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Abstract 

How the human brain maintains information in working memory (WM), a process critical for all 

our goal-directed function, has been debated for decades. Classic neurophysiological models, 

which argue that WM is maintained via persistent content-specific “delay activity,” have been 

challenged by alternative ideas suggesting a combination of dynamic activity patterns and 

activity-silent mechanisms. Here, utilizing human intracranial stereo-EEG (sEEG) recordings and 

machine learning techniques, we tested understudied auditory WM in multiple cortical and 

subcortical brain areas. Neuronal activity was quantified as broadband high frequency activity 

(HFA, 70-190 Hz) which has been shown to be highly correlated with multiunit activity of neuron 

populations. Our multivariate pattern analysis (MVPA) results, validated via robust non-

parametric permutation testing, show that information can be decoded from multiple brain 

regions, including prefrontal regions, superior temporal auditory cortices, and the hippocampus. 

However, the recording sites with high WM decoding accuracies were not accompanied by 

statistically significant increases in HFA power. In contrast, HFA power was reduced relative to 

the period preceding WM encoding in many frontal, superior temporal, and hippocampal sEEG 

recording sites. These results are in line with the hypothesis that WM maintenance can be 

supported by highly dynamic, “activity silent” processes rather than via persistent activity only.   
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Introduction 

Working memory (WM), short term storage and manipulation of information, is crucial for goal-

directed cognitive functions that enable us to maneuver the world. One of its behaviorally most 

relevant, and theoretically least understood, domains is auditory WM, a process essential for our 

ability to communicate, socialize, and operate with purpose in our dynamic everyday 

environments.  

The neuronal mechanisms of WM have been a focus of intensive neuroscience research since the 

1970’s (Baddeley and Hitch, 1974; D'Esposito and Postle, 2015). Non-human primate (NHP) and 

non-invasive human imaging studies have given valuable insight into the brain networks 

underlying WM processing (Barak and Tsodyks, 2014; D'Esposito and Postle, 2015; Christophel et 

al., 2017; Constantinidis et al., 2018; Lundqvist et al., 2018). The emphasis of this research has 

been shifting from the “where” in the brain is WM maintained to the neurophysiological question 

“how” neurons carry information of WM content in the human brain (Barak and Tsodyks, 2014; 

D'Esposito and Postle, 2015; Stokes, 2015; Serences, 2016; Christophel et al., 2017; Miller et al., 

2018).  

The debate surrounding the nature of neuronal processes underlying WM maintenance started 

with the initial WM studies in NHP, showing that consistent firing in prefrontal cortex (PFC) 

accompanies WM retention, later on defined as delay activity (Fuster and Alexander, 1971; 

Rosenkilde et al., 1981). Neurophysiological studies suggested that such sustained delay activity 

patterns maintain information throughout the WM retention period (Goldman-Rakic, 1995; 

Romo et al., 1999; Constantinidis and Procyk, 2004; Vergara et al., 2016). The sustained firing was 

shown to be related to both excitatory and inhibitory dynamics of neurons (Barak and Tsodyks, 

2014; Sreenivasan and D'Esposito, 2019). Subsequent human neuroimaging studies (Christophel 

et al., 2012; Christophel and Haynes, 2014; D'Esposito and Postle, 2015), however, showed that 

content-specific information could also be found in posterior brain areas where no sustained 

activity is present during WM maintenance. Evidence is also emerging that not only are posterior 

and sensory areas involved in WM maintenance but also the neuronal processes maintaining WM 

do not necessarily depend on persistently elevated neuronal firing. Some neurophysiological 
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studies in the auditory domain are consistent with this notion, suggesting that persistent delay-

period spiking patterns, which were reported in certain early NHP and rodent studies (Gottlieb 

et al., 1989; Sakurai, 1990), do not necessarily carry information about the maintained content 

(Bigelow and Poremba, 2014; Ng et al., 2014; Scott et al., 2014). 

The dichotomy between neurophysiological recordings in NHPs and human non-invasive studies 

has elicited different theories on the nature of the WM process, resulting in a reinterpretation of 

old findings regarding the persistent neuronal firing during the maintenance period. Several more 

recent neurophysiological studies support an interpretation that persistent firing during the WM 

delay period is a correlate of other brain functions including attention, decision-making, learning, 

or motor preparation (Lundqvist et al., 2018a; Sreenivasan and D'Esposito, 2019). At the same 

time, while the classic studies were based on trial-averaged signals, more recent studies using 

single-trial analysis approaches (Shafi et al., 2007; Lundqvist et al., 2016) suggest that WM is 

maintained via more dynamic process, involving sparse (rather than persistent) firing patterns 

and bursts of neuronal oscillations (Lundqvist et al., 2016; Kucewicz et al., 2017; Bastos et al., 

2018; Lundqvist et al., 2018b). During the period between these bursts of activity, WM could be 

maintained in an “activity silent” state based on short-term synaptic plasticity (Mongillo et al., 

2008; Stokes, 2015). However, these alternative theories have been criticized to be inconsistent 

with many neurophysiological findings regarding the neuronal underpinnings of WM 

(Constantinidis et al., 2018). For example, a limitation of the activity-silent models is that much 

of the experimental evidence (Wolff et al., 2015; Rose et al., 2016; Wolff et al., 2017b; Wolff et 

al., 2020; Mamashli et al., 2021) is coming mostly from non-invasive human studies 

(Constantinidis et al., 2018). 

The insight about WM-related local neuronal circuits mostly come from NHP studies, primarily 

conducted in visual and tactile domains (Goldman-Rakic, 1995; Romo et al., 1999; Barak et al., 

2010). Yet, the simple delayed-match-to-sample designs in highly trained laboratory animals are 

not optimal for differentiating between cognitive functions such as adaptive learning, long-term 

memory, and WM. This difficulty is, perhaps, most evident in the domain of auditory WM, as 

complex auditory-cognitive tasks are very difficult to learn for NHPs (Fritz et al., 2005; Scott et 
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al., 2012; Scott and Mishkin, 2016). In the auditory domain, this limitation leaves us mostly 

dependent on human neuroimaging studies (Lutzenberger et al., 2002; Kaiser et al., 2007; Kaiser, 

2015; Kumar et al., 2016; Uluç et al., 2018; Ahveninen et al., 2023). One way to bridge the gap 

between NHP neurophysiological models and human neuroimaging studies is to use intracranial 

EEG recordings in human participants with epilepsy during their presurgical monitoring (Cash and 

Hochberg, 2015; Parvizi and Kastner, 2018). 

Utilizing their high signal-to-noise ratio (SNR), human intracranial EEG studies provide direct 

access to neural correlates of WM compared to non-invasive neuroimaging or MEG/EEG 

recordings. For example, these studies have shown that the power of intracranial neuronal 

oscillations at the 30-60 Hz gamma band is modulated as a function of memory content during 

WM retention (Howard et al., 2003; Kaiser et al., 2008), whereas higher  65-120 Hz gamma was 

correlated with successful WM performance (Yamamoto et al., 2014). Most interestingly, 

intracranial recordings also provide access to > 70 Hz broadband high-frequency activity (HFA), 

which has been suggested to be a close correlate of local neuronal spiking (Ray et al., 2008; 

Leszczynski et al., 2020): Ray and colleagues (2008) showed a high temporal correlation between 

HFA and average firing rate in microelectrode recordings, suggesting that HFA is a correlate of 

multiunit activity (MUA) (although see also Leszczynski et al. 2020). Recent studies suggest that 

sustained patterns of HFA could play a role also in human WM processing, in line with the 

persistent firing model (Constantinidis et al., 2018). An open question, however, remains 

whether such WM-related HFA increases shown in humans reflect maintenance or executive 

processes aiding WM, such as attention.  

Here, to examine neuronal mechanisms of WM in humans, we designed a retro-cue task to record 

neurophysiological signals from sEEG electrodes during auditory WM maintenance. Auditory 

tasks were utilized, not only because there are few neurophysiological studies relative to visual 

and tactile domains but also because auditory cortex is usually well sampled in sEEG 

implantations due to clinical considerations. In our task, we used auditory nonconceptual 

complex modulation patterns (ripple sounds) to ensure that the information maintained is 

nonverbal but has complex spectrotemporal features (for a more detailed explanation, see 
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Mamashli et al., 2021). We then decoded activity patterns from local field potential HFA patterns. 

To investigate the time course of the whole signal in more detail, we also decoded the 

information from intracranial event-related potentials (iERP) elicited during the maintenance 

period. Our results propose that WM content information is stored in HFA patterns from the 

bilateral superior temporal cortex (STC), hippocampus (HC), and inferior frontal gyrus (IFG). 

Based on these results, we suggest that HFA is a neural correlate of WM maintenance. 
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Methods 

 

Participants 

We collected stereo-EEG (sEEG) from thirteen participants (n=13, Female = 6, Male = 7; 

age=33.39±10.9 - ages are jittered for deidentification purposes) who were implanted mainly in 

frontal and temporal brain regions at Massachusetts General Hospital and Brigham and Women’s 

Hospital. The participants had varying types of epilepsy with pharmaco-resistant complex partial 

seizures. Data of one participant was excluded due to insufficient number of trials. The data was 

collected while participants were undergoing invasive monitoring for epilepsy surgical 

evaluation. The electrode implantations were made exclusively based on clinical grounds as a 

part of diagnostic procedure. All participants provided written fully informed consent. 

Participants were informed that participation in the tests would not alter their clinical treatment 

and that they could withdraw at any time without jeopardizing their clinical care. The study 

design, protocol, and consent form were approved by the Mass General Brigham Institutional 

Review Board. 

 

Stimuli and Procedure 

Participants performed a retro-cue WM task with simultaneous recordings of behavior and sEEG 

from both cortical and subcortical brain structures. In our auditory WM experiment, we 

employed broadband sound patterns modulated across time (ripple velocity, ω cycles/s) and 

frequency (Ω cycles/octave) that are called ripple sounds as memory items. Ripple sounds were 

chosen as memoranda as they have speech-like patterns spectrotemporally (Shamma, 2001) but 

do not have conceptual properties (Fig. 1a). There were four 750-ms ripple sounds with different 

ripple velocities that were modified based on our previous studies (Mamashli et al., 2021; 

Ahveninen et al., 2023). To make the task feasible for our participants during their clinical stay, 

we determined the ripple velocities based on the largest just-noticeable-difference observed 
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among the participants in our previous study. The ripple velocities for the four item classes were 

9.5, 18.2, 34.9, and 66.8 cycles/s. Two additional velocities were used for probes, including 5.0 

and 128 cycles/s. Sound stimuli were delivered by loudspeakers (JBL Wireless Go 2, Harman 

I.I.Inc, USA or Cyber Acoustics Sound Bar USB Speaker, Cyber Acoustics inc., USA) externally 

connected to the task presentation computer.   

The retro-cue WM paradigm, which is well established in the field (Christophel et al., 2012; 

Christophel and Haynes, 2014; Uluç et al., 2018; Ahveninen et al., 2023), aims to dissociate 

perception and attention from memory maintenance (Fig. 1b). It is essentially a modification of 

a delayed match to sample paradigm. In our WM task, we sequentially presented two 750-ms 

ripple sounds with a 250-ms interstimulus interval (ISI). The second ripple sound was followed by 

a retro-cue indicating the item to remember. The visual retro-cue consisted of a visual 

“memorize1” or “memorize2” cue- after another 250-ms ISI. After a 3-s maintenance period, in 

the middle of which an unrelated sound stimulus (50ms white noise)—i.e., an “impulse stimulus” 

(Wolff et al., 2017a) —was presented, a ripple sound probe was presented with a same/different 

response scheme. Participant gave a self-paced response by pressing A (same) and S (different) 

button presses on the keyboard, which were labeled respectively as “1” and “2”, indicating if the 

test probe is the same as the memorized item or not. After each trial, a 1-s inter trial interval was 

registered (Fig. 1b). 
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Figure 1. Diagram of the stimuli and paradigm. (a) Visualization of the spectrotemporal pattern of ripple sound 

stimuli. (b) Time course of the WM task. The presentation of ripple sounds is denoted by waves to the ears and 

the impulse sound iis denoted by an instrument. Participants were instructed to indicate if the probe matched 

the item indicated by the retro-cue via a button press in a self-paced manner and were provided with visual 

feedback. 

 

Each run consisted of 24 trials, 12 of which were match and the remaining non-match. The non-

match trials were divided into two parts with half the trials complete non-match trials where the 

probe was a different ripple sound from the two items that are presented at the beginning of the 

trial. The other half of the non-match trials designated the probe as the uncued item. The 

memory items were pseudo-randomly chosen from four different classes with different temporal 

frequencies. To eliminate categorical encoding, participants were naïve to the number of items 

to memorize. The task was planned to be 120 trials in total if completed with 5 runs. The number 

of trials completed changed across participants.  
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Data Acquisition 

sEEG was recorded from a montage of 8-18 unilaterally or bilaterally implanted depth electrodes 

depending on the clinically indicated procedure per participant. Intracranial signals were 

recorded using a recording system with a sampling rate of 2000 Hz (Blackrock Microsystems, US) 

or with a sampling rate of 1024 Hz (Natus Quantum). At the time of acquisition, sEEG recordings 

were referenced to an EEG electrode that was placed on the head (either mastoid, cervical 

vertebrae 2, Cz or a sEEG contact that, based on imaging localization, was located in the skull and 

outside the brain). 

Intracranial electrodes were localized by an established volumetric image co-registration 

procedure that is used for clinical application. First, the pre-operation T1-weighted MRI images 

were aligned to post-operation CT or MRI images that show electrode locations using Freesurfer 

scripts (http://surfer.mnr.mgh.harvard.edu). Electrode coordinates were manually determined 

from the post operation implant images. The electrodes were then mapped to standard cortical 

parcels/regions using the MMVT toolbox (Felsenstein et al., 2019; Soper et al., 2023).  

The MMVT toolbox uses an automatic, probabilistic labeling algorithm that calculates the 

distances from and probability of each contact for each cortical and subcortical label using 

Electrodes Labeling Algorithm (ELA, https://github.com/pelednoam/ieil ; Peled et al., 2017).  ELA 

identifies the nearest brain region label by creating an expanding cylinder around each electrode 

and calculating the probability of overlap of this cylinder with identified cortical and subcortical 

structure labels (Soper et al., 2023). We used the Lausanne500 parcellation atlas (Daducci et al., 

2012) in addition to a subcortical mapping (Fischl et al., 2004; Desikan et al., 2006; Reuter et al., 

2010; Reuter et al., 2012) for mapping the electrodes' locations. The electrodes that were within 

or less than 1.5 mm distance from cortical areas were taken as cortical electrodes. The electrodes 

within 2.5 mm distance from the centroid of the subcortical region were taken as subcortical 

electrodes. As our regions of interest, we chose Heschl’s gyrus and superior temporal cortex 

(STC), the inferior frontal gyrus (IFG), and the hippocampus (HC), which have been previously 

related to WM maintenance (Leszczynski, 2011; Uluç et al., 2018; Mamashli et al., 2021). We also 

included the orbitofrontal gyrus (OFG) contacts because of its strong anatomical connection to 
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the monkey auditory cortex (Medalla and Barbas, 2014) and possible association with human 

auditory WM (Mamashli et al., 2021). 

For the visualization of results in a common anatomical template, all contacts from all 

participants were resampled to Colin27-space using MMVT and ELA algorithm. Lausanne500 

parcellation atlas and subcortical mapping was performed in the common space in the same 

manner as in native space.  

 

Preprocessing 

sEEG data was preprocessed with custom MATLAB scripts using the Fieldtrip toolbox (Oostenveld 

et al., 2011). The data was divided into single-trial epochs starting from 300 ms before to 3 s after 

the retro-cue onset. Bad channels as well as channels with excessive epileptiform activity and 

bad epochs were found and rejected based on visual evaluation. The data was detrended with a 

baseline window of -300 ms to 0 ms and filtered with a 300 Hz low pass and a 0.1 Hz high pass 

filter sequentially using ft_preprocessing. Notch filtering was used to remove 60 Hz line noise and 

its harmonics from the data. Blackrock datasets were downsampled to 1 kHz. Whole trial datasets 

were detrended and both European data format (EDF) and Blackrock format datasets were 

downsampled to 1 kHz. Data was then re-referenced to a common average of all remaining 

electrodes. After the spectral analysis, the outlier trials for each contact were calculated using 

MATLAB’s built-in isoutlier function (‘grubbs’, threshold factor=1e-7) and contacts with more 

than 5 outlier trials were rejected from further analysis. 

 

Main analyses 

HFA Analysis 

Epochs between -300 ms and 3 s with the onset at retro-cue were convolved with a dictionary of 

complex Morlet wavelets (each spanning seven cycles) at 2-Hz intervals between 70 Hz and 190 
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Hz for each contact for each trial. The frequency-specific sEEG power time series were then 

baseline corrected relative to the 300-ms pre-cue period and, finally, averaged across the 

frequency bins to yield the HFA time course for estimating content-specific patterns of brain 

activity during WM maintenance.  

To examine the full trial HFA patterns, we calculated HFA time courses also across the entire 9-s 

trial period in the same fashion. The power was corrected to absolute baseline of 300 ms before 

the onset of the first sound item and averaged across frequency bins. HFA changes related to 

WM maintenance were estimated in each participant, contact, and time point using one-sample 

t-tests across individual trials. To ensure we do not miss any HFA increases that emerge during 

maintenance, the results are reported without conservative post hoc corrections. That is, the 

purpose was to avoid the Type II error that could be rejecting the persistent activity model due 

to using conservative thresholding. The results of these analyses were plotted as -log10(p) values, 

multiplied with the sign of the t in each time point and thresholded at p<0.05. 
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HFA Decoding Analysis 

We employed a four-class classification with a support vector machine (SVM) classifier to decode 

the memorized items from sEEG HFA power during the WM maintenance. We utilized SVM 

implemented in libsvm (Chang and Lin, 2011) and provided in the COSMOMVPA package 

(Oosterhof et al., 2016) in MATLAB. SVM decoding accuracies were calculated based on median 

HFA power in sliding 500 ms windows (200 steps in the 3.3 s period, i.e., 16.5 ms steps) for each 

contact. To enhance the SNR, subaverages of four trials were calculated with each class using 

cosmo_average_samples. Fifty different random iterations were calculated of these subaveraged 

samples. Four-fold cross-validation was utilized for each iteration: the model was trained in 75% 

of the samples and tested in the remaining samples. cosmo_nfold_partitioner was used to ensure 

that the number of trials were balanced for each condition and the training and test data were 

separate. The decoding accuracies were averaged across the folds and iterations.  

In the common space, a weighted decoding value is determined for each cortical label by the 

weighted average of participants with significant decoding accuracy for this cortical label. In the 

case where a participant had more than one contact with a significant decoding accuracy for this 

cortical label, we selected the contact with the highest decoding accuracy. We repeated this 

procedure for each time point in the maintenance period decoding analysis. For visual feasibility, 

180 timepoint map figures were downsampled to 9 decoding accuracy maps throughout the 

maintenance period using sliding windows. The common space decoding accuracy maps were 

generated using MMVT.   

 

Time-Domain intracranial event-related potentials (iERP) Decoding Analysis 

As in HFA decoding, we employed a four-class SVM classification on the preprocessed signals 

from the sEEG electrodes. We calculated the SVM decoding accuracy using the temporal 

information within the 500-ms sliding time window at 20-ms steps. To enhance SNR, individual 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.08.04.552073doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.552073
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

trials were pooled to subaverages of 4 trials within each class using cosmo_average_samples. 

The same analysis was repeated across 50 random iterations of these subaveraged samples. 

Four-fold cross-validation was utilized for each iteration so that the model was trained in 75% of 

the samples and tested in the remaining 25% of the samples. The decoding accuracies were 

averaged across the folds and iterations.  

 

Statistical Significance 

Robust maximum-statistic permutation test strategy was utilized for dealing with multiple 

comparisons in the testing of decoding hypotheses. For both HFA and ERP decoding analyses, the 

statistical significance was calculated using a cluster-based maximum statistic permutation test 

with 500 permutations. The uncorrected cluster-forming threshold was determined non-

parametrically: 99% of full distribution of decoding accuracies across all permutations in all 

contacts. We calculated the thresholds for each hemisphere separately because most 

participants were implanted unilaterally. Finally, the clusters of decoding accuracy over the 

threshold and a cluster-wise corrected p value were calculated for each electrode (containing 8-

16 contacts). 

 

Control Analyses 

HFA Decoding Analysis on Uncued items 

To control whether the SVM classification indicated memory information, we performed MVPA 

on HFA power for trials according to uncued items. The parameters for spectral analysis and SVM 

4-class classification were the same as cued item analyses. The only difference was that the trials 

were defined according to the uncued item code.  
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Results 

We studied human auditory WM using a ripple-sound retro-cue task in 12 participants under 

intracranial monitoring. Our multivariate pattern analyses suggested that maintained auditory 

WM content can be decoded from dynamic brain activation patterns, in the absence of 

persistently elevated activity relative to pre-trial baseline. WM content could be decoded from 

dynamic changes in broadband HFA, a putative correlate of concurrent firing activity, as well as 

from temporal patterns of intracranial event-related potentials (iERP). 

 

Behavioral Performance 

Participants (n=12) performed with 62.95±3.44 (mean±SEM) percent correct responses across all 

trials of a retro-cue paradigm. We performed an ANOVA with four levels to test if recall 

performance changes in relation to memorized ripple velocity. Our analysis showed no significant 

difference between the behavioral performance per memorized ripple velocity. Reaction time 

analysis could not be calculated due to the self-paced nature of the WM task. 

iERP Analysis 

The averaged voltages for the trial period showed responses to the sound stimuli, but no increase 

during maintenance period in the superior temporal contacts. In IFG contacts, the averages did 

not show any decrease or increase during WM stimuli presentations. 
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Figure 2. Examples of averaged iERP responses from two sEEG contacts from STC and IFG. The responses have 

been normalized based on the standard deviation of the pre-trial period. The WM maintenance period is between 

the vertical dashed lines. 

 

 

Main Analyses 

Figures 3-6 show the results of HFA analysis, four-class SVM classification of HFA and iERP in four 

brain areas that have previously been reported to maintain WM information in auditory (Uluç et 

al., 2018; Mamashli et al., 2021; Ahveninen et al., 2023) or other domains (Schmidt et al., 2015; 

Wu et al., 2018), including superior temporal cortex (STC; site of auditory cortex), the inferior 

frontal gyrus (IFG), and the hippocampus (HC). In addition, we also analyzed contacts within the 

orbitofrontal gyrus (OFG), given its strong domain-specific anatomical connectivity to the monkey 

auditory cortex (Medalla and Barbas, 2014) and possible association with human auditory WM 

(Mamashli et al., 2021).  

Evidence for significant WM decoding results (p<0.05, maximum-statistic permutation test) using 

HFA data was found in all participants. SVM classification was applied to the medial power of HFA 

with a 500 ms sliding window from the 3.3-s maintenance period. In all analyses, the statistical 
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significance was calculated using a cluster-based maximum-statistic permutation test with 500 

permutations. 

Additionally, to investigate WM information embedded in the temporal fine structure of dynamic 

sEEG activity, we conducted a time-domain iERP classification analysis. In our four-class SVM 

classification, we used the temporal information of trial-specific iERP signals within sliding 500-

ms across the WM maintenance period. In the iERP decoding analysis, as in the HFA decoding, 

we found WM information decodable from different cortical or subcortical contacts in all 

participants. 

Complementary to decoding analyses, to examine maintenance related activation patterns, we 

analyzed the evolution of 70-190 Hz HFA, a putative correlate of local firing activity, in epochs 

encompassing the entire trial period. In this analysis, the signal power was compared to the 

period preceding the presentation (and encoding) of the first item. We especially wanted to 

explore if any continuous HFA would occur during periods where significant decoding could be 

shown. 

The results are depicted below based on the pre-determined areas. 

 

Auditory areas of Superior Temporal Cortex (STC) 

Our STC analysis area includes contacts in Heschl's gyri (HG) and superior temporal gyri (STG): 

regions consisting primarily of primary/non-primary auditory cortices and auditory association 

areas. 10 out of the 12 participants had contacts in these areas. The significance for the decoding 

accuracies was calculated for each hemisphere separately because several of our participants 

had sEEG contacts implanted in only one hemisphere. Our HFA decoding sEEG contacts showed 

continuous clusters of significant decoding accuracy in 6 of these participants. In 4 of these 

participants, statistically significant above chance decoding accuracies spread throughout the 

whole maintenance period (Fig. 3d).  
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The temporal decoding analysis of the voltage responses showed significant decoding clusters in 

all 10 participants that had sEEG contacts in STC. Significant decoding results extended across the 

whole WM retention period in 6 of these 10 participants (Fig. 3e). Overall, significant decoding 

results were observed in a larger number of contacts in iERP than HFA decoding in STC. However, 

in HFA analysis, there was more evidence of significant decoding in a single contact across the 

entire maintenance period. 

The significant decoding results were accompanied with no evidence of significant sustained 

elevation of HFA power in STC in contacts during maintenance period, even in uncorrected t-tests 

across trials. The only exception was the period following the “impulse sound” that is presented 

at 1.5 s into the maintenance period. In contrast to persistent increases, the HFA power was 

significantly decreased in most of the contacts (Fig. 3c). 
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Figure 3 HFA time courses and WM decoding results in STC. (a) An example of contacts of electrodes that were 

implanted in STC. All results here are demonstrated for STC contacts within or less than 1.5 mm to the cortical 

label. (b) Whole trial HFA power time course. (c) Working memory period for HFA time courses. (d) HFA decoding 

analyses for STC contacts for all participants. (e) Time-domain decoding analysis from the iERP data. The decoding 

results have been thresholded based on a cluster-based maximum-statistic permutation test in each participant 

(p<0.05). 

 

Inferior Frontal Gyrus (IFG) 

All 12 participants had contacts in IFG. From these 12 participants, we found continuous clusters 

of significant decoding accuracies in 8 participants. However, for most of these contacts, the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.08.04.552073doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.552073
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

significant clusters were either in the first half or the second half of the maintenance period only 

(Fig. 4d). 

Significant iERP decoding results were, again, found in all 12 participants that had contacts in this 

area. In 5 of these participants, decoding results significantly above chance level extended across 

the entire 3-s maintenance period. In another 3 participants, significant results were very strongly 

present in either in the earlier or later part of the maintenance (Fig. 4e). Similar to the contact 

channels in AC, IFG channels in HFA had longer periods of continuous significant decoding 

accuracy. 

Lateral PFC areas have historically been linked to WM maintenance via persistent firing activity 

(Funahashi et al., 1989; Constantinidis et al., 2018). We found evidence of sparse HFA increases 

in IFG. However, the general maintenance period of most of the contacts again was dominated 

by a reduction in power (Fig. 4c). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.08.04.552073doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.04.552073
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

 

Figure 4. HFA time courses and WM decoding results in IFG. (a) An example of contacts in electrodes that were 

implanted in IFG. All results here are demonstrated for IFG contacts within or less than 1.5 mm to the cortical 

label. (b) Whole trial HFA power time course. (c) Working memory period for HFA time course. (d) HFA decoding 

analyses for IFG contacts for all participants. (e) Time-domain decoding analysis from the iERP data. The decoding 

results have been thresholded based on a maximum-statistic permutation test in each participant (p<0.05). 

 

Orbitofrontal Gyrus (OFG) 

Data from OFG contacts was available in 11 of our 12 participants. Although the number of 

recording contacts showing significant decoding accuracy within each participant was smaller for 

this region, 6 out of 11 participants had contacts that had continuous decoding clusters. 

Furthermore, 2 of those participants had decoding accuracies spread throughout the whole 

maintenance period in OFG contacts (Fig. 5d). 
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WM content could also be decoded from OFG in all 11 participants having contacts in this area. 

In 5 of these, significant decoding results emerged on and off throughout maintenance period 

(Fig. 5e). While the number of contacts showing significant results was larger than in iERP 

decoding, there was more evidence of significant results encompassing the entire maintenance 

period in one contact in HFA analysis in OFG. 

OFG contacts also show HFA power elevation sparsely during maintenance, but we mostly 

observe reduction in HFA during WM maintenance across different contacts (Fig. 5c). 

 

Figure 5. HFA time courses and WM decoding results in OFG. (a) example of electrodes that were implanted in 

OFG. All results here are demonstrated for IFG contacts within or less than 1.5 mm to the cortical label. (b) Whole 

trial HFA power time course. (c) Working memory period for HFA time course (d) HFA decoding analyses for OFG 

contacts for all participants (e) Time-domain decoding analysis from the iERP data. The decoding results have 

been thresholded based on a cluster-based maximum-statistic permutation test in each participant (p<0.05). 
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The Hippocampus (HC) 

Data from contacts within HC was available from 11 out of the 12 participants. Out of these 10 

participants, we observed significant decoding in 6 participants, with 4 of these participants 

showing significant decoding results during the entire maintenance period (Fig. 6d). 

Finally, our SVM analysis on HC contacts revealed significant decoding in contacts in 8 out of 10 

participants, 5 of which have contacts with over-chance decoding spread in the WM maintenance 

period (Fig. 6e). Comparison of these results to HFA decoding again presented contacts with 

longer significant accuracy periods in HFA classification. 

HC contacts show a pattern consistent with other areas, exhibiting a decrease in power 

throughout the WM maintenance period (Fig. 6c).  

For all the contacts that showed reduction in HFA power, none of them presented a similar 

pattern to the decoding accuracy patterns and were not always in channels with significant 

decoding accuracy.  
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Figure 6. HFA time courses and WM decoding results in HC. (a) An example of contacts in electrodes that were 

implanted in HC. (b) Whole trial HFA power time course. (c) Working memory period for HFA time course. (d) HFA 

decoding analyses for IFG contacts for all participants (e) Time-domain decoding analysis from the iERP data. The 

decoding results have been thresholded based on a cluster-based maximum-statistic permutation test in each 

participant (p<0.05). 

 

 

Decoding Results in Common Space 

The HFA decoding results were plotted in a normalized Colin27-space as weighted averages of 

participant-contacts with significant decoding per label in a Laus500 parcellation atlas. Our 

widespread brain coverage (1180 cortical and subcortical contacts) findings demonstrated that 
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content-specific information is transient within the brain regions as well as spread across the 

cortical hierarchy (Fig. 7). 

 

 

Figure 7. Whole brain weighted decoding averaged across whole WM period. The WM decoding accuracies were 

averaged across time and the weighted values were created as explained in Methods subsection HFA Decoding 

Analysis. 
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Control Analyses 

HFA Decoding of Uncued memory items 

As a control, we performed a four-class classification with an SVM classifier with the same 

parameters in the HFA decoding analysis on uncued stimuli. Our results showed no significant 

decoding in any of the relevant contacts.  
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Discussion 

The focus of investigation in the mechanisms of WM has recently shifted from where the 

information is stored to what are the nature of processes that enable WM maintenance in 

humans (Lorenc and Sreenivasan, 2021). To this end, we employed intracranial sEEG depth 

electrode recordings to test whether the information is maintained by persistent activity or a 

more dynamic system of activities. We specifically examined whether WM representations are 

maintained via persistent elevation of neuronal activity or by a combination of more dynamic 

and activity-silent processes (Goldman-Rakic, 1995; Stokes, 2015) (for a discussion see, Lundqvist 

et al, 2018 and Constantinidis et al, 2018). In this context, we found evidence of content-specific 

WM representations carried by HFA, a putative correlate of multiunit firing activity, located in 

auditory, frontal areas, and hippocampal regions. Our temporal pattern decoding results, which 

examined WM content in 500-ms windows of unfiltered iERP voltage epochs, showed 

qualitatively similar decoding accuracy patterns from those areas. However, the HFA or temporal 

pattern decoding results, which were statistically significant according to our non-parametric 

permutation testing, were not accompanied with persistent increases of HFA power in 

comparison to the pre-trial baseline. Interestingly, in all areas of interest including higher order 

areas, in compliance with previous findings in the Romo laboratory (Barak and Tsodyks, 2014), 

HFA power significantly reduced in several contacts during WM maintenance, while the other 

contacts did not show any significant increase or decrease in HFA power. Most importantly, 

although some of the HFA power reduction could be denoted by the WM maintenance period, 

the spatiotemporal patterns of significant decoding and HFA power changes did not seem to 

overlap in any of our ROIs. These results are in line with an interpretation that WM maintenance 

is supported by a dynamic system which does not depend on persistent increases of neuronal 

activity in a specific brain region.  

HFA has been proposed as a reliable indicator of population-level neuronal firing (i.e., MUA) in 

the immediate vicinity of intracranial depth electrode contacts (Ray et al., 2008; Ray and 

Maunsell, 2011; Leszczynski et al., 2020). Persistently elevated MUA patterns in PFC have, in turn, 

been proposed to be critical component for stable maintenance of WM maintenance (Fuster et 
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al., 2000; Mendoza-Halliday et al., 2014; Vergara et al., 2016; Constantinidis et al., 2018). 

Although the persistent firing model of WM does not assume stationary activity at the level of 

individual units, a proportion of neurons within the population that maintains WM should be 

active at least in a consistent pattern during the delay period (Constantinidis et al., 2018). In 

human sEEG, such population-level firing patterns should be visible as elevated patterns of HFA 

(Constantinidis et al., 2018). In contrast to this hypothesis, our results show little evidence of 

elevated HFA—stationary or non-stationary—in contacts showing evidence of content-specific 

HFA or iERP temporal patterns.  

The present results are more closely consistent with a proposal that WM maintenance is a 

dynamic process, accompanied by a significant reduction in overall HFA during maintenance 

(Mongillo et al., 2008; Barak et al., 2010; Barak and Tsodyks, 2014; Lundqvist et al., 2018a). Our 

decoding results show that content-specific information can be decoded from multiple brain 

regions, some of which are frontal, auditory, and hippocampal regions. The information could be 

decoded in continuous chunks for a considerable part of the maintenance period. However, the 

WM decoding seems to fluctuate through time in these contacts. These stable but not uniform 

decoding accuracies suggest a more dynamic WM maintenance rather than processes 

consistently contained in localized neuronal populations (Stokes, 2015).  

Robust decoding of WM content was found not only in frontal contacts but also in several of the 

STC contacts in or near auditory cortices. Consistent with the sensory recruitment model, we 

could decode content specific WM information from contacts both in earlier areas (HG, superior 

temporal plane) and in higher areas of lateral STG and STG/superior temporal sulcus (STS) 

boundary (Uluç et al., 2018; Mamashli et al., 2021; Ahveninen et al., 2023). The sensory 

recruitment model of WM has been countered with evidence that information-containing 

activation patterns sensory areas such as auditory cortex are not as resistant to intervening 

distractors than in higher areas (Xu, 2017). Indeed, in certain contacts of auditory cortex, we did 

observe that decoding drops to chance level during the strong feedforward activation pattern to 

the unrelated distractor (or “impulse” sound) (Fig 3c). However, in many of these contacts, the 

classifier performance rebounded after the strong feed-forward HFA to the impulse sound.  
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Impulse stimulus “perturbation” approaches have previously been utilized to address the 

challenge of evidencing activity silent dynamic states as neuronal underpinnings of WM 

maintenance (Wolff et al., 2015; Rose et al., 2016; Wolff et al., 2017b; Wolff et al., 2020; 

Mamashli et al., 2021).  These “perturbation” studies have provided evidence that WM content 

maintained in an activity-silent state. That is, information could be decoded by examining 

content-specific changes to responses to these task-irrelevant impulse stimulus events. 

Compatible with these findings, in our study, some of auditory cortex contact channels showed 

significant decoding accuracy increase after impulse sound compatible with hidden state 

transitions that are coding WM information (Wolff et al., 2015; Rose et al., 2016; Wolff et al., 

2017b; Wolff et al., 2020; Mamashli et al., 2021). 

In addition to its well-documented role in episodic memory (Burgess et al., 2002; Moscovitch et 

al., 2016), a growing selection of studies provide evidence that HC could play a critical role in WM 

processing as well (Cabeza et al., 2002; Ezzyat and Olson, 2008; Axmacher et al., 2009; 

Leszczynski, 2011; Borders et al., 2022). Successful WM performance was shown to be correlated 

with increased gamma power in HC (Fell et al., 2001; Burgess and Ali, 2002). On the other hand, 

memory load in successfully remembered trials was correlated with a progressive HC suppression 

(Stretton et al., 2012). However, HC’s role in WM processing has also been challenged by other 

earlier (Baddeley et al., 2011) and more recent (Slotnick, 2023) studies. Compatible with research 

showing HC to be an integral part of WM, our results also show involvement of hippocampus in 

WM maintenance (Fig. 6d). Our decoding analysis showed that WM information could be found 

in the HFA from contacts recording from HC. Borders and colleagues (2021) suggest that HC plays 

the precise role of supporting complex high-precision binding in WM. Our study design does not 

allow us to investigate the precision of auditory WM, but our analyses show that HC is involved 

in maintenance of complex sounds. In combination with the findings in other AC and frontal 

areas, our results point to a highly dynamic network distributed across several brain areas that is 

supported by activity silent processes as the neural correlate of WM maintenance. 
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Our results also suggest that some of the contacts from which we could decode WM content 

information show persistent suppression confined to the WM maintenance period. This is 

consistent with reports of several fMRI studies (Linke et al., 2011; Ahveninen et al., 2023; Deutsch 

et al., 2023) as well as with recent multi-site neurophysiological studies that reported suppressed 

firing in certain brain areas during maintenance (Dotson et al., 2018; Miller et al., 2018). Linke 

and colleagues have shown that instead of a robust content-specific activation, suppression in 

fMRI activity in sensory areas enable WM maintenance and dependent on the rehearsal strategy 

of the participant (Linke et al., 2011). They argue that the suppression might be a natural 

gatekeeping mechanism against distractors.  

It should be noted that the sEEG method has limited coverage of the brain as the whole brain is 

not implanted with the sEEG electrodes. Hence, the activity of other regions contributing to WM 

maintenance cannot be ruled out. Furthermore, our HFA recordings reflect correlates but not 

direct measures of underlying neuronal activity (Leszczynski et al., 2020) and, as such, HFA does 

not allow us to rule out the role of more focal but persistent firing patterns in WM.  

In conclusion, our study shows that neuronal processes underlying WM maintenance are highly 

dynamic processes that are spread across sensory and frontal areas as well as HC. These results 

are in line with the hypothesis that WM maintenance can be supported by highly dynamic activity 

silent processes rather than persistent activity. 
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