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Abstract:

Neural networks are potentially valuable for many of the challenges associated with MRS
data. The purpose of this manuscript is to describe the AGNOSTIC dataset, which contains
259,200 synthetic "H MRS examples for training and testing neural networks. AGNOSTIC was
created using 270 basis sets that were simulated across 18 field strengths and 15 echo times. The
synthetic examples were produced to resemble in vivo brain data with combinations of
metabolite, macromolecule, residual water signals, and noise. To demonstrate the utility, we
apply AGNOSTIC to train two Convolutional Neural Networks (CNNs) to address out-of-voxel
(OOV) echoes. A Detection Network was trained to identify the point-wise presence of OOV
echoes, providing proof of concept for real-time detection. A Prediction Network was trained to
reconstruct OOV echoes, allowing subtraction during post-processing. Complex OOV signals
were mixed into 85% of synthetic examples to train two separate CNNs for the detection and
prediction of OOV signals. AGNOSTIC is available through Dryad and all Python 3 code is
available through GitHub. The Detection network was shown to perform well, identifying 95%
of OOV echoes. Traditional modeling of these detected OOV signals was evaluated and may
prove to be an effective method during linear-combination modeling. The Prediction Network
greatly reduces OOV echoes within FIDs and achieved a median logio normed-MSE of —1.79, an
improvement of almost two orders of magnitude.

Keywords: Magnetic Resonance Spectroscopy, Synthetic Data, Simulation, Deep Learning,
Out-of-voxel Artifacts, Human Brain

Abbreviations: 'H, proton; 2HG, B-hydroxyglutarate; Ace, acetate; AGNOSTIC, adaptable generalized neural-
network open-source spectroscopy training dataset of individual components; Ala, alanine; Asc, ascorbate; Asp,
aspartate; ATP, adenosine triphosphate; bHB, f-hydroxybutyrate; Cho, choline-containing compounds; Cit, citrate;
CNN, Convolutional Neural Networks; Cr, creatine; Cys, Cysteine; DL, deep learning; EA, Ethanolamine; EtOH,
ethanol; FID, free induction decay; FWHM, full-width half-maximum; GABA, gamma-aminobutyric acid; Glc,
glucose; Gln, glutamine; Glu, glutamate; Glx, sum of glutamate and glutamine; Gly, glycine; Glyce, glycerol; GM,
gray matter; GPC, glycerophosphocholine; GSH, glutathione; H20, water; HCar, homocarnosine; Hist, histamine;
His, histidine; ISMRM, international society for magnetic resonance in medicine; Lac, lactate; LASER, localization
by adiabatic selective refocusing; MEGA, Mescher-Garwood; ml, myo-inositol; MM, macromolecule; MRS,
magnetic resonance spectroscopy; MSE, mean-squared error; NAA, N-acetylaspartate; NAAG, N-acetyl-aspartyl-
glutamate; OOV, out-of-voxel; PCho, phosphocholine; PCr, phosphocreatine; PE, phosphoethanolamine; Phenyl,
phenylalanine; PRESS, point resolved spectroscopy; ReLu, rectified linear unit; Ser, serine; s, scyllo-inositol;
sLASER, semi-adiabatic localization by adiabatic selective refocusing; SPECIAL, spin echo full intensity acquired
localiezed; STEAM, stimulated echo acquisition mode; SNR, signal-to-noise ratio; T2, spin-spin relaxation time;
Tau, taurine; tCho, sum of choline-containing metabolites; tCr, sum of creatine and phosphocreatine; TE, echo-time;
Thr; threonine; tNAA, sum of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate; Trp, Tryptophan; Tyr, Tyrosine;
Val, Valine
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1. Introduction:

Proton ('H) magnetic resonance spectroscopy (MRS) non-invasively measures levels of
endogenous neurometabolites. MRS-visible metabolites are present at millimolar concentrations
in the brain, yielding detectable signals with relatively low signal-to-noise ratio (SNR) which
mutually overlap. In vivo spectra suffer from several artifacts that complicate modeling and
interpretation of the data, including eddy current effects and out-of-voxel (OOV) echoes (Kreis,
2004). While there is some degree of standardization and consensus around pre-processing,
modeling, and quantification of MRS data (Maudsley et al., 2021; Near et al., 2021; Oz et al.,
2021; Wilson et al., 2019), this is an evolving field without a single ideal solution due to the
complexity of the problem, and which therefore is likely to benefit from recent advances in
machine learning.

Deep learning (DL) uses a network consisting of a series of computational layers to
process information (Lecun et al., 2015). Iterative training allows features of the data to be
identified and weighted to estimate a final function which predicts a desired output based on a
given input (Goodfellow et al., 2016). Supervised learning involves training the network based
on a pre-defined target, associating ground-truth parameters with each input. An extensive,
balanced, and diverse dataset is preferred to increase the generalizability of the DL outcome.
High-dimensional data, such as medical images or time series, are demonstrated to be the most
beneficial set of data for several computer vision tasks, such as classification, registration,
segmentation, reconstruction, and object detection (Gassenmaier, Kiistner, et al., 2021; Lundervold &
Lundervold, 2019).

DL has been developed for MRS data as a proof-of-concept in many applications, including
metabolite quantification (Chandler et al., 2019; Hatami et al., 2018; H. H. Lee & Kim, 2019, 2020; Rizzo
et al., 2023; Shamaei et al., 2023; Zhang & Shen, 2023), signal separation (Li et al., 2020), phase and
frequency correction (Ma et al., 2022; Shamaei et al., 2023; Tapper et al., 2021), reconstruction
of missing data (H. Lee et al., 2020), accelerated post-processing (Gurbani et al., 2019; Igbal et
al., 2021), denoising (Chen et al., 2023; Dziadosz et al., 2023; Lam et al., 2020), super-resolution
(Gassenmaier, Afat, et al., 2021; Igbal et al., 2019), artifact removal (Gurbani et al., 2018;
Kyathanahally et al., 2018), and anomaly detection (Jang et al., 2021). Despite the potential,
these methods have yet to be shown to generalize outside of small datasets with a single fixed

acquisition protocol. Whereas ’classical’ methods for post-processing are often driven by an
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understanding of the problem to be solved, and therefore can often be applied broadly, deep
learning methods cannot be assumed to function well outside of the specific datasets used for
training and testing. Broadly applicable deep learning methods will only arise from broad
training and testing. A key barrier is the lack of a generalized benchmark dataset for training and
testing, to play the role that MNIST, ImageNet, and COCO have played in the field of Computer
Vision (Fei-Fei et al., 2010; Li Deng, 2012; T.-Y. Lin et al., 2014). Such a dataset lowers the
barrier to entry for neural network development in MRS and facilitates performance comparisons
between models. The Synthetic Data Working Group of the MRS study group of the
International Society for Magnetic Resonance in Medicine’s Synthetic Data Working Group has
recently highlighted the MRS community’s need for such a resource. The ultimate goal of this
work is to bridge the gap from the synthetic to the in vivo domain, including the additional
domain-shift to clinical data.

OOV echoes, which represent a subset of the artifacts often referred to as ‘spurious’ or
‘ghost’ echoes (Kreis, 2004), are a substantial issue for in vivo MRS, and an under-studied
potential DL application. MRS voxel localization is achieved via a combination of RF pulses and
magnetic field gradients, with the intended coherence transfer pathway selected both by phase
cycling and dephasing “crusher” gradient scheme (Bodenhausen, 2011). OOV signals arise from
gradient echoes — signals from outside the shimmed voxel of interest are refocused by evolution
in local field gradients that are either inherent (from air-tissue-bone interfaces) or arising from
second-order shim terms (Starck et al., 2009). Therefore, brain regions close to air cavities (e.g.,
medial prefrontal cortex) or which require stronger shim gradients (e.g., thalamus, hippocampus,
etc.) most commonly exhibit OOV artifacts (Starck et al., 2009). OOV echoes seldom occur at
the time of the primary echo, so they manifest in the spectrum as broad peaks with strong first-
order phase “ripple” that can obscure metabolite resonances. While acquisition strategies can
mitigate OOV echoes to some extent, by careful consideration of crusher schemes or voxel
orientation (Ernst & Chang, 1996; Landheer & Juchem, 2019; Song et al., 2023), post-processing
strategies remain valuable where complete elimination is not possible.

This manuscript develops Adaptable Generalized Neural-Network Open-source
Spectroscopy Training dataset of Individual Components (AGNOSTIC), a dataset consisting of
259,200 synthetic MRS examples. AGNOSTIC spans a range of field strengths, echo times, and

clinical profiles, representing metabolite signals, macromolecule (MM) background signals,
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136  residual water signals, and Gaussian noise as separate components. To date, DL applications to
137 MRS have relied upon narrow in-house-generated training datasets that limit the generalizability
138  of the solutions developed and comparisons between tools; AGNOSTIC is proposed as a

139  benchmark dataset to fill this gap. In order to demonstrate the utility of this resource, we then
140 illustrate a specific augmentation of the AGNOSTIC dataset to train neural networks for the

141  detection and prediction of OOV echoes.


https://doi.org/10.1101/2023.05.08.539813
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.08.539813; this version posted September 1, 2023. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

142

143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168
169
170
171
172

available under aCC-BY-NC-ND 4.0 International license.

2. Methods:

2.1. AGNOSTIC Synthetic Dataset
The parameter space that AGNOSTIC spans is deliberately broad, comprising: 18 field

strengths; 15 echo times; broad distributions of metabolite, MM, and water amplitudes; and
densely sampled time-domain to allow down-sampling. Calculations were carried out using an
in-house and open-source Python 3 (Van Rossum & Drake, 2009) programming script using NumPy
(Harris et al., 2020). The decision to use in-house software was motivated by needing the
flexibility to simulate basis sets that could be manipulated on a spin-by-spin basis which could,
for instance, allow for different spins within the same metabolite to have different relaxation
rates (e.g., Cr3 9 and Cr3). The dataset is structured as a zipped NumPy archive file (.npz) and
can be opened as a Python 3 dictionary object. This zipped NumPy file contains complex-valued
NumPy arrays of time-domain (4096 timepoints) data corresponding to the metabolite,
macromolecule, water, and noise components which can be combined in different ways
depending on the application. For instance, a denoising model may want to target the combined
metabolite, MM, and water signal without noise. Within the file, all the acquisition parameters
(field strength, echo time, spectral width, etc.), simulation parameters (signal to noise, full-width
half-max, concentrations, T> relaxation, etc.), and data augmentation options are specified as

detailed below.

2.1.1. Basis Set Simulation:

Metabolite spectra are based upon density-matrix-simulated basis functions (Blum, 1981;
Fano, 1957; Farrar, 1990; O. W. Serensen et al., 1984). A total of 270 basis sets were created
across 18 field strengths (1.4 T —3.1 T in steps of 0.1 T) and 15 echo times (10 ms — 80 ms in
steps of 5 ms). The Point RESolved Spectroscopy (PRESS) pulse sequence (Bottomley, 1982)
was simulated using ideal pulses with TE1 = TE2. The simulated “acquisition window” was
started immediately after the last pulse to generate points before the echo. Each metabolite basis
was output as an N x 16684 NumPy array, where N is the number of spins for a given metabolite
and 16684 is the fixed length of complex time points (300 points before the echo maximum, with
an appropriate padding number of zeros and followed by the simulated pre-echo signal, and
16384 points after the echo). The simulated spectral width, centered on 4.7 ppm, was 63.62 ppm
for all field strengths (e.g., 8 kHz at 3 T; 4 kHz at 1.5 T). By subsampling the intentionally long

time-domain points in the basis set, we can achieve a series of different spectral widths within
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the ranges commonly seen for in vivo experiments without the need to re-simulate the signal with

different dwell times.

39 brain metabolite basis functions were simulated: Adenosine Triphosphate (ATP);
Acetate (Ace); Alanine (Ala); Ascorbate (Asc); Aspartate (Asp); B-hydroxybutyrate (bHB); -
hydroxyglutarate (2HG); Citrate (Cit); Cysteine (Cys); Ethanolamine (EA); Ethanol (EtOH);
Creatine (Cr); y-Amino-Butyric Acid (GABA); Glucose (Glc); Glutamine (Gln); Glutamate
(Glu); Glycerophosphocholine (GPC); Glutathione (GSH); Glycerol (Glyce); Glycine (Gly);
Water (H>O); Homocarnosine (HCar); Histamine (Hist); Histidine (His); Lactate (Lac); Myo-
Inositol (ml); N-Acetyl-Aspartate (NAA); N-Acetyl-Aspartate-Glutamate (NAAG);
Phenylalanine (Phenyl); Phosphocholine (PCho); Phosphocreatine (PCr); Phosphoethanolamine
(PE); Scyllo-Inositol (sI); Serine (Ser); Taurine (Tau); Threonine (Thr); Tryptophan (Trp);
Tyrosine (Tyr); and Valine (Val). GABA was separately simulated using two different spin-
system enumerations (Govindaraju et al., 2000; Near et al., 2012). Both a-glucose and B-glucose

were simulated.

2.1.2. Assembly of Metabolite Component:

Individual metabolite basis functions were linearly combined to give a metabolite
spectral component, weighted by metabolite concentrations sampled from distributions defined
by our recent meta-analysis (Gudmundson et al., 2023), including both healthy and clinical
cohort ranges. From the full basis sets, 22 metabolites were selected which had defined
concentration ranges available in a recent meta-analysis that collated results from nearly 500
MRS papers using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(Gudmundson et al., 2023; Moher et al., 2009; Page et al., 2021). One isomer of GABA (either
the definition from (Govindaraju et al., 2000) or (Near et al., 2012)) and Glucose (o or ) were
randomly chosen with equal probability for each example. Concentrations were selected with
equal probability from a range defined by +2.5 standard deviations from the meta-analysis mean
of each cohort (Gudmundson et al., 2023) and are provided in supplemental tables 1 and 2.

T>* relaxation decay of time-domain data was simulated with an exponential and
Gaussian component to produce a Voigt lineshape (Marshall et al., 1997) in the frequency
domain. The exponential component represents the pure T arising from dipole-dipole

interactions, paramagnetic interaction, etc., while the Gaussian component represents the
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transverse dephasing from diffusion and exchange of spins in an inhomogeneous field (Koch et
al., 2009; Marshall et al., 1997; Michaeli et al., 2002; Yablonskiy & Haacke, 1994). While pure T> is
understood to be field-independent (Bloembergen et al., 1948; Carr & Purcell, 1954; Held et al., 1973;
Michaeli et al., 2002), the dominant Gaussian decay (Marshall et al., 1997) increases with
increasing static field strength and is attributed to greater microscopic (Michaeli et al., 2002) and
macroscopic (Juchem et al., 2021; Tkac et al., 2001) susceptibility gradients. Here, the pure
Lorentzian T> component is based upon the relaxation times at 1.5 T from a relaxation meta-
regression (Gudmundson et al., 2023), which are assumed to be the least impacted by
susceptibility gradients that scale with Bo (Bloembergen et al., 1948; De Graaf et al., 2006;
Michaeli et al., 2002). Once the Lorentzian T> component was applied, the additional T>*
contributions were modeled by applying appropriate amounts of Gaussian broadening, to achieve
a frequency-domain full-width half-maximum (FWHM) linewidth of the NAA singlet between 3
Hz and 18 Hz with a uniform distribution. A small amount of jitter (between 20 s and 100 s?)
was added to the Gaussian decay rate so that each metabolite would undergo a similar, but not

identical, amount of Gaussian decay to better replicate the variability observed for in vivo data.

2.1.3. Macromolecular Component:

Fourteen MM signals were modeled at: 0.92 ppm; 1.21 ppm; 1.39 ppm; 1.67 ppm; 2.04
ppm; 2.26 ppm; 2.56 ppm; 2.70 ppm; 2.99 ppm; 3.21 ppm; 3.62 ppm; 3.75 ppm; 3.86 ppm; and
4.03 ppm (Cudalbu et al., 2021; Giapitzakis et al., 2018). MM chemical shifts were jittered by +
0.03 ppm to both account for observed differences in MM designations and provide further
dataset augmentation. Each MM signal was simulated as a singlet with exponential decay rate
sampled uniformly from a range specified by literature of MM T> time constants (Murali-
Manohar et al., 2020) and additional Gaussian decay to reach published linewidths (Giapitzakis
et al., 2018; Murali-Manohar et al., 2020). MM amplitudes were sampled uniformly from within
published ranges (Giapitzakis et al., 2018; Murali-Manohar et al., 2020).

2.1.4. Noise Component:

Noise was generated from a normal distribution, with independent random real and
imaginary points. The noise was scaled such that the signal-to-noise ratio of the NAA singlet
(SNRnaa was defined, following Experts” Consensus (Oz et al., 2021), by NAA height divided by
the standard deviation of the noise) was uniformly sampled between 5 and 80. The noise

amplitude values are also stored within the archive file.
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2.1.5. Residual Water Component:

The residual water basis signal was simulated as a composite signal (of up to five
components). In order to simulate varying degrees of water suppression, the residual water signal
was modeled by between 0 and 5 unique Voigt-shaped signals with variable ppm locations,
phases, and amplitudes, based on the approach of (L. Lin et al., 2019). The ranges for these
parameters are listed in Table 1. The final water component was scaled to be between 1x and
20x the maximum value of the frequency-domain metabolite spectrum. The water components

used, along with their corresponding parametrizations, are stored within the NumPy archive file.

2.1.6. Frequency and Phase Shifts:

Within the NumPy archive file, a frequency shift, zero-order phase shift, and first-order
phase shift are specified for each entry in the dataset, but not applied to the time-domain
components. Frequency shifts were sampled uniformly from the range —0.313 ppm to +0.313
ppm. Zero-order phase shifts were sampled uniformly from the range —180 degrees to +180
degrees. First-order phase shifts were sampled uniformly from the range —19.5 degrees to +19.5
degrees per ppm. Users may choose to omit phase and frequency shifts, use the provided shifts,
or specify their own.

2.2. Exemplar Application to AGNOSTIC: Machine Learning for Out-Of-Voxel Artifacts:

The primary motivation for the AGNOSTIC dataset is as a training resource for the
development of processing, modeling, and analysis tools for MRS. Synthetic spectra with known
ground truths are valuable in a range of applications, from the development and validation of

traditional linear combination modeling algorithms to training DL models.

In order to demonstrate the utility of the dataset, an exemplar application is presented, in
which the AGNOSTIC dataset is supplemented by simulated artifacts (in this case out-of-voxel
OOV echoes) and used to train DL models to detect and predict the artifact signals. The
AGNOSTIC dataset was developed as building blocks which can be combined to train a variety
of different models. A strength of this dataset is that custom user-defined components can be
utilized. We demonstrate this point here by building an OOV dataset to train and evaluate a DL
model to identify and suppress OOV artifacts.
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262 2.2.1. Simulation of Out-Of-Voxel Echoes:

263 OOV artifacts were defined as complex time-domain signals with a time point (toov),
264  width (Woov), frequency (woov), phase (®oov) and amplitude (aoov) as shown in Figure 1. toov
265  describes the timepoint of the top of the OOV echo and was sampled randomly from a uniform
266  distribution between 10 ms and 400 ms. Woov describes the Gaussian decay rate and was

267  sampled randomly from a uniform distribution between 500 s2 and 8000 s, resulting in a

268  FWHM echo duration between 18 ms and 74 ms. woov describes the offset in the frequency

269  domain, and was sampled randomly from a uniform distribution in order to produce OOVs that
270  occur between 1 ppm and 4 ppm. aoov was sampled randomly from a uniform distribution to
271 produce OOV echoes with an amplitude between 0.1% and 20% of the maximum time domain

272 point. ®oov was sampled uniformly between 0 degrees to 360 degrees.

Out of Voxel Echo = aoov(e‘WOOV(t‘TOOV)Z)(e‘i‘*’t)(e‘iq’) [1]
273

274 2.2.2. Integration of OOV Echoes into AGNOSTIC for the Training Dataset:

275 To build the OOV echoes dataset, we combined metabolite, water, MM, and noise

276 components from the AGNOSTIC dataset. We then added OOV signals to 85% of the dataset
277  and a complex zeros array in the remaining 15%. In total there were 180,000 examples used for
278  network training, 1,800 examples used for validation, and 7,200 examples used for testing.

279  Finally, we applied the included frequency and phase shifts specified within the AGNOSTIC
280  dataset. The network input consisted of the combined metabolite, water, MM, noise, and OOV
281  signals as a complex time-domain signal. This input was normalized so that the absolute

282  maximum among the real and imaginary values was 1. Finally, training data were converted to a

283  TensorFlow Dataset (Abadi et al., 2015).

284 2.2.3. Detection Network:

285 The first exemplar network is designed to detect OOV echoes within time-domain data
286 by identifying the points in the spectra that have been contaminated by OOV echoes. This

287  Detection Network is a fully Convolutional Neural Network (CNN) designed using TensorFlow2
288  with Keras (Chollet & others, 2015) in a Python 3 environment. The network consists of

289  contracting encoding layers and expanding decoding layers with a total of 1.543 million

290 parameters, as shown in Figure 2. Each layer was initialized (kernel initializer) with
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“he normal” (He et al., 2015). Each convolutional layer (except the output layer which uses a
sigmoid activation) includes batch normalization and a leaky rectified linear unit (ReLu)
activation function (Maas et al., 2013)Click or tap here to enter text.. A kernel size of 3 (3 x 2
before collapsing the real/imaginary dimension and 3 x 1 afterward) was used for each
convolutional layer. The network is designed to receive a time-domain input signal and return a
binary mask of the same size as the input with ones placed in OOV-detected regions and zeros
elsewhere. A ground-truth binary mask was determined as the 5% level of the maximum
amplitude of the Gaussian OOV envelope located at the central peak. For training, the input and
output of this network is a 60 x 2048 x 2 x 1 tensor, where 60 is the batch size, 2048 is the
number of time points, 2 is the real/imaginary dimension, and 1 is the channel dimension.

The Dice coefficient (Carass et al., 2020; Dice, 1945; T. Serensen, 1948) of the overlap
between the network output and the correct binary OOV location vector was used as a training
loss function, calculated as 2x the intersection divided by the union plus 1; where 1 was used to
avoid division by 0. The Adam (Kingma & Ba, 2015) optimizer was used with a fixed learning rate
of 0.0003. Success on the validation set was evaluated every 7,200 steps, at which time the
network weights were saved if the validation loss improved. The final model that was selected
had the smallest validation loss after 72 epochs. Training took approximately 2.5 hours and was
performed on an 8 GB NVIDIA GeForce RTX 3070 GPU. A clustering algorithm was applied to
the final network output, which zeroed any group of time points in which the network detected
OOV echo that was smaller than 5 consecutive time points, to dampen spurious output. A cluster
size of 5 was selected empirically to ensure detection of the narrow echoes while eliminating any

false positives.

2.2.4. Modeling:

Modeling of the OOV echoes was performed as an optimization problem and solved with
SciPy (Virtanen et al., 2020) minimization routines. Here, the non-gradient Powell (Powell,
1964, 1994) optimizer was used to determine the five OOV parameters (toov, Woov, ®oov,
®oov, and apov), minimizing the mean squared error (MSE) between the model and the data
within the time window identified by the Detection Network. Initial values for Toov, Woov, and
the aoov are inferred from the Detection Network’s output center timepoint, the detection

duration, and the standard deviation of the target signal within the detected region.
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Optimization was performed as three sequential optimization steps performed one after
another. The first optimization is used to determine Toov, Woov, and the aoov by minimizing the
MSE between the absolute values of the model and the data (i.e., removing frequency and phase
from the model) in the time domain. The second optimization determines ®woov by minimizing
between the absolute values of the model and the data in the frequency domain. The third
optimization refines the values determined by optimizations 1 and 2 and determines ®oov by

complex optimization in the time domain.

2.2.5. Prediction Network:

The second exemplar network is designed to predict the OOV echoes found within time-
domain data. This prediction network is also a fully CNN designed using TensorFlow2 with
Keras in a Python 3 environment, with the same architecture as the Detection Network (as shown
in Figure 2). As such, the input and output of this network is also 60 x 2048 x 2 x 1 tensor, where
60 is the batch size, 2048 is the number of time points, 2 is the real/imaginary dimension, and 1
is the channel dimension. The network is designed to receive a time-domain input signal
containing a combination of the ground-truth time-domain signal and the OOV artifact and
return a time-domain output signal that only contains the OOV signal, amplified 10x. This
amplification serves to focus the training on the OOV echo by non-uniformly (due to the OOV
echo’s non-linear decay) concentrating the network towards the center-most points of the OOV
echoes to effectively center and reconstruct the predicted OOV echo on the toov with the correct
Woov.

For training, a weighted mean squared error (weighting the timepoints within the ground-
truth OOV mask uniformly by 10) was used as a loss function with an ADAM (Kingma & Ba,
2015) optimizer and a fixed learning rate of 0.0003. Success on the validation set was evaluated
every 7,200 steps at which time the network weights were saved if the validation loss improved.
The final model that was selected had the smallest validation loss after 72 epochs. Training took

approximately 2.5 hours and was performed on an 8 GB NVIDIA GeForce RTX 3070 GPU.

2.2.6 Evaluating the Performance of Networks and Modeling:

In the final testing set, OOV artifacts were present in 6,137 of the total 7,200 examples
(85.2%). The Detection Network was evaluated using the Dice coefficient (Carass et al., 2020;
Dice, 1945; Powell, 1964), the overlap between the ground-truth binary OOV mask and the
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351  cluster-thresholded network output. As well as computing global success, the dependence of
352  detection success on various attributes of the OOV echo and the underlying spectrum were also

353  investigated.

354 Both modeling and the prediction network return a pure OOV signal, and in both cases,
355 the MSE between the prediction/model and the ground-truth OOV echo is used for evaluation. If
356  the ground-truth echo datapoints are E; and the model or echo prediction is M;, we calculate the

357 fractional remaining OOV amplitude as:

YIM; — E;|? [2]
XIE;|?

Fractional OOV Remaining =

358  where the bars represent the complex amplitude. The sum is taken over the ground-truth range of
359  the OOV echo. In order to visualize a wide range of success and failure, we take the logio of this

360  quantity for plotting (i.e., a logio value of 1 is no change, anything positive is a manipulation that
361 is worse than doing nothing, and a negative value show the order of magnitude of improvement).
362  Note that E; is the ground-truth echo signal, not the signal from which the echo is being removed

363  which also contains metabolite, macromolecule, and noise components.

364 The timing of the OOV was found to be a key parameter determining the success of

365  detection and prediction, and as a result, the evaluation metrics were calculated for the following
366  time-bins (based on the known value of toov): 10-20 ms; 20-40 ms; 40-60 ms; 60-80 ms; 80-120
367 ms; 120-200 ms; 200-300 ms; 300-400 ms.

368  2.2.7 In Vivo Proof-of-Principle

369 As a proof-of-principle demonstration of this exemplar use of the AGNOSTIC dataset,
370  the network was applied to 256 transients of in vivo data, selected because they contain

371  prominent OOV echoes and were excluded during quality assessment in a recent study (Zollner
372 etal., 2023). These data were collected on a 2.89 T Siemens scanner using the MEGA-PRESS
373  (Mescher et al., 1996, 1998) pulse sequence with a TE of 68 ms and TR of 1.75 s, and a spectral
374  width of 2.4 kHz. Note that this challenges the generality of the training because the network has
375 never seen data acquired at 2.89 T, nor at 2.4 kHz spectral width, nor at TE 68 ms, nor with

376 MEGA-Editing, nor with actual real RF pulses. Raw data from a 25 x 25 x 25 mm? voxel in the
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377  cerebellum were loaded and coil combined in Osprey (Oeltzschner et al., 2020). Time-domain
378  data were saved as a MATLAB (The MathWorks Inc., 2022) .mat file and loaded as a Python 3
379  object using SciPy. The data were normalized (as above with training data) to be used as input

380 for the neural networks.

381 One challenge of in vivo data (and the reason that this network demonstration focuses
382  substantially on synthetic data) is that no ground truth is available. Therefore, the degree of

383  success in removing OOV echo signals from time-domain data D; is:

Fractional Reduction in standard deviation = 1 — M 3]
a(Dy)

384  where s denotes the standard deviation. Note that, in contrast to the metric used for synthetic data

385 in Equation 1, only D; is available, not the ground truth E;, which substantially changes the

386  ceiling of success. It is still expected that substantial signal variance remains after OOV removal,

387  since D; contains metabolite signals and noise. The range over which this standard deviation is

388  calculated is the 50% level of the normalized histogram of the detection network’s output across

389  the 256 transients. Note that this metric is an imperfect response to the absence of ground-truth

390 knowledge for in vivo data, predicated on the assumption that subtracting out OOV signal

391 reduces the standard deviation of the time-domain signal.
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392 3. Results:

393  3.1. AGNOSTIC Synthetic Dataset:
394 The AGNOSTIC dataset contains 259,200 examples, consisting of 960 examples from

395  each of the eighteen field strengths and fifteen echo times (i.e., 960x18x15=259,200). A
396  representative set of ten spectra are shown in Figure 3, illustrating the diversity of field strengths,

397 TEs, SNR, and linewidth within the dataset.

398 One challenge with making this dataset available is its size — 75 GB — but we do make
399 it freely available on Dryad (DOI: 10.7280/D1RX1T). The basis sets from which these are

400  constructed are more manageable — 9 GB — and can also be accessed through Dryad (DOI:
401  10.7280/D1RXI1T). Code for generating the AGNOSTIC dataset locally is available at:

402  https://github.com/agudmundson/agnostic.

403  3.2. Exemplar Application to AGNOSTIC: Machine Learning for Out-Of-Voxel Artifacts:
404  3.2.1. Detection Network:

405 Of the 6,137 examples where OOV artifacts were present, the Detection Network

406  correctly identified 5,827 (94.9%) with a median Dice score of 0.974 (0.941-0.985 interquartile
407  range) and missed 310 (5.05%) with a Dice score of 0.00. In the 1063 examples that did not
408 include OOV artifacts, the network correctly ignored 912 (85.8%) and falsely detected OOV
409  echoes in 151 (14.2%). Figure 4 shows the Detection Network’s output for a synthetic OOV-

410  corrupted example.

411 Analysis of the factors that determined success indicated that the time at which OOV
412  signals occur is most critical. Therefore, OOV echoes were further broken down into eight time-
413  bins, and the Dice score plotted in Figure 5. The median Dice scores — 0.165, 0.858, 0.892,
414  0.934,0.960, 0.974, 0.978, and 0.978 — are poor in the first bin and improve thereafter. Note
415  that these bins are not spaced equally to emphasize poor performance extremely early. The

416  number of examples in each bin is 161, 289, 282, 329, 622, 1256, 1565, and 1633, respectively.

417  3.2.2. Modeling
418 The modeling optimization converged in 5,824 of the 5,827 examples where the detection
419  network detected OOV artifacts and provided initial values. Across this subset of the examples,

420  the modeling achieved a median logo (fractional OOV remaining) of —2.19 (—2.90 — —1.19 inter-
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quartile range), i.e., a median reduction of more than two orders of magnitude. Figure 5 shows

the resulting model for a synthetic OOV-corrupted example.

These values — broken down into 8 time-bins — are shown in Figure 5. The median
logio(fractional OOV remaining) decreases across the time bins: 1.663, 1.324, 0.680, 0.223,
—1.586, —2.276, -2.491, and —2.567.

3.2.3. Prediction Network:

In the 6,137 examples where OOV artifacts were present, the prediction network
achieved a median logio normed-MSE of —1.79 (=2.21 — —1.11 inter-quartile range). In the 5,824
examples where OOV artifacts were successfully modeled, the prediction network achieved a
median logio normed-MSE of —1.85 (—2.24 — —1.24 inter-quartile range). Figure 5 shows the

Prediction Network’s output for a synthetic OOV-corrupted example.

OOVs were further broken down into 8 time-bins (Figure 5) early — the number of
examples in each bin is 86, 226, 261, 312, 592, 1208, 1538, 1601. The median log;o(fractional
OOV remaining) decreases across the time bins: —0.207, —0.583, —0.862, —1.250, —1.577,
—1.878, —2.005, and —2.052.

3.2.4. In Vivo Proof-of-Principle:

The Detection Network identified an OOV in 243 of 256 transients (94.9%). In these 243
OOV-detected transients, the modeling achieved a median reduction in standard deviation of
71.0 % (60.2 -75.3% inter-quartile range). The Prediction Network achieved a median reduction
in standard deviation of 69.65% (66.33 %/72.7 % inter-quartile range) in this subset. In the full
set of 256 transients, the Prediction Network achieved a median 69.4 % (65.3 — 72.6 % inter-
quartile range) reduction in standard deviation. The standard deviation of the noise floor was
found to account for a median of 10.3% (9.35-11.6 % inter-quartile range) of the standard
deviation of signal within the time window for the 256 averages. A representative in vivo

example is shown in Figure 6.
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449 4. Discussion:

450 AGNOSTIC is a benchmark MRS dataset for training and evaluating performance across
451  various models. In order to make these synthetic data representative of in vivo brain MRS datasets,
452  atotal of 22 brain metabolites and 14 MM peaks were simulated within 270 basis sets, spanning
453  field strengths from 1.4 T to 3.1 T and TEs from 10 to 80 ms. Parameterized water residual and
454  noise were included. SNR and linewidths were assigned at random, independent of Bo or TE. The
455  broad span of the dataset is key in training networks that generalize. While AGNOSTIC is broad
456  in these dimensions, it does only represent simulated data for PRESS (Bottomley, 1982)
457  acquisitions, and may benefit from expansion to include other pulse sequences, such as STEAM
458  (Frahm et al., 1987), SPECIAL (Mekle et al., 2009; Mlynarik et al., 2006), LASER (Garwood &
459  DelaBarre, 2001), and semi-LASER (Scheenen, Heerschap, et al., 2008; Scheenen, Klomp, et al.,
460  2008), and edited versions including MEGA (Mescher et al., 1996, 1998) and Hadamard-encoded
461  (Chan et al., 2016, 2019; Oeltzschner et al., 2019; Saleh et al., 2016) schemes. AGNOSTIC is
462  limited by simulations that used ideal pulses, a calculated trade-off to emphasize generalizability
463 across field strength, echo time, and spectral width, and thus fail to capture effects associated with
464  spatially heterogeneous coupling evolution. The extent to which these limitations matter will
465  depend on the applications that AGNOSTIC synthetic data are being used for.

466 The Detection network was highly successful, identifying 94.9% of the testing set where
467 OOV artifacts were present. The precise value of this success metric is obviously impacted by the
468  parameters of the OOVs — a later minimum OOV time would tend to increase performance, and
469 earlier would degrade it. It is noteworthy that, although the training datasets never contained more
470  than one OOV echo, the detection and prediction networks were able to handle more than one
471 OOV echo in vivo data, presumably because CNNs operate locally within the FID. It is also
472  encouraging that the networks generalized well to the in vivo data (Figure 6), which was collected
473  with unseen acquisition parameters, i.e., edited MEGA-PRESS (Mescher et al., 1996, 1998) data
474  acquired at 2.89 T with a TE of 68 ms, and 2.4 kHz spectral width. While it is reasonable to believe
475  that networks trained using AGNOSTIC will generalize well with in vivo clinical data, future work
476  will need to evaluate performance for clinical applications.

477 In the exemplar OOV application, the success of the networks depended heavily on the
478  timing of the OOV signal. The earliest OOV echoes were most challenging, unsurprisingly since

479  such signals are broad Gaussian resonances that are indistinguishable from within-voxel MM and
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480  baseline signals. Indeed, the only feature that differentiates OOV signals from other broad
481  components of the model is timing. It is conceptually helpful to consider this in the Fourier domain,
482  even though all network processing is performed in the time domain. In the frequency domain, a
483  mismatch between the echo-top and the acquisition start is represented as a first-order phase error
484  of'the signal associated with that echo. Where insufficient first-order phase exists to be represented
485  within the linewidth of the signal in question, (which in the time domain corresponds to substantial
486  truncation of the lefthand side of the echo), the network struggles to identify OOV signals.

487 In the context of this study, modeling and prediction are treated as two alternative
488  approaches to OOV characterization. For early OOV signals, the modeling approach tended to
489  mis-attribute non-artifact signal as OOV signal, a result that the metric scored as worse than no
490 intervention. The median performance of the Prediction network, even for very early OOV signals,
491  was close to zero. Both modeling and prediction performance improve as the OOV moves later in
492  the acquired signal, with modeling improving faster than the network, and performing better than
493  prediction beyond 120 ms. This strong performance of the model at least in part reflects the exact
494  match between the generative model of the synthetic OOV artifacts and the model that is being
495  used to extract them. More moderate performance might be expected for real in vivo examples —
496  but the same may also be true for networks which have been trained with the same synthetic data
497  and may have learned specifically to identify OOV signals that have a Gaussian kernel.

498 One key difference between most DL applications and applications in MRS, is the strict
499  requirement to preserve amplitude fidelity in network outputs. A common approach to artifacts in
500 DL is to return an artifact-free version of the network input. In contrast, the approach taken here
501 is to return the artifact, which has the following benefits: it avoids networks over-learning the
502  formulaic pattern of typical spectra; it reduces the impact of the lack of sequence diversity within
503 the AGNOSTIC dataset; and it is less likely to impact the amplitudes of metabolite signals.

504 The ultimate goal of this work is to extract metabolite levels from MRS data that are not
505 impacted by OOV artifacts. This problem can be addressed at several points: either by not
506 acquiring data that contain OOV artifacts; by removing OOV artifacts post-acquisition; and by
507 incorporating appropriate OOV model components into quantification model so that the impact of
508 OOV is minimized. While the work presented here focuses primarily on the second context, it
509 raises important potential applications in the other contexts. One motivator for developing the

510  Detection network is the possibility of real-time deployment during sequence acquisition to trigger
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511  sequence changes when OOV artifacts are detected. The modeling applied here was time-restricted
512  to a given window and ignored other components of the spectrum, but demonstrates potential for

513  future integration within a full linear-combination model.
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514 5. Conclusion:

515 In conclusion, we have presented the AGNOSTIC benchmark dataset which can be used
516  for training and testing brain-specific 'H MRS deep learning models. This large synthetic dataset
517  isopen-source and encompasses a range of field strengths, TEs, and dwell times to ensure networks
518 are robust to a variety of in vivo data acquisitions protocols. Using this dataset, we have

519  demonstrated an exemplar use case to develop CNNs to detect and predict out-of-voxel artifacts.
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Figure 1. Simulation of OOV echoes and OOV-corrupted synthetic data: OOV echoes were
simulated as complex time-domain signals with a center timepoint (toov), width (Woov),
frequency (woov), phase (Poov), amplitude (aoov). OOV echoes were added to 85% of
synthetic data to create datasets for training and evaluation.
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Figure 2. Convolutional Neural Network Architecture, Input, and Output: A) Fully
convolutional neural network architecture used for both the Detection and Prediction Network.
Convolutional strides, batch normalization, and Leaky ReLu activation functions are denoted
by a colored line. Dark gray blocks represent complex data with the 2nd dimension
representing real and imaginary components, while white blocks represent the network
abstracted single dimension. Arrows show residual connections. Note, inputs and outputs are
all time-domain signals; Frequency-domain is shown for convenient visualization. B) OOV-
corrupted synthetic example and the isolated OOV. The complex OOV-corrupted data was

used as the Detection and Prediction Network input. The target Output is the isolated OOV.
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Figure 3. AGNOSTIC synthetic dataset. 10 representative spectra from the AGNOSTIC
dataset. The 10 examples show the diversity of field strength, TE, linewidths, and residual
water signal present among the data. Note, examples are shown here in the frequency-domain
to better illustrate the heterogeneity, but the dataset provides time-domain examples.
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Figure 4. OOV-corrupted example: OOV-corrupted synthetic example and the isolated OOV.
Results from Detection Network (green), Model (orange), and Prediction Network (blue) are
shown below the ground truth OOV-corrupted and OOV. OOV residuals are shown for the
Model (orange) and Prediction Network (blue) demonstrating remaining signal after
subtraction. Note, frequency-domain is shown for convenient visualization, but the Detection
Network, Modeling, and Prediction Network all operate on time-domain signals.
831
832
833
834
835
836
837
838
839
840
841

842


https://doi.org/10.1101/2023.05.08.539813
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.08.539813; this version posted September 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Detection Accuracy
= L ;] H) | O = K T

 J
o
S A
=
[ <4
o
o |
@
S
o

0

All Data 10-20ms 20-40ms 40-60ms 60-80ms 80-120ms 120-200ms 200 -300 ms 300 - 400 ms
B ) and Prediction Accuracy

— 41
w
2
o 21
[}
g A
RN
5 A
c
]
o
S

-4

All Data 10-20 ms 20-40ms 40-60ms 60-80ms 80-120ms 120-200ms 200 -300 ms 300 - 400 ms

Figure 5. Evaluation of Detection Network, Modeling, and Prediction Network. A testing set
with 7200 (2400 examples with 3 different OOV echoes) unseen examples was used to
evaluate the A) Detection Network and B) Modeling and Prediction Network. Performance
across the whole test set is shown on the left-hand side. Performance across the binned center
timepoint (tOOV) is shown across the right-hand side.
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Figure 6. In vivo MEGA-PRESS OOV-corrupted example. Results from Detection Network
(green), Model (orange), and Prediction Network (blue) are shown below. Detection and
Prediction CNNs identified and reconstructed the OOV echo, despite having never seen data
acquired with 2.89 T, 2.4 kHz spectral width, 68 ms, editing, nor real RF pulses. Note,
frequency-domain is shown for convenient visualization, but the Detection Network,
Modeling, and Prediction Network all operate on time-domain signals.
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Table 1. Parametrization of the residual water signal components within AGNOSTIC.

Location / ppm Phase / deg Amplitude
Component  Low High Low High Low High
1 4.679 4.711 -10 10 1.00 1.00
2 4.599 4.641 15 45 35 55
3 4.759 4.801 —60 =30 35 55
4 4.449 4.541 =70 45 .10 25
5 4.859 4.901 105 135 .10 25
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869  Supplemental Figure 1: Ten representative examples of A) residual water and B) macromolecule
870  components. Examples match the full spectra shown in Figure 3; each spectrum is scaled independently
871  for visualization.
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Supplemental Figure 2: Time-domain window (gray) used to calculate the fractional reduction in
standard deviation for the in vivo transients. A) Each of the 256 MEGA-PRESS transients (128 Edit-on
and 128 Edit-Off) overlaid. B) Histogram (green) showing the total number of detections by the
Detection Network across each timepoint. This window was established algorithmically by using 50%
of the maximum count as a threshold for the window.
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Synthetic Range (mM) Synthetic Range (mM)
Metabolite Low High Metabolite Low High
Acetate 0.00  0.00 Macromolecule 1.67 1.00 15.00
Alanine’ 047 077 Macromolecule 2.04 1.00 35.00
Ascorbate 0.36 1.53 Macromolecule 2.26 1.00 20.00
Aspartate 0.00 4.66 Macromolecule 2.56 1.00  5.00
Adenosine Triphosphate 0.00  0.00 Macromolecule 2.70 1.00  7.00
B-Hydroxybutyrate 0.00 0.00 Macromolecule 2.99 1.00 10.00
B-Hydroxyglutarate 0.00  0.00 Macromolecule 3.21 1.00  7.00
Citrate 0.00  0.00 Macromolecule 3.62 1.00  5.00
Creatine 1.41 10.50 Macromolecule 3.75 1.00 10.00
Cysteine 0.00 0.00 Macromolecule 3.86 1.00  4.00
Ethanol Amine 0.00  0.00 Macromolecule 4.03 1.00  7.00
Ethyl Alcohol 0.00  0.00 Myo-inositol’ 2.08 14.00
v-Amino Butyric Acid 0.52 1.99 N-Acetylaspartate’ 5.38 18.00
Glucose* 0.94 1.53 N-Acetylaspartylglutamate’ 0.26 2.26
Glutamine 0.26 3.64 Phosphocholine” 0.01 2.00
Glutamate 3.88 13.17 Phosphocreatine” 338 6.44
Glycerophosphocholine 0.05 5.00 Phosphoethanolamine” 141 230
Glutathione 0.16 241 Phosphoethyl Alcohol 0.00  0.00
Glycine* 094 1.53 Phenylalanine 0.00  0.00
Glycerol 0.00  0.00 Scyllo-inositol 0.00 0.39
Histamine 0.00  0.00 Serine 0.00  0.00
Histidine 0.00  0.00 Taurine 0.00 2.89
Homocarnosine 0.00  0.00 Threonine 0.00  0.00
Lactate 0.00 1.44 Tryptophan 0.00 0.00
Macromolecule 0.92 1.00 30.00 Tyrosine 0.00  0.00
Macromolecule 1.21 1.00  8.00 Valine 0.00  0.00
Macromolecule 1.39 1.00 35.00

884

885  Supplemental Table 1: Concentration ranges for the healthy brain, used to generate synthetic spectra.
886  These mM values were based upon a meta-analysis preliminary to (Gudmundson et al., 2023), with some
887  values (marked *) supplemented from the Fit Challenge ranges (Marjanska et al., 2021) and other ranges
888  (marked 1) extended to offer greater flexibility. Concentrations were sampled uniformly between the low
889  and high values to generate the synthetic spectra.
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Synthetic Range Synthetic Range
Disease / Metabolite Low High Metabolite Low High
Seizure Cancer
Creatine 0918 1.012 Creatine 0.256 1.340
Phosphocreatine 0918 1.012 Phosphocreatine 0.256 1.340
Glycerophosphocholine 0.731 1.147 Glycerophosphocholine 1.139  1.949
Phosphocholine 0.731 1.147 Phosphocholine 1.139  1.949
v-Amino Butyric Acid 0.930 1.173 Glutamate 0.780 1.320
Glutamate 0.787 1.247 Glutamine 0.780 1.320
Glutamine 0.787 1.247 Lactate .00 9.99
Glutathione 0.887 1.243 Myo-inositol 0.829 1.519
Myo-inositol 0.802 1.134 N-Acetylaspartate 0.509 0.956
N-Acetylaspartate 0.751 1.002 N-Acetylaspartylglutamate ~ 0.509  0.956
N-Acetylaspartylglutamate 0.751 1.002 Chronic Pain
Stroke Glycerophosphocholine 0.943 1.285
Creatine 0.684 1.146 Phosphocholine 0.943 1.285
Phosphocreatine 0.684 1.146 v-Amino Butyric Acid 0.896 1.168
Glycerophosphocholine 0.855 1.527 Glutamate 0.790 1.121
Phosphocholine 0.855 1.527 Glutamine 0.790 1.121
Glutamate 0.874 1.140 Myo-inositol 0.942 1.049
Glutamine 0.874 1.140 N-Acetylaspartate 0.775 1.280
Lactate 1.000 6.922 N-Acetylaspartylglutamate ~ 0.775 1.280
Myo-inositol 0.827 1.265 Migraine
N-Acetylaspartate 0.727 1.074 Aspartate 0.434 1.409
N-Acetylaspartylglutamate 0.727 1.074 Creatine 0.921 1.011
Traumatic Brain Injury Phosphocreatine 0.921 1.011
Aspartate 0.785 0.910 Glycerophosphocholine 0.959 1.137
Creatine 0.814 1.162 Phosphocholine 0.959 1.137
Phosphocreatine 0.814 1.162 Glutamate 0.841 1.119
Glycerophosphocholine 0.930 1.057 Glutamine 0.841 1.119
Phosphocholine 0.930 1.057 Myo-inositol 0.866 1.032
v-Amino Butyric Acid 0.860 0.984 N-Acetylaspartate 0.755 1.067
Glutamate 0.824 1.214 N-Acetylaspartylglutamate ~ 0.755 1.067
Glutamine 0.824 1.214 Fibromyalgia
Myo-inositol 0.737 1.315 Creatine 0.760 1.429
N-Acetylaspartate 0.795 1.011 Phosphocreatine 0.760 1.429
N-Acetylaspartylglutamate 0.795 1.011 Glycerophosphocholine 0.840 1.236
Type-1 Diabetes Phosphocholine 0.840 1.236
Aspartate 0.895 1.496 v-Amino Butyric Acid 0.724 0.937
Creatine 0.977 1.039 Glutamate 1.005 1.104
Phosphocreatine 0.977 1.039 Glutamine 0.711 1.107
Glycerophosphocholine 1.034 1.140 Myo-inositol 0.844 1.232
Phosphocholine 1.034 1.140 N-Acetylaspartate 0.847 1.061
Glutamate 0.895 1.216 N-Acetylaspartylglutamate ~ 0.847 1.061
Glutamine 0.956 1.353
Glutathione 0.872 1.435
Myo-inositol 0.893 1.092
N-Acetylaspartate 0.947 1.008
N-Acetylaspartylglutamate 0.947 1.008
Scyllo-inositol 0.501 0.992
Taurine 0.754 1.322 ...table continued on next page
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Synthetic Range Synthetic Range
Disease / Metabolite Low High Disease / Metabolite Low High
Post-Traumatic Stress Disorder Schizophrenia
Creatine 0.940 1.235 Creatine 0.948 1.045
Phosphocreatine 0.940 1.235 Phosphocreatine 0.948 1.045
Glycerophosphocholine 0.843 1.284 Glycerophosphocholine 0.946 1.157
Phosphocholine 0.843 1.283 Phosphocholine 0.946 1.157
v-Amino Butyric Acid 0.982 1.059 v-Amino Butyric Acid 0.732 1.261
Glutamate 0.892 1.134 Glutamate 0.857 1.164
Glutamine 0.892 1.134 Glutamine 0.857 1.164
Myo-inositol 0.939 1.198 Myo-inositol 0.806 1.239
N-Acetylaspartate 0.969 1.156 N-Acetylaspartate 0910 1.103
N-Acetylaspartylglutamate 0.969 1.156 N-Acetylaspartylglutamate  0.910 1.103
Obsessive Compulsive Disorder Psychosis
Creatine 0.890 1.320 Creatine 0.983 1.059
Phosphocreatine 0.890 1.320 Phosphocreatine 0.983 1.059
Glycerophosphocholine 0.784 1.223 Glycerophosphocholine 0.892 1.127
Phosphocholine 0.784 1.223 Phosphocholine 0.892 1.127
Glutamate 0.868 1.243 v-Amino Butyric Acid 0.725 1.176
Glutamine 0.868 1.243 Glutamate 0.813 1.172
Myo-inositol 0.743 1437 Glutamine 0.813 1.172
N-Acetylaspartate 0.846 1.100 Glycine 1.131 1.423
N-Acetylaspartylglutamate 0.846 1.100 Glutathione 0917 1.034
Depression Myo-inositol 0.892  1.090
Creatine 0.938 1.021 N-Acetylaspartate 0.910 1.048
Phosphocreatine 0.938 1.021 N-Acetylaspartylglutamate ~ 0.910 1.048
Glycerophosphocholine 0.741 1.158 Personality Disorder
Phosphocholine 0.741 1.158 Creatine 0.961 1.110
v-Amino Butyric Acid 0.769 1.400 Phosphocreatine 0.961 1.110
Glutamate 0.872 1.119 Glycerophosphocholine 0.925 1.007
Glutamine 0.894 1.177 Phosphocholine 0.925 1.007
Glutathione 0.822 1.082 Glutamate 0.949  1.207
Myo-inositol 0.874 1.239 Glutamine 0.949 1.207
N-Acetylaspartate 0.864 1.080 Glutathione 0917 1.034
N-Acetylaspartylglutamate 0.864 1.080 Myo-inositol 0.989 1.081
Addiction N-Acetylaspartate 0.880 0.997
Creatine 0.775 1.161 N-Acetylaspartylglutamate ~ 0.880 0.997
Phosphocreatine 0.755 1.161 Bipolar Disorder
Glycerophosphocholine 0.788 1.202 Creatine 0.900 1.061
Phosphocholine 0.788 1.202 Phosphocreatine 0.900 1.061
v-Amino Butyric Acid 0.669 1.289 Glycerophosphocholine 0.854 1.269
Glutamate 0.807 1.229 Phosphocholine 0.854 1.269
Glutamine 0.807 1.229 Glutamate 0.907 1.115
Glycine 0.969 1.335 Glutamine 0.907 1.115
Glutathione 0.935 1.442 Glutathione 0.957 1.150
Myo-inositol 0.820 1.135 Myo-inositol 0.812 1.209
N-Acetylaspartate 0.761 1.195 N-Acetylaspartate 0.863 1.109
N-Acetylaspartylglutamate 0.761 1.195 N-Acetylaspartylglutamate  0.863  1.109
...table continued on next page
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Synthetic Range Synthetic Range
Disease / Metabolite Low High Disease / Metabolite Low High
Multiple Sclerosis Dementia
Glycerophosphocholine 0.880 1.077 Ascorbate 1.132  1.231
Phosphocholine 0.880 1.077 Aspartate 1.028 1.168
v-Amino Butyric Acid 0.851 1.017 Creatine 1.010 1.028
Glutamate 0.887 1.030 Phosphocreatine 1.010 1.028
Glutamine 0.887 1.030 Glycerophosphocholine 0.850 1.150
Glutathione 0.844 1.069 Phosphocholine 0.850 1.150
Myo-inositol 0.892 1.078 v-Amino Butyric Acid 0.513 1.183
N-Acetylaspartate 0.924 1.044 Glutamate 0.771 1.139
N-Acetylaspartylglutamate 0.924 1.044 Glutamine 0.955 1.172
Parkinson's Disease Myo-inositol 0.801 1.397
Creatine 0.850 1.100 N-Acetylaspartate 0.723 1.038
Phosphocreatine 0.850 1.100 N-Acetylaspartylglutamate ~ 0.723  1.038
Glycerophosphocholine 0.780 1.201 Scyllo-inositol 0476 1312
Phosphocholine 0.780 1.201 Taurine 0.882 1.013
v-Amino Butyric Acid 0.679 1.390 APOE4
Glutamate 0.887 1.224 Aspartate 1.028 1.168
Glutamine 0.887 1.224 Glycerophosphocholine 0.965 1.019
Myo-inositol 0.810 1.190 Phosphocholine 0.965 1.019
N-Acetylaspartate 0.756 1.240 v-Amino Butyric Acid 0.513 1.183
N-Acetylaspartylglutamate 0.756 1.240 Glucose 0971 1.028
Essential Tremor Glutamate 0.836 1.126
Creatine 0.924 1.053 Glutamine 0.909 1.232
Phosphocreatine 0.924 1.053 Glutathione 0.834 1.103
Glycerophosphocholine 0.851 1.044 Myo-inositol 0.959 1.092
Phosphocholine 0.851 1.044 N-Acetylaspartate 0.895 1.063
v-Amino Butyric Acid 0.802 1.218 N-Acetylaspartylglutamate ~ 0.895 1.063
Glutamate 1.050 1.434
Glutamine 1.050 1.434
N-Acetylaspartate 0919 1.136
N-Acetylaspartylglutamate 0919 1.136

898

899  Supplemental Table 2: Clinical population scaling factors used to generate synthetic spectra. In each
900 case the simulated concentration for a given clinical spectrum was determined by a uniformly sampled
901  concentration drawn from the ranges shown in Supplemental Table 1, multiplied by a scaling factor
902  determined by a uniformly sampled scalar from these ranges provided in Supplemental Table 2.
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Synthetic Range (ms) Synthetic Range (ms)
Metabolite Low  High Metabolite Low  High
Acetate 0.00 0.00 Macromolecule 1.67 20.00  60.00
Alanine’ 100.00 250.00 Macromolecule 2.04 20.00  60.00
Ascorbate 100.00 250.00 Macromolecule 2.26 20.00  60.00
Aspartate 120.15 204.55 Macromolecule 2.56 20.00  60.00
Adenosine Triphosphate 0.00 0.00 Macromolecule 2.70 20.00  60.00
B-Hydroxybutyrate 0.00 0.00 Macromolecule 2.99 20.00  60.00
B-Hydroxyglutarate 0.00 0.00 Macromolecule 3.21 20.00  60.00
Citrate 0.00 0.00 Macromolecule 3.62 20.00  60.00
Creatine 3.03 164.08 242.70 Macromolecule 3.75 20.00  60.00
Creatine 3.91 135.18 213.80 Macromolecule 3.86 20.00  60.00
Creatine 6.65 164.08 242.70 Macromolecule 4.03 20.00  60.00
Cysteine 0.00 0.00 Myo-inositol’ 139.80 219.58
Ethanolamine 0.00 0.00 N-Acetylaspartate 242,70 320.17
Ethyl Alcohol 0.00 0.00 N-Acetylaspartylglutamate 132.87 216.11
v-Amino Butyric Acid 7737 161.77 Phosphocholine 100 250
Glucose 100.00 250.00 Phosphocreatine 3.03 130 210
Glutamine 103.96 184.89 Phosphocreatine 3.93 100 180
Glutamate 140.96 219.58 Phosphocreatine 6.58 130 210
Glycerophosphocholine 198.77 278.54 Phosphocreatine 7.30 130 210
Glutathione 108.59 188.36 Phosphoethanolamine 100 250
Glycine 121.31 204.55 Phosphoethyl Alcohol 0.00 0.00
Glycerol 0.00 0.00 Phenylalanine 0.00 0.00
Histamine 0.00 0.00 Scyllo-inositol 100 250
Histidine 0.00 0.00 Serine 0.00 0.00
Homocarnosine 0.00 0.00 Taurine 151.37 231.14
Lactate 142.12  226.52 Threonine 0.00 0.00
Macromolecule 0.92 20.00  60.00 Tryptophan 0.00 0.00
Macromolecule 1.21 20.00  60.00 Tyrosine 0.00 0.00
Macromolecule 1.39 20.00  60.00 Valine 0.00 0.00

909

910  Supplemental Table 3: T, Relaxation time ranges in milliseconds for the healthy brain derived from 1.5
911 T multiple meta-regression preliminary to (Gudmundson et al., 2023). Relaxation times were sampled
912  uniformly between the low and high values.
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By (T) Every Every Every Every Every Every Every Every
Point 2m 3% 4™ Point 5™ Point 6" Point 7" Point 8™ Point
Point Point

1.4 373333 1866.67 1244.44 933.33 746.67 622.22 533.33 466.67
1.5 4000.00 2000.00 1333.33  1000.00 800.00 666.67 571.43 500.00
1.6  4266.67 213333 142222 1066.67 853.33 711.11 609.52 533.33
1.7 453333 2266.67 1511.11 1133.33 906.67 755.56 647.62 566.67
1.8 4800.00 2400.00 1600.00 1200.00 960.00 800.00 685.71 600.00
1.9 5066.67 253333 1688.89 1266.67 1013.33 844.44 723.81 633.33
2.0 533333  2666.67 1777.78 1333.33  1066.67 888.89 761.90 666.67
2.1  5600.00 2800.00 1866.67 1400.00 1120.00 933.33 800.00 700.00
2.2 5866.67 2933.33 1955.56 1466.67 1173.33 977.78 838.10 733.33
2.3 613333  3066.67 2044.44 1533.33  1226.67 1022.22 876.19 766.67
24  6400.00 3200.00 2133.33 1600.00 1280.00 1066.67 914.29 800.00
2.5 6666.67 3333.33 222222 1666.67 133333 1111.11 952.38 833.33
2.6 693333 3466.67 2311.11 1733.33  1386.67 1155.56 990.48 866.67
2.7 7200.00 3600.00 2400.00 1800.00 1440.00 1200.00 1028.57 900.00
2.8 7466.67 3733.33 2488.89 1866.67 1493.33 1244.44 1066.67 933.33
2.9 773333 3866.67 2577.78 1933.33  1546.67 1288.89 1104.76 966.67
3.0 8000.00 4000.00 2666.67 2000.00 1600.00 1333.33 1142.86 1000.00
3.1 8266.67 413333 275556 2066.67 1653.33 1377.78 1180.95 1033.33

Supplemental Table 4: Field strengths (7esla) and possible spectral widths (Hertz) available using the
AGNOSTIC basis sets. These combinations are achievable by subsampling the time-domain from
every timepoint to every 8" timepoint and allows for maintaining a minimum of 2048 timepoints. Each
of these combinations is available for the 15 echo times, from 10 ms to 80 ms, in steps of 5 ms.
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