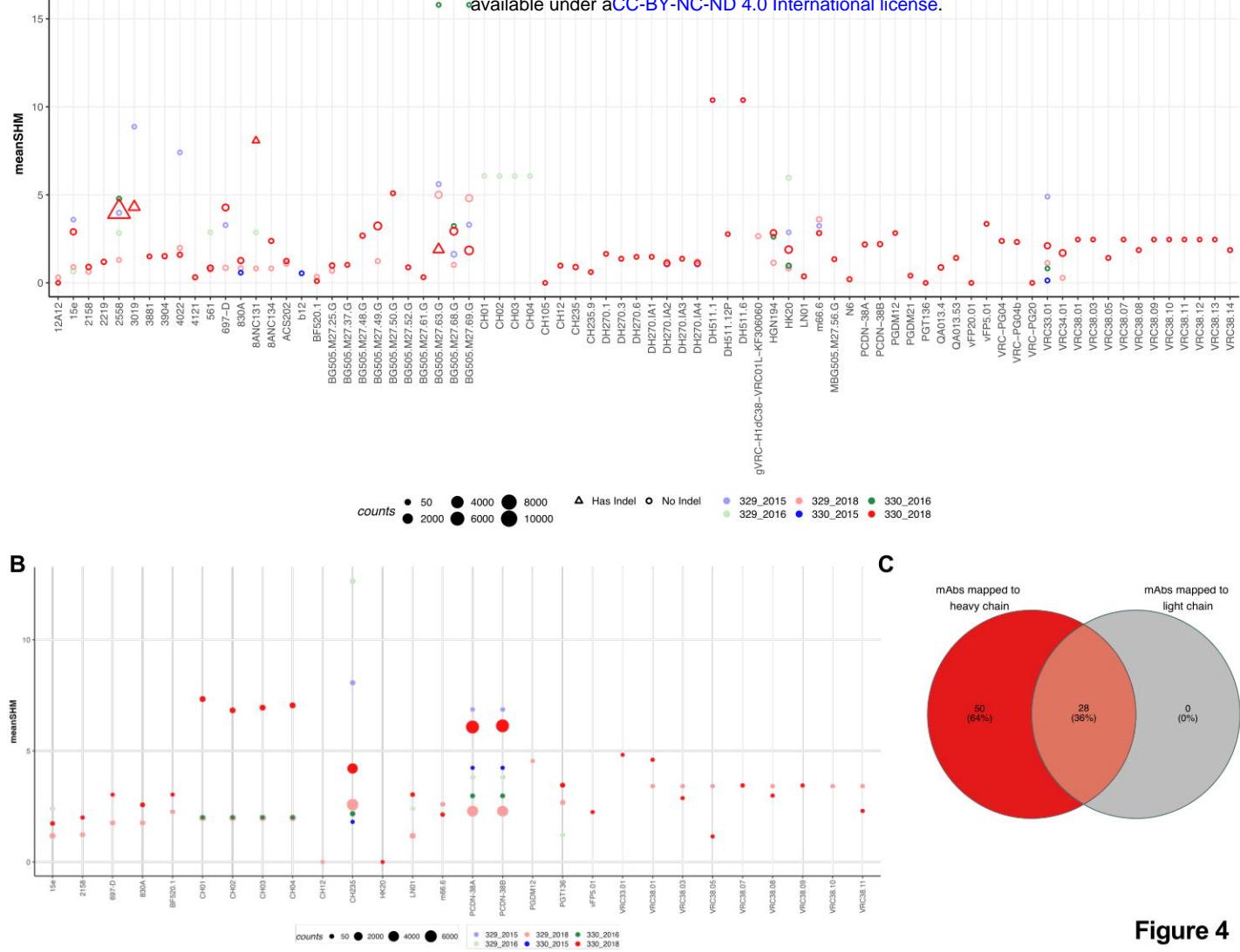



Figure 3

Figure 4