

It's a Trap?! Escape from an ancient, ancestral sex chromosome system
and implication of *FoxI2* as the putative primary sex determining
gene in a lizard (Anguimorpha; Shinisauridae)

Brendan J. Pinto^{1,2,3,*}, Stuart V. Nielsen^{4,5}, Kathryn A. Sullivan^{3,6}, Ashmika Behere⁶,
Shannon E. Keating⁶, Mona van Schingen-Khan⁷, Truong Quang Nguyen^{8,9}, Thomas
Ziegler^{10,11}, Jennifer Pramuk, Melissa A. Wilson^{1,2,12}, Tony Gamble^{3,6,13,*}

1. School of Life Sciences, Arizona State University, Tempe, AZ USA
2. Center for Evolution and Medicine, Arizona State University, Tempe, AZ USA
3. Department of Zoology, Milwaukee Public Museum, Milwaukee, WI USA
4. Department of Biological Sciences, Museum of Life Sciences, Louisiana State University-Shreveport, Shreveport, LA USA
5. Florida Museum of Natural History, University of Florida, Gainesville, FL USA
6. Department of Biological Sciences, Marquette University, Milwaukee WI USA
7. Federal Agency for Nature Conservation, CITES Scientific Authority, Konstantinstraße 110, 53179 Bonn, Germany
8. Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi 10072, Vietnam
9. Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
10. Cologne Zoo, Riehler Straße 173, 50735 Cologne, Germany
11. Department of Biology, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
12. Center for Mechanisms of Evolution, Biodesign Institute, Tempe, AZ USA
13. Bell Museum of Natural History, University of Minnesota, St Paul, MN USA

*Correspondence:

brendanjohnpinto@gmail.com
tgamble@geckoevolution.org

Abstract

1 Although sex determination is ubiquitous in vertebrates, mechanisms of sex
2 determination vary from environmentally- to genetically-influenced. In vertebrates,
3 genetic sex determination is typically accomplished with sex chromosomes. Groups like
4 mammals maintain conserved sex chromosome systems, while sex chromosomes in
5 most vertebrate clades aren't conserved across similar evolutionary timescales. One
6 group inferred to have an evolutionarily stable mode of sex determination is
7 Anguimorpha, a clade of charismatic taxa including: monitor lizards, Gila monsters, and
8 crocodile lizards. The common ancestor of extant anguimorphs possessed a ZW
9 system that has been retained across the clade. However, the sex chromosome system
10 in the endangered, monotypic family of crocodile lizards (Shinisauridae) has remained
11 elusive. Here, we analyze genomic data to demonstrate that *Shinisaurus* has replaced
12 the ancestral anguimorph ZW system on LG7 chromosome with a novel ZW system on
13 LG3. The linkage group LG3 corresponds to chromosome 9 in chicken, and this is the
14 first documented use of this syntenic block as a sex chromosome in amniotes.
15 Additionally, this ~1Mb region harbors approximately 10 genes, including a duplication
16 of the sex-determining transcription factor, *Foxl2*—critical for the determination and
17 maintenance of sexual differentiation in vertebrates, and thus a putative primary sex
18 determining gene for *Shinisaurus*.

19 **Introduction**

20 The evolution of sex determination in vertebrates is impressive in its ability to
21 combine a highly conserved developmental network that can be initiated by quite
22 distinct molecular mechanisms in different species (Bachtrog et al. 2014; Graves, 2008).
23 In vertebrates, sex is commonly determined via either environmental and/or genetic
24 cues at critical points in development. In vertebrate groups that use genetic
25 mechanisms, the most common mechanism is sex chromosomes; either a male or
26 female heterogametic system where the male or female inherits the sex-limited (Y or W)
27 chromosome, respectively (Bachtrog et al. 2014; Gamble et al. 2015). Sex
28 chromosomes have been traditionally identified by comparing male and female
29 karyotypes under the light microscope. The presence of morphological differences
30 between the X and Y (or Z and W) chromosomes (i.e. heteromorphic sex
31 chromosomes) identify a species' sex chromosome system (Stevens, 1905; Bull, 1983).
32 However, many species possess sex chromosomes that cannot be identified via light
33 microscopy because the X and Y (or Z and W) are not morphologically distinguishable
34 from each other (i.e. homomorphic sex chromosomes). Other methods must be
35 employed, such as advanced cytogenetic techniques or high-throughput DNA
36 sequencing technologies, to identify sex chromosome systems in these taxa (Gamble
37 and Zarkower, 2014; Gamble et al. 2017; Pinto et al. 2022).

38

39 Squamate reptiles (lizards and snakes) demonstrate high variability in modes of
40 sex determination: where some clades have conserved, often heteromorphic, sex
41 chromosomes, while others display extraordinary lability in their modes of sex
42 determination and a high incidence of homomorphic sex chromosomes (Gamble et al.
43 2015, Kratochvíl et al. 2021; Augstenová et al. 2021a). One hypothesis of sex
44 chromosome evolution is that ancient, degenerated sex chromosome systems may act
45 as an “evolutionary trap”, where the existence of highly differentiated (i.e.
46 heteromorphic) sex chromosomes preclude transitions to other sex-determining
47 systems (Bull 1983; Bull and Charnov, 1985; Pokorná and Kratochvíl, 2009). The
48 stability of old sex chromosome systems in mammals, birds, caenophidian snakes, and
49 others, provides anecdotal support for this hypothesis (Bull and Charnov, 1985;

50 Pokorná and Kratochvíl, 2009; Gamble et al. 2015). As more and more sex
51 chromosome transitions are identified, it remains unclear whether all ancient sex
52 chromosome systems are destined to become traps, but examples of taxa transitioning
53 away from ancient, degenerated sex chromosome systems are rare in amniotes (Acosta
54 et al. 2019; Nielsen et al. 2019; Rovatsos et al. 2019a). Previous phylogenetic studies
55 have supported the trap hypothesis in squamates (Pokorná and Kratochvíl, 2009;
56 Gamble et al. 2015), but also suffered from incomplete taxonomic sampling, which
57 might have biased the conclusions. In other words, testing this hypothesis is contingent
58 upon having sufficient data necessary to identify transitions away from an ancient sex
59 chromosome system, which typically requires (1) a reference genome to coordinate
60 linkage groups (which are rare in squamates; Pinto et al. 2023), (2) genome-scale data
61 from both sexes (e.g. Vicoso et al. 2013; Gamble et al. 2015; Pinto et al. 2022), and (3)
62 a robust phylogenetic hypothesis to establish relationships within the focal taxa (Nielsen
63 et al. 2019). Thus, the burden of proof is higher for identifying escapees from these
64 ancient sex chromosome systems, which may be responsible for the dearth of
65 examples and the previous lack of conclusive examinations of the evolutionary trap
66 hypothesis. Future identification of additional escapees will permit more conclusive
67 analyses of whether or not ancient sex chromosome systems truly act as evolutionary
68 traps across a broader phylogenetic scale.

69

70 The sex chromosomes of the infraorder Anguimorpha (lizards including monitor
71 lizards, Gila monsters, alligator lizards, and their allies) have long been a topic of
72 interest, likely resulting from the paucity of genetic and cytogenetic data for this group.
73 In recent years, advanced cytogenetic techniques (FISH) have facilitated karyotypic
74 analysis and identification of ZW sex chromosomes in the Gila monster (*Heloderma*
75 *suspectum*; Pokorná et al. 2014) and Komodo dragon (*Varanus komodoensis*; Pokorná
76 et al. 2016) leading to expanded interest in studying chromosome evolution in this
77 enigmatic group. More recently, RNAseq and qPCR analysis, in conjunction with draft
78 genomes of these same two anguimorph species (Gila monster; Webster et al. 2023,
79 and Komodo dragon; Lind et al. 2019), have provided some additional insights into this
80 system (Rovatsos et al. 2019b). Namely, the homology of the heteromorphic ZW

81 systems in the anguimorph genera *Abronia*, *Heloderma*, and *Varanus* (Rovatsos et al.
82 2019b; Webster et al. 2023). The presence of a ZW sex chromosome on the same
83 linkage group—syntenic with chromosome 28 in the chicken genome—in these three
84 genera, spanning the phylogenetic breadth of extant Anguimorpha, is strong evidence
85 that this is the ancestral sex chromosome system in the clade. Ancient sex
86 chromosome systems, like those ancestral to anguimorphs (115–180 million years old),
87 fit the criteria that should render them as an evolutionary trap (Pokorná and Kratochvíl,
88 2009; Rovatsos et al. 2019b). However, the sex chromosomes of many anguimorph
89 taxa remain unknown, including the monotypic family Shinisauridae, which is nested
90 within the anguimorph phylogeny (Figure 1).

91

92 The crocodile lizard (*Shinisaurus crocodilurus*) is the sole living member of the
93 family Shinisauridae and native to small disjunct regions of southeastern China and
94 northern Vietnam (Le and Ziegler, 2003; Huang et al. 2008; Nguyen et al. 2014). It is
95 one of the rarest lizard species in the world and is listed as Endangered in the IUCN
96 Red List (Nguyen et al. 2014). Due to anthropogenic pressures, populations have
97 experienced severe declines in recent years with less than 1000 individuals in the wild
98 in China and less than 100 adults in Vietnam (Huang et al. 2008; van Schingen et al.
99 2014a). They are semi-aquatic habitat specialists and depend upon clean streams in
100 broadleaf evergreen forest (Ning et al. 2006; van Schingen et al. 2016a) and their
101 restricted ecological niche is predicted to all but disappear due to climate change by the
102 end of this century (Li et al. 2013; van Schingen et al. 2014a; see also van Schingen-
103 Khan et al. 2022). Habitat destruction threatens remaining populations, as well as
104 overcollection for food and the international pet trade (Huang et al. 2008; van Schingen
105 et al. 2014b; van Schingen et al. 2016a). Although still recognized as a single species,
106 there exist multiple conservation units, with *S. crocodilurus vietnamensis* from Vietnam
107 and the nominal subspecies from China consisting of several distinct lineages (van
108 Schingen et al. 2016b; Ngo et al. 2020; Nguyen et al. 2022). Crocodile lizards do not
109 have a clear sexual dimorphism. While morphological traits, such as coloration or body
110 morphometry, may provide some indication of the sex, it remains difficult for most
111 people to identify the sex of individuals (van Schingen et al. 2016b). Relevant to the

112 present study, examination of male and female *S. crocodilurus* karyotypes have
113 revealed no heteromorphic sex chromosomes (Zhang et al. 1996; Augstenová et al.
114 2021b). To identify sex chromosomes in this species, we analyzed whole-genome re-
115 sequencing data for approximately 50 sexed, individual crocodile lizards (Xie et al.
116 2022) using whole-genome re-sequencing to show that the sex determining system in
117 *S. crocodilurus* is a novel ZW system that has eluded previous analyses, at least in part,
118 due to the small size (<1Mb) of its sex determining region (SDR).

119

120 **Methods**

121 *WGS analysis*

122 We downloaded low-coverage whole genome Illumina resequencing (WGS)
123 reads from NCBI SRA for multiple male and female individuals (see *Data Availability* for
124 accessions). We constructed a Snakemake [v6.10.0] (Mölder et al. 2021) workflow in an
125 isolated conda environment [v4.11.0] (<https://docs.anaconda.com/>) containing relevant
126 packages: BBmap [v38.93] (Bushnell, 2014), FastQC [v0.11.9] (Andrews, 2010),
127 Freebayes [v1.3.5] (Garrison and Marth, 2012), GFF utilities [v0.10.1] (Pertea and
128 Pertea, 2020), Minimap2 [v2.22] (Li, 2018), Mosdepth [v0.3.2] (Pedersen and Quinlan,
129 2018), MultiQC [v1.11] (Ewels et al. 2016), Parallel [v20211022] (Tange, 2018), pixy
130 [v1.2.5.beta1] (Korunes and Samuk, 2021), RTGTools [v3.12.1] (Cleary et al. 2015),
131 Sambamba [v0.8.1] (Tarasov et al. 2015), Samtools [v1.12] (Li et al. 2009), seqkit
132 [v0.11.0] (Shen et al. 2016), STACKS [v2.6.0] (Catchen et al. 2013), and Trim Galore!
133 [v0.6.7] (<https://doi.org/10.5281/zenodo.5127899>). To process the raw sequencing data,
134 we trimmed adapters and low-quality regions using Trim Galore!, then removed PCR
135 duplicates using BBmap. Quality assessment using FastQC and MultiQC was
136 conducted at each step, and we subsequently removed samples with fewer than 5
137 million PE reads after filtering PCR duplicates. The final WGS dataset possessed 50
138 sexed samples (27 male and 23 female individuals) sourced from China and Vietnam.
139 We proceeded to map reads for each individual to the female reference genome (Xie et
140 al. 2022) with minimap2 and calculated read depth and read mapping statistics using
141 mosdepth and samtools, respectively. Then, we generated an all-sites VCF file with
142 freebayes-parallel. Lastly, we calculated Weir and Cockerham (1984) F_{ST} between
143 males and females and nucleotide diversity statistics using pixy at 500kb resolution and,
144 for LG3 only, also at 100kb resolution.

145

146 *Validation of the putative ZW system in Shinisaurus crocodilurus*

147 Male vs. female F_{ST} values are agnostic to which sex is heterogametic (i.e. XY
148 vs. ZW). Therefore, we generated a dataset of '*in silico* poolseq' reads by subsampling
149 each WGS sample to 10 million paired reads (20 million total reads per sample) using
150 seqkit and combined into male and female pools. We analyzed the pools using Pooled

151 Sequencing Analyses for Sex Signal [PSASS; v3.1.0]
152 (<https://doi.org/10.5281/zenodo.3702337>). We then generated PCR primers targeting
153 the annotated version of *Foxl2*'s second exon [FOXL2-ex2-F2 5' –
154 CAGAGCTCGTCCCATTCACTT – 3' and FOXL2-ex2-R2 5' –
155 GAGAGATGTACCACCGGGAG – 3'] and sequenced the resultant amplicon using
156 Sanger sequencing (Psomagen). Individuals used in Sanger sequencing are detailed in
157 Supplemental Table 1.

158

159 *Genome Annotation*

160 We used previously lifted over annotations (Pinto et al. 2023;
161 <https://doi.org/10.6084/m9.figshare.20201099.v1>) via Liftoff [v1.6.3] (Shumate and
162 Salzberg, 2021) from the draft genome of a male *S. crocodilurus* (Gao et al. 2017) to
163 the new, unannotated female reference genome (Xie et al. 2022; GCA_021292165.1).
164 We pulled coding transcripts from the genome using GFF Utilities. We used the 10
165 genes within the putative ~1Mb SDR on LG3 to perform a high-stringency tBLASTx
166 query (Altschul et al. 1990) to the chicken genome on Ensembl (Howe et al. 2020) with
167 a word size of 3, maximum of 10 hits, e-value cutoff of 1e⁻⁵⁰, using BLOSUM62 scoring
168 matrix. These queries received hits on 7 of the 10 total genes (Table 1).

169 **Results**

170 Across WGS experiments, read mapping efficiency ranged from 80.60% (for
171 SRR5019740) to 99.40% (for SRR14583318). After variant calling, the WGS dataset
172 contained 6,202,005 biallelic variants (see Data Availability section for additional VCF
173 statistics). We identified a region of high F_{ST} between males and females on linkage
174 group 3 (LG3; Figure 2), however, comparing M/F F_{ST} values does not necessarily
175 diagnose which sex is heterogametic (i.e. XY vs. ZW). Therefore, we composed a
176 dataset of '*in silico* poolseq' reads to identify an excess of female-associated SNPs
177 aligning to the previously identified region of high M/F F_{ST} (Supplemental Figure 1).
178 Taken together, these data suggest that *S. crocodilurus* possesses a female
179 heterogametic system (ZW) with an SDR located in a ~900kb region on LG3.

180

181 Upon further investigation of the SDR, we identified a total of 10 genes annotated
182 within this region of high F_{ST} and an excess of female-specific SNPs. To better
183 characterize these genes, we BLAST-ed each to the chicken genome. We recovered
184 high-quality BLAST hits for seven of the 10 annotated *S. crocodilurus* SDR genes in
185 chicken (Table 1). Six out of the seven queries hit genes located on chicken
186 chromosome 9, while the other landed on a chicken chromosome 30 (Table 1). In our
187 poolseq analysis, one of these genes possessed half the read depth in females relative
188 to males (Supplemental Table 2) and, upon closer inspection, we identified a duplicated,
189 unannotated copy of that gene Forkhead Box L2 (*Foxl2*), located approximately 70kb
190 upstream—with 99% sequence identity, also located within the putative SDR. We
191 included this *Foxl2* copy in a BLAST search against chicken, where it was again
192 identified as a *Foxl2* homolog (Table 1). We also BLAST-ed *Foxl2* to the earlier male *S.*
193 *crocodilurus* draft genome (Gao et al. 2017) and found only a single copy of *Foxl2* in
194 this genome matching one copy in the updated reference genome with 100% sequence
195 identity, consistent with both (1) the duplicated version being W-specific and (2) the
196 female reference being chimeric for Z and W alleles (Xie et al. 2022). Lastly, we
197 generated a gene tree using *Foxl2* copies from across reptiles to confirm its duplicated
198 origination was within Shinisauridae (Supplemental Figure 2). Thus, in the chimeric
199 female reference genome, this putative W-linked *Foxl2* copy was located approximately

200 70kb upstream of the annotated Z-linked copy of *Foxl2* on the other side of an assembly
201 gap.

202

203 The WGS data used in the *in silico* PoolSeq analysis were restricted to only
204 individuals from Chinese populations to reduce the influence of population-specific
205 demographic processes (Xie et al. 2022). To include the less-numerous Vietnam
206 samples, we generated PCR primers for a segment of *Foxl2*'s second exon and Sanger
207 sequenced multiple females (Vietnam) and males (China and Vietnam) (Supplemental
208 Figure 3). We identified one SNP in the female Vietnamese samples in this region and
209 tested its association with sex using Fisher's exact test (p-value = 0.0003***). Thus, the
210 ZW SDR containing *Foxl2* appears to be conserved between populations of *S.
211 crocodilurus* from both China and Vietnam.

212 **Discussion**

213 *Escaping the “Evolutionary Trap”*

214 An open question within sex chromosome evolution is whether ancient,
215 degenerated sex chromosomes act as evolutionary traps (Pokorná and Kratochvíl,
216 2009; Nielsen et al. 2019; Pinto et al. 2023). The most recent common ancestor of
217 extant anguimorphs is thought to have possessed a ZW system on the linkage group
218 syntenic with chicken chromosome 28, which is located on the distal region of LG7 in in
219 the *S. crocodilurus* reference genome (Rovatsos et al. 2019b; Webster et al. 2023). The
220 sex determining region (SDR) in *S. crocodilurus* is located on LG3, a region syntenic
221 with chicken chromosome 9. Of note, however, at present it is difficult to assess the
222 precise genomic coordinates and gene content of the SDR due to the chimeric nature of
223 the reference genome assembly. To our knowledge, this is the first demonstration in a
224 tetrapod of the syntenic region of chicken chromosome 9 being recruited in a sex
225 determining role (Kratochvíl et al. 2021), lending further support to the idea that all
226 chromosomes will likely be recruited into a sex determining role given thorough enough
227 phylogenetic sampling (Graves and Peichel, 2010; Hodgkin, 2002; O’Meally et al. 2012;
228 Pinto et al. 2022).

229

230 It is clear from these genomic data that *S. crocodilurus* possesses a distinct sex
231 chromosome system from all other known anguimorphs. Unlike the case of
232 Corytophanidae and other pleurodonta, where phylogenetic relationships among taxa
233 were inconclusive (Nielsen et al. 2019), the relationship of *S. crocodilurus* to all other
234 anguimorphs is far less divisive. Indeed, *S. crocodilurus* is well-supported as nested
235 within Anguimorpha—either sister to Varanidae as a member of the
236 “Paleoanguimorpha” (Burbrink et al. 2020) or as sister to a clade containing Varanidae
237 and Lanthanotidae (Singhal et al. 2021), depending on taxonomic sampling. Thus,
238 assuming the hypothesis that an ancient origin of the ZW sex chromosome system
239 possessed by extant *Varanus*, *Heloderma*, and *Abronia* is correct, then *S. crocodilurus*
240 has successfully escaped the evolutionary trap of their ancestral, degenerated sex
241 chromosome system—a system nearly as ancient as those systems found in both
242 mammals and birds (Rovatsos et al. 2019b; Webster et al. 2023). It is worth noting that

243 there remains another putative escape from the ancestral anguimorph sex chromosome
244 system in *Anguis* that has yet to be explored further (Rovatsos et al. 2019b) and more
245 recent phylogenetic work has implicated that Corytophanidae is likely nested
246 somewhere within other pleurodons, rather than being sister to all other species
247 (Burbrink et al. 2020; Singhal et al. 2021). This suggests that there are a minimum of
248 two evolutionary escapes within Toxicofera (snakes, iguanians, and anguimorphs)—and
249 perhaps even two within the infraorder Anguimorpha alone.

250

251 *Primary Sex Determination in Shinisauridae*

252 In many vertebrate groups where the primary sex determiner (PSD) is known, a
253 relatively short list of commonly-recruited PSDs have been identified (i.e. the ‘usual
254 suspects’; Adolfi et al. 2021; Dor et al. 2019; Herpin and Schartl, 2015). Indeed, the
255 same genes, or their paralogs, have been independently co-opted to function as the
256 PSD in many taxa, examples including *Sox3* in placental mammals and some medaka
257 (members of the *Oryzias celebensis* and *O. javanicus* groups); *Amh* in tilapia, northern
258 pike, and potentially other anguimorphs (Li et al. 2015; Myosho et al. 2015; Pan et al.
259 2019; Rovatsos et al. 2019b; Webster et al. 2023; and see Pan et al. 2021 for recent
260 review); and *Dmrt1* in birds, a frog (*Xenopus laevis*), tongue sole, and other medaka fish
261 (members of the *Oryzias latipes* group) (Chen et al. 2014; Ioannidis et al. 2021;
262 Matsuda et al. 2002; Nanda et al. 2002; Smith et al. 2009). This is the first time
263 Forkhead Box L2 (*Foxl2*) has been implicated as a PSD in a vertebrate, although it has
264 been predicted to be one (e.g. Ma et al. 2022).

265

266 The transcription factor, *Foxl2*, is a direct transcriptional activator of aromatase,
267 involved in development of the ovaries and its loss in mice during embryogenesis leads
268 to abnormal ovarian development and infertility (Fleming et al. 2010; Pannetier et al.
269 2006; Schmidt et al. 2004; Uda et al. 2004). After primary sex determination and sexual
270 development have concluded, *Dmrt1* and *Foxl2* antagonize each other transcriptionally
271 in gonadal tissue, where sustained *Dmrt1* and *Foxl2* expression is required for adult
272 maintenance of testis and ovary tissue, respectively (Garcia-Ortiz et al. 2009; Matson et
273 al. 2011; Uhlenhaut et al. 2009). Indeed, *Foxl2* also behaves in a dose-dependent

274 manner in some turtle species where its overexpression at the embryonic stage can
275 induce male-to-female sex reversal in ZZ soft-shelled turtles (*Pelodiscus sinensis*) and
276 female differentiation in male-temperature-incubated red-eared sliders (*Trachemys*
277 *scripta*) (Jin et al. 2022; Ma et al. 2022). Importantly, *Dmrt1* has been recruited to act as
278 a primary sex determining gene in multiple taxa (Matson and Zarkower, 2012), while
279 *Foxl2* has remained mysteriously absent from this list—with the singular putative
280 exception being recently described in some species of bivalve mollusks (Han et al.
281 2022). Thus, the identification of both *Foxl2* and a duplicated *Foxl2* copy in the W-
282 limited region of the *Shinisaurus* genome supports the expanded list of the “usual
283 suspects” that might act as the PSD in vertebrates.

284 Pragmatically, the identification of a novel ZW system in *S. crocodilurus* may
285 present an important juncture in the conservation efforts of this endangered lizard
286 species, that are urgently needed (Nguyen et al. 2014). Body morphometrics in mature
287 specimens may provide an indication of the sex, i.e. males tend to have a relatively
288 larger head, relative to abdomen length than females (van Schingen et al. 2016b).
289 However, definitive sexually dimorphic characters are lacking in the species, especially
290 in hatchlings, juveniles, and subadults. Therefore, a molecular genetic sex test could
291 assist in well-managed captive breeding efforts in this species (Ziegler et al. 2019). This
292 is vital as it's estimated only ~1,000 individuals remain in the wild populations in China
293 and Vietnam during the last census (Huang et al. 2008; van Schingen et al. 2016a),
294 while loss of remaining habitats and poaching are considered ongoing. This information
295 may play a vital role in conservation efforts of this species and should be incorporated
296 into ongoing captive breeding work (Ziegler et al. 2019).

297 In conclusion, using a combination of sequencing and validation techniques we
298 identified the elusive ZW system in the endangered crocodile lizard, *Shinisaurus*
299 *crocodilurus*. This ZW system is located on LG3 and, although interpretation inherits
300 strong reference bias (a chimeric ZW reference genome), the SDR appears to be <1Mb
301 in size and contains approximately 10 genes. One of these genes, *Foxl2*, possesses a
302 duplicated copy and is important in ovarian development and fertility in vertebrates.
303 Because of its sequence conservation (either strictly age-related or via gene

304 conversion) and possibly its proximity to the original Z copy of *Foxl2*, we hypothesize
305 that if *Foxl2* is the PSD in this system, it may be a gene dosage-dependent mechanism,
306 where ZW females possess three copies of *Foxl2* instead of the two copies of ZZ males.
307 This specific hypothesis assumes that the Z copy of *Foxl2* is retained in the
308 pseudoautosomal region of the W chromosome, however, phased Z and W sequences
309 are needed to provide additional support to this model. The hypothetical mechanism
310 would essentially be the inverse of the dose-dependent *Dmrt1* sex determination in
311 birds, where a lack of *Dmrt1* on the W decreases *DMRT1* expression in females,
312 allowing for *Foxl2* to proceed with ovarian development (Ioannidis et al. 2021; Smith et
313 al. 2009). Here, extra gene copies of *Foxl2* increase *FOXL2* expression to downregulate
314 *Dmrt1* expression and initiate ovarian development in the developing gonad. Thus, we
315 provide a putative sex determining gene for the crocodile lizard (*Shinisaurus*
316 *crocodilurus*) and speculate as to its potential mechanism of action in this system.

317 **Data Availability:**

318 The WGS data used in this study is available on NCBI, SRA accessions for WGS
319 data are: SRR14583317, SRR14583321, SRR14583324-26, SRR14583330,
320 SRR14583333, SRR14583340-49, SRR14583351, SRR14583353-54, SRR14583356,
321 SRR14583360-66, SRR5019733-45, SRR14583318-20, SRR14583322-23,
322 SRR14583331, SRR14583334-39, SRR14583346, SRR14583350, SRR14583352,
323 SRR14583355, SRR14583357-59. Sequence data generated in this study are available
324 on SRA under BioProject PRJNA975696, detailed in Supplemental Table 1, and code,
325 including and VCF statistics and gene alignments, are available on GitHub:
326 https://github.com/DrPintoThe2nd/Shinisaurus_ZW.

327

328 **Acknowledgements:**

329 The authors would like to acknowledge Research Computing at Arizona State
330 University for providing high-performance computing and storage resources that have
331 contributed to the research results reported within this paper
332 (<http://www.researchcomputing.asu.edu>). We thank Anna Rauhaus (Cologne Zoo) for
333 her help with the application and preparation of tissue sending and the Woodland Park

334 Zoo for their respective assistance. Many thanks CITES Management Authority of
335 Vietnam for issuing permits (CITES permits No. 13VN1246N/CT-KL and
336 16VN0920N/CT-KL). This work was funded by the Morris Animal Foundation (Study
337 grant D19ZO-021) for their generous funding of this project (T.G.) and also supported
338 by the National Institute of General Medical Sciences (NIGMS) of the National Institutes
339 of Health grant R35GM124827 (M.A.W.).

340 **References**

341 Adolfi, M. C., Herpin, A., & Schartl, M. (2021). The replaceable master of sex
342 determination: bottom-up hypothesis revisited. *Philosophical Transactions of the Royal
343 Society B: Biological Sciences*. 376(1832):20200090.

344 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
345 alignment search tool. *J Mol Biol*. 215: 403-410.

346 Andrews S. 2010. FastQC: A quality control tool for high throughput sequence
347 data. <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

348 Augstenová, B., Pensabene, E., Veselý, M., Kratochvíl, L., Rovatsos, M. 2021a.
349 Are geckos special in sex determination? Independently evolved differentiated ZZ/ZW
350 sex chromosomes in carphodactylid geckos. *Genome Biology and Evolution*, 13(7),
351 evab119.

352 Augstenová, B., Pensabene, E., Kratochvíl, L., Rovatsos, M. 2021b. Cytogenetic
353 evidence for sex chromosomes and karyotype evolution in anguimorphan lizards. *Cells*,
354 10(7), 1612.

355 Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, Ashman TL, Hahn
356 MW, Kitano J, Mayrose I, Ming R, Perrin N, Ross L, Valenzuela N, Vamosi JC. 2014.
357 Sex determination: Why so many ways of doing it? *PLoS Biol*. 12: e1001899.

358 Bull, JJ. 1983. Evolution of Sex Determining Mechanisms. Benjamin Cummings:
359 Menlo Park, CA.

360 Bull J, Charnov E. 1985. On irreversible evolution. *Evolution* 39, 1149–1155.

361 Burbrink, F. T., Graziotin, F. G., Pyron, R. A., Cundall, D., Donnellan, S., Irish,
362 F., Keogh, J. S., Kraus, F., Murphy, R. W., Noonan, B., Raxworthy, C. J., Ruane, S.,
363 Lemmon, A. R., Lemmon, E. M., Zaher, H. (2019). Interrogating Genomic-Scale Data
364 for Squamata (Lizards, Snakes, and Amphisbaenians) Shows no Support for Key
365 Traditional Morphological Relationships. *Systematic Biology*, 69(3), 502–520.

366 Bushnell B. 2014. BBMap: a fast, accurate, splice-aware aligner (No. LBNL-
367 7065E). Lawrence Berkeley National Lab (LBNL), Berkeley, CA (United States).

368 Chen, S., Zhang, G., Shao, C., Huang, Q., Liu, G., Zhang, P., Song, W., An, N.,
369 Chalopin, D., Volff, J.-N., Hong, Y., Li, Q., Sha, Z., Zhou, H., Xie, M., Yu, Q., Liu, Y.,
370 Xiang, H., Wang, N., ... Wang, J. (2014). Whole-genome sequence of a flatfish provides
371 insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. *Nature
372 Genetics*. 46(3):253–260.

373 Cleary JG, Braithwaite R, Gaastra K, Hilbush BS, Inglis S, Irvine SA, Francisco
374 M. (2015). Comparing variant call files for performance benchmarking of next-
375 generation sequencing variant calling pipelines. *BioRxiv*.

376 Dor L, Shirak A, Kohn YY, Gur T, Weller JI, Zilberg D, Seroussi E, Ron M. 2019.
377 Mapping of the sex determining region on linkage group 12 of guppy (*Poecilia
378 reticulata*). *G3*. 9: 3867-3875.

379 Ewels P, Magnusson M, Lundin S, Käller M. 2016. MultiQC: summarize analysis
380 results for multiple tools and samples in a single report. *Bioinformatics*. 32: 3047-3048.

381 Fleming, N. I., Knower, K. C., Lazarus, K. A., Fuller, P. J., Simpson, E. R., &
382 Clyne, C. D. (2010). Aromatase Is a Direct Target of *FOXL2*: C134W in Granulosa Cell
383 Tumors via a Single Highly Conserved Binding Site in the Ovarian Specific Promoter.
384 *PLoS ONE*. 5(12):e14389.

385 Gamble T, Zarkower D. 2014. Identification of sex-specific molecular markers
386 using restriction site-associated DNA sequencing. *Molecular Ecology Resources*.
387 14:902–913.

388 Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury D, Zarkower D. 2015.
389 Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary
390 number of transitions among gecko sex-determining systems. *Mol Biol Evol*. 32: 1296–
391 1309.

392 Gamble T, Castoe TA, Nielsen SV, Banks JL, Card DC, Schield DR, Schuett
393 GW, Booth W. 2017. The discovery of XY sex chromosomes in a *Boa* and *Python*. *Curr
394 Biol*. 27: 2148–2153.

395 Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, ... Zhang G. 2017. Sequencing, de
396 novo assembling, and annotating the genome of the endangered Chinese crocodile
397 lizard *Shinisaurus crocodilurus*. *GigaScience*. 6: gix041.

398 Garcia-Ortiz JE, Pelosi E, Omari S, Nedorezov T, Piao Y, Karmazin J, ...
399 Ottolenghi C. 2009. *Foxl2* functions in sex determination and histogenesis throughout
400 mouse ovary development. *BMC Dev Biol*. 9: 36.

401 Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read
402 sequencing. *arXiv*. 1207.3907. <https://arxiv.org/abs/1207.3907>

403 Graves J. 2008. Weird animal genomes and the evolution of vertebrate sex and
404 sex chromosomes. *Ann Rev Genet*. 42: 565–586.

405 Graves J, Peichel C. 2010. Are homologies in vertebrate sex determination due
406 to shared ancestry or to limited options? *Genome Biol*. 11: 205. doi:10.1186/gb-2010-
407 11-4-205

408 Han, W., Liu, L., Wang, J., Wei, H., Li, Y., Zhang, L., ... Wang, S. (2022). Ancient
409 homomorphy of molluscan sex chromosomes sustained by reversible sex-biased genes
410 and sex determiner translocation. *Nat Ecol Evol*. 1–16.

411 Herpin A, Schartl M. 2015. Plasticity of gene- regulatory networks controlling sex
412 determination: of masters, slaves, usual suspects, newcomers, and usurpators. *EMBO
413 Rep*. 16:1260–1274.

414 Hodgkin J. 2002. Exploring the envelope: systematic alteration in the sex-
415 determination system of the nematode *Caenorhabditis elegans*. *Genetics*. 162: 767–
416 780.

417 Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean
418 IM, Azov AG, Bennett R, Bhai J, Billis K, Boddu S, Charkhchi M, Cummins C, Da Rin
419 Fioretto L, Davidson C, Dodiya K, El Houdaigui B, Fatima R, ... Flicek P. 2020. Ensembl
420 2021. *Nucleic Acids Res*. 49: 884–891. doi:10.1093/nar/gkaa942

421 Huang C.M., Yu H., Wu Z.J., Li Y.B., Wei F.W., Gong M.H. (2008). Population
422 and conservation strategies for the Chinese crocodile lizard (*S. crocodilurus*) in China.
423 *Animal Biodiversity and Conservation*. 31(2):63–70.

424 Ioannidis, J., Taylor, G., Zhao, D., Liu, L., Idoko-Akoh, A., Gong, D., Lovell-
425 Badge, R., Guioli, S., McGrew, M. J., & Clinton, M. (2021). Primary sex determination in
426 birds depends on DMRT1 dosage, but gonadal sex does not determine adult secondary
427 sex characteristics. *PNAS*. 118(10).

428 Jin, L., Sun, W., Bao, H., Liang, X., Li, P., Shi, S., Wang, Z., Qian, G., & Ge, C.
429 (2022). The forkhead factor *Foxl2* participates in the ovarian differentiation of Chinese
430 soft-shelled turtle *Pelodiscus sinensis*. *Developmental Biology*. 492:101–110.

431 Korunes KL, Samuk K. 2021. pixy: Unbiased estimation of nucleotide diversity
432 and divergence in the presence of missing data. *Mol Ecol Res.* 21: 1359-1368.

433 Kratochvíl, L., T. Gamble, and M. Rovatsos. 2021. Sex chromosome evolution
434 among amniotes: Is the origin of sex chromosomes non-random? *Philosophical
435 Transactions of the Royal Society B: Biological Sciences* 376:20200108.

436 Kumar S, Stecher G, Suleski M, Hedges SB. (2017). TimeTree: a resource for
437 timelines, timetrees, and divergence times. *Mol Biol Evol.* 34:1812–1819

438 Le K.Q., Ziegler T. (2003). First record of the Chinese crocodile lizard from
439 outside of China: report on a population of *S. crocodilurus* Ahl, 1930 from North-Eastern
440 Vietnam. *Hamadryad.* 27(2):193-199.

441 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, ... Durbin R. (2009).
442 The sequence alignment/map format and SAMtools. *Bioinformatics.* 25:2078-2079.

443 Li H. (2018). Minimap2: pairwise alignment for nucleotide sequences.
444 *Bioinformatics.* 34:3094-3100.

445 Li, M., Sun, Y., Zhao, J., Shi, H., Zeng, S., Ye, K., Jiang, D., Zhou, L., Sun, L.,
446 Tao, W., Nagahama, Y., Kocher, T. D., & Wang, D. (2015). A Tandem Duplicate of Anti-
447 Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male
448 Sex Determination in Nile Tilapia, *Oreochromis niloticus*. *PLoS Genetics.*
449 11(11):e1005678.

450 Li, X., Tian, H., Wang, Y., Li, R., Song, Z., Zhang, F., ... & Li, D. (2013).
451 Vulnerability of 208 endemic or endangered species in China to the effects of climate
452 change. *Regional Environmental Change*, 13, 843-852.

453 Ma, X., Liu, F., Chen, Q., Sun, W., Shen, J., Wu, K., Zheng, Z., Huang, J., Chen,
454 J., Qian, G., & Ge, C. (2022). *Fox2* is required for the initiation of the female pathway in
455 a temperature-dependent sex determination system in *Trachemys scripta*.
456 *Development.* 149(13).

457 Matson, C. K., Murphy, M. W., Sarver, A. L., Griswold, M. D., Bardwell, V. J., &
458 Zarkower, D. (2011). *DMRT1* prevents female reprogramming in the postnatal
459 mammalian testis. *Nature.* 476(7358), 101–104.

460 Matson, C. K., Zarkower, D. (2012). Sex and the singular DM domain: insights
461 into sexual regulation, evolution and plasticity. *Nature Reviews Genetics.* 13(3):163-
462 174.

463 Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi,
464 T., Morrey, C. E., Shibata, N., Asakawa, S., Shimizu, N., Hori, H., Hamaguchi, S., &
465 Sakaizumi, M. (2002). DMY is a Y-specific DM-domain gene required for male
466 development in the medaka fish. *Nature.* 417(6888):559–563.

467 Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V,
468 Forster J, Lee S, Twardziok SO, Kanitz A, Wilm A, Holtgrewe M, Rahmann S, Nahnsen
469 S, Köster J. 2021. Sustainable data analysis with Snakemake. *F1000Res.* 10:33.

470 Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., Shan,
471 Z., Haaf, T., Shimizu, N., Shima, A., Schmid, M., & Schartl, M. (2002). A duplicated
472 copy of *DMRT1* in the sex-determining region of the Y chromosome of the medaka,
473 *Oryzias latipes*. *PNAS.* 99(18):11778–11783.

474 Ngo, H. T., Nguyen, T. T., Le, M. D., van Schingen-Khan, M., Nguyen, T. Q.,
475 Rauhaus, R., Vences, M. & T. Ziegler (2020): Genetic screening of captive crocodile
476 lizards (*Shinisaurus crocodilurus*) in Europe. – *Der Zoologische Garten* 88: 17-30.

477 Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE:
478 A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood
479 Phylogenies. *Molecular Biology and Evolution*. 32(1), 268–274.

480 Nguyen TQ, Hamilton P, Ziegler T. (2014). *Shinisaurus crocodilurus*. The IUCN
481 Red List of Threatened Species. doi:10.2305/IUCN.UK.2014-
482 1.RLTS.T57287221A57287235.en. Accessed on 04 March 2022.

483 Nguyen, T. T., Ngo, H. T., Ha, Q. Q., Nguyen, T. Q., Le, T. Q., Nguyen, S. H.,
484 Pham, C. T., Ziegler, T., van Schingen-Khan, M. & M. D. Le (2022): Molecular
485 phylogenetic analyses and ecological niche modeling provide new insights into threats
486 to the endangered Crocodile Lizard (*Shinisaurus crocodilurus*). - *Frontiers of*
487 *Biogeography* 2022, 14.1, e54779

488 Nielsen SV, Guzmán-Mendez IA, Gamble T, Blumer M, Pinto BJ, Kratochvíl L,
489 Rovatsos M. 2019. Escaping the evolutionary trap? Sex chromosome turnover in
490 basilisks and related lizards (Corytophanidae: Squamata). *Biol Lett*. 15: 20190498.

491 Ning J., Huang C., Yu H., Dai D., Wu Z., Zhong Y. (2006). Summer habitat
492 characteristics of the Chinese Crocodile Lizard (*Shinisaurus crocodilurus*) in the
493 Loukeng Nature Reserve, Guangdong. *Zoological Research*. 27:419-426.

494 O'Meally D, Ezaz T, Georges A, Sarre SD, Graves JAM. 2012. Are some
495 chromosomes particularly good at sex? Insights from amniotes. *Chromosome Res*. 20:
496 7-19.

497 Pan Q, Feron R, Yano A, Guyomard R, Jouanno E, Vigouroux E, Wen M, Busnel
498 JM, Bobe J, Concorde JP, ... Guiguen Y. 2019. Identification of the master sex
499 determining gene in Northern pike (*Esox lucius*) reveals restricted sex chromosome
500 differentiation. *PLoS Genetics*. 15: e1008013. doi:10.1371/journal.pgen.1008013

501 Pan Q, Kay T, Depincé A, Adolfi M, Schartl M, Guiguen Y, Herpin A. 2021.
502 Evolution of master sex determiners: TGF- β signalling pathways at regulatory
503 crossroads. *Phil Trans Roy Soc B*. 376:20200091.

504 Pannetier, M., Fabre, S., Batista, F., Kocer, A., Renault, L., Jolivet, G., Mandon-
505 Pépin, B., Cotinot, C., Veitia, R., & Pailhoux, E. (2006). FOXL2 activates P450
506 aromatase gene transcription: towards a better characterization of the early steps of
507 mammalian ovarian development. *Journal of Molecular Endocrinology*. 36(3):399–413.

508 Pedersen BS, Quinlan AR. 2018. Mosdepth: Quick coverage calculation for
509 genomes and exomes. *Bioinformatics*. 34: 867-868.

510 Pertea G, Pertea M. 2020. GFF utilities: GffRead and GffCompare.
511 *F1000Research*. 9.

512 Pinto BJ, Keating SE, Nielsen SV, Scantlebury DP, Daza JD, Gamble T. (2022).
513 Chromosome-level genome assembly reveals dynamic sex chromosomes in
514 Neotropical leaf-litter geckos (Sphaerodactylidae: *Sphaerodactylus*). *Journal of*
515 *Heredity*. 113(3): 272-287.

516 Pinto, B. J., Gamble, T., Smith, C. H., Wilson, M. A. (2023). A lizard is never late:
517 squamate genomics as a recent catalyst for understanding sex chromosome and
518 microchromosome evolution. *Journal of Heredity*. *In press*.

519 Pokorná, M., Kratochvíl, L. (2009). Phylogeny of sex-determining mechanisms in
520 squamate reptiles: are sex chromosomes an evolutionary trap? *Zoological Journal of*
521 *the Linnean Society*, 156(1), 168–183.

522 Rovatsos, M., Farkačová, K., Altmanová, M., Johnson Pokorná, M., Kratochvíl, L.
523 (2019a). The rise and fall of differentiated sex chromosomes in geckos. *Molecular*
524 *Ecology*, 28(12), 3042–3052.

525 Rovatsos M, Rehák I, Velenský P, Kratochvíl L. 2019b. Shared Ancient Sex
526 Chromosomes in Varanids, Beaded Lizards, and Alligator Lizards. *Mol Biol Evol*. 36:
527 1113-20.

528 Schmidt, D., Ovitt, C. E., Anlag, K., Fehsenfeld, S., Gredsted, L., Treier, A.-C., &
529 Treier, M. (2004). The murine winged-helix transcription factor *Foxl2* is required for
530 granulosa cell differentiation and ovary maintenance. *Development*. 131(4):933–942.

531 Shen W, Le S, Li Y, Hu F. 2016. SeqKit: A cross-platform and ultrafast toolkit for
532 fasta/q file manipulation. *PLoS One*. 11: e0163962. doi:10.1371/journal.pone.0163962

533 Shumate A, Salzberg SL. 2021. Liftoff: Accurate mapping of gene annotations.
534 *Bioinformatics*. 12: 1639-1643.

535 Singhal, S., Colston, T. J., Grundler, M. R., Smith, S. A., Costa, G. C., Colli, G.
536 R., ... Rabosky, D. L. (2021). Congruence and conflict in the higher-level phylogenetics
537 of squamate reptiles: an expanded phylogenomic perspective. *Systematic Biology*,
538 70(3), 542-557.

539 Smith, C. A., Roeszler, K. N., Ohnesorg, T., Cummins, D. M., Farlie, P. G.,
540 Doran, T. J., & Sinclair, A. H. (2009). The avian Z-linked gene DMRT1 is required for
541 male sex determination in the chicken. *Nature*. 461(7261):267-271.

542 Stevens NM. 1905. A study of the germ cells of *Aphis rosae* and *Aphis*
543 *oenotherae*. *J Exp Zool*. 2: 313-333.

544 Tange O. 2018. Gnu parallel 2018. pp. 112. doi:10.5281/zenodo.1146014

545 Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. 2015. Sambamba: fast
546 processing of NGS alignment formats. *Bioinformatics*. 31: 2032-2034.

547 Uda, M., Ottolenghi, C., Crisponi, L., Garcia, J. E., Deiana, M., Kimber, W.,
548 Forabosco, A., Cao, A., Schlessinger, D., & Pilia, G. (2004). *Foxl2* disruption causes
549 mouse ovarian failure by pervasive blockage of follicle development. *Human Molecular*
550 *Genetics*. 13(11):1171–1181.

551 Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC,
552 Klugmann C, Klasen C, Holter NI, Riethmacher D, Schütz G, Cooney AJ, Lovell-Badge
553 R, Treier M. 2009. Somatic sex reprogramming of adult ovaries to testes by *FOXL2*
554 ablation. *Cell*. 139: 1130-1142.

555 van Schingen M., Ihlow F., Nguyen T.Q., Ziegler T., Bonkowski M., Wu Z.,
556 Rödder D. (2014a): Potential distribution and effectiveness of the protected area
557 network for the crocodile lizard, *Shinisaurus crocodilurus* (Reptilia: Squamata: Sauria).
558 *Salamandra*. 50(2):71-76.

559 van Schingen M., Pham C.T., Thi H.A., Bernardes M., Hecht V., Nguyen T.Q.,
560 Bonkowski M., Ziegler T. (2014b). Current status of the crocodile lizard *Shinisaurus*
561 *crocodilurus* Ahl, 1930 in Vietnam with implications for conservation measures. *Revue*
562 *suisse de Zoologie*. 121(3):1-15.

563 van Schingen M., Ha Q.Q., Pham C.T., Le T.Q., Nguyen T.Q., Bonkowski M.,
564 Ziegler T. (2016a). Discovery of a new crocodile lizard population in Vietnam:
565 Population trends, future prognoses and identification of key habitats for conservation.
566 *Revue suisse de Zoologie*. 123(2):241-251.

567 van Schingen, M., Duc Le, M., Thi Ngo, H., The Pham, C., Quy Ha, Q., Quang
568 Nguyen, T., Ziegler, T. (2016b). Is there more than one Crocodile Lizard? An Integrative
569 Taxonomic Approach Reveals Vietnamese and Chinese *Shinisaurus crocodilurus*
570 Represent Separate Conservation and Taxonomic Units. *Der Zoologische Garten*.
571 85(5):240-260.

572 van Schingen-Khan, M., Barthel, L. M. F., Pham, D. T. K., Pham, C. T., Nguyen,
573 T. Q., Ziegler, T. & M. Bonkowski (2022): Will climatic changes affect the Vietnamese
574 crocodile lizard? Seasonal variation in microclimate and activity pattern of *Shinisaurus*
575 *crocodilurus vietnamensis*. *Amphibia-Reptilia*.

576 Vicoso, B., Emerson, J. J., Zektser, Y., Mahajan, S., Bachtrog, D. (2013).
577 Comparative Sex Chromosome Genomics in Snakes: Differentiation, Evolutionary
578 Strata, and Lack of Global Dosage Compensation. *PLoS Biology*, 11(8), e1001643.

579 Webster TH, Vannan A, Pinto BJ, Denbrock G, Morales M, Dolby GA, Fiddes IT,
580 DeNardo DF, Wilson MA. 2023. Complete dosage compensation without balance
581 between the sexes in the ZZ/ZW Gila monster (*Heloderma suspectum*) revealed by *de*
582 *novo* genome assembly. *In review*.

583 Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis of
584 population structure. *Evolution*. 38: 1358-1370.

585 Xie HX, Liang XX, Chen ZQ, Li WM, Mi CR, Li M, ... Du WG. 2022. Ancient
586 demographics determine the effectiveness of genetic purging in endangered lizards.
587 *Mol Biol Evol*. 39: msab359.

588 Zhang, Y., R. Ban, C. Wu, and C. Zhijian. 1996. Studies on Ultrastructure and
589 Karyotypes of Crocodilian Lizard. China Guanxi Teachers University Press, pp.77.

590 Ziegler, T., Van Schingen, M., Rauhaus, A., Dang, P. H., Pham, D. T. K., Pham,
591 C. T. & T. Q. Nguyen (2019): New insights into the habitat use and husbandry of
592 crocodile lizards (Reptilia: Shinisauridae) including the conception of new facilities for
593 Vietnamese crocodile lizards *Shinisaurus crocodilurus vietnamensis* in Vietnam and
594 Germany. - *International Zoo Yearbook* 53: 250–269.

595

596 **Table(s) and Figures:**
597

Table 1: Top tBLASTx hits in chicken for the CDS of each gene present in the *Shinisaurus* 900kb-SDR. The duplicated *Foxl2* copy is dubbed ENSGALP00000033127-W.

Shinisaurus Gene ID	Chicken Gene Id	Location (Chicken)	E-value
ENSACAP00000003394-D1	ENSGALG000000 26187	9:6115461-6115832	1.42E-95
ENSGALP00000008531-D1	<i>RBP1</i>	9:6110534-6110713	7.54E-54
ENSACAP00000003392-D1	No hits.		
ENSACAP00000003371-D1	ENSGALG000000 34575	30:1402166-1402369	2.51E-78
ENSACAP00000003355-D1	ENSGALG000000 05357	9:6041607-6041822	0
ENSACAP00000003221-D1	ENSGALG000000 05367	9:6037018-6037164	1.03E-80
ENSGALP00000033127-W	<i>FOXL2W</i>	9:5875297-5875587	2.44E-76
ENSGALP00000033127-D1	<i>FOXL2</i>	9:5875297-5875587	6.78E-77
ENSACAP00000003172-D1	<i>PIK3CB</i>	9:5800560-5800790	0
ENSGALP00000040175-D1	No hits.		
ENSACAP00000002765-D1	No hits.		

598
599

600 **Figure 1:** Summary of current anguimorph sex chromosome knowledge summarized
601 from Rovatsos et al. (2019b) indicated by blue and green tips/branches); information
602 identified in this study indicated by red tips/branches and what remains unknown across
603 the phylogeny indicated by black tips/branches. Phylogeny from TimeTree using a
604 representative species from each clade (Kumar et al. 2017) and visualized using Figtree
605 [v1.4.4] (<http://tree.bio.ed.ac.uk/software/figtree/>). Of note, “pleurodons” represents
606 “non-corytophanid pleurodons” and “Gg” stands for chicken (*Gallus gallus*) linkage
607 group.

608

609

610

611

612 **Figure 2:** Identification of the ZW sex chromosome system in *Shinisaurus crocodilurus*.
613 (A) Whole genome F_{ST} scan with a clear peak in a ~1Mb region on LG3. The square
614 block on LG7 is syntenic with the sex-determining region in *Varanus* and *Heloderma*
615 (Webster et al. 2023). (B) Isolation and magnification of LG3 F_{ST} peak. (C) Modest
616 increase in male, relative to female, nucleotide diversity and (D) decrease in
617 male/female read depth in the region corresponding to the F_{ST} peak on LG3.

Iguania

Corytophanidae (XY, Gg17)

Pleurodonta (XY, Gg15)

Chamaeleo (XY, Gg15)

Pogona (ZW, Gg17/23)

Varanus (ZW, Gg28)

Lanthanotus

Shinisaurus (ZW, Gg9)

Pseudopus

Anguis (Transition)

Hyalosaurus

Dopasia

Abronia (ZW, Gg28)

Barisia

Gerrhonotus

Elgaria

Wetmorena

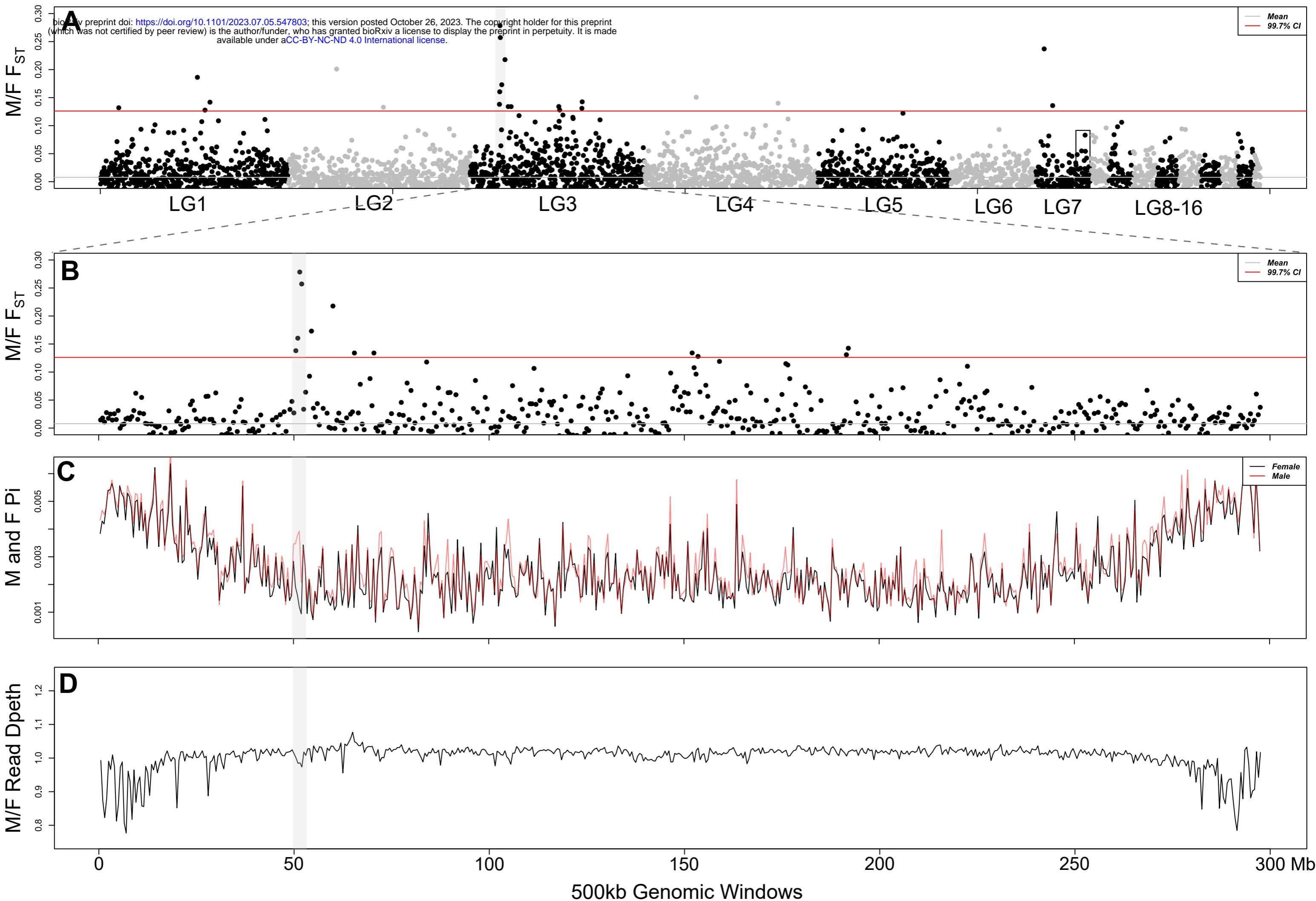
Diploglossus

Anniella

Heloderma (ZW, Gg28)

Xenosaurus

Anguimorpha


150

100

50

0 mya

Shinisaurus sex chromosome identification

