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Abstract

Rationale: COVID-19-associated pulmonary aspergillosis (CAPA) is a life-threatening
complication in patients with severe COVID-19. Previously, acute respiratory distress
syndrome in patients with COVID-19 has been associated with lung fungal dysbiosis,
evidenced by reduced microbial diversity and Candida colonisation. Increased fungal burden
in the lungs of critically ill COVID-19 patients is linked to prolonged mechanical ventilation
and increased mortality. However, specific mycobiome signatures associated with severe
COVID-19 in the context of survival and antifungal drug prophylaxis have not yet been

determined and such knowledge could have an important impact on treatment.

Objectives: To understand the composition of the respiratory mycobiome in critically ill
COVID-19 patients with and without CAPA and the impact of antifungal use in patient

outcome.

Methods: We performed a multi-national study of 39 COVID-19 patients in intensive care
units (ICU) with and without CAPA. Respiratory mycobiome was profiled using ITS1
sequencing and Aspergillus fumigatus burden was further validated using qPCR. Fungal
communities were investigated using alpha diversity, beta diversity, taxa predominance and

taxa abundances.

Results: Respiratory mycobiomes of COVID-19 patients were dominated by Candida and
Aspergillus. There was no significant association with corticosteroid use or CAPA diagnosis
and respiratory fungal communities. Increased A. fumigatus burden was associated with
mortality and, the use of azoles at ICU admission was linked with an absence of A.

fumigatus.
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Conclusions: Our findings suggest that mould-active antifungal treatment at ICU admission

may be linked with reduced A. fumigatus-associated mortality in severe COVID-19. However,

further studies are warranted on this topic.

Introduction

COVID-19 is a pulmonary disease caused by severe acute respiratory syndrome coronavirus
2. There have been over 700 million confirmed cases of COVID-19 since December 2019 with
mortality ~7 million’. Around 5% of patients with COVID-19 require admission into the
intensive care unit (ICU)*® and, 50% of those patients need mechanical ventilation?, thus
increasing the risk of hospital-acquired pneumonia®. The pulmonary microbiome and its
associations with disease outcomes in COVID-19 patients has been explored since the
beginning of the pandemic®®. However, our knowledge on the role of fungi in the
pathophysiology of COVID-19 is limited. Specifically, the association between respiratory
mycobiome composition and patient outcome, and the interplay of antifungal use, is yet to

be investigated.

Mycobiome sequencing of the upper respiratory tract (nasopharyngeal swabs) suggests
COVID-19 infection significantly reduces fungal diversity, with a higher abundance of
Alternaria and Cladosporium spp., and a lower abundance of other taxa including Candida
and Aspergillus’. In the lower respiratory tract (tracheal aspirates), bacterial and fungal
microbiome analyses of patients with severe COVID-19 have shown changes over time that

might be linked to antimicrobial pressure’®. A variety of respiratory mycobiome clusters
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81 were identified, including those dominated by Candida and Cladosporium. Using 18S qPCR in
82 bronchoalveolar lavage (BAL) samples, it has been reported that critically ill COVID-19
83 patients with high fungal burdens are less likely to be liberated from mechanical
84 ventilation'’. However, the taxa responsible for this outcome remains unclear. Lastly,
85 mycobiome sequencing of BAL found COVID-19 patients with acute respiratory distress
86 syndrome (ARDS) to be associated with reduced fungal diversity and an increase in Candida
87 colonisation®? In patients without Candida colonisation, an increased abundance of an

88 unclassified Ascomycota species was identified.

89 COVID-19-associated pulmonary aspergillosis (CAPA) is an important complication of COVID-
90 19, mainly described in critically ill patients. Multicentre cohort studies of CAPA conducted in
91 the ICU setting report incidence rates varying between 10-15%'**°. Nevertheless, mortality
92 rates in patients with CAPA were double that observed in critically ill COVID-19 patients
93  without CAPA''8 Airway epithelial cell damage due to viral replication and COVID-19
94 associated downregulation of interferon y signalling pathway, aberrant immune responses
95 due to ARDS, corticosteroids, azithromycin, or the use of immunomodulators have been

96 linked with susceptibility to CAPA'®™?

. With a view to investigating the impact of the
97 respiratory mycobiome in the outcome of COVID-19, we performed a multi-national

98 mycobiome analysis of 39 respiratory samples from critically ill COVID-19 patients with and

99 without CAPA.

100 Methods

101  Study design, participants, and sample collection

102 This study was based on a multinational retrospective study on the prevalence of invasive

103 pulmonary aspergillosis in critically ill COVID-19 patients in ICUs during 2020". Inclusion

3
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104 criteria consisted of: PCR confirmed COVID-19 infection, bronchoscopy or tracheal aspiration
105 performed during routine clinical investigations, and chest imaging available seven days
106 before or after respiratory samples were collected. Patients less than 18 years of age were
107 excluded. Respiratory samples not passing quality control (described in Supplemental
108 methods) were also excluded. Respiratory specimens obtained at ICU admission or during
109 ICU stay were collected, aliquoted (at least 1ml) and stored at -80 °C. Criteria for defining
110 aspergillosis were according to previous guidelines” with the following modifications:
111 COVID-19 requiring ICU admission was included as an additional host factor, tracheal
112 aspirates were equated to BAL fluid for microbiological tests, and serum and BAL GM was

113 added as entry criterion. For a summary of full patient demographics, see Table E1.

114 IRB approval was obtained at each participating center: Medical University of Graz EC #32-
115 296 ex 19/20. University of Genoa Liguria Region Ethics Committee registry number

116  163/2020. Rennes Teaching Hospital N ° 16-117.
117 Sample processing

118 BAL DNA was extracted using a cetyltrimethylammonium bromide (CTAB) method?*. Full
119 details on sample processing are provided in the online supplement. Briefly, for mycobiome
120 analysis, the ITS1 region was amplified using Nextera XT compatible versions of ITS1*> and
121 ITS2degen (a degenerate version of ITS2 primer) (see Table 1). The presence of A. fumigatus

122 inrespiratory samples was validated using a TagMan probe assay targeting the ITS1 regionZG.
123 Data analysis

124 Paired end reads were subject to quality trimming at Q30 and a minimum length filter of 75
125 nucleotides using bbduk®’ (BBMap v38.22). Primer sequences were removed using

126  Cutadapt®® (v1.18). Reads were mapped to UNITE database using bowtie2?® (v2.3.5.1). Count

4
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127 data was further processed in R (v4.1.3) using the following packages: phyloseq®® v1.38.0,

128 vegan’'v2.5-7, DESeq2>* v1.34.0, stringr® v1.4.0, ggplot2** v3.3.5 and tidyr>> v1.2.0.

129 Abundances were standardised to the median sequencing depth. Extremely low abundance
130 taxa were removed by only retaining those occurring > 0.2% in any sample. DESeq2 was used
131 to identify significantly differentially abundant taxa (adjusted p value < 0.05 and basemean >
132 500). Differences in diversity (Shannon, Chaol and observed OTUs) were assessed using
133 pairwise Wilcoxon rank sum tests. PERMANOVA test was used to assess differences in Bray-

134 Curtis ordination.

135

136 Results

137 Patient cohort

138 The respiratory mycobiome of 91 critically ill COVID-19 patients in the intensive care unit
139 (ICU) was analysed using internal transcribed spacer 1 (ITS1) amplicon sequencing of BAL.
140 Samples from 39 patients harboured significant fungal communities which passed quality
141 control (See Data analysis section in supplementary methods). Table 1 describes
142 demographic and clinical characteristics of the 39 patients maintained in the mycobiome
143  analysis, stratified by CAPA diagnosis. Six patients had CAPA (15%). Patients were from
144 Genoa, Graz and Rennes (64%, 26% and 10%, respectively). Mean age of those with and
145 without CAPA was 61 and 64, respectively. Most patients received systemic corticosteroids
146  (83% of those with CAPA and 73% of those without CAPA). No patients diagnosed with CAPA
147 received azole treatment at the time of ICU admission. Mortality at end of follow-up in
148 patients with CAPA was 33% (2/6) while mortality in patients without CAPA was also 33%

149 (11/33).
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150 Table 1. Clinical and demographic characteristics of patients with and without probable

151 CAPA diagnosis.

Variable Patients with Patients without
CAPA (N=6) CAPA (N=33)

Age

Mean (SD) 61 (3.4) 64 (7.9)

valid (missing) 6 (0) 32 (1)
Sex

male 100% (6) 79% (26)

female 0% (0) 18% (6)

missing 0% (0) 3% (1)
Ethnicity

Caucasian 100% (6) 91% (30)

other 6.1% (2)

missing 0% (0) 3% (1)
BMI > 30

yes 50% (3) 18% (6)

no 50% (3) 79% (26)

missing 0% (0) 3% (1)
Smoking

yes 33% (2) 12% (4)

no 67% (4) 85% (28)

missing 0% (0) 3% (1)
Institution

Graz 33% (2) 24% (8)

Genoa 17% (1) 73% (24)

Rennes 50% (3) 3% (1)
Hematology oncology

yes 17% (1) 9.1% (3)

no 83% (5) 88% (29)

missing 0% (0) 3% (1)
Solid organ transplant

yes 17% (1) 3% (1)

no 83% (5) 94% (31)

missing 0% (0) 3% (1)
Cardiovascular disease

yes 67% (4) 45% (15)

no 33% (2) 52% (17)

missing 0% (0) 3% (1)
Pulmonary disease

yes 33% (2) 24% (8)

no 67% (4) 73% (24)

missing 0% (0) 3% (1)

Diabetes Mellitus
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yes 17% (1) 9.1% (3)
no 83% (5) 88% (29)
missing 0% (0) 3% (1)
Corticosteroids
yes 83% (5) 73% (24)
no 17% (1) 24% (8)
missing 0% (0) 3% (1)
Tocilizumab
yes 17% (1) 6.1% (2)
no 83% (5) 91% (30)
missing 0% (0) 3% (1)
Azithromycin
yes 33% (2) 33% (11)
no 67% (4) 61% (20)
missing 0% (0) 6.1% (2)
Azole treatment at ICU
admission
yes 0% (0) 15% (5)
no 100% (6) 6.1% (2)
missing 0% (0) 79% (26)
Life Support
mechanical 100% (6) 70% (23)
ECMO 3% (1)
noninvasive 6.1% (2)
mechz.anica! & 12% (4)
noninvasive
none 6.1% (2)
missing 0% (0) 3% (1)
Duration ICU (days)
Mean (SD) 27 (11) 32 (28)
valid (missing) 6 (0) 32 (1)
Palliative (Day 28 or 32)
yes 67% (4) 48% (16)
no 33% (2) 48% (16)
missing 0% (0) 3% (1)
Survival (at end of follow
up)
yes 33% (2) 33% (11)
no 67% (4) 64% (21)
missing 0% (0) 3% (1)
Days from ICU admission
to CAPA
Mean (SD) 6.2 (3.5) -
BAL GM (ODI > 1)
positive 83% (5) 9.1% (3)
negative 17% (1) 82% (27)
missing 0% (0) 9.1% (3)
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BAL PCR

positive 50% (3) 0% (0)

negative 0% (0) 58% (19)

missing 50% (3) 42% (14)
BAL culture

positive 50% (3) 0% (0)

negative 50% (3) 97% (32)

missing 0% (0) 3% (1)
BAL LFD

positive 17% (1) 6.1% (2)

negative 0% (0) 9.1% (3)

missing 83% (5) 85% (28)
Tracheal Aspirate GM

positive 0% (0) 3% (1)

negative 0% (0) 3% (1)

missing 100% (6) 94% (31)
Tracheal Aspirate PCR

positive 33% (2) 0% (0)

negative 17% (1) 21% (7)

missing 50% (3) 79% (26)
Tracheal Aspirate Culture

positive 17% (1) 0% (0)

negative 33% (2) 3% (1)

missing 50% (3) 97% (32)
Serum GM (> 0. 5)

positive 33% (2) 0% (0)

negative 50% (3) 42% (14)

missing 17% (1) 58% (19)
Bronchial Aspirate culture

positive 17% (1) 0% (0)

negative 33% (2) 21% (7)

missing 50% (3) 79% (26)

CAPA; COVID-19 associated pulmonary aspergillosis. BMI; body mass index. ICU; intensive care unit. ECMO;
extracorporeal membrane oxygenation. BAL; bronchoalveolar lavage. GM; galactomannan. LFD; lateral flow
device.

Candida and Aspergillus spp. dominate respiratory mycobiomes in critically ill COVID-19

patients

Median read counts per sample for the 39 samples that passed quality control was 57,913

(range 6,970 — 342,640). There were 36 Genera in total and a median of 5 Genera per
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159 sample (range 1 — 22). There was no significant clustering between sample batches (Fig. E1),
160 suggesting that sample processing had no impact on mycobiome communities. Mycobiomes
161 predominantly consisted of Candida and Aspergillus (Fig. 1A). Candida albicans, Aspergillus

162 fumigatus and Candida parapsilosis were the most abundant species (Fig. E2A-B).
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164  Fig. 1. Aspergillus and Candida spp. dominate the respiratory mycobiome in critically ill COVID-19
165 patients. (A) Aspergillus and Candida were the main genera observed in the lungs from COVID-19
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166 patients included in the study (n = 39). Samples are grouped based on CAPA status. (B) A.

167  fumigatus was the predominant species in the mycobiomes of 50% of patients with COVID-19

168 associated pulmonary aspergillosis (CAPA), compared to 27% of those without CAPA. (C) Fifty percent
169 of CAPA patients were A. fumigatus-positive by species specific qPCR, compared to 21% of those

170 without CAPA. (D) Alpha diversity measures (Observed OTUs and Shannon) trended towards higher
171  diversity in CAPA patients (E) Corticosteroid treatment caused no apparent effect on alpha diversity as
172 measured by Observed OTUs or Shannon diversity. (F) A. fumigatus was the predominant species in
173 the mycobiomes of 24% of patients receiving corticosteroids, compared to 22% of those without

174  corticosteroids. Hypothesis testing was applied using Wilcoxon Rank Sum tests (D,E) or Fisher’s exact
175 tests (B,C,F). CS: Corticosteroids. Boxplot data represent median and interquartile range.

176

177 No significant correlation is found between mycobiome communities and CAPA status or

178 corticosteroid use

179 In our study, higher median A. fumigatus levels were observed in CAPA when assessed by
180 read count (~16,700 vs. 35) and A. fumigatus specific gPCR (0.3 vs. 0 genome equivalents)
181 (Fig. E3A-B), but there was overlap between the patient groups and statistical significance
182 was not reached. A. fumigatus burden in patients without CAPA was varied, some patients
183 had little to no A. fumigatus and others contained particularly high burden (Fig. 1A, Fig. E3A-
184 B). As A. fumigatus levels appeared to be bimodal, we dichotomised these data into two
185 groups to assess either the predominance of A. fumigatus (present at over 50% of a
186 mycobiome sample) or high A. fumigatus burden (qPCR positive at over 0.1 haploid genome
187 equivalents (HGE)). Analysing the data in this manner also found no significant difference
188 between A. fumigatus predominance (Fig. 1B) or high burden (Fig. 1C) in patients with and
189 without CAPA. Furthermore, species differential abundance analysis did not find significant
190 differences between A. fumigatus levels based on CAPA status. Instead, Cladosporium
191 delicatulum, Mycosphaerella tassiana and Filobasidium magnum were found to be at higher

192 abundance in CAPA patients (Fig. E6). In addition, probable CAPA patients had higher median

10
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193 a diversity, however, this difference was not significant, and no significant effect on

194 diversity was observed (Fig. 1D, Fig. E3C).

195 Corticosteroid use resulted in lower median a diversity (Shannon only), however, this
196 difference was not significant (Fig. 1E). Median levels of A. fumigatus were lower in the
197 corticosteroid treated group as assessed by sequencing (8 vs. ~5,800 reads) and, gPCR (O vs.
198 0.1 genome equivalents) (Fig.E3D-E). However, patients on corticosteroids were highly
199 heterogenous in terms of A. fumigatus abundance. There was no significant difference
200 between A. fumigatus predominance (Fig. 1F) or high burden (Fig. E3F) in patients with and
201 without corticosteroid treatment. Species differential abundance analysis found no
202 significant differences between corticosteroid usage. In addition, corticosteroid use had no

203 significant impact on B diversity (Fig. E3G).

204 Increased A. fumigatus burden is associated with mortality

205 The mycobiome of surviving individuals showed a trend towards higher median a diversity
206 (Fig. 2A). Grouped mean abundances indicated a lower level of Aspergillus was present upon
207 survival (Fig.2B). At the individual sample level, many mycobiomes of non-surviving patients
208 were predominated by Aspergillus (Fig. E4). Species predominance analysis suggested that
209 this difference was due to A. fumigatus, with 32% (8/25) of non-surviving patients’
210 mycobiomes being dominated by this species compared to only 8% (1/13) of patients which
211 survived (Fig. 2C-D). Furthermore, mycobiome differential abundance analysis found A.
212 fumigatus and C. albicans to be significantly less abundant upon survival, with log fold
213 change values of -4.3 and -4.6, respectively (padj < 0.05) (Fig.2E). Quantitative PCR data also
214 showed 32% of patients which did not survive displayed a high burden of A. fumigatus

215 compared to only 8% of surviving patients (Fig. 2F). All datapoints for A. fumigatus relative

11
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abundance and gPCR burden are shown in Fig. E5A-B. BAL galactomannan index values were

not significantly different between the patient groups, with an outlier in the survival group

having a very high index (Fig.E5C).
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Fig. 2. A higher A. fumigatus burden is associated with mortality in critically ill COVID-19 patients.
(A) Alpha diversity measures (Observed OTUs and Shannon) trended towards higher diversity in
critically ill COVID-19 patients which survived. Data represent median and interquartile range. (B) At
the genus level, pooled relative abundance mycobiome data from patients which survived (n =13)
indicated a lower proportion of Aspergillus, and an apparent increase in the number of observed taxa
overall. (C) C. albicans and A. fumigatus were prevalent as the predominant species in a mycobiome
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226 in more patients which did not survive (blue, prevalence 0.44 and 0.32, respectively) than those that
227 did survive (grey, prevalence 0.32 and 0.08, respectively). Taxa were counted if present at over 50% of
228 total counts, and only taxa found in at least 10% of samples of either group are shown. (D) A.
229  fumigatus was the predominant species in 8/25 (32%) patients which did not survive, compared to
230 1/13 (8%) of patients which did survive. (E) Analysis using DESeq2 identified A. fumigatus and C.
231 albicans to be at significantly lower abundance in patients which survived. (F) Thirty-two percent of
232  patients which did not survive were A. fumigatus-positive by species specific gPCR, compared to 7%
233 of those which survived. Hypothesis testing in was applied using Wilcoxon Rank Sum tests (A),
234  Fisher’s exact tests (D,F), or DESeqg2 (E). S: Survival; NS: No survival.

235

236 Azole treatment at intensive care unit admission is associated with reduced A. fumigatus

237 burden in critically ill COVID-19 patients and COVID-19 survival

238 Use of azole treatment at ICU admission in critically ill COVID-19 patients resulted in
239 significantly reduced a diversity when analysing raw mycobiome data. Upon removal of very
240 rare taxa, there was a trend towards reduced median a diversity upon azole treatment (Fig.
241 3A). There was a lack of Aspergillus in the mycobiomes of patients with azole treatment, and
242  Aspergillus was present at a considerable relative abundance in ~38% (3/8) patients
243 receiving azoles (Fig. 3B). At the species level, A. fumigatus was the predominant species in
244  25% patients without azole treatment, whereas this species was not detectable in patients
245 receiving treatment (Fig. 3C-D). Furthermore, differential abundance analysis of mycobiome
246 data found a significant reduction of A. fumigatus in patients which received azole treatment
247 (LFC -6.3, padj 0.04) (Fig. 3E). This analysis also found Candida albicans, Candida parapsilosis
248 and Candida tropicalis had significantly higher abundance in COVID-19 patients receiving
249 azole treatment (LFC 5.3, 9.4 and 14.5, respectively). Quantitative PCR (qPCR) data found
250 38% of patients which did not receive azoles displayed a high burden of A. fumigatus
251 compared to no patients on azole treatment (Fig. 2F). Datapoints for A. fumigatus relative
252 abundance and gPCR burden with and without azole treatment at ICU admission are shown

253 in Fig. E5D-E. BAL galactomannan index was not statistically different between patients with
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or without azole treatment, however, all individuals receiving treatment were GM negative

whereas only half of the patients without treatment were GM negative (Fig. 3G).
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Fig. 3. A. fumigatus is associated with the absence of azole treatment at intensive care unit
admission in critically ill COVID-19 patients. (A) Alpha diversity measures (Observed OTUs and
Shannon) trended higher diversity in COVID-19 patients without azoles at ICU admission (AZ). (B) At
the genus level, BAL ITS1 mycobiomes from COVID-19 patients which received azoles (n =5) display an
absence of Aspergillus, whereas 3/8 patients not receiving azoles harboured Aspergillus. (C) C.

albicans was prevalent as the predominant species of a mycobiome in more patients which received
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263 azoles (grey, prevalence 0.6) than those which did not receive azoles (blue, prevalence 0.38). A.
264  fumigatus was prevalent as the predominant species in 25% of patients receiving azoles. A. fumigatus
265 was not prevalent in any patients which received azoles. Taxa were counted if present at over 50% of
266 total counts, and only taxa found in at least 10% of samples of either group are shown. (D) A.
267 fumigatus was the predominant species in 2/8 (25%) patients which did not survive, compared to
268 none of the patients which did survive. (E) Analysis using DESeq2 identified A. fumigatus to be at
269 significantly lower abundance in patients which received azoles. C. albicans, C. parapsilosis and C.
270 tropicalis were all at significantly higher abundance in patients receiving azoles. (F) Thirty eight
271 percent (3/8) of patients which did not receive azoles were A. fumigatus-positive by species specific
272  gPCR, compared to no patients which did receive azoles. (G) All patients receiving azoles were BAL
273  galactomannan negative (ODI 1 or lower). Two thirds (4/6) of patients not receiving antifungals were
274 galactomannan positive. Hypothesis testing in was applied using Wilcoxon Rank Sum tests (A, G),

275  Fisher’s exact tests (D,F), or DESeq2 (E). AZ: Azoles; No AZ: No azoles; ODI: Optical density index.

276  Our findings suggest an association between A. fumigatus abundance and mortality in
277 critically ill COVID-19 patients, and that azole treatment at ICU significantly reduces A.
278 fumigatus levels. Therefore, we combined these factors to assess the association between A.
279 fumigatus and survival outcomes depending on the presence or absence of azole treatment.
280 It was apparent that Aspergillus was associated with mortality only in COVID-19 patients
281 who had not received azole treatment (Fig. 4A). Presence of A. fumigatus in only those
282 patients that did not survive or receive azole treatment was confirmed by qPCR (Fig. 4B).
283 Therefore, these findings suggest azole treatment at ICU admission may have been

284  protective against A. fumigatus-associated mortality in this severe COVID-19 patient cohort.

285  Fig. 4. A. fumigatus is associated with mortality in patients with COVID-19 who have not received
286 azole treatment at intensive care unit admission. (A) When combining the use of azoles at ICU and
287 survival outcomes, Aspergillus was found in the BAL ITS1 mycobiomes from 50% of patients which did
288 not receive azoles or survive (3/6). No Aspergillus was present in samples from any other groups. (B)
289 A. fumigatus levels (measured by qPCR) did not differ significantly between groups (Wilcoxon Rank
290 Sum test); however, A. fumigatus burden was observed only in the patient group which did not
291 survive or receive azole treatment at ICU admission. AZ: Azoles. S: Survival. NS: No survival.
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Fig. 4. A. fumigatus is associated with mortality in patients with COVID-19 who have not received
azole treatment at intensive care unit admission. (A) When combining the use of azoles at ICU and
survival outcomes, Aspergillus was found in the BAL ITS1 mycobiomes from 50% of patients which did
not receive azoles or survive (3/6). No Aspergillus was present in samples from any other groups. (B)
A. fumigatus levels (measured by qPCR) did not differ significantly between groups (Wilcoxon Rank
Sum test); however, A. fumigatus burden was observed only in the patient group which did not
survive or receive azole treatment at ICU admission. AZ: Azoles. S: Survival. NS: No survival.

Discussion

This multinational study found higher Aspergillus fumigatus levels in critically ill COVID-19
patients were associated with increased mortality. In addition, the association of A.
fumigatus with mortality was found only in patients who did not receive azole treatment at
ICU admission, suggesting that the use of prophylactic mould-active antifungals in severe
COVID-19 patients is potentially valuable for the reduction of A. fumigatus-associated

mortality in this cohort.
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The respiratory mycobiomes of critically ill COVID-19 patients described here were
dominated by Candida and Aspergillus. Previous studies using similar patient groups have

also reported lung fungal communities to be dominated by Candida®®*?

. Furthermore, one
study identified a significant increase in unidentified Ascomycota spp. in patients without
Candida colonisation®. Due to the reported incidence of CAPA in severe COVID-19, the
authors hypothesised that Aspergillus could be present in these patients and, although

mycobiome samples were mostly negative for Aspergillus, the presence of Aspergillus was

confirmed by PCR in follow up BAL samples in over 20% of patients.

A recent report suggests higher fungal burden in the lung microbiota of patients with
proven/probable CAPA™. However, considerable overlap in fungal burdens between those
with and without CAPA was noted. Our study found CAPA patients had higher median levels
of A. fumigatus and trended towards higher fungal diversity. However, these findings did not
meet statistical significance, which may have been driven by the low sample size (n =6 in
CAPA group). Some patients within the non-CAPA group harboured considerable levels of A.
fumigatus. It is known that high Aspergillus burdens can be found in the lungs of healthy
individuals®. These observations suggest that if a sufficient level of Aspergillus is present in
the lung, other factors such as disease susceptibility or strain virulence in the context of CAPA
may be more important than burden in the outcome of infection. This study was limited to
one sample time point, and it would be interesting to assess how Aspergillus burden changes

during CAPA or COVID-19 infection.

It has been suggested that corticosteroid treatment increases lung fungal burden
(particularly A. fumigatus)®® and lowers Shannon diversity®’ in asthma. In contrast, no

significant differences were found between mycobiome diversity or taxa abundance in
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332 respiratory fungal communities of COPD patients with or without inhaled corticosteroid

333 treatment®®. Another recent study found that alterations in the airway mycobiome in COPD
334 were not significantly affected by corticosteroid use®. Large cohort studies suggest systemic
335 corticosteroids are a risk factor for CAPA'®*° however, there are no specific reports of the
336 influence corticosteroid use has on lung fungal communities in COVID-19. In our study,

337 patients receiving corticosteroids displayed lower median levels of A. fumigatus and lower
338 fungal diversity compared to those not receiving corticosteroids. However, these differences
339 did not meet statistical significance. As most (~74%) patients received corticosteroids in this
340 cohort, this may have contributed to low power in these statistical comparisons, warranting

341 further data on this topic.

342 A high fungal burden has previously been associated with a lower likelihood of release from

343 mechanical ventilation and increased mortality risk in severe COVID-19 patients'*. However,
344 as this study utilised pan-fungal gPCR to identify burden, there was no indication of the

345 specific fungal taxa responsible for this association. Our findings suggest that higher levels of
346 A. fumigatus are associated with increased mortality in severe COVID-19. There are no

347 previous reports on the impact of antifungal use on the respiratory mycobiome in COVID-19
348 patients. In this study, the use of azoles at ICU admission was associated with an absence of

349 A. fumigatus and appeared protective against A. fumigatus-associated mortality.

350 Our study investigated the composition of respiratory fungal communities in critically ill

351 COVID-19 patients with and without CAPA. Candida and Aspergillus were predominant in the
352 respiratory communities. CAPA diagnosis was associated with higher median A. fumigatus
353 level and fungal diversity, and a higher prevalence of A. fumigatus was associated with

354 mortality and a lack of azole treatment at ICU admission. Our data suggests that the
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355 potential use of prophylactic antifungals (with anti-Aspergillus activity) in seriously ill COVID-
356 19 patients is worthy of further consideration for the possible prevention of A. fumigatus-
357 associated mortality. However, a limitation of this study is the small number of patients

358 included, particularly the low number of CAPA cases. In addition, incomplete clinical data
359 with respect to azole use reduced the sample sizes for this comparison, which may have

360 resulted in low power for these statistical tests. Therefore, study of a larger cohort would be
361 valuable to improve our understanding of the association between prophylactic azole use,
362 the presence of A. fumigatus in the respiratory mycobiome and patient outcome in COVID-

363 19 critical care.
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Supplementary data

Raw sequence data has been deposited at the NCBI sequence read archive (SRA) under accession

number PRJINA905224. Code used for analysis is available at

https://github.com/Danweaver1/COVID respiratory mycobiome.
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492

493  Fig. E2. ITS1 respiratory mycobiomes at the species level. (A) Heatmap of fungal species identified in
494  all samples. To remove extremely rare taxa, only those present at > 0.2% in one sample were
495 retained. (B) A. fumigatus and C. albicans are the most prevalent species. Taxa were counted if
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496 present at over 5% in a sample, and only taxa found in at least 10% of samples of either group are
497  shown.
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498

499  Fig. E3. CAPA diagnosis and corticosteroid use had no significant impact on fungal burden, Aspergillus
500 fumigatus levels or beta diversity. (A) Relative abundance of A. fumigatus in mycobiomes of those
501 with and without CAPA. (B) A. fumigatus levels in those with and without CAPA measured by gPCR.
502 (C) Beta diversity and CAPA status. (D) Relative abundance of A. fumigatus in mycobiomes of those
503 with and without corticosteroid use. (E) A. fumigatus levels in those with and without corticosteroid
504 use as measured by gPCR. (F) Dichotomised data for samples positive/negative for high A. fumigatus
505 burden by gPCR in patients with or without corticosteroids. (G) Beta diversity and corticosteroid use.
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Boxplot data represent median and interquartile range. CS; corticosteroid use. CAPA; COVID-
associated pulmonary aspergillosis.
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513  Fig. E5. Extended data for Aspergillus fumigatus levels in respiratory mycobiomes and BAL

514 galactomannan. (A) Aspergillus fumigatus relative abundance in patients grouped by survival

515 outcome. (B) A. fumigatus burden measured by gPCR in patients which did not survive appeared

516 biomodal, with some patients exhibiting a high burden (>0.1 genome equivalents). Excluding one
517 outlier with an extremely high burden, all patients which survived displayed a low burden of 0.1 or
518 below. (C) BAL galactomannan levels of patients grouped by survival outcome. (D) Aspergillus

519 fumigatus relative abundance in patients grouped by azole treatment at ICU admission. (E) A.

520 fumigatus burden measured by gPCR in patients which did or did not receive azole treatment at ICU
521 admission. (F) All patients receiving azole treatment were BAL galactomannan negative (1 or lower).
522 Half of patients not receiving azole treatment were galactomannan positive. CAPA: COVID-associated
523  pulmonary aspergillosis. AZ: Azole treatment; No AZ: No azole treatment; S: Survival; NS: No survival.
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528 Table E1. Full clinical patient demographics

Characteristics N=39

Age

Mean (SD) 64 (7.4)

valid (missing) 38 (1)
Sex

male 82% (32)

female 15% (6)

missing 2.6% (1)
Ethnicity

Caucasian 92% (36)

other 5.1% (2)

missing 2.6% (1)
BMI > 30

yes 23% (9)

no 74% (29)

missing 2.6% (1)
Smoking

yes 15% (6)

no 82% (32)

missing 2.6% (1)
Institution

Graz 26% (10)

Genoa 62% (24)

Rennes 13% (5)
Hematology oncology

yes 10% (4)

no 87% (34)
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missing 2.6% (1)

Solid organ transplant

yes 5.1% (2)
no 92% (36)
missing 2.6% (1)

Cardiovascular disease

yes 49% (19)
no 49% (19)
missing 2.6% (1)

Pulmonary disease

yes 26% (10)
no 72% (28)
missing 2.6% (1)

Diabetes Mellitus

yes 10% (4)
no 87% (34)
missing 2.6% (1)

Corticosteroids

yes 74% (29)

no 23% (9)

missing 2.6% (1)
Tocilizumab

yes 7.7% (3)

no 90% (35)

missing 2.6% (1)

Azithromycin

yes 33% (13)
no 62% (24)
missing 5.1% (2)
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Azole treatment at ICU admission

yes 13% (5)
no 21% (8)
missing 67% (26)

Life Support

mechanical 74% (29)
ECMO 2.6% (1)
noninvasive 5.1% (2)
mechanical & noninvasive 10% (4)
none 5.1% (2)
missing 2.6% (1)

Duration ICU (days)
Mean (SD) 31 (26)
valid (missing) 38 (1)

Palliative (Day 28 or 32)

yes 51% (20)
no 46% (18)
missing 2.6% (1)

Survival (at end of follow up)

yes 33% (13)
no 64% (25)
missing 2.6% (1)

Antifungal Treatment Outcome

yes 5.1% (2)
no 5.1% (2)
partial 0% (0)
missing 90% (35)

Primary Treatment

yes 5.1% (2)
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no 0% (0)
missing 95% (37)

Antifungals initiated for CAPA

yes 18% (7)
no 0% (0)
missing 82% (32)

Antifungal initiated

Posa Isa 5.2% (2)
Isav 0% (0)
IsavCasp 2.6% (1)
LAmb 0% (0)
Voriconazole 10% (4)
missing 82% (32)

BAL GM (ODI > 1)

positive 21% (8)

negative 72% (28)

missing 7.7% (3)
BAL LFD

positive 7.7% (3)

negative 7.7% (3)

missing 85% (33)
BAL PCR

positive 7.7% (3)

negative 49% (19)

missing 44% (17)
BAL culture

positive 7.7% (3)

negative 90% (35)

missing 2.6% (1)
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Bronchial Aspirate culture

positive 2.6% (1)
negative 23% (9)
missing 74% (29)

Tracheal Aspirate culture

Positive 2.6% (1)
negative 7.7% (3)
missing 90% (35)

Tracheal Aspirate GM

positive 2.6% (1)
negative 2.6% (1)
missing 95% (37)

Tracheal Aspirate PCR

positive 5.1% (2)
negative 21% (8)
missing 74% (29)

Serum GM (> 0.5)
positive 5.1% (2)
negative 44% (17)
missing 51% (20)
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Table E2. Full results for significantly differentially abundant taxa determined by DESeq2

analysis when assessing CAPA diagnosis, survival, and azole treatment at ICU admission.

Variable Taxa base- log2FoldC | IfcSE | stat | p Adjusted p
Mean hange
CAPA diagnosis | Cladosporium 4389.2 13.71 | 4.00 | 3.42 | 0.00 0.003719
delicatulum 0619
Filobasidium 1165.8 1293 | 3.13 | 4.13 | 3.59 0.000368
magnum E-05
Fungi sp 1017.7 9.18 | 2.62 | 3.51 | 0.00 0.003719
0456
Mycosphaerella 312608. 20.62 | 4.01 5.15 265 3.62E-06
tassiana 4 E-07
Survival (atend | Aspergillus 8266.3 -455 | 1.30 | -3.50 | 0.00 0.017097
of follow up) fumigatus 0462
Candida albicans 83190.1 -4.48 | 142 | -3.15| 0.00 0.029809
1611
Azole treat- Aspergillus 943.1 -6.33 | 243 -| 0.00 0.042435
ment at ICU fumigatus 2.60 | 9225
admission 36
Candida albicans 66157.1 532 | 213 | 249 | 0.01 0.047648
9698 243
Candida 8112.9 9.35  2.68 | 3.48  0.00 0.003749
parapsilosis 6701 | 0489
Candida tropicalis | 51931.1 1452 | 299 485 | 1.18 1.36E-05
916 | E-06

Supplementary methods

DNA extraction

BAL DNA was extracted using a cetyltrimethylammonium bromide (CTAB) method?”.
Negative extraction controls (NECs) consisting of molecular grade Tris-EDTA (TE) buffer
(Promega) were included with each sample batch. First, 500 ul samples were incubated with
0.1% dithiothreitol (Thermo Scientific) at 37 °C for 45 minutes. To lyse fungal cells, CTAB
DNA Extraction Buffer (Generon Ltd) was added and a short mechanical disruption (2 x 20
seconds FastPrep-24) using glass beads (425-600uM, Sigma) was performed, followed by 3
cycles of alternated heating to 65 °C and gentle vortexing for 10 mins each. Cell lysates were
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549 treated with 4 pl RNase A (100 mg/ml, Sigma) for 30 mins prior to DNA isolation using 1:1
550 ratio of Phenol-Chloroform (25:24:1, Merck) and 1:1 Chloroform:isoamyl alcohol (24:1,
551 VWR). DNA was precipitated at -20 °C overnight using 2 volumes of ice-cold 100% ethanol
552 and 0.1 volumes of 3M sodium acetate pH 4.8. Pelleted DNA was washed in 100% ethanol

553 and twice in 70% ethanol. Final DNA was suspended in 50 pl TE buffer.
554 qPCR

555 The presence of A. fumigatus in respiratory samples was validated using a TagMan probe
556 assay targeting the ITS1 region”. Assays were performed on an Applied Biosystems 7500
557 fast system using TagMan Fast Advanced Master Mix (Thermo Fisher Scientific). Standard
558 curves were a nine sample 10-fold dilution series beginning at 100 ng A. fumigatus genomes

559 per reaction.
560 PCR & Sequencing

561 The ITS1 region was amplified using Nextera XT compatible versions of ITS1?> and ITS2degen
562 (a degenerate version of ITS2 primer) (see Table 1). PCR setup used Phusion Green Hot Start
563 |l HF PCR master mix to create 25 pl reactions with 300 nM forward primer, 1.2 uM reverse
564 primer and 2 pl DNA. Parameters included annealing temperature of 55 °C for 40 cycles.
565 PCRs included positive (Aspergillus niger genomic DNA), negative (molecular grade water)
566 and negative extraction controls (NECs) from DNA extractions. Controls were processed fully
567 and sequenced alongside the BAL samples. For sequencing library preparation, samples were
568 processed as per Illumina fungal metagenomic demonstrated protocol (Starting at ‘Clean up’
569 section) using Nextera XT index kit v2 (lllumina). However, this protocol was modified to
570 include sample pooling prior to the second clean up. Libraries were sequenced 2x150 on an

571 Illumina iSeq100, with a final library loading concentration of 50 pM.
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572 Data analysis

573 Paired end reads were subject to quality trimming at Q30 and a minimum length filter of 75
574 nucleotides using bbduk?’ (BBMap v38.22). Primer sequences were removed using
575 Cutadapt®® (v1.18). Reads were mapped to UNITE database using bowtie2®® (v2.3.5.1). Count
576 data was further processed in R (v4.1.3) using the following packages: phyloseq® v1.38.0,

577 vegan3'1 v2.5-7, DESeq23'2 v1.34.0, stringr40 v1.4.0, ggplotz41 v3.3.5and tidyr35 v1.2.0.

578 To minimise contamination in the mycobiome data, samples were subject to a multi-staged
579 quality control process using NEC samples, along with qPCR and sequencing data. Firstly,
580 samples from a DNA extraction batch with A. fumigatus detected (Ct <40) in the

581 corresponding NEC by qPCR were excluded. Secondly, samples were excluded if they

582 produced less than 500 fungal reads (read count filter) and/or a lower number of fungal
583 reads than the corresponding NEC sample (NEC count filter). Of 99 initial samples, 22 were
584 removed due to contamination of an extraction batch, 35 samples did not pass the read

585 count filter and 3 did not pass the NEC count filter.

586 Abundances were standardised to the median sequencing depth. Extremely low abundance
587 taxa were removed by only retaining those occurring > 0.2% in any sample. DESeq2 was used
588 to identify significantly differentially abundant taxa (adjusted p value < 0.05 and basemean >
589 500). Differences in diversity (Shannon and observed OTUs) were assessed using pairwise
590 Wilcoxon rank sum tests. PERMANOVA test was used to assess differences in Bray-Curtis
591 ordination. A mycobiome sample was assigned as containing predominantly A. fumigatus if
592 its A. fumigatus read counts were higher than 50% of the median sequencing depth. To
593 determine mycobiome samples positive for high A. fumigatus burden by validatory qPCR,

594 the cutoff was 0.1 haploid genome equivalents (HGE). The resulting contingency tables for
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595 sequencing and gPCR data were visualised as mosaic plots and statistical significance tested

596 using Fisher’s exact tests.

597

598
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