

1 **Application of a ^1H Brain MRS Benchmark Dataset to Deep Learning for Out-of-Voxel
2 Artifacts**

3

4

5 Aaron T. Gudmundson^{a,b}, Christopher W. Davies-Jenkins^{a,b}, İpek Özdemir^{a,b}, Saipavitra Murali-
6 Manohar^{a,b}, Helge J. Zöllner^{a,b}, Yulu Song^{a,b}, Kathleen E. Hupfeld^{a,b}, Alfons Schnitzler^c, Georg
7 Oeltzscher^{a,b}, Craig E. L. Stark^d, and Richard A. E. Edden^{a,b}

8

9 ^a Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School
10 of Medicine

11 ^b F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute

12 ^c Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-
13 University Düsseldorf, Düsseldorf, Germany

14 ^d Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA.

15

16

17 Word Count: 5432

18 Number of Figures: 6

19 Number of Tables: 1

20 *Corresponding Author: Richard A. E. Edden, Ph.D.

21 Department of Radiology and Radiological Science, Johns

22 Hopkins School of Medicine

23 600 N. Wolfe St, Park 338,

24 Baltimore, MD 21287

25 E-mail Address: edden@jhu.edu

26

27 **Abstract:**

28 Neural networks are potentially valuable for many of the challenges associated with MRS
29 data. The purpose of this manuscript is to describe the AGNOSTIC dataset, which contains
30 259,200 synthetic ^1H MRS examples for training and testing neural networks. AGNOSTIC was
31 created using 270 basis sets that were simulated across 18 field strengths and 15 echo times. The
32 synthetic examples were produced to resemble *in vivo* brain data with combinations of
33 metabolite, macromolecule, residual water signals, and noise. To demonstrate the utility, we
34 apply AGNOSTIC to train two Convolutional Neural Networks (CNNs) to address out-of-voxel
35 (OOV) echoes. A Detection Network was trained to identify the point-wise presence of OOV
36 echoes, providing proof of concept for real-time detection. A Prediction Network was trained to
37 reconstruct OOV echoes, allowing subtraction during post-processing. Complex OOV signals
38 were mixed into 85% of synthetic examples to train two separate CNNs for the detection and
39 prediction of OOV signals. AGNOSTIC is available through Dryad and all Python 3 code is
40 available through GitHub. The Detection network was shown to perform well, identifying 95%
41 of OOV echoes. Traditional modeling of these detected OOV signals was evaluated and may
42 prove to be an effective method during linear-combination modeling. The Prediction Network
43 greatly reduces OOV echoes within FIDs and achieved a median \log_{10} normed-MSE of -1.79 , an
44 improvement of almost two orders of magnitude.

45 **Keywords:** Magnetic Resonance Spectroscopy, Synthetic Data, Simulation, Deep Learning,
46 Out-of-voxel Artifacts, Human Brain

47
48
49
50
51
52
53
54
55
56

57 **Abbreviations:** ^1H , proton; 2HG, β -hydroxyglutarate; Ace, acetate; AGNOSTIC, adaptable generalized neural-
58 network open-source spectroscopy training dataset of individual components; Ala, alanine; Asc, ascorbate; Asp,
59 aspartate; ATP, adenosine triphosphate; bHB, β -hydroxybutyrate; Cho, choline-containing compounds; Cit, citrate;
60 CNN, Convolutional Neural Networks; Cr, creatine; Cys, Cysteine; DL, deep learning; EA, Ethanolamine; EtOH,
61 ethanol; FID, free induction decay; FWHM, full-width half-maximum; GABA, gamma-aminobutyric acid; Glc,
62 glucose; Gln, glutamine; Glu, glutamate; Glx, sum of glutamate and glutamine; Gly, glycine; Glyce, glycerol; GM,
63 gray matter; GPC, glycerophosphocholine; GSH, glutathione; H₂O, water; HCar, homocarnosine; Hist, histamine;
64 His, histidine; ISMRM, international society for magnetic resonance in medicine; Lac, lactate; LASER, localization
65 by adiabatic selective refocusing; MEGA, Mescher-Garwood; mI, myo-inositol; MM, macromolecule; MRS,
66 magnetic resonance spectroscopy; MSE, mean-squared error; NAA, N-acetylaspartate; NAAG, N-acetyl-aspartyl-
67 glutamate; OOV, out-of-voxel; PCho, phosphocholine; PCr, phosphocreatine; PE, phosphoethanolamine; Phenyl,
68 phenylalanine; PRESS, point resolved spectroscopy; ReLu, rectified linear unit; Ser, serine; sI, scyllo-inositol;
69 SLASER, semi-adiabatic localization by adiabatic selective refocusing; SPECIAL, spin echo full intensity acquired
70 localized; STEAM, stimulated echo acquisition mode; SNR, signal-to-noise ratio; T₂, spin-spin relaxation time;
71 Tau, taurine; tCho, sum of choline-containing metabolites; tCr, sum of creatine and phosphocreatine; TE, echo-time;
72 Thr, threonine; tNAA, sum of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate; Trp, Tryptophan; Tyr, Tyrosine;
73 Val, Valine

74 **1. Introduction:**

75 Proton (^1H) magnetic resonance spectroscopy (MRS) non-invasively measures levels of
76 endogenous neurometabolites. MRS-visible metabolites are present at millimolar concentrations
77 in the brain, yielding detectable signals with relatively low signal-to-noise ratio (SNR) which
78 mutually overlap. *In vivo* spectra suffer from several artifacts that complicate modeling and
79 interpretation of the data, including eddy current effects and out-of-voxel (OOV) echoes (Kreis,
80 2004). While there is some degree of standardization and consensus around pre-processing,
81 modeling, and quantification of MRS data (Maudsley et al., 2021; Near et al., 2021; Öz et al.,
82 2021; Wilson et al., 2019), this is an evolving field without a single ideal solution due to the
83 complexity of the problem, and which therefore is likely to benefit from recent advances in
84 machine learning.

85 Deep learning (DL) uses a network consisting of a series of computational layers to
86 process information (Lecun et al., 2015). Iterative training allows features of the data to be
87 identified and weighted to estimate a final function which predicts a desired output based on a
88 given input (Goodfellow et al., 2016). Supervised learning involves training the network based
89 on a pre-defined target, associating ground-truth parameters with each input. An extensive,
90 balanced, and diverse dataset is preferred to increase the generalizability of the DL outcome.
91 High-dimensional data, such as medical images or time series, are demonstrated to be the most
92 beneficial set of data for several computer vision tasks, such as classification, registration,
93 segmentation, reconstruction, and object detection (Gassenmaier, Küstner, et al., 2021; Lundervold &
94 Lundervold, 2019).

95 DL has been developed for MRS data as a proof-of-concept in many applications, including
96 metabolite quantification (Chandler et al., 2019; Hatami et al., 2018; H. H. Lee & Kim, 2019, 2020; Rizzo
97 et al., 2023; Shamaei et al., 2023; Zhang & Shen, 2023), signal separation (Li et al., 2020), phase and
98 frequency correction (Ma et al., 2022; Shamaei et al., 2023; Tapper et al., 2021), reconstruction
99 of missing data (H. Lee et al., 2020), accelerated post-processing (Gurbani et al., 2019; Iqbal et
100 al., 2021), denoising (Chen et al., 2023; Dziadosz et al., 2023; Lam et al., 2020), super-resolution
101 (Gassenmaier, Afat, et al., 2021; Iqbal et al., 2019), artifact removal (Gurbani et al., 2018;
102 Kyathanahally et al., 2018), and anomaly detection (Jang et al., 2021). Despite the potential,
103 these methods have yet to be shown to generalize outside of small datasets with a single fixed
104 acquisition protocol. Whereas 'classical' methods for post-processing are often driven by an

105 understanding of the problem to be solved, and therefore can often be applied broadly, deep
106 learning methods cannot be assumed to function well outside of the specific datasets used for
107 training and testing. Broadly applicable deep learning methods will only arise from broad
108 training and testing. A key barrier is the lack of a generalized benchmark dataset for training and
109 testing, to play the role that MNIST, ImageNet, and COCO have played in the field of Computer
110 Vision (Fei-Fei et al., 2010; Li Deng, 2012; T.-Y. Lin et al., 2014). Such a dataset lowers the
111 barrier to entry for neural network development in MRS and facilitates performance comparisons
112 between models. The Synthetic Data Working Group of the MRS study group of the
113 International Society for Magnetic Resonance in Medicine’s Synthetic Data Working Group has
114 recently highlighted the MRS community’s need for such a resource. The ultimate goal of this
115 work is to bridge the gap from the synthetic to the *in vivo* domain, including the additional
116 domain-shift to clinical data.

117 OOV echoes, which represent a subset of the artifacts often referred to as ‘spurious’ or
118 ‘ghost’ echoes (Kreis, 2004), are a substantial issue for *in vivo* MRS, and an under-studied
119 potential DL application. MRS voxel localization is achieved via a combination of RF pulses and
120 magnetic field gradients, with the intended coherence transfer pathway selected both by phase
121 cycling and dephasing “crusher” gradient scheme (Bodenhausen, 2011). OOV signals arise from
122 gradient echoes – signals from outside the shimmed voxel of interest are refocused by evolution
123 in local field gradients that are either inherent (from air-tissue-bone interfaces) or arising from
124 second-order shim terms (Starck et al., 2009). Therefore, brain regions close to air cavities (e.g.,
125 medial prefrontal cortex) or which require stronger shim gradients (e.g., thalamus, hippocampus,
126 etc.) most commonly exhibit OOV artifacts (Starck et al., 2009). OOV echoes seldom occur at
127 the time of the primary echo, so they manifest in the spectrum as broad peaks with strong first-
128 order phase “ripple” that can obscure metabolite resonances. While acquisition strategies can
129 mitigate OOV echoes to some extent, by careful consideration of crusher schemes or voxel
130 orientation (Ernst & Chang, 1996; Landheer & Juchem, 2019; Song et al., 2023), post-processing
131 strategies remain valuable where complete elimination is not possible.

132 This manuscript develops **Adaptable Generalized Neural-Network Open-source**
133 **Spectroscopy Training dataset of Individual Components (AGNOSTIC)**, a dataset consisting of
134 259,200 synthetic MRS examples. AGNOSTIC spans a range of field strengths, echo times, and
135 clinical profiles, representing metabolite signals, macromolecule (MM) background signals,

136 residual water signals, and Gaussian noise as separate components. To date, DL applications to
137 MRS have relied upon narrow in-house-generated training datasets that limit the generalizability
138 of the solutions developed and comparisons between tools; AGNOSTIC is proposed as a
139 benchmark dataset to fill this gap. In order to demonstrate the utility of this resource, we then
140 illustrate a specific augmentation of the AGNOSTIC dataset to train neural networks for the
141 detection and prediction of OOV echoes.

142 **2. Methods:**

143 **2.1. AGNOSTIC Synthetic Dataset**

144 The parameter space that AGNOSTIC spans is deliberately broad, comprising: 18 field
145 strengths; 15 echo times; broad distributions of metabolite, MM, and water amplitudes; and
146 densely sampled time-domain to allow down-sampling. Calculations were carried out using an
147 in-house and open-source Python 3 (Van Rossum & Drake, 2009) programming script using NumPy
148 (Harris et al., 2020). The decision to use in-house software was motivated by needing the
149 flexibility to simulate basis sets that could be manipulated on a spin-by-spin basis which could,
150 for instance, allow for different spins within the same metabolite to have different relaxation
151 rates (e.g., Cr_{3.9} and Cr_{3.0}). The dataset is structured as a zipped NumPy archive file (.npz) and
152 can be opened as a Python 3 dictionary object. This zipped NumPy file contains complex-valued
153 NumPy arrays of time-domain (4096 timepoints) data corresponding to the metabolite,
154 macromolecule, water, and noise components which can be combined in different ways
155 depending on the application. For instance, a denoising model may want to target the combined
156 metabolite, MM, and water signal without noise. Within the file, all the acquisition parameters
157 (field strength, echo time, spectral width, etc.), simulation parameters (signal to noise, full-width
158 half-max, concentrations, T₂ relaxation, etc.), and data augmentation options are specified as
159 detailed below.

160 **2.1.1. Basis Set Simulation:**

161 Metabolite spectra are based upon density-matrix-simulated basis functions (Blum, 1981;
162 Fano, 1957; Farrar, 1990; O. W. Sørensen et al., 1984). A total of 270 basis sets were created
163 across 18 field strengths (1.4 T – 3.1 T in steps of 0.1 T) and 15 echo times (10 ms – 80 ms in
164 steps of 5 ms). The Point RESolved Spectroscopy (PRESS) pulse sequence (Bottomley, 1982)
165 was simulated using ideal pulses with TE1 = TE2. The simulated “acquisition window” was
166 started immediately after the last pulse to generate points before the echo. Each metabolite basis
167 was output as an N x 16684 NumPy array, where N is the number of spins for a given metabolite
168 and 16684 is the fixed length of complex time points (300 points before the echo maximum, with
169 an appropriate padding number of zeros and followed by the simulated pre-echo signal, and
170 16384 points after the echo). The simulated spectral width, centered on 4.7 ppm, was 63.62 ppm
171 for all field strengths (e.g., 8 kHz at 3 T; 4 kHz at 1.5 T). By subsampling the intentionally long
172 time-domain points in the basis set, we can achieve a series of different spectral widths within

173 the ranges commonly seen for *in vivo* experiments without the need to re-simulate the signal with
174 different dwell times.

175 39 brain metabolite basis functions were simulated: Adenosine Triphosphate (ATP);
176 Acetate (Ace); Alanine (Ala); Ascorbate (Asc); Aspartate (Asp); β -hydroxybutyrate (bHB); β -
177 hydroxyglutarate (2HG); Citrate (Cit); Cysteine (Cys); Ethanolamine (EA); Ethanol (EtOH);
178 Creatine (Cr); γ -Amino-Butyric Acid (GABA); Glucose (Glc); Glutamine (Gln); Glutamate
179 (Glu); Glycerophosphocholine (GPC); Glutathione (GSH); Glycerol (Glyce); Glycine (Gly);
180 Water (H₂O); Homocarnosine (HCar); Histamine (Hist); Histidine (His); Lactate (Lac); Myo-
181 Inositol (mI); N-Acetyl-Aspartate (NAA); N-Acetyl-Aspartate-Glutamate (NAAG);
182 Phenylalanine (Phenyl); Phosphocholine (PCho); Phosphocreatine (PCr); Phosphoethanolamine
183 (PE); Scyllo-Inositol (sI); Serine (Ser); Taurine (Tau); Threonine (Thr); Tryptophan (Trp);
184 Tyrosine (Tyr); and Valine (Val). GABA was separately simulated using two different spin-
185 system enumerations (Govindaraju et al., 2000; Near et al., 2012). Both α -glucose and β -glucose
186 were simulated.

187 **2.1.2. Assembly of Metabolite Component:**

188 Individual metabolite basis functions were linearly combined to give a metabolite
189 spectral component, weighted by metabolite concentrations sampled from distributions defined
190 by our recent meta-analysis (Gudmundson et al., 2023), including both healthy and clinical
191 cohort ranges. From the full basis sets, 22 metabolites were selected which had defined
192 concentration ranges available in a recent meta-analysis that collated results from nearly 500
193 MRS papers using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
194 (Gudmundson et al., 2023; Moher et al., 2009; Page et al., 2021). One isomer of GABA (either
195 the definition from (Govindaraju et al., 2000) or (Near et al., 2012)) and Glucose (α or β) were
196 randomly chosen with equal probability for each example. Concentrations were selected with
197 equal probability from a range defined by ± 2.5 standard deviations from the meta-analysis mean
198 of each cohort (Gudmundson et al., 2023) and are provided in supplemental tables 1 and 2.

199 T_2^* relaxation decay of time-domain data was simulated with an exponential and
200 Gaussian component to produce a Voigt lineshape (Marshall et al., 1997) in the frequency
201 domain. The exponential component represents the pure T_2 arising from dipole-dipole
202 interactions, paramagnetic interaction, etc., while the Gaussian component represents the

203 transverse dephasing from diffusion and exchange of spins in an inhomogeneous field (Koch et
204 al., 2009; Marshall et al., 1997; Michaeli et al., 2002; Yablonskiy & Haacke, 1994). While pure T_2 is
205 understood to be field-independent (Bloembergen et al., 1948; Carr & Purcell, 1954; Held et al., 1973;
206 Michaeli et al., 2002), the dominant Gaussian decay (Marshall et al., 1997) increases with
207 increasing static field strength and is attributed to greater microscopic (Michaeli et al., 2002) and
208 macroscopic (Juchem et al., 2021; Tkáč et al., 2001) susceptibility gradients. Here, the pure
209 Lorentzian T_2 component is based upon the relaxation times at 1.5 T from a relaxation meta-
210 regression (Gudmundson et al., 2023), which are assumed to be the least impacted by
211 susceptibility gradients that scale with B_0 (Bloembergen et al., 1948; De Graaf et al., 2006;
212 Michaeli et al., 2002). Once the Lorentzian T_2 component was applied, the additional T_2^*
213 contributions were modeled by applying appropriate amounts of Gaussian broadening, to achieve
214 a frequency-domain full-width half-maximum (*FWHM*) linewidth of the NAA singlet between 3
215 Hz and 18 Hz with a uniform distribution. A small amount of jitter (between 20 s^{-2} and 100 s^{-2})
216 was added to the Gaussian decay rate so that each metabolite would undergo a similar, but not
217 identical, amount of Gaussian decay to better replicate the variability observed for *in vivo* data.

218 **2.1.3. Macromolecular Component:**

219 Fourteen MM signals were modeled at: 0.92 ppm; 1.21 ppm; 1.39 ppm; 1.67 ppm; 2.04
220 ppm; 2.26 ppm; 2.56 ppm; 2.70 ppm; 2.99 ppm; 3.21 ppm; 3.62 ppm; 3.75 ppm; 3.86 ppm; and
221 4.03 ppm (Cudalbu et al., 2021; Giapitzakis et al., 2018). MM chemical shifts were jittered by \pm
222 0.03 ppm to both account for observed differences in MM designations and provide further
223 dataset augmentation. Each MM signal was simulated as a singlet with exponential decay rate
224 sampled uniformly from a range specified by literature of MM T_2 time constants (Murali-
225 Manohar et al., 2020) and additional Gaussian decay to reach published linewidths (Giapitzakis
226 et al., 2018; Murali-Manohar et al., 2020). MM amplitudes were sampled uniformly from within
227 published ranges (Giapitzakis et al., 2018; Murali-Manohar et al., 2020).

228 **2.1.4. Noise Component:**

229 Noise was generated from a normal distribution, with independent random real and
230 imaginary points. The noise was scaled such that the signal-to-noise ratio of the NAA singlet
231 (SNR_{NAA} was defined, following Experts' Consensus (Öz et al., 2021), by *NAA height divided by*
232 *the standard deviation of the noise*) was uniformly sampled between 5 and 80. The noise
233 amplitude values are also stored within the archive file.

234 **2.1.5. Residual Water Component:**

235 The residual water basis signal was simulated as a composite signal (of up to five
236 components). In order to simulate varying degrees of water suppression, the residual water signal
237 was modeled by between 0 and 5 unique Voigt-shaped signals with variable ppm locations,
238 phases, and amplitudes, based on the approach of (L. Lin et al., 2019). The ranges for these
239 parameters are listed in Table 1. The final water component was scaled to be between $1\times$ and
240 $20\times$ the maximum value of the frequency-domain metabolite spectrum. The water components
241 used, along with their corresponding parametrizations, are stored within the NumPy archive file.

242 **2.1.6. Frequency and Phase Shifts:**

243 Within the NumPy archive file, a frequency shift, zero-order phase shift, and first-order
244 phase shift are specified for each entry in the dataset, but not applied to the time-domain
245 components. Frequency shifts were sampled uniformly from the range -0.313 ppm to $+0.313$
246 ppm. Zero-order phase shifts were sampled uniformly from the range -180 degrees to $+180$
247 degrees. First-order phase shifts were sampled uniformly from the range -19.5 degrees to $+19.5$
248 degrees per ppm. Users may choose to omit phase and frequency shifts, use the provided shifts,
249 or specify their own.

250 **2.2. Exemplar Application to AGNOSTIC: Machine Learning for Out-Of-Voxel Artifacts:**

251 The primary motivation for the AGNOSTIC dataset is as a training resource for the
252 development of processing, modeling, and analysis tools for MRS. Synthetic spectra with known
253 ground truths are valuable in a range of applications, from the development and validation of
254 traditional linear combination modeling algorithms to training DL models.

255 In order to demonstrate the utility of the dataset, an exemplar application is presented, in
256 which the AGNOSTIC dataset is supplemented by simulated artifacts (in this case out-of-voxel
257 OOV echoes) and used to train DL models to detect and predict the artifact signals. The
258 AGNOSTIC dataset was developed as building blocks which can be combined to train a variety
259 of different models. A strength of this dataset is that custom user-defined components can be
260 utilized. We demonstrate this point here by building an OOV dataset to train and evaluate a DL
261 model to identify and suppress OOV artifacts.

262 **2.2.1. Simulation of Out-Of-Voxel Echoes:**

263 OOV artifacts were defined as complex time-domain signals with a time point (τ_{OOV}),
264 width (W_{OOV}), frequency (ω_{OOV}), phase (Φ_{OOV}) and amplitude (a_{OOV}) as shown in Figure 1. τ_{OOV}
265 describes the timepoint of the top of the OOV echo and was sampled randomly from a uniform
266 distribution between 10 ms and 400 ms. W_{OOV} describes the Gaussian decay rate and was
267 sampled randomly from a uniform distribution between 500 s^{-2} and 8000 s^{-2} , resulting in a
268 FWHM echo duration between 18 ms and 74 ms. ω_{OOV} describes the offset in the frequency
269 domain, and was sampled randomly from a uniform distribution in order to produce OOVs that
270 occur between 1 ppm and 4 ppm. a_{OOV} was sampled randomly from a uniform distribution to
271 produce OOV echoes with an amplitude between 0.1% and 20% of the maximum time domain
272 point. Φ_{OOV} was sampled uniformly between 0 degrees to 360 degrees.

$$Out\ of\ Voxel\ Echo = a_{OOV} (e^{-W_{OOV}(t - \tau_{OOV})^2}) (e^{-i\omega t}) (e^{-i\Phi}) \quad [1]$$

273

274 **2.2.2. Integration of OOV Echoes into AGNOSTIC for the Training Dataset:**

275 To build the OOV echoes dataset, we combined metabolite, water, MM, and noise
276 components from the AGNOSTIC dataset. We then added OOV signals to 85% of the dataset
277 and a complex zeros array in the remaining 15%. In total there were 180,000 examples used for
278 network training, 1,800 examples used for validation, and 7,200 examples used for testing.
279 Finally, we applied the included frequency and phase shifts specified within the AGNOSTIC
280 dataset. The network input consisted of the combined metabolite, water, MM, noise, and OOV
281 signals as a complex time-domain signal. This input was normalized so that the absolute
282 maximum among the real and imaginary values was 1. Finally, training data were converted to a
283 TensorFlow Dataset (Abadi et al., 2015).

284 **2.2.3. Detection Network:**

285 The first exemplar network is designed to detect OOV echoes within time-domain data
286 by identifying the points in the spectra that have been contaminated by OOV echoes. This
287 Detection Network is a fully Convolutional Neural Network (CNN) designed using TensorFlow2
288 with Keras (Chollet & others, 2015) in a Python 3 environment. The network consists of
289 contracting encoding layers and expanding decoding layers with a total of 1.543 million
290 parameters, as shown in Figure 2. Each layer was initialized (kernel_initializer) with

291 “he_normal” (He et al., 2015). Each convolutional layer (except the output layer which uses a
292 sigmoid activation) includes batch normalization and a leaky rectified linear unit (ReLU)
293 activation function (Maas et al., 2013)Click or tap here to enter text.. A kernel size of 3 (3 x 2
294 before collapsing the real/imaginary dimension and 3 x 1 afterward) was used for each
295 convolutional layer. The network is designed to receive a time-domain input signal and return a
296 binary mask of the same size as the input with ones placed in OOV-detected regions and zeros
297 elsewhere. A ground-truth binary mask was determined as the 5% level of the maximum
298 amplitude of the Gaussian OOV envelope located at the central peak. For training, the input and
299 output of this network is a 60 x 2048 x 2 x 1 tensor, where 60 is the batch size, 2048 is the
300 number of time points, 2 is the real/imaginary dimension, and 1 is the channel dimension.

301 The Dice coefficient (Carass et al., 2020; Dice, 1945; T. Sørensen, 1948) of the overlap
302 between the network output and the correct binary OOV location vector was used as a training
303 loss function, calculated as 2x the intersection divided by the union plus 1; where 1 was used to
304 avoid division by 0. The Adam (Kingma & Ba, 2015) optimizer was used with a fixed learning rate
305 of 0.0003. Success on the validation set was evaluated every 7,200 steps, at which time the
306 network weights were saved if the validation loss improved. The final model that was selected
307 had the smallest validation loss after 72 epochs. Training took approximately 2.5 hours and was
308 performed on an 8 GB NVIDIA GeForce RTX 3070 GPU. A clustering algorithm was applied to
309 the final network output, which zeroed any group of time points in which the network detected
310 OOV echo that was smaller than 5 consecutive time points, to dampen spurious output. A cluster
311 size of 5 was selected empirically to ensure detection of the narrow echoes while eliminating any
312 false positives.

313 **2.2.4. Modeling:**

314 Modeling of the OOV echoes was performed as an optimization problem and solved with
315 SciPy (Virtanen et al., 2020) minimization routines. Here, the non-gradient Powell (Powell,
316 1964, 1994) optimizer was used to determine the five OOV parameters (τ_{OOV} , W_{OOV} , ω_{OOV} ,
317 Φ_{OOV} , and a_{OOV}), minimizing the mean squared error (MSE) between the model and the data
318 within the time window identified by the Detection Network. Initial values for τ_{OOV} , W_{OOV} , and
319 the a_{OOV} are inferred from the Detection Network’s output center timepoint, the detection
320 duration, and the standard deviation of the target signal within the detected region.

321 Optimization was performed as three sequential optimization steps performed one after
322 another. The first optimization is used to determine τ_{OOV} , W_{OOV} , and the a_{OOV} by minimizing the
323 MSE between the absolute values of the model and the data (i.e., removing frequency and phase
324 from the model) in the time domain. The second optimization determines ω_{OOV} by minimizing
325 between the absolute values of the model and the data in the frequency domain. The third
326 optimization refines the values determined by optimizations 1 and 2 and determines Φ_{OOV} by
327 complex optimization in the time domain.

328 **2.2.5. Prediction Network:**

329 The second exemplar network is designed to predict the OOV echoes found within time-
330 domain data. This prediction network is also a fully CNN designed using TensorFlow2 with
331 Keras in a Python 3 environment, with the same architecture as the Detection Network (as shown
332 in Figure 2). As such, the input and output of this network is also $60 \times 2048 \times 2 \times 1$ tensor, where
333 60 is the batch size, 2048 is the number of time points, 2 is the real/imaginary dimension, and 1
334 is the channel dimension. The network is designed to receive a time-domain input signal
335 containing a combination of the ground-truth time-domain signal and the OOV artifact and
336 return a time-domain output signal that only contains the OOV signal, amplified 10x. This
337 amplification serves to focus the training on the OOV echo by non-uniformly (due to the OOV
338 echo's non-linear decay) concentrating the network towards the center-most points of the OOV
339 echoes to effectively center and reconstruct the predicted OOV echo on the τ_{OOV} with the correct
340 W_{OOV} .

341 For training, a weighted mean squared error (weighting the timepoints within the ground-
342 truth OOV mask uniformly by 10) was used as a loss function with an ADAM (Kingma & Ba,
343 2015) optimizer and a fixed learning rate of 0.0003. Success on the validation set was evaluated
344 every 7,200 steps at which time the network weights were saved if the validation loss improved.
345 The final model that was selected had the smallest validation loss after 72 epochs. Training took
346 approximately 2.5 hours and was performed on an 8 GB NVIDIA GeForce RTX 3070 GPU.

347 **2.2.6 Evaluating the Performance of Networks and Modeling:**

348 In the final testing set, OOV artifacts were present in 6,137 of the total 7,200 examples
349 (85.2%). The Detection Network was evaluated using the Dice coefficient (Carass et al., 2020;
350 Dice, 1945; Powell, 1964), the overlap between the ground-truth binary OOV mask and the

351 cluster-thresholded network output. As well as computing global success, the dependence of
352 detection success on various attributes of the OOV echo and the underlying spectrum were also
353 investigated.

354 Both modeling and the prediction network return a pure OOV signal, and in both cases,
355 the MSE between the prediction/model and the ground-truth OOV echo is used for evaluation. If
356 the ground-truth echo datapoints are E_i and the model or echo prediction is M_i , we calculate the
357 fractional remaining OOV amplitude as:

$$\text{Fractional OOV Remaining} = \frac{\sum |M_i - E_i|^2}{\sum |E_i|^2} \quad [2]$$

358 where the bars represent the complex amplitude. The sum is taken over the ground-truth range of
359 the OOV echo. In order to visualize a wide range of success and failure, we take the \log_{10} of this
360 quantity for plotting (i.e., a \log_{10} value of 1 is no change, anything positive is a manipulation that
361 is worse than doing nothing, and a negative value show the order of magnitude of improvement).
362 Note that E_i is the ground-truth echo signal, not the signal from which the echo is being removed
363 which also contains metabolite, macromolecule, and noise components.

364 The timing of the OOV was found to be a key parameter determining the success of
365 detection and prediction, and as a result, the evaluation metrics were calculated for the following
366 time-bins (based on the known value of $toov$): 10-20 ms; 20-40 ms; 40-60 ms; 60-80 ms; 80-120
367 ms; 120-200 ms; 200-300 ms; 300-400 ms.

368 2.2.7 *In Vivo* Proof-of-Principle

369 As a proof-of-principle demonstration of this exemplar use of the AGNOSTIC dataset,
370 the network was applied to 256 transients of *in vivo* data, selected because they contain
371 prominent OOV echoes and were excluded during quality assessment in a recent study (Zöllner
372 et al., 2023). These data were collected on a 2.89 T Siemens scanner using the MEGA-PRESS
373 (Mescher et al., 1996, 1998) pulse sequence with a TE of 68 ms and TR of 1.75 s, and a spectral
374 width of 2.4 kHz. Note that this challenges the generality of the training because the network has
375 never seen data acquired at 2.89 T, nor at 2.4 kHz spectral width, nor at TE 68 ms, nor with
376 MEGA-Editing, nor with actual real RF pulses. Raw data from a $25 \times 25 \times 25 \text{ mm}^3$ voxel in the

377 cerebellum were loaded and coil combined in Osprey (Oeltzschnner et al., 2020). Time-domain
378 data were saved as a MATLAB (The MathWorks Inc., 2022) .mat file and loaded as a Python 3
379 object using SciPy. The data were normalized (as above with training data) to be used as input
380 for the neural networks.

381 One challenge of *in vivo* data (and the reason that this network demonstration focuses
382 substantially on synthetic data) is that no ground truth is available. Therefore, the degree of
383 success in removing OOV echo signals from time-domain data D_i is:

$$\text{Fractional Reduction in standard deviation} = 1 - \frac{\sigma(D_i - M_i)}{\sigma(D_i)} \quad [3]$$

384 where s denotes the standard deviation. Note that, in contrast to the metric used for synthetic data
385 in Equation 1, only D_i is available, not the ground truth E_i , which substantially changes the
386 ceiling of success. It is still expected that substantial signal variance remains after OOV removal,
387 since D_i contains metabolite signals and noise. The range over which this standard deviation is
388 calculated is the 50% level of the normalized histogram of the detection network's output across
389 the 256 transients. Note that this metric is an imperfect response to the absence of ground-truth
390 knowledge for *in vivo* data, predicated on the assumption that subtracting out OOV signal
391 reduces the standard deviation of the time-domain signal.

392 **3. Results:**

393 **3.1. AGNOSTIC Synthetic Dataset:**

394 The AGNOSTIC dataset contains 259,200 examples, consisting of 960 examples from
395 each of the eighteen field strengths and fifteen echo times (i.e., $960 \times 18 \times 15 = 259,200$). A
396 representative set of ten spectra are shown in Figure 3, illustrating the diversity of field strengths,
397 TEs, SNR, and linewidth within the dataset.

398 One challenge with making this dataset available is its size — 75 GB — but we do make
399 it freely available on Dryad (DOI: 10.7280/D1RX1T). The basis sets from which these are
400 constructed are more manageable — 9 GB — and can also be accessed through Dryad (DOI:
401 10.7280/D1RX1T). Code for generating the AGNOSTIC dataset locally is available at:
402 <https://github.com/agudmundson/agnostic>.

403 **3.2. Exemplar Application to AGNOSTIC: Machine Learning for Out-Of-Voxel Artifacts:**

404 **3.2.1. Detection Network:**

405 Of the 6,137 examples where OOV artifacts were present, the Detection Network
406 correctly identified 5,827 (94.9%) with a median Dice score of 0.974 (0.941–0.985 interquartile
407 range) and missed 310 (5.05%) with a Dice score of 0.00. In the 1063 examples that did not
408 include OOV artifacts, the network correctly ignored 912 (85.8%) and falsely detected OOV
409 echoes in 151 (14.2%). Figure 4 shows the Detection Network’s output for a synthetic OOV-
410 corrupted example.

411 Analysis of the factors that determined success indicated that the time at which OOV
412 signals occur is most critical. Therefore, OOV echoes were further broken down into eight time-
413 bins, and the Dice score plotted in Figure 5. The median Dice scores — 0.165, 0.858, 0.892,
414 0.934, 0.960, 0.974, 0.978, and 0.978 — are poor in the first bin and improve thereafter. Note
415 that these bins are not spaced equally to emphasize poor performance extremely early. The
416 number of examples in each bin is 161, 289, 282, 329, 622, 1256, 1565, and 1633, respectively.

417 **3.2.2. Modeling**

418 The modeling optimization converged in 5,824 of the 5,827 examples where the detection
419 network detected OOV artifacts and provided initial values. Across this subset of the examples,
420 the modeling achieved a median \log_{10} (fractional OOV remaining) of -2.19 (-2.90 – -1.19 inter-

421 quartile range), i.e., a median reduction of more than two orders of magnitude. Figure 5 shows
422 the resulting model for a synthetic OOV-corrupted example.

423 These values — broken down into 8 time-bins — are shown in Figure 5. The median
424 \log_{10} (fractional OOV remaining) decreases across the time bins: 1.663, 1.324, 0.680, 0.223,
425 -1.586 , -2.276 , -2.491 , and -2.567 .

426 **3.2.3. Prediction Network:**

427 In the 6,137 examples where OOV artifacts were present, the prediction network
428 achieved a median \log_{10} normed-MSE of -1.79 (-2.21 – -1.11 inter-quartile range). In the 5,824
429 examples where OOV artifacts were successfully modeled, the prediction network achieved a
430 median \log_{10} normed-MSE of -1.85 (-2.24 – -1.24 inter-quartile range). Figure 5 shows the
431 Prediction Network’s output for a synthetic OOV-corrupted example.

432 OOVs were further broken down into 8 time-bins (Figure 5) early — the number of
433 examples in each bin is 86, 226, 261, 312, 592, 1208, 1538, 1601. The median \log_{10} (fractional
434 OOV remaining) decreases across the time bins: -0.207 , -0.583 , -0.862 , -1.250 , -1.577 ,
435 -1.878 , -2.005 , and -2.052 .

436 **3.2.4. *In Vivo* Proof-of-Principle:**

437 The Detection Network identified an OOV in 243 of 256 transients (94.9%). In these 243
438 OOV-detected transients, the modeling achieved a median reduction in standard deviation of
439 71.0 % (60.2 -75.3% inter-quartile range). The Prediction Network achieved a median reduction
440 in standard deviation of 69.65% (66.33 %/72.7 % inter-quartile range) in this subset. In the full
441 set of 256 transients, the Prediction Network achieved a median 69.4 % (65.3 – 72.6 % inter-
442 quartile range) reduction in standard deviation. The standard deviation of the noise floor was
443 found to account for a median of 10.3% (9.35–11.6 % inter-quartile range) of the standard
444 deviation of signal within the time window for the 256 averages. A representative *in vivo*
445 example is shown in Figure 6.

446

447

448

449 **4. Discussion:**

450 AGNOSTIC is a benchmark MRS dataset for training and evaluating performance across
451 various models. In order to make these synthetic data representative of *in vivo* brain MRS datasets,
452 a total of 22 brain metabolites and 14 MM peaks were simulated within 270 basis sets, spanning
453 field strengths from 1.4 T to 3.1 T and TEs from 10 to 80 ms. Parameterized water residual and
454 noise were included. SNR and linewidths were assigned at random, independent of B_0 or TE. The
455 broad span of the dataset is key in training networks that generalize. While AGNOSTIC is broad
456 in these dimensions, it does only represent simulated data for PRESS (Bottomley, 1982)
457 acquisitions, and may benefit from expansion to include other pulse sequences, such as STEAM
458 (Frahm et al., 1987), SPECIAL (Mekle et al., 2009; Mlynarik et al., 2006), LASER (Garwood &
459 DelaBarre, 2001), and semi-LASER (Scheenen, Heerschap, et al., 2008; Scheenen, Klomp, et al.,
460 2008), and edited versions including MEGA (Mescher et al., 1996, 1998) and Hadamard-encoded
461 (Chan et al., 2016, 2019; Oeltzschnner et al., 2019; Saleh et al., 2016) schemes. AGNOSTIC is
462 limited by simulations that used ideal pulses, a calculated trade-off to emphasize generalizability
463 across field strength, echo time, and spectral width, and thus fail to capture effects associated with
464 spatially heterogeneous coupling evolution. The extent to which these limitations matter will
465 depend on the applications that AGNOSTIC synthetic data are being used for.

466 The Detection network was highly successful, identifying 94.9% of the testing set where
467 OOV artifacts were present. The precise value of this success metric is obviously impacted by the
468 parameters of the OOVs – a later minimum OOV time would tend to increase performance, and
469 earlier would degrade it. It is noteworthy that, although the training datasets never contained more
470 than one OOV echo, the detection and prediction networks were able to handle more than one
471 OOV echo *in vivo* data, presumably because CNNs operate locally within the FID. It is also
472 encouraging that the networks generalized well to the *in vivo* data (Figure 6), which was collected
473 with unseen acquisition parameters, i.e., edited MEGA-PRESS (Mescher et al., 1996, 1998) data
474 acquired at 2.89 T with a TE of 68 ms, and 2.4 kHz spectral width. While it is reasonable to believe
475 that networks trained using AGNOSTIC will generalize well with *in vivo* clinical data, future work
476 will need to evaluate performance for clinical applications.

477 In the exemplar OOV application, the success of the networks depended heavily on the
478 timing of the OOV signal. The earliest OOV echoes were most challenging, unsurprisingly since
479 such signals are broad Gaussian resonances that are indistinguishable from within-voxel MM and

480 baseline signals. Indeed, the only feature that differentiates OOV signals from other broad
481 components of the model is timing. It is conceptually helpful to consider this in the Fourier domain,
482 even though all network processing is performed in the time domain. In the frequency domain, a
483 mismatch between the echo-top and the acquisition start is represented as a first-order phase error
484 of the signal associated with that echo. Where insufficient first-order phase exists to be represented
485 within the linewidth of the signal in question, (which in the time domain corresponds to substantial
486 truncation of the lefthand side of the echo), the network struggles to identify OOV signals.

487 In the context of this study, modeling and prediction are treated as two alternative
488 approaches to OOV characterization. For early OOV signals, the modeling approach tended to
489 mis-attribute non-artifact signal as OOV signal, a result that the metric scored as worse than no
490 intervention. The median performance of the Prediction network, even for very early OOV signals,
491 was close to zero. Both modeling and prediction performance improve as the OOV moves later in
492 the acquired signal, with modeling improving faster than the network, and performing better than
493 prediction beyond 120 ms. This strong performance of the model at least in part reflects the exact
494 match between the generative model of the synthetic OOV artifacts and the model that is being
495 used to extract them. More moderate performance might be expected for real *in vivo* examples –
496 but the same may also be true for networks which have been trained with the same synthetic data
497 and may have learned specifically to identify OOV signals that have a Gaussian kernel.

498 One key difference between most DL applications and applications in MRS, is the strict
499 requirement to preserve amplitude fidelity in network outputs. A common approach to artifacts in
500 DL is to return an artifact-free version of the network input. In contrast, the approach taken here
501 is to return the artifact, which has the following benefits: it avoids networks over-learning the
502 formulaic pattern of typical spectra; it reduces the impact of the lack of sequence diversity within
503 the AGNOSTIC dataset; and it is less likely to impact the amplitudes of metabolite signals.

504 The ultimate goal of this work is to extract metabolite levels from MRS data that are not
505 impacted by OOV artifacts. This problem can be addressed at several points: either by not
506 acquiring data that contain OOV artifacts; by removing OOV artifacts post-acquisition; and by
507 incorporating appropriate OOV model components into quantification model so that the impact of
508 OOV is minimized. While the work presented here focuses primarily on the second context, it
509 raises important potential applications in the other contexts. One motivator for developing the
510 Detection network is the possibility of real-time deployment during sequence acquisition to trigger

511 sequence changes when OOV artifacts are detected. The modeling applied here was time-restricted
512 to a given window and ignored other components of the spectrum, but demonstrates potential for
513 future integration within a full linear-combination model.

514 **5. Conclusion:**

515 In conclusion, we have presented the AGNOSTIC benchmark dataset which can be used
516 for training and testing brain-specific ^1H MRS deep learning models. This large synthetic dataset
517 is open-source and encompasses a range of field strengths, TEs, and dwell times to ensure networks
518 are robust to a variety of *in vivo* data acquisitions protocols. Using this dataset, we have
519 demonstrated an exemplar use case to develop CNNs to detect and predict out-of-voxel artifacts.

520 **Acknowledgments:**

521 This work has been supported by The Henry L. Guenther Foundation,
522 Sonderforschungsbereich (SFB) 974 (TP B07) of the German Research foundation, and the
523 National Institute of Health, grants T32 AG00096, R00 AG062230, R21 EB033516, R01
524 EB016089, R01 EB023963, K00AG068440, P30 AG066519, R21 AG053040, R01 AG076942,
525 P30 AG066519 and P41 EB031771.

526 **CRediT authorship contribution statement:**

527

528 **Aaron T. Gudmundson:** Conceptualization, Data Curation, Formal Analysis, Investigation,
529 Methodology, Software, Visualization, Writing-original draft, Writing-Review & Editing.
530 **Christopher W. Davies-Jenkins:** Data Curation, Resources, Writing-original draft, Writing-
531 Review & Editing. **İpek Özdemir:** Data Curation, Writing-original draft, Resources, Writing-
532 Review & Editing. **Saipavitra Murali-Manohar:** Data Curation, Writing-original draft, Writing-
533 Review & Editing. **Helge J. Zöllner:** Data Curation, Resources, Writing-original draft, Writing-
534 Review & Editing. **Yulu Song:** Data Curation, Resources, Writing-original draft, Writing-Review
535 & Editing. **Kathleen E. Hupfeld:** Writing-original draft, Writing-Review & Editing. **Alfons
536 Schnitzler:** Data Curation, Resources, Writing-Review & Editing. **Georg Oeltzschnner:**
537 Conceptualization, Supervision, Writing-original draft, Writing-Review & Editing. **Craig Stark:**
538 Conceptualization, Funding acquisition, Project Administration, Resources, Supervision, Writing-
539 original draft, Writing-Review & Editing. **Richard A.E. Edden:** Conceptualization, Funding
540 acquisition, Project Administration, Resources, Supervision, Visualization, Writing-original draft,
541 Writing-Review & Editing.

542 **References:**

543 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,
544 Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
545 L., Kudlur, M., ... Zheng, X. (2015). *Tensorflow: Large-scale Machine Learning on Heterogeneous
546 Distributed Systems*. <https://doi.org/10.5281/zenodo.4724125>

547 Agarap, A. F. (2018). Deep learning using rectified linear units (relu). *ArXiv Preprint ArXiv:1803.08375*.

548 Bloembergen, N., Purcell, E. M., & Pound, R. V. (1948). Relaxation effects in nuclear magnetic resonance
549 absorption. *Physical Review*, 73(7), 679–712. <https://doi.org/10.1103/PhysRev.73.679>

550 Blum, K. (1981). *Density Matrix Theory and Applications* (1st ed.). Springer US.
551 <https://doi.org/10.1007/978-1-4615-6808-7>

552 Bodenhausen, G. (2011). Reflections of pathways: A short perspective on 'Selection of coherence
553 transfer pathways in NMR pulse experiments.' *Journal of Magnetic Resonance*, 213(2), 295–297.
554 <https://doi.org/10.1016/j.jmr.2011.08.004>

555 Bottomley, P. A. (1982). *Selective volume method for performing localized NMR spectroscopy*. 19.
556 <https://patents.google.com/patent/US4480228A/en>

557 Carass, A., Roy, S., Gherman, A., Reinhold, J. C., Jesson, A., Arbel, T., Maier, O., Handels, H., Ghafoorian,
558 M., Platel, B., Birenbaum, A., Greenspan, H., Pham, D. L., Crainiceanu, C. M., Calabresi, P. A., Prince,
559 J. L., Roncal, W. R. G., Shinohara, R. T., & Oguz, I. (2020). Evaluating White Matter Lesion
560 Segmentations with Refined Sørensen-Dice Analysis. *Scientific Reports*, 10(1), 1–19.
561 <https://doi.org/10.1038/s41598-020-64803-w>

562 Carr, H. Y., & Purcell, E. M. (1954). *Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance
563 Experiments**t.

564 Chan, K. L., Edden, R. A. E., & Barker, P. B. (2019). *Simultaneous editing of GABA and GSH with
565 Hadamard - encoded MR spectroscopic imaging*. July 2018, 21–32.
566 <https://doi.org/10.1002/mrm.27702>

567 Chan, K. L., Puts, N. A. J., Schär, M., Barker, P. B., & Edden, R. A. E. (2016). HERMES: Hadamard encoding
568 and reconstruction of MEGA-edited spectroscopy. *Magnetic Resonance in Medicine*, 76(1), 11–19.
569 <https://doi.org/10.1002/mrm.26233>

570 Chandler, M., Jenkins, C., Shermer, S. M., & Langbein, F. C. (2019). *MRSNet: Metabolite Quantification
571 from Edited Magnetic Resonance Spectra With Convolutional Neural Networks*. 1–12.
572 <http://arxiv.org/abs/1909.03836>

573 Chen, D., Hu, W., Liu, H., Zhou, Y., Qiu, T., Huang, Y., Wang, Z., Lin, M., Lin, L., Wu, Z., Wang, J., Chen, H.,
574 Chen, X., Yan, G., Guo, D., Lin, J., & Qu, X. (2023). Magnetic Resonance Spectroscopy Deep Learning
575 Denoising Using Few In Vivo Data. *IEEE Transactions on Computational Imaging*, 1–12.
576 <https://doi.org/10.1109/TCI.2023.3267623>

577 Chollet, F., & others. (2015). *Keras*.

578 Cudalbu, C., Behar, K. L., Bhattacharyya, P. K., Bogner, W., Borbath, T., de Graaf, R. A., Gruetter, R.,
579 Henning, A., Juchem, C., Kreis, R., Lee, P., Lei, H., Marjańska, M., Mekle, R., Murali-Manohar, S.,
580 Považan, M., Rackayová, V., Simicic, D., Slotboom, J., ... Mlynárik, V. (2021). Contribution of
581 macromolecules to brain 1H MR spectra: Experts' consensus recommendations. *NMR in*
582 *Biomedicine*, 34(5), 1–24. <https://doi.org/10.1002/nbm.4393>

583 De Graaf, R. A., Brown, P. B., McIntyre, S., Nixon, T. W., Behar, K. L., & Rothman, D. L. (2006). High
584 magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. *Magnetic*
585 *Resonance in Medicine*, 56(2), 386–394. <https://doi.org/10.1002/mrm.20946>

586 Dice, L. R. (1945). Measures of the Amount of Ecologic Association Between Species Author (s): Lee R .
587 Dice Published by : Ecological Society of America Stable URL :
588 <http://www.jstor.org/stable/1932409>. *Ecology*, 26(3), 297–302.

589 Dziadosz, M., Rizzo, R., Kyathanahally, S. P., & Kreis, R. (2023). Denoising single MR spectra by deep
590 learning: Miracle or mirage? *Magnetic Resonance in Medicine*. <https://doi.org/10.1002/mrm.29762>

591 Ernst, T., & Chang, L. (1996). Elimination of artifacts in short echo time1H MR spectroscopy of the frontal
592 lobe. *Magnetic Resonance in Medicine*, 36(3), 462–468. <https://doi.org/10.1002/mrm.1910360320>

593 Fano, U. (1957). Description of States in Quantum Mechanics by Density Matrix and Operator
594 Techniques. *Reviews of Modern Physics*, 29(1), 74–93. <https://doi.org/10.1103/RevModPhys.29.74>

595 Farrar, T. (1990). Density matrices in NMR spectroscopy: Part I. *Concepts in Magnetic Resonance*, 2, 1–
596 12.

597 Fei-Fei, L., Deng, J., & Li, K. (2010). ImageNet: Constructing a large-scale image database. *Journal of*
598 *Vision*, 9(8), 1037–1037. <https://doi.org/10.1167/9.8.1037>

599 Frahm, J., Merboldt, K. D., & Hänicke, W. (1987). Localized proton spectroscopy using stimulated echoes.
600 *Journal of Magnetic Resonance* (1969), 72(3), 502–508. [https://doi.org/10.1016/0022-2364\(87\)90154-5](https://doi.org/10.1016/0022-2364(87)90154-5)

602 Garwood, M., & DelaBarre, L. (2001). The return of the frequency sweep: Designing adiabatic pulses for
603 contemporary NMR. *Journal of Magnetic Resonance*. <https://doi.org/10.1006/jmre.2001.2340>

604 Gassenmaier, S., Afat, S., Nickel, D., Kannengiesser, S., Herrmann, J., Hoffmann, R., & Othman, A. E.
605 (2021). Application of a Novel Iterative Denoising and Image Enhancement Technique in T1-
606 Weighted Precontrast and Postcontrast Gradient Echo Imaging of the Abdomen. *Investigative*
607 *Radiology*, 56(5), 328–334. <https://doi.org/10.1097/RLI.0000000000000746>

608 Gassenmaier, S., Küstner, T., Nickel, D., Herrmann, J., Hoffmann, R., Almansour, H., Afat, S., Nikolaou, K.,
609 & Othman, A. E. (2021). Deep Learning Applications in Magnetic Resonance Imaging: Has the
610 Future Become Present? *Diagnostics*, 11(12), 2181. <https://doi.org/10.3390/diagnostics11122181>

611 Giapitzakis, I. A., Avdievich, N., & Henning, A. (2018). Characterization of macromolecular baseline of
612 human brain using metabolite cycled semi-LASER at 9.4T. *Magnetic Resonance in Medicine*, 80(2),
613 462–473. <https://doi.org/10.1002/mrm.27070>

614 Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. The MIT Press.
615 <http://www.deeplearningbook.org/>

616 Govindaraju, V., Young, K., & Maudsley, A. A. (2000). Proton NMR chemical shifts and coupling constants
617 for brain metabolites. *NMR in Biomedicine*, 13(3), 129–153. [https://doi.org/10.1002/1099-1492\(200005\)13:3<129::AID-NBM619>3.0.CO;2-V](https://doi.org/10.1002/1099-1492(200005)13:3<129::AID-NBM619>3.0.CO;2-V)

618

619 Gudmundson, A. T., Koo, A., Virovka, A., Amirault, A. L., Soo, M., Cho, J. H., Oeltzscher, G., Edden, R. A.
620 E., & Stark, C. E. L. (2023). Meta-analysis and open-source database for in vivo brain Magnetic
621 Resonance spectroscopy in health and disease. *Analytical Biochemistry*, 676, 115227.
622 <https://doi.org/10.1016/j.ab.2023.115227>

623 Gurbani, S. S., Schreibmann, E., Maudsley, A. A., Cordova, J. S., Soher, B. J., Poptani, H., Verma, G.,
624 Barker, P. B., Shim, H., & Cooper, L. A. D. (2018). A convolutional neural network to filter artifacts in
625 spectroscopic MRI. *Magnetic Resonance in Medicine*, 80(5), 1765–1775.
626 <https://doi.org/10.1002/mrm.27166>

627 Gurbani, S. S., Sheriff, S., Maudsley, A. A., Shim, H., & Cooper, L. A. D. (2019). Incorporation of a spectral
628 model in a convolutional neural network for accelerated spectral fitting. *Magnetic Resonance in
629 Medicine*, 81(5), 3346–3357. <https://doi.org/10.1002/mrm.27641>

630 Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
631 Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
632 Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., ... Oliphant, T. E. (2020). Array programming
633 with NumPy. *Nature*, 585(7825), 357–362. <https://doi.org/10.1038/s41586-020-2649-2>

634 Hatami, N., Sdika, M., & Ratiney, H. (2018). Magnetic resonance spectroscopy quantification using deep
635 learning. *Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
636 Intelligence and Lecture Notes in Bioinformatics)*, 11070 LNCS, 467–475.
637 https://doi.org/10.1007/978-3-030-00928-1_53

638 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level
639 Performance on ImageNet Classification. *2015 IEEE International Conference on Computer Vision
640 (ICCV), 2015 Inter*, 1026–1034. <https://doi.org/10.1109/ICCV.2015.123>

641 Held, G., Noack, F., Pollak, V., & Melton, B. (1973). Protonenspinrelaxation und Wasserbeweglichkeit in
642 Muskelgewebe / Proton Spin Relaxation and Mobility of Water in Muscle Tissue. *Zeitschrift Für
643 Naturforschung C*, 28(1–2), 59–62. <https://doi.org/10.1515/znc-1973-1-209>

644 Iqbal, Z., Nguyen, D., Hangel, G., Motyka, S., Bogner, W., & Jiang, S. (2019). Super-Resolution 1H
645 Magnetic Resonance Spectroscopic Imaging Utilizing Deep Learning. *Frontiers in Oncology*, 9.
646 <https://doi.org/10.3389/fonc.2019.01010>

647 Iqbal, Z., Nguyen, D., Thomas, M. A., & Jiang, S. (2021). Deep learning can accelerate and quantify
648 simulated localized correlated spectroscopy. *Scientific Reports*, 11(1), 8727.
649 <https://doi.org/10.1038/s41598-021-88158-y>

650 Jang, J., Lee, H. H., Park, J.-A., & Kim, H. (2021). Unsupervised anomaly detection using generative
651 adversarial networks in ^1H -MRS of the brain. *Journal of Magnetic Resonance*, 325, 106936.
652 <https://doi.org/10.1016/j.jmr.2021.106936>

653 Juchem, C., Cudalbu, C., Graaf, R. A., Gruetter, R., Henning, A., Hetherington, H. P., & Boer, V. O. (2021).
654 B_0 shimming for in vivo magnetic resonance spectroscopy: Experts' consensus recommendations.
655 *NMR in Biomedicine*, 34(5), 1–20. <https://doi.org/10.1002/nbm.4350>

656 Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. *3rd International
657 Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings*, 1–15.

658 Koch, K. M., Rothman, D. L., & de Graaf, R. A. (2009). Optimization of static magnetic field homogeneity
659 in the human and animal brain in vivo. In *Progress in Nuclear Magnetic Resonance Spectroscopy*
660 (Vol. 54, Issue 2, pp. 69–96). <https://doi.org/10.1016/j.pnmrs.2008.04.001>

661 Kreis, R. (2004). Issues of spectral quality in clinical ^1H -magnetic resonance spectroscopy and a gallery of
662 artifacts. *NMR in Biomedicine*, 17(6), 361–381. <https://doi.org/10.1002/nbm.891>

663 Kyathanahally, S. P., Döring, A., & Kreis, R. (2018). Deep learning approaches for detection and removal
664 of ghosting artifacts in MR spectroscopy. *Magnetic Resonance in Medicine*, 80(3), 851–863.
665 <https://doi.org/10.1002/mrm.27096>

666 Lam, F., Li, Y., & Peng, X. (2020). Constrained Magnetic Resonance Spectroscopic Imaging by Learning
667 Nonlinear Low-Dimensional Models. *IEEE Transactions on Medical Imaging*, 39(3), 545–555.
668 <https://doi.org/10.1109/TMI.2019.2930586>

669 Landheer, K., & Juchem, C. (2019). Dephasing optimization through coherence order pathway selection
670 (DOTCOPS) for improved crusher schemes in MR spectroscopy. *Magnetic Resonance in Medicine*,
671 81(4), 2209–2222. <https://doi.org/10.1002/mrm.27587>

672 Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. *Nature*, 521, 436–444.
673 <https://doi.org/10.1038/nature14539>

674 Lee, H. H., & Kim, H. (2019). Intact metabolite spectrum mining by deep learning in proton magnetic
675 resonance spectroscopy of the brain. *Magnetic Resonance in Medicine*, 82(1), 33–48.
676 <https://doi.org/10.1002/mrm.27727>

677 Lee, H. H., & Kim, H. (2020). Deep learning-based target metabolite isolation and big data-driven
678 measurement uncertainty estimation in proton magnetic resonance spectroscopy of the brain.
679 *Magnetic Resonance in Medicine*, 84(4), 1689–1706. <https://doi.org/10.1002/mrm.28234>

680 Lee, H., Lee, H. H., & Kim, H. (2020). Reconstruction of spectra from truncated free induction decays by
681 deep learning in proton magnetic resonance spectroscopy. *Magnetic Resonance in Medicine*, 84(2),
682 559–568. <https://doi.org/10.1002/mrm.28164>

683 Li Deng. (2012). The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best
684 of the Web]. *IEEE Signal Processing Magazine*, 29(6), 141–142.
685 <https://doi.org/10.1109/MSP.2012.2211477>

686 Li, Y., Wang, Z., & Lam, F. (2020). Separation of Metabolite and Macromolecule Signals for 1 H-Mrsi
687 Using Learned Nonlinear Models. *Proceedings - International Symposium on Biomedical Imaging*,
688 2020-April, 1725–1728. <https://doi.org/10.1109/ISBI45749.2020.9098365>

689 Lin, L., Považan, M., Berrington, A., Chen, Z., & Barker, P. B. (2019). Water removal in MR spectroscopic
690 imaging with L2 regularization. *Magnetic Resonance in Medicine*, 82(4), 1278–1287.
691 <https://doi.org/10.1002/mrm.27824>

692 Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L.,
693 & Dollár, P. (2014). Microsoft COCO: Common Objects in Context. <http://arxiv.org/abs/1405.0312>

694 Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on
695 MRI. *Zeitschrift Für Medizinische Physik*, 29(2), 102–127.
696 <https://doi.org/10.1016/j.zemedi.2018.11.002>

697 Ma, D. J., Le, H. A. M., Ye, Y., Laine, A. F., Lieberman, J. A., Rothman, D. L., Small, S. A., & Guo, J. (2022).
698 MR spectroscopy frequency and phase correction using convolutional neural networks. *Magnetic
699 Resonance in Medicine*, 87(4), 1700–1710. <https://doi.org/10.1002/mrm.29103>

700 Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic
701 models. In *ICML Workshop on Deep Learning for Audio, Speech and Language Processing*, 28.

702 Marshall, I., Higinbotham, J., Bruce, S., & Freise, A. (1997). Use of Voigt lineshape for quantification of in
703 vivo 1H spectra. *Magnetic Resonance in Medicine*, 37(5), 651–657.
704 <https://doi.org/10.1002/mrm.1910370504>

705 Maudsley, A. A., Andronesi, O. C., Barker, P. B., Buzzi, A., Bogner, W., Henning, A., Nelson, S. J., Posse, S.,
706 Shungu, D. C., & Soher, B. J. (2021). Advanced magnetic resonance spectroscopic neuroimaging:
707 Experts' consensus recommendations. *NMR in Biomedicine*, 34(5), 1–22.
708 <https://doi.org/10.1002/nbm.4309>

709 Mekle, R., Mlynárik, V., Gambarota, G., Hergt, M., Krueger, G., & Gruetter, R. (2009). MR spectroscopy of
710 the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T
711 and 7T. *Magnetic Resonance in Medicine*, 61(6), 1279–1285. <https://doi.org/10.1002/mrm.21961>

712 Mescher, M., Merkle, H., Kirsch, J., Garwood, M., & Gruetter, R. (1998). Simultaneous in vivo spectral
713 editing and water suppression. *NMR in Biomedicine*, 11(6), 266–272.
714 [https://doi.org/10.1002/\(SICI\)1099-1492\(199810\)11:6<266::AID-NBM530>3.0.CO;2-J](https://doi.org/10.1002/(SICI)1099-1492(199810)11:6<266::AID-NBM530>3.0.CO;2-J)

715 Mescher, M., Tannus, A., O'Neil Johnson, M., & Garwood, M. (1996). Solvent suppression using selective
716 echo dephasing. *Journal of Magnetic Resonance - Series A*, 123(2), 226–229.
717 <https://doi.org/10.1006/jmra.1996.0242>

718 Michaeli, S., Garwood, M., Zhu, X.-H., DelaBarre, L., Andersen, P., Adriany, G., Merkle, H., Ugurbil, K., &
719 Chen, W. (2002). ProtonT2 relaxation study of water, N-acetylaspartate, and creatine in human
720 brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. *Magnetic Resonance in Medicine*,
721 47(4), 629–633. <https://doi.org/10.1002/mrm.10135>

722 Mlynarik, V., Gambarota, G., Frenkel, H., & Gruetter, R. (2006). Localized short-echo-time proton MR
723 spectroscopy with full signal-intensity acquisition. *MAGNETIC RESONANCE IN MEDICINE*, 56(5),
724 965–970. <https://doi.org/10.1002/mrm.21043>

725 Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic
726 reviews and meta-analyses: The PRISMA statement. *BMJ (Online)*, 339(7716), 332–336.
727 <https://doi.org/10.1136/bmj.b2535>

728 Murali-Manohar, S., Borbath, T., Wright, A. M., Soher, B., Mekle, R., & Henning, A. (2020). T2 relaxation
729 times of macromolecules and metabolites in the human brain at 9.4 T. *Magnetic Resonance in*
730 *Medicine*, 84(2), 542–558. <https://doi.org/10.1002/mrm.28174>

731 Near, J., Harris, A. D., Juchem, C., Kreis, R., Marjańska, M., Öz, G., Slotboom, J., Wilson, M., & Gasparovic,
732 C. (2021). Preprocessing, analysis and quantification in single-voxel magnetic resonance
733 spectroscopy: experts' consensus recommendations. *NMR in Biomedicine*, 34(5), 1–23.
734 <https://doi.org/10.1002/nbm.4257>

735 Near, J., Leung, I., Claridge, T., Cowen, P., & Jezzard, P. (2012). Chemical shifts and coupling constants of
736 the GABA spin system. *Proc. Intl. Soc. Mag. Reson. Med.*, 20(1993).

737 Oeltzschnner, G., Saleh, M. G., Rimbault, D., Mikkelsen, M., Chan, K. L., Puts, N. A. J., & Edden, R. A. E.
738 (2019). Advanced Hadamard-encoded editing of seven low-concentration brain metabolites:
739 Principles of HERCULES. *NeuroImage*, 185(September 2018), 181–190.
740 <https://doi.org/10.1016/j.neuroimage.2018.10.002>

741 Oeltzschnner, G., Zöllner, H. J., Hui, S. C. N., Mikkelsen, M., Saleh, M. G., Tapper, S., & Edden, R. A. E.
742 (2020). Osprey: Open-source processing, reconstruction & estimation of magnetic resonance
743 spectroscopy data. *Journal of Neuroscience Methods*, 343(June), 108827.
744 <https://doi.org/10.1016/j.jneumeth.2020.108827>

745 Öz, G., Deelchand, D. K., Wijnen, J. P., Mlynárik, V., Xin, L., Mekle, R., Noeske, R., Scheenen, T. W. J.,
746 Tkáč, I., Andronesi, O., Barker, P. B., Bartha, R., Berrington, A., Boer, V., Cudalbu, C., Emir, U. E.,
747 Ernst, T., Fillmer, A., Heerschap, A., ... Wilson, M. (2021). Advanced single voxel 1H magnetic
748 resonance spectroscopy techniques in humans: Experts' consensus recommendations. *NMR in*
749 *Biomedicine*, 34(5), 1–18. <https://doi.org/10.1002/nbm.4236>

750 Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff,
751 J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M.,
752 Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... McKenzie, J. E. (2021). PRISMA 2020
753 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews.
754 *The BMJ*, 372. <https://doi.org/10.1136/bmj.n160>

755 Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of several variables
756 without calculating derivatives. *The Computer Journal*, 7(2), 155–162.
757 <https://doi.org/10.1093/comjnl/7.2.155>

758 Powell, M. J. D. (1994). A Direct Search Optimization Method That Models the Objective and Constraint
759 Functions by Linear Interpolation. In S. Gomez & J.-P. Hennart (Eds.), *Advances in Optimization and*

760 *Numerical Analysis* (pp. 51–67). Springer Netherlands. https://doi.org/10.1007/978-94-015-8330-5_4

762 Rizzo, R., Dziadosz, M., Kyathanahally, S. P., Shamaei, A., & Kreis, R. (2023). Quantification of MR spectra
763 by deep learning in an idealized setting: Investigation of forms of input, network architectures,
764 optimization by ensembles of networks, and training bias. *Magnetic Resonance in Medicine*, 89(5),
765 1707–1727. <https://doi.org/10.1002/mrm.29561>

766 Saleh, M. G., Oeltzschnner, G., Chan, K. L., Puts, N. A. J., Mikkelsen, M., Schär, M., Harris, A. D., & Edden,
767 R. A. E. (2016). Simultaneous edited MRS of GABA and glutathione. *NeuroImage*, 142, 576–582.
768 <https://doi.org/10.1016/j.neuroimage.2016.07.056>

769 Scheenen, T. W. J., Heerschap, A., & Klomp, D. W. J. (2008). Towards 1H-MRSI of the human brain at 7T
770 with slice-selective adiabatic refocusing pulses. *Magnetic Resonance Materials in Physics, Biology*
771 and Medicine, 21(1–2), 95–101. <https://doi.org/10.1007/s10334-007-0094-y>

772 Scheenen, T. W. J., Klomp, D. W. J., Wijnen, J. P., & Heerschap, A. (2008). Short echo time 1H-MRSI of the
773 human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing
774 pulses. *Magnetic Resonance in Medicine*, 59(1), 1–6. <https://doi.org/10.1002/mrm.21302>

775 Shamaei, A., Starcukova, J., Pavlova, I., & Starcuk, Z. (2023). Model-informed unsupervised deep learning
776 approaches to frequency and phase correction of MRS signals. *Magnetic Resonance in Medicine*,
777 89(3), 1221–1236. <https://doi.org/10.1002/mrm.29498>

778 Song, Y., Zöllner, H. J., Hui, S. C. N., Hupfeld, K. E., Oeltzschnner, G., & Edden, R. A. E. (2023). Impact of
779 gradient scheme and non-linear shimming on out-of-voxel echo artifacts in edited MRS. *NMR in*
780 *Biomedicine*, 36(2). <https://doi.org/10.1002/nbm.4839>

781 Sørensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G., & Ernst, R. R. (1984). Product operator
782 formalism for the description of NMR pulse experiments. *Progress in Nuclear Magnetic Resonance*
783 *Spectroscopy*, 16, 163–192. [https://doi.org/10.1016/0079-6565\(84\)80005-9](https://doi.org/10.1016/0079-6565(84)80005-9)

784 Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant sociology based on
785 similarity of species and its application to analyses of the vegetation on Danish commons.
786 *Kongelige Danske Videnskabernes Selskab*, 5(4), 1–34.

787 Starck, G., Carlsson, A., Ljungberg, M., & Forssell-Aronsson, E. (2009). k-space analysis of point-resolved
788 spectroscopy (PRESS) with regard to spurious echoes in vivo (1)H MRS. *NMR IN BIOMEDICINE*,
789 22(2), 137–147. <https://doi.org/10.1002/nbm.1289>

790 Tapper, S., Mikkelsen, M., Dewey, B. E., Zöllner, H. J., Hui, S. C. N., Oeltzschnner, G., & Edden, R. A. E.
791 (2021). Frequency and phase correction of J-difference edited MR spectra using deep learning.
792 *Magnetic Resonance in Medicine*, 85(4), 1755–1765. <https://doi.org/10.1002/mrm.28525>

793 The MathWorks Inc. (2022). *MATLAB version: 9.13.0 (R2022b)*. The MathWorks Inc.
794 <https://www.mathworks.com>

795 Tkáč, I., Andersen, P., Adriany, G., Merkle, H., Uğurbil, K., & Gruetter, R. (2001). In vivo ¹H NMR
796 spectroscopy of the human brain at 7 T. *Magnetic Resonance in Medicine*, 46(3), 451–456.
797 <https://doi.org/10.1002/mrm.1213>

798 Van Rossum, G., & Drake, F. L. (2009). *Python 3 Reference Manual*. CreateSpace.

799 Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
800 Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,
801 Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... Vázquez-Baeza, Y. (2020). SciPy 1.0:
802 fundamental algorithms for scientific computing in Python. *Nature Methods*, 17(3), 261–272.
803 <https://doi.org/10.1038/s41592-019-0686-2>

804 Wilson, M., Andronesi, O., Barker, P. B., Bartha, R., Bizzi, A., Bolan, P. J., Brindle, K. M., Choi, I., Cudalbu,
805 C., Dydak, U., Emir, U. E., Gonzalez, R. G., Gruber, S., Gruetter, R., Gupta, R. K., Heerschap, A.,
806 Henning, A., Hetherington, H. P., Huppi, P. S., ... Howe, F. A. (2019). Methodological consensus on
807 clinical proton MRS of the brain: Review and recommendations. *Magnetic Resonance in Medicine*,
808 82(2), 527–550. <https://doi.org/10.1002/mrm.27742>

809 Yablonskiy, D. A., & Haacke, E. M. (1994). Theory of NMR signal behavior in magnetically
810 inhomogeneous tissues: The static dephasing regime. *Magnetic Resonance in Medicine*, 32(6),
811 749–763. <https://doi.org/10.1002/mrm.1910320610>

812 Zhang, Y., & Shen, J. (2023). Quantification of spatially localized MRS by a novel deep learning approach
813 without spectral fitting. *Magnetic Resonance in Medicine*. <https://doi.org/10.1002/mrm.29711>

814 Zöllner, H. J., Thiel, T. A., Füllenbach, N.-D., Jördens, M. S., Ahn, S., Wilms, L. M., Ljimani, A., Häussinger,
815 D., Butz, M., Wittsack, H.-J., Schnitzler, A., & Oeltzschnier, G. (2023). J-difference GABA-edited MRS
816 reveals altered cerebello-thalamo-cortical metabolism in patients with hepatic encephalopathy.
817 *Metabolic Brain Disease*, 38(4), 1221–1238. <https://doi.org/10.1007/s11011-023-01174-x>

818

819 **Figures:**

820

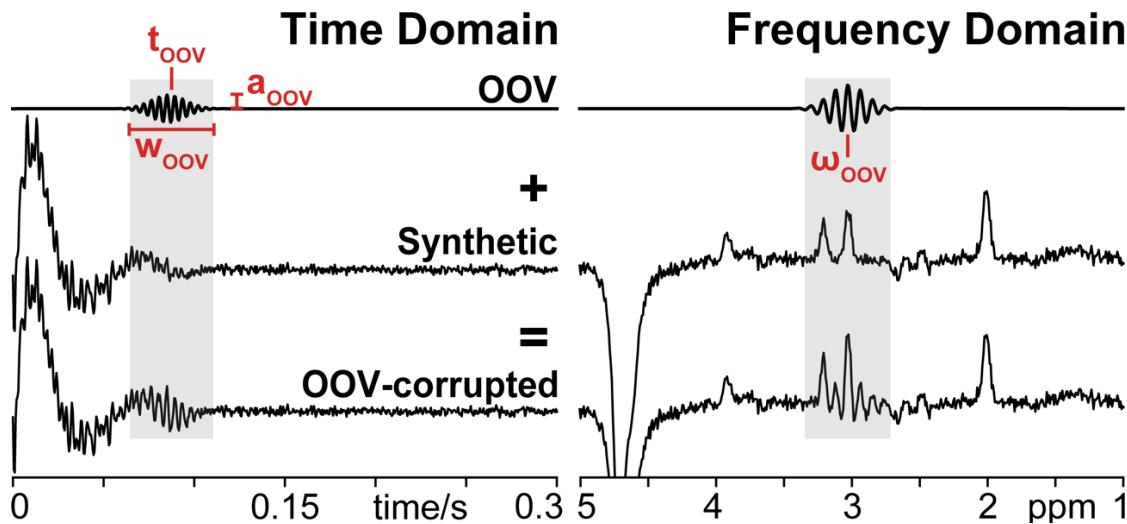


Figure 1. Simulation of OOV echoes and OOV-corrupted synthetic data: OOV echoes were simulated as complex time-domain signals with a center timepoint (t_{OOV}), width (W_{OOV}), frequency (ω_{OOV}), phase (Φ_{OOV}), amplitude (a_{OOV}). OOV echoes were added to 85% of synthetic data to create datasets for training and evaluation.

821

822

823

824

825

826

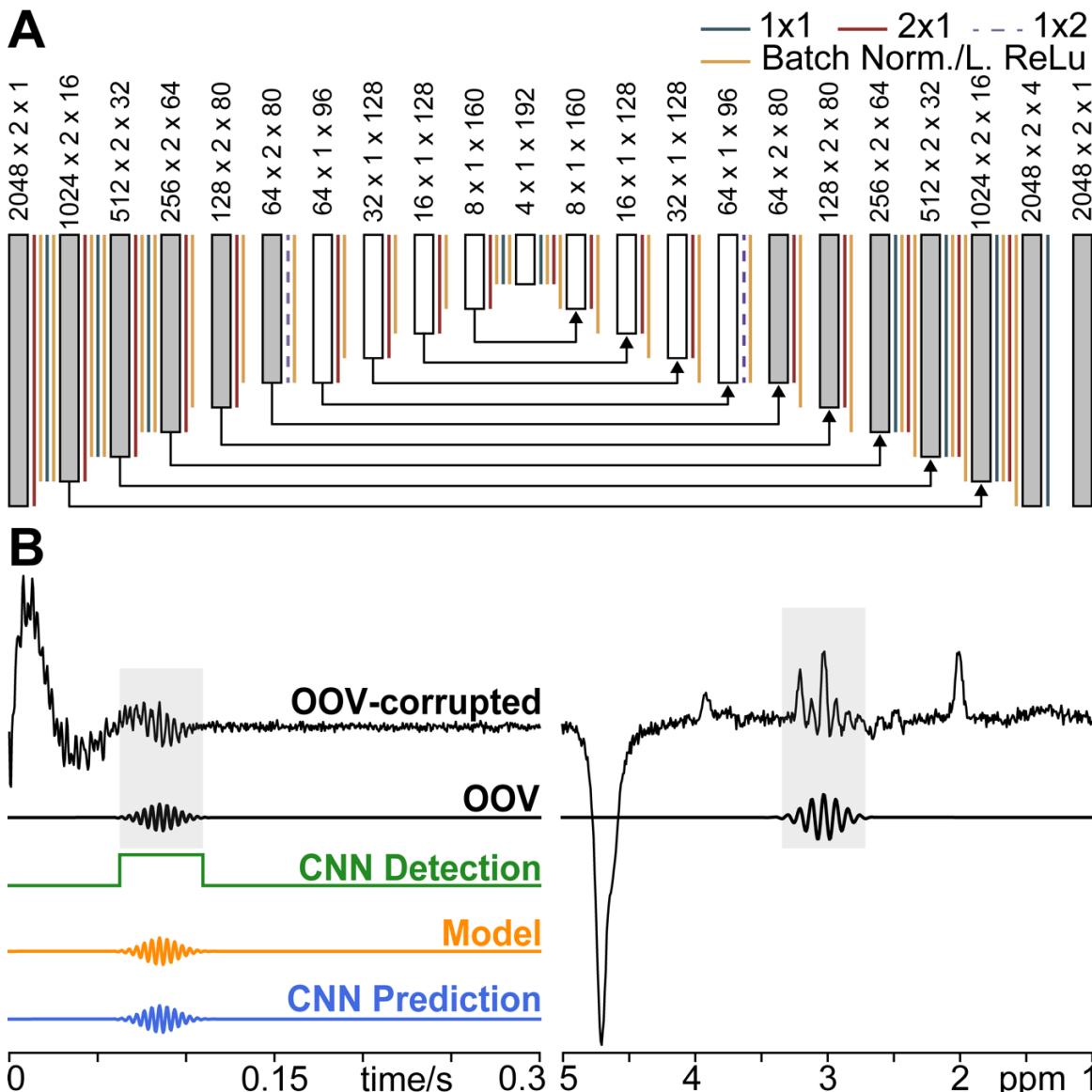


Figure 2. Convolutional Neural Network Architecture, Input, and Output: A) Fully convolutional neural network architecture used for both the Detection and Prediction Network. Convolutional strides, batch normalization, and Leaky ReLu activation functions are denoted by a colored line. Dark gray blocks represent complex data with the 2nd dimension representing real and imaginary components, while white blocks represent the network abstracted single dimension. Arrows show residual connections. Note, inputs and outputs are all time-domain signals; Frequency-domain is shown for convenient visualization. B) OOV-corrupted synthetic example and the isolated OOV. The complex OOV-corrupted data was used as the Detection and Prediction Network input. The target Output is the isolated OOV.

827

828

829

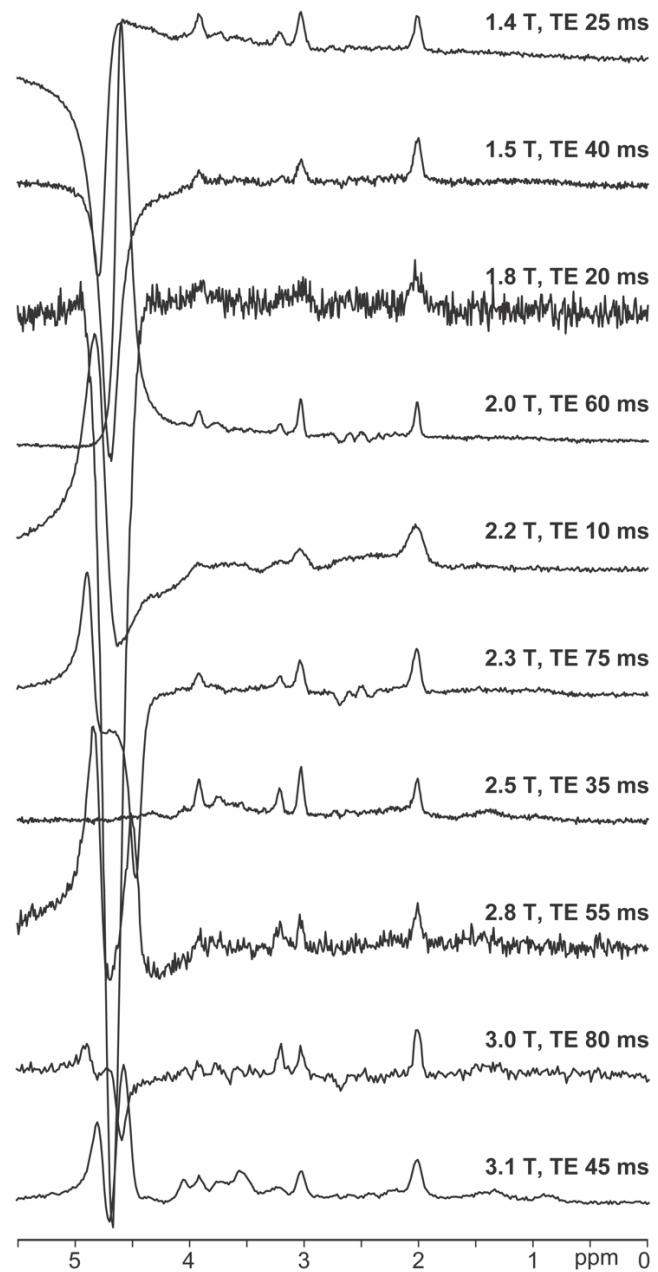


Figure 3. AGNOSTIC synthetic dataset. 10 representative spectra from the AGNOSTIC dataset. The 10 examples show the diversity of field strength, TE, linewidths, and residual water signal present among the data. Note, examples are shown here in the frequency-domain to better illustrate the heterogeneity, but the dataset provides time-domain examples.

830

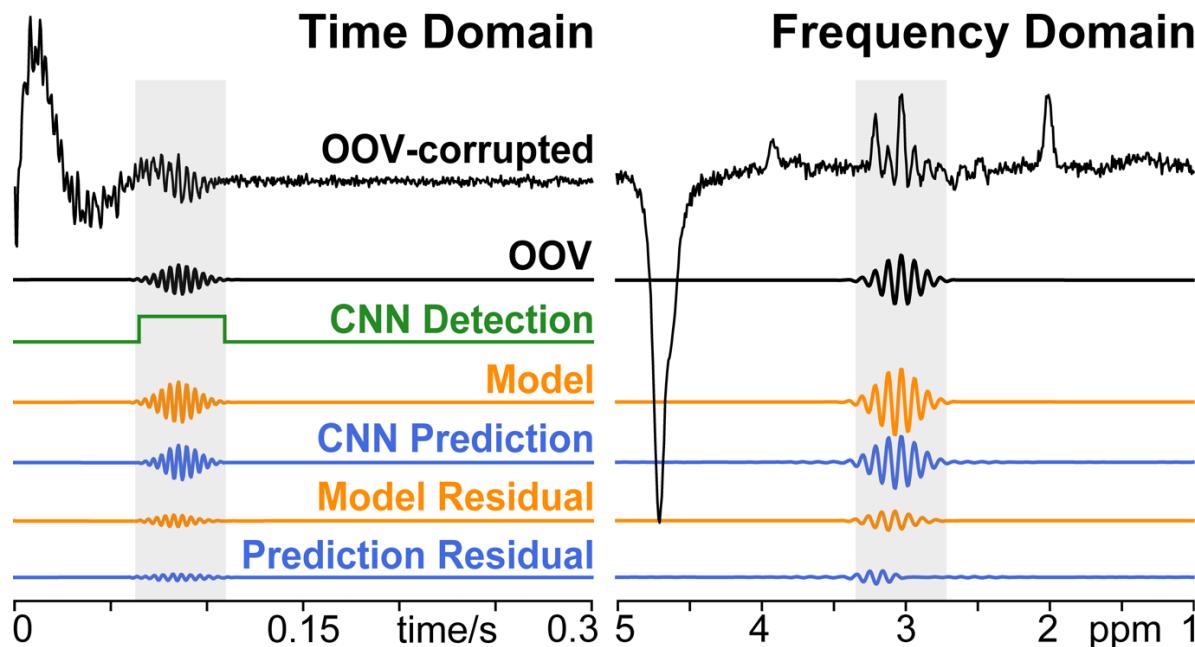


Figure 4. OOV-corrupted example: OOV-corrupted synthetic example and the isolated OOV. Results from Detection Network (green), Model (orange), and Prediction Network (blue) are shown below the ground truth OOV-corrupted and OOV. OOV residuals are shown for the Model (orange) and Prediction Network (blue) demonstrating remaining signal after subtraction. Note, frequency-domain is shown for convenient visualization, but the Detection Network, Modeling, and Prediction Network all operate on time-domain signals.

831

832

833

834

835

836

837

838

839

840

841

842

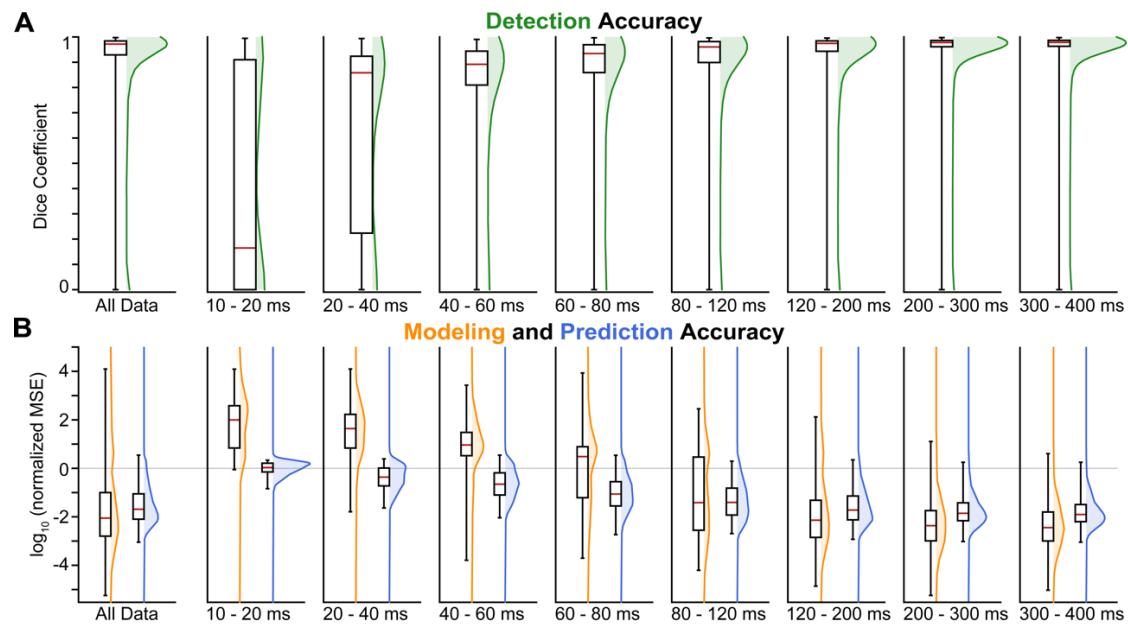


Figure 5. Evaluation of Detection Network, Modeling, and Prediction Network. A testing set with 7200 (2400 examples with 3 different OOV echoes) unseen examples was used to evaluate the A) Detection Network and B) Modeling and Prediction Network. Performance across the whole test set is shown on the left-hand side. Performance across the binned center timepoint (τ_{OOV}) is shown across the right-hand side.

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

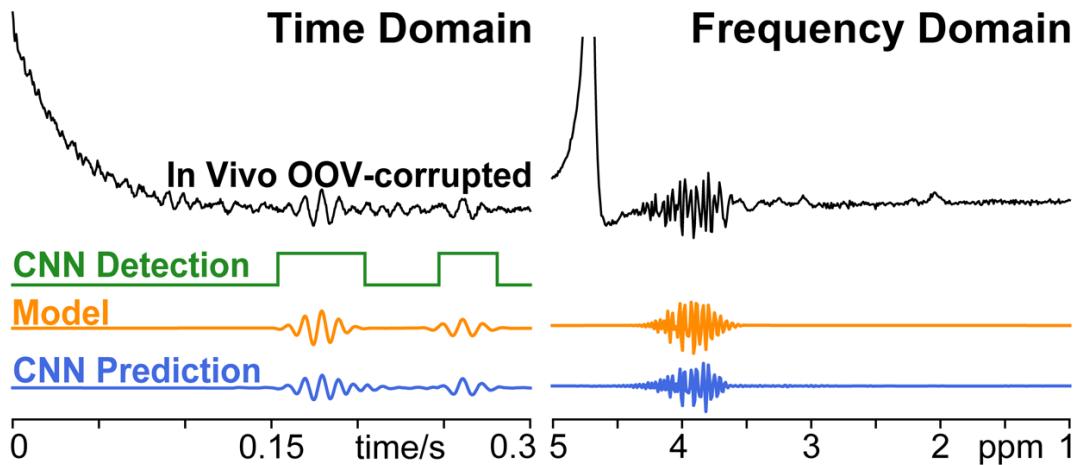


Figure 6. *In vivo* MEGA-PRESS OOV-corrupted example. Results from Detection Network (green), Model (orange), and Prediction Network (blue) are shown below. Detection and Prediction CNNs identified and reconstructed the OOV echo, despite having never seen data acquired with 2.89 T, 2.4 kHz spectral width, 68 ms, editing, nor real RF pulses. Note, frequency-domain is shown for convenient visualization, but the Detection Network, Modeling, and Prediction Network all operate on time-domain signals.

859 **Tables:**

860

861 Table 1. Parametrization of the residual water signal components within AGNOSTIC.

Component	Location / ppm		Phase / deg		Amplitude	
	Low	High	Low	High	Low	High
1	4.679	4.711	-10	10	1.00	1.00
2	4.599	4.641	15	45	.35	.55
3	4.759	4.801	-60	-30	.35	.55
4	4.449	4.541	-70	45	.10	.25
5	4.859	4.901	105	135	.10	.25

862

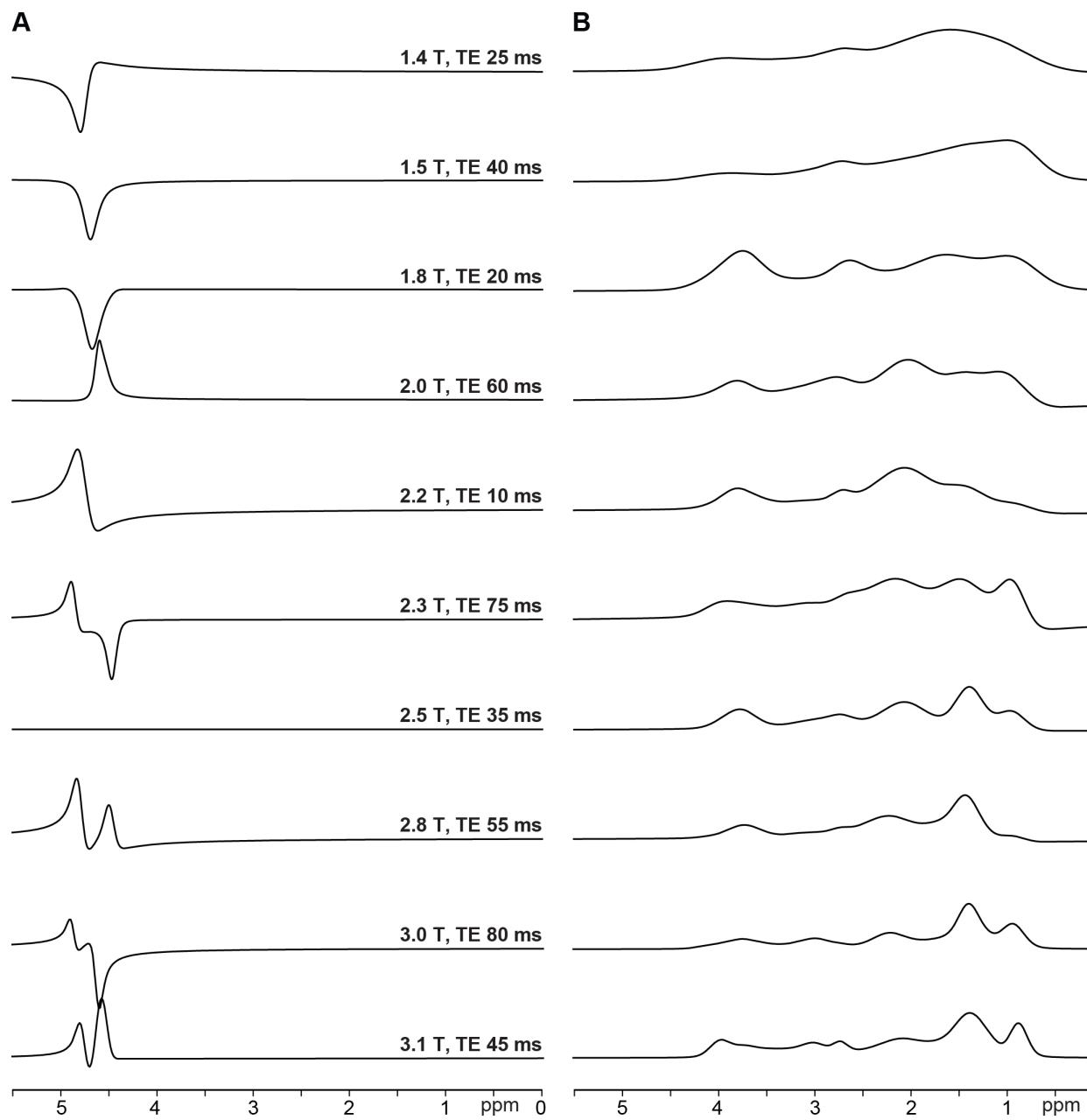
863

864

865

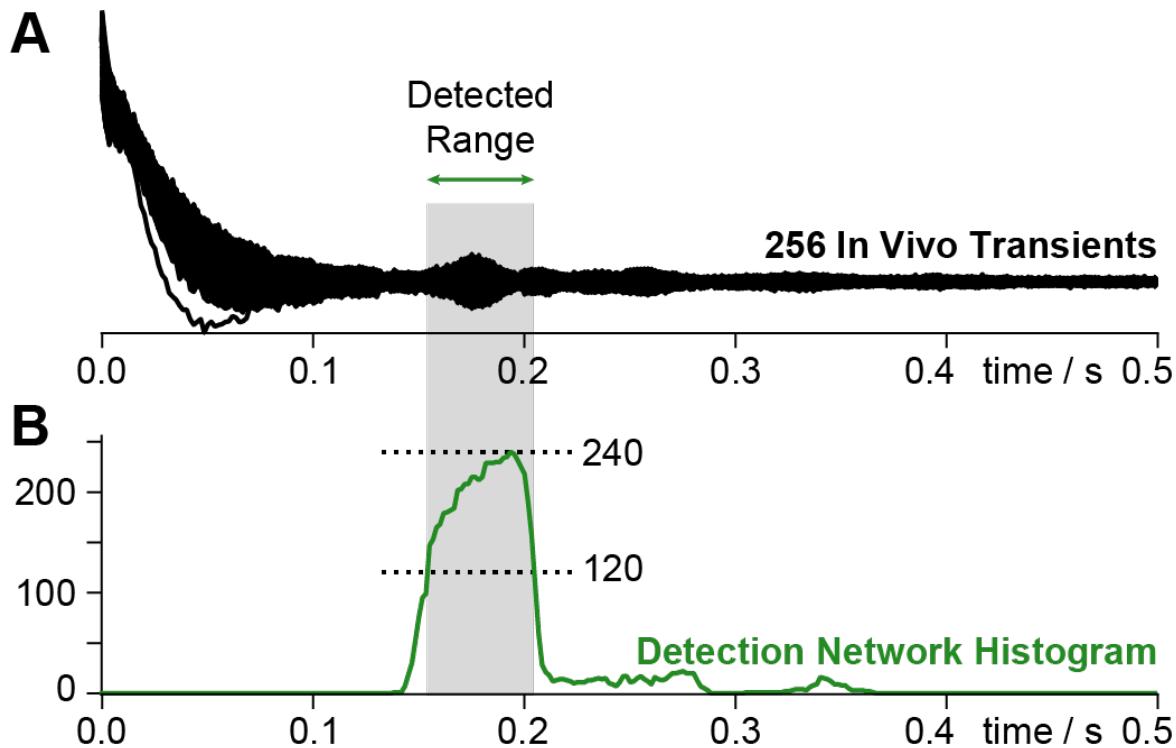
866 **Supplemental Material:**

867



868

869 **Supplemental Figure 1:** Ten representative examples of **A)** residual water and **B)** macromolecule
870 components. Examples match the full spectra shown in Figure 3; each spectrum is scaled independently
871 for visualization.



Supplemental Figure 2: Time-domain window (gray) used to calculate the fractional reduction in standard deviation for the *in vivo* transients. **A)** Each of the 256 MEGA-PRESS transients (128 Edit-on and 128 Edit-Off) overlaid. **B)** Histogram (green) showing the total number of detections by the Detection Network across each timepoint. This window was established algorithmically by using 50% of the maximum count as a threshold for the window.

872

873

874

875

876

877

878

879

880

881

882

883

Metabolite	Synthetic Range (mM)		Metabolite	Synthetic Range (mM)	
	Low	High		Low	High
Acetate	0.00	0.00	Macromolecule 1.67	1.00	15.00
Alanine*	0.47	0.77	Macromolecule 2.04	1.00	35.00
Ascorbate	0.36	1.53	Macromolecule 2.26	1.00	20.00
Aspartate	0.00	4.66	Macromolecule 2.56	1.00	5.00
Adenosine Triphosphate	0.00	0.00	Macromolecule 2.70	1.00	7.00
β-Hydroxybutyrate	0.00	0.00	Macromolecule 2.99	1.00	10.00
β-Hydroxyglutarate	0.00	0.00	Macromolecule 3.21	1.00	7.00
Citrate	0.00	0.00	Macromolecule 3.62	1.00	5.00
Creatine	1.41	10.50	Macromolecule 3.75	1.00	10.00
Cysteine	0.00	0.00	Macromolecule 3.86	1.00	4.00
Ethanol Amine	0.00	0.00	Macromolecule 4.03	1.00	7.00
Ethyl Alcohol	0.00	0.00	Myo-inositol†	2.08	14.00
γ-Amino Butyric Acid	0.52	1.99	N-Acetylaspartate†	5.38	18.00
Glucose*	0.94	1.53	N-Acetylaspartylglutamate†	0.26	2.26
Glutamine	0.26	3.64	Phosphocholine*	0.01	2.00
Glutamate	3.88	13.17	Phosphocreatine*	3.38	6.44
Glycerophosphocholine	0.05	5.00	Phosphoethanolamine*	1.41	2.30
Glutathione	0.16	2.41	Phosphoethyl Alcohol	0.00	0.00
Glycine*	0.94	1.53	Phenylalanine	0.00	0.00
Glycerol	0.00	0.00	Scyllo-inositol	0.00	0.39
Histamine	0.00	0.00	Serine	0.00	0.00
Histidine	0.00	0.00	Taurine	0.00	2.89
Homocarnosine	0.00	0.00	Threonine	0.00	0.00
Lactate	0.00	1.44	Tryptophan	0.00	0.00
Macromolecule 0.92	1.00	30.00	Tyrosine	0.00	0.00
Macromolecule 1.21	1.00	8.00	Valine	0.00	0.00
Macromolecule 1.39	1.00	35.00			

884

885 **Supplemental Table 1:** Concentration ranges for the healthy brain, used to generate synthetic spectra.
 886 These mM values were based upon a meta-analysis preliminary to (Gudmundson et al., 2023), with some
 887 values (marked *) supplemented from the Fit Challenge ranges (Marjańska et al., 2021) and other ranges
 888 (marked †) extended to offer greater flexibility. Concentrations were sampled uniformly between the low
 889 and high values to generate the synthetic spectra.

890

891

892

893

894

895

896

897

Disease / Metabolite	Synthetic Range		Metabolite	Synthetic Range	
	Low	High		Low	High
Seizure			Cancer		
Creatine	0.918	1.012	Creatine	0.256	1.340
Phosphocreatine	0.918	1.012	Phosphocreatine	0.256	1.340
Glycerophosphocholine	0.731	1.147	Glycerophosphocholine	1.139	1.949
Phosphocholine	0.731	1.147	Phosphocholine	1.139	1.949
γ -Amino Butyric Acid	0.930	1.173	Glutamate	0.780	1.320
Glutamate	0.787	1.247	Glutamine	0.780	1.320
Glutamine	0.787	1.247	Lactate	1.00	9.99
Glutathione	0.887	1.243	Myo-inositol	0.829	1.519
Myo-inositol	0.802	1.134	N-Acetylaspartate	0.509	0.956
N-Acetylaspartate	0.751	1.002	N-Acetylaspartylglutamate	0.509	0.956
N-Acetylaspartylglutamate	0.751	1.002			
Stroke			Chronic Pain		
Creatine	0.684	1.146	Glycerophosphocholine	0.943	1.285
Phosphocreatine	0.684	1.146	Phosphocholine	0.943	1.285
Glycerophosphocholine	0.855	1.527	γ -Amino Butyric Acid	0.896	1.168
Phosphocholine	0.855	1.527	Glutamate	0.790	1.121
Glutamate	0.874	1.140	Glutamine	0.790	1.121
Glutamine	0.874	1.140	Myo-inositol	0.942	1.049
Lactate	1.000	6.922	N-Acetylaspartate	0.775	1.280
Myo-inositol	0.827	1.265	N-Acetylaspartylglutamate	0.775	1.280
N-Acetylaspartate	0.727	1.074			
N-Acetylaspartylglutamate	0.727	1.074	Migraine		
Traumatic Brain Injury			Aspartate	0.434	1.409
Aspartate	0.785	0.910	Creatine	0.921	1.011
Creatine	0.814	1.162	Phosphocreatine	0.921	1.011
Phosphocreatine	0.814	1.162	Glycerophosphocholine	0.959	1.137
Glycerophosphocholine	0.930	1.057	Phosphocholine	0.959	1.137
Phosphocholine	0.930	1.057	Glutamate	0.841	1.119
γ -Amino Butyric Acid	0.860	0.984	Glutamine	0.841	1.119
Glutamate	0.824	1.214	Myo-inositol	0.866	1.032
Glutamine	0.824	1.214	N-Acetylaspartate	0.755	1.067
Myo-inositol	0.737	1.315	N-Acetylaspartylglutamate	0.755	1.067
N-Acetylaspartate	0.795	1.011			
N-Acetylaspartylglutamate	0.795	1.011	Fibromyalgia		
Type-1 Diabetes			Creatine	0.760	1.429
Aspartate	0.895	1.496	Phosphocreatine	0.760	1.429
Creatine	0.977	1.039	Glycerophosphocholine	0.840	1.236
Phosphocreatine	0.977	1.039	Phosphocholine	0.840	1.236
Glycerophosphocholine	1.034	1.140	γ -Amino Butyric Acid	0.724	0.937
Phosphocholine	1.034	1.140	Glutamate	1.005	1.104
Glutamate	0.895	1.216	Glutamine	0.711	1.107
Glutamine	0.956	1.353	Myo-inositol	0.844	1.232
Glutathione	0.872	1.435	N-Acetylaspartate	0.847	1.061
Myo-inositol	0.893	1.092	N-Acetylaspartylglutamate	0.847	1.061
N-Acetylaspartate	0.947	1.008			
N-Acetylaspartylglutamate	0.947	1.008			
Scyllo-inositol	0.501	0.992			
Taurine	0.754	1.322			

...table continued on next page

Disease / Metabolite	Synthetic Range		Disease / Metabolite	Synthetic Range	
	Low	High		Low	High
Post-Traumatic Stress Disorder			Schizophrenia		
Creatine	0.940	1.235	Creatine	0.948	1.045
Phosphocreatine	0.940	1.235	Phosphocreatine	0.948	1.045
Glycerophosphocholine	0.843	1.284	Glycerophosphocholine	0.946	1.157
Phosphocholine	0.843	1.283	Phosphocholine	0.946	1.157
γ -Amino Butyric Acid	0.982	1.059	γ -Amino Butyric Acid	0.732	1.261
Glutamate	0.892	1.134	Glutamate	0.857	1.164
Glutamine	0.892	1.134	Glutamine	0.857	1.164
Myo-inositol	0.939	1.198	Myo-inositol	0.806	1.239
N-Acetylaspartate	0.969	1.156	N-Acetylaspartate	0.910	1.103
N-Acetylaspartylglutamate	0.969	1.156	N-Acetylaspartylglutamate	0.910	1.103
Obsessive Compulsive Disorder			Psychosis		
Creatine	0.890	1.320	Creatine	0.983	1.059
Phosphocreatine	0.890	1.320	Phosphocreatine	0.983	1.059
Glycerophosphocholine	0.784	1.223	Glycerophosphocholine	0.892	1.127
Phosphocholine	0.784	1.223	Phosphocholine	0.892	1.127
Glutamate	0.868	1.243	γ -Amino Butyric Acid	0.725	1.176
Glutamine	0.868	1.243	Glutamate	0.813	1.172
Myo-inositol	0.743	1.437	Glutamine	0.813	1.172
N-Acetylaspartate	0.846	1.100	Glycine	1.131	1.423
N-Acetylaspartylglutamate	0.846	1.100	Glutathione	0.917	1.034
Depression			Myo-inositol	0.892	1.090
Creatine	0.938	1.021	N-Acetylaspartate	0.910	1.048
Phosphocreatine	0.938	1.021	N-Acetylaspartylglutamate	0.910	1.048
Glycerophosphocholine	0.741	1.158	Personality Disorder		
Phosphocholine	0.741	1.158	Creatine	0.961	1.110
γ -Amino Butyric Acid	0.769	1.400	Phosphocreatine	0.961	1.110
Glutamate	0.872	1.119	Glycerophosphocholine	0.925	1.007
Glutamine	0.894	1.177	Phosphocholine	0.925	1.007
Glutathione	0.822	1.082	Glutamate	0.949	1.207
Myo-inositol	0.874	1.239	Glutamine	0.949	1.207
N-Acetylaspartate	0.864	1.080	Glutathione	0.917	1.034
N-Acetylaspartylglutamate	0.864	1.080	Myo-inositol	0.989	1.081
Addiction			N-Acetylaspartate	0.880	0.997
Creatine	0.775	1.161	N-Acetylaspartylglutamate	0.880	0.997
Phosphocreatine	0.755	1.161	Bipolar Disorder		
Glycerophosphocholine	0.788	1.202	Creatine	0.900	1.061
Phosphocholine	0.788	1.202	Phosphocreatine	0.900	1.061
γ -Amino Butyric Acid	0.669	1.289	Glycerophosphocholine	0.854	1.269
Glutamate	0.807	1.229	Phosphocholine	0.854	1.269
Glutamine	0.807	1.229	Glutamate	0.907	1.115
Glycine	0.969	1.335	Glutamine	0.907	1.115
Glutathione	0.935	1.442	Glutathione	0.957	1.150
Myo-inositol	0.820	1.135	Myo-inositol	0.812	1.209
N-Acetylaspartate	0.761	1.195	N-Acetylaspartate	0.863	1.109
N-Acetylaspartylglutamate	0.761	1.195	N-Acetylaspartylglutamate	0.863	1.109

...table continued on next page

Disease / Metabolite	Synthetic Range		Disease / Metabolite	Synthetic Range	
	Low	High		Low	High
Multiple Sclerosis			Dementia		
Glycerophosphocholine	0.880	1.077	Ascorbate	1.132	1.231
Phosphocholine	0.880	1.077	Aspartate	1.028	1.168
γ -Amino Butyric Acid	0.851	1.017	Creatine	1.010	1.028
Glutamate	0.887	1.030	Phosphocreatine	1.010	1.028
Glutamine	0.887	1.030	Glycerophosphocholine	0.850	1.150
Glutathione	0.844	1.069	Phosphocholine	0.850	1.150
Myo-inositol	0.892	1.078	γ -Amino Butyric Acid	0.513	1.183
N-Acetylaspartate	0.924	1.044	Glutamate	0.771	1.139
N-Acetylaspartylglutamate	0.924	1.044	Glutamine	0.955	1.172
Parkinson's Disease			Myo-inositol	0.801	1.397
Creatine	0.850	1.100	N-Acetylaspartate	0.723	1.038
Phosphocreatine	0.850	1.100	N-Acetylaspartylglutamate	0.723	1.038
Glycerophosphocholine	0.780	1.201	Scyllo-inositol	0.476	1.312
Phosphocholine	0.780	1.201	Taurine	0.882	1.013
γ -Amino Butyric Acid	0.679	1.390	APOE4		
Glutamate	0.887	1.224	Aspartate	1.028	1.168
Glutamine	0.887	1.224	Glycerophosphocholine	0.965	1.019
Myo-inositol	0.810	1.190	Phosphocholine	0.965	1.019
N-Acetylaspartate	0.756	1.240	γ -Amino Butyric Acid	0.513	1.183
N-Acetylaspartylglutamate	0.756	1.240	Glucose	0.971	1.028
Essential Tremor			Glutamate	0.836	1.126
Creatine	0.924	1.053	Glutamine	0.909	1.232
Phosphocreatine	0.924	1.053	Glutathione	0.834	1.103
Glycerophosphocholine	0.851	1.044	Myo-inositol	0.959	1.092
Phosphocholine	0.851	1.044	N-Acetylaspartate	0.895	1.063
γ -Amino Butyric Acid	0.802	1.218	N-Acetylaspartylglutamate	0.895	1.063
Glutamate	1.050	1.434			
Glutamine	1.050	1.434			
N-Acetylaspartate	0.919	1.136			
N-Acetylaspartylglutamate	0.919	1.136			

898

899 **Supplemental Table 2:** Clinical population scaling factors used to generate synthetic spectra. In each
900 case the simulated concentration for a given clinical spectrum was determined by a uniformly sampled
901 concentration drawn from the ranges shown in Supplemental Table 1, multiplied by a scaling factor
902 determined by a uniformly sampled scalar from these ranges provided in Supplemental Table 2.

903

904

905

906

907

908

Metabolite	Synthetic Range (ms)		Metabolite	Synthetic Range (ms)	
	Low	High		Low	High
Acetate	0.00	0.00	Macromolecule 1.67	20.00	60.00
Alanine*	100.00	250.00	Macromolecule 2.04	20.00	60.00
Ascorbate	100.00	250.00	Macromolecule 2.26	20.00	60.00
Aspartate	120.15	204.55	Macromolecule 2.56	20.00	60.00
Adenosine Triphosphate	0.00	0.00	Macromolecule 2.70	20.00	60.00
β-Hydroxybutyrate	0.00	0.00	Macromolecule 2.99	20.00	60.00
β-Hydroxyglutarate	0.00	0.00	Macromolecule 3.21	20.00	60.00
Citrate	0.00	0.00	Macromolecule 3.62	20.00	60.00
Creatine 3.03	164.08	242.70	Macromolecule 3.75	20.00	60.00
Creatine 3.91	135.18	213.80	Macromolecule 3.86	20.00	60.00
Creatine 6.65	164.08	242.70	Macromolecule 4.03	20.00	60.00
Cysteine	0.00	0.00	Myo-inositol†	139.80	219.58
Ethanolamine	0.00	0.00	N-Acetylaspartate	242.70	320.17
Ethyl Alcohol	0.00	0.00	N-Acetylaspartylglutamate	132.87	216.11
γ-Amino Butyric Acid	77.37	161.77	Phosphocholine	100	250
Glucose	100.00	250.00	Phosphocreatine 3.03	130	210
Glutamine	103.96	184.89	Phosphocreatine 3.93	100	180
Glutamate	140.96	219.58	Phosphocreatine 6.58	130	210
Glycerophosphocholine	198.77	278.54	Phosphocreatine 7.30	130	210
Glutathione	108.59	188.36	Phosphoethanolamine	100	250
Glycine	121.31	204.55	Phosphoethyl Alcohol	0.00	0.00
Glycerol	0.00	0.00	Phenylalanine	0.00	0.00
Histamine	0.00	0.00	Scyllo-inositol	100	250
Histidine	0.00	0.00	Serine	0.00	0.00
Homocarnosine	0.00	0.00	Taurine	151.37	231.14
Lactate	142.12	226.52	Threonine	0.00	0.00
Macromolecule 0.92	20.00	60.00	Tryptophan	0.00	0.00
Macromolecule 1.21	20.00	60.00	Tyrosine	0.00	0.00
Macromolecule 1.39	20.00	60.00	Valine	0.00	0.00

909

910 **Supplemental Table 3:** T_2 Relaxation time ranges in milliseconds for the healthy brain derived from 1.5
 911 T multiple meta-regression preliminary to (Gudmundson et al., 2023). Relaxation times were sampled
 912 uniformly between the low and high values.

913

914

915

916

917

918

919

B₀ (T)	Every Point	Every 2nd Point	Every 3rd Point	Every 4th Point	Every 5th Point	Every 6th Point	Every 7th Point	Every 8th Point
1.4	3733.33	1866.67	1244.44	933.33	746.67	622.22	533.33	466.67
1.5	4000.00	2000.00	1333.33	1000.00	800.00	666.67	571.43	500.00
1.6	4266.67	2133.33	1422.22	1066.67	853.33	711.11	609.52	533.33
1.7	4533.33	2266.67	1511.11	1133.33	906.67	755.56	647.62	566.67
1.8	4800.00	2400.00	1600.00	1200.00	960.00	800.00	685.71	600.00
1.9	5066.67	2533.33	1688.89	1266.67	1013.33	844.44	723.81	633.33
2.0	5333.33	2666.67	1777.78	1333.33	1066.67	888.89	761.90	666.67
2.1	5600.00	2800.00	1866.67	1400.00	1120.00	933.33	800.00	700.00
2.2	5866.67	2933.33	1955.56	1466.67	1173.33	977.78	838.10	733.33
2.3	6133.33	3066.67	2044.44	1533.33	1226.67	1022.22	876.19	766.67
2.4	6400.00	3200.00	2133.33	1600.00	1280.00	1066.67	914.29	800.00
2.5	6666.67	3333.33	2222.22	1666.67	1333.33	1111.11	952.38	833.33
2.6	6933.33	3466.67	2311.11	1733.33	1386.67	1155.56	990.48	866.67
2.7	7200.00	3600.00	2400.00	1800.00	1440.00	1200.00	1028.57	900.00
2.8	7466.67	3733.33	2488.89	1866.67	1493.33	1244.44	1066.67	933.33
2.9	7733.33	3866.67	2577.78	1933.33	1546.67	1288.89	1104.76	966.67
3.0	8000.00	4000.00	2666.67	2000.00	1600.00	1333.33	1142.86	1000.00
3.1	8266.67	4133.33	2755.56	2066.67	1653.33	1377.78	1180.95	1033.33

Supplemental Table 4: Field strengths (*Tesla*) and possible spectral widths (*Hertz*) available using the AGNOSTIC basis sets. These combinations are achievable by subsampling the time-domain from every timepoint to every 8th timepoint and allows for maintaining a minimum of 2048 timepoints. Each of these combinations is available for the 15 echo times, from 10 ms to 80 ms, in steps of 5 ms.

920

921 **References:**

922 Gudmundson, A. T., Koo, A., Virovka, A., Amirault, A. L., Soo, M., Cho, J. H.,
923 Oeltzschnner, G., Edden, R. A. E., & Stark, C. E. L. (2023). Meta-analysis and open-source
924 database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Analytical
925 Biochemistry, 676, 115227. <https://doi.org/10.1016/j.ab.2023.115227>

926 Marjańska, M., Deelchand, D. K., Kreis, R., Alger, J. R., Bolan, P. J., Borbath, T., Boumezbeur,
927 F., Fernandes, C. C., Coello, E., Nagraja, B. H., Považan, M., Ratiney, H., Sima, D., Starčuková,
928 J., Soher, B. J., Wilson, M., & van Asten, J. J. A. (2022). Results and interpretation of a fitting
929 challenge for MR spectroscopy set up by the MRS study group of ISMRM. Magnetic Resonance
930 in Medicine, 87(1), 11–32. <https://doi.org/10.1002/mrm.28942>