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Abstract

Accurate assessment of the intrinsic period of the human circadian pacemaker is es-

sential for a quantitative understanding of how our circadian rhythms are synchronised

to exposure to natural and man-made light-dark cycles. The gold standard method for

assessing intrinsic period in humans is forced desynchrony (FD) which assumes that the

confounding effect of light on assessment of intrinsic period is removed by scheduling

sleep-wake and associated dim light-dark (LD) cycles to periods outside the range of en-

trainment of the circadian pacemaker. However, the observation that the mean period

of free-running blind people is longer than the mean period of sighted people assessed

by FD (24.50 ± 0.17 h versus 24.15 ± 0.20 h, p < 0.001) appears inconsistent with this

assertion. Here, we present a mathematical analysis using a simple parametric model of

the circadian pacemaker with a sinusoidal velocity response curve (VRC) describing the

effect of light on the speed of the oscillator. The analysis shows that the shorter period

in FD may be explained by exquisite sensitivity of the human circadian pacemaker to low

light intensities and a VRC with a larger advance region than delay region. The main

implication of this analysis, which generates new and testable predictions, is that current

quantitative models for predicting how light exposure affects entrainment of the human

circadian system may not accurately capture the effect of dim light. The mathemati-

cal analysis generates new predictions which can be tested in laboratory experiments.

These findings have implications for managing healthy entrainment of human circadian

clocks in societies with abundant access to light sources with powerful biological effects.
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Introduction

Appropriate timing of physiology and behaviour to temporal niches associated with geo-

physical cycles contributes to fitness of biological systems (West and Bechtold, 2015), in-

cluding the health of humans (Fishbein et al., 2021). This ‘appropriate timing’ is reflected

in 24-hour rhythmic variation in gene expression, translation, physiology and behaviour

and is referred to as circadian rhythmicity. A defining feature of circadian rhythms is that

they are self-sustaining (Pittendrigh, 1960). The rhythms are generated by oscillators,

whose activity persists in the absence of cyclical changes, known as zeitgebers, in the

external environment (Aschoff, 1960). In the study of the central circadian pacemaker

in mammals, the intrinsic period refers to the period of the pacemaker in the absence of

zeitgebers. The intrinsic period is close to, but rarely equal to, 24 hours (Czeisler et al.,

1999) and entrainment to 24 hours is achieved by an adjustment to the intrinsic rhythm of

the pacemaker through exposure to 24-hour zeitgebers (Daan, 1977, 2000).

Accurate estimation of the intrinsic period is important for two main reasons. First, the in-

trinsic period is a key factor in determining whether the pacemaker can entrain to 24-hour

light-dark (LD) cycles, since the magnitude of the adjustment required for entrainment

depends on the difference between the intrinsic period and the period of the LD cycle

(Pittendrigh and Daan, 1976b). Second, when the pacemaker entrains to LD cycles,

the intrinsic period determines the phase of entrainment, i.e., the timing of endogenous

rhythmicity relative to the zeitgeber, with longer intrinsic period associated with later sleep

timing (Duffy et al., 2001). Thus the intrinsic period of the circadian pacemaker and its

variation between individuals informs the interpretation of circadian rhythm sleep-wake

disorders (Meyer et al., 2022; Micic et al., 2016) as well as the variation in the timing of
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rhythmicity in the general population. For example, mathematical models suggest that

those with a longer intrinsic period are more sensitive to the delaying effects of access

to evening light (Skeldon et al., 2017). Furthermore, guidelines on healthy light exposure

requirements critically depend on an assessment of the average and between individual

variation of this key parameter along with the sensitivity of the pacemaker to light.

The most reliable way to assess the intrinsic period of the pacemaker is to place a person

or animal in DD. This is because in constant darkness (DD), the principal zeitgeber to

the pacemaker, namely light (Czeisler et al., 1981; Dijk et al., 1995), is removed. The

rest-activity cycle and behaviours associated with the rest-activity cycle, such as feeding,

persist in DD, but the non-uniform distribution of these behaviours across the circadian

cycle are assumed not to affect the period of the pacemaker to a significant extent, but

see (Kas and Edgar, 2001). In nocturnal animals, the period in DD is measured readily

(Pittendrigh and Daan, 1976a), but there are practical and ethical barriers to studying

sighted humans in DD. Consequently, sighted people are rarely studied in DD, although in

the 1970’s Rütger Wever did assess the intrinsic period of five sighted humans who lived

in DD for approximately two weeks (Wever, 1979). The intrinsic period of humans has

traditionally been assessed in classical free-run (Wever, 1979) and forced desynchrony

(FD) protocols (Czeisler et al., 1999; Wang et al., 2023). In FD, participants are exposed

to LD cycles with a period very different from 24 h, usually 28 h or 20 h. In standard

protocols, lights are on and participants are required to be awake for two-thirds of the time.

Lights are off and participants are in bed and encouraged to sleep for the remaining one-

third. With 28 (20) h cycles, wake is therefore scheduled to occur 4 h later (earlier) each

day. Since 28 (20) h is outside the limits of entrainment, over the course of (an integer

multiple of) 6 light / dark cycles the circadian clock is exposed to light at (approximately)
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all different phases. In this design, the aim is to minimise the effects of light, to allow the

human circadian clock to progress at its natural period.

More recently, the intrinsic period has been assessed by measuring the in vitro period of

fibroblasts taken from individual participants (Pagani et al., 2010). The fibroblast period

is measured by introducing firefly luciferase genes into the fibroblast cells via a lentivirus.

Since the expression of firefly luciferase is then driven by the circadian gene Bmal1, the

fibroblasts exhibit periodic patterns of bioluminescence which are measured via luminom-

etry.

Fig. 1 summarises estimates of the intrinsic period in blind and sighted humans using

these various methods. Here, only blind participants with non-entrained rhythms are

included, where blind means having no subjective perception of light. For studies where

melatonin suppression was measured, we have further restricted to those who had no

melatonin suppression by light. For example, FlynnEvans et al. (2014) studied 127 blind

people of whom 41 had no light perception and 16 of these were nonentrained. In Fig. 1,

only the 16 nonentrained participants are included.
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Figure 1: Estimates of the intrinsic period of the circadian pacemaker in blind and
sighted humans using various protocols. Circles indicate the mean with the horizon-
tal bars indicating the mean +/− the standard deviation. Where available, the square
brackets indicate the range of the measurements. In some cases (e.g. Lewy et al., 2004)
where the studies only include a small number of participants the distribution of periods
is skewed so that the smallest value recorded is greater than the (mean − standard devi-
ation). The grey vertical lines indicate accepted values for the circadian period of sighted
(as measured in forced desynchrony) and blind individuals respectively.
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In Fig. 1 it can be seen that the mean period of blind people is consistent across different

protocols (Emens et al., 2010; Hack et al., 2003; Hull, 2009; Kendall et al., 2001; Klerman

et al., 1998; Lewy et al., 2004; Lockley et al., 1997; Lund et al., 1974, Sack et al., 1992),

and consistent within individuals assessed in both free-running field conditions and in an

FD protocol in the laboratory (Hull, 2009). In contrast, the mean period of sighted people

is variable depending on the protocol (Duffy et al., 2011; Hasan et al., 2012; Wever,

1979). The period of sighted people in DD is consistent with intrinsic period estimates

in the blind. In addition, there is no significant difference between the mean period of

fibroblasts from sighted people and the period of fibroblasts from blind people (p = 0.17).

The reported standard deviations of estimates of periods appear larger in classical free

run and fibroblasts than observed in FD protocols but are similar between sighted people

in FD and assessments in the blind.

Motivated by concerns over the impact of room lighting in classical free run protocols,

forced desynchrony (FD) has emerged as a widely accepted gold standard method for

assessing the intrinsic period of the circadian pacemaker in sighted humans (Dijk et al.,

2020; Wang et al., 2023). It has been proposed that the shorter period of sighted people

in FD compared to blind people is due to after-effects of prior entrainment in sighted

people (Duffy et al., 2005). The presence of after-effects implies that the period of sighted

people in FD should be variable depending on prior period of entrainment. However, in

humans, the period of the zeitgeber during prior entrainment appears to have only a

modest effect on the subsequent period of the pacemaker in FD (mean difference 0.1 h)

(Scheer et al., 2007). It is also interesting, and maybe surprising, to note that the average

period of fibroblasts in both sighted and blind people in vitro are comparable with each

other and similar to the intrinsic period of blind people, see Fig. 1, although in sighted
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participants the fibroblast period does not correlate with the period of plasma melatonin

as assessed in FD (Hasan et al., 2012).

In classical free-run, the self-selected light exposure of participants is likely to modulate

the period of the pacemaker in sighted people (Klerman et al., 1996). In order to minimise

the effect of light, FD protocols aim to distribute light evenly over the circadian cycle and

use dim light. For example, in Wang et al. (2023) it is recommended that light levels

in FD should be less than 15 lux, and it is reported that in many FD experiments light of

intensity less than four lux has been used. Even at these low intensities, there is evidence

that dim LD cycles may modulate the period of sighted people. For example, Wright et

al. (2001) demonstrated that sighted people can entrain to dim (≈ 1.5 lux) 24-h LD cycles

in a carefully controlled experiment with an imposed 8:16 rest:activity cycle.

In view of these discrepancies and unresolved issues relating to the intrinsic period of the

human circadian pacemaker, and an absence of a formal mathematical analysis of how

light may affect the human circadian pacemaker, a further analysis seems warranted.

Here, we use a simple mathematical model of the circadian pacemaker to describe the

effect of dim LD cycles on the circadian pacemaker in sighted humans. Using this model,

we derive an expression relating the period in FD to the intrinsic period, which highlights

the dependence of assessed period on the symmetry of the velocity response curve in

the model. We estimate parameters of our model using Wright’s data on the entrainment

of humans to dim LD cycles (Wright et al., 2001). Then, we present a hypothesis for the

observed shorter period of sighted people in FD compared to blind people. We describe

experimental protocols to test this hypothesis. Our hypothesis offers one solution to a

long-standing discrepancy and has implications for quantitative models that predict the

effect of the light environment as mandated by policies about light exposure requirements
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and work schedules.

Methods

Simple clock model of the human circadian pacemaker for dim light condi-
tions

It is well established that the human circadian pacemaker behaves as a phase-amplitude

oscillator, perturbations of which can lead to changes in phase and amplitude (Czeisler et

al., 1989; Khalsa et al., 1997; Strogatz, 1990). Kronauer’s model of the human circadian

pacemaker (Jewett and Kronauer, 1998) and its later versions (Forger et al., 1999; Jewett

et al., 1999; St Hilaire et al., 2007) are the most widely used in human circadian research.

These models were designed to replicate phase resetting studies, including amplitude re-

duction, type-1 and type-0 phase resetting (Khalsa et al., 1997). These models are cur-

rently being used to predict human circadian phase from ambulatory light data (Huang et

al., 2021; Rea et al., 2020; Woelders et al., 2017) across a range of populations including

students (Phillips et al., 2017) and shiftworkers (Stone et al., 2019) and are competitive

with traditional phase assessment methods in terms of accuracy (Dijk and Duffy, 2020).

Kronauer-type models have been used to suggest interventions to minimise the disrup-

tive effects of jet-lag (Serkh and Forger, 2014), non-24 h sleep/wake disorder, shiftwork

and social jetlag (Diekman and Bose, 2022). Kronauer-type models have also been com-

bined with models of sleep regulation to investigate changes in sleep timing preferences

(Phillips et al., 2010; Skeldon et al., 2016), sleepiness and cognitive performance due to

shift-working (Postnova et al., 2014; Postnova et al., 2018), the impact of light and social

constraints on sleep timing preferences and social jet lag (Skeldon et al., 2017), the ef-

9

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.07.14.549062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549062
http://creativecommons.org/licenses/by-nd/4.0/


fects of daylight saving (Skeldon and Dijk, 2019), and used to propose quantitative light

‘availability’ interventions (Skeldon et al., 2022) to normalize sleep timing.

All the Kronauer-type models use a two-dimensional oscillator with a strongly attracting

limit cycle to reproduce the self-sustaining activity of the clock coupled with a model for the

effect of light on the clock. Earlier versions of the model were developed from experiments

in which the light intensity varied from 10 lux to 9500 lux. The most recent version (St

Hilaire, 2007) was adapted to more accurately reflect light sensitivity for intensities below

150 lux and additionally includes a non-photic zeitgeber. Here, the focus is on the effect of

dim light, which constitutes a weak zeitgeber. It has been established that models with a

strongly attracting limit cycle when exposed to a weak zeitgeber are well-approximated by

phase only models (Guckenheimer and Holmes, 1983) (see the Supplementary Material

for further details). Therefore, for the purpose of analyzing the effects of dim light, here

we use a simple phase-only model. In addition, we assume that the effect of light is to

continuously modulate the velocity of the clock, which means that the model is parametric.

Parametric models are generally considered to be good models of the circadian system

in diurnal animals (Daan, 2000).

In phase-only models, the state of the clock at any time is described only by its phase

ϕ ∈ S1. In line with experimental conventions, we specify that ϕ = 0 represents the

circadian minimum, which is the state of the pacemaker when the core body temperature

is at its minimum (CBTmin). Dim light melatonin onset (DLMO) usually occurs about 7

h before the circadian minimum (Benloucif et al., 2005; Brown et al., 1997; Dijk et al.,

1999). With the assumption that the clock velocity is approximately equal to 2π (24 h)−1

between DLMO and CBTmin, the phase of the pacemaker at DLMO is then ϕ =17 × 2π/24.

(The assumption that in dim light and / or darkness the clock progresses approximately
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uniformly is made in both phase-only models (see equation (1) and implicitly in Kronauer-

type models (see the Supplementary Material)) .

The velocity ϕ̇ of the clock is the rate of change of phase. In phase-only parametric

models,

ϕ̇ = ω +B(t)R(ϕ), (1)

where ω > 0 is the intrinsic velocity, B(t) is the stimulus produced by the LD cycles, R(ϕ)

is the velocity response curve (VRC) to light, and ϕ ∈ S1. The intrinsic period of the clock

is τ = 2π/ω. The product B(t)R(ϕ) is called the velocity response of the clock to light.

In parametric models, LD cycles of period T in which lights are on for M of the time

produce a stimulus of the form

B(t) =

{
L, when lights are on, t (modT ) ∈ [0,M),

0, when lights are off, t (modT ) ∈ [M,T )
(2)

where L > 0 and depends on the intensity of light. Here we assume that L is constant

throughout the light period, which is a reasonable assumption for laboratory protocols.

The stimulus in equation (2) represents the tonic effect of light on the pacemaker (Daan,

1977).

In parametric models, the VRC typically contains an advance region, in which the effect

of a stimulus is to speed up the clock, and a delay region, in which the effect of a stimulus

is to slow down the clock. The VRC is a periodic function with period 2π so that it can be

represented as a Fourier series,

R(ϕ) = R+
∞∑
j=1

aj sin(jϕ− bj), (3)

where

R =
1

2π

∫ 2π

0
R(ϕ) dϕ,
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is the mean level of the VRC.

In phase-only parametric models, the effect of light on the velocity of the clock is assumed

to be smaller than the intrinsic velocity, that is

|B(t)R(ϕ)| < ω, (4)

so that the phase of the clock advances monotonically. A schematic of the core body

temperature rhythm and an example VRC are shown in Fig. 2.
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Figure 2: Schematic diagrams of the core body temperature (CBT), plasma mela-
tonin rhythms and the velocity response curve (VRC) in humans. CBT and plasma
melatonin rhythms are shown in (a). The minimum of the CBT occurs at circadian phase
ϕ = 0, and dim light melatonin onset occurs at phase ϕ = 17π/12. In (b) sinusoidal veloc-
ity response curves R1(ϕ) = c+sin(ϕ−b) are shown for b = 0.5 and three different values
of the parameter c. In each case the VRC has an advance region and a delay region.
The sizes and positions of the advance and delay regions depend on the parameters b
and c. The crossover from delay to advance occurs at phase b− sin−1(c) ≈ b− c and the
width of the delay region is π − 2 sin−1(c) ≈ π − 2c, where the approximations are valid
for small c.
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Results

Analytical expression for the period in forced desynchrony protocols as
found using the simple clock model

In experiments, the mean period in FD is evaluated in one of two ways. When data of

a phase marker such as core body temperature is collected throughout the protocol the

non-orthogonal spectral analysis (NOSA) algorithm is used. The NOSA algorithm fits

a mathematical function consisting of Fourier components for the mean period in forced

desynchrony, τFD, Fourier components for evoked behaviour with a period of the LD cycle

and a correlated noise term (Brown et al., 1997; Czeisler et al., 1999). Alternatively, the

interval of time t between two occurrences of a biological phase marker such as the

CBTmin or DLMO is measured. The first occurrence is near the start of the FD protocol,

and the second occurrence is near its end. The mean period is given by the quotient t/n,

where n is the number of circadian clock cycles in the interval t (Eastman et al., 2015;

Scheer et al., 2007).

Using the simple clock model the mean period may be calculated as follows. If the FD

protocol consists of N LD cycles each with period T and the phase of the clock at the

start of the protocol is ϕ0, then the phase at the end of the protocol is found by integrating

equation (1) with initial condition ϕ(0) = ϕ0 to find the phase at the end of the protocol,

ϕ(NT ),

ϕ(NT ) = ϕ(0) +

∫ NT

0
[ω +B(t)R(ϕ)] dt. (5)

The total change in phase ∆ϕTot during the protocol is then given by

∆ϕTot = ϕ(NT )− ϕ(0) + 2nπ,
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where n is the number of times the clock traverses ϕ = 0 in the interval NT . The mean

angular velocity of the clock is

ωFD =
∆ϕTot
NT

,

and the mean period of the clock evaluated in FD is

τFD =
2π

ωFD
.

Since the simple clock model does not include noise or evoked effects (e.g. the effect

of the sleep-wake cycle on the circadian-regulated core body temperature) and there is

no experimental error in calculating the phase, calculating the change in phase from the

beginning to end of the protocol should lead to an accurate determination of τFD.

In general, it is difficult to carry out the integral in equation (5), and hence find τFD, without

resorting to numerical methods and simulation. While simulation is an extremely useful

technique and has previously been used to optimise FD protocol design (e.g. Lok et

al., 2022; Stack et al., 2017), an analytical expression is even more powerful, giving

a general understanding of which factors are important. Here, we derive an analytical

expression for the period found in FD valid for dim LD cycles and intrinsic periods close

to 24 h. We have included (most of) the derivation of the analytical expression in the

next two subsections with some steps relegated to the Supplementary Material. The

less mathematically-inclined reader may want to skip ahead to equation (14), which gives

our expression for the mean period in FD (τFD), and the subsequent discussion of the

implications and accuracy of our expression.
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Analytical expressions for the phase transition curve and the mean angular veloc-
ity

We first construct an expression for the mean angular velocity, ωFD in terms of the cu-

mulative phase response across the whole protocol by considering the phase transition

curve. First we consider the phase after a single LD cycle in FD, starting at t = 0 and

ending at t = T , where T is the period of the LD cycles in FD. The function that gives

the phase at the end of the LD cycle is known as the phase transition curve (PTC),

g(ϕ(0)) = g(ϕ0), where

g(ϕ0) = ϕ(T ) = ϕ0 +

∫ T

0
[ω +B(t)R(ϕ)] dt− 2nπ,

= ϕ0 + ωT +

∫ T

0
B(t)R(ϕ)dt− 2nπ, (6)

where n is the number of times the clock traverses ϕ = 0 in the interval from t = 0

to t = T . Equation (6) essentially states that the phase at the end of the cycle is the

phase at the beginning of the cycle ϕ0, plus the phase change due to the intrinsic angular

velocity of the clock, ωT , plus a phase change due to the effect of the zeitgeber, namely

P (ϕ0) =

∫ T

0
B(t)R(ϕ)dt, (7)

where P (ϕ0) is known as the phase response curve (PRC). Subtracting 2nπ ensures that

the value of g(ϕ0) remains within the interval [0, 2π). The PTC and hence the PRC may

be evaluated for any ϕ0 ∈ [0, 2π) by integrating the differential equation in (1).

More generally, defining ϕk = ϕ(kT ), then using equations (6) and (7), the phase after

each LD cycle is given by the following circle map:

ϕk+1 =
[
ϕk + ωT + P (ϕk)

]
mod 2π. (8)
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In other words, starting at ϕ0, after one LD cycle the phase will be ϕ1, after the next LD

cycle the phase will be ϕ2, etc. This sequence of phases can be visualised by plotting

the phase transition curve and constructing the ‘cobweb’ diagram, see Fig. 3 for two

examples.
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Figure 3: The phase transition curve as a one dimensional map. Cobweb diagrams
illustrating the map in (8) in simulations of FD are shown for LD cycles with different
periods: (a) T =28 h with M = 18.7 h i.e. LD cycles with 18.7 h of light and 9.3 h of dark
and (b) T =20 h with M = 13.3 h, i.e. LD cycles with 13.3 h of light and 6.7 h of dark. In
each case, the phase transition curve is shown in red. The phase-only model with VRC
R(ϕ) = sinϕ was used with initial phase ϕ0 = 0.

Having calculated the phase after one LD cycle, we can now calculate the phase after N

LD cycles as follows. From equation (8),

ϕ1 =
[
ϕ0 + ωT + P (ϕ0)

]
mod 2π.

ϕ2 =
[
ϕ1 + ωT + P (ϕ1)

]
mod 2π.

=
[
ϕ0 + 2ωT + P (ϕ1) + P (ϕ0)

]
mod 2π,

ϕ3 = . . .
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So after N cycles,

ϕN =

[
ϕ0 + ωNT +

N−1∑
k=0

P (ϕk)

]
mod 2π.

Hence the total change in phase ∆ϕTot over the course of the FD protocol can be ex-

pressed as

∆ϕTot = ωNT +
N−1∑
k=0

P (ϕk),

where the first term on the right hand side describes the total change in phase due to the

natural angular velocity of the clock and the second term describes the cumulative phase

response to successive LD cycles. The mean angular velocity is then:

ωFD = ω

(
1 +

1

NT̂

N−1∑
k=0

P (ϕk)

)
, (9)

where T̂ = ωT . In the next section, we derive an approximate expression for P (ϕk),

which leads to an approximate expression for ωFD.

Approximate expression for the cumulative phase response across a forced desyn-
chrony protocol

In order to calculate the mean angular velocity ωFD, and hence period, in forced desyn-

chrony an expression for the cumulative phase response given by the sum term on the

right hand side of equation (9) is needed. This is a difficult problem in general, but an

approximation can be derived by making two reasonable assumptions, namely that the

effect of dim LD cycles is small and that the intrinsic circadian period is close to 24 hours.

We first consider the phase response to a single cycle P (ϕ0). Substituting for B(t) in

equation (7) using equation (2) gives

P (ϕ0) = L

∫ M

0
R(ϕ) dt, (10)
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where M is the length of the light period and L is the magnitude of the stimulus. Using

equation (1) to change the variable of integration in equation (10) from t to ϕ gives an

implicit relation between the PRC and the VRC:

P (ϕ0) = A

∫ ϕ0+ωM+P (ϕ0)

ϕ0

R(ϕ)

1 +AR(ϕ)
dϕ, (11)

where A = L/ω. We assume that A = ϵ ≪ 1, that is, the effect of dim light on the

angular velocity of the clock is small compared to the intrinsic angular velocity. Then,

Taylor expanding the integrand near ϵ = 0 and using the fact that P (ϕ0) is O(ϵ), equation

(11) gives

P (ϕ0) = ϵ

∫ ϕ0+ωM+O(ϵ)

ϕ0

R(ϕ)− ϵR2(ϕ) +O(ϵ2) dϕ.

Thus,

P (ϕ0) = ϵ

∫ ϕ0+ωM

ϕ0

R(ϕ) dϕ+O(ϵ2). (12)

Using the further assumption that the intrinsic period τ = 2π/ω is close to 24 h, that is

τ = Tsolar(1 + δ), where Tsolar = 24 h and |δ| ≪ 1, (for example, when τ = 24.45 h,

δ =0.019), in the Supplementary Material we show

1

NT̂

N−1∑
k=0

P (ϕk) = ϵfR+O(Nϵδ,Nϵ2), (13)

where f =M/T is the fraction of the LD cycle that is the photoperiod.

Approximate expression for the period measured in forced desynchrony protocols

Finally, combining equation (13) with (9) leads to an expression for the angular velocity in

FD,

ωFD = ω
[
1 + ϵfR+O(Nϵδ,Nϵ2)

]
.
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If the O(Nϵδ,Nϵ2) terms are negligible, which means that the stimulus induced by the

dim LD cycles is sufficiently small (small ϵ) and the intrinsic circadian period is sufficiently

close to 24 hours (small δ), then

τFD ≈ τ(1− ϵfR). (14)

Implications and accuracy of the approximate expression for τFD

Implications of the approximate expression for τFD

Equation (14) states that, to lowest order, the observed circadian period in FD, τFD will

be the same as the intrinsic circadian period τ . However, unless the VRC has a mean

of zero (R = 0) so that it has equal size advance and delay regions, there will be small

correction terms. The magnitude of these correction terms will be proportional to the

magnitude of the stimulus produced by dim LD cycles ϵ, the degree of asymmetry R in

the VRC and the fraction of the time that the lights are on f .

So, if the advance region is larger than the delay region (R > 0) then FD underestimates

the intrinsic period. Whereas if the advance region is smaller than the delay region (R <

0) then FD overestimates the intrinsic period. For illustration, equation (14) is plotted in

Fig. 4 for three different values of the asymmetry parameter, R, and two different values of

the intrinsic circadian period (τ =24.15 h and τ =24.45 h corresponding to δ = 0.006 and

δ = 0.019 respectively) as a function of the stimulus strength ϵ. Hence, as shown in Fig. 4

panel (b), the discrepancy between the period of 24.45 h found in the blind and of 24.15

h found in sighted people in FD protocols in which the lights are on for two-thirds of the

time (f =2/3), could, for example, be explained by an asymmetry parameter of 0.49 with

a stimulus strength of 0.038. Any combination ϵR = 0.018 can explain the discrepancy.
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Here we have chosen to use a stimulus strength of 0.038 because of the fitting discussed

below in the ‘Parameter estimation’ section.

Furthermore, equation (14), predicts that the distribution of circadian periods measured

in FD will be similar to the distribution of intrinsic circadian periods. For example, if τ =

24.45 h, ϵ = 0.038 and R =0.49, then the standard deviation of τFD will be smaller, but

negligibly so, than the standard deviation of τ (approximately 2% smaller).

Equation (14) also suggests possible approaches for assessing if there is asymmetry in

the VRC. Specifically, since the size of the deviation from the intrinsic period is dependent

on the fraction of time in which lights are on, f , our analysis predicts that if there is

asymmetry in the VRC sufficient to explain the difference between the observed periods

in blind and sighted people, then the period in dim 7:13 LD cycles (f =0.35), should

be approximately 0.14 h longer than the period in dim 13:7 LD cycles (where f =0.65).

Meanwhile, if the assumption that the VRC is symmetric is valid, there should be no

difference between the period in dim 7:13 LD cycles and dim 13:7 LD cycles, see Fig. 4,

panels (c)-(f).
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Figure 4: Effect of zeitgeber strength, VRC asymmetry and duration of light period
on the observed circadian period in forced desynchrony (FD): predictions using
a phase-only model. Upper panels show the period in FD predicted by equation (14)
(dashed lines) for a protocol in which the lights are on for two-thirds of the time (f =2/3).
For comparison, simulations of a 12 LD-cycle FD protocol for T =28 h light-dark (LD)
cycles (red) and T =20 h LD (blue) are shown. Results are shown for three values of the
asymmetry parameter R and this for both τ =24.15 h (panel (a)), and τ =24.45 h (panel
(b)). For the simulations, the angular velocity response curve R(ϕ) = R1(ϕ) = c + sinϕ
was used, where c = R, with ϕ0 = 0. The lower panels show the effect on observed
period of the fraction of time that lights are on for c = R = 0 (panel(c)) and c = R = 0.49
(panel (d)). The light stimulus parameter ϵ = 0.038 in both cases. Panels (e) and (f) then
show the predicted population distribution of periods measured in FD for a symmetric and
an asymmetric VRC respectively.
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Accuracy of the analytical expression for τFD

In order to illustrate the accuracy of our analytical expression, we compare it to simula-

tions of FD using a simple clock model, see Fig. 4. Equation (14) holds for a general VRC

with mean value R. However, for simulations and fitting to data a form for the VRC must

be specified. Here, we have taken the lowest order truncation of the Fourier series given

in equation (15), namely,

R1(ϕ) = c+ sin(ϕ− b), (15)

where the VRC to light has been scaled in such a way that the coefficient of the sine term

is unity, see Fig. 2. For this specific form for the VRC, R = c. Results are shown for two

different values of the cycle length (20 h and 28 h).

Equation (14) assumes that ϵ and δ are small. Fig. 4 shows that, as is to be expected

in an asymptotic analysis, the simulated circadian period deviates from the approximate

analytical formula as ϵ increases. The deviation is bigger when δ is bigger i.e. the devi-

ation from the approximate formula is greater in the right hand panel (δ = 0.0208) than

in the left (δ = 0.00625). Interestingly, the deviation is greater when the period of the LD

cycles is T = 28 h (red lines) than when T = 20 h (blue lines), and this holds regardless

of whether the delay region is bigger than the advance region (R positive) or vice-versa

(R negative).

The deviations of the simulated results from the approximate solution can be explained

qualitatively. There are two distinct effects on the observed period as ϵ increases. First,

as ϵ increases, the velocity of the clock is increasingly phase-dependent and, in general,

the exact phase response given in equation (10) tends to be smaller than the first-order

approximation in equation (12). This effect acts to lengthen the simulated period in FD as
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compared with the approximate period in equation (14).

Second, as ϵ increases, the change in phase from the start of one LD cycle to the next is

increasingly non-uniform, so-called relative coordination. The effect of relative coordina-

tion on the simulated period depends on the period T of the LD cycles. In the left hand

panel of Fig. 3 and also in equation (S13) in the Supplementary Material we see that

when T = 28 h, the phase of the clock advances after each LD cycle, and the advance

is smallest when P (ϕk) is minimal. As a result, the clock becomes ‘trapped’ at phases

where the PRC is minimal, and relative coordination acts to lengthen the simulated pe-

riod. Meanwhile, in the right hand panel of Fig. 3, an in equation (S14), we see that when

T = 20 h, the phase of the clock retreats after each LD cycle, and the retreat is smallest

when P (ϕk) is maximal and relative coordination acts to shorten the simulated period.

When the period of the LD cycles in FD is T = 20 h, the effect of increasing ϵ on the

phase-dependent velocity of the clock is balanced to some extent by the effect of relative

coordination. Therefore, equation (14) is a better approximation of τFD in T = 20 h LD

cycles compared to T = 28 h LD cycles, especially as ϵ increases. Note that all effects are

small, so for example, with f = 2/3, ϵ = 0.038, c = 0.49, the analytical expression gives

τFD = 24.15 h, the simulations with T = 20 h give τFD = 24.14 h, and the simulations with

T = 28 h give τFD = 24.18 h. It is interesting to note that in Duffy et al. (2011), where

results of estimates for T = 20 h and T = 28 h are given, the mean period observed for

T = 28 h was longer by 0.04 h than that observed for T = 20 h. Since the difference is

so small, it was not found to be significant.
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Parameter estimation

Having shown that our analytical formula accurately describes how asymmetry in the VRC

and dim LD cycles affect the estimate of intrinsic circadian period in FD in a phase-only

model of the circadian pacemaker, the expected next question is whether it is possible

to estimate the model parameters from available data. The simple clock model with the

sinusoidal VRC contains a total of four parameters, namely the intrinsic period τ = 2π/ω,

the magnitude L of the stimulus produced by dim light, the parameter b that describes

the horizontal shift of the VRC, and the asymmetry parameter c (equivalent to R) of the

VRC. Below, using data from Wright et al. (2001) we estimate the parameters L and b,

although unfortunately we find that it is not possible to estimate c.

In Wright et al., four participants were shown to entrain to dim LD cycles with period T =

24.0 h. In each participant, their period in a 28-hour FD protocol was also measured. Data

for entrained phase were obtained by applying a graph reading application to Fig. 1(b) in

Wright’s paper and cross-checked by comparing with results reported in Fig. 2 of Wright

et al. (2001) and Fig. 2 of Wright et al. (2005). Wright’s data are reproduced in Fig. 5(a).

Circadian phase was measured using DLMO in all cases.

The map in equation (8) applies both in FD and during entrainment to LD cycles. More-

over, during entrainment, the clock completes exactly one cycle in each LD cycle, that

is

ωT + P (ϕ0) = 2π, (16)

where ϕ0 is the phase of the clock at the start of the LD cycle. Equation (16) can also be

written as

P (ϕ0) = 2π − T̂ , (17)
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Figure 5: Phase of entrainment to 1.5 lux LD cycles with period T = 24.0 h and
photoperiod duration M = 16 h as a function of the period in FD. The phase of
entrainment is the timing of DLMO relative to the onset of the dark interval. (a) Data from
Wright et al. (2001) and linear regression line fitted to the data. (b) Predictions of the
simple clock model with L = 0.010 h−1, b =0.63 and c = 0 (results are independent of c).

where T̂ = ωT , which is known as Pittendrigh’s equation.

In dim LD cycles and making the assumption that the VRC is sinusoidal, equation (12)

gives:

P (ϕ0) = ϵfcT̂ + 2ϵ sin

(
fT̂

2

)
sin

(
ϕ0 − b+

fT̂

2

)
+O(ϵ2). (18)

Since P (ϕ0) = O(ϵ), Pittendrigh’s equation gives T̂ = 2π + O(ϵ). Then, substituting for

P (ϕ0) in equation (17) using equation (18) gives

2πϵcf + 2ϵ sin(πf) sin(ϕ0 − b+ πf) +O(ϵ2) = 2π − T̂ . (19)

In deriving an explicit expression for the phase of entrainment ψ, we use the arcsin func-

tion. Therefore, it is convenient to write equation (19) as

2πϵcf − 2ϵ sin(πf) sin(ϕ0 − b+ πf − π) ≈ 2π − T̂ , (20)
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where the argument of the sine function involving ϕ0 is in the range (−π/2, π/2).

The phase of entrainment, ψ, reported in Wright et al. (2001) and shown in Fig. 5, is the

timing of DLMO relative to the onset of the dark interval of the LD cycles, whereas in (20)

phase ϕ0 is measured from the start of the light interval. Hence ϕ0 and ψ are related by

ϕ0 ≈
[
ϕM − ψ + 2π(1− f)

]
mod 2π, (21)

where ϕM = 17π/12 is the phase of the clock at DLMO, and 2π(1− f) is the approximate

phase advance between the onset of the dark interval and the onset of the photoperiod.

Substituting equation (21) into equation (20) and rearranging gives an explicit expression

for the (stable) phase of entrainment

ψ ≈ sin−1

[
1− T/τ − ϵcf

ϵ sin(πf)/π

]
− b+ ϕM − π(1 + f). (22)

Since P (ϕ0) = O(ϵ), equation (17) gives T/τ = 1 + O(ϵ), and T/τFD = 1 + O(ϵ). Then,

substituting for τ using equation (14) gives T/τ = T/τFD − ϵcf + O(ϵ2). Thus, equation

(22) gives an expression for ψ in terms of τFD

ψ ≈ sin−1

[
1− T/τFD +O(ϵ2)

ϵ sin(πf)/π

]
− b+ ϕM − π(1 + f), (23)

and to the lowest order approximation, the parameter c has been eliminated. Next, if we

assume ψ is near the middle of the range of entrainment, we can use the small angle

approximation to obtain the derivative

dψ

dτFD
≈ πT

ϵ sin(πf)τ2FD
. (24)

Using measurements of ψ, τFD and dψ/dτFD, equations (23) and (24) can be solved for

ϵ and b. At the midpoint of the range of Wright’s data, τFD = 24.0 h, and the linear
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regression line gives

ψ = −0.16 rad,

dψ

dτFD
= 3.95 rad h−1.

The linear regression line has been superimposed on the data in Fig. 5(a). Using these

data and equations (23) and (24), we obtain ϵ = 0.038 and b = −0.63. Since ϵ = L/ω,

for ϵ = 0.038 and τ ≈ 24 h, the fitting suggests that dim light of intensity 1.5 lux produces

a stimulus L ≈ 0.010 h−1 in our model. Note that the data provide no information on the

value of the parameter c. The prediction of the phase of entrainment using the simple

clock model and the fitted parameters is shown in Fig. 5(b). Since the linear regression

line is based on only four data points, the 95% confidence interval for the slope of line is

large. Hence, the 95% confidence interval for the parameter L based on these data is

(0.005 h−1, 0.085 h−1). Meanwhile, the 95% confidence interval for b is (−0.61, −0.66).

In another part of Wright’s study, five participants were exposed to dim LD cycles with

period T = 24.6 h and the period in FD was also measured in these participants. None of

the participants entrained to the T = 24.6 h LD cycles but their periods were significantly

longer than their periods in FD. It is possible to estimate the parameters ϵ and b in the sim-

ple clock model by simulating this part of Wright’s study. This produces similar estimates

to those we have obtained using the entrainment data, ϵ = 0.034 and b = −0.84.

Possible explanation for the difference between the period in FD and the
period in DD

Equation (14) relates the period in FD to the intrinsic period. Equation (14) contains the

parameter ϵ, which represents the strength of the zeitgeber in dim LD cycles, and the
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parameter R, which is the mean value of the VRC. The use of FD to assess the intrinsic

period of sighted people is based on the assumption that ϵR is negligible. In other words,

it is assumed that either the VRC to light has equal advance and delay regions (R = 0),

and / or the zeitgeber in FD is too weak to affect the observed period (ϵ ≈ 0).

However, if ϵR is non-negligible and positive, then this can explain the shorter period in

FD compared to the period in DD. For example, using Wright’s study of sighted humans

in dim LD cycles, we determined that the stimulus produced by dim light of intensity 1.5

lux is ϵ = 0.038. In the FD study reported in Wright et al. (2001), light during waking

periods was 1.5 lux and in most other FD protocols it is typically between 5 and 20 lux

(Duffy et al., 2011). Together, these suggest that ϵ is at least 0.038 during FD protocols.

We expect that light of intensity approximately 15 lux, as frequently used in FD protocols,

produces a stimulus of greater magnitude, but without further data we cannot describe

how ϵ depends on light intensity, although it is likely to be nonlinear. In Kronauer-type

models of the circadian pacemaker the light intensity appears raised to the power p in the

function that describes the action of light on the pacemaker, where p is typically taken in

the range 0.33 to 0.6 (e.g. see Forger et al., 1999; Jewett et al., 1999; St Hilaire et al.,

2007).

Discussion

The intrinsic period of the central circadian pacemaker is an important parameter that

determines the ability of the pacemaker to entrain, and the phase of entrainment, to LD

cycles. FD carried out in dim light conditions is considered the gold standard method for
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measuring circadian period in humans (Dijk and Duffy, 2020; Wang et al., 2023).

We have used a phase-only parametric model to describe the effect of dim LD cycles

on the assessment of period in FD. The key result is that the model-predicted period

measured in FD, τFD is related to the intrinsic period τ by the equation

τFD ≈ τ(1− ϵfR), (25)

where ϵ measures the effect of light, f is the fraction of time in each LD cycle for which

light is on and R measures the asymmetry of the velocity response curve. The approxi-

mation holds when the effect of light is small, as supported by the simulations shown in

Fig. 4.

Equation (25) suggests that FD gives a very accurate assessment of intrinsic circadian

period provided the VRC to dim light has equal sized advance and delay regions (R = 0)

and / or that the stimulus from dim light dark cycles produces a negligible change to

the velocity of the clock (ϵ small). Using data from entrainment experiments, we have

estimated ϵ and shown that a positive value of R, that is, a VRC with a larger advance

than delay region, could explain why the mean period of sighted people in FD is shorter

than the mean period of free-running blind people.

Our formal estimation of the error between intrinsic circadian period and period as mea-

sured in FD also confirms that the design of the protocol means that confounds due to

dim light are small. Indeed, we emphasize that this confound is much smaller than that

found for sighted individuals in classical free run (see Fig. 1), and we therefore still expect

FD to give a much more accurate estimate of intrinsic circadian period than classical free

run.
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Period evaluation and after-effects

Several explanations have been offered for differences between the observed circadian

period in blind and sighted individuals assessed in FD protocols (e.g. see Czeisler et

al., 1999; Lockley et al., 2007; Lewy, 2007). The current dominant view is that observed

differences are due to the presence of after-effects i.e. that the period measured in FD in

sighted people is a consequence of their prior entrainment to 24 hours. In this scenario,

after a sufficiently long time in constant darkness, the period of sighted people would con-

verge to the period observed in the blind. Such long term transients have been observed

in nocturnal rodents (Pittendrigh and Daan, 1976).

The simple clock model cannot model after-effects — it responds instantaneously to

changes in the light environment, so the mechanism suggested here is fundamentally

different. In order to capture after-effects amplitude-phase models (such as the van der

Pol oscillator / Kronauer-type models) are required. Indeed, an amplitude-phase model

that captures the dependence of measured circadian period on prior light exposure for

a diurnal rodent (Bano-Otalora et al., 2021) has been constructed, see Usmani (2022),

Chapter 6.

In order to capture after-effects using an amplitude-phase model requires the parameter

µ to be small (e.g. in Usmani (2022), to fit to the diurnal rodent data, µ = 0.02 was taken).

However, for humans, the requirement that one 6.7 h pulse of approximately 9500 lux

light causes type 1 phase resetting (Khalsa et al., 2003), but pulses on three successive

days of 6.7 h of approximately 9500 lux light causes type 0 phase resetting (Khalsa et al.,

1997), puts bounds on possible values. Typical values used are in the 0.1-0.25 range,

see Supplementary Table 2. A consequence of such large µ values is that Kronauer-like
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models of the human circadian response to light show rapid recovery from perturbations

and cannot capture after-effects of the magnitude required to explain the 0.35 h difference

in intrinsic period between sighted and blind individuals. At this point, it is not entirely clear

how to reconcile both the type 1 and type 0 PRC data and an after-effect interpretation of

the period differences between sighted and blind individuals.

Period evaluation and physiological changes caused by blindness

The only study we have found of sighted people in DD (Wever, 1979, n=5) reported an

average intrinsic period consistent with that in the blind. Nevertheless, given the small

size of the study, a further explanation is that there are physiological changes in the blind

that result in a fundamental change to the circadian system. For example, Yamazaki et

al. (2002) show that in hamsters intrinsic circadian period is shorter and more variable

following enucleation. Yamazaki et al. suggest a possible explanation is that coupling

of retinal clocks with the SCN is an important determinant of the intrinsic period. Hull

(2009) also highlights a role for retinal clocks. If there are physiological differences to

the circadian system that occur as a result of the lack of light perception, then it may be

unrealistic to expect the same mathematical model to describe both blind and sighted

people.

Period evaluation and data selection

A further argument that has been used for the observation of a longer mean intrinsic

period in the blind versus sighted people has been that data from studies in the blind have

been biased towards those that do not entrain. The accepted value from FD for sighted
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people is 24.15 h with a standard deviation of 0.20 h (Duffy et al., 2011). In Hull (2009)

it was argued that deviations of less than 0.10 h from 24 h could not be detected. If data

are normally distributed, then 11% have an intrinsic period less than 23.90 h and 60%

have an intrinsic period greater than 24.10 h. The mean of the 60% with a period greater

than 24.10 h is 24.28 h. In order to find a mean value of 24.50 h requires selection of the

11% of people with an intrinsic period greater than 24.40 h. For context, in Flynn-Evans

et al. (2014), 41 people with no light perception were studied. Of these, 16 (39%) did

not entrain and had a mean period of 24.50 h, including one participant with an intrinsic

period less than 24 h. Together, these results suggest that bias in data collection cannot

explain the magnitude of the difference between sighted and blind individuals.

Period evaluation and stimulus

We estimated that light of intensity 1.5 lux produces a stimulus ϵ of 0.038 based on

entrainment data from Wright et al. (2001). This is at least an order of magnitude greater

than the value predicted for light of intensity 1.5 lux in the light transduction model of

Kronauer (Jewett et al., 1999). Indeed, in order to fit Wright’s data, St. Hilaire et al.

(2007) introduced a rest-activity zeitgeber where the rest-activity zeitgeber produced a

stimulus of approximately 50 times the magnitude of the light stimulus for light of intensity

1.5 lux. We note that nothing in the derivation of equation (25) explicitly relates to light

exposure. Any zeitgeber which can be described in the general form given in equations

(1)-(3) will contribute corrections to the intrinsic period of the form ϵfR where ϵ is the

stimulus strength, f the fraction of the FD period for which lights are on and R is the

mean value of the relevant VRC. This includes the rest-activity zeitgeber introduced in St

Hilaire et al. (2007). To first order, contributions will be additive. For example, for two
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zeitgebers equation (25) becomes

τFD ≈ τ
(
1− ϵ1fR1 − ϵ2fR2

)
,

where ϵi and Ri are the stimulus strength and mean value of zeitgeber i respectively.

However, if rest-activity is the principle zeitgeber of relevance in dim light conditions then

one would expect it to have a similar effect in both blind and sighted people.

Implications and limitations

Mathematical models combined with longitudinal light data collected from people in their

natural every day environment, have been suggested as a non-invasive low cost method

to estimate circadian phase (Woelders et al., 2017). For day-to-day living the estimates

from models are comparable with DLMO. However, models have so far proved less accu-

rate for irregular light-dark schedules as occur during shiftwork (Stone et al., 2019) and

when the natural daylength is short (Cheng et al., 2021). Current mathematical models

are largely variants of those developed by Kronauer (e.g. Jewett and Kronauer, 1998).

One reason for reduced accuracy in shiftworkers may be that models do not currently ad-

equately capture the response to light levels below 50 lux (e.g. see Fig. 9 in St Hilaire et

al., 2007) typical of night-working (Price et al., 2022). Inaccuracy in the modelling of the

response to dim light could also explain the reduced accuracy for short natural photope-

riods when observed light levels are typically lower (Shochat et al., 2019). One approach

to the further development of models is to return to data collected in highly constrained

laboratory environments and re-consider whether models adequately capture previous

and newly available data, including data on spectral sensitivity of the human circadian

pacemaker (e.g. St Hilaire et al., 2022). For example, Usmani (2022) highlights that
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current models cannot capture circadian phase alignment in both dim and bright light

laboratory studies.

Here, we have focussed on period assessment in dim light FD protocols. In dim light,

the original Kronauer-type models (e.g. Jewett and Kronauer, 1998) describe a velocity

response that is symmetric (R = 0). Later versions include additional ‘stimulus modu-

lation’ terms which have the effect of introducing a small amount of asymmetry in the

VRC, but substantially less than we propose. Our suggestion that fundamental biological

results may be explained by an asymmetric VRC has implications for the design of more

accurate mathematical models.

A limitation of our hypothesis is that it depends on the value of the asymmetry parameter

R. The VRC cannot be measured directly making estimating appropriate values challeng-

ing (Taylor et al., 2010). Measured PRC curves to bright light appear approximately sym-

metric (Khalsa et al., 2003) and may be generated by approximately symmetric VRC’s.

However, measuring the PRC in dim light is difficult and it is not clear from current exper-

iments whether the VRC is asymmetric in dim light conditions or not (Revell et al., 2012;

St Hilaire et al., 2012). Since the measured phase response in an experimental proto-

col consists of both a drift due to the intrinsic circadian period and the phase response to

light, whether or not PRC’s appear symmetric also depends on the assumed free-running

period. We note that others have argued that if there is asymmetry, it is in the opposite

direction to the direction we suggest (Khalsa et al., 2003).

We note that our results are consistent with previous simulations using Kronauer-type

models in the relevant limits i.e. dim light so that a phase-only model is reasonable, close

to symmetric VRC as occurs in Kronauer-type models. Specifically, the simulations of
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Lok et al. (2022) indicate that a FD protocol with a LD cycle length of 18 h gives a more

accurate estimate of the intrinsic circadian period than a 28 h protocol. Stack et al. (2017)

simulated an ultradian protocol of 4 h and forced desynchrony protocols of 5 h and 7h and

systematically varying light intensity, number of days in the protocol and initial circadian

phase. They found that more accurate estimates occurred when light intensity was low

and the number of days and length of protocol further facilitated an even distribution of

light across circadian phases. In dim light with R = 0, similar to Lok et al., we predict

that a 20 h FD protocol gives a more accurate estimate than 28 h. Similar to Stack et

al. we find that dimmer light gives more accurate estimates. Where our approach differs

is that we have derived an approximate analytical expression which predicts the effect of

asymmetry in the VRC on estimates of intrinsic circadian period in dim-light FD protocols.

Finally, validated mathematical models describing the effects of light on the human circa-

dian pacemaker are a prerequisite for understanding the effects of light exposure, which

in our society is increasingly dominated by biologically effective man-made light. Novel

technologies for monitoring this light exposure longitudinally in people going about their

daily lives, combined with validated mathematical models will enable a better prediction

of the circadian health consequences of changes in policies related to light exposure and

novel light sources.
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Czeisler CA, Andersen M, Gooley JJ and Lockley SW (2022) The spectral sensitivity of

human circadian phase resetting and melatonin suppression to light changes dynamically

with light duration. Proc Natl Acad Sci U S A, 119:e2205301119.

Stack N, Barker D, Carskadon M and Diniz Behn C (2017) A model-based approach to

optimizing ultradian forced desynchrony protocols for human circadian research. J Biol

Rhythms, 32:485–498.

Stone JE, Aubert XL, Maass H, Phillips AJK, Magee M, Howard ME, Lockley SW, Ra-

jaratnam SMW and Sletten TL (2019) Application of a limit-cycle oscillator model for

prediction of circadian phase in rotating night shift workers. Sci Rep, 9:11032.

Strogatz SH (1990) Interpreting the human phase response curve to multiple bright-light

exposures. J Biol Rhythms, 5:169–174.

Taylor SR, Webb AB, Smith KS, Petzold LR and Doyle FJ 3rd (2010) Velocity response

45

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.07.14.549062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549062
http://creativecommons.org/licenses/by-nd/4.0/


curves support the role of continuous entrainment in circadian clocks. J Biol Rhythms,

25:138–49.

Usmani IM (2022) Parametric models of the circadian pacemaker in controlled lighting

conditions. PhD thesis, University of Surrey.

Wang W, Yuan RK, Mitchell JF, Zitting K-M, St Hilaire MA, Wyatt JK, Scheer FAJL, Wright

KP, Brown EN, Ronda JM, Klerman EB, Duffy JF, Dijk D-J and Czeisler CA (2023) Desyn-

chronizing the sleep-wake cycle from circadian timing to assess their separate contribu-

tions to physiology and behaviour and to estimate intrinsic circadian period. Nat Protoc,

18:579–603.

West AC and Bechtold DA (2015) The cost of circadian desynchrony: Evidence, insights

and open questions. Bioessays, 37:777–88.

Wever AW (1979) The Circadian System of Man. Results of Experiments under Temporal

Isolation. Springer-Verlag, New York.

Woelders T, Beersma DGM, Gordijn MCM, Hut RA and Wams EJ (2017) Daily light

exposure patterns reveal phase and period of the human circadian clock. J Biol Rhythms,

32:274–286.

Wright KP Jr, Gronfier C, Duffy JF and Czeisler CA (2005) Intrinsic period and light

intensity determine the phase relationship between melatonin and sleep in humans. J

Biol Rhythms, 20:168–77.

Wright, KP Jr, Hughes RJ, Kronauer RE, Dijk D-J and Czeisler CA (2001) Intrinsic near-

24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer

46

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.07.14.549062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549062
http://creativecommons.org/licenses/by-nd/4.0/


in humans. Proc Ntnl Acad Sci, 98:14027–14032.

Yamazaki S, Alones V and Menaker M (2002) Interaction of the retina with suprachias-

matic pacemakers in the control of circadian behavior. J Biol Rhythms, 17:315–329.

47

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.07.14.549062doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549062
http://creativecommons.org/licenses/by-nd/4.0/

