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Abstract

Single-cell genomics technologies enable multimodal profiling of millions of cells across
temporal and spatial dimensions. Experimental limitations prevent the measurement of
all-encompassing cellular states in their native temporal dynamics or spatial tissue niche.
Optimal transport theory has emerged as a powerful tool to overcome such constraints,
enabling the recovery of the original cellular context. However, most algorithmic
implementations currently available have not kept up the pace with increasing dataset
complexity, so that current methods are unable to incorporate multimodal information or scale to
single-cell atlases. Here, we introduce multi-omics single-cell optimal transport (moscot), a
general and scalable framework for optimal transport applications in single-cell genomics,
supporting multimodality across all applications. We demonstrate moscot’s ability to efficiently
reconstruct developmental trajectories of 1.7 million cells of mouse embryos across 20 time
points and identify driver genes for first heart field formation. The moscot formulation can be
used to transport cells across spatial dimensions as well: To demonstrate this, we enrich spatial
transcriptomics datasets by mapping multimodal information from single-cell profiles in a mouse
liver sample, and align multiple coronal sections of the mouse brain. We then present
moscot.spatiotemporal, a new approach that leverages gene expression across spatial and
temporal dimensions to uncover the spatiotemporal dynamics of mouse embryogenesis. Finally,
we disentangle lineage relationships in a novel murine, time-resolved pancreas development
dataset using paired measurements of gene expression and chromatin accessibility, finding
evidence for a shared ancestry between delta and epsilon cells. Moscot is available as an
easy-to-use, open-source python package with extensive documentation at

Introduction

Single-cell genomics technologies have revolutionized our understanding of the dynamics of
cellular differentiation and tissue organization. Single-cell assays like scRNA-seq or
scATAC-seq' profile the molecular state of individual cells at unprecedented resolution, and
spatial assays like MERFISH? or Stereo-seq® recover the spatial organization of single-cell
profiles. However, these experiments are cell-destructive, and capture only a subset of
molecular information, often yielding an incomplete picture of the cell state variation in the
biological system of interest. As a result, reconstructing cellular trajectories with time-series
scRNA-seq requires matching unaligned snapshot datasets captured at different time points*®°.
Similarly, in the analysis of spatial transcriptomics datasets, where measurements often contain
sections from different samples or areas of the tissue, it is desirable to align them to a common
reference template, and map additional molecular information from external datasets such as
reference atlases®’.

Previous work addressed such mapping and alignment problems using optimal transport (OT)
theory, an area of applied mathematics concerned with comparing and aligning probability
distributions®®. For example, OT has been instrumental in delineating cellular reprogramming
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processes towards induced pluripotent stem cells (iPSCs) and mouse gastrulation**",
reconstructing tissue architecture by enhancing spatial data with single-cell references' and
building common coordinate frameworks (CCFs) of a biological system by aligning spatial
transcriptomics data’.

Despite the potential of OT-based methods to address mapping problems in single-cell
genomics, their use faces three key challenges. First, current implementations of OT-based
tools to map cells across time and space are geared towards uni-modal data and do not
incorporate multimodal information. Second, OT methods currently used in single-cell genomics
are computationally expensive; the original linear programming formulation of OT scales
cubically in cell number. More recent approaches, grounded on entropic regularization, scale
quadratically™ (or cubically for Gromov-Wasserstein extensions®'®), similarly memory scales
quadratically in cell number, which altogether prevents using GPUs and the application to
emerging atlas-scale datasets®'®. Third, existing OT-based tools are based on various OT
backends and heterogeneous implementations*'2"*' making it difficult to adapt or combine
approaches towards new problems such as spatiotemporal mapping. In contrast, user-friendly
and extensible application programming interfaces (APIs) accelerate and facilitate research, as
exemplified by scVI-tools' with its many extensions™?'.

Here, we present Multi-Omics Single-Cell Optimal Transport (moscot), a computational
framework to solve mapping and alignment problems that arise in single-cell genomics and
demonstrate its capabilities for temporal, spatial, and spatiotemporal applications. Moscot
implements three fundamental design principles to overcome previous limitations. First, moscot
supports multimodal data throughout the framework by exploiting joint cellular representations.
Second, moscot improves scalability by adapting and demonstrating the applicability of recent
methodological innovations?*#?* to atlas-scale datasets. Third, moscot unifies previous
single-cell applications of OT in the temporal and spatial domain and introduces a novel
spatiotemporal application. All of this is achieved with a robust and intuitive API that interacts
with the broader scverse®2® ecosystem.

Moscot's improved scalability enables us to map 1.7 million cells across an atlas of mouse
embryogenesis. Furthermore, we illustrate that moscot can be used to map multimodal
CITE-seq? information to high-resolution spatial readouts in the mouse liver as well as aligning
large spatial transcriptomics sections of mouse brain samples. We introduce the concept of
spatiotemporal mapping, which involves the integration of spatial coordinates and gene
expression data. Leveraging a spatiotemporal atlas of mouse embryogenesis®, we demonstrate
that incorporating spatial information enhances mapping accuracy, facilitates the transfer of high
resolution cell type annotation, and enables the study of differentiation trajectories. Finally, we
jointly profile gene expression and chromatin accessibility during mouse pancreatic
development and apply moscot to formulate a novel hypothesis about cell ancestry of delta and
epsilon cells. Moscot unlocks optimal transport for multi-view atlas-scale single-cell applications;
we make it available as an easy-to-use, open-source python package with extensive
documentation at https://moscot-tools.org.
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Results

Moscot is a general and scalable framework to map cellular distributions across time and
space

The core idea of the moscot framework is to translate biological mapping and alignment tasks
into OT problems and solve them using a consistent set of algorithms. Moscot takes as input
unpaired datasets, which can represent different time points, modalities, or spatial
representations (Methods and Fig. 1a). Additionally, moscot accepts prior biological knowledge,
such as cellular growth and death rates, to guide the mapping.

Importantly, using a notion of distance between the unpaired datasets, moscot solves an OT
problem and returns a coupling matrix that probabilistically relates samples in each of the
datasets. Equipped with that coupling matrix, moscot offers various application-specific
downstream analysis functions, such as time point interpolation and tissue alignment (Methods
and Fig. 1a). Chaining of coupling matrices allows modeling sequential time points or multiple
spatial transcriptomics slides.

Moscot builds on three notions of OT to accommodate various biological problems. These
OT-notions differ in how samples are related across datasets: Wasserstein-type (W-type)® OT
compares individual samples, i.e. one «cell per dataset per comparison.
Gromov-Wasserstein-type (GW-type)'”® OT compares pairwise samples, i.e. two cells per
dataset per comparison. Finally, Fused Gromov-Wasserstein-type (FGW-type)?® OT compares
both individual and pairwise samples (Methods and Supplementary Note 1). Accordingly, W-
and (F)GW-type OT can be used to map samples within and across molecular representations,
including gene expression at different time points* and spatial coordinate systems',
respectively.

To support multimodality throughout the framework, we define the cost of transporting cells
using shared latent representations (Fig. 1b and Methods). Depending on the model, we obtain
these representations by concatenating uni-modal latent representations or using joint latent
space learning techniques®*2°-32, This approach generalizes to more than two modalities and
additional temporal or spatial information.

We make moscot applicable to atlas-scale datasets by reducing compute time and memory
consumption of W-, GW-, and FGW-type notions by orders of magnitude compared to prior
OT-based tools (Fig. 1b, Methods and Supplementary Note 2). Specifically, we base moscot on
Optimal Transport Tools*? (OTT), a scalable JAX* implementation of OT algorithms that
supports just-in-time compilation, on-the-fly evaluation of the cost function, and GPU
acceleration (Methods). Where required by dataset size, we use recent methodological
innovations®2* that constrain the coupling matrix to be low-rank, enabling linear time and
memory complexity for W, GW, and FGW-type notions (Supplementary Note 3).
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A unified APl makes moscot easy to use and extend (Supplementary Fig. 1). In particular, a
modular implementation enables using similar infrastructure for solving different biological
problems (Supplementary Fig. 1 and Methods). Moscot models share interfaces with core
packages like SCANPY?>% or AnnData*, use a small set of OT algorithms in the backend to
compute coupling matrices, and reuse downstream analysis functions across applications.

Recovering trajectories of mouse embryogenesis on a developmental atlas using moscot

Modeling cell-state trajectories for biological systems that are not in steady state requires
time-course single-cell studies combined with computational analysis to infer cellular
differentiation across time points. The popular Waddington OT* (WOT) method solves the
problem using W-type OT; however, it remains limited to uni-modal gene expression data and
does not scale to hundreds of thousands of cells per time point, needed for numerous recent
datasets. Thus, we introduce moscot.time. Our model inherits WOT’s popular cell growth- and
death rate modeling, is applicable to multimodal data, scales to millions of cells and, like all
trajectory inference methods in moscot, can be combined with downstream analyses such as
CellRank*® (Methods).

We asked whether moscot.time’s improved scalability translates into a more faithful description
of real biological systems. Thus, we applied our model to an atlas of early mouse development,
containing almost 1.7 million cells across 20 time points spanning embryonic days (E) 3.5-13.5
(ref.’®) (Fig.2a and Methods). We first assessed whether we could use the previous
state-of-the-art, WOT*, to analyze this dataset. We selected the E11.5 to E12.5 time point pair,
containing over half a million cells, and benchmarked memory and compute time on subsets of
increasing cell number (Fig. 2b, Methods and Supplementary Table 1). While moscot.time
computed a coupling for all 275,000 cells at both time points using less than 10 GiB memory in
approximately 3 hours, WOT ran out of memory as soon as we exceeded 100,000 cells, even
though we provided 700 GiB server memory. In principle, moscot.time’s linear memory
complexity allows it to process developmental atlases on a laptop, where WOT fails on a server
(Methods and Fig. 2b).

As WOT does not scale to a dataset of this size, the authors of the developmental atlas'®
devised a novel deterministic approach based on k-nearest neighbor (k-NN) matching,
Trajectories Of Mammalian Embryogenesis (TOME). To investigate how moscot.time compares
with TOME in terms of accuracy, we formulated two metrics that operate on the level of germ
layers (i) and cell types (ii). These metrics encourage within-germ layer transitions (i), and
transitions among cell types that have been reported to transition into one-another (ii) (Methods
and Supplementary Table 2). In both metrics, moscot.time achieved comparable performance to
TOME across all time points and developmental stages, even though TOME was designed
specifically for this dataset (Fig. 2c).

To compare TOME and moscot.time at finer resolution, we focused on cellular growth- and
death rates. As TOME only provides a cluster-level mapping, we extended the original approach
to yield cell-level output with cell-level Trajectories Of Mammalian Embryogenesis (cl-TOME)
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(Methods). Using the E8.0/8.25 pair of time points as an example, we mapped cells using
moscot.time and cl-TOME (Fig. 2d). Across cell types, cl-TOME frequently assigned growth
rates much smaller than one, predicting that over 19% of the population at this stage is
apoptotic (Fig. 2e and Supplementary Table 3). Such a high death-rate represents an unrealistic
scenario for embryonic development, where, beyond E7.0, the fraction of cells going through
apoptosis is typically much below 10% (ref.**%"). In contrast, for moscot.time, we were able to
tune the apoptosis rate to lie in a biologically plausible range (Methods). Further, the growth
rates predicted by moscot.time were more cell-type specific (Fig. 2e), and these results
generalized to all other time points that contained sufficient cell numbers (Supplementary
Figures 2-4).

Next, we were interested in comparing the linkages between early- and late cells predicted by
either method. As moscot's growth and death rates were biologically more plausible, we
expected the learnt cell couplings to be more accurate, too. We first assessed this using the
example of E8.25 first heart field cells, a population that emerges from the splanchnic
mesoderm®. We used moscot.time and cl-TOME to compute ancestor probabilities; these
quantify the likelihood of E8.0 cells to evolve toward E8.25 first heart field cells. To score the
accuracy of these predictions, we compared ancestor probabilities with the expression of known
driver genes for first heart field formation at E8.0 (Fig. 2f, Methods and Supplementary Table 3).
We quantified the comparison using Spearman correlation (Fig. 2g). Indeed, we found that
moscot.time consistently achieved higher absolute correlations, a result that generalized to
three other cell types we investigated across early development (Fig. 2h and Supplementary
Table 4).

Moscot'’s scalability enabled us to apply OT to a single-cell atlas of mouse gastrulation'®, obtain
realistic growth- and death rates, as well as biologically more plausible couplings compared with
k-NN based approaches’®.

Mapping and aligning spatial samples with moscot

Spatial omics technologies enable profiling thousands of cells in their tissue context. The
analysis of such data requires methods that are able to integrate datasets across molecular
layers and spatial coordinate systems. OT has proven useful to tackle these problems, most
notably novoSpaRc'? for gene expression mapping and PASTE™ for alignment and registration
of spatial transcriptomics datasets. Moscot implements both applications of OT, in the
moscot.space Mapping and Alignment problems, leveraging scalable implementations and more
performant algorithms (Methods).

Image-based spatial transcriptomics data is often limited in the number of measured genes
(hundreds to a few thousands’). The Mapping problem learns a map between dissociated
single-cell profiles and their spatial organization. Once the map is learned, it can be used to
transfer gene expression or additional multimodal profiles to spatial coordinates (Fig. 3.a). We
implemented the mapping application in moscot.space using an FGW-type problem; such a
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formulation enables us to incorporate cellular similarities across molecular representations as
well as physical cell-distances into the optimization problem (Methods).

To assess the performance of moscot.space to map dissected single-cells, we evaluated the
methods moscot.space Mapping tool, and two state-of-the-art methods, Tangram® and gimVI*,
according to a recent benchmark®*'!, on datasets provided by Li et al*'. We assessed the quality
of the mapping by computing correlation of held out genes in spatial coordinates (Methods).
Moscot consistently outperformed the other methods across 14 datasets of various technologies
used in the benchmark (Supplementary Fig. 5).

Furthermore, for each dataset we quantified "spatial correspondence", a measure of correlation
between gene expression similarity and distances in physical coordinates, as originally
proposed by Nitzan et al.'? (Methods). A spatial transcriptomics dataset has high spatial
correspondence if nearby cells have similar gene expression (Supplementary Fig. 5). Moscot
showed a positive correlation between spatial correspondence and accuracy (Fig. 3b),
indicating that it is able to leverage spatial associations between distances in gene expression
and physical space. Nevertheless, even when spatial correspondence is low, moscot still
outperformed the competing methods.

Having demonstrated the power of moscot to map gene expression to space, we used moscot
to map multimodal single-cell profiles to their spatial context. This is of particular interest as
spatial transcriptomics technologies are mostly limited to gene expression measurements®’. We
considered two datasets, collected in different labs: a CITE-seq dataset of ~91k cells of the
mouse liver*? and a spatial transcriptomics section consisting of ~367k cells measured with
Vizgen MERSCOPE®* (Fig. 3c). We map the annotation from the CITE-seq dataset as no cell
type annotation was provided in the original data (Supplementary Fig. 6). We then solved a
FGW-type problem with moscot which allowed us to incorporate gene expression, protein and
spatial information to recover the spatial organization of the proteins (Methods). Using any of
the competing methods is not feasible due to prohibitive time or memory complexity.

A central problem in liver physiology is the identification of central veins (CV) and portal veins
(PV) to characterize liver zonation**. This problem can be solved by considering expression
patterns of marker genes, cell type localization and protein abundance. CVs can be identified by
the central vein-associated endothelial cell marker Axin2* (Fig. 3d). Similarly, Vwf, a known
marker for endothelial cells in blood vessels, indicates the presence of both CVs and PVs*. Yet,
due to the limited number of measured genes in the spatial transcriptomics data, it proved
challenging to identify PV based on marker gene expression. Leveraging moscot, we alleviated
this constraint by mapping the expression of the PV-specific markers Adgrg6 and Gja5* (Fig. 3e
and Supplementary Fig. 7). Another limitation to characterize cellular niches of liver zonation
was the lack of detailed cell type annotation and protein expression. Hence, we transferred the
cell type annotation provided by the single-cell dataset using moscot (Fig. 3f). Focusing on
resident liver macrophages called Kupffer cells, we could confirm their enriched presence in
areas around CV where liver sinusoids are more prevalent*?. We corroborated our findings by
mapping the folate receptor beta protein to its spatial organization using moscot (Fig. 3f)*2. By
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integrating results from cell type annotation, measured and imputed marker genes as well as
transferred protein expression, we could characterize in-depth the tissue niche of liver zonation
in a mouse liver sample.

In addition to mapping cells to spatial coordinates, analysts often face the challenge of building
a consensus view of the tissue of interest, which requires aligning several spatial measurements
from contiguous sections or from the same section from different biological replicates. With the
Alignment problem, moscot allows to both align several sections as well as build such a
consensus view from multiple spatial transcriptomics slides (Fig. 3g). This is an important step
towards building a common coordinate framework (CCF)* of biological systems. First, we
evaluated moscot’'s capability to spatially align synthetic datasets in a benchmark study adapted
from Jones et al.*® and Zeira et al.”®. The benchmark results showed that moscot performs on
par or better than the previously published method PASTE™ (Supplementary Fig. 8 and
Methods).

Having demonstrated moscot’s capabilities in a benchmark against state-of-the-art models, we
set out to investigate the methods’s scalability to larger datasets. As an example, we considered
the Vizgen MERSCOPE brain coronal sections (Methods)*. Such a dataset is prohibitively large
for competing methods like PASTE, as only moscot is able to leverage low-rank factorization of
the coupling matrix (~250k cells for coronal brain section 1 and ~300k cells for coronal brain
section 2; Methods). Moscot accurately aligned two samples to the reference slide (Fig. 3h-i and
Supplementary Fig. 9) for both coronal sections of the mouse brain. We evaluated the alignment
by investigating gene correspondence of aligned sections. Because of the lack of cell type
annotation, we set out to evaluate the alignment by comparing gene densities in cellular
neighborhoods across sections (Methods). We observed that for most genes, there is a strong
correspondence of gene expression densities across cellular neighborhoods both quantitatively
(Supplementary Fig. 10) and visually (Supplementary Fig. 11). By visualizing one particular
gene (Slc17a7) we could observe its expected expression in regions such as cortical layers and
hippocampus (Fig. 3h-i). We showed that moscot enables the application of OT to large-scale
spatial data analysis problems. Moscot allowed us to align large spatial transcriptomics datasets
and enhance them trough imputation of gene expression, protein expression and cell type
annotations.

Charting the spatiotemporal dynamics of mouse embryogenesis with moscot

The advent of spatially-resolved single-cell datasets of developmental systems enables the
characterization of cellular differentiation in space and time. Such data presents the challenge of
developing methods that are able to delineate cellular trajectories, leveraging both intrinsic and
extrinsic effects on cellular phenotypes. To this end, we introduce a novel trajectory inference
method that incorporates similarities at gene expression and physical distances to infer a more
accurate matching between cellular states within spatiotemporal datasets. It consists of a
FGW-type problem that merges the algorithmic capabilities of moscot.time and moscot.space in
a novel spatiotemporal method (Methods).
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We assessed moscot’s capabilities to perform trajectory inference in the mouse embryogenesis
spatiotemporal transcriptomic atlas (MOSTA)?, consisting of eight time points, from E9.5 to
E16.5. Using spatially enhanced resolution omics-sequencing (Stereo-seq), this dataset
captures the developing mouse at full embryo scale with spatial transcriptomics. Here, we
analyzed a single slide for each time point with a total of ~500,000 cells (Fig. 4a and Methods).
To assess the performance of our new method, we evaluated the computed trajectories using
the cell type transition score (similar to the analysis in moscot.time; Supplementary Table 5 and
Methods). We compared the results with a W-type problem that incorporates only gene
expression information (Fig. 2). Accounting for spatial similarity in the trajectory inference
resulted in an improved prediction of cell transitions scores (Fig. 4b and Methods). We also
found that the performance is robust with respect to hyperparameters (Supplementary Fig. 12).

Having established moscot’s performance in recapitulating expected cell transitions, we focused
our analysis on the cell fates of the heart and the brain of the developing mouse embryo. For
each pair of consecutive time points, we visualized heart cells at the earlier time point and
where these cells are mapped to in the later time point (Fig. 4c). Noticeably, the predicted
location of heart cells matches the annotation very well. To further characterize the cellular
dynamics, we interfaced moscot with CellRank®, a state-of-the-art method for cell fate mapping
(Methods). The convenient interface enables the identification of cell fates by CellRank,
leveraging the spatiotemporal couplings learnt by moscot. Importantly, cell fates identified by
CellRank correspond to the known differentiation lineages of the mouse embryo?
(Supplementary Fig. 13). We identified known driver genes of heart development, such as the
transcription factors Gata4* and Tbx20°° and genes related to metabolism and heart
regeneration, such as Myl/7 and Myh6 (Fig. 4d and Supplementary Table 6)%'-%,

Understanding the evolution of cell types across time is crucial when studying developmental
trajectories. Chen et al.® provided a cell type annotation of the brain tissue at E16.5, but not for
earlier time points. To investigate developmental trajectories in the brain, we utilized moscot to
transfer cell type annotation from the E16.5 data to the three preceding time points, down to
E13.5. Qualitatively, the predicted annotations retained the spatial distribution of the manual
annotation (Fig. 4e), and quantitatively, they showed strong correspondence with reported
marker genes (Supplementary Fig. 14 and Methods).

At last, the interplay between moscot and CellRank allowed us to identify terminal cell states of
brain development in the mouse embryo, with fate probabilities which are in accordance with the
predicted annotation (Supplementary Fig. 15). As done for the heart, we used CellRank to
predict neuron and fibroblast driver genes (Fig. 4f-g, and Methods). For the neuronal fate, the
top identified transcription factors (TFs) have been previously reported as relevant for neuronal
development, indicating the reliability of the analysis (Supplementary Table 7). Among the TFs
are Tcf712%, Sox11%5%, Myt1/P>%¢, and Zfhx3°’. We further obtained key genes which were
previously reported such as Tuba7a®®, Tenm2% and Rbfox1%. Importantly, our results included
known spatially localized drivers, such as Neurod2, associated with forebrain glutamatergic
neurons®’, as well as non-regional drivers, such as Sox77 (Fig. 4g). For fibroblasts, we identified
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the transcription factors Prrx1, Runx2, and Msx1°66263 and known key genes such as Dcn,
Col1a2 and Col1a1% (Supplementary Table 8).

In summary, we demonstrated that moscot provides a novel analysis method to investigate the
spatiotemporal dynamics of cellular differentiation. By combining moscot with CellRank, we
characterized the spatiotemporal dynamics of mouse embryogenesis, recovering known
markers of differentiation of the developing heart and brain.

Disentangling lineage relationships of delta and epsilon cells in pancreatic development
leveraging multiple modalities with moscot

To highlight moscot’s potential for disentangling complex lineage relationships, we focused on
the poorly understood process of delta and epsilon cell formation during mouse pancreatic
development®%%% (Supplementary Note 4). Hypotheses of lineage specification range from
delta cells splitting simultaneously with alpha and beta cells after going through a Fev+ cell
state®” to delta cells being derived from the same progenitor population as beta cells®. In
previous work, we had hypothesized delta cells to evolve from a Fev+ population®®® but we
could not resolve their precise lineage hierarchy. Similarly, while our previous analysis
suggested that epsilon cells can be generated from alpha and Ngn3+ cells, Yu et al.®® found
that epsilon cells derive exclusively from Ngn3+ cells, and can in turn give rise to alpha cells.
Previous studies demonstrated that combining the measurements of gene expression and open
chromatin regions allows for a more holistic view of developmental cellular systems’ "2, Thus,
we generated a single nucleus RNA and assay for transposase-accessible chromatin (ATAC)
multi-omics dataset of E 14.5 (9,811 nuclei) and 15.5 (7,107 nuclei) of the pancreatic epithelium
enriched for endocrine progenitors (EPs) using the Ngn3-Venus fusion (NVF) mouse line®®
(Fig. 5a and Methods). Ngn3 is a TF expressed in endocrine precursors. Hence, enrichment of
Ngn3+ cells allows for a detailed study of endocrine lineage formation. Compared to previous
scRNA/ATAC-seq studies that relied on bulk ATAC measurements® or a low number of cells for
scRNA-seq®, our novel dataset allows for a detailed and comprehensive multimodal analysis of
endocrine cell differentiation.

As expected, we observed a distribution shift between the two time points (Fig. 5b and
Supplementary Fig. 16). Clustering based on both modalities revealed the expected cell type
heterogeneity in the endocrine branch, ranging from Ngn3'™" to heterogeneous progenitors of
terminal endocrine cell states (Fig. 5¢c, Supplementary Fig. 17, Supplementary Table 9 and
Methods). We linked the cells of the two time points using moscot.time by leveraging information
from both gene expression and ATAC (Supplementary Note 5). To validate the coupling, we
aggregated the coupling matrix to the cell type level and found the majority of recovered
transitions to be supported by literature®%5¢7.73-75 (Fig. 5d, Supplementary Fig. 18 and Methods).

Subsequently, we explored the lineage segregation of delta and epsilon cells with moscot.time.
Therefore, we restricted our analysis to the endocrine branch and subclustered the Ngn3"s" EP
and Fev+ delta populations (Fig. 5e). To emphasize the developmental axes of variation, we
computed a diffusion map (Fig. 5f). We used moscot.time to compute putative descendants of
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cells in E14.5 and found that mature endocrine cells mostly evolve into themselves, as
expected (Fig. 5g and Methods). Moreover, epsilon cells partly evolve into alpha cells (Fig. 5e
and Supplementary Fig. 19), which has been reported in recent literature®*®. We found the
epsilon population to be mainly derived from epsilon progenitors, which themselves originate
from the Ngn3"9"-1 subcluster (Fig. 5g-h and Supplementary Fig. 20). Contrary to our recent
hypothesis that precursors of all endocrine cells express Fev during development®®, our model
implies that epsilon cells mature without necessarily going through a state of high expression of
Fev (Supplementary Fig. 21). Yet, we found a smaller proportion of the epsilon cells to be
derived from the Fev+ delta-0 and Fev+ delta-1 populations.

Next, we investigated whether the Fev+ delta-0 and Fev+ delta-1 subclusters could give rise to
a population other than epsilon cells. We hypothesize Fev+ delta-0 cells to be direct ancestors
of Fev+ delta-1 cells. In fact, we found Fev+ delta-1 cells to subsequently give rise to delta cells,
in line with our previous findings®® (Fig. 5g-h and Supplementary Fig. 22, Supplementary Fig.
23). At the same time, moscot.time predicted cells in Fev+ delta-1 to be able to evolve into
alpha and, to a larger extent, beta cells. Thus, we found that the Fev+ delta population retains
high plasticity, carrying the potential of developing into either of the four endocrine cell states
alpha, beta, delta, and epsilon.

To fully delineate the lineage relationships of delta and epsilon cells, we focused on the ancestry
of Fev+ delta cells. Based on the results of moscot.time, we conjectured Fev+ delta cells to also
be derived from epsilon progenitors (Fig. 5h and Supplementary Fig. 24). Hence, our analysis
indicated a common lineage origin of epsilon and delta cells, as both are predicted to evolve
from epsilon progenitors. Having delineated the cell trajectories of endocrine cells and their
progenitors, we used moscot.time to find marker genes (Supplementary Fig. 25 and Methods).
The recovery of known marker genes like Arx and Mafb’™ of the well-studied alpha and beta
cells, respectively, validated this method (Supplementary Fig. 26). For example, we find Nefm,
which is known to play a role in endocrine maturation’”’®, to be involved in the fate specification
of epsilon progenitors. Similarly, Cdkn1a, a known cell cycle inhibitor’®, turned out to be among
the top four marker genes for the Fev+ delta population.

To corroborate the hypothesis of a similar ancestry between epsilon and delta cells, we
investigated the similarity of chromatin regions for cell types in the endocrine branch. The
similarity between the ATAC profiles of Ngn3"9'-1, epsilon progenitors, Fev+ delta-0,
Fev+delta-1, epsilon, and delta is striking (Fig. 5i and Supplementary Fig. 27). We continued the
analysis of co-accessibility by considering specific chromatin regions. We observed noticeable
similarities in chromatin accessibility in the promoter regions of both Ghrl (epsilon) and Hhex,
the key TF of delta cells®® (Fig. 5j-k and Supplementary Fig. 28). To obtain further relevant
chromatin regions, we performed differentially accessible peak analysis of the epsilon progenitor
(Fig. 5l), Fev+ Delta-0 (Fig. 5m), and Fev+ Delta-1 (Fig. 5n) populations and found that the
peaks are co-accessible among the hypothesized ancestors of delta and epsilon cells
(Supplementary Fig. 29 and Supplementary Note 6).


https://paperpile.com/c/aSElp2/B7zd
https://paperpile.com/c/aSElp2/Zd3K
https://paperpile.com/c/aSElp2/vGNO
https://paperpile.com/c/aSElp2/vGNO+9goA
https://paperpile.com/c/aSElp2/QQfP
https://paperpile.com/c/aSElp2/LGZ3+kRAB
https://paperpile.com/c/aSElp2/KD2g
https://paperpile.com/c/aSElp2/pKXV
https://doi.org/10.1101/2023.05.11.540374
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.11.540374; this version posted May 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

12

Another way to understand regulatory mechanisms at single-cell resolution is motif analysis.
Similarity in motif profiles is an indication of a similar cell state as related TFs govern the
developmental trajectories. Due to a temporal shift between gene expression of a TF and the
activity of a TF, profiling of motif activity and gene expression within the same sample might fail
to recover regulatory mechanisms®'. Moscot allows alleviating this constraint by linking gene
expression in an earlier time point with motif activity in cells corresponding to the later time point
(Supplementary Fig. 30, Supplementary Fig. 31, Methods and Supplementary Note 7). We
found /s/1 to have a high motif activity in delta cells, complemented by a high gene expression
in their progenitors. Similarly, we report a motif associated with Tead? to be highly active in
epsilon cells, and the gene to be highly expressed in their progenitors. The similarity in motif
activity among predicted ancestors of delta and epsilon cells corroborates the hypothesis of
shared ancestry of delta and epsilon cells.

Thus, we showed how moscot can help to delineate complex lineage relationships.
Multimodality helped to both recover meaningful trajectories and bridge the time gap between
the expression of a transcription factor and its activity.

Discussion

We presented moscot, a computational framework for mapping cellular states across time and
space using optimal transport (OT). Unlike previous applications of OT, moscot incorporates
multimodal information, scales to atlas-sized datasets, and provides an intuitive and consistent
interface. We demonstrated the added value of our scalable implementation across various
biological problems. In particular, we accurately recovered murine differentiation trajectories
during embryogenesis across time and space®'®, enriched spatial liver samples with multimodal
information*?, and aligned brain tissue slides*® in datasets that were previously inaccessible with
state-of-the-art techniques. We also showcased the benefits of multimodal information in a new
developmental pancreas dataset where we learned differentiation trajectories in a joint space of
epigenetic and transcriptomic information. Notably, our multimodal trajectory reconstruction
predicted a shared lineage origin of epsilon and delta cells in the pancreas, which is supported
by computational analysis based on similar epigenetic regulation. While this hypothesis requires
further experimental validation, our results demonstrate the potential of moscot to generate
novel insights into complex biological systems.

Cellular differentiation is a tightly regulated process that is influenced by a range of internal and
external factors. In particular, the spatial organization of tissues plays a critical role in guiding
differentiation, and understanding this process requires temporal sampling of molecular states
within their spatial context. Although spatiotemporal data is beginning to emerge®*®%, current
computational methods for analyzing such data are limited. With moscot, we present one of the
first analysis approaches for spatiotemporal data. Combined with CellRank*®, our framework
predicted spatiotemporal differentiation trajectories in mouse embryogenesis and identified their
putative regulators. Parallel to moscot, Qiu et al. developed SPATEO?® which also uses OT to
map cells across spatial time courses. However, SPATEOQ is less scalable: on the same MOSTA
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Stereo-Seq application®, SPATEO required downsampling to 2,000 cells per embryo® while
moscot mapped entire embryos (500,000 cells). Further work and community contributions can
focus on incorporating the effect of cell-cell communication on observed differentiation
trajectories. Such an extension would enable studying the complex interplay between intrinsic
and extrinsic effects on cellular differentiation in even greater detail.

Moscot will greatly simplify future OT applications by the single-cell analysis community in
Python. With our unified APl and extensive documentation, incorporating cross-modality data
integration'”®° patient manifold learning®*®’, and cell-cell communication inference®®° becomes
substantially easier. Importantly, new applications of OT to problems in single-cell biology will
benefit from the implementation advancements presented in this work, including GPU
acceleration, linear time and memory complexity through low-rank approximations, and
multimodal support. While low-rank approximations allow applications to atlas-scale datasets,
they have not yet been combined with unbalancedness, where marginal constraints do not have
to be satisfied. This concept is important when cell type proportions vary substantially across
time points or spatial slides, and can be incorporated by future methodological advances.

Moscot is a powerful approach to map observed cell state distributions across biological
representations. The current approach of using discrete OT is well-suited for the applications
described in this paper and for the extensions outlined above. However, these models are not
applicable to out-of-sample data points. Recently, Neural OT*® has been suggested to alleviate
this limitation. Neural OT has been successfully applied to study perturbation effects®~* and
developmental trajectories at single-cell level®®®. In the latter case, the use of Neural OT is
particularly compelling for building developmental trajectories of cellular atlases as computed
OT maps can be applied to new datasets without refitting the model.

The ability to map and align single-cell genomic data is becoming increasingly important as
datasets grow larger and more complex, with new modalities being measured at varying
temporal and spatial resolutions®. Moscot allows scientists to extract biological insights across
time- and spatially resolved complex datasets, and is a powerful tool for investigating cellular
differentiation, spatial organization, and other biological processes.
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Fig. 1 | moscot enables efficient multimodal optimal transport across single-cell
applications

a. Sketch of a generic optimal transport (OT) pipeline in single-cell genomics: experimental
shifts (e.g., time points, spatial vs. dissociated) lead to disparate cell populations that must be
mapped (i). Prior biological knowledge (e.g., proliferation rates, spatial arrangement) is often
available and should be used to guide the mapping (ii). The mapping problem mathematically
compares probability distributions over sampled cellular states (iii). OT provides a standardized
way to solve the mapping problem and many of its variants (iv). Solving the mapping problem
creates various downstream analysis opportunities; moscot supports many of these (v). b.
moscot introduces three key innovations that unlock the full power of OT for problems: first, it
supports multimodal data across all models. Second, overcomes previous scalability limitations
to enable atlas-scale applications. Third, moscot is a unified framework with a consistent
application programming interface (API) across biological problems; this enables consistent
application of methods across different problems and fast generalization to new ones.
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Fig. 2 | moscot faithfully reconstructs atlas-scale developmental trajectories

a. Schematic of the mouse embryogenesis atlas example'®. b. Benchmark of peak memory
consumption (top, on CPU) and compute time (bottom, on GPU) on the embryonic day (E) 11.5
and E12.5 time point pair (Methods and Supplementary Table 1). Waddington OT* (WOT)
compared with default moscot.time and low-rank®® moscot.time (rank 200) on 11 subsampled
versions of the full dataset (Supplementary Note 3; WOT was run on CPU as it does not support
GPU acceleration). ¢. Accuracy comparison between TOME'® and moscot.time in terms of germ
layer and cell type transition scores by developmental stage (Methods and Supplementary Table
2). d. UMAP®" projection of the EB8.0/8.25 time point pair, colored by original cluster
annotations. e. Growth rate estimates of moscot.time (top) and cl-TOME (bottom) for the bold
E8.0 cell types in (d), as histograms (left) and UMAP projections (right). The black vertical bar
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denotes growth rate one. f. moscot.time’s ancestor probability for E8.25 first heart field cells
(left) versus gene expression levels of known driver genes Tbx20%°, Tnnt2*® and Irx4* (right)
(Methods). g. Quantification of comparison in (f) via Spearman correlation. Genes are colored
as in (f), each dot denotes a cell, and lines indicate a linear data fit. h. Spearman correlation
between ancestor probabilities and known driver-gene expression for moscot.time and cl-TOME
(Methods and Supplementary Table 4).
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a. Schematic of the moscot application of multimodal mapping. A multimodal single-cell

reference dataset can be mapped onto a spatial dataset in order to project multimodal features
to spatial coordinates. b. Spatial correspondence is associated with prediction accuracy in
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moscot. The median Spearman correlation (spatial correspondence) is plotted on the x-axis
against the median Spearman correlation across predicted gene expression for the spatial gene
expression mapping task (y-axis). Each point corresponds to a different dataset (same datasets
as the ones used in the benchmark, although only those 11 yielding a valid result across all
seeds for all methods are considered) and the color represents the method. The overlaid line
segment is the result of a linear regression for each method. ¢. Spatial plot of the liver
MERSCOPE section with annotations mapped from the CITE-seq dataset, the legend for the
cell type annotation can be found in Supplementary Fig. 6. The region surrounded by the solid
line corresponds to the cropped tiles in the subsequent panels. d. Spatial visualization of
measured gene expression values for Vwf (endothelial cell marker) and Axin2 (hepatocytes and
endothelial marker). Vwf is used to identify all epithelial cells that define the boundaries of CV
and PV. Axin2 is used as a positive marker for PV. e. Predicted gene expression for Adgrg6 and
Gja5, which are known endothelial cells markers for CV. f. The moscot mapping can also be
used to impute protein expression and transfer cell type annotations. The top panel shows the
predicted expression of Folate receptor beta, a marker for Kupffer cells. The bottom plot
visualizes the imputed cell types for Kupffer cells and endothelial cells. g. Schematic of the
moscot application of spatial alignment. Sections from multiple samples can be aligned to a
common reference sample. h. Visualization of a tile of the spatial sections of Vizgen
MERSCOPE mouse brain for sections 1 colored by batch (left) and by expression of Sic17a7
(right). i. Visualization of a tile of the spatial sections of Vizgen MERSCOPE mouse brain for
sections 2 colored by batch (left) and by expression of Slc17a7 (right).
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Fig. 4 | Inference of spatiotemporal dynamics with moscot

a. Schematic of applying moscot to spatiotemporal trajectory inference. Moscot allows for the
integrative analysis of a time-resolved spatial transcriptomics dataset of mouse embryogenesis.
b. Accuracy on curated transitions across developmental stages (Methods and Supplementary
Table 5) with and without incorporation of spatial information. ¢. Mapping heart cells across time
points (bottom) and the ground truth annotation of the heart lineage (top). d. Heart lineage driver
genes found by interfacing moscot with CellRank®. (top) Thx20%°, a transcription factor known to
play a variety of fundamental roles in cardiovascular development and (bottom) My/7°° a gene
related to metabolism and heart regeneration. e. Transferring high-resolution cell type
annotations only provided in the latest time point (E16.5) to earlier time points. f. Pearson
correlations of gene expression with Neuronal (x-axis) and Fibroblast (y-axis) fate probabilities.
Annotated genes are among the 20 top driver genes and were previously associated with
Fibroblasts and Neuronal lineage (Supplementary Tables 7-8). g. Spatial visualization of sample
neuronal driver genes, Neurod2®” (top), and Sox11%%¢ (bottom).
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35
Fig. 5| moscot disentangles lineage ancestries of delta and epsilon cells

a. Schematic of the experimental protocol to generate paired gene expression and ATAC data
capturing the development of the mouse pancreas. b.-c. Multimodal UMAP%°" embedding,
colored by time (b) and cell type annotation (c) (Methods). d. Heatmap visualizing descendancy
probabilities of cell types in E14.5 as obtained by moscot.time. e. UMAP embedding, restricted
to endocrine cells and their progenitors, colored as in (c), highlighting sub-clustered Ngn3"¢" and
Fev+ delta populations. The inset highlights alpha cells as well as delta and epsilon cells, and
their putative progenitors. f. Multimodal diffusion map of the cells which are inset in panel (e). g.
Sankey diagram of the E14.5-15.5 cell type transitions. h. Putative developmental trajectory per
cell type in E15.5 and its corresponding ancestor population in E14.5. i. Similarity in ATAC
profile between different cell types (Methods). The green boxes highlight the cell types whose
ancestry we focus on. j.-k. Chromatin accessibility around the promoter region of Hhex (j), a key
transcription factor for delta cells®, and Ghri (k), the gene corresponding to the hormone
released by epsilon cells. I-n. Chromatin accessibility of the most accessible peak in the epsilon
progenitors population (), the Fev+ delta-0 population (m), and the Fev+ delta-1 population (n)
(Methods).
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1.1 Model overview and introduction

moscot (multi-omic single cell optimal transport) is a software framework for scalable, multi-modal
applications of optimal transport (OT) to single-cell genomics with consistent user experience. With
moscot, we couple cells across experimental time points (moscot.time), map dissociated single-
cell datasets into space (moscot.space.mapping), align tissue slides (moscot.space.alignment),
and reconstruct spatiotemporal trajectories (moscot.spatiotemporal). Thus, moscot represents a
unified and extensible framework to map cells across time and space.

1.1.1 Optimal Transport (OT) for single-cell genomics

OT is an area of mathematics that is concerned with comparing probability distributions in a
geometry-aware manner . OT-based tools have been successfully applied to various problems that
arise in single-cell genomics, including mapping cells across time points®7, mapping cells from
molecular to physical space®’, aligning spatial transcriptomics samples!'’, integrating data across
molecular modalities'"'? learning patient manifolds'®!'* or mapping cells across different exper-
imental perturbations!®'%. Despite this notable success, the widespread adaptation of OT-based
tools in single-cell genomics faces three key challenges.

First, the majority of current OT-based tools is geared towards a single modality and cannot use
the added information provided by multi-modal assays. Second, compute time and memory con-
sumption scale quadratically in cell number for vanilla OT and cubically for Gromov-Wasserstein
extensions® %17 Such poor scalability limits the application of these tools to current datasets
containing millions of cells. Third, the landscape of OT-based tools is split across programming
languages and software providing OT algorithms, resulting in a fractured landscape of incompatible
application programming interfaces (APIs). This makes it difficult for users to adapt and for de-
velopers to create new tools. In contrast, user-friendly and extensible APIs accelerate and facilitate
research, as powerfully demonstrated through the scVI-tools framework .

1.1.2 moscot unlocks the full power of OT for spatiotemporal applications

Our method is built on three key design principles to overcome previous limitations and unlock the
full potential of OT for single-cell applications:

1. Multi-modality: all moscot models extend to multi-modal data, including CITE-seq'’ and
multiome?’?? (RNA and chromatin accessibility) data.

2. Scalability: we use both engineering and methodological innovations to overcome previous
scalability limitations; in particular, we reduce compute time and memory consumption to be
linear in the number of cells.

3. Consistency: our implementation unifies temporal, spatial, and spatiotemporal problems through
one consistent API that interacts with the wider scverse/SCANPY ?%24 ecosystem and is easy
to use. Solving any of these problems in moscot follows a common pattern that translates the
biological problem into an OT problem that is solved by the scalable optimal transport tools
(OTT)? backend.

We describe in the following sections how we realize these principles for temporal, spatial, and
spatiotemporal applications. Our modular interface easily extends to new biological problems; we
anticipate and encourage community contributions to solve a growing number of single-cell map-
ping and integration problems using moscot. Our framework is implemented as user-friendly,
open-source software with extensive documentation, examples, and tutorials, available at https:
//moscot-tools.org.
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1.2 moscot.time for mappir2EHE 4% R5SsBYifienternational license.
1.2.1 Model rationale, inputs, and outputs

Biologists frequently employ time series experiments to study biological processes like development
or regeneration that are not in a steady state. As current single-cell assays are cell-destructive, such
experiments result in disparate molecular profiles measured at different time points. As previously
suggested?, OT can be used to probabilistically link cells from early to late time points. Previous
methods had limited scalability and were only applied to gene expression; we outline in the following
how moscot.time overcomes these limitations.

Let thus X € RV*P and Y € RM*P represent pairs of state matrices for N and M cells observed at
early (t1) and late (t2) time points, respectively. State matrices X and Y may represent e.g. gene
expression (scRNA-seq) or chromatin accessibility (scATAC-seq?%) across D features (e.g. genes or
peaks). Optionally, the user may provide marginal distributions @ € Ay and b € Ay over cells at
t1 and to for probability simplex Ay == {a € RY| Y, a; = 1}. Any cell-level prior information
may be represented through the marginals, including cellular growth- and death rates.

moscot.time’s key output is a coupling matrix P € U(a,b) where U(a,b) is the set of feasible
coupling matrices, defined by

U(a,b) = {P e RY*MP1yy =a, PT1y = b}, (1)

for constant one vector 1y = [1,...,1]7 € RN. We link ¢;-cells to tp-cells through the coupling
matrix P; the i-th row P;. represents the amount of probability mass transported from cell ¢ at ¢;
towards any ta-cell. The set U(a,b) contains those coupling matrices P that are compatible with
the user-provided marginal distributions @ and b at t; and to, respectively.

These definitions allow us to formalize the aim of moscot.time: we seek to find a coupling matrix
P € U(a,b) which couples t1-cells to te-cells such that their overall traveled distance in phenotypic
space is minimized.

1.2.2 Model description

To quantify the distance cells travel in phenotypic space between time points, let ¢(x;,y;) be a
cost function for early (x;) and late (y;) molecular profiles, representing e.g. gene expression or
chromatin accessibility state. moscot allows for the use of various cost functions (Supplementary
Note 5). We use the cost function ¢ to measure cellular distances in a modality-specific, shared
latent space, e.g. PCA for gene expression data, latent semantic indexing?” (LSI) for ATAC data or
corresponding scVI-tools models .

We evaluate the cost function ¢ for all pairs of cells (i,7) € {1,..., N} x {1,..., M} to form the cost
matrix C € Rf *M "~ Given the cost matrix C' quantifying distances along the phenotypic manifold,
we solve the optimization problem

P* = argmin (C, P) = argmin Zcijpija (2)
PeU(a,b) PeU(ab)

known as the Kantorovich relaxation of OT! where P* is the optimal coupling matrix. When using

P* to transport ty-cells to to-cells, we accumulate the lowest cost according to C. In the following,

we refer to this type of OT problem as a Wasserstein (W)-type OT problem.

Introducing entropic reguluarization.  In practice, the OT problem of Equation (2) is usually
not solved directly because it is computationally expensive, and the solution has statistically un-
favorable properties?®. Instead, it is much more common to consider a regularized version of the
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problem available under aCC-BY 4.0 International license.
P* = argmin (C,P) —eH(P), (3)
PecU(a,b)
for entropy regularizer
H(P)=-) Pj(logP;—1). (4)

ij
The parameter € > 0 controls the regularization strength. Intuitively, entropic regularization intro-
duces uncertainty to the solution; it has a "blurring" effect on P*. Mathematically, it renders the
problem e-strongly convex, differentiable and less prone to the curse of dimensionality 12829,

The Sinkhorn algorithm for optimization. It can be shown that the solution to the regularized
W-problem of Equation (3) has the form Pj; = u;K;;v; for Gibbs kernel

K = exp(—Cij/e), (5)

and unknown scaling variables (u,v) € R_]~\_7 x RYM (ref.1:?%). Using this formulation, we may rewrite
the constraints P1y; = @ and P1y = b of Equation (1) to yield

u ® (Kv) =a, (6)
vo (K'u)=b, (7)

where ® denotes element-wise multiplication. Iteratively solving these equations gives rise to

Sinkhorn’s algorithm 293!,
(+1) . _@
w2 )
b
i+ . 2%
v T F’T’U,(H—l) ) (9)

where the division is applied element-wise, and [ is the iteration counter. Using this algorithm,
the (unique) solution to the regularized W-problem of Equation (3), corresponding to the optimal
coupling of ¢;-cells to ta-cells, can be computed in time and memory quadratic in cell number!.

Adjusting the marginals for growth and death.  Cells differentiate, proliferate, and die as the
biological process unfolds between time points t; and t. The coupling matrix P*, computed by
solving Equation (3), reflects a mixture of these effects. To disentangle proliferation and apoptosis
from differentiation, we adjust the left marginal a for cellular growth and death. Specifically we
follow Schiebinger et al.? in defining

g(m;)"2 "
N Nto—t1
Zj:l 9(93])

where g : RP? — R, corresponds to the expected value of a birth-death process g(x) = eP@)—8(z)
with proliferation at rate () and death at rate d(x). We estimate growth- and death rates from
curated marker gene sets; moscot comes with pre-defined gene sets for mice and humans. For the
right marginal b, we assign uniform weights b; = 1/M, Vj € {1,..., M }. Intuitively, our adjustment
allows t1-cells cells likely to proliferate (die) to distribute more (less) probability mass towards to-
cells. Such an adjustment encourages the optimal coupling matrix P* to reflect differentiation rather
than proliferation and apoptosis.

Vie{1,..,N}, (10)

a; =

As it is difficult to adjust the hyperparameters of the proliferation and apoptosis rate, we also
implement a more intuitive and more easily adjustable estimation of the growth rates via

a; = expu7 (11)
C

where p; denotes a proliferation score and ¢; an apoptosis score, obtained by scanpy.tl.score_genes.
¢ denotes a scaling parameter.
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Unbalancedness for stochastic@APEIMPIATE BNUC IHFERHA tfisFginals.  Our formulation of
Equation (3) enforces the pre-specified marginals @ and b to be exactly met by the solution P*.
This is problematic from two perspectives:

e The cells profiled at each time point usually correspond to a sample from the overall population
- small variations in cell type frequencies across time points do not necessarily reflect underlying
differentiation but might result from stochastic cell sampling. Exactly enforcing the marginals
thus implies that we encode the sampling effect in the coupling, which confounds the actual
differentiation signal.

e Our growth/death-adjusted marginals of Equation (10) are unlikely to reflect ground-truth
proliferation/apoptosis rates as they are estimated based on noisy gene expression and do not
include any post-transcriptional effects. Thus, exactly enforcing these marginals propagates
noise into the coupling matrix P*.

To avoid both pitfalls, we follow Schiebinger et al. ? to allow small deviations from the exact marginals
in an unbalanced OT framework 132, Specifically, we replace the hard constraint P € U(a, b) with
soft KL-divergence penalties,

€Ty

KL [P1y || a] + —2
Ta 1

P* := argmin (C,P) +
PeRY M 1

KL [(pHN [ b)} —eH(P),  (12)

-7

which may be solved at the same computational complexity level using a generalization of Sinkhorn’s
algorithm %334, The parameters 7,,7, € (0,1) are hyperparameters that determine the weight we
give to complying with the left and right marginals @ and b, respectively. Values near one or zero
correspond to strict or weak marginal penalties, respectively.

1.2.3 Multi-modal data and scalability

The model we presented in the previous section is similar to the Waddington OT (WOT') model of
Schiebinger et al.?. However, WOT was only applied to uni-modal data and has quadratic time- and
memory complexity in the number of cells, largely preventing its application to atlas-scale temporal
datasets containing multiple modalities. This section extends the moscot.time model to overcome
both limitations.

Application to multi-modal data. We incorporate multi-modal data in moscot.time via an ad-
justed definition of the cost function. Intuitively, we use a joint representation to render the computed
distances more faithful to the phenotypic manifold. Specifically, given bi-modal representations
(XM X)) and (YD, Y?) at t; and to, respectively, we scale these to have the same variance,
and measure distances in a concatenated space. In this example, (1) and (2) can represent any
pair of modalities, for example, gene expression and ATAC data. This strategy naturally extends
beyond two modalities towards any number of jointly measured modalities, making moscot.time
truly multi-modal. Alternatively, moscot.time may be applied to representations computed using
shared latent space learning techniques, including TotalVI*® for CITE-seq '’ data, and MultiVI®® or
Multigrate®” for shared ATAC and RNA? 2238 readout.

Scalability through engineering-type innovations. To solve the W-problem of Equation (3),
moscot.time builds on OTT? in the backend which offers three key engineering-type improve-
ments:

1. Online evaluation of the cost function.
2. GPU execution.

3. Just-in-time compilation (jitting).
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While memory complexity is qYaBAsEeE AaGHY <S1KePaI%A% be reduced to linear through
online-cost matrix evaluation. The key observation is that the Sinkhorn algorithm only accesses the
cost matrix C' through the matrix-vector products Kv and K " (Equation (8)) which are evaluated
row by row. Thus, the cost function ¢ can be queried on the fly for those cell-cell distances which
are required to evaluate the current row of the matrix-vector product. Online evaluation reduces
the memory complexity to be linear in cell number?® (first improvement).

Second, while the Sinkhorn algorithm can, in principle, be run on GPUs to greatly accelerate opti-
mization', the quadratic memory complexity prevents this in practice. While CPUs can handle very
large memory consumption, GPUs are usually much more limited (typically around 40 GB). Online
memory evaluation (first improvement) renders GPU acceleration possible, and OTT?° implements
it in practice. Performing computations on GPU greatly accelerates the computation of cell-cell
couplings in moscot.time (second improvement).

Third, jitting compiles python code before it is executed for the first time, further reducing compute
time>? (third improvement).

Combining these three engineering-type innovations allows moscot.time to run datasets containing
a few hundred thousand cells per time point with linear memory and quadratic time complexity on
modern GPUs. Once we go beyond that towards millions of cells per time point, the quadratic time
complexity becomes prohibitive.

Scalability through methodological innovations.  To enable the application of moscot.time to
future datasets containing millions of cells per time point, we must overcome the quadratic time
complexity in the number of cells. Following previous work“%4! we achieve this imposing low-rank
constraints on the set of feasible couplings, i.e. requiring P € U(a,b,r) for nonnegative coupling
matrix rank r (Supplementary Note 3). Such a regularization leads to linear time and memory
complexity in the number of cells. Low-rank Sinkhorn is implemented in OTT?> and available
through moscot.time, enabling the application to future atlas-scale developmental studies.

1.2.4 Downstream applications

The coupling matrix P* optimally links ¢j-cells to ta-cells for the cost function c. moscot.time
uses the coupling to relate cellular states and derive insights about putative driver genes; consider
thus a t; cell state P of interest, where P is the set of corresponding cell indices. This state may
represent, for example, a rare or transient cell population. Define the corresponding normalized
indicator vector p € {0, 1}V via

& iE€P,
pi = {(')7" (13)

else,

for t1-cell 7 and |P|, the number of cells in state P. Following the original suggestion by Schiebinger
et al.?, we compute to-descendants of cell state P by a push-forward operation of p,

q=P'p, (14)

where g € Rf describes the probability mass that cell state P distributes to te-cells. Using P
rather than its transpose, we analogously compute ancestors of a cell state Q at t5. For a global
view of cell-state transitions, we aggregate pull- and push operations over all states into transition
matrices which we visualize via heatmaps or Sankey diagrams. In addition, we correlate pull- and
push distributions with gene expression to uncover putative driver genes.
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Coupling more than two time PGP UNIRSRGE G hESVARIAIISECOT model?, we couple several
time points by assuming that the state of ¢, 11 cells depends only on the state of ¢, cells and not on
any other earlier or later states. The index r runs over time points, r € {1, ..., R}, for R time points.
This Markov assumption allows us to chain together time points by matrix multiplication; for time
points {t1,...,tg} and corresponding sequential coupling matrices { P, ..., PE=D1  we link #;-cells
to tg cells by matrix multiplication, P P®) . p(E-1),

1.3 moscot.space.mapping for spatial reference mapping
1.3.1 Model rationale, inputs, and outputs

Techniques to simultaneously measure a cell’s spatial context and its transcriptional state have
matured in recent years; in particular, spatial resolution, the field of view, and the number of profiled
transcripts have increased*?%3. However, current approaches still fall short of measuring the full
transcriptome at true single-cell resolution. This experimental difficulty has fueled the development
of a range of computational tools®** % that map dissociated single-cell reference datasets onto
spatial coordinates, a problem known as spatial mapping. Solving a spatial mapping problem can
provide two types of information:

1. Annotation-centric perspective: spatial mapping annotates cell types in single cell resolved
spatial transcriptomics technologies (e.g. MERFISH*’ and Seqfish®’).

2. Feature-centric perspective: spatial mapping imputes unmeasured gene expression in the spa-
tial domain for techniques that do not achieve full transcriptome coverage (e.g. MERFISH?!,
seqFISH+°2).

As previously suggested in the NovoSpaRc method®, a variant of OT!” can be used to probabilis-
tically map reference cells into the spatial domain. However, previous approaches faced several
limitations, including scalability, applicability beyond gene expression reference data, and incorpo-
ration of spatial information in the mapping problem. With moscot.space.mapping, we introduce
a model that applies to both the sample- and feature-centric perspectives, scales to large datasets,
and incorporates multi-modal information. Moreover, moscot.space.mapping explicitly makes use
of spatial information when solving the mapping problem.

Let thus X € RV*Ps and Y € RM*Dy represent a pair of state matrices for N cells and M
samples (cells, spots, etc.) observed in the dissociated reference and the spatial dataset, respectively.
We assume state matrices to represent gene expression for different numbers of genes, D, for the
dissociated reference and D, for the spatial dataset. We allow further multi-modal information in X,
e.g. from joint RNA/ATAC reaodut?’?>3%, In addition, let C¥ € Rf *M-encode spatial similarity
among the M samples in Y (we define CX below). Depending on the spatial technology, C¥ contains
either euclidean distance among spatial locations or similarities in spatial graphs*?°3. Optionally, as
in moscot.time, the user may provide marginal distributions a € Ay and b € Ay over cells in the
dissociated reference and samples in the spatial dataset. In the context of moscot.space.mapping,
these may represent sample-level uncertainties or estimated cell numbers per spot in the spatial
dataset for barcoding-based spatial technologies®* 0.

moscot.space.mapping’s key output is a coupling matrix P € U(a, b), linking cells in the dissociated
reference with samples in the spatial dataset. In particular, the i-th row P;. represents the amount
of probability mass transported from cell ¢ in the reference towards any spatial sample j.

These definitions allow us to formalize the aim of moscot.space.mapping: we seek to find a coupling
matrix P € U(a,b) which relates reference cells with spatial samples such that their distance in the
shared transcriptome space is minimized while the correspondence between molecular and spatial
similarity is maximized.
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To quantify the global distance between reference and spatial dataset in the shared transcriptome
space, we follow moscot.time and define a cost function ¢(x;,y;) and associated cost matrix C' €
Rf *M " The matrix C' quantifies expression distance in a shared latent space computed using PCA
or scVI®". Note that the shared latent space is constructed using only those genes which have been
measured in both the dissociated reference and the spatial dataset.

Gromov-Wasserstein for structural correspondence.  In their previous NovoSpaRc model, Nitzan
et al.® showed how introducing a structural correspondence assumption between gene expression and
spatial information greatly enhanced their ability to accurately solve the spatial mapping problem. In
particular, they assume that cell pairs should be coupled such that there is a correspondence between
distances in gene expression and distances in physical space. Following their suggestion, we encode
the structural correspondence assumption in a Gromov- Wasserstein (GW)-type OT problem,

P* = argmin Y L (CJ,Cp) PPy, (15)
PecU(a,b) ijkl

for spatial distance matrix CY € Rﬂ‘f XM Jefined as above, and reference distance matrix CX €
Rf *N " quantifying molecular similarity among cells in the dissociated reference. To compute CX,
we measure expression distance among reference cells in a latent space defined using PCA or scVI®”.
Correspondence between CX and CY is quantified entry-wise using the cost function L, which is
set to square euclidean by default. This cost is evaluated element-wise, i.e. L(C:¥,CY) = (Cf —

ij i
Y \2
Cr)*-

Intuitively, the GW-type problem aims to find a coupling matrix to maximize the structural corre-
spondence between gene expression and spatial information. Note that individual genes may still
show sharp gradients in the spatial domain; the structural correspondence assumption applies to
aggregated molecular profiles.

The moscot.space.mapping model.  The moscot.space.mapping model is a combination of the
W-term, quantifying expression distance between the reference and the spatial dataset, with the
GW term, quantifying structural correspondence between the reference and the spatial dataset, in
a Fused Gromov-Wasserstein (FGW)-type OT problem 758

P* := argmin « Z L (C’Z-)j(, C',z,;) PPy + (1 — «) Z CiPix — €eH(P) (16)
PGU(a’b) 17 ]
ijkl ik entropic reg.

GW: structural correspondence W: expression dist.

where we have added entropic regularization at strength € and introduced the weight parameter « to
control the relative contribution of W and GW-terms. The objective function contains the following
cost matrices:

o C € R_]X *M. - compares reference cells with spatial samples in terms of expression in shared
genes.

o CX ¢ Rﬂf *N. compares reference cells among each other in terms of gene expression.
o OV ¢ Ri/[ *M. compared spatial samples among each other in terms of spatial distance.

We optimize the moscot.space.mapping objective function of Equation (16) using a mirror descent
scheme!” (Supplementary Note 1). To account for uneven cell type proportions between the reference
and the spatial datasets, we optionally allow for unbalancedness in the FGW-type problem®’.
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The model presented here is an extension of the NovoSpaRc model®, which was restricted to a
certain cost function, and only supported feature-centric interpretation. Further, NovoSpaRc is only
applicable to uni-modal data and has cubic time- and quadratic memory complexity in the number
of cells, largely preventig its application to atlas-scale spatial datsets and references containing
multiple modalities. This section extends the moscot.space.mapping model to overcome both
limitations.

Multimodal reference datasets. = Multimodal data contains additional information about a cell’s
molecular state, which can guide the mapping process. While previous methods could apply a
mapping learned from gene expression data to other modalities collected for the same cells®’,
moscot.space.mapping is the first method to make use of multimodal information in the actual
mapping problem.

Consider a dissociated reference dataset with multi-modal data matrices, X(®) and X(©), where R
refers to gene expression and O refers to another modality, e.g. chromatin accessibility® or surface
marker expression 60, We construct the across-space cost matrix C' and the spatial cost matrix CV
as before but modify the construction of the reference cell cost matrix C*. Similar to moscot.time,
we concatenate joint representations or use joint latent space learning techniques® 70! to obtain
a single molecular representation and measure distances in this representation to define CX. Our
multimodal approach allows learning a more faithful correspondence between molecular similarity
in the dissociated reference and spatial proximity in the spatial dataset.

Atlas-scale spatial mapping. For squared euclidean loss function L and within-space cost func-
tions CX and CY, we implemented moscot.space.mapping to have quadratic time and memory
consumption by exploiting low-rank properties of the euclidean distance®? (Supplementary Note 2).
Similarly to moscot.time, solving our FGW-type problem in the backend using OTT?° grants us
GPU execution and jitting®®. While this leads to good performance on datasets of intermediate size
(approx. 10k cells in reference and spatial datasets), the quadratic scaling becomes prohibitive for
atlas-scale datasets.

To overcome the quadratic time and memory complexities, we make use of a recently proposed
low-rank GW formulation® (Supplementary Note 2) which extends the original low-rank Sinkhorn
formulation (Supplementary Note 3). This uniquely enables moscot . space.mapping to relate hun-
dreds of thousands of dissociated reference cells to spatial locations.

1.3.4 Downstream applications

moscot . space.mapping supports both sample and feature-centric downstream analysis techniques.

Annotation-centric perspective. In this perspective, we have cell type or -state labels available
in the reference, which we use to map to the spatial dataset. Suppose we are given one-hot encoded
reference labels through the matrix F € {0,1}V*9 for S cell types or states. We obtain annotated
cell types in the spatial domain via the matrix G = PTF € fos. For each spatial sample j, the
row (. contains the mapped cell type likelihood for each of the S cell types or -states. We can
then assign discrete cell types to the spatial sample by either taking the argmax of the row or by
integrating over probabilities per cell type and taking the maximum value.

Feature-centric perspective. In this perspective, we have more genes measured in the dissociated
reference than the spatial dataset; we would like to use the mapping problem solution to impute
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spatial gene expression. This setAYAARIGUIEIFIETEY SIS EEeMI 18-S that do not achieve full tran-

scriptome coverage. Let Y € RM*D= denote inferred expression in the spatial domain; it holds
Y=P'X. (17)

Analogous definitions hold for additional modalities collected in the dissociated reference; for ex-
ample, we may use Equation (17) to map chromatin accessibility or surface marker expression into
spatial coordinates.

To facilitate further downstream analysis of mapped spatial data, moscot.space.mapping interfaces
with squidpy®?, a spatial analysis toolkit containing various visualization and testing capabilities.
For example, squidpy can be used to test for spatial enrichment of mapped cell type annotations or
to quantify spatial variability of imputed gene expression.

1.4 moscot.space.alignment for aligning spatial transcriptomics data
1.4.1 Model rationale, inputs, and outputs

The rapidly increasing amount of spatial datasets poses massive data analysis challenges; in particu-
lar, faithful integration of spatial data across tissue slides, individuals, and labs is currently an open
problem that limits our ability to study tissue architecture across scales?*%3. Different terms exist
to refer to spatial integration problems; we prefer to speak of spatial alignment. Solving a spatial
alignment problem can serve two principal objectives:

1. Joint analysis: aligning spatial datasets against a common coordinate framework® (CCF)
enables us to gain statistical power by jointly considering multiple samples and enables new
types of analysis, such as expression variability in space. Aligning data against CCFs will be
a crucial step toward spatial atlas building.

2. 3D reconstruction: aligning sequential adjacent tissue sections allows us to build faithful 3D
tissue models.

As previously suggested ', FGW-type OT '"%% can be used to probabilistically align spatial datasets.
However, the previous PASTE method ' was targeted towards small-scale 10x Visium datasets; the
authors considered a maximum of 4k spots per sample in their applications!'%%*. The scalability of
PASTE is limited because it cannot run on GPUs and does not make use of entropic regularization,
jitting, and recent low-rank formulations of FGW-type OT 2. Further, PASTE is limited to adjacent
Visium tissue slides from the same individual because it cannot handle varying cell type proportions.
Moreover, the approach does not make use of multi-modal molecular readout.

With moscot.space.alignment, we present an approach that overcomes these limitations; in partic-
ular, moscot.space.alignment scales to large and diverse spatial datasets through GPU accelera-
tion, entropic regularization ??| jitting?” and low-rank factorizations®?. Our approach can integrate
samples from different individuals with varying cell type proportions through an unbalanced formu-
lation® and applies to spatial technologies beyond 10x Visium, including in-situ sequencing (ISS)
and in-situ hybridization (ISH)-based assays. Furthermore, our approach makes use of multi-model
information where available.

Let thus X € RV*Pz and Y € RM*Dy represent a pair of state matrices for N and M spatial samples
observed in two spatial datasets. We refer to X and Y as the left and right datasets, respectively.
We assume that state matrices represent gene expression for varying gene numbers D, and D,,.
Optionally, we allow additional multimodal readout at both left and right datasets. In addition,
let CX € Rf *Noand CY € Rf XM encode spatial similarity among the N samples in X and the
M samples in Y, defined through e.g. euclidean distance in space or similarities in spatial graphs.
Optionally, as in previous moscot models, the user may provide marginal distributions a € Ay and
b € Ay over spatial samples in left and right datasets. In the context of moscot.space.alignment,
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these may represent sample-levelHRREYRIEHAGEEY eQinemaeebitentfmbers per spot for barcoding-

based spatial technologies®* 9.

moscot.space.alignment’s key output is a coupling matrix P € U(a,b) linking spatial samples
across the two datasets. In particular, the i-th row P;. represents the amount of probability mass
transported from spatial sample 7 in the left dataset towards any spatial sample j in the right
dataset.

These definitions allow us to formalize the aim of moscot.space.alignment: we seek to find a
coupling matrix P € U(a,b) which relates spatial samples across left and right datasets such that
their distance in the shared transcriptome space is minimized while the correspondence between
spatial arrangements is maximized.

1.4.2 Model description

To quantify the global distance between left and right datasets in the shared transcriptome space,
we follow previous moscot models and define a cost function c(x;,y;) and associated cost matrix
C e Rf *M The matrix C' quantifies expression distance in a shared latent space computed using
PCA or scVI®7. Using the transcriptome-cost matrix C' in the W-term and the spatial cost matrices
CX and CY in the GW-term, we define a FGW-type OT problem "% as for moscot . space .mapping
(Equation (16)) and solve it using the mirror descent scheme (Supplementary Note 1). For samples
with varying cell type proportions, we optionally allow for unbalancedness””.

1.4.3 Multi-modal data and scalability

We include additional multi-modal data collected at left- and right datasets in the W-term; in
particular, we follow moscot . time and use concatenated representations or joint latent space learning
techniques > 3761,

We use the same scalability improvements as for moscot.space.mapping; in particular, we achieve
fast runtimes on datasets of intermediate size through GPU acceleration and jitting?>?. For atlas-
scale left and right datasets, we employ low-rank factorizations to achieve linear time and memory-
complexity %% (Supplementary Note 2).

1.4.4 Downstream applications

moscot.space.alignment supports both joint analysis of several spatial datasets in a CCF and 3D
reconstruction of adjacent tissue sections through different alignment policies.

For joint analysis of several spatial datasets, we rely on a pre-defined CCF%. To define such a CCF,
one may either use a dedicated computational method® or manually designate one spatial sample
to serve as the CCF. Given a CCF X € RV*P= and R query datasets Y (") € RMr*Dryir ¢ {1, . R},
moscot . space.alignment solves a star-policy alignment problem where each query Y () is aligned
against the central CCF X. To enable joint analysis of all query datasets Y (") in terms of CCF-spatial
coordinates, we compute the projection

vy = py ) (18)

for projected gene expression y() e RN*Dr and corresponding coupling matrix P ¢ Rf * My
Solving the star-policy alignment problem with moscot.space.alignment and projecting into CCF

coordinates allows joint analysis of all spatial query samples {Y (), .| Y (®)},

For 3D reconstruction of adjacent tissue sections, let X (") € RN"*Pr represent gene expression of slide
r for N, spatial samples and D, genes. Let further Z(" € RN"*2 represent the corresponding spatial
coordinates. We consider R sequential slides, r € {1,...,R}. To align their coordinate systems,

11


https://doi.org/10.1101/2023.05.11.540374
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.11.540374; this version posted May 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

moscot . space.alignment solves?¥SORWINEASHRY ¢ AIEMANE %% m where each dataset X (™) is
aligned ajn\%ainst the next dataset X1 in the sequence. Given the corresponding coupling matrix
P €R

T

I XNT“, slide-(r + 1) coordinates are transformed into slide-r coordinates using
Z(r+1) — P(T‘)z(T‘f*l)’ (19)

for Zt1) e RN»*2 We refer to this as the warping transformation because it non-linearly warps
Z(+1) coordinates onto Z(") coordinates. Alternatively, moscot.space.alignment implements the
previously suggested affine-linear transformation'’. We recommend the warping transformation
whenever non-linear effects between adjacent slides are expected. By designating any reference slide
r*, all other coordinate systems can be transformed into Z(™) coordinates via sequential application

of either the warping or the affine transformation.

In either cases of the alignment problem, it’s possible to further refine the alignment by solving an
additional W-type problem on the spatial coordinates.

We interface with squidpy®® for further joint analysis of several spatial datasets in a CCF. For
example, squidpy may be used to study expression heterogeneity at a defined spatial location in the
CCF across several spatial datasets.

1.5 moscot.spatiotemporal to decipher spatiotemporal variation
1.5.1 Model rationale, inputs, and outputs

Cellular state-change processes, including development, regeneration, and reprogramming, do not
unfold isolated in single cells but in constant communication with the surrounding tissue*?. Recent
experimental advances allow for spatially-resolved gene expression measurements at near single-
cell resolution across developmental processes; in particular, the StereoSeq® technology has been
applied to various developmental settings®~"". These experiments yield time series of gene expres-
sion measurements (as in moscot.time), with additional spatial readout at each time point. With
moscot.spatiotemporal we present the first method to map cells across time points while preserv-
ing spatial organization, allowing us to decipher spatiotemporal variation during complex cell-state
changes.

Let thus X € RV*P and Y € RMXD represent pairs of state matrices for N and M spatial
samples observed at early (¢1) and late (¢2) time points, respectively. In addition, as stated for
moscot.space.alignment, let CX € RfXN and CY ¢ R%XM encode spatial similarity among the
N samples in X and the M samples in Y. Optionally, as in previous moscot models, the user
may provide marginal distributions a € Ay and b € Ajys over cells at ¢1 and ¢5. In the context of
moscot.spatiotemporal these usually correspond to cellular growth- and death rates.

moscot .spatiotemporal’s key output is a coupling matrix P € U(a,b) linking samples across the
two time points. In particular, the i-th row P; . represents the amount of probability mass transported
from ti-sample i to any to-sample j.

These definitions allow us to formalize the aim of moscot.space.mapping: we seek to find a coupling
matrix P € U(a,b) which relates t; and ta-samples such that their distance in the shared transcrip-
tome space is minimized. At the same time, the correspondence between spatial arrangements is
maximized.

1.5.2 Model description

We use identical definitions to the moscot.space.alignment model, where ¢; samples play the role
of the left dataset, and to samples play the role of the right dataset. We adjust the marginals to
accommodate cellular growth- and death rates as in the moscot.time model, and we optionally
allow for unbalancedness®” to handle noisy estimates.
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We use the same tricks as in moscot.space.alignment to include additional multi-modal readout
at t; and t2, and we employ the same strategy to scale our model towards atlas-scale datasets
(Supplementary Note 2).

1.5.4 Downstream applications

We extend our model towards more than two time points using the same recipe as in moscot.time,
and we support all downstream analysis functions introduced for moscot.time. We extend the
computation of ancestor and descendant probabilities towards spatial regions, i.e., the cell state P of
interest in Equation (13) may now represent a spatial region. Thus, moscot.space.mapping allows
for spatial regionalization to be studied throughout cell-state changes.

We interface with squidpy®? for further downstream analysis of spatiotemporal variation. For exam-
ple, squidpy may be used to study the spatial enrichment of a mapped cell state of interest across
the temporal axis.

2 Datasets

2.1 Temporal analysis

If not stated otherwise, computations were done using SCANPY 23 using default parameters. In the
temporal setting, we distinguish between driver features and marker features computed with moscot.
Here, features can be a feature in any modality, for example a gene or a peak. To obtain driver
features for a subset of cells, e.g. for a certain cell type, we correlate (Pearson or Spearman) the
pull-back distribution of the considered cell type with the corresponding feature, e.g. (processed)
gene expression. In practical applications, additionally incorporating the indicator distribution of
the pulled back cells (e.g. cell type) of the later time point proved useful. Hence, we obtain marker
features by computing the correlation across cells in both the source and the target distribution. If
we are interested in marker features for a specific transition, e.g. from a certain cell type to another
cell type, we subset the set of cells accordingly.

2.1.1 Application: moscot.time on a mouse embryogenesis atlas

The mouse embryogenesis atlas contains data generated by Mohammed et al.”', Cheng et al.”,
Pijuan-Sala et al. ”*, Qiu et al. ", and Cao et al. . These datasets were preprocessed and annotated
by Qiu et al. ", and we downloaded them as Seurat objects from http://tome.gs.washington.edu/.

The original authors showed how their embedding computation successfully handled batch effects;
thus, we followed their pipeline and reproduced these representations by selecting genes using Seurat
v3’s FindVariableFeatures and batch-correcting the data using FindIntegrationAnchors®. For
further analysis using moscot.time in Python, the Seurat objects where transformed into AnnData
objects using SeuratData’". For the E8.0/8.25 pair of time points, we computed a UMAP ™® using the
30-dimensional Seurat PCA latent space and a k-nearest neighbor (k-NN) graph with k& = 15.

Memory and runtime benchmark: moscot.time versus Waddington OT. To investigate method
scalability, we ran a memory and runtime benchmark. We selected cells from the E11.5/12.5 time
point pair which had the largest number of cells out of all time point pairs: 455,124 cells at E11.5
and 292,726 cells at E12.5. To investigate the dependency of memory and runtime on the number of
cells, we generated 11 subsets of increasing size, each containing the same number of cells at E11.5
and 12.5. We increased the cell number in steps of 25,000, up to a maximum of 275,00 cells in either
time point.
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We compared the performance of }¥ABEIAHIEEA G pAANREANAIGEE on OT? (WOT), moscot . time
and low-rank moscot.time“’ (Subsubsection 1.2.3). For moscot.time, we evaluated the cost func-
tion on the fly (online evaluation, Subsubsection 1.2.3) to achieve linear memory complexity. We
tested low-rank moscot.time for ranks r € {50,200, 500,2000}. For the memory benchmark, we
run all algorithms on CPU, as GPU memory benchmarking is extremely difficult, and memory con-
sumption is likely to be very similar on CPU. For the runtime benchmark, we run the moscot.time
variants on GPU, but had to run WOT on CPU as it cannot make use of GPU acceleration. For
moscot.time, we used € = 0.005 but had to use a larger value (e = 0.05) for WOT as it run into
numerical overflow otherwise. Choosing a larger value for ¢ makes the problem computationally
easier to solve and grants an advantage to WOT.

Accuracy benchmark: moscot.time versus TOME. We compared the accuracy of the cell transi-
tions inferred by moscot.time and Trajectories Of Mammalian Embryogenesis (TOME) ™. TOME
is a k-NN based algorithm that Qiu et al. ™ developed specifically for this dataset. For each ta-cell j,
TOME finds the £ = 5 nearest neighbors at t; and treats these as putative ancestors. By aggregating
over cell states at both time points, TOME computes weighted ancestor/descendant relationships
on the cell-state level. To improve robustness, TOME median-aggregates the inferred edges over 500
randomly subsampled cell sets, each containing 80% of all cells.

Of note, TOME computes neighborhood relationships in a three-dimensional UMAP space, despite
the known pitfalls7 3! of low-dimensional non-linear representations. In particular, low-dimensional
embeddings like UMAP ™ or t-SNE®2 do not preserve global data topology well®>®*; trajectories
inferred in such spaces are thus prone to suffer from projection artefacts. In addition, TOME is
a deterministic approach with no notion of probability mass conservation - cells at t; or fs can
remain without descendants or ancestors, respectively. In contrast, moscot.time computes cell-cell
distances in a higher dimensional latent space (30-dimensional PCA in this application) - a crucial
feature to faithfully describe the data topology of complex developmental state changes. Moreover,
moscot.time is a probabilistic approach, equipped with a notion of mass conservation grounded on
OT.

We applied both moscot.time and TOME to all time-point pairs. For moscot.time we used
¢ = 0.005, initialized marginals using estimated growth-rates® (Subsection 1.2), set the right unbal-
ancedness parameter 7, = 1 (i.e., no unbalancedness), and chose the left unbalancedness parameter
7, such that the predicted amount of apoptotic cells adheres to biologically reasonable ranges® .
Specifically, for pre-gastrualtion (E4.5-E6.5), the target apoptotic range was set to 10-15%, for gas-
trulation (E6.5-E8.5) it was set to 4-6% and for organogenesis (E8.5-E13.5) it was set to 2-4%. For
moscot.time, we aggregated the cell-level couplings to cell-states transition rates via the pull-back
operation of the corresponding cell-state (Subsubsection 1.2.4). These cell state transition rates
correspond to the weighted cell state transition edges obtained by TOME, which allows a direct
comparison of both approaches.

Metrics for the accuracy benchmark: germ-layer and cell-type scores. We developed two metrics
to evaluate the accuracy of obtained cell state transitions, one germ-layer and one cell-type metric.
First, our germ-layer metric aggregates cell states into germ layers and considers transitions within
and across germ layers as correct and incorrect, respectively. This metric is motivated by the
observation that cells typically do not cross germ layers?’. A prominent exception to this rule is the
neural crest, which we excluded from our evaluation®'. We followed Qiu et al. ™ in classifying cell
types into neuroectoderm, surface ectoderm, endoderm, and mesoderm. As in the original study, we
excluded transitions between cell types that could not be assigned to a germ layer unambiguously,
and transitions with edge weights below 0.05.

Second, our cell-type metric compares every predicted transition with a curated set of allowed
transitions. To curate the set of allowed transitions during mouse embryogenesis, we conducted an
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extensive literature search for alPQUPRIENNEHREGTEEA BN AEISSdentifying previously reported

ancestor and descendant states (Supplementary Table 2).

We compute accuracy scores for the germ-layer and cell-type metric by dividing the weighted sum
over all transitions satisfying germ-layer boundaries and cell-type restrictions, respectively, by the
weighted sum over all transitions included in the evaluation. We mean-aggregated accuracy scores
for pre-gastrulation (E3.5-6.5), gastrulation (E6.5-8.5) and organogenesis (E8.5-13.5).

Growth rate comparison.  Beyond comparisons on the germ-layer and cell-type levels, we wanted
to evaluate how moscot.time and TOME compare on the single-cell level. However, the TOME
method does not output single-cell transitions; it only reports aggregated cell-type transitions. Thus,
to still have a baseline, we implemented a variant of the TOME approach in Python, which we
call "cell-level TOME" (cI-TOME). Based on the TOME-computed k-NN graph, we consider the
5 nearest neighbors of every to-cell j as its putative ancestors, and assign each a weight of 0.2.
Following the original approach, we increase robustness by repeating the process over 500 randomly
subsampled data sets, each containing 80% of the original cells. We sum over the corresponding
ancestor weights for each cell, and normalize such that columns in the early-to-late cell transition
matrix sum to one. In other words, each 5 cell j receives the same unit mass of incoming transition
probability. This interpretation of the k-NN approach allows us to define cell-cell coupling matrices
in cl-TOME. Analogously to moscot.time, we use pull- and push operations (Subsubsection 1.2.4)
to compute ancestors and descendants.

We computed cell-level couplings across time points using moscot.time and cl-TOME, excluding
extraembryonic tissues to avoid introducing additional variance from the experimental protocol. For
moscot.time we did not initialize the growth rates using marker genes to enable a fair comparison
with cl-TOME, which does not support such initialization. Instead, we ran moscot.time with
uniform marginals and used unbalancedness to learn growth-rates de-novo. As before, we set 7, =
1 and chose 7, such that the resulting predicted fraction of apoptotic cells lies in a biologically
reasonable range (Supplementary Table 3)%7%%. For both methods, we calculated growth-rates via
the left marginal (row sum) of the corresponding coupling matrix, > ; bij. To avoid overcrowding
our histograms of growth rates per cell-type, we only show the 5 cell types with most cells per time
point.

To translate these growth rates onto a scale that is biologically interpretable, we adjusted them for
the mean population growth from ¢; to to. Specifically, we computed the change in population size
between two time points, s = |e1|/|ea| where |e1]| and |ea| represent the estimated cell number at
early and late embryo stages, respectively "7, Next, we scaled the mean growth rate of ¢; cells to
match the factor s. To obtain an estimate of the apoptosis rate, we calculated, for each cell, the
difference between 1 and the scaled growth rate. By summing over these differences for all ¢; cells
for which the scaled growth rate was smaller than 1, we calculated the predicted number of dying
cells at £;. We divided the sum by the total number of #1-cells in the dataset to obtain estimated
apoptosis rates. We run the above calculations independently for all time points for moscot.time
and cl-TOME.

Comparison in terms of driver gene correlations. To further assess the cell-level couplings
predicted by either method, we reasoned that high correlations between ancestor probabilities and
known driver genes for a cell state are indicative of method success. Thus, for the cell states described
in the main text, we computed their moscot.time- and cl-TOME-predicted ancestor distributions
(Subsubsection 1.2.4). To exclude the influence of driver genes involved in unrelated differentiation
events, we restricted the correlation computation to known progenitor populations. For each pulled
cell state, we curated a list of known driver genes (Supplementary Table 4), filtered the list to
contain only highly-variable genes at the corresponding time point, and imputed their expression
using scVI’s decoder output using get_normalized_expression. After filtering to highly-variable
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genes, we retained 36 genes for HRIAMENAILAGGRY A0 MR &5SSllantois cells, 24 genes for the
first heart field, and 24 genes for the pancreatic epithelium. We Spearman-correlated these imputed

expression values with predicted ancestor distributions using scipy.stats.spearmanr .

2.1.2 Application: moscot.time on multi-model pancreas development

Dataset generation FEmbryonic pancreata from NVF homozygous mice were collected and pooled
together (8 pancreata from E14.5 and 11 pancreata from E15.5). 0.25% Trypsin were added to the
samples for 5 min on ice and following incubation at 37 °C for 10 min. Next, the single-cell samples
were centrifuged at 1700 rpm (290 x g) for 5 min at 4 °C. After removing the supernatant, cells
were counted. 5ul rat IgG2a K isotype control (eBioscience, 12-4321-42) and anti-mouse CD326
(EpCAM) PE (eBioscience, 12-5791-81) were used for 1x106 cells (100l total volume). Sample
were stained for 30 min at 4 °C following staining with DAPI to detect dead cells. After washing
twice and resuspended in FACS buffer (PBS, 1% BSA, 0.5 mM EDTA), the single-cell samples
were loaded for FACS sorting. The following gating strategy was used: main population>single-
cells>living cells (DAPI negative) >Ngn3+ (FITC+) and EpCAM+ (PE+) cells. Then, cells were
counted and Trypan Blue staining was used to identify the number of dead cells. Sample with less
than 20% of dead cells were processed for single-cell RNA seq.

Preprocessing We preprocessed the samples independently for gene expression and chromatin ac-
cessibility. With respect to gene expression, all cells with mitochondrial gene fraction higher than
0.025 in E14.5 or higher than 0.02 in E15.5 were removed. Moreover, cells with fewer than 2,350
counts or more than 30,000 counts were removed in E14.5, while cells with fewer than 4,000 counts
or more than 35,000 counts were removed in E15.5. Doublets were identified using DoubletFinder??,
resulting in 9.87% doublets in sample E14.5 and 8.45% doublets in E15.5. After concatenation of
the two samples, genes which were detected in fewer than 20 cells were filtered, resulting in 18,768

genes.

Concerning the ATAC modality, all cells in E14.5 with nucleome signal lower than 0.55 or higher
than 1.2 were removed. All cells with transcription start site (TSS) enrichment score lower than 4.8
or higher than 8 were filtered out. Additionally, cells were removed if their total open chromatin
region count was below 7,000 or above 150,000.

For cells in E15.5 the lower nucleome signal threshold was set to 0.5, while the upper one was set to
1.1. The TSS enrichment scores thresholds were chosen to be 5 and 8.5, while the minimum number
of total counts was set to 4,000, and the maximum number was chosen to be 90,000. Peak calling
was performed using Signac?®. The CellRanger-computed peaks of both samples were concatenated
and subsequently pruned. This resulted in 228,259 peaks.

16,978 cells passed quality control in both modalities; 9,852 belonging to E14.5 and 7,126 belonging
to E15.5. More cells were filtered in the course of cell type annotation, which is described in the
next paragraph, resulting in 9,811 cells for E14.5 and 7,107 cells for E15.5 in the final preprocessed
and annotated version of the dataset.

Cell type annotation To construct a weighted nearest neighbor graph, an embedding of both
modalities is needed. Therefore, before performing a Principal Component Analysis (PCA, 50 di-
mensions) on the loglp-tranformed gene expression data, the count data was normalized using
SCTransform? and cell cycle genes and ambient genes were discarded. Ambient genes were iden-
tified using DropletUtils”®. The ATAC data was processed by term frequency-inverse document
frequency (tf-idf) normalisation followed by singular-value decomposition using Signac, computing
the first 50 singular components. Due to high correlation with the sequencing depth, the first and
the fifth components were removed. Having computed the embeddings for GEX and ATAC, respec-
tively, we constructed a weighted nearest neighbor graph in MUON, and used it for multi-modal,
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unsupervised clustering. If not s@YRPEUNIEHASE RN AYEEaIPRY I58%5h based on which we computed
UMAPs™.

Annotation was performed based on the expression of marker genes as reported in previous stud-
ies?"192 (Supplementary Table 9) and cell cycle scores for the proliferating populations computed
with scanpy.tl.score_genes_cell_cycle. It is important to mention that we identified a clus-
ter branching off the Ngn3 high population, which we found to express similar genes as a cluster
called Fev+ epsilon in Bastidas-Ponce et al.?®. In fact, neither the cluster reported in Bastidas-
Ponce et al.”® nor the cluster found in our new dataset has a substantially high expression of Fev
(Supplementary Fig. 21). Hence, we labeled this cluster as epsilon progenitors.

To arrive at the finer resolution of cell types as shown in Figure 3e, subclustering was performed on
the same neighborhood graph (incorporating both modalities).

moscot.time model We computed the cost matrix defining the OT problem between E14.5 and
E15.5 using geodesic distance along the kNN graph (Supplementary Note 5). The solution was
computed using the HeatFilter provided by PyGSP'%. The embedding based on which the under-
lying graph (connectivities as obtained from scanpy.pp.neighbors,??) is calculated was obtained
by MultiVI (3°) with a Poisson likelihood as introduced in PoissonATAC %4, PoissonATAC was run
with default parameters. This graph was constructed on a different embedding than the one we used
for unsupervised clustering to reduce the bias towards one embedding.

Two moscot models were run based on the weighted nearest neighbor graph whose construction is
described above. First, a model was run on the full dataset. The moscot.time model was run with
default parameters, i.e. in a balanced manner with uniform marginals. In detail, the regularization
parameter € was set to 1073 and the cost matrix was scaled by its mean. Uniform marginals were
chosen as the large abundance of highly proliferating Ductal cells would have marginalized the
influence of less abundant cell types. It is also important to note that the dataset is FACS-sorted
and hence proportions of initially sequenced cells are highly biased and do not reflect the true cell
type distribution. This also causes the final model to predict descendants (ancestors) across one
day (wall clock time). In effect, the directionality of the developmental process is kept, while its
magnitude does not reflect ground truth biological progress.

For the analysis of the endocrine branch the optimal transport solution was computed on a re-
duced dataset, only containing endocrine cells (alpha, beta, delta, epsilon) and their progenitors
(cell types labelled as Fev+ alpha, Fev+ beta, Fev+ delta, epsilon progenitors, Fev+, Ngn3 high,
Ngn3 high cycling, Ngn3 low). Again, uniform marginals were chosen as the proliferation and apop-
tosis scores obtained from TemporalProblem.score genes for marginals are almost constant. The
optimal transport solution was computed with standard parameters, i.e. the same parameters as for
the first model.

Marker feature and driver feature analysis with moscot.time We compute marker features and
driver features as described in 2.1. Moreover, when analyzing the transition from epsilon to alpha
cells, we excluded the Fev+ alpha population (the main progenitor cell type) from the set of consid-
ered cell types. This helped to find genes which are particularly activated in the epsilon cells.

Marker regions of chromatin accessibility To identify marker regions of chromatin accessibility,
a Wilcoxon test was run by calling FindMarkers provided by Seurat. The test was performed with
default settings and the considered cell type was run with respect to all remaining cell types (subset
to endocrine cells and endocrine progenitors, i.e. Ngn3 low, Ngn3 high, epsilon progenitors, Fev+,
Fev+ delta, Fev+ alpha, Fev+ beta, alpha, beta, delta, epsilon).
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Motif analysis Motif data was YEHRHAHEA X GiRY ASBTE08pRbIGENSH weight matrices (PWMs) and
corresponding visualizations as well as metadata was downloaded as a Bulk download after filtering
by species (mus musculus) on 01/03/2023. cisBP contains data from both experimentally measured
binding activities and inferred ones (e.g. from other species). Transcription factors with DNA-
binding domain amino acid similarity above a certain threshold (defined for each DNA-binding do-
main class separately and provided by cisBP) are hence also considered as binding candidates.

We define a transcription factor to have an association with a motif if it is either directly measured
or is inferred and has a sufficiently high DNA-binding domain amino acid similarity, i.e. is reported
as such by cisBP. This way, one motif can have an association with multiple transcription factors
and one transcription factor can have an association with multiple motifs.

To obtain motif scores on a single-cell level, chromVAR was run using the API provided by Signac.
In effect, AddMotifs was called, followed by RunChromVAR. To obtain marker motifs with moscot, we
consider the temporal order of gene expression and activity of a motif. In fact, moscot comes with
a list of transcription factors for different species (human, mouse, drosophila), obtained from the
SCENIC+ database'". Thus, we compute marker transcription factors using moscot’s capability
to compute marker features. Moreover, we perform a differential motif activity test (Wilcoxon test
using scanpy’s rank_genes_groups) based on the ChromVAR scores. Subsequently, we find our marker
motifs by combining these two sources of information. Therefore, we only keep marker TFs for which
we have an associated transcription factor.

2.2 Spatial analysis

2.2.1 Benchmark: moscot.space.mapping across a range of spatial datasets

We benchmarked moscot’s MappingProblem against two state of the arts methods: Tangram®® and

gimVI''7  as implemented in scVI tools'®. We employed the datasets collected by Li et al.**. We
chose all datasets from Li et al. that we were able to reprocess, result in 14 ones considered for the
benchmark. Furthermore, in contrast to the original benchmark, we do not employ the single-cell
dataset as reference, since we are not confident that such data represents a faithful ground truth
for method comparison. Therefore, we split the spatial dataset in 50% of the data points treated as
single-cell reference and 50% treated as spatial data. We also explicitly maintain the data type at
input consistent with model requirements, therefore we normalize and scale counts for both moscot
and Tangram and we keep raw unnormalized counts for gimVI. We randomly hold out 100 genes if
the total number of genes in a dataset is > 2000, otherwise we hold out 10 genes. We train models
on the remaining genes and evaluate performance based on Spearman correlation. We report the
mean Spearman correlations across 3 random seeds (including random seeds both for dataset split
and initialization/training routines). For some datasets, Tangram or gimVI could not be run either
due to time complexity (we set a maximum budget of 5 gpu/hours for each method to run) or errors
of the models (e.g. inability to match gene ids between train and impute data). The budget for
hyperparameters was the same (6 configurations) for each model. Specifically, we ran the sweep on
these parameters:

e moscot: epsilon (entropy regularization parameter) and alpha (interpolation parameter be-
tween W-term and GW-term).

e Tangram: learning rate and number of epochs.
e gimVI: number of epochs and number of latent dimensions.

We also report memory and time complexity for each algorithm across datasets and seeds. All
experiments were run on GPU on the Helmholtz Cluster (mix of V100 an A100 GPUs). Benchmarks
were run using SEML 98,
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Spatial correspondence Spatifl'¥EPRSPIHAGTRY & COIRPHIR K Rllows: First, we compute n in-
creasing spatial distance (Euclidean) thresholds between all data points in the dataset. Then, at each
threshold level, we compute the gene expression similarity (Euclidean distance) between all genes in
all the spots whose (Euclidean) distance is below the selected threshold. Spatial correspondence is
then calculated as the Pearson correlation between gene expression similarity and the spatial distance
thresholds. The method is available in moscot . problems. space.MappingProblem. spatial_correspondence.

2.2.2 Application: moscot.space.mapping on the liver

We applied moscot.space’s MappingProblem to the mouse liver dataset from Vizgen MERSCOPE
downloaded from https://vizgen.com/data-release-program/. We processed the dataset following
standard scanpy ** and squidpy °* processing. For the single-cell reference, we downloaded the CITE-
seq dataset from here: https://www.livercellatlas.org/. The dataset was first reported in Guilliams
et al. 1%, We used the MappingProblem in the follwing way: we used the set of 336 common genes
for the linear term while in the quadratic term we used the PCA of gene expression for the single-
cell reference dataset and the PCA gene expression concatenated to the spatial coordinates for
the spatial dataset. We then performed the gene expression and protein imputation by computing
the barycentric projection of protein expression to the spatial dataset (Subsection 1.3). The same
barycentric projection approach was also used to transfer annotations of cell types from the single-cell
reference to the spatial dataset.

2.2.3 Benchmark: moscot.space.alignment on simulated data

We benchmarked moscot’s AlignmentProblem against two other state-of-the-art alignment methods:
PASTE ' and GPSA%. We chose the same computational budgets across all methods, that is 12
unique sets of hyperparameters:

e Moscot: epsilon (entropy regularization parameter) and alpha (interpolation parameter be-
tween W-term and GW-term).

e PASTE: alpha (interpolation parameter between W-term and GW-term) and norm (scaling of
the cost matrix). Please refer to PASTE'°.

o GPSA: kernel (kernel for the Gaussian Process), n_ epochs (number of epochs) and Ir (learning
rate). Please refer to GPSA%.

Due to the inability to run GPSA on GPU, we ran all methods on CPU. We generated four synthetic
datasets based on the data generation described in®. In short, samples from random normal dis-
tribution are generated to build a synthetic gene expression file arranged in a grid. Points are then
randomly subsampled by a fraction of 0.7, 0.8, 0.9 of the original datasets, so that the total number
of points do not match in the source and target dataset. This is a similar benchmark settings as
the one proposed by Jones et al.%® and Zeira et al.'", yet to make all three methods comparable
we decided to use the barycentric projection 17 of spatial coordinates with respect to the coupling
for both PASTE 'Y and moscot. Because of the low sample size of the experiments, we ran moscot
in full rank mode (as opposed to low rank mode). Larger dataset, such as the one analyzed in the
main text, would be prohibitively large for both PASTE and GPSA.

2.2.4 Application: moscot.space.alignment on mouse brain coronal sections

We applied moscot’s AlignmentProblem to a large scale MERFISH dataset from Vizgen Merscope
https://vizgen.com/data-release-program/, specifically, to two sections of the mouse coronal brain.
We aligned three samples from three different mice for each section. We performed the first alignment
with the moscot’s AlignmentProblem, in the "affine" mode (Subsection 1.4 and Equation (19)). Thus,
we obtained 2 of the 3 slices aligned to the remaining one, chosen as reference. Furthermore, we
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performed a second alignment oY HRWERLRRCIBICHP NI RIS W-type problem to obtain an
improved warped alignment. This turned out to prove useful in low rank settings. We performed
the same operations for both triplets of coronal sections.

Gene consistency analysis of aligned slices We assessed the quality of the alignment based on
gene expression only, as we do not have cell type annotations for the brain sections of interest. To
this end, we computed the neighbor graph in the aligned space with squidpy®® (knn mode with at
least 30 neighbors for each observation). Then, for each gene, we filtered cells with no expression,
and retrieved neighbors of the reference section (0) from the two other sections (1 and 2). We then
assessed the gene expression histogram across all cells in the query sections that are neighbors in the
reference section, and reported the expression of the gene of interest. We performed this analysis
across all genes and reported the L1 Wasserstein distance between gene expression histograms. A
low L1 Wasserstein distance between the gene expression density of the query section and the gene
expression density of the reference section means that the set of cells in the reference is similar to the
matches cells of the aligned section. On the opposite, if the L1 Wasserstein distance is high, it means
that neighboring cells in query and reference slides are not similar in gene expression distribution,
highlighting a potential mismatch in the alignment. It should be noted that a source of such a mis-
match could also be the intrinsic biological variability between tissue sections. Nevertheless, because
we don’t have access to tissue sections annotations we decided to use the gene expression similarity
metric described above to quantitatively evaluate the alignment. We further evaluated whether the
distribution of L1 Wasserstein distance between query and reference sections showed a correlation
with the mean expression of the gene. We did not observe a strong association highlighting the fact
that this analysis is robust to gene expression variability. All results are reported in Supplementary
Figure 10.

2.3 Spatiotemporal analysis
2.3.1 Application: moscot.spatiotemporal on mouse embryogenesis StereoSeq data

Preprocessing We used the mouse embryogenesis StereoSeq data generated by%. The data was
preprocessed and annotated by Chen et al.%¢ and available to be downloaded as AnnData objects
from https://db.cngb.org/stomics/mosta/. In the reported analysis, for full embryo mapping, we
use "Mouse embryo all stage.hbad", a file containing a single slide for each time point. This file
was also used to extract brain cells from early time points. For the latest time point, E16.5, we used
the detailed brain annotation slide given in "16.5 E1S3 cell bin whole brain.hbad". For each
section, we used the "count" layer and performed standard preprocessing with scanpy. We filtered
cells (min_ genes = 200) and genes (min_ cells = 3), normalized cell counts and log-transformed the
data.

To perform analysis over brain cells, and transfer the cell type annotation from E16.5 to earlier time
points (E13.5-E15.5), we extracted cells annotated as "Brain" from the full embryo AnnData object
and merged with the E16.5 annotated brain AnnData object.

Mapping accuracy We used moscot.spatiotemporal on each time pair of the data and calculated
cell state transition rates. We compared the accuracy to moscot.time using the germ-layer and cell
type transition accuracy (see 2.1). In both cases we fixed epsilon (¢ = le — 3), used the low-rank
approach (rank= 500, v = 10) and evaluated using biologically informed priors based on growth-
and death rate modeling computed by moscot. For moscot.spatiotemporalwe also performed a
grid search for the interpolation parameter, o € {0,0.2,0.4,0.6,0.8,0.9,0.99}.

Mapping annotations across time points We used the detailed cell type annotation provided for
E16.5 brain to infer annotations of earlier time points. We mapped cells across time points using
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the optimal a identified in the fAYPEAIHYISACTTEIS QINERHBHIFFSHL (rank—10000), now possible
as we are considering a sub-population of the cells. To obtain the cell annotation we start from the
last couple (E15.5, E16.5) and used the moscot.spatiotemporal cell-transition matrix aggregated
over cell types. We assigned each cell at E15.5 with the most probable cell type. Once we had
the annotations for E15.5 we repeated this procedure towards earlier time points. To evaluate the
accuracy of the annotations we used Scanpy’s®® rank_genes_groups with respect to the inferred
annotations. For each cell type we queried whether the marker genes reported by Chen et al.% are
within the top 50 ranked genes. We reported the percentage of cells types for which this condition
holds.

CellRank analysis We used CellRank 'Y, a computational fate mapping tool, to infer marker genes
associated with terminal cell states. To define the CellRank kernel, K, a matrix containing cells
from all time points which is used to obtain the transition probabilities between cells we followed
these steps:

1. Obtain a sparse representation of the moscot.spatiotemporal cell transition maps. These
cell transition matrices occupy the superdiagonal of K as they transport cells from early to
late time points.

2. Compute the transition matrices within each time point based on gene expression similarity.
These values occupy the diagonal of K.

3. Combine the above with weights 0.9 and 0.1, respectively to obtain K.
4. Row normalize K.

We used CellRank’s GPCCA estimator 12 to compute terminal states, independently, for the full
embryo and brain cells. We defined each terminal state by assigning the most likely 30 cells to it. We
computed absorption probabilities on the Markov chain towards these combined cell sets per terminal
state group, and interpreted these as fate probabilities. We correlated each gene’s expression with
the computed fate probabilities across all cells. We identified the top 20 most strongly correlated
genes and transcription factors per terminal cell group. The list of mice transcription factors was
downloaded from AnimalTFDB.
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