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Abstract

Imaging mass spectrometry is a powerful technology enabling spatial metabolomics, yet
metabolites can be assigned only to a fraction of the data generated. METASPACE-ML is a
machine learning-based approach addressing this challenge which incorporates new scores
and computationally-efficient False Discovery Rate estimation. For training and evaluation, we
use a comprehensive set of 1,710 datasets from 159 researchers from 47 labs encompassing
both animal and plant-based datasets representing multiple spatial metabolomics contexts
derived from the METASPACE knowledge base. Here we show that, METASPACE-ML
outperforms its rule-based predecessor, exhibiting higher precision, increased throughput,
and enhanced capability in identifying low-intensity and biologically-relevant metabolites.

Introduction

Imaging mass spectrometry (imaging MS) has emerged as a leading technology in spatial
metabolomics, finding applications in diverse fields such as biology, medicine, and
pharmacology 3. However, a key challenge remained in the accurate and confident
annotation of metabolites, primarily due to limitations in data collection, existing algorithms
and software 4. Similar to bulk metabolomics °, the vast majority of the imaging MS data, so-
called "dark matter", cannot be molecularly annotated with existing tools.

We previously developed METASPACE, an engine for metabolite annotation ® and a
community-populated knowledge base . METASPACE utilizes a False Discovery Rate (FDR)-
controlled approach, where metabolite ions are reported at a given confidence level by ranking
them against implausible generated decoy ions. However, a limitation of METASPACE is its
rule-based scoring system, namely Metabolite Signal Matching (MSM), which assigns equal
weights to the features and lacks adaptability to data variations. Previous attempts to employ
a data-driven rescoring approach did not consistently increase the number of annotations
across diverse datasets 8.
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Recently, METASPACE evolved into the leading repository for spatial metabolomics, acting
as an extensive knowledge-base with over 10.000 public datasets contributed by researchers
globally. This opened an opportunity to train a machine learning model on this big data.

Here, we introduce METASPACE-ML, a machine learning model for FDR-controlled
metabolite annotation within specific contexts in imaging MS, incorporating new features
developed for centroid data. We devise a strategy to select training and testing datasets
representing contexts of different technologies and sample types. METASPACE-ML is trained
on 600 animal datasets and 180 plant datasets, and its performance is evaluated on 930
datasets submitted by 47 different labs. We demonstrate that METASPACE-ML outperforms
the traditional MSM rule-based approach by delivering more annotations, especially at low
FDR thresholds and for ions of low intensity. We also investigate enrichment of molecular
classes in datasets with the most significant improvement, and compare predicted annotations
against an untargeted LC-MS/MS analysis. Finally, we offer an efficient implementation using
the Lithops cloud serverless computing framework ° and integrate METASPACE-ML into the
existing cloud METASPACE software as well as a separate web app (https://t.ly/g-nb5) to help
users align their datasets to the defined context and check how well the model performs in
such contexts.

Results

Key principles of METASPACE-ML

We aimed to optimize the discrimination between target ions and implausible decoy ions ° by
employing a data-adaptive scoring method for FDR-controlled annotation (Fig. 1A). We used
five scores per ion, including three constituents from the MSM score 6, and two additional
scores estimating the absolute and relative mass-to-charge (m/z) error (Fig. 1B).

Target and decoy ions were separated with a ranking-based Gradient Boosting Decision Trees
(GBDT) *°. An ensemble of decision trees was trained iteratively, with each subsequent tree
correcting the errors of the previous ones. During each iteration, the target-decoy ion pairs
from the training data were scored using a decision tree, aiming to minimize the PairLogit loss
function that reflects the difference in their prediction scores (Fig. 1C). Training the ensemble
produced the METASPACE-ML model (Fig. 1D) which can be used to score each target ion
with a continuous FDR score. Additionally, it provides users with comprehensive information
regarding the contribution and impact of each feature on the final prediction score. A brief
summary of training and evaluation of the model is shown in Fig. 1E.

Representative selection of datasets

METASPACE hosts the largest public collection of spatial metabolomics datasets spanning
different organisms, sample types, and imaging mass spectrometry (imaging MS)
technologies and protocols. Despite the sheer amount of public datasets (over 10.000 as of
January 2024), technologies and different sample types are not equally represented, which is
to be expected because METASPACE is populated by submissions from the imaging MS
community. Out of 9,251 public datasets downloaded from METASPACE in September 2023,
7,713 datasets passed our quality criteria, 84% and 14.3% of which correspond to animal and
plant datasets, respectively (Fig. 2A). Of them, 72% of the datasets were acquired with MALDI-
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imaging MS, 47% of datasets are from human samples, ~60% are from tissue sections, and
Orbitrap datasets represent 29% and 62% of plant and animal datasets, respectively (Fig. 2B,
Supplementary Fig.1). We chose six different categories (hereafter referred as contexts) to
classify public datasets (see methods) to reflect the diversity of submissions in METASPACE.
To make sure that all the contexts are equally represented in model training, we kept the
number of datasets per context fixed (see methods). In addition, we performed training and
testing for animal and plant datasets independently. We also tested different context sizes per
kingdom (Supplementary Fig. 2) and since the difference between the training and validation
error for context size >= 30 are minimal (Supplementary Fig. 3) and to ensure that more
contexts are represented, we chose the model with 30 datasets per context going forward.
Accordingly, the training set comprised 600 and 180 animal and plant datasets, respectively
(Fig. 2C, Supplementary Fig. 4). The testing set comprised 720 and 210 animal and plant-
based datasets, respectively (Fig. 2D, Supplementary Fig. 5). In total, 1,710 datasets were
selected for training and testing of the new METASPACE-ML model. For animal-based training
datasets, we had an almost balanced distribution of positive and negative polarity, MALDI was
the most prevalent ionization source (510 out of 600), often coupled with Orbitrap or FTICR
analyzers. Approximately 75% of the datasets represented samples from either human or
mouse. Cell-based datasets were exclusively from human-derived samples (Fig. 2C). For
plant-based training datasets, MALDI was the only ionization source represented, often
coupled with the FTICR analyzer unlike animal-based datasets where Orbitrap analyzers were
prevalent (Fig. 2C, Supplementary Fig. 4). Approximately 67% represented common crops
(Populus and Sorghum) and most of the datasets are tissue-based (Supplementary Fig. 4). In
summary, the context-specific selection of datasets helped us select a large representative
set of datasets and will provide the end-users the granularity of the represented sample types
and protocols to judge on the reliability of the model predictions.

METASPACE-ML outperforms the rule-based approach in ranking quality

To assess the performance of the METASPACE-ML model, we conducted a comparative
evaluation against the state-of-the-art rule-based MSM approach . The mean average
precision (MAP) was used to evaluate the quality of target vs decoy ion rankings.

Overall, METASPACE-ML achieved higher median MAP scores compared to the rule-based
approach (0.36 vs 0.27) and (0.32 vs 0.17) on both animal and plant cross-validated datasets,
respectively (Supplementary Fig. 6 A,B). Similarly, METASPACE-ML had significantly (p-
value = 2x10%%) higher median AP scores in 674 out of 720 and 207 out of 210 animal and
plant-based testing datasets, respectively (Fig. 3A,Supplementary Fig. 7).

Breaking down ranking quality by context, we observed that METASPACE-ML outperforms
the rule-based approach in all contexts, with noticeable difference in MAP scores in tissue and
MALDI-Orbitrap contexts in animal-based datasets (Supplementary Fig. 8) and contexts
association with Populus in plant-based datasets (Supplementary Fig. 9). Moreover, using
only the METASPACE-ML score, human and tissue-based MALDI Orbitrap in negative mode
and Populus and tissue-based MALDI-FTICR in negative mode had the highest median AP
compared to other contexts in animal and plant-based datasets, respectively (Fig. 3B,
Supplementary Fig. 10). Significance of pairwise context comparison of MAP scores using the
Wilcoxon test can be found in Supplementary Fig. 11 and Supplementary Fig. 12.
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Furthermore, when using different annotation databases, we observed that METASPACE-ML
still outperforms the rule-based approach in overall MAP, with particularly promising results
for CoreMetabolome database (Fig. 3C, Supplementary Fig. 13). This is in line with the AP
distributions, where using CoreMetabolome led to a significant (Friedman p-value < 0.001)
median AP compared to other databases (Fig. 3D).

METASPACE-ML captures more highly-confident annotations

In addition to the overall ranking quality, we considered the number of low-FDR annotations
as a measure focused on results of high confidence. Accordingly, we calculated either
difference or fold change between the numbers of annotations to compare how better is the
METASPACE-ML model relative to its rule-based predecessor.

Overall, at the default FDR 10%, METASPACE-ML, identified approximately 20 and 70 more
annotations on average and at least 50 and 100 more annotations in 50% of the animal and
plant-based testing datasets, respectively (Fig. 4 A,B). At FDR 5%, METASPACE-ML revealed
approximately a 1.64 fold and 1.80 fold increase in annotations compared to the rule-based
approach in 50% of the animal and plant-based datasets (Supplementary Fig. 14 and
Supplementary Fig. 15), indicating a significant (p-value < 0.01) improvement for most-
confident annotations at lower FDR.

Breaking down annotation coverage by context, we observed that METASPACE-ML, on
average, captures more annotations than rule-based approach in all contexts for both animal
and plant-based datasets at 10% FDR (Fig. 4C, Supplementary Fig. 16). However, Orbitrap
based contexts had a significantly (p-value = 7.93x102°) higher Log10 difference in animal-
based datasets compared to FTICR-based contexts with a median of 70 more annotations
(Fig. 4D). Interestingly, single-cell based datasets had a comparably high Log10 difference
which is comparable with the Orbitrap tissue based contexts (Fig. 4C). In plant-based
datasets, FTICR and Populus datasets in negative polarity had the highest Log10 difference
with an average of 200 more annotations (Supplementary Fig. 16). Furthermore, if we
compare the median log-fold change (LFC) across different FDR thresholds per context, we
still observe the highest LFC at FDR 5% in almost all animal-based contexts, except MALDI-
Orbitrap in negative polarity for both human and mouse uncurated datasets as well as MALDI-
FTICR in negative polarity for mouse tissue datasets (Supplementary Fig. 17). In plant-based
contexts, the LFC distribution per context across different FDR thresholds is more variable
with FDR 5% not necessarily having the highest median LFC (Supplementary Fig. 18).

Finally, comparing different annotation databases at the default 10% FDR, we observed that
METASPACE-ML, on average, identifies slightly more annotations using LipidMaps and
SwissLipids compared to CoreMetabolome (Fig. 4E). We also observed a greater
improvement in LFC for most-confident annotations at lower FDR (especially at 5 % FDR).
This trend was consistent for all databases, with higher relative improvements for LipidMaps
and SwissLipids at lower FDRs compared to CoreMetabolome (Supplementary Fig. 19).

METASPACE-ML detects more annotations with a higher reliability

Assessing and ensuring the reliability of METASPACE-ML is pivotal to inform decisions and
to improve the explainability of the predictions. First, building on the aforementioned
performance metrics (MAP and difference in number of annotations), it's essential to
understand the relationship between the annotation coverage and the ranking quality for each
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dataset in order to identify patterns and discrepancies where marginal effects can take place
(e.g. more low-FDR annotations with low MAP). By plotting the Log10 difference against MAP,
we found that METASPACE-ML captures 30-1000 more annotations than rule-based
approach with MAP > 0.2 in around 55% and 65 % of animal-based and plant-based datasets
at 10% FDR (Fig. 5A, Supplementary Fig. 20). Grouping datasets into whether the ML models
captured more, less or equal numbers of annotations compared to its rule-based predecessor,
we found that datasets where the ML model captured less annotations had significantly lower
(p-value < 0.001) MAP values compared to the other categories in both animal and plant-
based datasets (Fig. 5B, Supplementary Fig. 21).

Given the inherent imbalance in the number of target vs decoy ions for each dataset (as we
randomly sample n=20 decoy ions for each target ion), there are more negative cases than
there are positive cases to classify. Therefore, one might be concerned about the precision of
the model and its false positive rate (FPR) as opposed to the recall. This concern is particularly
relevant when evaluating the discriminatory ability of the FDR scores for each annotation,
especially under various FDR thresholds. Therefore, we formulated a reliability score
(reliability_score) for the results of metabolite annotation using target-decoy approach. The
score ranges from 0 (low reliability) to 1 (high reliability) and employs the diagnostic F-beta
measure (with beta = 0.5). We propose to use the reliability_score to estimate the reliability of
the annotation results and choose the most reliable FDR threshold for each dataset (the
minimal FDR that maximizes the score). After considering optimal FDR thresholds for each
dataset, we observed a significant (p-value < 0.001) improvement in LFC for the numbers of
annotations compared to all other fixed FDR thresholds (Fig. 5C, Supplementary Fig. 22) and
we found that 70% of animal datasets had optimal FDR thresholds at 5% with a median
reliability score of 0.88 compared to the other default thresholds (Fig. 5D). Plotting Log10
difference against MAP at custom thresholds, we observed that METASPACE-ML captured
30-1000 more annotations than rule-based approach with MAP > 0.2 in around 64% and 65%
of animal and plant-based datasets (Supplementary Fig. 23 and Supplementary Fig. 24). Our
reliability score reliability_score will be a useful metric for the end-users to evaluate their
results and identify the optimal FDR threshold that optimizes both precision and recall, with a
higher weight on the former.

Assessment of target-decoy separation and feature importance

After examining the performance and reliability of METASPACE-ML predictions, it's essential
to understand how the features constituting the model impact the prediction score and the
separation of targets from decoy ions which is crucial for FDR-controlled annotation. Using
SHAP values (SHapely Additive exPlanations) we observed that the rho_spectral feature had
the largest average contribution (65%) to the prediction score as opposed to the rho_chaos
score which had the lowest impact (5%) (Fig. 6A). This is also consistent when stratified by
context in animal and plant-based datasets (Fig. 6B, Supplementary Fig. 25). Interestingly,
FTICR-based datasets have a higher variability in the spectral feature importance than
Orbitrap-based datasets in animal-based datasets.

To further see the effect of different features and evaluate the discriminatory power of
METASPACE-ML vs the rule-based approach, we visualized the target and decoy ions for
each dataset by performing UMAP (Uniform Manifold Approximation and Projection) of the
ions using all 5 features and visually assessed how different scoring approaches separate
targets from decoys. Examining the UMAP for a mouse brain dataset
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(https://metaspace2020.eu/dataset/2016-09-22 11h16m09s) which we later used for bulk
validation, we observed that the METASPACE-ML score better reflects the target-decoy
separation than MSM (Fig. 6C). Taking a closer look at the pairwise relationships between the
5 features, we observed that the main differences are driven predominantly by rho_spatial and
rho_spectral scores, where targets don’t have low spectral scores and the majority of decoys
tend to have low spatial scores (Supplementary Fig. 26) which is concordant with the feature
importance scores.

Based on the previous results, it may look like METASPACE-ML provides more true positives
at the expense of increased false positives, but as we showed earlier using the Fbeta measure
in the reliability scores, the optimal balance between false positives and false negatives is still
preserved in favor of METASPACE-ML. This is also illustrated by the AUC-ROC and area
under precision-recall curve of the brain dataset compared to the rule-based approach and
each individual feature (Fig. 6D, Supplementary Fig. 27).

Finally, we zoomed into the type of decoy adducts, and for each adduct type, we checked
whether it had more decoy ions at FDR < 10% based on METASPACE-ML compared to the
rule-based approach across animal-based testing datasets. Those decoy adducts represent
the METASPACE-ML false positives. We did the same using MSM and then compared the
distribution of those adducts’ exact mass between METASPACE-ML false positives and MSM
false positives, and we found that METASPACE-ML false positives had significantly (p-value
< 0.05) lower mass compared to the false-positives picked up by rule-based approach
(Supplementary Fig. 28).

METASPACE-ML captures ions of low intensity and from biologically-relevant
classes

Having established the improved performance of METASPACE-ML in delivering more
annotations and providing higher ranking quality, we examined the properties of target ions
that are exclusively annotated by METASPACE-ML compared the rule-based approach. Using
the list of animal datasets, we observed that in nearly all the datasets with annotations at FDR
10% (698/720), compared to MSM, newly-found annotations by METASPACE-ML had
significantly (p-value < 0.001) lower intensities (Fig. 7A, Supplementary Fig. 29 for a detailed
example). This represents a substantial advantage and may be especially useful in annotating
biologically-relevant ions corresponding to low-concentration metabolites, and thus turning
acquired data into actionable hypotheses. The pattern is also consistent if we stratify the
comparison per context as well (Fig. 7B, Supplementary Fig. 30) where DESI-based datasets
have the lowest difference in intensities between METASPACE-ML and MSM (Fig. 7B).

Next, we investigated which metabolic classes are represented among ions annotated by
METASPACE-ML only, at FDR 10%. By using the one-tailed Fisher exact test and the fold
enrichment as proxy for an enrichment score (see Methods), we found that fatty acyls,
carbohydrates, amino acids, and most of glycerophospholipid sub-classes were better
annotated by METASPACE-ML in animal datasets (Fig. 7C), while lactones, keto acids, and
carboxylic acids were better annotated by METASPACE-ML in plant datasets (Supplementary
Fig. 31). If we stratify the enrichment results by context, we find classes such as
glycerophosphocholines, glycerophosphoethanolamines and amino acids showing context-
specific overrepresentation compared to other contexts, especially in animal datasets. On the
other hand, triacylglycerols show significant underrepresentation in all contexts in both animal
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and plant-based dataset (Fig. 7D, Supplementary Fig. 32), indicating that the rule-based
approach has a high recall for such classes which explains why they are not picked up
exclusively by METASPACE-ML.

LC-MS/MS bulk validation of newly annotated ions

In order to add another layer of validation of the ions annotated exclusively by METASPACE-
ML, we considered the MALDI-imaging data together with the bulk LC-MS/MS validation data
used in the original MSM publication and performed a comprehensive identification of all ions
in the LC-MS/MS data °. In total, we considered 10 mouse brain MALDI-FTICR imaging
datasets (Supplementary Data 8). First, we compared the ranking quality and annotation
coverage for each of the datasets, and we observed that on average, METASPACE-ML
achieved higher MAP scores than the rule-based predecessor (0.57 vs 0.43) in 9/10 of the
datasets (Fig. 8A) and METASPACE-ML captured a median of approximately 63 and 30 more
annotations than the rule-based approach at 5% and 10% FDR, respectively (Fig. 8B). Then,
we compared the ions identified from the matched bulk LC-MS/MS data (Supplementary Data
9) with those annotated by either the rule-based approach or METASPACE-ML in the imaging
MS data by matching sum formulas and adducts that are MS/MS validated to the annotations
that have FDR < 10% for each approach. lllustrating it for one dataset that was in the same
project as the one used in Fig. 6C (https:/metaspace2020.eu/dataset/2016-09-
22 11h16m1l7s), METASPACE-ML shows a true positive rate (TPR) of 91% overall (Fig. 8C)
and if we only consider ions exclusively captured by either of the approaches, we observe a
72% vs 11% TPR captured for METASPACE-ML and the rule-based approach, respectively
(Fig. 8D,E). Similar trends were obtained for other 9 datasets with the diagnostic metrics,
including TPR, FPR, and FNR shown in Supplementary Fig. 33.

Altogether, this confirms that METASPACE-ML achieves a high true positive rate in predicting
ions identified in the corresponding bulk LC-MS/MS data and that METASPACE-ML
outperforms the rule-based predecessor.

Discussion

The demonstrated performance of METASPACE-ML relies on three methodological advances
compared to the approach we proposed earlier 8. First, we used the Gradient Boosting
Decision Trees (GBDT) approach, formulated as a ranking model. This proved particularly
valuable as GBDT is known to be robust to noisy outliers, which can significantly impact the
separation of target and decoy ions. Moreover, we proposed two new features estimating
absolute and relative m/z error for centroided data, which helped improve the accuracy of the
model predictions, albeit slightly. Given the increasing use of centroided data in the field
allowing efficient compression, these scores hold potential for wider application beyond
METASPACE-ML. We also introduced an expert-curated metabolome database,
CoreMetabolome, which resulted in higher MAP scores compared to more general databases.

By utilizing the largest collection of public imaging MS data, we were able to select large
numbers of datasets for training and evaluation. Importantly, we defined the relevant contexts
covering combinations of technology platforms and protocols with types of samples. This
helped selecting datasets representing various contexts with a fixed context size to allow
comparative evaluation. Moreover, we trained two independent models for plant and animal
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datasets, each with their unique combination of contexts encompassing both analytical and
biological metadata to provide a more granular approach for end-users to align and cross-
reference their datasets with the training and evaluation datasets. Accordingly, to help users
align their datasets to the context-based results discussed above, we have developed a
separate web app (https://t.ly/g-nb5) so that users can get more information about which
datasets the model was trained and tested on, as well as being able to evaluate the
performance of the model on those datasets. Additionally, we introduced quality control criteria
in particular to exclude non-centroided datasets submitted to METASPACE by mistake (see
methods). Non-centroided datasets cannot be properly annotated as implausible decoy ions
have the tendency of m/z-overlapping with the peak shoulders thus leading to low-to-no
annotations at the low FDR levels. Newly submitted datasets that do not adhere to the defined
quality criteria can be flagged and the corresponding users can be notified prior to processing.

A key aspect of METASPACE-ML and its rule-based predecessor is the control of False
Discovery Rate (the ratio of false positives) in the provided results. This helps an end-user
assess the reliability of annotations and select the level of confidence in the results by
choosing the FDR threshold. Here, with METASPACE-ML, we improved the FDR estimation
procedure (see methods) and proposed a reliability score that helps the end-user identify the
optimal FDR threshold that optimizes both precision and recall. Similarly, we provide a more
detailed diagnostic of the contribution of each feature to the final prediction score for each
annotation which adds an additional layer of explainability of the annotation results.

In addition to achieving high reliability of predictions, increased annotation coverage and better
ranking quality, we show that the ions exclusively annotated by METASPACE-ML tend to have
lower intensities compared to the rule-based predecessor, which is especially useful in
annotating biologically-relevant ions corresponding to low-concentration metabolites. This is
further corroborated by significant enrichment of essential structural metabolic classes that
are pivotal in various metabolic pathways. Furthermore, we showed that many ions exclusively
captured by METASPACE-ML in mouse brain datasets match with their corresponding LC-
MS/MS bulk validation, demonstrating the improved sensitivity of METASPACE-ML compared
to its rule-based predecessor

Despite the notable performance and annotation coverage achieved by METASPACE-ML
compared to the rule-based MSM approach, we acknowledge its limitations. Most of the public
datasets used for training and testing were acquired with either FTICR or Orbitrap mass
analyzers. With the recent surge in the popularity of Quadrupole Time of Flight (QTOF)-based
systems, an increasing number of QTOF-based datasets are being acquired. However, these
datasets are currently underrepresented in the proposed model due to the lack of publicly
available data needed for statistically reliable model evaluation. We anticipate that in the
future, our models can be specifically trained for QTOF analyzers as more datasets become
publicly available. In terms of used features, rho_chaos © had only a minor impact on the
model performance (Fig. 6A) and target-decoy separation was mainly driven by rho_spectral,
which demands re-defining the quantification of spatial informativeness and further exploration
for potential new features for training. Examining Feature scores, it was observed that in some
datasets, the MSM approach can capture more annotations compared to METASPACE-ML.
We observed that some annotations were captured by MSM but not by METASPACE-ML due
to MSM's sensitivity to its feature scores, particularly the rho_spatial score. In certain datasets,
the target ion may have a high rho_spatial score while decoys have low rho_spatial scores,
resulting in a high MSM rank and low FDR for the target ion. Conversely, METASPACE-ML
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prioritizes rho_spectral scores over rho_spatial scores, which can cause higher FDR for these
targets as the decoy scores are closer to the target ion scores. Regarding decoys, as
discussed earlier 6, the way of producing decoy ions is key and new data shows their
heterogeneity in terms of similarity to the target ions (Fig. 6C). Further investigations are
needed into how this affects FDR estimation and in finding the most reliable way of decoy
generation. Lastly, although the training datasets were selected to be representative for a large
number of public datasets from 47 labs, this selection is biased towards public datasets
represented in METASPACE. This warrants further work for evaluating METASPACE-ML for
less common data e.g. from cultured cells in single-cell metabolomics, or data from industrial
labs, where the ability to deposit data publically may be limited. Finally, while the introduced
CoreMetabolome database does offer an improved performance, more rigorous and
automated methods for generating curated databases are desired.

Due to its flexible architecture, METASPACE-ML can include additional features. Of particular
interest is the integration of Collisional Cross Section (CCS) values, enabling automated use
of ion mobility separation able to resolve molecular isomers and isobars *!. Furthermore,
METASPACE-ML can incorporate the Kendrick mass defect or features quantifying other
phenomena e.g. co-detection of characteristic in-source fragments or biochemically-related
molecules. Since the model can be trained or fine-tuned on any imaging MS data, one can
envision the development of context-specific, technology-specific, or lab-specific models as
compared to generalized models.

METASPACE-ML provides a general and flexible framework for evaluating how various signal
processing steps affect metabolite annotation. One can envision using this approach to
maximize the extraction of molecular information by optimizing spectral recalibration, spectral
alignment, and various aspects of transient processing for Fourier-transform ion cyclotron
resonance (FTICR) or Orbitrap, as well as denoising Quadrupole Time-of-Flight (QToF), peak
picking, centroiding, and the denoising of ion images.

With the growing number of public imaging MS datasets available in METASPACE, we can
train future generations of METASPACE-ML by including more datasets and covering more
contexts. Importantly, we envision training custom METASPACE-ML models for specific
contexts or data providers, thus achieving the best metabolite annotation for their data. Finally,
the increased computational efficiency of METASPACE-ML, together with the use of the
flexible, serverless computing framework Lithops, will allow us to reprocess public historic
METASPACE datasets (over 10,000 as of January 2024) to increase the value of this public
collection and shed light on the unannotated 'molecular dark matter' in this big data.

Methods

Metadata curation of public datasets

In order to better classify and contextualize the datasets for selection, existing metadata fields
and additional classifications were introduced. First, the metadata of a total of 9251 public
datasets were downloaded using the METASPACE API
(https://metaspace2020.readthedocs.io) on September 13 2023. The metadata associated
with each dataset include sample information, sample preparation, MS analysis settings,
annotation configuration, publication status, and project association. Using the sample
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information for each dataset, the organism field was manually standardized to either a
genus/species level classification (e.g. Human to Homo sapiens, Mouse to Mus Musculus)
whenever possible. In total, 275 different organism names were filtered down to 143
genus/species (Supplementary Data 1). Moreover, a kingdom metadata field was added
based on the previous organism classification to further classify the organism into one of
(Animal, Plant, Bacteria, Fungi, Protista, Undefined) whenever possible (Supplementary Data
1). For datasets that are part of a project, using information from sample information, sample
preparation and manual inspection, an additional metadata field (Sample type) was added to
classify datasets into one of (Tissue, Cells, Whole Organism, Spheroids, Environmental,
Spots). Keywords like biopsy or tissue section were used to classify datasets as tissue, while
keywords like single cells, cell-monolayer, co-culture, cultured cells were used to classify
datasets into cells (Supplementary Data 2). Most sample type classification was curated for
datasets associated with a project, however, since most datasets submitted to METASPACE
are tissues, we considered the acquisition geometry of the ion images as a filter to classify
non-project associated datasets into tissue based on the assumption that images with irregular
geometries are mostly tissues. lon images where the total pixel count is not equal to the
product of the number of pixels in x and y coordinates are classified as irregular
(Supplementary Data 3). Datasets that are not project associated and don’t have an irregular
geometry were classified as uncurated. Finally, datasets were also classified based on their
m/z range, where datasets having maximum m/z <= 400 are classified as small molecules and
those having minimum m/z > 500 are classified as Lipids. The rest of datasets with min m/z <
500 and max m/z > 400 are classified as “Lipids and small molecules” (Supplementary Data
2).

Exclusion of non-centroided datasets

METASPACE requires users to submit centroided datasets. However, some users by mistake
submit non-centroided profile datasets, which can lead to overselection of peaks. Such cases
lead to suboptimal annotation because of the increased likelihood of isotopes of decoy ions
matching shoulders of peaks or noise peaks. So, we have developed a strategy to identify and
exclude such datasets.

To avoid having to check the spectra for each pixel in each dataset among thousands of public
datasets, for each dataset, we considered the top n=50 pixels with the highest number of non-
zero intensity m/z peaks. For each of those 50 pixels, we consider a vector of non-zero m/z
values denoted by m = [m1, mz, ms, ..., my] Where m; represents i'th non-zero m/z value with
N peaks altogether in the spectrum. For the m/z tolerance m/z_tol_ppm used in METASPACE-
ML defined in ppm (here we use 3 ppm) we can calculate the proportion of consecutive m/z
peaks that are found within a given ppm by comparing the differences in m/z between
consecutive peaks according to equation (1) below :

m/z_tol_ppm )
)

proportion_overlap = ﬁzli\’;f IC(Mmq — M) == =

)
where 1(.) is the indicator function returning 1 if the argument is true and 0 otherwise, and N is
the number of non-zero m/z peaks. Then, for each dataset we take the average proportion
overlap over the aforementioned 50 pixels as a heuristic score to flag datasets for exclusion.
Based on the distribution of those scores over all public datasets we considered datasets with
a score > 0.5 for exclusion.
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Exclusion of low-quality datasets

We have developed the following criteria to exclude low-quality datasets from training and
testing sets: (1) The number of annotations at FDR 20% is less than 10 for each possible
target adduct and annotation database combination, which resulted in the exclusion of 1,418
datasets; (2) The median (across pixels) number of m/z peaks with non-zero intensity >
50,000, this led to exclusion of 6 datasets; (3) The proportion_overlap score > 0.5 (see
Methods) which led to the exclusion of 127 datasets. More information about the quality filters
for all considered datasets can be found in Supplementary Data 4.

Context-dependent selection of training and testing datasets

To ensure a representative selection of different datasets from the Metaspace knowledge
base, we first categorized all public datasets into contexts based on existing and newly added
metadata (see metadata curation). The datasets were classified based on possible
combinations of the following 6 variables : polarity, ionization source, mass analyzer, m/z
class, sample type and species. Ideally, a given context is defined by all 6 variables, however
in very few cases some datasets might match to multiple contexts in cases where sample type
is not well defined. In such cases, the matching will be made so that it considers combinations
of the fixed 5 variables with the all possible sample types (See Context explorer Shiny app for
more information). Moreover, the selection of training and testing datasets were performed
separately for animal and plant based datasets which constitutes 92% of all public datasets.
For each kingdom, the species variable was first grouped so that species with cumulative
frequency of the bottom 10% will be grouped as “OTHER”. Also, we only considered the
following sample types (Tissue, Whole organism, Cells and Uncurated). To ensure statistical
reliability of the predictions, we only selected contexts with at least 45 datasets, where 30
would be used for testing and the rest for training and cross validation. Given that the number
of training datasets might be scarce for the model and to test the effect of underfitting vs
overfitting, 5 different models were trained of varying numbers of datasets per context, starting
from a minimum of 10, up to a maximum of 50 datasets per context. Accordingly, for some
models, certain contexts are not represented due to insufficiency of available datasets to cover
both testing and training.

Once the number of datasets for each context was determined, the next step was to optimize
the sampling procedure to maximize diversity of datasets within each context. Using
information about the institute / lab (group) who submitted the dataset, the project id (for
project-associated datasets) and the submission day, we tailored the sampling procedure
based on the following assumptions: (1) datasets submitted by the same group and project
are more homogenous (2) datasets submitted in the same day are more likely to be biological
/ technical replicates and (3) datasets from different groups are more heterogeneous. For
datasets not associated with a project, a pseudo-label for the project was created based on
the submitter name and day of submission. Given the number of required datasets per context,
a recursive sampling procedure is performed to iteratively sample datasets so that at least one
dataset per project-group combination is selected from the context-specific datasets, in cases
where the size of the sampling pool is more than required datasets, the datasets are weighted
and ranked by both the relative size of project-group combination as well as their Shannon’s
entropy. Then, the remaining datasets are selected from the top ranked list so that project-
group combinations with maximum entropy and highest relative size are used to randomly
select the remaining datasets. Based on this previous sampling procedure, 30 testing datasets
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per context were selected first for each kingdom, and then those datasets were removed from
the selection pool for the training datasets to make sure that training and testing datasets are
mutually exclusive. The selection of 30 datasets per context was chosen to strike a balance
where including more datasets could lead to less diversity of contexts, whereas including fewer
datasets might risk compromising statistical reliability due to a smaller sample size potentially
leading to less robust evaluation. The final list of selected datasets for each context and
kingdom can be found in Supplementary Data 5.

Processing training data using the rule-based METASPACE and
CoreMetabolome

The selected training datasets were then reprocessed on the METASPACE server using the
rule-based approach as previously described ¢ with minor modifications to their configuration
file (Supplementary Note S1). The datasets were annotated against the CoreMetabolome
database. The CoreMetabolome database is a molecular database specially designed and
developed by us for METASPACE annotation. CoreMetabolome was designed to be large
enough for untargeted spatial metabolomics, include only chemically plausible molecules,
prioritize endogenous molecules over exogenous molecules, and include the molecules from
primary metabolic pathways that are commonly abundant in different types of samples. HMDB
(version 4) and KEGG were used as input databases and curated manually by an experienced
chemist and mass spectrometrist. Supplementary Note S2 contains detailed information on
the curation process.

New ion scores quantifying the m/z error from the centroided data

In addition to the scores used in the Metabolite Signal Match score (MSM) (spatial isotope
rho_spatial, spectral isotope rho_spectral, and spatial chaos rho_chaos) we have introduced
two new scores: m/z error abs (absolute m/z error) and m/z error rel (relative m/z error). These
scores quantify the error in estimating the m/z value for an ion of interest compared to its
theoretically defined value as follows:

n
_ Zp=1_™Mplp

: ()

n
p=1 Ip

m/z_error_abs =1 — |mi=1 — My=q|, 3)

T C—mi) — . —m; * T,
m/Z_error_rel =1- I Yi=z ((my T;L% (ﬂ;:l Mi=1) ) Ill 1
i=2 12

(4)

where, for a given ion, m,, is the m/z value in pixel p of the respective ion image, I, is the
corresponding intensity in pixel p, and n is the total number of pixels in a given ion image.

—~~

Moreover, M1, 7M1 and I ; are the theoretical m/z value, the observed mean (across pixels),

and the theoretical relative intensity of the i'th isotopic peak of that ion, respectively.), T is the
total number of isotopic ion peaks considered (in METASPACE-ML we use T=4).

While m/z_error_abs quantifies the m/z error between observed and theoretical only in the
first isotope, the m/z_error_rel quantifies the difference between observed and theoretical
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values for 2'th to T'th isotopes relative to the difference between observed and theoretical in
the first isotope.

FDR estimation

In the rule-based approach ¢, the target-decoy strategy was formulated so that for an MSM
threshold, the ratio of positive decoys to all positives provides an estimate for FDR. To reduce
the variability introduced by the random choice of decoy adducts, the decoy adducts were
sampled S, = 20 times for each target adduct, taking the median value across S, rankings for
each formula before applying monotonicity adjustments. In METASPACE-ML, we also sample
decoy adducts Sj, times, yet we propose to use a single weighted ranking where decoys are
weighted with 1/S;,. First, for a database and each target adduct, both target ions and all
sampled decoy ions are sorted in descending order based on the model prediction score. For
each rank threshold i of sorted ions, we calculate T; and D; which are the numbers of targets
and decoys, respectively, with ranks smaller or equal than i. The FDR value for an ion with
the rank threshold i was defined as

_ (Di+1) / Sp
FDR; = (Ti+1) + (D +1) / Sp) )

A pseudocount of 1 was added to both T; and D; as per the rule of succession to avoid
misleading 0% FDR and for a better estimate of the mean of targets and decoys which have
a binomial-like distribution.

In summary, we introduced the following changes to the FDR estimation compared to the rule-
based approach °: 1) Using a single weighted ranking, where decoys are given 1/S, of the
weight, 2) Using a single selection of S, random decoys per formula which are shared between
all FDR rankings, 3) Allowing for calculation of continuous FDR values for each ion instead of
shapping FDRs to fixed thresholds (5%, 10%, 20%, 50%), and 4) Introducing a rule of
succession where a pseudocount of 1 is added to the number of targets and decoys.

These changes increase the computational performance. In the rule-based approach, S,
random decoys would be sampled from a set of implausible adducts for each formula and
target adduct (e.g. +H, +Na, +K). In METASPACE-ML, we propose instead to randomly
sample S, decoy adducts per target formula and share them across all possible target adducts
for that formula. This change should not affect the FDR rankings as they are statistically
independent. However, this allows to reduce the calculations of scores as it produces fewer
decoy ions overall. To show an example of calculated FDR alongside the scores, we provide
(Supplementary Data 10) which presents the scores for both MSM and METASPACE-ML for
both targets and decoys, along with their corresponding FDRs. For a given FDR threshold,
such as 10%, a true positive is defined as a target ion with an FDR < 10%, while a false
positive is a decoy ion with an FDR < 10%. This table includes the input data used to estimate
the FDR for a specific group (+Na adducts) within a particular dataset
(https://metaspace2020.eu/dataset/2018-12-14 16h34m31s).

Reliability score for target-decoy annotations

In order to assess the reliability of the results provided in the target-decoy-based annotation
and help select optimal FDR threshold (e.g. from 5%, 10%, 20% and 50%) we formulated a

reliability score reliability_score. This score can help minimize false positives and

13


https://paperpile.com/c/Rni9mh/I4cIr
https://paperpile.com/c/Rni9mh/I4cIr
https://metaspace2020.eu/dataset/2018-12-14_16h34m31s
https://doi.org/10.1101/2023.05.29.542736
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.29.542736; this version posted September 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

maximize annotation coverage. Accordingly, we considered the concept of F-score that
estimates the balance between precision and recall. The most popular F-score is the F1-score
which is the harmonic mean of precision and recall. However, given the inherent imbalance
between target and decoy ions, as we sample n=20 decoy ions for each target ion for
robustness, there are more negative than positive instances in our data to be ranked, and thus
precision is more important than recall given the higher number of false positives. Thus, we
chose to optimize the F-beta score, which weights the contribution of precision vs recall based
on the value of beta. Here we choose beta = 0.5 to put more weight on the precision while still
considering the recall; see equation (6). Then, using the Cutpointr R package *?, we calculated
F-beta score for the annotation results where target and decoy ions are considered as positive
and negative instances, respectively. For each dataset, we consider a vector for all possible
FDR cutoffs denoted by f = [fi, f2 f3, ..., f] where fi represents the i'th FDR cut-off sorted
ascendingly for K possible cutoffs. And for each FDR cut-off we get a corresponding F-beta
score denoted as b = [bs, b2, bs, ..., bk] where b; represents i'th F-beta score for K possible
FDR cutoffs. Then, for each of the 4 default FDR thresholds considered in METASPACE (5%,
10%, 20% and 50%), we calculate the reliability score in equation (8) as the product of two
terms: 1) a ratio between the F-beta score at the FDR-cutoff closest to the chosen fixed
threshold relative the maximum F-beta score and 2) complement of the optimal FDR-cutoff
(FDR-cutoff at maximum F-beta score). The first term measures how far is the F-beta score
at the chosen FDR threshold from the maximum possible F-beta score and has a scale of
(0,1]. The second term penalizes the overall score based on the optimal FDR value: the lower
the optimal FDR, the lower the penalty. Finally, since we calculate the reliability score for all
four METASPACE-default FDR thresholds, we can select the minimum FDR threshold that
has the maximum reliability score as the optimal FDR threshold at which the annotations are
most reliable.

2y % ision *
F beta = (14 B7) * precision recall; ﬁ — 0.5 (6)

B2 = precision + recall

optimgq, = f[argmax;bl[i] ] @

b[ argmin; |f[i] - FDRMET ASPACE thresh| ]
max(b)

reliability_score = * (1 —optimsgr)  (8)
where, f is a vector of all possible FDR-cutoffs sorted ascendingly, and b is a vector of the
corresponding F-beta scores. FDRygraspack thresn 1S ONe of the four possible METASPACE-
default FDR thresholds (5%, 10%, 20% and 50%).

Training and cross-validating the model

We employed a ranking-based model using gradient boosting decision trees implemented
using the CatBoost framework 3. As input features, we used the original MSM features (spatial
isotope, spectral isotope and spatial chaos) in addition to the newly introduced features
(relative and absolute m/z error), five features in total. Two independent CatBoost models
were built for animal and plant datasets independently. The models were first initialized using
the “CatBoost" method using PairLogit as the loss function and fitted on 600 and 180 training
datasets for 1000 iterations for animal and plant datasets, respectively. In each iteration, the
decision trees are built in such a way that it improves the previous trees’ output based on a
loss function. For each dataset, a decision tree at a specific iteration scores all decoys and
target ions based on their feature scores, using combinations of pairwise objects where one
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is considered a winner (target ion) and the other a loser (decoy ion). The pairlogit loss function
14 selects the best tree that maximizes the positive difference between the tree score for the
target vs decoy ion . To evaluate the model and ensure that it was not overfitting, we performed
cross validation where the training datasets were split into 5 splits, where 80% of the dataset
were used for training and the remaining 20% were used for evaluation (see Evaluation
metrics) while maintaining the relative size of each context constant. The final prediction score
of the model was scaled [0,1] using minmax scaling based on the leaf values of the decision
trees so that scores closer to 1 denote high confidence annotations and vice versa.

Evaluation metrics and annotation database comparison

In order to evaluate the performance of METASPACE-ML compared to the rule-based
approach, we compared how well their respective scores were able to rank target ions relative
to decoy ions. We used Mean Average Precision (MAP), a commonly used metric that
provides a comprehensive evaluation of the ranking accuracy and precision 1°. Precision is
defined as the number of targets in the top “k” ions of a ranked list, divided by k. Then, the
average precision for each ion in the ranked list is calculated followed by taking the mean of
these average precision over all datasets. MAP scores were calculated for each cross-
validated dataset for each of the 5 splits (see Training and cross validation) and for the testing
datasets.

While MAP and PR-AUC evaluate the ranking quality of METASPACE-ML, they do not
necessarily quantify the desired increase in the number of annotations. So, we calculated the
relative fold change and the log 10 difference in the number of target ions captured relative to
the rule-based approach at specific FDR thresholds (5%, 10%, 20%, 50%). Additionally, we
calculated ion coverage for the testing datasets to determine the percentage of ions in a testing
dataset that the model has encountered in any training dataset. Supplementary Note S3
provides detailed information on the calculation of coverage and the scores are provided for
all testing datasets in Supplementary Data 5.

Selection of datasets for database comparison

In order to appropriately evaluate the performance of METASPACE-ML and ensure its ability
to generalize to new unseen data aligning with the type of datasets represented in
METASPACE and annotated with different databases, we have selected 389 datasets
(Supplementary Data 6) in a context-independent manner having the same configuration as
mentioned in Supplementary Note S1. All 389 datasets were annotated against 3 different
databases: CoreMetabolome, SwissLipids(2018-02-02), and HMDB (version 4), and 206/389
were also annotated using KEGG (version 1).

Separation of target-decoy and feature importance

An important aspect of the ideal annotation score is its ability to optimally differentiate between
target and decoys. In order to examine this separation per dataset, we calculated three original
rule-based scores plus the new m/z error features for each ion and projected both target and
decoy ions onto a two-dimensional space using UMAP implemented in the M3C R package °
using the default configuration parameters except for n_neighbors which we set to 20 to align
with the fixed decoy sampling size of 20 during FDR estimation. Additionally, to evaluate which
features are most important in driving the METASPACE-ML model’s prediction, we used
SHAP values from the Shap python package ’. SHAP values quantify the contribution of each

15


https://paperpile.com/c/Rni9mh/9IapN
https://paperpile.com/c/Rni9mh/ALMev
https://paperpile.com/c/Rni9mh/1JEYh
https://paperpile.com/c/Rni9mh/Wx2WS
https://doi.org/10.1101/2023.05.29.542736
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.29.542736; this version posted September 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

feature to the final prediction score for a given ion in each dataset. Given the additive property
of the SHAP values, the contribution of each feature to the final prediction was taken as the
ratio of the absolute SHAP value per feature to the sum of absolute SHAP values across all
features for each ion. This was performed on 720 testing datasets and the results were
aggregated per dataset using median of SHAP contribution and visualized as either density
heatmap from ComplexHeatmap R package '8 or a ridge plot from ggridge R package *°

Testing for difference in intensities of annotations

To further investigate the characteristics of the newly captured ions by the METASPACE-ML
model, we compared the intensity distributions of those ions to the ones captured by both
METASPACE-ML and the rule-based approach for animal datasets. Using METASPACE API
(https://metaspace2020.readthedocs.io) we retrieved the ion images for each target ion in a
given dataset and calculated the 99% percentile intensity across all pixels, followed by Log 10
transformation and taking the median across all ions captured at specific FDR threshold
(default 10%). The distribution of the median-transformed intensities per dataset for each
approach (METASPACE-ML and MSM) were compared using the Wilcoxon test. In addition,
we used the ggbetweenstats function in the ggstatsplot R package 2° to perform the pairwise
Mann-Whitney test between the intensity distributions of ions only captured by METASPACE-
ML compared to either all ions captured by METASPACE-ML or only ions captured by the
rule-based approach for a given dataset. P-values were adjusted using the Benjamini-
Hochberg correction 22,

Enrichment analysis

To learn more about the types of metabolites that were only picked up by METASPACE-ML,
we performed a hypergeometric test to identify the molecular classes that were enriched in
those metabolites. Accordingly, we retrieved the class and subclass information for all
annotated metabolites from the HMDB database (version 4) and used the HMDB “subclass”
as background for enrichment. Then, for each dataset and subclass, we first filtered
annotations with 10% FDR and then performed a two-tailed Fisher exact test where we
consider the log fold enrichment as described in 22 as a proxy for the enrichment score. Finally,
we filtered significantly enriched terms (p-value < 0.05) and only terms that were enriched in
at least 10% of the total number of input datasets were considered for visualization purposes.
The complete enrichment results per dataset, context and term can be found in
(Supplementary Data 7).

LC-MS/MS bulk validation of METASPACE-ML annotations

LC-MS/MS analysis was performed on an Agilent 1260 liquid chromatography (LC) system
(Agilent, CA, USA) coupled to a Q Exactive Plus Orbitrap high-resolution mass spectrometer
(Thermo Scientific, MA, USA) in positive ESI (electrospray ionization) mode.

Chromatographic separation was carried out on an Ascentis Express C18 column (Supelco,
PA, USA; 100 x 2.1 mm; 2.7 uM) at a flow rate of 0.25 mL/min. The mobile phase consisted
of water:ACN (40:60, v/v; mobile phase phase A) and IPA:ACN (9:1, v/v; mobile phase B),
which were modified with a total buffer concentration of 10 mM ammonium formate + 0.1%
formic acid. The following gradient was applied (min/%B): 0/10, 1/10, 5/50, 10/70, 18/97,
23/97, 24/10, 28/10. Column temperature was maintained at 25°C, the autosampler was set
to 4°C and sample injection volume was 10 pL. Analytes were recorded via a full scan with a
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mass resolving power of 70,000 over a mass range from 150 — 900 m/z. MS/MS fragment
spectra were acquired at 35,000 resolving power and stepped collision energies [%]: 10/20/30.
lon source parameters were set to the following values: spray voltage: 4000 V, sheath gas: 30
psi, auxiliary gas: 10 psi, ion transfer tube temperature: 280°C, vaporizer temperature: 280°C.

Data was processed using MS-DIAL 4.9.221218 23, Feature identification was based on the
MS-DIAL LipidBlast V68 library by matching accurate mass (m/z tolerance: 0.005), isotope
pattern and MS/MS fragmentation (m/z tolerance: 0.02) data (matching score threshold: 90%).
To remove misannotations and to enhance confidence in lipid identification, intra-class elution
patterns of lipid species were checked for consistency by relying on the expected
chromatographic behavior on reversed phase columns within homologous lipid series,
considering carbon chain length and degree of saturation as the main factors 24,

For each of the 10 datasets (Supplementary Data 8) from ¢, we matched the formula and
adduct captured by either METASPACE-ML or the rule-based approach at 10% FDR with the
LC-MS/MS matched formula + adduct. Only positive adducts (+H, +Na, and +K) were
considered. Accordingly, for each dataset we got a 2x2 contingency table where true positives
(TP) are defined as the set of ions that have < 10% FDR and bulk-validated, false positives
(FP) are those that have < 10% FDR but not bulk validated, false negatives (FN) are those
that have > 10% FDR and bulk-validated, and true negatives are those that > 10% FDR and
not bulk validated. We calculated these metrics in an either exclusive manner for each
approach (i.e considering ions that are < 10% FDR for one approach but not the other) or
inclusive. Finally, we report the common diagnostic metrics : true positive rate (TPR), false
positive rate (FPR), and false negative rate (FNR) for each dataset.

Hardware configuration for model training

Model training was executed on the EMBL in-house high-performance computing cluster.
Training utilized AMD Epyc CPU nodes, each equipped with up to 128 cores, 256 threads,
and a maximum of 384 GB of memory. Each training and evaluation job demanded a
maximum of 50 and 30 GB of memory per core and it was parallelized by splitting the job into
4 and 2 tasks, with each task employing 4 and 2 processors on the same node, respectively.

Context explorer Shiny app

To assist the user in the assessment of the reliability of prediction results per context and to
provide more information about coverage, we developed the “METASPACE-ML : Context
explorer” web app (https://t.ly/g-nb5) using the R Shiny framework. The interactive web app
allows the user to match the context closest to their dataset or just choose one or more
contexts to further explore based on the 6 variables defined in (Context-dependent selection
of training and testing datasets). Once the selected contexi(s) has been defined, the user will
be able to view and download the corresponding training and testing datasets covering the
selected context(s) and will be able to view all the evaluation and enrichment plots pertaining
to datasets in such context(s). The app is only intended to view and interact with the results of
the model on testing datasets in the specified context(s). It is not designed to predict outcomes
for new datasets in similar contexts.
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Statistics and Reproducibility

All statistical analyses were performed using R version 4.1.2 and Python version 3.8.13. The
specific tests used are detailed within the respective figure legends. Unless otherwise stated,
data are presented as the median with interquartile range. For comparisons between two
groups, a two-tailed Wilcoxon signed-rank test was used. For comparisons involving more
than two groups, the Kruskal-Wallis test was employed. For repeated measurements, a paired
Wilcoxon signed-rank test was applied. P-values were corrected for multiple comparisons
using the Benjamini-Hochberg procedure, unless stated otherwise. A p-value of less than 0.05
was considered statistically significant unless stated otherwise. No statistical method was
used to predetermine sample size. No data were excluded from the analyses unless specified
otherwise. The experiments were not randomized; The Investigators were not blinded to
allocation during experiments and outcome assessment

Data Availability

All datasets analysed in this study are publicly available. The public training and testing
datasets are available on METASPACE and more information on each dataset can be
accessed from Supplementary Data 5. Context-specific datasets can be accessed from the
Shiny-based web app (https://t.ly/g-nb5). The LC-MS/MS data used for validation are publicly
available at the MetaboLights repository under accession code MTBLS378. Raw source data
is also available at BioStudies repository under accession code S-BIAD1283.

Code Availability

The METASPACE-ML code for inference is available at
https://github.com/metaspace2020/metaspace and covers scores calculation, METASPACE-
ML and FDR calculation based on the trained model. The METASPACE-ML models are
available at https://github.com/metaspace2020/metaspace/tree/master/metaspace/scoring-
models.

Codes and source data for generating the figures in this study are deposited at
https://github.com/Bisho2122/METASPACE-ML _reproducibility and the version of code used
in this study is available via Zenodo with https://zenodo.org/doi/10.5281/zenodo.12798641 .

Annotation using METASPACE-ML can be done directly in METASPACE during dataset
submission in Annotation settings — Analysis version. Code to reproduce curation of
CoreMetabolome is available at https://github.com/DinosaurinSpace/core_metabolome.
Source code for Shiny web app is available at https://github.com/alexandrovteam/metaspace-
ml-context-explorer.
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Figure 1. Workflow demonstrating key aspects of METASPACE-ML, model training and
evaluation.

(A) The workflow from the user perspective covering steps of data acquisition, molecular
database selection, and preparation of the target and decoy database. (B) Scores calculated
for each ion which are used as features for the machine learning model. (C) The principle of
machine learning applied to the target and decoy ions’ features which are scored by a single
decision tree by maximizing the PairLogit loss function. (D) Details of the training of Gradient
Boosting Decision Trees using multiple datasets and visualization of how the metabolite
annotations are generated for a given FDR threshold. (E) Details on the public datasets from
METASPACE used for training and evaluation, as well as the measures used for evaluation.

Created with Inkscape v1.2 and yED graph editor v3.22.

polarity source analyzer
Breakdown of METASPACE datasets by kingdom HiATBL 4856 S
Total = 7713 Sodiiine 3290 Orbitrap
DESI 1272
Plant FTICR g
14.3% Other{ (228
Negative 3072
Fungi 6 Tor| 181
0.4% s
Bacteria .
mz_class Sample_type Species
1.5% 3879
Lipids e Tissue Homo sapiens s 3848
and
Mus musculus
small_moleclues Uncurated 1956 412
OTHER
Lipids 183 Whole Organism 292 Rattus norvegicus 376
228 Mixed 118
e Cells 87
i Small molecules 63 7 NA
84% Spheroids Danio rerio| 48
Number of datasets
600-
Whole Organism Whole Organism
OTHER OTHER
600-
Uncursted Uncurated
i) Positive o Positive
9 400- e
8 o Mus musculus 3 Orbitrap
T MALDI % 400- MALDI Mus musculus
o a 3
5 Lipids_and_small_moleclues 5 Lipids_and_small_moleclues
& o
[ Q
£ £
= 200- Tissue 3 Tissue
Homo sapiens 200-
Nedlive # Negt Homo sapiens
FTICR
+ 1R DF
0- s o- Lipids cllls
polarity mz_class source analyzer Species  Sample_type polarity mz_class source analyzer Species Sample_type

Figure 2: Public METASPACE datasets used for training and evaluation and details on
representation of different technological and biological contexts.

(A) Doughnut plot showing a breakdown of public METASPACE datasets selected for training
and evaluation after applying the quality filters. Each sector is colored by kingdom and depicts
the percentage of the total datasets for each kingdom. (B) Breakdown of the animal datasets
by their associated technological and biological metadata making up the contexts (see
methods). Number of datasets are shown on the x-axis and the classes in each context are
shown on the y-axis. (C) and (D) Sankey diagrams showing the breakdown of training (C) and
testing (D) animal datasets by different parameters. Properties of the datasets are described
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on the x-axis and the corresponding numbers of datasets in each level are plotted on the y-
axis. Each property can be divided into multiple classes which are represented by the colors
of the nodes and their corresponding flow to the next layer. A flow from the first to the last
node represents a single technology-biology context.
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Figure 3: Assessment of ion ranking quality for METASPACE-ML vs its rule-based

predecessor

(A) Paired boxplot showing Area Under precision-recall Curve (AUC) per dataset for animal
testing datasets. Approach type and AUC scores are shown on the x-axis and y-axis,
respectively. Each dot represents a dataset and an orange dotted edge is drawn between the
same datasets annotated by both approaches. Boxplots are grouped by the difference of AUC
scores (Delta) where positive differences denote higher AUC in METASPACE-ML relative to
MSM and vice-versa. The number of datasets in each group are shown in parentheses. Exact
p-values are based on a two-tailed paired Wilcoxon signed-rank test between AUC scores
across both approaches. (B) Density heatmap showing MAP score distributions across
datasets for each context in the animal testing datasets. Each column represents a context,
described by its metadata, with colors representing different classes. The y-axis shows MAP
scores, and the color gradient represents density. Columns are hierarchically clustered using
the Kolmogorov-Smirnov statistic, with dotted lines indicating different quantiles and the mean.
(C) Bar graph showing MAP scores for (n=389) testing datasets annotated against four
databases separately and all databases combined. AP (average precision) scores are
calculated for each group (dataset and adduct) and the score is the average across all groups

24


https://doi.org/10.1101/2023.05.29.542736
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.29.542736; this version posted September 23, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

for a given database. (D) Box-violin plot displaying the distribution of MAP scores across
(n=389) animal testing datasets, compared across different annotation databases using a two-
tailed paired Friedman test with p-values adjusted by the Benjamini & Hochberg method. MAP
scores and annotation databases are shown on the x-axis and y-axis, respectively. Adjusted
p-values between pairwise comparisons of databases are shown between each comparison.
Only significant (adjusted p-value < 0.05) comparisons are shown. In (A) and (D), the boxplots'
bottom and top edges represent the 25th and 75th percentiles, with the median (50th
percentile) line inside the box. Whiskers are omitted; minimum and maximum values are
represented by jittered data points.
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Fig. 4: Assessment of annotation coverage for METASPACE-ML vs rule-based approach
(A) & (B) Boxplots showing the difference in number of annotations captured by METASPACE-

ML relative to MSM at different FDR thresholds for animal (A) and plant (B) testing datasets.
Each dot represents a dataset, and the y-axis shows the Log10 absolute difference, where
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negative values indicate MSM had more annotations than METASPACE-ML and vice versa.
Solid and dashed lines represent the median and mean, respectively. Number of datasets are
displayed below x-axis labels. (C) Density heatmap showing the distribution of Log10 absolute
difference scores across datasets for each context in animal testing datasets. Each column
represents a context described by its metadata, with bars colored by different classes. The y-
axis shows Logl0 absolute difference scores, and the color gradient represents density.
Columns are hierarchically clustered using the Kolmogorov-Smirnov statistic. Dotted lines
indicate different quantiles and the mean. (D) Box-violin plot showing Logl0 absolute
difference score distributions for FTICR and Orbitrap animal testing datasets. The p-value and
test statistic of a two-tailed Wilcoxon rank-sum test are shown above the plot, with the number
of datasets per analyzer in parentheses below the x-axis labels. (E) Boxplot showing the
distribution of the difference in number of annotations captured by METASPACE-ML relative
to the MSM method across different databases at FDR 10%. A dot represents a dataset from
206 animal testing datasets (see methods). Y-axis represents the Log10 absolute difference
where negative values are those where MSM had more annotations than METASPACE-ML
and vice-versa. Median and mean are represented by solid and dashed lines, respectively. In
(A), (B), and (D), boxplots' bottom and top edges represent the 25th and 75th percentiles, with
the median (50th percentile) line inside the box. Whiskers extend to the minimum and
maximum values within 1.5 times the interquartile range from the quartiles; the minimum and
maximum values are represented by the extent of the jittered data points.
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Figure 5: Evaluation of reliability of annotations predicted by METASPACE-ML

(A) 2D binned plot showing the relationship between the increased number of annotations
compared to MSM (Log10 absolute difference) and MAP scores. Each bin, with a width of 0.5
and length of 0.1, displays the count of animal testing datasets, with a color gradient indicating
density. Bins within dotted lines represent datasets with < 0 Log10 absolute difference scores.
(B) Boxplot of MAP scores for animal testing datasets, grouped by whether METASPACE-ML
had equal, higher, or lower annotations compared to MSM. (C) Boxplot of Log?2 fold changes
in the number of annotations of METASPACE-ML relative to MSM across all animal testing
datasets, for different FDR thresholds. Exact p-values from a two-tailed Wilcoxon rank-sum
test in (B) and (C) are shown above each comparison. (D) Boxplot of reliability scores across
all animal testing datasets, for optimal FDR thresholds. In (B), (C), and (D), boxplots' bottom
and top edges represent the 25th and 75th percentiles, with the median (50th percentile) line
inside the box. Whiskers extend to the minimum and maximum values within 1.5 times the
interquartile range from the quartiles; the minimum and maximum values are represented by
the extent of the jittered data points.
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Figure 6: Assessment of the target-decoy separation and feature importance.

(A) Ridge plot showing the density of SHAP impact contribution scores (see Methods) for each
of the five ion features used for METASPACE-ML model training across all testing datasets.
Features are displayed on the y-axis and the SHAP contribution scores are displayed on the
x-axis. Quartile lines are displayed for each ridgeline and colors represent the area under each
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ridgeline for each of the 4 quartiles. (B) Density heatmaps showing the distribution of SHAP
impact contributions scores across datasets for each context in animal-based testing datasets
and faceted by each of the five features. Each column represents a context which is described
by its constituent metadata as bars colored by the classes in each metadata variable. The y-
axis shows the SHAP impact contributions scores and the color gradient represents their
density. Columns are hierarchically clustered using a distance metric based on the
Kolmogorov-Smirnov statistic. (C) UMAP for both target and decoy ions for one of the brain
datasets used for the LC-MS bulk validation (https://metaspace2020.eu/dataset/2016-09-
22 11h16m09s). A dot represents an ion and is colored by whether it's a target or decoy (top
left), the MSM score (top right), and the METASPACE-ML score (bottom left). (D) ROC curves
for the same dataset as in (C) showing sensitivity and False Positive Rate (FPR) using the
METASPACE-ML and MSM scores as well as each of the five constituent ion features. Curves
are colored by the scores they correspond to.
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Figure 7: METASPACE-ML captures low-intensity ions and biologically-relevant metabolites.

(A) Boxplots showing the median intensity distribution for each animal testing dataset across
total and unigue annotations by METASPACE-ML or MSM at FDR 10%. Each dot represents
a dataset, colored by the Log1l0 number of annotations. X-axis labels indicate annotation
approaches, with “only” denoting exclusive annotations. Y-axis shows median Log10 intensity
for all ions per dataset. Significant p-values (p < 0.05) from a two-tailed Wilcoxon rank-sum
test are shown above comparisons. (B) Heatmap displaying median Logl0 intensity per
context across animal testing datasets. Columns represent contexts described by metadata,
with colors indicating classes. Rows show approaches from (A). Color gradients correspond
to median Logl10 intensity. (C) Overrepresentation analysis using one-tailed Fisher's exact
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test for datasets to identify enriched metabolite/lipid classes in ions exclusively captured by
METASPACE-ML at FDR 10%. Log?2 fold enrichment is on the x-axis and HMDB metabolite
subclasses on the y-axis. Boxplots are colored by parent class, with the number of datasets
in parentheses. Only terms with significant enrichment (p < 0.05) in at least 10% of datasets
are shown. (D) Heatmap showing overrepresentation analysis results per context in animal
testing datasets. Columns represent contexts described by metadata, with colors indicating
classes, and rows show significantly enriched metabolite classes. Color gradient corresponds
to Log2 fold enrichment, with labels indicating the number of datasets per context. In (A) and
(C), boxplots' bottom and top edges represent the 25th and 75th percentiles, with the median
(50th percentile) line inside the box. Whiskers extend to the minimum and maximum values
within 1.5 times the interquartile range from the quartiles; the minimum and maximum values
are represented by the extent of the jittered data points.
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Figure 8: METASPACE-ML achieves a high true positive rate as compared to ions identified
with bulk LC-MS/MS.

(A) Paired boxplot showing PR-AUC per dataset for 10 brain datasets (source data are
provided in Supplementary Data 8) from bulk LC-MS/MS re-analysis. The x-axis represents
the method and the y-axis the PR-AUC scores. Each dot represents a dataset, with orange
dotted lines connecting the same datasets. Boxplots are grouped by AUC score differences
(Delta), indicating higher AUC in METASPACE-ML relative to MSM. Dataset counts per group
are shown in parentheses. Exact p-values are from a two-tailed paired Wilcoxon signed-rank
test. (B) Boxplots showing Log10 numbers of annotations by METASPACE-ML relative to
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MSM across different FDR thresholds for datasets in (A). Each dot represents a dataset; the
y-axis shows the Log10 absolute difference, with negative values indicating MSM had more
annotations. Solid and dashed lines represent the median and mean, respectively. Dataset
counts are below x-axis labels. (C), (D), and (E) Fourfold plots for ions captured by
METASPACE-ML (C), exclusively by METASPACE-ML (D), and exclusively by MSM (E),
compared to LC-MS/MS verified ions for one brain dataset
(https://metaspace2020.eu/dataset/2016-09-22 11h16ml7s ). True and false hits are orange
and blue, respectively, with arc size corresponding to ion counts shown in each quadrant. True
Positive Rate (TPR) is displayed above each plot.
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