

1
2 High quality genome assembly and annotation (v1) of the
3 eukaryotic terrestrial microalga *Coccomyxa viridis* SAG 216-4

4
5 Anton Kraege¹, Edgar A. Chavarro-Carrero¹, Nadège Guiglielmoni², Eva Schnell¹, Joseph
6 Kirangwa², Stefanie Heilmann-Heimbach^{3,4}, Kerstin Becker^{5,6}, Karl Köhrer⁶, WGGC Team,
7 DeRGA Community, Philipp Schiffer², Bart P. H. J. Thomma^{1,7} and Hanna Rovenich¹

8
9 ¹ Institute for Plant Sciences, University of Cologne, Germany; ² Institute of Zoology, University
10 of Cologne, Germany; ³ Institute of Human Genetics, University Hospital of Bonn & University
11 of Bonn, Bonn, Germany; ⁴ NGS Core Facility, Medical Faculty of the University of Bonn, Bonn,
12 Germany; ⁵ Cologne Center for Genomics (CCG), Medical Faculty, University of Cologne,
13 50931 Cologne, Germany; ⁶ Biological and Medical Research Centre (BMFZ), Genomics &
14 Transcriptomics Laboratory, Heinrich-Heine-University Düsseldorf, Germany; ⁷ Cluster of
15 Excellence on Plant Sciences (CEPLAS), Germany

16
17 corresponding author: hanna.roevenich@uni-koeln.de

18
19

20 **Abstract**

21 Unicellular green algae of the genus *Coccomyxa* are recognized for their worldwide
22 distribution and ecological versatility. Most species described to date live in close association
23 with various host species, such as in lichen associations. However, little is known about the
24 molecular mechanisms that drive such symbiotic lifestyles. We generated a high-quality
25 genome assembly for the lichen photobiont *Coccomyxa viridis* SAG 216-4 (formerly *C.*
26 *mucigena*). Using long-read PacBio HiFi and Oxford Nanopore Technologies in combination
27 with chromatin conformation capture (Hi-C) sequencing, we assembled the genome into 21
28 scaffolds with a total length of 50.9 Mb, an N50 of 2.7 Mb and a BUSCO score of 98.6%. While
29 19 scaffolds represent full-length nuclear chromosomes, two additional scaffolds represent
30 the mitochondrial and plastid genomes. Transcriptome-guided gene annotation resulted in the
31 identification of 13,557 protein-coding genes, of which 68% have annotated PFAM domains
32 and 962 are predicted to be secreted.

33

34 **Keywords:** *Coccomyxa viridis*, EBP, ERGA, long-read sequencing, genome assembly,
35 genome annotation, Trebouxiophyceae

36

37

38 Introduction

39 Green algae are photosynthesizing eukaryotic organisms that differ greatly in terms of
40 morphology and colonize a large variety of aquatic and terrestrial habitats. Phylogenetically,
41 green algae form a paraphyletic group that has recently been proposed to comprise three
42 lineages including the Prasinodermophyta in addition to the Chlorophyta and Streptophyta (Li
43 et al., 2020). This new phylum diverged before the split of the Chlorophyta and Streptophyta
44 that occurred between 1,000 and 700 million years ago (Morris et al., 2018). While the
45 streptophyte lineage encompasses charophyte green algae as well as land plants, the
46 chlorophyte lineage consists of 7 prasinophyte classes, which gave rise to 4 phycoplast-
47 containing core chlorophyte classes (Chlorodendrophyceae, Trebouxiophyceae,
48 Ulvophyceae, Chlorophyceae) with one independent sister class (Pedinophyceae) (Leliaert et
49 al., 2012; Marin, 2012).

50 The *Coccomyxa* genus is represented by coccoid unicellular green algae that belong
51 to the class of Trebouxiophyceae. Morphologically, *Coccomyxa* spp. are characterized by
52 irregular elliptical to globular cells that range from 6–14 x 3–6 μm in size, with a single parietal
53 chloroplast lacking pyrenoids and the absence of flagellate stages (Schmidle, 1901). Members
54 of this genus are found in freshwater, marine, and various terrestrial habitats where they occur
55 free-living or in symbioses with diverse hosts (Darienko et al., 2015; Gustavs et al., 2017;
56 Malavasi et al., 2016). Several *Coccomyxa* species establish stable, mutualistic associations
57 with fungi that result in the formation of complex three-dimensional architectures, known as
58 lichens (Faluaburu et al., 2019; Gustavs et al., 2017; Jaag, 1933; Yahr et al., 2015; Zoller and
59 Lutzoni, 2003). Others associate with vascular plants or lichens as endo- or epiphytes,
60 respectively (Cao et al., 2018a; Cao et al., 2018b; Tagirdzhanova et al., 2023; Trémouillaux-
61 Guiller et al., 2002), and frequently occur on the bark of trees (Kulichovà et al., 2014; Štifterovà
62 and Neustupa, 2015) where they may interact with other microbes. One novel species was
63 recently found in association with carnivorous plants, even though the nature of this
64 relationship remains unclear (Sciuto et al., 2019). Besides, *Coccomyxa* also establishes
65 parasitic interactions with different mollusk species affecting their filtration ability and
66 reproduction (Gray et al., 1999; Sokolnikova et al., 2016; Sokolnikova et al., 2022; Vaschenko
67 et al., 2013).

68 Despite this ecological versatility, little is known about the molecular mechanisms that
69 determine the various symbiotic lifestyles in *Coccomyxa*. One short read-based genome is
70 available for *C. subellipsoidea* C-169 that was isolated on Antarctica where it occurred on
71 dried algal peat (Blanc et al., 2012), whereas another high-quality genome has recently been
72 made available for a non-symbiotic strain of *C. viridis* that was isolated from a lichen thallus
73 (Tagirdzhanova et al., 2023). For *Coccomyxa* sp. Obi, LA000219 and SUA001 chromosome-

74 , scaffold- and contig-level assemblies are available on NCBI, respectively, as well as two
75 metagenome-assembled genomes of *C. subellipsoidea*. To facilitate the study of *Coccomyxa*
76 symbiont-associated traits and their evolutionary origin, we here present the generation of a
77 high-quality chromosome-scale assembly of the phycobiont *C. mucigena* SAG 216-4 using
78 long-read PacBio HiFi and Oxford Nanopore Technology (ONT) combined with Hi-C and RNA
79 sequencing. Recent SSU and ITS rDNA sequencing-based re-evaluations of the *Coccomyxa*
80 phylogeny placed the SAG 216-4 isolate in the clade of *C. viridis* (Darienko et al., 2015;
81 Malavasi et al., 2016). Hence, this isolate will be referred to as *C. viridis* here and data have
82 been deposited under the corresponding Taxonomy ID.

83

84 Materials & Methods

85 **Sample information**

86 *Coccomyxa viridis* (formerly *Coccomyxa mucigena*) SAG 216-4 was ordered from the Culture
87 Collection of Algae at the Georg-August-University Göttingen (*Sammlung von Algenkulturen*
88 der Universität Göttingen, international acronym SAG), Germany. The stock culture was
89 reactivated in liquid modified Waris-H growth medium (McFadden and Melkonian, 1986) with
90 soil extract and 3x vitamins (0.15 nM vitamin B12, 4.1 nM biotin, 0.3 µM thiamine-HCl, 0.8 nM
91 niacinamide), and maintained through regular medium replacement. Cultures were grown at
92 ~ 15 µmol photons m⁻² s⁻¹ (fluorescent light tubes: L36W/640i energy saver cool white and
93 L58W/956 BioLux, Osram, Munich, Germany) in a 14/10 h light/dark cycle at 20°C.

94

95 **DNA and RNA extraction**

96 Cells of a 7-week-old *C. viridis* culture were harvested over 0.8 µm cellulose nitrate filters
97 (Sartorius, Göttingen, Germany) using a vacuum pump. Material was collected with a spatula,
98 snap-frozen and ground in liquid nitrogen using mortar and pestle. The ground material was
99 used for genomic DNA extraction with the RSC Plant DNA Kit (Promega, Madison, WI, USA)
100 using the Maxwell® RSC device according to manufacturer's instructions. To prevent shearing
101 of long DNA fragments, centrifugation was carried out at 10,000 g during sample preparation.
102 Following DNA extraction, DNA fragments <10,000 bp were removed using the SRE XS kit
103 (Circulomics, Baltimore, MD, USA) according to manufacturer's instructions. DNA quantity and
104 quality were assessed using the Nanodrop 2000 spectrometer and Qubit 4 fluorometer with
105 the dsDNA BR assay kit (Invitrogen, Carlsbad, CA, USA), and integrity was confirmed by gel
106 electrophoresis. High-molecular weight DNA was stored at 4°C.

107 For total RNA extraction, algal cells were collected from a dense nine-day-old culture
108 and ground in liquid nitrogen using mortar and pestle. RNA was extracted with the Maxwell® RSC device according
109 RSC Plant RNA kit (Promega, Madison, WI, USA) using the Maxwell® RSC device according

110 to manufacturer's instructions. RNA quality and quantity was determined using the Nanodrop
111 2000 and stored at -80°C.

112

113 ***Pacific Biosciences High-Fidelity (PacBio HiFi) sequencing***

114 HiFi libraries were prepared with the Express 2.0 Template kit (Pacific Biosciences, Menlo
115 Park, CA, USA) and sequenced on a Sequel II/Sequel IIe instrument with 30h movie time. HiFi
116 reads were generated using SMRT Link (v10; (Pacific Biosciences, Menlo Park, CA, USA)
117 with default parameters.

118

119 ***Oxford Nanopore Technologies (ONT) sequencing***

120 Library preparation with the Rapid Sequencing Kit (SQK-626 RAD004) was performed with
121 ~400 ng HMW DNA according to manufacturer's instructions (Oxford Nanopore Technologies,
122 Oxford, UK). The sample was loaded onto an R9.4.1 flow cell in a minION Mk1B device
123 (Oxford Nanopore Technologies, Oxford, UK), which was run for 24 h. Subsequent base
124 calling was performed using Guppy (version 630 3.1.3; Oxford Nanopore Technologies,
125 Oxford, UK). Adapter sequences were removed using Porechop (version 0.2.4 with default
126 settings) (Wick, 2018), and the reads were self-corrected and trimmed using Canu (version
127 1.8) (Koren et al., 2017).

128

129 ***Chromosome conformation capture (Hi-C) and sequencing***

130 *C. viridis* cells were cross-linked in 3% formaldehyde for 1 hour at room temperature. The
131 reaction was quenched with glycine at a final concentration of 250 mM. Cells were collected
132 by centrifugation at 16,000 g for 10 min. Pellets were flash-frozen in liquid nitrogen and ground
133 using mortar and pestle. Hi-C libraries were prepared using the Arima-HiC+ kit (Arima
134 Genomics, Carlsbad, CA, USA) according to manufacturer's instructions, and subsequently
135 paired-end (2x150 bp) sequenced on a NovaSeq 6000 instrument (Illumina, San Diego, CA,
136 USA).

137

138 ***RNA sequencing***

139 Library preparation for full-length mRNASeq was performed using the NEB Ultra II Directional
140 RNA Library Prep with NEBNext Poly(A) mRNA Magenetic Isolation Module and 500 ng total
141 RNA as starting material, except for W-RNA Lplaty, where library prep was based on 100 ng
142 total RNA as starting material. Sequencing was performed on an Illumina NovaSeq 6000
143 device with 2x150 bp paired-end sequencing protocol and >50 M reads per sample.

144

145 ***Genome assembly***

146 PacBio HiFi reads were assembled using Raven (v1.8.1) (Vaser and Šikić, 2021) with default
147 settings. Hi-C reads were mapped onto this assembly with Juicer (v2.0) using the “assembly”
148 option to skip the post-processing steps and generate the merged_nodups.txt file (Durand et
149 al., 2016b). For the juicer pipeline, restriction site maps were generated using the *DpnII*
150 (GATC) and *HinfI* (GANTC) restriction site profile and the assembly was indexed with BWA
151 index (v0.7.17-r1188) (Li and Durbin, 2009), and used to polish the assembly using 3d-dna
152 (v180922) (Dudchenko et al., 2017). Afterwards, Juicebox (v1.11.08) was used to manually
153 curate the genome assembly by splitting contigs and rearranging them according to the Hi-C
154 pattern (Durand et al., 2016a). Contigs were merged to scaffolds according to the Hi-C map
155 and Ns were introduced between contigs within scaffolds, gaps between contigs were
156 removed and contigs were merged. Subsequently, ONT reads were mapped to the assembly
157 using Minimap2 (v2.24-r1122) and Samtools (v1.10) and mapped reads were visualized in
158 Integrative Genome Viewer (v2.11.2) (Danecek et al., 2021; Li, 2021; Robinson et al., 2011).
159 Whenever gaps between contigs were spanned by at least five reads with a mapping quality
160 of 30, the contigs were fused in the assembly.

161 Potential telomeres were identified using tapestry (v1.0.0) with “AACCCT” as telomere
162 sequence (Davey et al., 2020). To check for potential contaminations, Blobtools (v1.1.1) and
163 BLAST (v2.13.0+) were used to create a Blobplot including taxonomic annotation at genus
164 level (Camacho et al., 2009; Laetsch and Blaxter, 2017). To check completeness of the
165 assembly and retrieve ploidy information, kat comp from the Kmer Analysis Toolkit (v2.4.2)
166 was used, and results were visualized using the kat plot spectra-cn function with the -x 800
167 option to extend the x-axis (Mapleson et al., 2016). Genome synteny to the closest sequenced
168 relative *C. subellipsoidea* C-169 was determined using Mummer3 (Blanc et al., 2012; Kurtz et
169 al., 2004). In detail, the two assemblies were first aligned using Nucmer, followed by a filtering
170 step with Delta-filter using the many-to-many option (-m). Finally, the alignment was visualized
171 with Mummerplot.

172

173 **Annotation**

174 To annotate repetitive elements in the nuclear genome, a database of simple repeats was
175 created with RepeatModeler (v2.0.3) that was expanded with transposable elements (TE) from
176 the TransposonUltimate resonate (v1.0) pipeline (Flynn et al., 2020; Riehl et al., 2022). This
177 pipeline uses multiple tools for TE prediction and combines the prediction output. For the
178 prediction of TEs in *Coccomyxa viridis* helitronScanner, ltrHarvest, mitefind, mitetracker,
179 RepeatModeler, RepeatMasker, sinefind, tirvish, transposonPSI and NCBI_CDD1000 were
180 used within TransposonUltimate resonate and TEs that were predicted by at least two tools
181 were added to the database. TEclass (v2.1.3) was used for classification (Abrusán et al.,
182 2009). To softmask the genome and obtain statistics on the total TE and repetitive element

183 content in the genome, RepeatMasker (v4.1.2-p1)(Smit et al., 2012) was used with excl
184 option to exclude Ns in the masking.

185 Gene annotation in the nuclear genome was performed making use of RNA
186 sequencing data. To this end, the genome was indexed, and reads were mapped with HiSat2
187 (v2.2.1) using default settings (Kim et al., 2019). Afterwards, BRAKER1 (v2.1.6) was used for
188 transcriptome-guided gene prediction based on the RNA sequencing data with default settings
189 (Hoff et al., 2016). To generate protein and coding sequence files the Braker output was
190 transformed with Gffread (v0.12.7) (Pertea and Pertea, 2020). PFAM domain annotation was
191 performed with InterProScan (v5.61) (Paysan-Lafosse et al., 2023). To estimate the number
192 of secreted proteins, SignalP (v6.0) was run in the slow-sequential mode on the annotated
193 proteins (Teufel et al., 2022). Finally, BUSCO (v5.3.2) was run with the Chlorophyta database
194 (chlorophyta_odb10) to estimate the completeness of the gene annotation (Manni et al.,
195 2021). The circos plot visualization of the annotation was created with R (v4.2.0) and Circilize
196 (v0.4.14) (Gu et al., 2014). All software and tools used for the genome assembly and
197 annotation are summarized in Table S1.

198 Organelle genomes were annotated separately. Scaffolds were identified as organelle
199 genomes based on their lower GC content and smaller size. The mitochondrial genome was
200 annotated using MFannot (Lang et al., 2023) as well as GeSeq (Tillich et al., 2017) and the
201 annotation was combined within the GeSeq platform. The plastid genome was annotated
202 using GeSeq alone. The annotations were visualized using the OGDraw webserver (Greiner
203 et al., 2019).

204

205

206 Results

207 The version 1 genome of *C. viridis* was assembled from 32.2 Gbp of PacBio HiFi reads with
208 a mean read length of 15 kb, 0.95 Gbp Nanopore reads with a mean read length of 8.8 kb and
209 15 million pairs of Hi-C seq data. The PacBio HiFi reads were first assembled using Raven
210 (Vaser and Šikić, 2021), yielding 27 contigs. These contigs were scaffolded and manually
211 curated using Hi-C data (Dudchenko et al., 2017; Durand et al., 2016a; Durand et al., 2016b;
212 Li and Durbin, 2009). To close the remaining gaps between contigs within scaffolds, ONT
213 reads were mapped onto the assembly (Danecek et al., 2021; Li, 2021) and gaps that were
214 spanned by at least 5 ONT reads with a mapping quality >30 were manually closed, finally
215 resulting in 21 scaffolds consisting of 26 contigs with a total length of 50.9 Mb and an N50 of
216 2.7 Mb (Figure 1, Table 1). Using Tapestry (Davey et al., 2020), telomeric regions
217 ([AACCCCT] n) were identified at both ends of nine of the 21 scaffolds (≥ 5 repeats) (Figure 1a),
218 suggesting that these represent full-length chromosomes, which was confirmed by Hi-C

219 analysis (Figure 1b). Additionally, the Hi-C contact map indicated centromeres for some of the
220 chromosomes. However, the determination of exact centromere locations on all chromosomes
221 will require ChIP-seq analysis and CenH3 mapping. While Tapestry detected telomeric
222 sequences at only one end of eight other scaffolds and none for scaffold 18 and 19, the Hi-C
223 map points towards the presence of telomeric repeats at both ends of all scaffolds 1-19 (Figure
224 1b), suggesting that the v1 assembly contains 19 full-length chromosomes that compose the
225 nuclear genome. Scaffolds 20 and 21 were considerably shorter with ~162 kb and ~70 kb and
226 displayed a markedly lower GC content at 41-42% (Figure 1a), suggesting that these scaffolds
227 represent the chloroplast and mitochondrial genomes, respectively. BLAST analyses
228 confirmed the presence of plastid and mitochondrial genes on the respective scaffolds, and
229 the overall scaffold lengths corresponded with the sizes of the plastid and mitochondrial
230 genomes of *Coccomyxa subellipsoidea* C-169 with 175 kb and 65 kb, respectively (Blanc et
231 al., 2012). Full annotation of scaffolds 20 and 21 showed that they indeed represent
232 chloroplast and mitochondrial genomes, respectively (Figure 2).

233 To rule out the presence of contaminants, the assembly and PacBio HiFi raw reads
234 were used to produce a Blobplot (Camacho et al., 2009; Laetsch and Blaxter, 2017), which
235 indicates that 98.76% of the reads match only the *Coccomyxa* genus (Figure 3) and,
236 consequently, that the original sample was free of contaminating organisms. Finally, a KAT
237 analysis showed a single peak of k-mer multiplicity based on HiFi reads that were represented
238 once in the assembly (Figure 4) (Mapleson et al., 2016), indicative of a high-quality, haploid
239 genome.

240 To annotate the nuclear genome, we first assessed the presence of repetitive
241 elements. In total, we found 8.9% of the genome to be repetitive (Table 2), comparable to the
242 7.2% of repetitive sequences found in the genome of *C. supellipsoidea* C-169 (Blanc et al.,
243 2012). These 8.9% repetitive elements were annotated as either simple repeats (2.3%) or
244 transposable elements (6.6%). Of the transposable elements, 36% were annotated as
245 retrotransposons and 64% as DNA transposons. The distribution of the repetitive elements
246 was even across the genome with only a few repeat-rich regions (Figure 5). Next, we aimed
247 to produce a high-quality genome annotation using RNA sequencing data. In total 13,557
248 genes were annotated with an average length of 3.1 kb (Table 2). The amount of alternative
249 splicing in the genome is predicted to be very low, given the average of one transcript per
250 gene model. To confirm the actual amount of alternative splicing, however, further analyses
251 will be required. Of the 13,557 genes, 68% have annotated PFAM domains and 962 are
252 predicted to carry a signal peptide for secretion. A total of 1,489 (98.6 %) complete gene
253 models among 1,519 conserved Benchmarking Universal Single-Copy Orthologs (BUSCO)
254 (Manni et al., 2021) in the chlorophyta_odb10 database were identified (Table 2), suggesting
255 a highly complete genome annotation.

256 Until recently, the taxonomic classification and definition of *Coccomyxa* species was
257 based on environmentally variable morphological and cytological characteristics. This
258 classification was reviewed based on the phylogenetic analyses of nuclear SSU and ITS rDNA
259 sequences, which resulted in the definition of 27 currently recognized *Coccomyxa* species
260 (Darienko et al., 2015; Malavasi et al., 2016). Dot plot analysis of the high-quality genome
261 assembly of *C. viridis* SAG216-4 with the assembly of the most closely related sequenced
262 relative *C. subellipsoidea* C-169 revealed a lack of synteny since the few identified orthologous
263 sequences were < 1 kb and, therefore, do not represent full-length genes (Figure 6a, Table
264 2). This lack of synteny was no technical artifact since the *C. viridis* assembly could be fully
265 aligned to itself (Figure 6b), and BLAST analyses with five out of six non-identical ITS
266 sequences identified in the *C. viridis* SAG 216-4 assembly confirmed its species identity. A
267 comparison of the assembly of *C. subellipsoidea* C-169 to that of *Chlorella variabilis*
268 (Chlorophyte, *Trebouxiophyceae*) has previously identified few syntenic regions which
269 displayed poor gene collinearity (Blanc et al., 2012). Future studies will help to clarify whether
270 the absence of synteny between *C. viridis* and *C. subellipsoidea* is due to the quality of the
271 available assemblies or whether it has biological implications.

272

273 Data availability

274 Data for *C. viridis* SAG 216-4 with the ToLID ucCocViri1 is available via the European
275 Nucleotide Archive (ENA) under the study accession number PRJNA1054215. Fastqc reports
276 of raw data can be found in (Kraege et al., 2023).

277

278 Acknowledgements

279 This genome project is part of the DeRGA pilot study (<https://www.erga-biodiversity.eu/pilot-project>) and we acknowledge coordination and support by Dr. Astrid Böhne and Prof. Dr. Ann-
280 Marie Waldvogel. Development of the pilot ERGA Data Portal (<https://portal.erga-biodiversity.eu/>) was funded by the European Molecular Biology Laboratory. We thank the
281 West German Genome Center (WGGC) and the Cologne Center for Genomics (CCG) for
282 library generation and quality control as well as their support for PacBio Hifi, Hi-C and RNA
283 sequencing.

284

285 Conflict of interest

286 The authors declare no conflict of interest.

287

288 Funding information

291 BPHJT acknowledges funding by the Alexander von Humboldt Foundation in the framework
292 of an Alexander von Humboldt Professorship endowed by the German Federal Ministry of
293 Education and Research and is furthermore supported by the Deutsche
294 Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence
295 Strategy – EXC 2048/1 – Project ID: 390686111. This research was also funded by the
296 Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SFB1535 -
297 Project ID 458090666. PHS was funded by a DFG ENP grant (grant number: 434028868),
298 which also funded JK's position. NG was first funded through a DFG grant to PHS
299 ([458953049](#)) and subsequently through the European Union's Horizon Europe Research and
300 Innovation program under the Marie Skłodowska-Curie grant agreement No. 101110569.

301

302 References

303 Abrusán, G., Grundmann, N., DeMester, L., and Makalowski, W. (2009). TEclass--a tool for
304 automated classification of unknown eukaryotic transposable elements. *Bioinformatics* **25**, 1329-1330.

305 Blanc, G., Agarkova, I., Grimwood, J., Kuo, A., Brueggeman, A., Dunigan, D.D., Gurnon, J., Ladunga,
306 I., Lindquist, E., Lucas, S., *et al.* (2012). The genome of the polar eukaryotic microalga *Coccomyxa*
307 *subellipsoidea* reveals traits of cold adaptation. *Genome Biol* **13**, R39.

308 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L.
309 (2009). BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421.

310 Cao, S., Zhang, F., Zheng, H., Liu, C., Peng, F., and Zhou, Q. (2018a). *Coccomyxa antarctica* sp.
311 nov. from the Antarctic lichen *Usnea aurantiacoatra*. *PhytoKeys*, 107-115.

312 Cao, S., Zhang, F., Zheng, H., Peng, F., Liu, C., and Zhou, Q. (2018b). *Coccomyxa greatwallensis* sp.
313 nov. (Trebouxiophyceae, Chlorophyta), a lichen epiphytic alga from Fildes Peninsula, Antarctica.
314 *PhytoKeys*, 39-50.

315 Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T.,
316 McCarthy, S.A., Davies, R.M., *et al.* (2021). Twelve years of SAMtools and BCFtools. *Gigascience* **10**.

317 Darienko, T., Gustavs, L., Eggert, A., Wolf, W., and Proschold, T. (2015). Evaluating the species
318 boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative
319 taxonomy and DNA barcoding with further implications for the species identification in environmental
320 samples. *PLoS One* **10**, e0127838.

321 Davey, J.W., Davis, S.J., Mottram, C., and Ashton, P.D. (2020). Tapestry: validate and edit small
322 eukaryotic genome assemblies with long reads. *bioRxiv*.

323 Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S.,
324 Machol, I., Lander, E.S., Aiden, A.P., *et al.* (2017). *De novo* assembly of the *Aedes aegypti* genome
325 using Hi-C yields chromosome-length scaffolds. *Science* **356**, 92-95.

326 Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L.
327 (2016a). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. *Cell*
328 *Syst* **3**, 99-101.

329 Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S.P., Huntley, M.H., Lander, E.S., and Aiden, E.L.
330 (2016b). Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. *Cell*
331 *Systems* **3**, 95-98.

332 Faluaburu, M.S., Nakai, R., Imura, S., and Naganuma, T. (2019). Phylogenetic characterization of
333 mycobionts and photobionts of rock tripe lichen in East Antarctica. *Microorganisms* 7.

334 Flynn, J.M., Hubley, R., Goubert, C., Rosen, J., Clark, A.G., Feschotte, C., and Smit, A.F. (2020).
335 RepeatModeler2 for automated genomic discovery of transposable element families. *Proc Natl Acad
336 Sci U S A* 117, 9451-9457.

337 Gray, A.P., Lucas, I.A.N., Seed, R., and Richardson, C.A. (1999). *Mytilus edulis chilensis* infested with
338 *Coccomyxa parasitica* (Chlorococcales, Coccomyxaceae). *Journal of Molluscan Studies* 65, 289-294.

339 Greiner, S., Lehwark, P., and Bock, R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3.1:
340 expanded toolkit for the graphical visualization of organellar genomes. *Nucleic Acids Res* 47, W59-
341 W64.

342 Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). Circos implements and enhances
343 circular visualization in R. *Bioinformatics* 30, 2811-2812.

344 Gustavs, L., Schiefelbein, U., Darienko, T., and Pröschold, T. (2017). Symbioses of the green algal
345 genera *Coccomyxa* and *Elliptochloris* (Trebouxiophyceae, Chlorophyta). In *Algal and Cyanobacteria
346 Symbioses*, M. Grube, J. Seckbach, and L. Muggia, eds. (Europe: World Scientific), pp. 169-208.

347 Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M., and Stanke, M. (2016). BRAKER1:
348 Unsupervised RNA-Seq-based genome annotation with GeneMark-ET and AUGUSTUS.
349 *Bioinformatics* 32, 767-769.

350 Jaag, O. (1933). *Coccomyxa Schmidle*- Monographie einer Algengattung (Bern: Gebrüder Fretz).

351 Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome
352 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* 37, 907-915.

353 Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M. (2017). Canu:
354 scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation.
355 *Genome Res* 27, 722-736.

356 Kraege, A., Thomma, B.P.H.J., and Rovenich, H. (2023). Fastqc reports of sequencing data from
357 *Coccomyxa viridis* SAG 216-4.

358 Kulichovà, J., Škaloud, P., and Neustupa, J. (2014). Molecular diversity of green corticolous
359 microalgae from two sub-Mediterranean European localities. *European Journal of Phycology* 49, 345-
360 355.

361 Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L.
362 (2004). Versatile and open software for comparing large genomes. *Genome Biol* 5, R12.

363 Laetsch, D.R., and Blaxter, M.L. (2017). BlobTools: Interrogation of genome assemblies. *F1000
364 Research* 6, 1287.

365 Lang, B.F., Beck, N., Prince, S., Sarrasin, M., Rioux, P., and Burger, G. (2023). Mitochondrial genome
366 annotation with MFannot: a critical analysis of gene identification and gene model prediction. *Front
367 Plant Sci* 14, 1222186.

368 Leliaert, F., Smith, D.R., Moreau, H., Herron, M.D., Verbruggen, H., Delwiche, C.F., and De Clerck, O.
369 (2012). Phylogeny and molecular evolution of the green algae. *Crit Rev Plant Sci* 31, 1-46.

370 Li, H. (2021). New strategies to improve minimap2 alignment accuracy. *Bioinformatics* 37, 4572-4574.

371 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler
372 transform. *Bioinformatics* 25, 1754-1760.

373 Li, L., Wang, S., Wang, H., Sahu, S.K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., *et al.*
374 (2020). The genome of *Prasinoderma coloniale* unveils the existence of a third phylum within green
375 plants. *Nat Ecol Evol* 4, 1220-1231.

376 Malavasi, V., Skaloud, P., Rindi, F., Tempesta, S., Paoletti, M., and Pasqualetti, M. (2016). DNA-
377 Based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the
378 coccoid green algal genus *Coccomyxa* (Trebouxiophyceae, Chlorophyta). *PLoS One* 11, e0151137.

379 Manni, M., Berkeley, M.R., Seppey, M., Simao, F.A., and Zdobnov, E.M. (2021). BUSCO update:
380 novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of
381 eukaryotic, prokaryotic, and viral genomes. *Mol Biol Evol* 38, 4647-4654.

382 Mapleson, D., Accinelli, G.G., Kettleborough, G., Wright, J., and Clavijo, B.J. (2016). KAT: A K-mer
383 Analysis Toolkit to quality control NGS datasets and genome assemblies. *Bioinformatics* 33, 574-576.

384 Marin, B. (2012). Nested in the Chlorellales or independent class? Phylogeny and classification of the
385 Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and
386 plastid-encoded rRNA operons. *Protist* 163, 778-805.

387 McFadden, G.I., and Melkonian, M. (1986). Use of Hepes buffer for microalgal culture media and
388 fixation for electron microscopy. *Phycologia* 25, 551-557.

389 Morris, J.L., Puttick, M.N., Clark, J.W., Edwards, D., Kenrick, P., Pressel, S., Wellman, C.H., Yang, Z.,
390 Schneider, H., and Donoghue, P.C.J. (2018). The timescale of early land plant evolution. *Proc Natl
391 Acad Sci U S A* 115, E2274-E2283.

392 Paysan-Lafosse, T., Blum, M., Chuguransky, S., Grego, T., Pinto, B.L., Salazar, G.A., Bileschi, M.L.,
393 Bork, P., Bridge, A., Colwell, L., *et al.* (2023). InterPro in 2022. *Nucleic Acids Res* 51, D418-D427.

394 Pertea, G., and Pertea, M. (2020). GFF utilities: GffRead and GffCompare. *F1000 Research* 9, 304.

395 Riehl, K., Riccio, C., Miska, E.A., and Hemberg, M. (2022). TransposonUltimate: software for
396 transposon classification, annotation and detection. *Nucleic Acids Res* 50, e64.

397 Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov,
398 J.P. (2011). Integrative genomics viewer. *Nat Biotechnol* 29, 24-26.

399 Schmidle, W. (1901). Über drei Algengenera. *Berichte der deutschen botanischen Gesellschaft* 19,
400 10-24.

401 Sciuto, K., Baldan, B., Maracto, S., and Moro, I. (2019). *Coccomyxa cimbria* sp. nov., a green
402 microalga found in association with carnivorous plants of the genus *Drosera* L. *European Journal of
403 Phycology* 54, 531-547.

404 Smit, A.F., Hubley, R., and Green, P. (2012). RepeatMasker (Retrieved from
405 <https://repeatmasker.org>).

406 Sokolnikova, Y., Magarlamov, T., Stenkova, A., and Kumeiko, V. (2016). Permanent culture and
407 parasitic impact of the microalga *Coccomyxa parasitica*, isolated from horse mussel *Modiolus
408 kurilensis*. *J Invertebr Pathol* 140, 25-34.

409 Sokolnikova, Y., Tumas, A., Stenkova, A., Slatvinskaya, V., Magarlamov, T., and Smagina, E. (2022).
410 Novel species of parasitic green microalgae *Coccomyxa veronica* sp. nov. infects *Anadara
411 broughtonii* from Sea of Japan. *Symbiosis* 87, 293-305.

412 Štifterová, A., and Neustupa, J. (2015). Community structure of corticolous microalgae within a single
413 forest stand: evaluating the effects of bark surface pH and tree species. *Fottea Olomouc* 15, 113-122.

414 Tagirdzhanova, G., Scharnagl, K., Yan, X., and Talbot, N.J. (2023). Genomic analysis of *Coccomyxa*
415 *viridis*, a common low-abundance alga associated with lichen symbioses. *Sci Rep* 13, 21285.

416 Teufel, F., Almagro Armenteros, J.J., Johansen, A.R., Gislason, M.H., Pihl, S.I., Tsirigos, K.D.,
417 Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. (2022). SignalP 6.0 predicts all five types of
418 signal peptides using protein language models. *Nat Biotechnol* 40, 1023-1025.

419 Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E.S., Fischer, A., Bock, R., and Greiner, S.
420 (2017). GeSeq - versatile and accurate annotation of organelle genomes. *Nucleic Acids Res* 45, W6-
421 W11.

422 Trémouillaux-Guiller, J., Rohr, T., Rohr, R., and Huss, V.A.R. (2002). Discovery of an endophytic alga
423 in *Ginkgo biloba*. *Am J Bot* 89, 727-733.

424 Vaschenko, M.A., Kovaleva, A.L., Syasina, I.G., and Kukhlevsky, A.D. (2013). Reproduction-related
425 effects of green alga *Coccomyxa* sp. infestation in the horse mussel *Modiolus modiolus*. *J Invertebr
426 Pathol* 113, 86-95.

427 Vaser, R., and Šikić, M. (2021). Time- and memory-efficient genome assembly with Raven. *Nature
428 Computational Science* 1, 332-336.

429 Wick, R. (2018). Porechop (Retrieved from <https://github.com/rrwick/Porechop>).

430 Yahr, R., Florence, A., Škaloud, P., and Voytsekhovich, A. (2015). Molecular and morphological
431 diversity in photobionts associated with *Micarea* s. str. (*Lecanorales*, Ascomycota). *The Lichenologist*
432 47, 403-414.

433 Zoller, S., and Lutzoni, F. (2003). Slow algae, fast fungi: exceptionally high nucleotide substitution rate
434 differences between lichenized fungi *Omphalina* and their symbiotic green algae *Coccomyxa*. *Mol
435 Phylogenetic Evol* 29, 629-640.

436

437

438 **Figure legends**

439 **Figure 1. Genome assembly of *Coccomyxa viridis* SAG 216-4.** (a) An overview of the *C.*
440 *viridis* genome assembly depicts chromosome-scale scaffolds. Green bars indicate scaffold
441 sizes and red bars represent telomeres. Variations in color intensities correlate with read
442 coverage. Read coverage per scaffold is determined by mapping PacBio HiFi reads onto the
443 assembly. Scaffolds 20 and 21 were identified as chloroplast and mitochondrial genomes
444 based on size and low GC contents, and BLAST analyses. (b) Hi-C contact map showing
445 interaction frequencies between regions in the nuclear genome of *Coccomyxa viridis*.
446 Scaffolds are framed by blue lines while contigs within scaffolds are depicted in green.

447

448 **Figure 2 Scaffolds 20 and 21 represent the plastid and mitochondrial genomes of *C.***
449 ***viridis* SAG 216-4.** Gene maps of the chloroplast (a) and mitochondrial (b) genomes. The
450 inner circles indicate the GC content and mapped genes are shown on the outer circles. Genes
451 that are transcribed clockwise are placed inside the outer circles, and genes that are
452 transcribed counterclockwise at the outside of the outer circles.

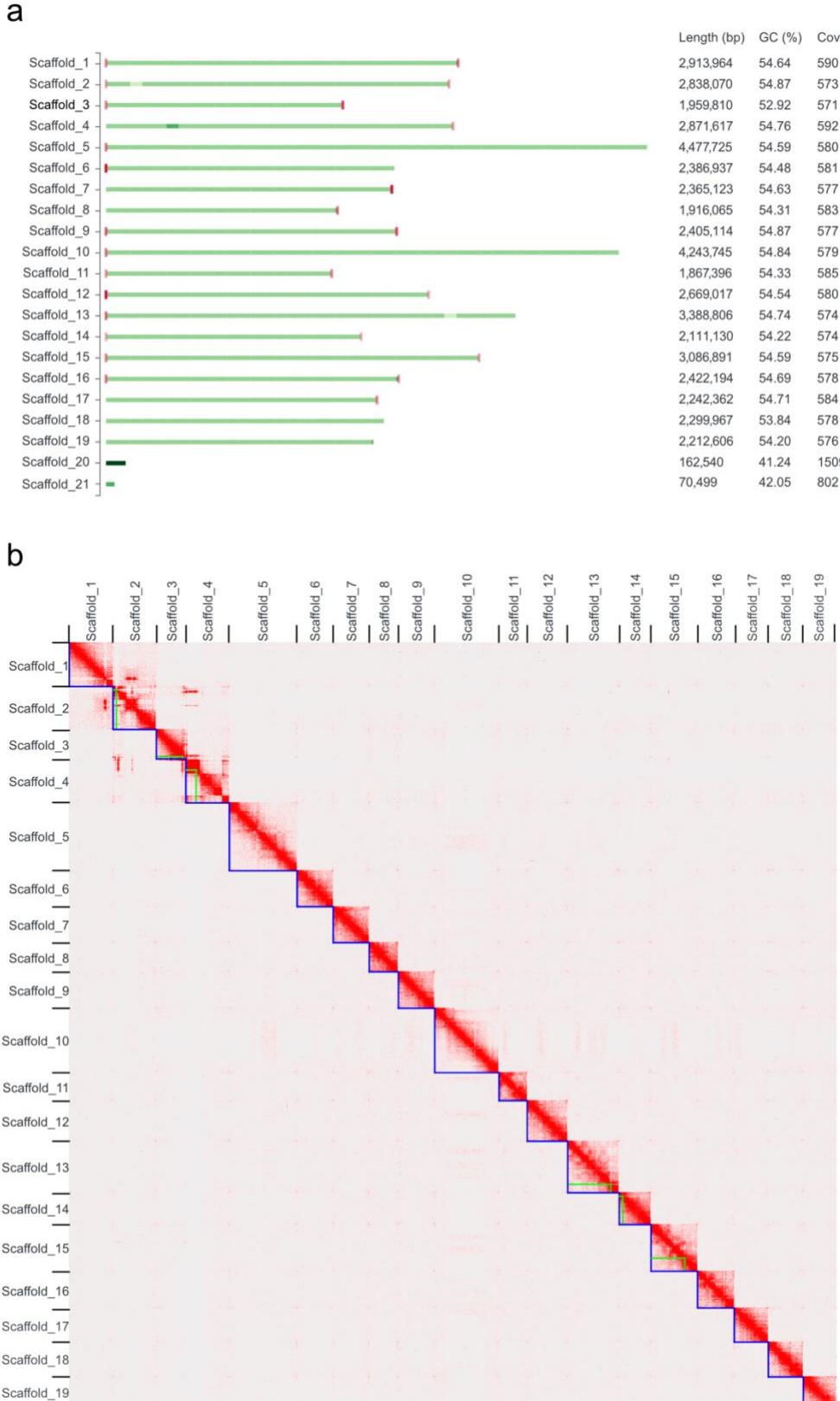
453

454 **Figure 3. Taxonomic annotation indicates absence of contaminations in the genome**
455 **assembly.** (b) Taxon-annotated GC coverage scatter plot (Blobplot) of the contigs from the
456 genome assembly shows that all scaffolds are taxon-annotated as *Coccomyxa* and all
457 scaffolds that belong to the nuclear genome have similar GC contents (~54%). The GC
458 content of the mitochondrial and plastid genomes are considerably lower (~41%). (b) In total
459 98.76% of the reads can be mapped onto the assembly and are therefore classified as
460 *Coccomyxa* reads.

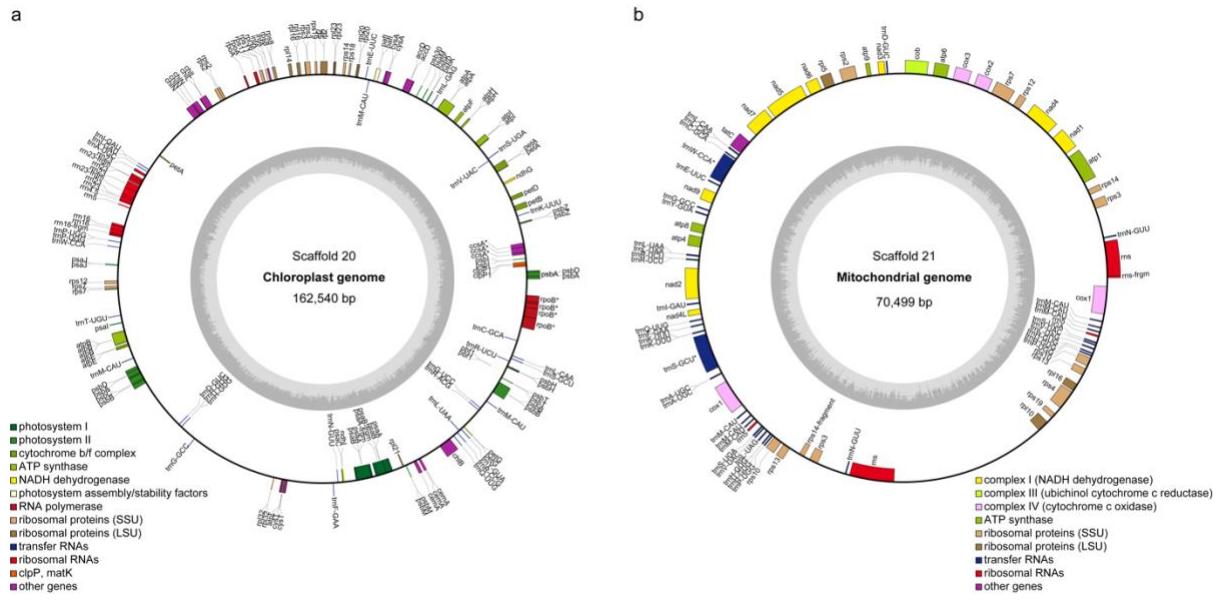
461

462 **Figure 4. The *Coccomyxa viridis* SAG 216-4 genome is haploid.** The KAT specra-cn plot
463 depicts the 27-mer multiplicity of the PacBio HiFi reads against the genome assembly. Black
464 areas under the peaks represent k-mers present in the reads but absent from the assembly,
465 colored peaks indicate k-mers that are present once to multiple times in the assembly. The
466 single red peak in the KAT specra-cn plot suggests that *Coccomyxa viridis* has a haploid
467 genome, while the black peak at low multiplicity shows that the assembly is highly complete
468 and that all reads are represented in the assembly.

469

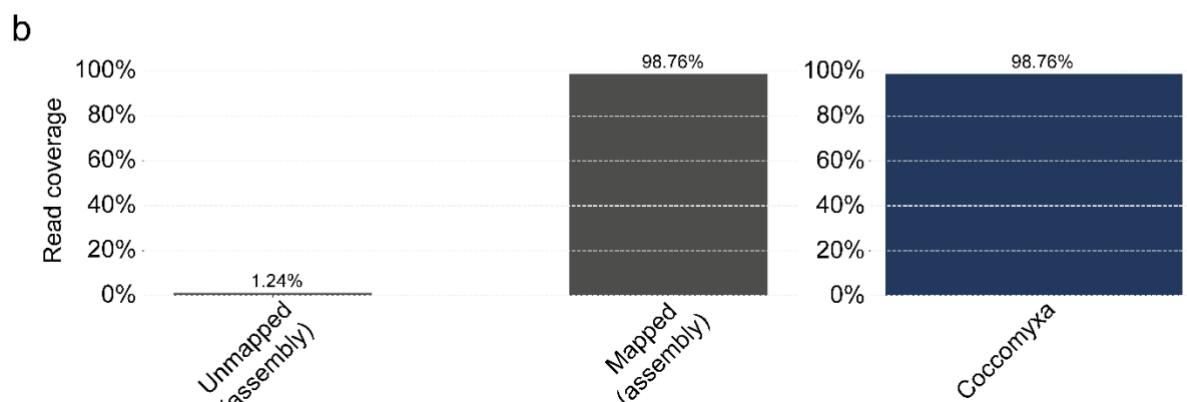
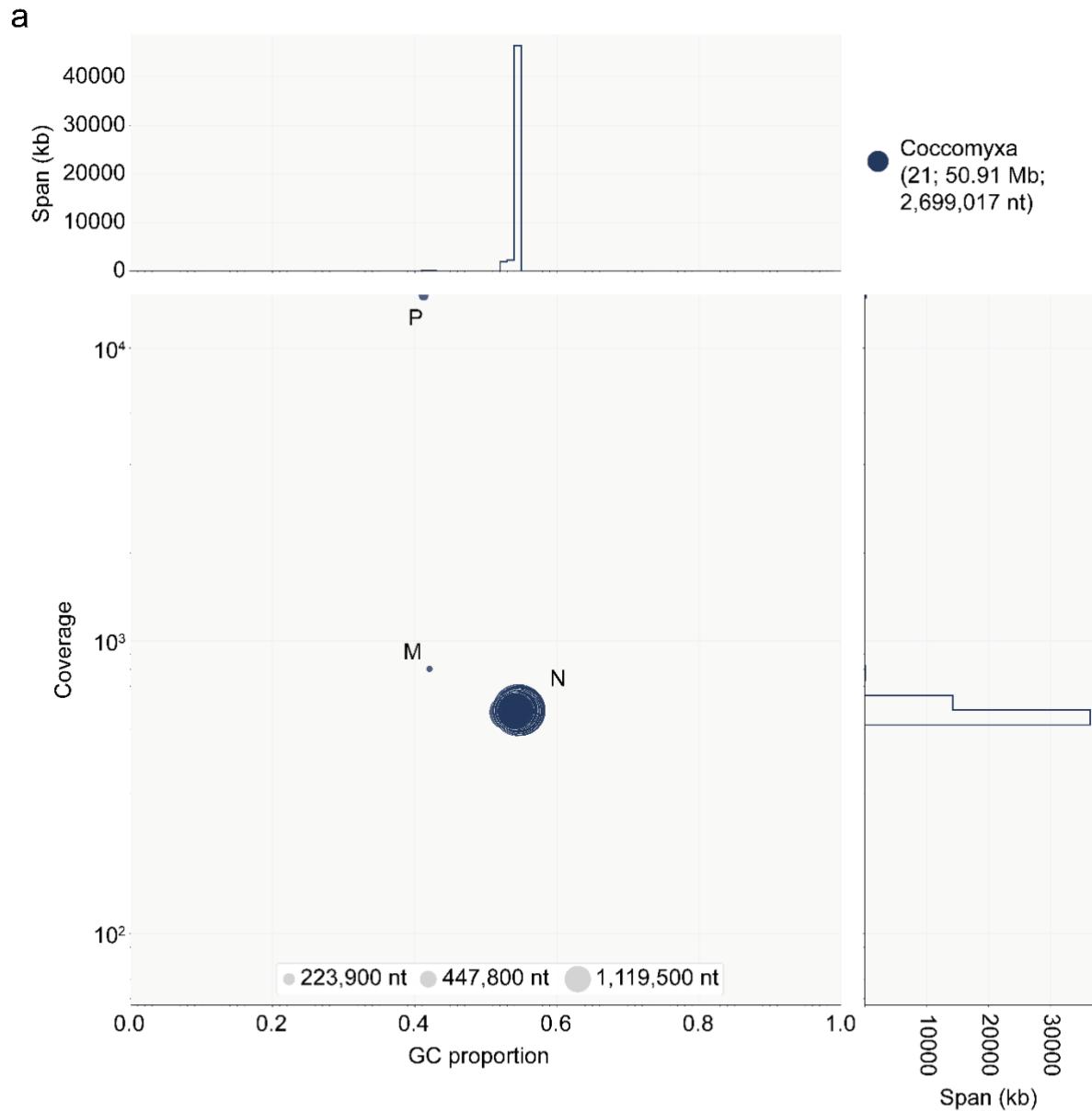

470 **Figure 5. Circos plot summarizing the nuclear genome annotation of *Coccomyxa viridis***
471 **SAG 216-4.** From outside to inside the tracks display: GC content (over 1-kb windows), gene
472 density (blue) and repetitive element density (red).

473


474 **Figure 6. No synteny detected between related *Coccomyxa* species.** (a) Dot plot of
475 orthologous sequences in the genome assemblies of *C. viridis* SAG 216-4 and *C.*
476 *subellipsoidea* C-169. Violet and blue dots represent orthologous sequences on same and
477 opposite strands, respectively. Dot sizes does not correlate with the length of the sequences
478 they represent, which were all < 1 kb. The width of each box corresponds to the length (bp) of
479 the respective scaffold. (b) Dot plot of the genome assembly of *C. viridis* SAG216-4 against
480 itself.

481

482



487 coverage. Read coverage per scaffold is determined by mapping PacBio HiFi reads onto the
488 assembly. Scaffolds 20 and 21 were identified as chloroplast and mitochondrial genomes
489 based on size and low GC contents, and BLAST analyses. (b) Hi-C contact map showing
490 interaction frequencies between regions in the nuclear genome of *Coccomyxa viridis*.
491 Scaffolds are framed by blue lines while contigs within scaffolds are depicted in green.
492
493

494

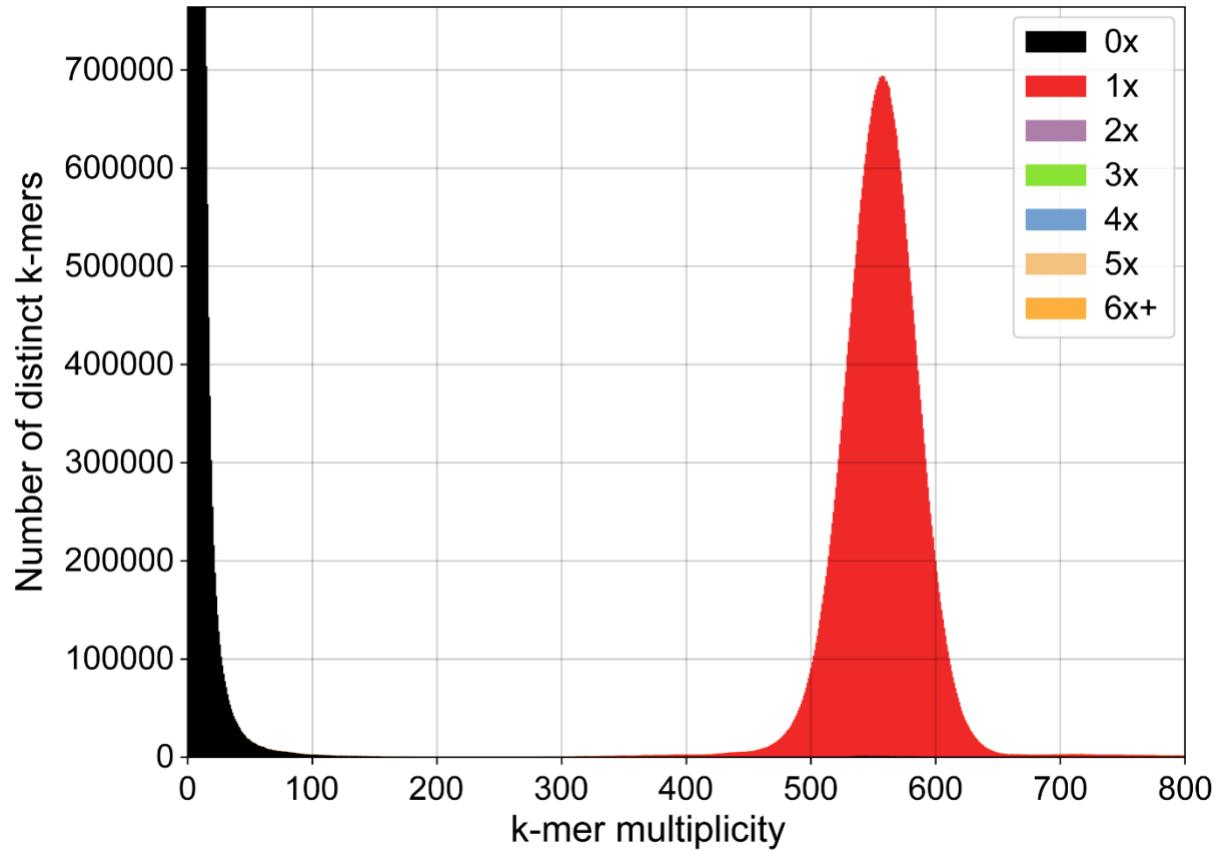
495 **Figure 2 Scaffolds 20 and 21 represent the plastid and mitochondrial genomes of *C.***
496 ***viridis* SAG 216-4.** Gene maps of the chloroplast (a) and mitochondrial (b) genomes. The
497 inner circles indicate the GC content and mapped genes are shown on the outer circles. Genes
498 that are transcribed clockwise are placed inside the outer circles, and genes that are
499 transcribed counterclockwise at the outside of the outer circles.

500

501

502 **Figure 3. Taxonomic annotation indicates absence of contaminations in the genome**

503 **assembly.** (b) Taxon-annotated GC coverage scatter plot (Blobplot) of the contigs from the


504 genome assembly shows that all scaffolds are taxon-annotated as *Coccomyxa* and all

505 scaffolds that belong to the nuclear genome (N) have similar GC contents (~54%). The GC

506 content of the mitochondrial (M) and plastid (P) genomes are considerably lower (~41%). (b)
507 In total 98.76% of the reads can be mapped onto the assembly and are therefore classified
508 as *Coccomyxa* reads.

509

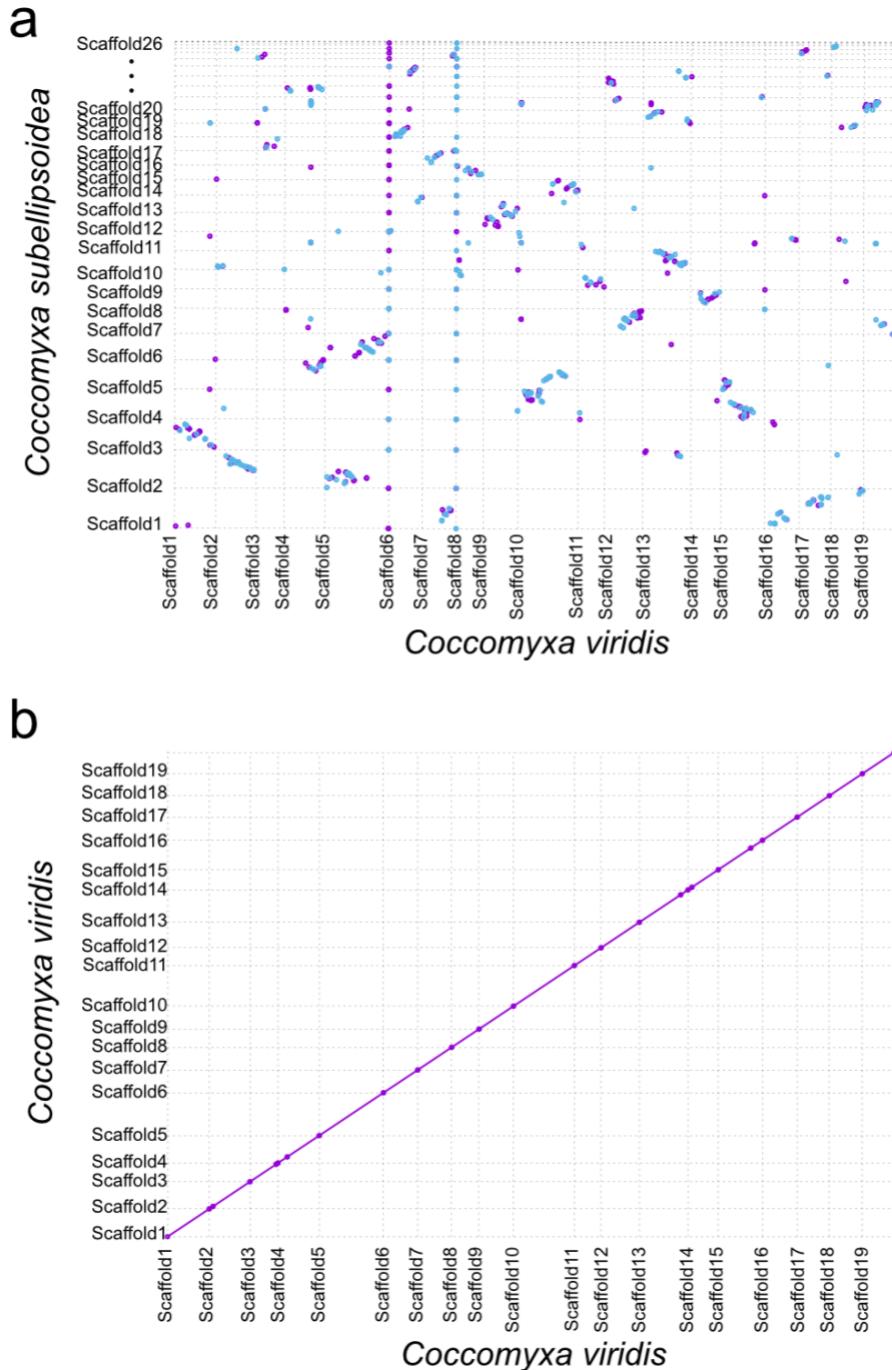
510

511
512 **Figure 4. The *Coccomyxa viridis* SAG 216-4 nuclear genome is haploid.** The KAT specra-
513 cn plot depicts the 27-mer multiplicity of the PacBio HiFi reads against the nuclear genome
514 assembly. Black areas under the peaks represent k-mers present in the reads but absent from
515 the assembly, colored peaks indicate k-mers that are present once to multiple times in the
516 assembly. The single red peak in the KAT specra-cn plot suggests that *Coccomyxa viridis* has
517 a haploid genome, while the black peak at low multiplicity shows that the assembly is highly
518 complete and that all reads are represented in the assembly.

519

520

521


522 **Figure 5. Circos plot summarizing the nuclear genome annotation of *Coccomyxa viridis***

523 **SAG 216-4.** From outside to inside the tracks display: GC content (over 1-kb windows), gene
524 density (blue) and repetitive element density (red).

525

526

527

528
529 **Figure 6. No synteny detected between related *Coccomyxa* species.** (a) Dot plot of
530 orthologous sequences in the genome assemblies of *C. viridis* SAG 216-4 and *C.*
531 *subellipsoidea* C-169. Violet and blue dots represent orthologous sequences on same and
532 opposite strands, respectively. Dot sizes does not correlate with the length of the sequences
533 they represent, which were all < 1 kb. The width of each box corresponds to the length (bp) of
534 the respective scaffold. (b) Dot plot of the genome assembly of *C. viridis* SAG216-4 against
535 itself.

536

537

538 **Table 1.** Genome features of *C. viridis* SAG 216-4 including the mitochondrial and plastid genomes.

Assembly ID	<i>C. viridis</i> SAG 216-4 genomes
Total length (bp)	50,911,578
No. of contigs	27
No. of scaffolds	21
Longest scaffold (bp)	4,477,725
N50 (bp)	2,669,017
L50	8
GC content (%)	54.5

539

540

541 **Table 2** Annotation features of the *C. viridis* SAG 216-4 nuclear genome.

Genome annotation	
Repeat content (%)	8.85
Retrotransposons	2.4
DNA transposons	4.2
Simple repeats	2.25
No. gene models	13,557
Average gene length (bp)	3146
No. exons	122,978
Average no. exons per gene model	9
Average exon length (bp)	158
No. transcripts	14,024
Average no. transcripts/gene model	1
No. gene models <200 bp length	0
No. proteins with ≥ 1 PFAM domain	9205
No. proteins with signal peptide	962
BUSCO (chlorophyta_odb10)	C: 98.6% [S: 82.5%, D: 16.1%], F: 0.1%, M: 1.3%, N: 1519

542

543

544 **Table S1.** Summary of bioinformatics tools used for genome assembly and annotation.

Assembly		Annotation	
Tool	Version	Tool	Version
Raven	v1.8.1	RepeatModeler	v2.0.3
Juicer	v2.0	TransposonUltimate	v1.0
BWA	v0.7.17-r1188	TEclass	v2.1.3
3d-dna	v180922	RepeatMasker	v4.1.2-p1
Juicebox	v1.11.08	HiSat2	v2.2.1
Minimap2	v2.24-r1122	Braker	v2.1.6
Samtools	v1.10	Gffread	v0.12.7
Integrative Genome Viewer	v2.11.2	SignalP	v6.0
Tapestry	v1.0.0	BUSCO	v5.3.2
Blobtools	v1.1.1	R	v4.2.0
BLAST	2.13.0+	Circilize	v0.4.14
Kmer Analysis Toolkit	V2.4.2	InterProScan	v5.61
Mummer	C3.23		

545

546

547