

1

2 Decision uncertainty as a context for motor memory

3 **Authors:** Kisho Ogasa^{1,2}, Atsushi Yokoi^{1,3}, Gouki Okazawa⁴, Morimichi Nishigaki⁵,
4 Masaya Hirashima^{1,3}, Nobuhiro Hagura^{1,3*}

5 **Affiliations:**

6 ¹Center for Information and Neural Networks (CiNet), National Institute of Information and
7 Communications Technology (NICT), Osaka, Japan

8 ²Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan

9 ³Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan

10 ⁴Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence
11 in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai,
12 China

13 ⁵Innovative Research Excellence, Honda R&D Co. Ltd, Utsunomiya, Japan

14
15 *Corresponding author. Email: n.hagura@nict.go.jp

16
17
18 **Abstract**

19 The current view of perceptual decision-making suggests that once the decision is made, a single
20 motor program associated with the decision is carried out, irrespective of the degree of
21 uncertainty involved in the decision-making process. As opposed to this view, we show that
22 different levels of decision uncertainty contextualize actions differently, allowing the brain to
23 form different motor memories based on each context. The match between decision uncertainty
24 during learning and retrieval is critical for successful motor memory retrieval. The same
25 movement trajectory can be associated with different motor memories if each memory is linked
26 to a different level of decision uncertainty. Encoding motor memories based on decision contexts
27 may enhance the robustness of control during the varying neural activities induced by different
28 cognitive states.

29
30

31

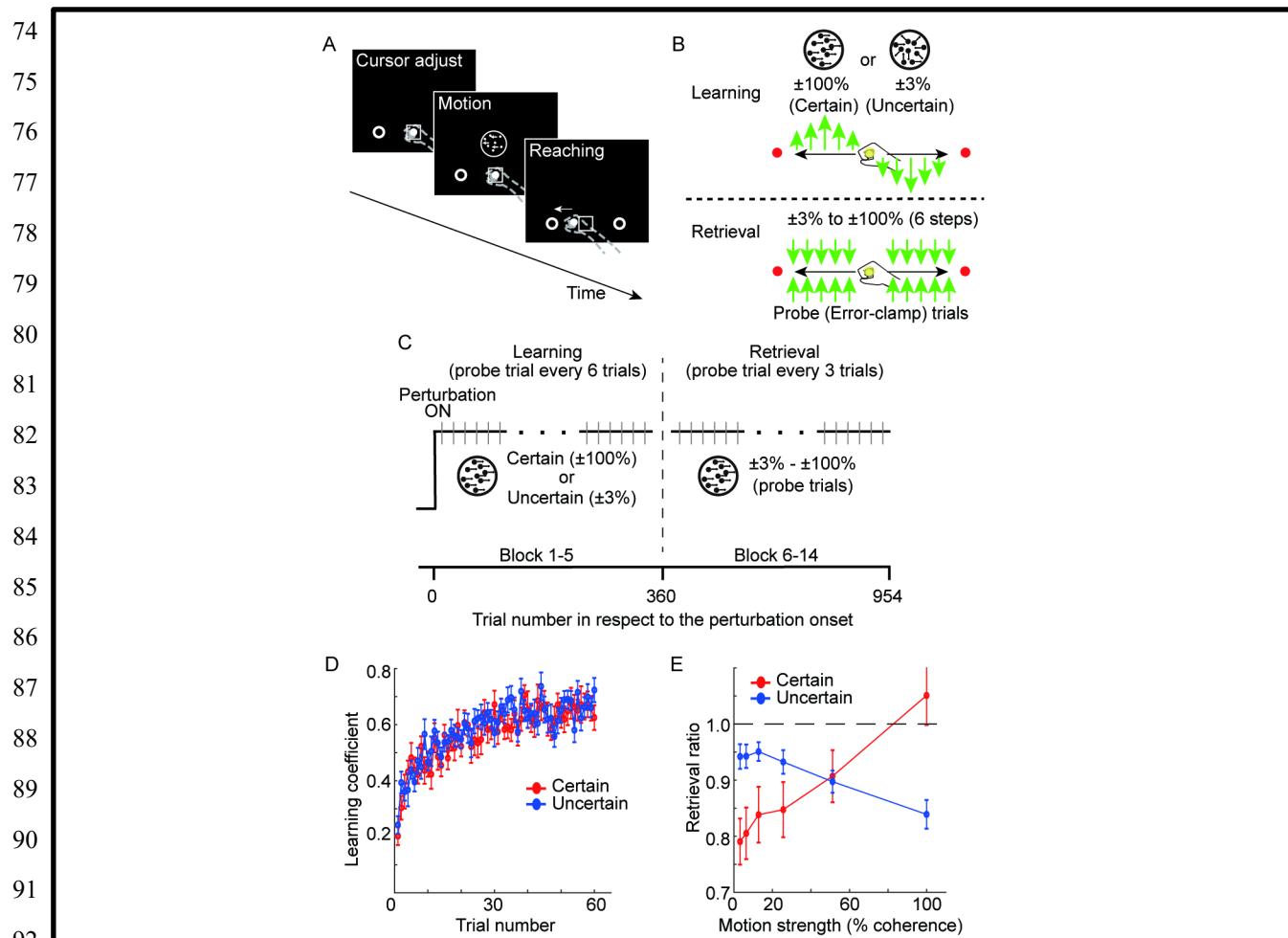
Introduction

32 In a penalty shoot-out of a football (soccer) game, one may decide to kick the ball to the right
33 corner confidently, seeing that the goalkeeper is moving to the other side, or decide to make the
34 same kick while being unsure about the goalkeeper's movement. Because both actions are
35 *apparently* identical, we tend to believe that the same motor memory (i.e., a motor program for
36 kicking the ball to the right) is retrieved and executed for both cases regardless of the quality of
37 the preceding decision. But is this true?

38 Previous perceptual decision-making studies have treated uncertainty as a factor for
39 modulating the evidence accumulation process for decisions (1, 2) (3), implicitly assuming that
40 an identical motor program is triggered once the evidence level reaches a bound. However,
41 learning or performing an action differently based on decision uncertainty seems sensible
42 because subjective uncertainty can be correlated with important behavioral factors, such as the
43 expected outcome of an action or the possibility of revising a motor plan (4) (5).

44 Here, we show that actions that follow certain and uncertain decisions are encoded and
45 memorized differently. In other words, we demonstrated that decision uncertainty works as a
46 contextual cue for motor memory. This finding contrasts sharply with the dominant view in the
47 field, which postulates that contextual cues for motor memories consist of factors that are
48 directly relevant for motor execution, such as the visual appearance of an object to act on that
49 implies different control dynamics, type or location of reach targets (6, 7), and posture/state of
50 other body parts during a certain action (8, 9) (10). We demonstrate that covert internal decision
51 processes, without involving any other bodily movements, could also be a contextual cue for
52 motor memory.

53


54

Results

55 **Retrieval of motor memory is tuned to the trained decision uncertainty level.**

56 First, we tested whether the action learned under a particular decision uncertainty can be
57 retrieved better when the same decision uncertainty level precedes it. Previous studies on
58 episodic memory have established that the shared context between learning and retrieval
59 facilitates the successful recall of memory (11). Therefore, we can predict a similar phenomenon
60 if decision uncertainty can function similarly as a contextual cue for motor memory.

61 Participants (N=38) judged the direction (left or right) of a visual random-dot motion
62 stimulus presented on a screen (Fig. 1A, fig.S1). Participants were assigned to one of two groups
63 during the learning phase. The certain-decision group (n=19) judged the direction of a 100%
64 coherent random-dot motion, whereas the uncertain-decision group (n=19) judged the direction
65 of a 3.2% coherent motion. Following this decision, they made a straight center-out reaching
66 movement towards the target in the direction of the perceived motion (Fig. 1A). In the learning
67 phase, a velocity-dependent curl force field (12, 13) was applied to the movement. The
68 participants had to make a straight movement by resisting the perturbing force (Fig. 1B, C). The
69 force-field trials were interleaved with probe trials, where the action was performed following
70 the random-dot motion decision with different uncertainty levels (probe trials: $\pm 3.2\%$, 6.4% ,
71 12.8% , 25.6% , 51.2% , and 100% motion coherence levels). The trajectory of reaching during the
72 probe trials was constrained to a straight path between the home position and target (channel),
73 and the force the participants applied to the wall of the channel was measured (error-clamp trials)

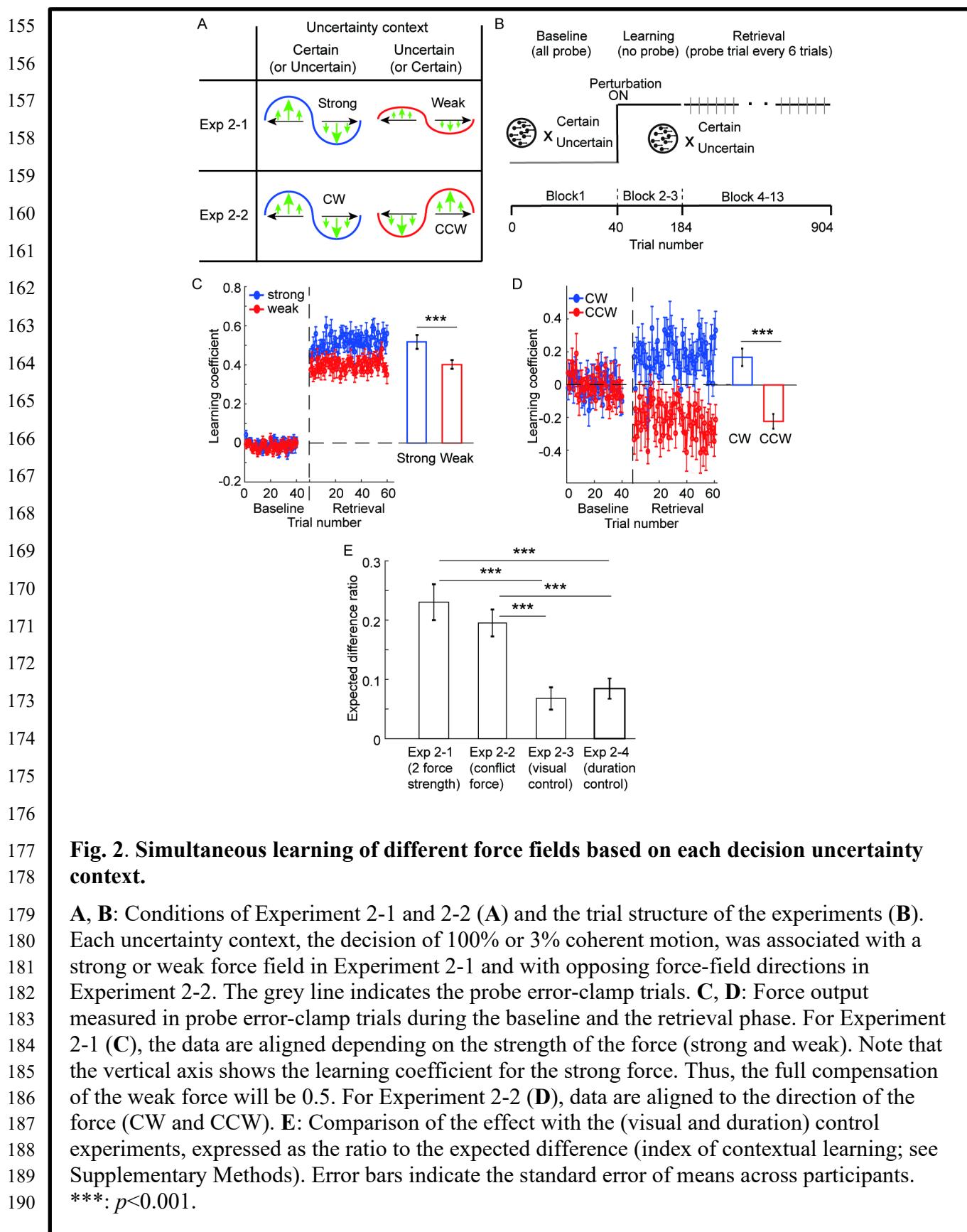
Fig. 1. Decision uncertainty-level dependent tuning of motor memory retrieval.

A: Target-reaching task preceded by motion discrimination. Participants held a handle and judged the direction of a random-dot motion. Their decision was indicated by moving a robotic manipulandum towards the target in the direction of the perceived motion. **B, C:** Force-field learning under different uncertainties. In the learning phase (upper panel in **B**, left in **C**), participants learned to make a straight-reaching movement to the target by resisting a velocity-dependent force field (green arrows). One group learned the force following the decision of a certain stimulus (Certain group; 100% coherent motion), whereas another group learned the force following an uncertain stimulus (Uncertain group; 3% coherent motion). In the retrieval phase (lower panel in **B**, right in **C**), both groups of participants performed the task while judging the motion with six different uncertainty levels. The level of retrieval was measured as the amount of force produced against the wall during the error-clamp probe trials (grey lines in **C**), in which the movement trajectory of the hand was constrained to a straight path (error-clamp) (lower panel of **B**). **D:** Progression of force-field learning (probe error-clamp trials) during the learning phase. The vertical axis indicates the leaning coefficient; the value of 1 indicates the full compensation of the perturbation. **E:** Generalization of motor memory across different uncertainty levels in the retrieval phase. The vertical axis indicates the amount of force divided by the amount of force learned at the end of the learning phase (a value of 1 indicates the full retrieval of the motor memory).

112 (Fig. 1B). This allowed us to measure the amount of force retrieved and applied to resist the
113 perturbation while avoiding the occurrence of any kinematic errors (14); thus, the retrieval of
114 motor memory evoked by different decision contexts can be inferred. If the decision uncertainty
115 preceding the action works as a contextual cue for the motor memory, we can predict the best
116 retrieval performance at the level of decision uncertainty in which the motor memory is formed.

117 Following our prediction, we found distinct retrieval patterns of motor memory between
118 the two groups (Fig. 1E). For the certain-decision group, when the motion coherence level was
119 100% in the retrieval phase, participants were able to produce the learned level of force.
120 However, for the trials with a 3.2% coherent motion, the force dropped to 80% of the learned
121 level (paired t-test, $t[18]=8.43, p=1.16\times10^{-7}$, $dz=1.93$). Similarly, for the uncertain-decision
122 group, the same level of force in the learning phase was maintained following a 3.2% motion
123 stimulus. Still, the force level again dropped following the decision of 100% coherent motion
124 (paired t-test, $t[18]=5.53, p=2.98\times10^{-5}$, $dz=1.27$). Thus, the manner in which the force was
125 retrieved depended on the decision uncertainty level at which participants learned the force field
126 (Fig. 1E; analysis of variance [ANOVA] interaction effect; $F[5,180] = 61.46, p=3.91\times10^{-37}$,
127 $\eta^2=0.63$). Such reversed retrieval patterns of force between the two groups cannot be explained
128 by the generally deteriorated motor output following uncertain decisions (15) since this would
129 predict that the force would drop towards higher-uncertainty decisions regardless of the different
130 learning experiences.

131 Furthermore, the difference in motor-learning quality or decision-making performance
132 between the two groups cannot explain this result. First, the rate and magnitude of motor
133 learning were comparable between the two groups (Fig. 1D). Second, both groups showed higher
134 accuracy and faster reaction times for higher motion coherence during the retrieval phase, as
135 expected (fig. S2). The overall correct rates and reaction times were moderately higher for the
136 uncertain-decision group, probably due to the differences in the speed-accuracy trade-off (16)
137 and effect of perceptual learning with different task difficulties (17). Still, such differences do
138 not explain why the two groups produced opposite force production patterns. Rather, the result
139 suggests the independence of action initiation and the quality of action execution (18), which the
140 latter reflects the retrieved content of motor memory.


141 Finally, it is unlikely that the feature of the visual stimulus (100% and 3% coherent
142 motion) is the main determinant of this effect since visual cues on their own are known to be
143 weak contextual cues for the retrieval of motor memory (19) (see also fig. S3 for the control
144 experiments).

145 Taken together, the result of the incomplete transfer of motor memory across different
146 decision uncertainties implies that the decision process preceding the action can be a context for
147 the motor memory.

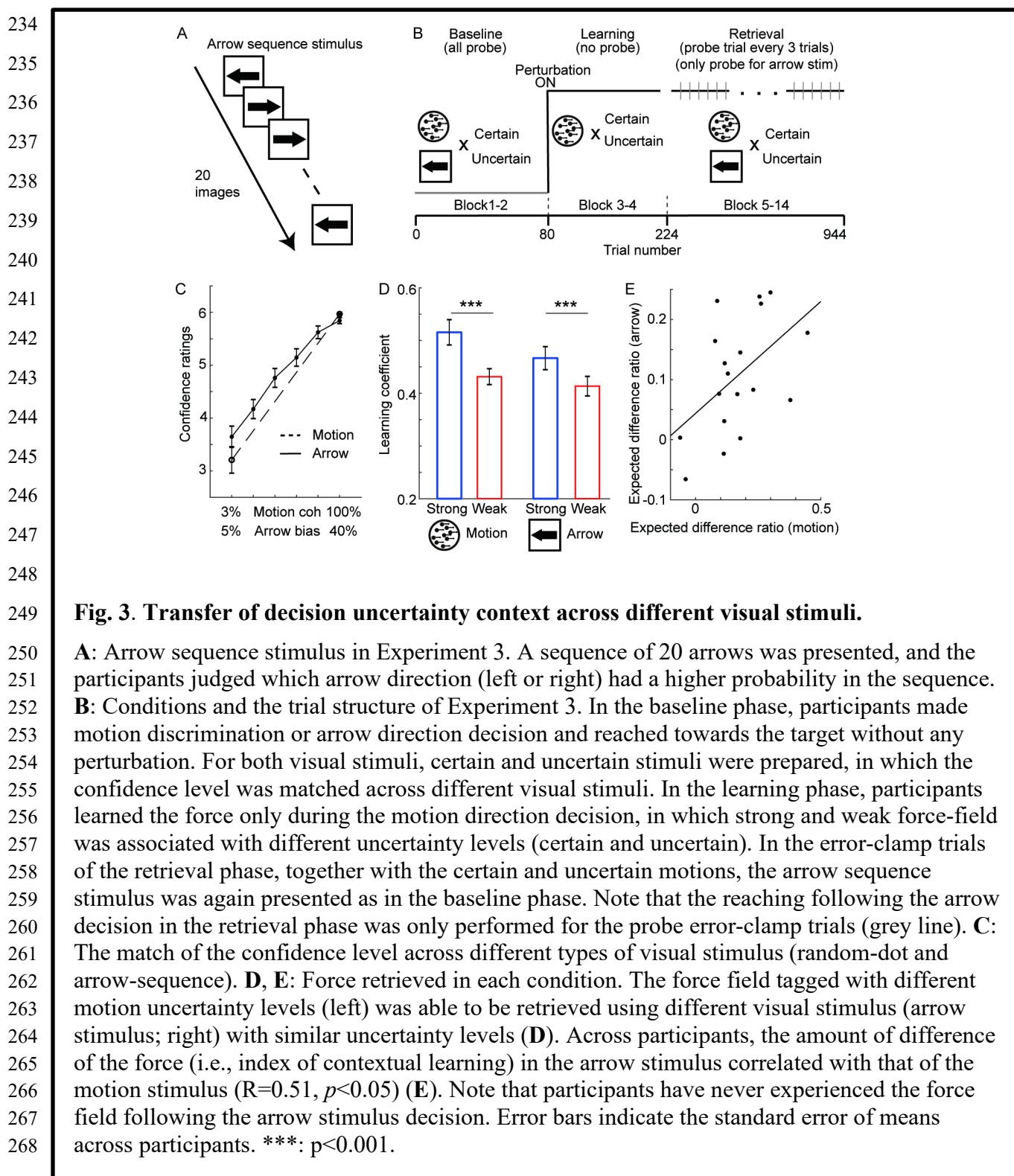
148

149 **Motor memory can be tagged by different decision uncertainty contexts**

150 A more direct test for context-dependent motor learning is to show that participants can
151 simultaneously learn two different force fields associated with different contexts for the same
152 reaching movement (8, 19). In Experiment 2, using a within-participant design, we directly
153 examined whether decision uncertainty can indeed function as a contextual cue for tagging
154 different motor memories, enabling the learning of two different force fields.

191 In this study, 100% and 3.2% were used as the coherence levels of the motion stimulus.
192 After the baseline phase, the participants were exposed to two different force fields (Fig. 2B):
193 The strong and weak force fields for Experiment 2-1 (n=19; Fig. 2A upper panel) and two
194 opposing force fields (clockwise [CW] or counterclockwise [CCW]) for Experiment 2-2 (n=18,
195 Fig. 2A lower panel). In both experiments, two different decision uncertainties were associated
196 with either of the two different force fields. Suppose the brain can use decision uncertainty to
197 segregate the context and retrieve the relevant motor memory. In that case, participants should be
198 able to learn and retrieve strong and weak forces (Experiment 2-1) or force in the CW and CCW
199 directions (Experiment 2-2), depending on the preceding decision uncertainty type (certain or
200 uncertain). In contrast, if the difference in the decision process is insufficient to tag different
201 force fields, the output force level after learning would not differ between the two force-field
202 conditions.

203 This result supports our hypotheses. After the learning, participants produced relevant
204 levels of force associated with the given decision context, producing stronger force for the
205 strong-force condition than the weak-force condition in Experiment 2-1 (paired t-test, $t[18]=7.63$,
206 $p=4.78\times10^{-7}$, $dz=1.75$) (Fig. 2C) and producing the force in the opposing directions in
207 Experiment 2-2 (paired t-test, $t[17]=8.15$, $p=2.85\times10^{-7}$, $dz=1.91$) (Experiment 2-3; Fig. 2D).


208 With another set of participants, we confirmed that such a difference could not be
209 observed when the random-dot motion with different coherence levels was associated with
210 different force fields but without involving any decision about the motion direction (Experiment
211 2-3; Fig. 2E, fig. S3; see details in the Supplementary Methods). This shows that the results of
212 Experiment 2-1 and 2-2 cannot be simply explained by the difference in the associated visual
213 input pattern itself, corroborating previous literature findings (19) (independent t-test; Exp2-1 vs.
214 2-3; $t[37]=4.61$, $p=1.83\times10^{-4}$ [corrected], $dz=1.19$, Exp2-2 vs. 2-3; $t[36]=4.22$, $p=6.28\times10^{-4}$
215 [corrected], $dz=1.13$) (see also Experiment 3 results). We also confirmed that the difference in
216 stimulus duration between easy and difficult stimuli could not explain the results (Experiment 2-
217 4; Fig. 2B and fig. S3) (Exp2-1 vs. 2-4: $t[34]=4.07$, $p=0.0011$ [corrected], $dz=1.13$, Exp2-2 vs. 2-
218 4: $t[33]=3.71$, $p=0.0030$ [corrected], $dz=1.07$). Taken together, the results show that preceding
219 decision uncertainty indeed works as a contextual cue for the learning and retrieval of distinct
220 motor memories.

221

222 **Decision uncertainty, not the perceptual uncertainty, contextualized motor memory**

223 Finally, we investigated what constitutes this type of novel uncertainty context, whether it
224 is tied to the uncertainty of a specific input stimulus (e.g., random-dot motion) or whether it is a
225 stimulus invariant, abstract uncertainty about the decision. In the latter case, participants should
226 be able to retrieve motor memory even when visual stimuli are different between the learning
227 and retrieval phases, if the uncertainty level is matched.

228 To examine this, we used two types of visual stimuli in Experiment 3. One is random-dot
229 motion, as was used in the previous experiments (motion stimulus), while the other was an arrow
230 stimulus in which a sequence consisting of left and right arrows was presented in a short period
231 of time (20 arrows in 1,500 ms) (Fig. 3A). In the arrow stimulus, participants were asked to
232 decide which of the two stimuli (left or right arrow) was presented more frequently after the
233 termination of the sequence and then immediately reach towards the target in the direction of

272 their decision. Uncertainty was manipulated by changing the ratio of the left and right arrows in
273 the sequence. Before the main experiment, we matched the confidence level of decisions (i.e.,
274 subjective estimate of decision uncertainty) between the random-dot motion and arrow stimuli
275 based on the participants' confidence reports from a separate experiment. Decision confidence of
276 the arrow stimulus with a left-right ratio of 5.5: 4.5 (5% bias from chance) corresponded to a 3%
277 coherence level random-dot motion stimulus. Likewise, a ratio of 9:1 (40% bias from chance) in
278 the arrow stimulus corresponded to the 100% coherence level random-dot motion (Fig. 3C).

279 As in Experiment 2-1, participants learned two different strengths of force fields (strong
280 and weak) associated with motion stimuli with 100% or 3% coherent motion. After learning, we
281 tested whether arrow stimuli could retrieve the force learned under random-dot motion stimuli
282 with matched confidence levels. Importantly, during the task, all arrow-stimulus trials were
283 error-clamped (Fig. 3B). This means that participants never experienced force perturbation while
284 performing the action following the arrow stimulus decision. Therefore, any force produced to
285 resist perturbation during the arrow stimulus is the component transferred from the motor
286 memory formed under the random-dot-motion stimulus.

287 First, we replicated the results of Experiment 2-1. The participants were again able to
288 learn two different force fields associated with two different uncertainty levels of the motion
289 decision. The amount of force produced during the error-clamp trials was significantly different
290 between the two different force-field conditions (paired t-test, $t[17]=5.50$, $p=3.91\times 10^{-5}$, $dz=1.29$)
291 (Fig. 3D left, Supplementary Fig. 4). Second, and more critically, for the trials with arrow
292 decisions, we also found a significant difference in the force between the strong and weak force
293 field conditions (paired t-test, $t[17]=4.73$, $p=1.92\times 10^{-4}$, $dz=1.16$) (Fig. 3D right, fig. S4). Finally,
294 the individual differences in force between the two force fields (i.e., index of contextual
295 learning) were correlated between the random-dot motion condition and arrow-sequence
296 condition (Fig. 3E; $R[18]=0.51$, $p=0.032$), suggesting a shared component between the two
297 variables. These results clearly show that motor memory encoded with random-dot motion can
298 be retrieved using different visual stimuli with similar decision uncertainty levels. In other
299 words, part of the motor memory is tied to abstract decision uncertainty, which is invariant from
300 the feature of the input stimulus.

301

302

Discussion

303 The context for encoding memory has been of great interest in the field of cognitive
304 neuroscience (11) (20, 21) (22). For the domain of motor memory, the majority of the contexts
305 identified are directly involved in the overt or ongoing motor control process, for example, the
306 spatial position of the workspace (19), direction of the planned movement in the workspace (6),
307 plan of the future state (7) or concurrent state of the relevant or irrelevant body parts (8, 9) (10).
308 Our study demonstrated that covert internal decision processes, without any overt difference in
309 the bodily state, could also be a contextual cue for motor memory, adding a novel dimension for
310 the contexts to be considered.

311 Uncertainty about how an action will be perturbed has been shown to impact motor
312 learning, where the learning rate is modulated depending on the stability of the environment (23).
313 This phenomenon cannot simply explain our results because the amount of learning itself did not
314 depend on the uncertainty level of the decision (Fig. 1C). This indicates that coping with the
315 uncertainty of decisions and coping with the uncertainty of perturbations are governed by

316 different processes in the brain; for the former, the brain contextualizes motor memory
317 depending on decision uncertainty.

318 During perceptual decision-making, the ongoing state of evidence accumulation during
319 the deliberation period is reflected in neuronal activity in the cortical areas involved in motor
320 planning and execution (24) (25) (26) (27) (28). Perceptual evidence guides an agent's decision,
321 but at the same time, the agent can calculate the subjective uncertainty level of the decision (i.e.,
322 decision confidence) using accumulated evidence signals (29). Indeed, neuronal activities in both
323 cortical (29) and subcortical structures reflects the uncertainty of action to perform (30) (31). We
324 speculate that such premovement activity reflecting decision uncertainty (confidence) forms the
325 *context*, or the neural state, when forming motor memory in the sensorimotor network.
326 Consequently, the action learned in such a context will be best performed (i.e., retrieved) when
327 the same premovement activity pattern is elicited before the action (32).

328 In conclusion, we showed that the brain uses decision uncertainty as a contextual cue to
329 retrieve motor memory, thus preparing different motor memories depending on the uncertainty
330 level of decisions. This indicates that football players should practice not only kicking the ball
331 precisely to the place they want, but also practicing it in both situations when they are sure and
332 unsure about the goalkeeper's movement.

333

334 Materials and Methods

335 Participants

336 A total of 147 right-handed participants volunteered in Experiment 1 (certain group; 22 [7
337 women, ages 19–25 years], uncertain group; 22 [7 women, age 20–25 years]); Experiment 2-1
338 (21 [5 women, age 20–28 years]); Experiment 2-2 (20 [8 women, age 20–30 years]); Experiment
339 2-3 (20 [7 women, age 20–38 years]); Experiment 2-4 (17 [5 women, age 21–29 years]); and
340 experiment 3 (20 [7 women, age 21–46 years]). All participants were naive to the purpose of the
341 experiment. All experiments were undertaken with the understanding and written consent of each
342 participant following the Code of Ethics of the World Medical Association (Declaration of
343 Helsinki) and with the approval of the National Institute of Information and Communications
344 Technology (NICT) ethical committee. No adverse events occurred during either of the
345 experiments. Experiment 1 used a relatively larger sample size compared to typical motor
346 learning studies because of the cross-subject design. To ensure a similar level of effect size as in
347 Experiment 1, we used a similar number of participants in the rest of the experiments.

348

349 Data and participant exclusion criteria

350 In each experiment, trials were excluded if the 1) reaction times (movement onset concerning the
351 visual stimulus onset) were too fast (<100 ms; likely not judging the stimulus) or too slow (1,500
352 ms>; judging after the stimulus disappearance), 2) did not reach properly to the target (<75% of
353 the maximum distance), and when the movement direction reversed after going 2.5 cm to the
354 opposite direction before reaching to the target. If the trial exclusion rate exceeded 30% of the
355 data in the last block of the learning phase or the retrieval/test phase, the participants were
356 excluded from further analysis. Furthermore, if the overall choice rate during the retrieval phase
357 was biased towards one direction (>70%) (e.g., moving [making a decision] to the right in most

358 of the trials), the participant was also excluded because of the asymmetrical motor learning
359 experience between the two directions. See the method section below for task details. Note that
360 these exclusion criteria were set to exclude data/participants who did not follow the instructions
361 of the experiments and maintain the same data quality across participants. However, including
362 excluded participants in the analysis did not qualitatively change the results.

363 Based on the above criteria, in Experiment 1, three participants from each certain and
364 uncertain group were excluded. Likewise, two participants were excluded from the analysis of
365 Experiment 2-3, 2-4, and 3, respectively.

366

367 General settings

368 The participants were seated comfortably in front of a screen placed horizontally in front of
369 them, which prevented direct vision of their hands (fig. S1). The visual stimulus was presented
370 on a screen using a projector placed above the screen. The viewing distance was set to 50 cm.
371 The upper trunk was constrained using a harness attached to the chair to maintain the viewing
372 distance. During the experiment, participants were asked to hold the handle of the manipulandum
373 with their right hand (PHANTOM Premium 1.5 HF, SensAble Technologies, Woburn, MA,
374 USA), whose position was sampled at 500 Hz. The handle position was displayed as a white
375 cursor (circle, 6 mm in diameter) on a black background on a horizontal screen located above the
376 hand. The movement of the handle was constrained to a virtual horizontal plane (10 cm below
377 the screen) that was implemented by a simulated spring (1.0 kN/m) and dumper (0.1 N/ms⁻¹).

378 The random-dot motion stimulus was presented at the center of the screen (33) (34)
379 (Fig. 1A). In a 7° diameter circular aperture, dots were presented at a density of 3.5 dot/deg². The
380 speed of the dots is 10°/s. For each trial, either 3.2%, 6.4%, 12.8%, 25.6%, 51.2%, or 100% of
381 the dots moved coherently to the left or to the right (hereafter referred to as motion coherence
382 level). All other dots moved in random directions and were picked for each dot separately
383 between 0° and 360°. The visual stimulus and robotic manipulandum were controlled using an
384 in-house software program developed using C++ (6).

385 Before each trial, the robotic manipulandum automatically guided the participant's hands
386 to the starting position. A trial started when the participants maintained the cursor at the starting
387 position for 500 ms. Subsequently, a random-dot motion was displayed. Immediately after the
388 decision, participants made a reaching movement either towards the left or right target,
389 depending on their decision (Experiment 1 and 2). The motion stimulus disappeared when the
390 movement was initiated. In Experiment 3, the participants were required to move after the
391 disappearance of the motion stimulus. Each target was located 10 cm horizontal from the starting
392 position.

393 A velocity-dependent curl force field (12) was used for motor learning. The force field was
394 applied according to the following
395 equation:

$$396 \begin{bmatrix} f_x \\ f_y \end{bmatrix} = \begin{bmatrix} 0 & B \\ -B & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}, \quad (1)$$

397 where f_x and f_y are the forces applied to the handle (N) and v_x and v_y are the velocities of the
398 handle (m/s) in the x- and y-directions, respectively. For the clockwise (CW) force field, the
399 viscosity coefficient B (N/[ms⁻¹]) had positive values, and for the counterclockwise (CCW) field,

400 B had negative values. Channel trials (error-clamp trials) were occasionally introduced to
401 quantify learning of the force field. Here, the handle movement was constrained along a straight
402 path between the home position and target by a simulated damper and spring (14), and the force
403 applied to the wall of the channel during the movement was measured. This allowed us to
404 measure the amount of force retrieved to resist the perturbation while avoiding any kinematic
405 errors.

406

407 **Experiment 1**

408 We tested how the action learned under a particular decision uncertainty transferred to actions
409 during other levels of decision uncertainty.

410 *Procedure*

411 The participants held the handle with their right hands and judged the direction of a
412 random-dot motion (left or right). As soon as they made the decision, they moved their hands
413 towards the target direction corresponding to the direction of the judgment. The random-dot
414 motion disappeared as soon as the participant's movement was detected (3.5 cm/s). The stimulus
415 disappeared after 1,500 ms, even if no movement was detected (34), and participants were
416 instructed to initiate their movement before the disappearance. Before the task, the participants
417 were familiarized with the manipulandum and judgment of the visual stimulus.

418 The experiment consisted of two phases, learning and retrieval. In both phases, the task
419 was performed under a force field with occasional error-clamp trials (Fig. 1C). Half of the
420 participants experienced the CW force field, and the other half experienced the CCW force field.
421 The viscosity coefficient (B in Eq. 1) was set to 10 (N/[ms⁻¹]).

422 Participants were divided into two groups: certain and uncertain. During the learning
423 phase, in the certain group, participants learned the force field in response to a 100% coherent
424 motion (low decision uncertainty level). In the uncertain group, participants learned the reaching
425 in response to a 3.2% coherent motion (high uncertainty level). The participants were instructed
426 to maintain the movement trajectory straight, similar to reaching without perturbation. Five
427 blocks of 72 trials were conducted. Error-clamp trials were introduced every six trials between
428 the force-field trials. The motion coherence level during the error-clamp trials was set to be the
429 same as that in the nonerror-clamp trials.

430 In the retrieval phase, each group of participants performed the same task as that in the
431 learning phase. The only difference was that the frequency of the error-clamp trials was, on
432 average, every three trials, and 12 different coherence levels (+-3.2%, 6.4%, 12.8%, 25.6%,
433 51.2%, and 100%) were used in these error clamp-trials (positive indicates the direction towards
434 the right and negative to the left). This design allowed us to examine how the motor memory
435 formed at a particular decision uncertainty level generalizes to other levels of uncertainty.
436 Participants underwent nine blocks, with each block containing 66 trials (22 error-clamp trials; 2
437 [left and right] trials for 100% coherent motion, 2 trials each for the other 10 motion coherence
438 levels).

439

440

441

442 **Experiment 2-1**

443 To directly demonstrate the role of decision uncertainty as a contextual cue for motor memory,
444 we tested whether participants could learn two different force fields for the same movement
445 trajectory if each force field was associated with different decision uncertainty levels.

446 *Procedure*

447 As in Experiment 1, the participants judged the direction of a random-dot motion and
448 moved the handle towards the target in the judged direction. Two different motion coherence
449 levels, 100% (certain decision) and 3.2% (uncertain decision) were prepared. After the practice
450 session, in the baseline phase, participants performed the task that was error-clamped (two
451 blocks of 40 trials). In the learning phase, participants performed the task under two different
452 strengths of force fields ($B = 10$ [strong] and $B = 5$ [weak] [$N/(ms^{-1})$]). Each strong and weak
453 force field is associated with a different preceding decision uncertainty (certain or uncertain).
454 The pattern of the association between the force field strengths, decision uncertainties, and
455 direction of the force fields (CW or CCW) was counterbalanced across participants. The
456 participants underwent two blocks of 72 trials each. In the retrieval phase, participants performed
457 10 blocks of the task (72 trials) with interleaved error-clamp trials (every six trials; six trials each
458 for two visual stimuli per block).

459

460 **Experiment 2-2**

461 We tested whether two force fields in opposing directions could be simultaneously learned if
462 each field was associated with different decision uncertainty levels.

463 *Procedure*

464 The setting of the experiment was identical to Experiment 2-1. Still, instead of using strong and
465 weak force fields, we associated two force fields with opposing directions (CW and CCW) with
466 different decision uncertainties (100% and 3.2%). In addition, the participants underwent three
467 blocks of 72 trials during the learning phase. The viscosity level was set to ± 2.5 ($N/[ms^{-1}]$) for
468 the CW and CCW conditions.

469

470 **Experiment 2-3**

471 As a control experiment, we examined the contextual effect of visual features (100% and 3.2%
472 coherent random-dot motion), which covaried with the decision uncertainty in Experiment 2-1
473 and 2-2.

474 *Procedure*

475 The setting of the experiment was like Experiment 2-1, but the participants were not required to
476 make any directional decision of the random-dot motion. Instead, they either saw 100% or 3.2%
477 coherent random-dot motion presented on the screen. Immediately after the disappearance of the
478 motion stimulus, a single target appeared on either the left or right side, and the participants
479 reached towards the target. The target direction did not correlate with the direction of motion.
480 Thus, the direction of the participant's movement and decision was unrelated, which discouraged
481 the participants from making decisions in any direction. Duration of the visual stimulus was
482 drawn from the normal distribution, which the mean and the variance were extracted from the

483 reaction times (RT: stimulus onset to the movement onset) in Experiment 2-1 (fig. S2B;
484 parameters: 3.2% motion: 461.9 ± 75.8 ms [left], 453.9 ± 69.9 .2 ms [right], 100% motion: 731.5
485 ± 144.3 ms [left], 720.3 ± 149.2 ms [right]). To ensure that the participants focused on the
486 stimulus, they were occasionally asked if the visual motion they saw was coherent or random (12
487 trials per block). The average correct rate was $91.4 \pm 12.7\%$.

488 All the other trial structures were identical to Experiment 2-1. After the baseline
489 condition (two blocks of 40 trials; all error-clamped), in the learning and retrieval phases, each
490 coherence level of random-dot motion was associated with either the strong or weak force field
491 in each participant (learning phase: two blocks of 72 trials, retrieval phase: 10 blocks of 72 trials
492 [one error-clamp every six trials]).

493 A comparable level of force-field learning as in Experiment 2-1 should be observed if the
494 visual feature of the stimulus can be a context for encoding/retrieval of motor memory.

495

496 **Experiment 2-4**

497 For another control experiment, we examined the contextual effect of time-before-execution,
498 which also covaries with the decision uncertainty level in Experiment 2-1 and 2-2.

499 *Procedure*

500 Setting of the experiment was like Experiment 2-1, but they only observed 100%
501 coherent random-dot motion. Two durations were prepared, in which one corresponded to the
502 RTs (stimulus onset to the movement onset) of 100% coherent motion (short duration) and
503 another to the RTs of 3.2% coherent motion (long duration) in Experiment 2-1. As in Experiment
504 2-3, this duration was drawn from a normal distribution, in which the mean and variance were
505 extracted from the RTs of the corresponding conditions in Experiment 2-1 (see above).

506 In this experiment, participants judged the direction of the visual stimulus, reported the
507 decision immediately after stimulus termination, and then made the reaching towards the target
508 in the direction of the judgment. The other parameters were similar to Experiment 2-1. After the
509 baseline phase (two blocks of 40 trials; error clamped), retrieval (two blocks of 72 trials), and
510 test (10 blocks of 72 trials; error-clamp, once in six trials) phases, short and long durations were
511 associated with weak and strong force fields.

512 Unlike Experiment 2-3, where participants were uninformed of the movement direction
513 until the disappearance of the random-dot motion, this experiment allowed participants to
514 prepare the movement for a longer duration when the stimulus duration was longer. If the
515 stimulus duration and amount of motor preparation are the main components of the context in
516 Experiment 2-1, we should observe an effect comparable to Experiment 2-1 in this experiment.

517

518 **Experiment 3**

519 We examine the content of the decision-making uncertainty context. Specifically, we tested
520 whether the uncertainty context includes the abstract stimulus-independent component, other
521 than the input stimulus-level uncertainty, for motor memory retrieval.

522

523 *Procedure*

524 Two different types of visual stimuli were prepared: random-dot motion and arrow
525 sequence. For random-dot motion, participants judged the net direction (left or right) of the dot
526 motion. The uncertainty of the decision was controlled by changing the %-coherence of the dot
527 motion direction. The arrow stimulus consisted of a stream of arrows heading either to the left or
528 right (Fig. 3A). A total of 20 arrows were presented in a sequence, each presented for 33.3 ms,
529 followed by a 33.3 ms of the blank. The participants judged the direction of the arrow, which
530 was more frequently presented in the sequence. The uncertainty of the decision was manipulated
531 by changing the left-right ratio of the arrows in the sequence.

532

533 *Matching of subjective uncertainty level (confidence) across the stimuli*

534 First, we established a correspondence in the subjective uncertainty level (i.e.,
535 confidence) between the two stimuli. In a trial, either the random-dot motion stimulus or the
536 arrow stimulus was presented for 1,500 ms and then disappeared. After the disappearance of the
537 stimulus, the participants moved the manipulandum towards the target in the direction of their
538 judgment, and no perturbation was applied to this movement. After moving their hand to the
539 target, participants reported the confidence level of the decision on a scale of 0–6, with 0
540 corresponding to a total guess and 6 corresponding to maximum confidence in the decision.
541 Participants performed five blocks of 64 trials. For the random-dot motion stimulus, two motion
542 coherence levels (100% and 3%) were prepared. For the arrow stimulus, the left-right ratios in
543 the arrow sequence were 55%, 60%, 65%, 70%, 80%, and 90% (5–40% bias). Each block
544 contained 16 random-dot motion stimuli and 48 arrow stimuli.

545

546 *Testing transfer of motor memory across different stimuli*

547 In the confidence matching experiment, we found that the decision confidence for the 5% biased
548 arrow sequence corresponded to the confidence of 3% coherent random-dot motion. Similarly, a
549 40% biased arrow sequence corresponded to the 100% coherent random-dot motion. Using these
550 four confidence-matched stimuli, we tested the transfer of uncertainty-tagged motor memories
551 across different visual stimuli.

552 In the baseline phase, all four types of stimuli were presented, and participants underwent
553 two blocks of 40 trials (all error-clamped) (Fig. 3B). Next, in the learning phase, only the two
554 coherence levels of random-dot motion (100% and 3%) were presented, in which each was
555 associated with either strong or weak force fields, as in Experiment 2-1. The participants
556 performed two blocks of 72 trials. Finally, all four types of stimuli were presented in the retrieval
557 phase. Here, random-dot motion stimuli had both force and error-clamp trials, but for the arrow
558 stimuli, there were only error-clamp trials. This prevented any learning of force for the arrow
559 stimulus trials, allowing us to purely evaluate the component transferred from learning using a
560 random-dot stimulus. Participants underwent 10 blocks of 72 trials (error-clamp trials; once
561 every three trials).

562 If the uncertainty context includes the abstract, stimulus invariant component, the motor
563 memory tagged by decision uncertainty of random-dot motion should be retrieved when the
564 arrow stimulus with a matched uncertainty level is presented.

565 **Data analysis**

566 *Data analysis of Experiment 1*

567 To analyze the error-clamp trials, the amount of force against the wall of the channel at the
568 timing of the peak movement velocity (velocity peak point) was extracted. Then, the force was
569 divided by the velocity peak value to transform the value into viscosity space (N/[ms⁻¹]). Finally,
570 this value was divided by the viscosity of the force field to calculate the % ideal of the force,
571 which represents learning (learning coefficient).

572 The learning coefficient was calculated for each motion coherence level (collapsed left
573 and right motion data). To assess the generalization of motor memory across different
574 uncertainty levels, the learning coefficient for each motion coherence level was divided by that
575 calculated using the last block of the learning phase (retrieval ratio). Here, a value of 1 represents
576 full retrieval of the memory, and 0 represents complete forgetting.

577 To quantify the differences in the decision-making process between the certain and
578 uncertain groups, we fitted a drift-diffusion model (DDM) to the RT and choice data of each
579 group. In DDM, we signed momentary sensory evidence accumulated over time to form a
580 decision variable (DV). The accumulation process continues until the DV reaches either the
581 upper or lower bound. The reached bound and the timing of when it reached determined the
582 choice and decision time. Reaction time is modeled as the sum of decision time and additional
583 sensory and motor delays (non-decision time). We fit the DDM to individual behavioral data
584 using maximum-likelihood estimation. Details of this method have been described previously
585 (35). The DDM has three free parameters: sensitivity, bound height, and mean non-decision
586 time. The sensitivity k determines the linear scaling of the mean momentary evidence in the
587 model with signed stimulus strength. The bound height, B , determines the amount of evidence
588 that must be accumulated to reach the upper ($+B$) or lower ($-B$) bound. The nondecision time is
589 drawn from a Gaussian distribution whose mean is a free parameter, and the standard deviation is
590 set to 30% of its mean.

591

592 *Data analysis of Experiment 2*

593 All forces measured during the error clamp trials were transformed into learning coefficients (see
594 the analysis of Experiment 1). In Experiment 2-1, 2-3, and 2-4, the coefficient was calculated
595 based on the force of the strong-force condition to allow direct comparison between the two
596 force conditions. Thus, successful learning in the strong condition results in a coefficient value of
597 1, and for the weak condition, a coefficient value of 0.5. For Experiment 2-2, since two opposing
598 force fields were used, the coefficients were 1 and -1 for each field.

599 Learning based on the decision uncertainty context predicts a significant difference in
600 the coefficient between the two fields. However, single-context learning predicted no difference
601 between the two.

602

603 *Comparing the effect across different conditions is Experiment 2*

604 To quantify and compare the effects across the four experiments (Main experiments: 2-1 and 2-1
605 and control experiments: 2-3 and 2-4), we calculated the expected difference ratio for each
606 experiment using data from the error clamp trials. For example, the maximum expected

607 difference of the learning coefficient in Experiment 2-1, 2-3, and 2-4 will be 0.5 (strong [1] –
608 weak [0.5]). For Experiment 2-2, it was 2 (CW [1] – CCW [-1]). We divided the actual observed
609 difference in the learning coefficient between the two force-field conditions by the maximum
610 expected difference (Fig. 2B).

611

612 *Data analysis of Experiment 3*

613 Data were analyzed in a manner similar to Experiment 2. The analysis was performed separately
614 for the random-dot motion stimuli and arrow sequence stimuli. The correspondence between the
615 contextual effects of the random-dot motion and arrow stimuli was assessed by calculating the
616 expected difference ratio for each stimulus and plotting them against each other (correlation)
617 (Fig. 3E).

618

619 **Statistical analysis**

620 For Experiment 1, two-way ANOVA 7 (Group [2] × Coherence level [5]) and the t-test
621 (repeated-measurement) were used for the statistical test. Unless specified otherwise, a t-test
622 (repeated measurement) was used for pair-wise comparison, and the *Bonferroni* method was
623 used to correct multiple comparisons.

624

625 **References**

- 626 1. R. Ratcliff, G. McKoon, The diffusion decision model: theory and data for two-choice
627 decision tasks. *Neural Comput* **20**, 873-922 (2008).
- 628 2. J. I. Gold, M. N. Shadlen, The neural basis of decision making. *Annu Rev Neurosci* **30**,
629 535-574 (2007).
- 630 3. J. Palmer, A. C. Huk, M. N. Shadlen, The effect of stimulus strength on the speed and
631 accuracy of a perceptual decision. *J Vis* **5**, 376-404 (2005).
- 632 4. A. Resulaj, R. Kiani, D. M. Wolpert, M. N. Shadlen, Changes of mind in decision-
633 making. *Nature* **461**, 263-266 (2009).
- 634 5. R. van den Berg, A. Zylberberg, R. Kiani, M. N. Shadlen, D. M. Wolpert, Confidence Is
635 the Bridge between Multi-stage Decisions. *Curr Biol* **26**, 3157-3168 (2016).
- 636 6. M. Hirashima, D. Nozaki, Distinct motor plans form and retrieve distinct motor
637 memories for physically identical movements. *Curr Biol* **22**, 432-436 (2012).
- 638 7. I. S. Howard, D. M. Wolpert, D. W. Franklin, The value of the follow-through derives
639 from motor learning depending on future actions. *Curr Biol* **25**, 397-401 (2015).
- 640 8. F. Gandolfo, F. A. Mussa-Ivaldi, E. Bizzi, Motor learning by field approximation. *Proc
641 Natl Acad Sci U S A* **93**, 3843-3846 (1996).
- 642 9. D. Nozaki, I. Kurtzer, S. H. Scott, Limited transfer of learning between unimanual and
643 bimanual skills within the same limb. *Nat Neurosci* **9**, 1364-1366 (2006).
- 644 10. N. Abekawa, S. Ito, H. Gomi, Gaze-specific motor memories for hand-reaching. *Curr
645 Biol* **32**, 2747-2753 e2746 (2022).
- 646 11. D. R. Godden, A. D. Baddeley, Context-dependent memory in two natural environments:
647 On land and underwater. *British Journal of Psychology* **66**, 325-331 (1975).
- 648 12. R. Shadmehr, T. Brashers-Krug, Functional stages in the formation of human long-term
649 motor memory. *J Neurosci* **17**, 409-419 (1997).

650 13. R. Shadmehr, F. A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of
651 a motor task. *J Neurosci* **14**, 3208-3224 (1994).

652 14. R. A. Scheidt, D. J. Reinkensmeyer, M. A. Conditt, W. Z. Rymer, F. A. Mussa-Ivaldi,
653 Persistence of motor adaptation during constrained, multi-joint, arm movements. *J
654 Neurophysiol* **84**, 853-862 (2000).

655 15. M. Houlihan, K. Campbell, R. M. Stelmack, Reaction time and movement time as
656 measures of stimulus evaluation and response processes. *Intelligence* **18**, 289-307 (1994).

657 16. R. P. Heitz, The speed-accuracy tradeoff: history, physiology, methodology, and
658 behavior. *Front Neurosci* **8**, 150 (2014).

659 17. J. I. Gold, C. T. Law, P. Connolly, S. Bennur, The relative influences of priors and
660 sensory evidence on an oculomotor decision variable during perceptual learning. *J
661 Neurophysiol* **100**, 2653-2668 (2008).

662 18. A. M. Haith, J. Pakpoor, J. W. Krakauer, Independence of Movement Preparation and
663 Movement Initiation. *J Neurosci* **36**, 3007-3015 (2016).

664 19. I. S. Howard, D. M. Wolpert, D. W. Franklin, The effect of contextual cues on the
665 encoding of motor memories. *J Neurophysiol* **109**, 2632-2644 (2013).

666 20. D. W. Goodwin, B. Powell, D. Bremer, H. Hoine, J. Stern, Alcohol and recall: state-
667 dependent effects in man. *Science* **163**, 1358-1360 (1969).

668 21. S. M. Polyn, M. J. Kahana, Memory search and the neural representation of context.
669 *Trends Cogn Sci* **12**, 24-30 (2008).

670 22. J. B. Heald, M. Lengyel, D. M. Wolpert, Contextual inference in learning and memory.
671 *Trends Cogn Sci* **27**, 43-64 (2023).

672 23. D. J. Herzfeld, P. A. Vaswani, M. K. Marko, R. Shadmehr, A memory of errors in
673 sensorimotor learning. *Science* **345**, 1349-1353 (2014).

674 24. J. I. Gold, M. N. Shadlen, Representation of a perceptual decision in developing
675 oculomotor commands. *Nature* **404**, 390-394 (2000).

676 25. D. Peixoto *et al.*, Decoding and perturbing decision states in real time. *Nature* **591**, 604-
677 609 (2021).

678 26. F. P. de Lange, D. A. Rahnev, T. H. Donner, H. Lau, Prestimulus oscillatory activity over
679 motor cortex reflects perceptual expectations. *J Neurosci* **33**, 1400-1410 (2013).

680 27. T. D. Hanks, J. Ditterich, M. N. Shadlen, Microstimulation of macaque area LIP affects
681 decision-making in a motion discrimination task. *Nat Neurosci* **9**, 682-689 (2006).

682 28. L. P. Selen, M. N. Shadlen, D. M. Wolpert, Deliberation in the motor system: reflex gains
683 track evolving evidence leading to a decision. *J Neurosci* **32**, 2276-2286 (2012).

684 29. R. Kiani, M. N. Shadlen, Representation of confidence associated with a decision by
685 neurons in the parietal cortex. *Science* **324**, 759-764 (2009).

686 30. M. A. Basso, R. H. Wurtz, Modulation of neuronal activity by target uncertainty. *Nature*
687 **389**, 66-69 (1997).

688 31. Y. Komura, A. Nikkuni, N. Hirashima, T. Uetake, A. Miyamoto, Responses of pulvinar
689 neurons reflect a subject's confidence in visual categorization. *Nat Neurosci* **16**, 749-755
690 (2013).

691 32. D. Nozaki, A. Yokoi, T. Kimura, M. Hirashima, J. J. Orban de Xivry, Tagging motor
692 memories with transcranial direct current stimulation allows later artificially-controlled
693 retrieval. *Elife* **5**, (2016).

694 33. K. H. Britten, M. N. Shadlen, W. T. Newsome, J. A. Movshon, The analysis of visual
695 motion: a comparison of neuronal and psychophysical performance. *J Neurosci* **12**, 4745-
696 4765 (1992).

697 34. N. Hagura, P. Haggard, J. Diedrichsen, Perceptual decisions are biased by the cost to act.
698 *Elife* **6**, (2017).

699 35. G. Okazawa, L. Sha, B. A. Purcell, R. Kiani, Psychophysical reverse correlation reflects
700 both sensory and decision-making processes. *Nat Commun* **9**, 3479 (2018).

701

702

703 **Acknowledgments:** The authors are grateful for the help of Ms. Mari Koshimizu in the data
704 collection process and the members of the CiNet Motor Control Unit and HONDA R&D for
705 their helpful insights in our discussions.

706 **Funding:** Part of this work was supported by the Japan Society for the Promotion of Science
707 (Kakenhi:20H00107, 21H00314) and the Japan Science and Technology Agency
708 (ERATO: JPMJER1801).

709 **Author contributions:**

710 Conceptualization: NH and MN

711 Methodology: KO, AY, GO, MH, and NH

712 Investigation: KO, AY, GO, MH and NH

713 Funding acquisition: NH and MN

714 Project administration: NH and MN

715 Supervision: NH

716 Writing – original draft: NH

717 Writing – review and editing: KO, AY, GO, MN, MH, and NH

718 **Competing interests:** MN is an employee of Honda R&D Co. Ltd. The authors declare that they
719 have no other competing interests.

720 **Data and materials availability:** All data needed to evaluate the conclusion in the paper are
721 present in the paper and Supplementary Materials, and is deposited in OSF website
722 (<https://osf.io/n7z4q/>). Additional data reported in this paper are available from the
723 corresponding author upon reasonable request.

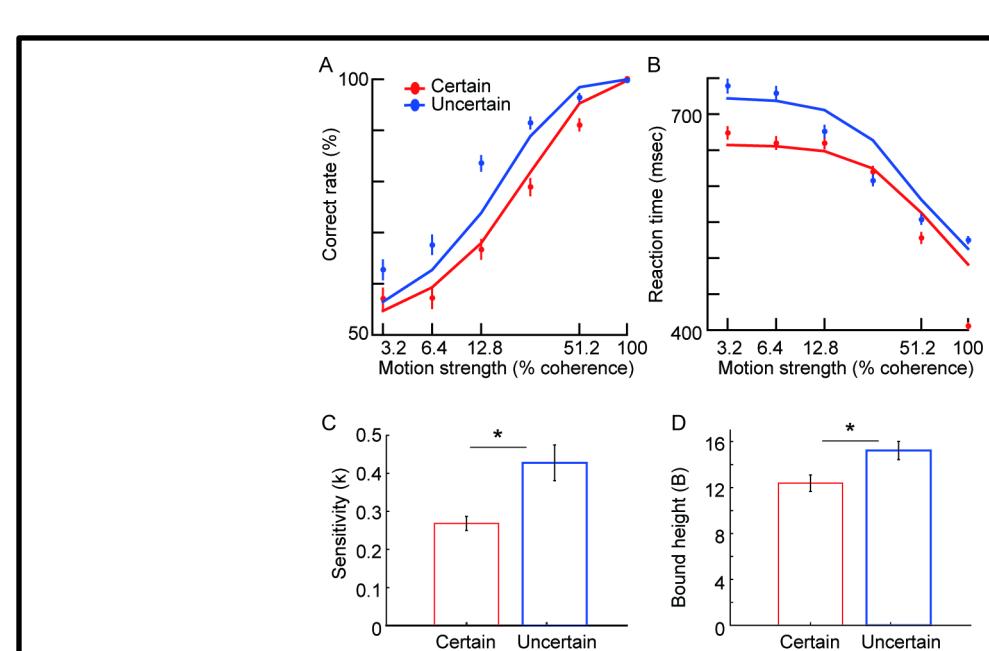
724 **Supplementary Materials**

725 Materials and Methods

726 Supplementary Text (Figure legends)

727 Figs. S1 to S4

728 References (33–35)


729

Supplementary Materials

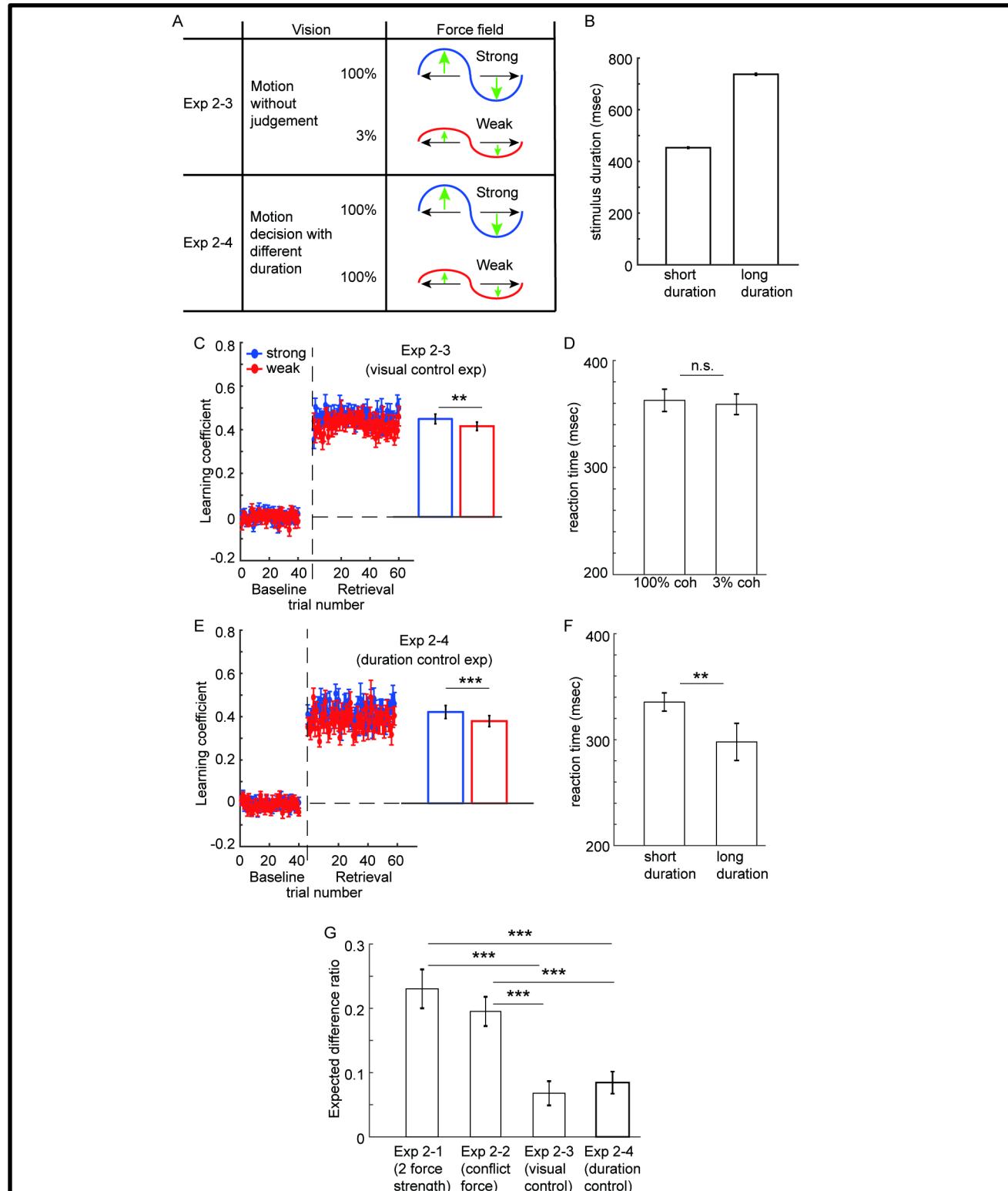
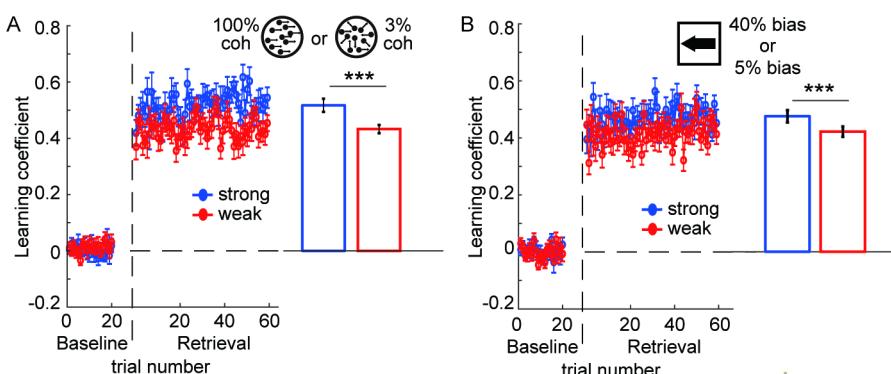

Supplementary Figures & Results

fig. S1. General experimental setup. Participants were seated comfortably in front of a screen placed horizontally in front of them, which prevented the direct vision of their hands. The visual stimulus was presented on the screen using a projector placed above the screen. Participants held a handle of a manipulandum underneath the screen and made a straight reaching movement towards the target (left or right) depending on their perceptual decision.

fig. S2. The choice and reaction time data in the retrieval phase of Experiment 1. A, B: Correct rate (A) and the reaction time (B) plotted against different motion coherence levels. A typical psychometric and chronometric function for the random-dot-motion direction decision was observed for both group of participants. Fitted line is derived from the drift-diffusion model parameters applied to the data. **C, D:** Sensitivity to the decision evidence (C) and the height of the evidence accumulation bound (D) for each Certain and Uncertain group, estimated from the drift-diffusion model (see Supplementary Methods). Uncertain group had significantly higher bound height (C) probably because the participants in this group were more cautious in their decision due to the repeated exposure to difficult stimuli. It is likely that difficult stimuli also facilitated perceptual learning in this group and improved their sensitivity k (D). Error bars indicate the standard error of means across participants. *: $p < 0.05$.


fig. S3. Conditions, stimulus duration, and the results of the control experiments.

In Experiment 2-3 (upper panel of A), 100% and 3% coherent motion were each associated with strong or weak force fields, but the participants did not make any explicit motion direction decision. Immediately after the disappearance of the motion, the left or right target appeared independent of the motion direction, and the participants reached towards the target. Therefore,

the force-field type was only associated with the visual stimulus feature per se, not the uncertainty of the decision. The duration of the visual stimulus was determined by using the reaction time data of Experiment 2-1 (see Supplementary Methods) (B). We ensured that the participants paid attention to the motion stimulus by occasionally asking them after the trial which type of stimulus, 100% or 3% coherent motion, was presented (correct rate: 91.4 + 12.7%). Reaction time, defined as the movement onset from the target presentation (D), did not differ depending on the preceding stimulus type, indicating the minimal difference in motor preparation between the two conditions. As shown in C and G, the effect of learning was only 1/3 of the main experiments (Experiment 2-1, 2-2).

In Experiment 2-4 (lower panel of A), participants judged the direction of the random-dot motion and learned two different strengths of force fields, but the motion coherence was both fixed at 100%. Here, the two visual conditions differed in the duration of the stimulus (using the same parameter as B), but the force-field type was not associated with any difference in the stimulus uncertainty level. The reaction time (F) differed between the two conditions, reflecting the difference in the motor preparation level, likely induced by the difference in the foreperiod of action. However, such a difference could not facilitate the learning of the two force fields at the same level as the decision uncertainty context (E). The learning effect was again approximately 1/3 that of the main experiments (G).

Taken together, these control experiments show that decision uncertainty can indeed be a context to tag two different motor memories, which cannot be simply explained by the visual feature or duration of the decision stimulus. Note that G is the same Fig. presented in the main text of Fig. 2E. Error bars indicate the standard error of the mean across participants. **: $p < 0.01$.

fig. S4. Result of Experiment 3.

Random-dot stimulus; A, Arrow sequence; B. Note that for the arrow sequence stimuli, participants have never performed the decision in association with any type of force field (see Fig. 3B of the main text). Therefore, any difference in force output between different types of arrow stimuli in the retrieval phase is necessary due to the association between the decision uncertainty and the force-field strength learned through random-dot motion stimuli. Error bars indicate the standard error of means across participants. *: $p < 0.001$.