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Abstract: 27 

Neural networks are potentially valuable for many of the challenges associated with MRS 28 
data. The purpose of this manuscript is to describe the AGNOSTIC dataset, which contains 29 
259,200 synthetic 1H MRS examples for training and testing neural networks. AGNOSTIC was 30 
created using 270 basis sets that were simulated across 18 field strengths and 15 echo times. The 31 
synthetic examples were produced to resemble in vivo brain data with combinations of 32 
metabolite, macromolecule, residual water signals, and noise. To demonstrate the utility, we 33 
apply AGNOSTIC to train two Convolutional Neural Networks (CNNs) to address out-of-voxel 34 
(OOV) echoes. A Detection Network was trained to identify the point-wise presence of OOV 35 
echoes, providing proof of concept for real-time detection. A Prediction Network was trained to 36 
reconstruct OOV echoes, allowing subtraction during post-processing. Complex OOV signals 37 
were mixed into 85% of synthetic examples to train two separate CNNs for the detection and 38 
prediction of OOV signals. AGNOSTIC is available through Dryad and all Python 3 code is 39 
available through GitHub. The Detection network was shown to perform well, identifying 95% 40 
of OOV echoes. Traditional modeling of these detected OOV signals was evaluated and may 41 
prove to be an effective method during linear-combination modeling. The Prediction Network 42 
greatly reduces OOV echoes within FIDs and achieved a median log10 normed-MSE of –1.79, an 43 
improvement of almost two orders of magnitude.  44 

Keywords: Magnetic Resonance Spectroscopy, Synthetic Data, Simulation, Deep Learning, 45 
Out-of-voxel Artifacts, Human Brain 46 
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Abbreviations: 1H, proton; 2HG, β-hydroxyglutarate; Ace, acetate; AGNOSTIC, adaptable generalized neural-57 
network open-source spectroscopy training dataset of individual components; Ala, alanine; Asc, ascorbate; Asp, 58 
aspartate; ATP, adenosine triphosphate;  bHB, β-hydroxybutyrate; Cho, choline-containing compounds; Cit, citrate; 59 
CNN, Convolutional Neural Networks; Cr, creatine; Cys, Cysteine; DL, deep learning; EA, Ethanolamine; EtOH, 60 
ethanol; FID, free induction decay; FWHM, full-width half-maximum; GABA, gamma-aminobutyric acid; Glc, 61 
glucose; Gln, glutamine; Glu, glutamate; Glx, sum of glutamate and glutamine; Gly, glycine; Glyce, glycerol; GM, 62 
gray matter; GPC, glycerophosphocholine; GSH, glutathione; H2O, water; HCar, homocarnosine; Hist, histamine; 63 
His, histidine; ISMRM, international society for magnetic resonance in medicine; Lac, lactate; LASER, localization 64 
by adiabatic selective refocusing; MEGA, Mescher-Garwood; mI, myo-inositol; MM, macromolecule; MRS, 65 
magnetic resonance spectroscopy; MSE, mean-squared error; NAA, N-acetylaspartate; NAAG, N-acetyl-aspartyl-66 
glutamate; OOV, out-of-voxel; PCho, phosphocholine; PCr, phosphocreatine; PE, phosphoethanolamine; Phenyl, 67 
phenylalanine; PRESS, point resolved spectroscopy; ReLu, rectified linear unit; Ser, serine; sI, scyllo-inositol; 68 
sLASER, semi-adiabatic localization by adiabatic selective refocusing; SPECIAL, spin echo full intensity acquired 69 
localiezed; STEAM, stimulated echo acquisition mode; SNR, signal-to-noise ratio; T2, spin-spin relaxation time; 70 
Tau, taurine; tCho, sum of choline-containing metabolites; tCr, sum of creatine and phosphocreatine; TE, echo-time; 71 
Thr; threonine; tNAA, sum of N-acetyl-aspartate and N-acetyl-aspartyl-glutamate; Trp, Tryptophan; Tyr, Tyrosine; 72 
Val, Valine 73 
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1. Introduction: 74 

Proton (1H) magnetic resonance spectroscopy (MRS) non-invasively measures levels of 75 

endogenous neurometabolites. MRS-visible metabolites are present at millimolar concentrations 76 

in the brain, yielding detectable signals with relatively low signal-to-noise ratio (SNR) which 77 

mutually overlap. In vivo spectra suffer from several artifacts that complicate modeling and 78 

interpretation of the data, including eddy current effects and out-of-voxel (OOV) echoes (Kreis, 79 

2004). While there is some degree of standardization and consensus around pre-processing, 80 

modeling, and quantification of MRS data (Maudsley et al., 2021; Near et al., 2021; Öz et al., 81 

2021; Wilson et al., 2019), this is an evolving field without a single ideal solution due to the 82 

complexity of the problem, and which therefore is likely to benefit from recent advances in 83 

machine learning. 84 

Deep learning (DL) uses a network consisting of a series of computational layers to 85 

process information (Lecun et al., 2015). Iterative training allows features of the data to be 86 

identified and weighted to estimate a final function which predicts a desired output based on a 87 

given input (Goodfellow et al., 2016). Supervised learning involves training the network based 88 

on a pre-defined target, associating ground-truth parameters with each input. An extensive, 89 

balanced, and diverse dataset is preferred to increase the generalizability of the DL outcome. 90 

High-dimensional data, such as medical images or time series, are demonstrated to be the most 91 

beneficial set of data for several computer vision tasks, such as classification, registration, 92 

segmentation, reconstruction, and object detection (Gassenmaier, Küstner, et al., 2021; Lundervold & 93 

Lundervold, 2019). 94 

DL has been developed for MRS data as a proof-of-concept in many applications, including 95 

metabolite quantification (Chandler et al., 2019; Hatami et al., 2018; H. H. Lee & Kim, 2019, 2020; Rizzo 96 

et al., 2023; Shamaei et al., 2023; Zhang & Shen, 2023), signal separation (Li et al., 2020), phase and 97 

frequency correction (Ma et al., 2022; Shamaei et al., 2023; Tapper et al., 2021), reconstruction 98 

of missing data (H. Lee et al., 2020), accelerated post-processing (Gurbani et al., 2019; Iqbal et 99 

al., 2021), denoising (Chen et al., 2023; Dziadosz et al., 2023; Lam et al., 2020), super-resolution 100 

(Gassenmaier, Afat, et al., 2021; Iqbal et al., 2019), artifact removal (Gurbani et al., 2018; 101 

Kyathanahally et al., 2018), and anomaly detection (Jang et al., 2021). Despite the potential, 102 

these methods have yet to be shown to generalize outside of small datasets with a single fixed 103 

acquisition protocol. Whereas ’classical’ methods for post-processing are often driven by an 104 
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understanding of the problem to be solved, and therefore can often be applied broadly, deep 105 

learning methods cannot be assumed to function well outside of the specific datasets used for 106 

training and testing. Broadly applicable deep learning methods will only arise from broad 107 

training and testing. A key barrier is the lack of a generalized benchmark dataset for training and 108 

testing, to play the role that MNIST, ImageNet, and COCO have played in the field of Computer 109 

Vision (Fei-Fei et al., 2010; Li Deng, 2012; T.-Y. Lin et al., 2014). Such a dataset lowers the 110 

barrier to entry for neural network development in MRS and facilitates performance comparisons 111 

between models. The Synthetic Data Working Group of the MRS study group of the 112 

International Society for Magnetic Resonance in Medicine’s Synthetic Data Working Group has 113 

recently highlighted the MRS community’s need for such a resource. The ultimate goal of this 114 

work is to bridge the gap from the synthetic to the in vivo domain, including the additional 115 

domain-shift to clinical data.   116 

OOV echoes, which represent a subset of the artifacts often referred to as ‘spurious’ or 117 

‘ghost’ echoes (Kreis, 2004), are a substantial issue for in vivo MRS, and an under-studied 118 

potential DL application. MRS voxel localization is achieved via a combination of RF pulses and 119 

magnetic field gradients, with the intended coherence transfer pathway selected both by phase 120 

cycling and dephasing “crusher” gradient scheme (Bodenhausen, 2011). OOV signals arise from 121 

gradient echoes – signals from outside the shimmed voxel of interest are refocused by evolution 122 

in local field gradients that are either inherent (from air-tissue-bone interfaces) or arising from 123 

second-order shim terms (Starck et al., 2009). Therefore, brain regions close to air cavities (e.g., 124 

medial prefrontal cortex) or which require stronger shim gradients (e.g., thalamus, hippocampus, 125 

etc.) most commonly exhibit OOV artifacts (Starck et al., 2009). OOV echoes seldom occur at 126 

the time of the primary echo, so they manifest in the spectrum as broad peaks with strong first-127 

order phase “ripple” that can obscure metabolite resonances. While acquisition strategies can 128 

mitigate OOV echoes to some extent, by careful consideration of crusher schemes or voxel 129 

orientation (Ernst & Chang, 1996; Landheer & Juchem, 2019; Song et al., 2023), post-processing 130 

strategies remain valuable where complete elimination is not possible. 131 

This manuscript develops Adaptable Generalized Neural-Network Open-source 132 

Spectroscopy Training dataset of Individual Components (AGNOSTIC), a dataset consisting of 133 

259,200 synthetic MRS examples. AGNOSTIC spans a range of field strengths, echo times, and 134 

clinical profiles, representing metabolite signals, macromolecule (MM) background signals, 135 
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residual water signals, and Gaussian noise as separate components. To date, DL applications to 136 

MRS have relied upon narrow in-house-generated training datasets that limit the generalizability 137 

of the solutions developed and comparisons between tools; AGNOSTIC is proposed as a 138 

benchmark dataset to fill this gap. In order to demonstrate the utility of this resource, we then 139 

illustrate a specific augmentation of the AGNOSTIC dataset to train neural networks for the 140 

detection and prediction of OOV echoes. 141 
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2. Methods:  142 

2.1. AGNOSTIC Synthetic Dataset 143 
The parameter space that AGNOSTIC spans is deliberately broad, comprising: 18 field 144 

strengths; 15 echo times; broad distributions of metabolite, MM, and water amplitudes; and 145 

densely sampled time-domain to allow down-sampling. Calculations were carried out using an 146 

in-house and open-source Python 3 (Van Rossum & Drake, 2009) programming script using NumPy 147 

(Harris et al., 2020). The decision to use in-house software was motivated by needing the 148 

flexibility to simulate basis sets that could be manipulated on a spin-by-spin basis which could, 149 

for instance, allow for different spins within the same metabolite to have different relaxation 150 

rates (e.g., Cr3.9 and Cr3.0). The dataset is structured as a zipped NumPy archive file (.npz) and 151 

can be opened as a Python 3 dictionary object. This zipped NumPy file contains complex-valued 152 

NumPy arrays of time-domain (4096 timepoints) data corresponding to the metabolite, 153 

macromolecule, water, and noise components which can be combined in different ways 154 

depending on the application. For instance, a denoising model may want to target the combined 155 

metabolite, MM, and water signal without noise. Within the file, all the acquisition parameters 156 

(field strength, echo time, spectral width, etc.), simulation parameters (signal to noise, full-width 157 

half-max, concentrations, T2 relaxation, etc.), and data augmentation options are specified as 158 

detailed below.  159 

2.1.1. Basis Set Simulation: 160 

Metabolite spectra are based upon density-matrix-simulated basis functions (Blum, 1981; 161 

Fano, 1957; Farrar, 1990; O. W. Sørensen et al., 1984). A total of 270 basis sets were created 162 

across 18 field strengths (1.4 T – 3.1 T in steps of 0.1 T) and 15 echo times (10 ms – 80 ms in 163 

steps of 5 ms). The Point RESolved Spectroscopy (PRESS) pulse sequence (Bottomley, 1982) 164 

was simulated using ideal pulses with TE1 = TE2. The simulated “acquisition window” was 165 

started immediately after the last pulse to generate points before the echo. Each metabolite basis 166 

was output as an N x 16684 NumPy array, where N is the number of spins for a given metabolite 167 

and 16684 is the fixed length of complex time points (300 points before the echo maximum, with 168 

an appropriate padding number of zeros and followed by the simulated pre-echo signal, and 169 

16384 points after the echo). The simulated spectral width, centered on 4.7 ppm, was 63.62 ppm 170 

for all field strengths (e.g., 8 kHz at 3 T; 4 kHz at 1.5 T). By subsampling the intentionally long 171 

time-domain points in the basis set, we can achieve a series of different spectral widths within 172 
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the ranges commonly seen for in vivo experiments without the need to re-simulate the signal with 173 

different dwell times. 174 

39 brain metabolite basis functions were simulated: Adenosine Triphosphate (ATP); 175 

Acetate (Ace); Alanine (Ala); Ascorbate (Asc); Aspartate (Asp); β-hydroxybutyrate (bHB); β-176 

hydroxyglutarate (2HG); Citrate (Cit); Cysteine (Cys); Ethanolamine (EA); Ethanol (EtOH); 177 

Creatine (Cr); y-Amino-Butyric Acid (GABA); Glucose (Glc); Glutamine (Gln); Glutamate 178 

(Glu); Glycerophosphocholine (GPC); Glutathione (GSH); Glycerol (Glyce); Glycine (Gly); 179 

Water (H2O); Homocarnosine (HCar); Histamine (Hist); Histidine (His); Lactate (Lac); Myo-180 

Inositol (mI); N-Acetyl-Aspartate (NAA); N-Acetyl-Aspartate-Glutamate (NAAG); 181 

Phenylalanine (Phenyl); Phosphocholine (PCho); Phosphocreatine (PCr); Phosphoethanolamine 182 

(PE); Scyllo-Inositol (sI); Serine (Ser); Taurine (Tau); Threonine (Thr); Tryptophan (Trp); 183 

Tyrosine (Tyr); and Valine (Val). GABA was separately simulated using two different spin-184 

system enumerations (Govindaraju et al., 2000; Near et al., 2012). Both α-glucose and β-glucose 185 

were simulated. 186 

2.1.2. Assembly of Metabolite Component: 187 

Individual metabolite basis functions were linearly combined to give a metabolite 188 

spectral component, weighted by metabolite concentrations sampled from distributions defined 189 

by our recent meta-analysis (Gudmundson et al., 2023), including both healthy and clinical 190 

cohort ranges. From the full basis sets, 22 metabolites were selected which had defined 191 

concentration ranges available in a recent meta-analysis that collated results from nearly 500 192 

MRS papers using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 193 

(Gudmundson et al., 2023; Moher et al., 2009; Page et al., 2021). One isomer of GABA (either 194 

the definition from (Govindaraju et al., 2000) or (Near et al., 2012)) and Glucose (α or β) were 195 

randomly chosen with equal probability for each example. Concentrations were selected with 196 

equal probability from a range defined by ±2.5 standard deviations from the meta-analysis mean 197 

of each cohort (Gudmundson et al., 2023) and are provided in supplemental tables 1 and 2. 198 

T2* relaxation decay of time-domain data was simulated with an exponential and 199 

Gaussian component to produce a Voigt lineshape (Marshall et al., 1997) in the frequency 200 

domain. The exponential component represents the pure T2 arising from dipole-dipole 201 

interactions, paramagnetic interaction, etc., while the Gaussian component represents the 202 
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transverse dephasing from diffusion and exchange of spins in an inhomogeneous field (Koch et 203 

al., 2009; Marshall et al., 1997; Michaeli et al., 2002; Yablonskiy & Haacke, 1994). While pure T2 is 204 

understood to be field-independent (Bloembergen et al., 1948; Carr & Purcell, 1954; Held et al., 1973; 205 

Michaeli et al., 2002), the dominant Gaussian decay (Marshall et al., 1997) increases with 206 

increasing static field strength and is attributed to greater microscopic (Michaeli et al., 2002) and 207 

macroscopic (Juchem et al., 2021; Tkáč et al., 2001) susceptibility gradients. Here, the pure 208 

Lorentzian T2 component is based upon the relaxation times at 1.5 T from a relaxation meta-209 

regression (Gudmundson et al., 2023), which are assumed to be the least impacted by 210 

susceptibility gradients that scale with B0 (Bloembergen et al., 1948; De Graaf et al., 2006; 211 

Michaeli et al., 2002). Once the Lorentzian T2 component was applied, the additional T2* 212 

contributions were modeled by applying appropriate amounts of Gaussian broadening, to achieve 213 

a frequency-domain full-width half-maximum (FWHM) linewidth of the NAA singlet between 3 214 

Hz and 18 Hz with a uniform distribution. A small amount of jitter (between 20 s-2 and 100 s-2) 215 

was added to the Gaussian decay rate so that each metabolite would undergo a similar, but not 216 

identical, amount of Gaussian decay to better replicate the variability observed for in vivo data.  217 

2.1.3. Macromolecular Component: 218 

Fourteen MM signals were modeled at: 0.92 ppm; 1.21 ppm; 1.39 ppm; 1.67 ppm; 2.04 219 

ppm; 2.26 ppm; 2.56 ppm; 2.70 ppm; 2.99 ppm; 3.21 ppm; 3.62 ppm; 3.75 ppm; 3.86 ppm; and 220 

4.03 ppm (Cudalbu et al., 2021; Giapitzakis et al., 2018). MM chemical shifts were jittered by ± 221 

0.03 ppm to both account for observed differences in MM designations and provide further 222 

dataset augmentation. Each MM signal was simulated as a singlet with exponential decay rate 223 

sampled uniformly from a range specified by literature of MM T2 time constants (Murali-224 

Manohar et al., 2020) and additional Gaussian decay to reach published linewidths (Giapitzakis 225 

et al., 2018; Murali-Manohar et al., 2020). MM amplitudes were sampled uniformly from within 226 

published ranges (Giapitzakis et al., 2018; Murali-Manohar et al., 2020).  227 

2.1.4. Noise Component: 228 

 Noise was generated from a normal distribution, with independent random real and 229 

imaginary points. The noise was scaled such that the signal-to-noise ratio of the NAA singlet 230 

(SNRNAA was defined, following Experts’ Consensus (Öz et al., 2021), by NAA height divided by 231 

the standard deviation of the noise) was uniformly sampled between 5 and 80. The noise 232 

amplitude values are also stored within the archive file. 233 
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2.1.5. Residual Water Component: 234 

 The residual water basis signal was simulated as a composite signal (of up to five 235 

components). In order to simulate varying degrees of water suppression, the residual water signal 236 

was modeled by between 0 and 5 unique Voigt-shaped signals with variable ppm locations, 237 

phases, and amplitudes, based on the approach of (L. Lin et al., 2019). The ranges for these 238 

parameters are listed in Table 1. The final water component was scaled to be between 1× and 239 

20× the maximum value of the frequency-domain metabolite spectrum. The water components 240 

used, along with their corresponding parametrizations, are stored within the NumPy archive file. 241 

2.1.6. Frequency and Phase Shifts: 242 

 Within the NumPy archive file, a frequency shift, zero-order phase shift, and first-order 243 

phase shift are specified for each entry in the dataset, but not applied to the time-domain 244 

components. Frequency shifts were sampled uniformly from the range −0.313 ppm to +0.313 245 

ppm. Zero-order phase shifts were sampled uniformly from the range −180 degrees to +180 246 

degrees. First-order phase shifts were sampled uniformly from the range −19.5 degrees to +19.5 247 

degrees per ppm. Users may choose to omit phase and frequency shifts, use the provided shifts, 248 

or specify their own. 249 

2.2. Exemplar Application to AGNOSTIC: Machine Learning for Out-Of-Voxel Artifacts: 250 
 The primary motivation for the AGNOSTIC dataset is as a training resource for the 251 

development of processing, modeling, and analysis tools for MRS. Synthetic spectra with known 252 

ground truths are valuable in a range of applications, from the development and validation of 253 

traditional linear combination modeling algorithms to training DL models. 254 

In order to demonstrate the utility of the dataset, an exemplar application is presented, in 255 

which the AGNOSTIC dataset is supplemented by simulated artifacts (in this case out-of-voxel 256 

OOV echoes) and used to train DL models to detect and predict the artifact signals. The 257 

AGNOSTIC dataset was developed as building blocks which can be combined to train a variety 258 

of different models. A strength of this dataset is that custom user-defined components can be 259 

utilized. We demonstrate this point here by building an OOV dataset to train and evaluate a DL 260 

model to identify and suppress OOV artifacts. 261 
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2.2.1. Simulation of Out-Of-Voxel Echoes: 262 

 OOV artifacts were defined as complex time-domain signals with a time point (τOOV), 263 

width (WOOV), frequency (ωOOV), phase (ΦOOV) and amplitude (aOOV) as shown in Figure 1. τOOV 264 

describes the timepoint of the top of the OOV echo and was sampled randomly from a uniform 265 

distribution between 10 ms and 400 ms. WOOV describes the Gaussian decay rate and was 266 

sampled randomly from a uniform distribution between 500 s-2 and 8000 s-2, resulting in a 267 

FWHM echo duration between 18 ms and 74 ms. ωOOV describes the offset in the frequency 268 

domain, and was sampled randomly from a uniform distribution in order to produce OOVs that 269 

occur between 1 ppm and 4 ppm. aOOV was sampled randomly from a uniform distribution to 270 

produce OOV echoes with an amplitude between 0.1% and 20% of the maximum time domain 271 

point. ΦOOV was sampled uniformly between 0 degrees to 360 degrees. 272 

𝑂𝑢𝑡 𝑜𝑓 𝑉𝑜𝑥𝑒𝑙 𝐸𝑐ℎ𝑜  =  𝑎!!"0𝑒#$!!"(& # (!!")#10𝑒#*+&10𝑒#*,1 [1] 

 273 

2.2.2. Integration of OOV Echoes into AGNOSTIC for the Training Dataset: 274 

To build the OOV echoes dataset, we combined metabolite, water, MM, and noise 275 

components from the AGNOSTIC dataset. We then added OOV signals to 85% of the dataset 276 

and a complex zeros array in the remaining 15%. In total there were 180,000 examples used for 277 

network training, 1,800 examples used for validation, and 7,200 examples used for testing. 278 

Finally, we applied the included frequency and phase shifts specified within the AGNOSTIC 279 

dataset. The network input consisted of the combined metabolite, water, MM, noise, and OOV 280 

signals as a complex time-domain signal. This input was normalized so that the absolute 281 

maximum among the real and imaginary values was 1. Finally, training data were converted to a 282 

TensorFlow Dataset (Abadi et al., 2015). 283 

2.2.3. Detection Network: 284 

 The first exemplar network is designed to detect OOV echoes within time-domain data 285 

by identifying the points in the spectra that have been contaminated by OOV echoes. This 286 

Detection Network is a fully Convolutional Neural Network (CNN) designed using TensorFlow2 287 

with Keras (Chollet & others, 2015) in a Python 3 environment. The network consists of 288 

contracting encoding layers and expanding decoding layers with a total of 1.543 million 289 

parameters, as shown in Figure 2. Each layer was initialized (kernel_initializer) with 290 
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“he_normal” (He et al., 2015). Each convolutional layer (except the output layer which uses a 291 

sigmoid activation) includes batch normalization and a leaky rectified linear unit (ReLu) 292 

activation function (Maas et al., 2013)Click or tap here to enter text.. A kernel size of 3 (3 x 2 293 

before collapsing the real/imaginary dimension and 3 x 1 afterward) was used for each 294 

convolutional layer. The network is designed to receive a time-domain input signal and return a 295 

binary mask of the same size as the input with ones placed in OOV-detected regions and zeros 296 

elsewhere. A ground-truth binary mask was determined as the 5% level of the maximum 297 

amplitude of the Gaussian OOV envelope located at the central peak. For training, the input and 298 

output of this network is a 60 x 2048 x 2 x 1 tensor, where 60 is the batch size, 2048 is the 299 

number of time points, 2 is the real/imaginary dimension, and 1 is the channel dimension.  300 

The Dice coefficient (Carass et al., 2020; Dice, 1945; T. Sørensen, 1948) of the overlap 301 

between the network output and the correct binary OOV location vector was used as a training 302 

loss function, calculated as 2x the intersection divided by the union plus 1; where 1 was used to 303 

avoid division by 0. The Adam (Kingma & Ba, 2015) optimizer was used with a fixed learning rate 304 

of 0.0003. Success on the validation set was evaluated every 7,200 steps, at which time the 305 

network weights were saved if the validation loss improved. The final model that was selected 306 

had the smallest validation loss after 72 epochs. Training took approximately 2.5 hours and was 307 

performed on an 8 GB NVIDIA GeForce RTX 3070 GPU. A clustering algorithm was applied to 308 

the final network output, which zeroed any group of time points in which the network detected 309 

OOV echo that was smaller than 5 consecutive time points, to dampen spurious output. A cluster 310 

size of 5 was selected empirically to ensure detection of the narrow echoes while eliminating any 311 

false positives. 312 

2.2.4. Modeling: 313 

Modeling of the OOV echoes was performed as an optimization problem and solved with 314 

SciPy (Virtanen et al., 2020) minimization routines. Here, the non-gradient Powell (Powell, 315 

1964, 1994) optimizer was used to determine the five OOV parameters (τOOV, WOOV, ωOOV, 316 

ΦOOV, and aOOV), minimizing the mean squared error (MSE) between the model and the data 317 

within the time window identified by the Detection Network. Initial values for τOOV, WOOV, and 318 

the aOOV are inferred from the Detection Network’s output center timepoint, the detection 319 

duration, and the standard deviation of the target signal within the detected region. 320 
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Optimization was performed as three sequential optimization steps performed one after 321 

another. The first optimization is used to determine τOOV, WOOV, and the aOOV by minimizing the 322 

MSE between the absolute values of the model and the data (i.e., removing frequency and phase 323 

from the model) in the time domain. The second optimization determines ωOOV by minimizing 324 

between the absolute values of the model and the data in the frequency domain. The third 325 

optimization refines the values determined by optimizations 1 and 2 and determines ΦOOV by 326 

complex optimization in the time domain.  327 

2.2.5. Prediction Network: 328 

The second exemplar network is designed to predict the OOV echoes found within time-329 

domain data. This prediction network is also a fully CNN designed using TensorFlow2 with 330 

Keras in a Python 3 environment, with the same architecture as the Detection Network (as shown 331 

in Figure 2). As such, the input and output of this network is also 60 x 2048 x 2 x 1 tensor, where 332 

60 is the batch size, 2048 is the number of time points, 2 is the real/imaginary dimension, and 1 333 

is the channel dimension. The network is designed to receive a time-domain input signal 334 

containing a combination of the ground-truth time-domain signal and the OOV artifact and 335 

return a time-domain output signal that only contains the OOV signal, amplified 10x. This 336 

amplification serves to focus the training on the OOV echo by non-uniformly (due to the OOV 337 

echo’s non-linear decay) concentrating the network towards the center-most points of the OOV 338 

echoes to effectively center and reconstruct the predicted OOV echo on the τOOV with the correct 339 

WOOV.  340 

For training, a weighted mean squared error (weighting the timepoints within the ground-341 

truth OOV mask uniformly by 10) was used as a loss function with an ADAM (Kingma & Ba, 342 

2015) optimizer and a fixed learning rate of 0.0003. Success on the validation set was evaluated 343 

every 7,200 steps at which time the network weights were saved if the validation loss improved. 344 

The final model that was selected had the smallest validation loss after 72 epochs. Training took 345 

approximately 2.5 hours and was performed on an 8 GB NVIDIA GeForce RTX 3070 GPU.  346 

2.2.6 Evaluating the Performance of Networks and Modeling: 347 

In the final testing set, OOV artifacts were present in 6,137 of the total 7,200 examples 348 

(85.2%). The Detection Network was evaluated using the Dice coefficient (Carass et al., 2020; 349 

Dice, 1945; Powell, 1964), the overlap between the ground-truth binary OOV mask and the 350 
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cluster-thresholded network output. As well as computing global success, the dependence of 351 

detection success on various attributes of the OOV echo and the underlying spectrum were also 352 

investigated. 353 

Both modeling and the prediction network return a pure OOV signal, and in both cases, 354 

the MSE between the prediction/model and the ground-truth OOV echo is used for evaluation. If 355 

the ground-truth echo datapoints are Ei and the model or echo prediction is Mi, we calculate the 356 

fractional remaining OOV amplitude as: 357 

Fractional OOV Remaining =
∑|𝑀* − 𝐸*|-

∑|𝐸*|-
 

[2] 

where the bars represent the complex amplitude. The sum is taken over the ground-truth range of 358 

the OOV echo. In order to visualize a wide range of success and failure, we take the log10 of this 359 

quantity for plotting (i.e., a log10 value of 1 is no change, anything positive is a manipulation that 360 

is worse than doing nothing, and a negative value show the order of magnitude of improvement). 361 

Note that Ei is the ground-truth echo signal, not the signal from which the echo is being removed 362 

which also contains metabolite, macromolecule, and noise components.   363 

 The timing of the OOV was found to be a key parameter determining the success of 364 

detection and prediction, and as a result, the evaluation metrics were calculated for the following 365 

time-bins (based on the known value of tOOV): 10-20 ms; 20-40 ms; 40-60 ms; 60-80 ms; 80-120 366 

ms; 120-200 ms; 200-300 ms; 300-400 ms.  367 

2.2.7 In Vivo Proof-of-Principle 368 

 As a proof-of-principle demonstration of this exemplar use of the AGNOSTIC dataset, 369 

the network was applied to 256 transients of in vivo data, selected because they contain 370 

prominent OOV echoes and were excluded during quality assessment in a recent study (Zöllner 371 

et al., 2023). These data were collected on a 2.89 T Siemens scanner using the MEGA-PRESS 372 

(Mescher et al., 1996, 1998) pulse sequence with a TE of 68 ms and TR of 1.75 s, and a spectral 373 

width of 2.4 kHz. Note that this challenges the generality of the training because the network has 374 

never seen data acquired at 2.89 T, nor at 2.4 kHz spectral width, nor at TE 68 ms, nor with 375 

MEGA-Editing, nor with actual real RF pulses. Raw data from a 25 x 25 x 25 mm3 voxel in the 376 
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cerebellum were loaded and coil combined in Osprey (Oeltzschner et al., 2020). Time-domain 377 

data were saved as a MATLAB (The MathWorks Inc., 2022) .mat file and loaded as a Python 3 378 

object using SciPy. The data were normalized (as above with training data) to be used as input 379 

for the neural networks. 380 

One challenge of in vivo data (and the reason that this network demonstration focuses 381 

substantially on synthetic data) is that no ground truth is available. Therefore, the degree of 382 

success in removing OOV echo signals from time-domain data Di is: 383 

Fractional Reduction in standard deviation = 1 −
𝜎(𝐷* −𝑀*)
𝜎(𝐷*)

 
[3] 

where s denotes the standard deviation. Note that, in contrast to the metric used for synthetic data 384 

in Equation 1, only Di is available, not the ground truth Ei, which substantially changes the 385 

ceiling of success. It is still expected that substantial signal variance remains after OOV removal, 386 

since Di contains metabolite signals and noise. The range over which this standard deviation is 387 

calculated is the 50% level of the normalized histogram of the detection network’s output across 388 

the 256 transients. Note that this metric is an imperfect response to the absence of ground-truth 389 

knowledge for in vivo data, predicated on the assumption that subtracting out OOV signal 390 

reduces the standard deviation of the time-domain signal. 391 
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3. Results: 392 

3.1. AGNOSTIC Synthetic Dataset: 393 
The AGNOSTIC dataset contains 259,200 examples, consisting of 960 examples from 394 

each of the eighteen field strengths and fifteen echo times (i.e., 960x18x15=259,200). A 395 

representative set of ten spectra are shown in Figure 3, illustrating the diversity of field strengths, 396 

TEs, SNR, and linewidth within the dataset.  397 

One challenge with making this dataset available is its size — 75 GB — but we do make 398 

it freely available on Dryad (DOI: 10.7280/D1RX1T). The basis sets from which these are 399 

constructed are more manageable — 9 GB — and can also be accessed through Dryad (DOI: 400 

10.7280/D1RX1T). Code for generating the AGNOSTIC dataset locally is available at: 401 

https://github.com/agudmundson/agnostic. 402 

3.2. Exemplar Application to AGNOSTIC: Machine Learning for Out-Of-Voxel Artifacts: 403 
3.2.1. Detection Network: 404 

Of the 6,137 examples where OOV artifacts were present, the Detection Network 405 

correctly identified 5,827 (94.9%) with a median Dice score of 0.974 (0.941–0.985 interquartile 406 

range) and missed 310 (5.05%) with a Dice score of 0.00. In the 1063 examples that did not 407 

include OOV artifacts, the network correctly ignored 912 (85.8%) and falsely detected OOV 408 

echoes in 151 (14.2%). Figure 4 shows the Detection Network’s output for a synthetic OOV-409 

corrupted example. 410 

 Analysis of the factors that determined success indicated that the time at which OOV 411 

signals occur is most critical. Therefore, OOV echoes were further broken down into eight time-412 

bins, and the Dice score plotted in Figure 5. The median Dice scores — 0.165, 0.858, 0.892, 413 

0.934, 0.960, 0.974, 0.978, and 0.978 — are poor in the first bin and improve thereafter. Note 414 

that these bins are not spaced equally to emphasize poor performance extremely early. The 415 

number of examples in each bin is 161, 289, 282, 329, 622, 1256, 1565, and 1633, respectively.  416 

3.2.2. Modeling 417 

The modeling optimization converged in 5,824 of the 5,827 examples where the detection 418 

network detected OOV artifacts and provided initial values. Across this subset of the examples, 419 

the modeling achieved a median log10 (fractional OOV remaining) of −2.19 (−2.90 – −1.19 inter-420 
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quartile range), i.e., a median reduction of more than two orders of magnitude. Figure 5 shows 421 

the resulting model for a synthetic OOV-corrupted example. 422 

These values — broken down into 8 time-bins — are shown in Figure 5. The median 423 

log10(fractional OOV remaining) decreases across the time bins: 1.663, 1.324, 0.680, 0.223, 424 

−1.586, −2.276, −2.491, and −2.567. 425 

3.2.3. Prediction Network: 426 

In the 6,137 examples where OOV artifacts were present, the prediction network 427 

achieved a median log10 normed-MSE of −1.79 (−2.21 – −1.11 inter-quartile range). In the 5,824 428 

examples where OOV artifacts were successfully modeled, the prediction network achieved a 429 

median log10 normed-MSE of −1.85 (−2.24 – −1.24 inter-quartile range). Figure 5 shows the 430 

Prediction Network’s output for a synthetic OOV-corrupted example. 431 

OOVs were further broken down into 8 time-bins (Figure 5) early — the number of 432 

examples in each bin is 86, 226, 261, 312, 592, 1208, 1538, 1601. The median log10(fractional 433 

OOV remaining) decreases across the time bins: −0.207, −0.583, −0.862, −1.250, −1.577, 434 

−1.878, −2.005, and −2.052. 435 

3.2.4. In Vivo Proof-of-Principle: 436 

The Detection Network identified an OOV in 243 of 256 transients (94.9%). In these 243 437 

OOV-detected transients, the modeling achieved a median reduction in standard deviation of 438 

71.0 % (60.2 -75.3% inter-quartile range). The Prediction Network achieved a median reduction 439 

in standard deviation of 69.65% (66.33 %/72.7 % inter-quartile range) in this subset. In the full 440 

set of 256 transients, the Prediction Network achieved a median 69.4 % (65.3 – 72.6 % inter-441 

quartile range) reduction in standard deviation. The standard deviation of the noise floor was 442 

found to account for a median of 10.3% (9.35–11.6 % inter-quartile range) of the standard 443 

deviation of signal within the time window for the 256 averages. A representative in vivo 444 

example is shown in Figure 6. 445 

 446 

 447 

 448 
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4. Discussion: 449 

AGNOSTIC is a benchmark MRS dataset for training and evaluating performance across 450 

various models. In order to make these synthetic data representative of in vivo brain MRS datasets, 451 

a total of 22 brain metabolites and 14 MM peaks were simulated within 270 basis sets, spanning 452 

field strengths from 1.4 T to 3.1 T and TEs from 10 to 80 ms. Parameterized water residual and 453 

noise were included. SNR and linewidths were assigned at random, independent of B0 or TE. The 454 

broad span of the dataset is key in training networks that generalize. While AGNOSTIC is broad 455 

in these dimensions, it does only represent simulated data for PRESS (Bottomley, 1982) 456 

acquisitions, and may benefit from expansion to include other pulse sequences, such as STEAM 457 

(Frahm et al., 1987), SPECIAL (Mekle et al., 2009; Mlynarik et al., 2006), LASER (Garwood & 458 

DelaBarre, 2001), and semi-LASER (Scheenen, Heerschap, et al., 2008; Scheenen, Klomp, et al., 459 

2008), and edited versions including MEGA (Mescher et al., 1996, 1998) and Hadamard-encoded 460 

(Chan et al., 2016, 2019; Oeltzschner et al., 2019; Saleh et al., 2016) schemes. AGNOSTIC is 461 

limited by simulations that used ideal pulses, a calculated trade-off to emphasize generalizability 462 

across field strength, echo time, and spectral width, and thus fail to capture effects associated with 463 

spatially heterogeneous coupling evolution. The extent to which these limitations matter will 464 

depend on the applications that AGNOSTIC synthetic data are being used for. 465 

The Detection network was highly successful, identifying 94.9% of the testing set where 466 

OOV artifacts were present. The precise value of this success metric is obviously impacted by the 467 

parameters of the OOVs – a later minimum OOV time would tend to increase performance, and 468 

earlier would degrade it. It is noteworthy that, although the training datasets never contained more 469 

than one OOV echo, the detection and prediction networks were able to handle more than one 470 

OOV echo in vivo data, presumably because CNNs operate locally within the FID. It is also 471 

encouraging that the networks generalized well to the in vivo data (Figure 6), which was collected 472 

with unseen acquisition parameters, i.e., edited MEGA-PRESS (Mescher et al., 1996, 1998) data 473 

acquired at 2.89 T with a TE of 68 ms, and 2.4 kHz spectral width. While it is reasonable to believe 474 

that networks trained using AGNOSTIC will generalize well with in vivo clinical data, future work 475 

will need to evaluate performance for clinical applications. 476 

In the exemplar OOV application, the success of the networks depended heavily on the 477 

timing of the OOV signal. The earliest OOV echoes were most challenging, unsurprisingly since 478 

such signals are broad Gaussian resonances that are indistinguishable from within-voxel MM and 479 
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baseline signals. Indeed, the only feature that differentiates OOV signals from other broad 480 

components of the model is timing. It is conceptually helpful to consider this in the Fourier domain, 481 

even though all network processing is performed in the time domain. In the frequency domain, a 482 

mismatch between the echo-top and the acquisition start is represented as a first-order phase error 483 

of the signal associated with that echo. Where insufficient first-order phase exists to be represented 484 

within the linewidth of the signal in question, (which in the time domain corresponds to substantial 485 

truncation of the lefthand side of the echo), the network struggles to identify OOV signals. 486 

In the context of this study, modeling and prediction are treated as two alternative 487 

approaches to OOV characterization. For early OOV signals, the modeling approach tended to 488 

mis-attribute non-artifact signal as OOV signal, a result that the metric scored as worse than no 489 

intervention. The median performance of the Prediction network, even for very early OOV signals, 490 

was close to zero. Both modeling and prediction performance improve as the OOV moves later in 491 

the acquired signal, with modeling improving faster than the network, and performing better than 492 

prediction beyond 120 ms. This strong performance of the model at least in part reflects the exact 493 

match between the generative model of the synthetic OOV artifacts and the model that is being 494 

used to extract them. More moderate performance might be expected for real in vivo examples – 495 

but the same may also be true for networks which have been trained with the same synthetic data 496 

and may have learned specifically to identify OOV signals that have a Gaussian kernel. 497 

One key difference between most DL applications and applications in MRS, is the strict 498 

requirement to preserve amplitude fidelity in network outputs. A common approach to artifacts in 499 

DL is to return an artifact-free version of the network input. In contrast, the approach taken here 500 

is to return the artifact, which has the following benefits: it avoids networks over-learning the 501 

formulaic pattern of typical spectra; it reduces the impact of the lack of sequence diversity within 502 

the AGNOSTIC dataset; and it is less likely to impact the amplitudes of metabolite signals. 503 

The ultimate goal of this work is to extract metabolite levels from MRS data that are not 504 

impacted by OOV artifacts. This problem can be addressed at several points: either by not 505 

acquiring data that contain OOV artifacts; by removing OOV artifacts post-acquisition; and by 506 

incorporating appropriate OOV model components into quantification model so that the impact of 507 

OOV is minimized. While the work presented here focuses primarily on the second context, it 508 

raises important potential applications in the other contexts. One motivator for developing the 509 

Detection network is the possibility of real-time deployment during sequence acquisition to trigger 510 
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sequence changes when OOV artifacts are detected. The modeling applied here was time-restricted 511 

to a given window and ignored other components of the spectrum, but demonstrates potential for 512 

future integration within a full linear-combination model. 513 
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5. Conclusion: 514 

In conclusion, we have presented the AGNOSTIC benchmark dataset which can be used 515 

for training and testing brain-specific 1H MRS deep learning models. This large synthetic dataset 516 

is open-source and encompasses a range of field strengths, TEs, and dwell times to ensure networks 517 

are robust to a variety of in vivo data acquisitions protocols. Using this dataset, we have 518 

demonstrated an exemplar use case to develop CNNs to detect and predict out-of-voxel artifacts. 519 
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Figures: 819 

 820 

 

Figure 1. Simulation of OOV echoes and OOV-corrupted synthetic data: OOV echoes were 
simulated as complex time-domain signals with a center timepoint (τOOV), width (WOOV), 
frequency (ωOOV), phase (ΦOOV), amplitude (aOOV). OOV echoes were added to 85% of 
synthetic data to create datasets for training and evaluation.  
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Figure 2. Convolutional Neural Network Architecture, Input, and Output: A) Fully 
convolutional neural network architecture used for both the Detection and Prediction Network. 
Convolutional strides, batch normalization, and Leaky ReLu activation functions are denoted 
by a colored line. Dark gray blocks represent complex data with the 2nd dimension 
representing real and imaginary components, while white blocks represent the network 
abstracted single dimension. Arrows show residual connections. Note, inputs and outputs are 
all time-domain signals; Frequency-domain is shown for convenient visualization. B) OOV- 
corrupted synthetic example and the isolated OOV. The complex OOV-corrupted data was 
used as the Detection and Prediction Network input. The target Output is the isolated OOV. 
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Figure 3. AGNOSTIC synthetic dataset. 10 representative spectra from the AGNOSTIC 
dataset. The 10 examples show the diversity of field strength, TE, linewidths, and residual 
water signal present among the data. Note, examples are shown here in the frequency-domain 
to better illustrate the heterogeneity, but the dataset provides time-domain examples.  
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 830 

 

Figure 4. OOV-corrupted example: OOV-corrupted synthetic example and the isolated OOV. 
Results from Detection Network (green), Model (orange), and Prediction Network (blue) are 
shown below the ground truth OOV-corrupted and OOV. OOV residuals are shown for the 
Model (orange) and Prediction Network (blue) demonstrating remaining signal after 
subtraction. Note, frequency-domain is shown for convenient visualization, but the Detection 
Network, Modeling, and Prediction Network all operate on time-domain signals.  
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Figure 5. Evaluation of Detection Network, Modeling, and Prediction Network. A testing set 
with 7200 (2400 examples with 3 different OOV echoes) unseen examples was used to 
evaluate the A) Detection Network and B) Modeling and Prediction Network. Performance 
across the whole test set is shown on the left-hand side. Performance across the binned center 
timepoint (τOOV) is shown across the right-hand side.  
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Figure 6. In vivo MEGA-PRESS OOV-corrupted example. Results from Detection Network 
(green), Model (orange), and Prediction Network (blue) are shown below. Detection and 
Prediction CNNs identified and reconstructed the OOV echo, despite having never seen data 
acquired with 2.89 T, 2.4 kHz spectral width, 68 ms, editing, nor real RF pulses. Note, 
frequency-domain is shown for convenient visualization, but the Detection Network, 
Modeling, and Prediction Network all operate on time-domain signals.  
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Tables: 859 

 860 

Table 1. Parametrization of the residual water signal components within AGNOSTIC. 861 
 

 Location / ppm Phase / deg Amplitude 

Component Low High Low High Low High 

1 4.679 4.711 −10 10 1.00 1.00 

2 4.599 4.641 15 45 .35 .55 

3 4.759 4.801 −60 −30 .35 .55 

4 4.449 4.541 −70 45 .10 .25 

5 4.859 4.901 105 135 .10 .25 
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Supplemental Material: 866 

 867 

 

 868 

Supplemental Figure 1: Ten representative examples of A) residual water and B) macromolecule 869 
components. Examples match the full spectra shown in Figure 3; each spectrum is scaled independently 870 
for visualization.  871 
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Supplemental Figure 2: Time-domain window (gray) used to calculate the fractional reduction in 
standard deviation for the in vivo transients. A) Each of the 256 MEGA-PRESS transients (128 Edit-on 
and 128 Edit-Off) overlaid. B) Histogram (green) showing the total number of detections by the 
Detection Network across each timepoint. This window was established algorithmically by using 50% 
of the maximum count as a threshold for the window. 
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Synthetic Range (mM) 
Metabolite Low High 
Acetate 0.00 0.00 
Alanine* 0.47 0.77 
Ascorbate 0.36 1.53 
Aspartate 0.00 4.66 
Adenosine Triphosphate 0.00 0.00 
β-Hydroxybutyrate 0.00 0.00 
β-Hydroxyglutarate 0.00 0.00 
Citrate 0.00 0.00 
Creatine 1.41 10.50 
Cysteine 0.00 0.00 
Ethanol Amine 0.00 0.00 
Ethyl Alcohol 0.00 0.00 
γ-Amino Butyric Acid 0.52 1.99 
Glucose* 0.94 1.53 
Glutamine 0.26 3.64 
Glutamate 3.88 13.17 
Glycerophosphocholine 0.05 5.00 
Glutathione 0.16 2.41 
Glycine* 0.94 1.53 
Glycerol 0.00 0.00 
Histamine 0.00 0.00 
Histidine 0.00 0.00 
Homocarnosine 0.00 0.00 
Lactate 0.00 1.44 
Macromolecule 0.92 1.00 30.00 
Macromolecule 1.21 1.00 8.00 
Macromolecule 1.39 1.00 35.00 

 

Synthetic Range (mM) 
Metabolite Low High 
Macromolecule 1.67 1.00 15.00 
Macromolecule 2.04 1.00 35.00 
Macromolecule 2.26 1.00 20.00 
Macromolecule 2.56 1.00 5.00 
Macromolecule 2.70 1.00 7.00 
Macromolecule 2.99 1.00 10.00 
Macromolecule 3.21 1.00 7.00 
Macromolecule 3.62 1.00 5.00 
Macromolecule 3.75 1.00 10.00 
Macromolecule 3.86 1.00 4.00 
Macromolecule 4.03 1.00 7.00 
Myo-inositol† 2.08 14.00 
N-Acetylaspartate† 5.38 18.00 
N-Acetylaspartylglutamate† 0.26 2.26 
Phosphocholine* 0.01 2.00 
Phosphocreatine* 3.38 6.44 
Phosphoethanolamine* 1.41 2.30 
Phosphoethyl Alcohol 0.00 0.00 
Phenylalanine 0.00 0.00 
Scyllo-inositol 0.00 0.39 
Serine 0.00 0.00 
Taurine 0.00 2.89 
Threonine 0.00 0.00 
Tryptophan 0.00 0.00 
Tyrosine 0.00 0.00 
Valine 0.00 0.00 

 

 884 

Supplemental Table 1: Concentration ranges for the healthy brain, used to generate synthetic spectra. 885 
These mM values were based upon a meta-analysis preliminary to (Gudmundson et al., 2023), with some 886 
values (marked *) supplemented from the Fit Challenge ranges (Marjańska et al., 2021) and other ranges 887 
(marked †) extended to offer greater flexibility. Concentrations were sampled uniformly between the low 888 
and high values to generate the synthetic spectra. 889 
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Synthetic Range 
Disease / Metabolite Low High 
Seizure   
    Creatine 0.918 1.012 
    Phosphocreatine 0.918 1.012 
    Glycerophosphocholine 0.731 1.147 
    Phosphocholine 0.731 1.147 
    γ-Amino Butyric Acid 0.930 1.173 
    Glutamate 0.787 1.247 
    Glutamine 0.787 1.247 
    Glutathione 0.887 1.243 
    Myo-inositol 0.802 1.134 
    N-Acetylaspartate 0.751 1.002 
    N-Acetylaspartylglutamate 0.751 1.002 
Stroke   
    Creatine 0.684 1.146 
    Phosphocreatine 0.684 1.146 
    Glycerophosphocholine 0.855 1.527 
    Phosphocholine 0.855 1.527 
    Glutamate     0.874 1.140 
    Glutamine 0.874 1.140 
    Lactate 1.000 6.922 
    Myo-inositol 0.827 1.265 
    N-Acetylaspartate 0.727 1.074 
    N-Acetylaspartylglutamate 0.727 1.074 
Traumatic Brain Injury   
    Aspartate 0.785 0.910 
    Creatine 0.814 1.162 
    Phosphocreatine 0.814 1.162 
    Glycerophosphocholine 0.930 1.057 
    Phosphocholine 0.930 1.057 
    γ-Amino Butyric Acid 0.860 0.984 
    Glutamate     0.824 1.214 
    Glutamine 0.824 1.214 
    Myo-inositol 0.737 1.315 
    N-Acetylaspartate 0.795 1.011 
    N-Acetylaspartylglutamate 0.795 1.011 
Type-1 Diabetes   
    Aspartate 0.895 1.496 
    Creatine 0.977 1.039 
    Phosphocreatine 0.977 1.039 
    Glycerophosphocholine 1.034 1.140 
    Phosphocholine 1.034 1.140 
    Glutamate     0.895 1.216 
    Glutamine 0.956 1.353 
    Glutathione 0.872 1.435 
    Myo-inositol 0.893 1.092 
    N-Acetylaspartate 0.947 1.008 
    N-Acetylaspartylglutamate 0.947 1.008 
    Scyllo-inositol 0.501 0.992 
    Taurine 0.754 1.322 

 

Synthetic Range 
Metabolite Low High 
Cancer   
    Creatine 0.256 1.340 
    Phosphocreatine 0.256 1.340 
    Glycerophosphocholine 1.139 1.949 
    Phosphocholine 1.139 1.949 
    Glutamate     0.780 1.320 
    Glutamine 0.780 1.320 
    Lactate 1.00 9.99 
    Myo-inositol 0.829 1.519 
    N-Acetylaspartate 0.509 0.956 
    N-Acetylaspartylglutamate 0.509 0.956 
Chronic Pain   
    Glycerophosphocholine 0.943 1.285 
    Phosphocholine 0.943 1.285 
    γ-Amino Butyric Acid 0.896 1.168 
    Glutamate     0.790 1.121 
    Glutamine 0.790 1.121 
    Myo-inositol 0.942 1.049 
    N-Acetylaspartate 0.775 1.280 
    N-Acetylaspartylglutamate 0.775 1.280 
Migraine   
    Aspartate 0.434 1.409 
    Creatine 0.921 1.011 
    Phosphocreatine 0.921 1.011 
    Glycerophosphocholine 0.959 1.137 
    Phosphocholine 0.959 1.137 
    Glutamate     0.841 1.119 
    Glutamine 0.841 1.119 
    Myo-inositol 0.866 1.032 
    N-Acetylaspartate 0.755 1.067 
    N-Acetylaspartylglutamate 0.755 1.067 
Fibromyalgia   
    Creatine 0.760 1.429 
    Phosphocreatine 0.760 1.429 
    Glycerophosphocholine 0.840 1.236 
    Phosphocholine 0.840 1.236 
    γ-Amino Butyric Acid 0.724 0.937 
    Glutamate     1.005 1.104 
    Glutamine 0.711 1.107 
    Myo-inositol 0.844 1.232 
    N-Acetylaspartate 0.847 1.061 
    N-Acetylaspartylglutamate 0.847 1.061 
   
   
   
   
   
   

…table continued on next page 
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Synthetic Range 
Disease / Metabolite Low High 
Post-Traumatic Stress Disorder   
    Creatine 0.940 1.235 
    Phosphocreatine 0.940 1.235 
    Glycerophosphocholine 0.843 1.284 
    Phosphocholine 0.843 1.283 
    γ-Amino Butyric Acid 0.982 1.059 
    Glutamate 0.892 1.134 
    Glutamine 0.892 1.134 
    Myo-inositol 0.939 1.198 
    N-Acetylaspartate 0.969 1.156 
    N-Acetylaspartylglutamate 0.969 1.156 
Obsessive Compulsive Disorder  
    Creatine 0.890 1.320 
    Phosphocreatine 0.890 1.320 
    Glycerophosphocholine 0.784 1.223 
    Phosphocholine 0.784 1.223 
    Glutamate 0.868 1.243 
    Glutamine 0.868 1.243 
    Myo-inositol 0.743 1.437 
    N-Acetylaspartate 0.846 1.100 
    N-Acetylaspartylglutamate 0.846 1.100 
Depression   
    Creatine 0.938 1.021 
    Phosphocreatine 0.938 1.021 
    Glycerophosphocholine 0.741 1.158 
    Phosphocholine 0.741 1.158 
    γ-Amino Butyric Acid 0.769 1.400 
    Glutamate 0.872 1.119 
    Glutamine 0.894 1.177 
    Glutathione 0.822 1.082 
    Myo-inositol 0.874 1.239 
    N-Acetylaspartate 0.864 1.080 
    N-Acetylaspartylglutamate 0.864 1.080 
Addiction   
    Creatine 0.775 1.161 
    Phosphocreatine 0.755 1.161 
    Glycerophosphocholine 0.788 1.202 
    Phosphocholine 0.788 1.202 
    γ-Amino Butyric Acid 0.669 1.289 
    Glutamate 0.807 1.229 
    Glutamine 0.807 1.229 
    Glycine 0.969 1.335 
    Glutathione 0.935 1.442 
    Myo-inositol 0.820 1.135 
    N-Acetylaspartate 0.761 1.195 
    N-Acetylaspartylglutamate 0.761 1.195 
   
   
   

 

Synthetic Range 
Disease / Metabolite Low High 
Schizophrenia   
    Creatine 0.948 1.045 
    Phosphocreatine 0.948 1.045 
    Glycerophosphocholine 0.946 1.157 
    Phosphocholine 0.946 1.157 
    γ-Amino Butyric Acid 0.732 1.261 
    Glutamate 0.857 1.164 
    Glutamine 0.857 1.164 
    Myo-inositol 0.806 1.239 
    N-Acetylaspartate 0.910 1.103 
    N-Acetylaspartylglutamate 0.910 1.103 
Psychosis   
    Creatine 0.983 1.059 
    Phosphocreatine 0.983 1.059 
    Glycerophosphocholine 0.892 1.127 
    Phosphocholine 0.892 1.127 
    γ-Amino Butyric Acid 0.725 1.176 
    Glutamate 0.813 1.172 
    Glutamine 0.813 1.172 
    Glycine 1.131 1.423 
    Glutathione 0.917 1.034 
    Myo-inositol 0.892 1.090 
    N-Acetylaspartate 0.910 1.048 
    N-Acetylaspartylglutamate 0.910 1.048 
Personality Disorder   
    Creatine 0.961 1.110 
    Phosphocreatine 0.961 1.110 
    Glycerophosphocholine 0.925 1.007 
    Phosphocholine 0.925 1.007 
    Glutamate 0.949 1.207 
    Glutamine 0.949 1.207 
    Glutathione 0.917 1.034 
    Myo-inositol 0.989 1.081 
    N-Acetylaspartate 0.880 0.997 
    N-Acetylaspartylglutamate 0.880 0.997 
Bipolar Disorder   
    Creatine 0.900 1.061 
    Phosphocreatine 0.900 1.061 
    Glycerophosphocholine 0.854 1.269 
    Phosphocholine 0.854 1.269 
    Glutamate 0.907 1.115 
    Glutamine 0.907 1.115 
    Glutathione 0.957 1.150 
    Myo-inositol 0.812 1.209 
    N-Acetylaspartate 0.863 1.109 
    N-Acetylaspartylglutamate 0.863 1.109 
   

…table continued on next page 
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Synthetic Range 
Disease / Metabolite Low High 
Multiple Sclerosis   
    Glycerophosphocholine 0.880 1.077 
    Phosphocholine 0.880 1.077 
    γ-Amino Butyric Acid 0.851 1.017 
    Glutamate 0.887 1.030 
    Glutamine 0.887 1.030 
    Glutathione 0.844 1.069 
    Myo-inositol 0.892 1.078 
    N-Acetylaspartate 0.924 1.044 
    N-Acetylaspartylglutamate 0.924 1.044 
Parkinson's Disease   
    Creatine 0.850 1.100 
    Phosphocreatine 0.850 1.100 
    Glycerophosphocholine 0.780 1.201 
    Phosphocholine 0.780 1.201 
    γ-Amino Butyric Acid 0.679 1.390 
    Glutamate 0.887 1.224 
    Glutamine 0.887 1.224 
    Myo-inositol 0.810 1.190 
    N-Acetylaspartate 0.756 1.240 
    N-Acetylaspartylglutamate 0.756 1.240 
Essential Tremor   
    Creatine 0.924 1.053 
    Phosphocreatine 0.924 1.053 
    Glycerophosphocholine 0.851 1.044 
    Phosphocholine 0.851 1.044 
    γ-Amino Butyric Acid 0.802 1.218 
    Glutamate 1.050 1.434 
    Glutamine 1.050 1.434 
    N-Acetylaspartate 0.919 1.136 
    N-Acetylaspartylglutamate 0.919 1.136 

 

Synthetic Range 
Disease / Metabolite Low High 
Dementia   
    Ascorbate 1.132 1.231 
    Aspartate 1.028 1.168 
    Creatine 1.010 1.028 
    Phosphocreatine 1.010 1.028 
    Glycerophosphocholine 0.850 1.150 
    Phosphocholine 0.850 1.150 
    γ-Amino Butyric Acid 0.513 1.183 
    Glutamate     0.771 1.139 
    Glutamine 0.955 1.172 
    Myo-inositol 0.801 1.397 
    N-Acetylaspartate 0.723 1.038 
    N-Acetylaspartylglutamate 0.723 1.038 
    Scyllo-inositol 0.476 1.312 
    Taurine 0.882 1.013 
APOE4   
    Aspartate 1.028 1.168 
    Glycerophosphocholine 0.965 1.019 
    Phosphocholine 0.965 1.019 
    γ-Amino Butyric Acid 0.513 1.183 
    Glucose 0.971 1.028 
    Glutamate     0.836 1.126 
    Glutamine 0.909 1.232 
    Glutathione 0.834 1.103 
    Myo-inositol 0.959 1.092 
    N-Acetylaspartate 0.895 1.063 
    N-Acetylaspartylglutamate 0.895 1.063 
   
   
   
   

 

 898 

Supplemental Table 2: Clinical population scaling factors used to generate synthetic spectra. In each 899 
case the simulated concentration for a given clinical spectrum was determined by a uniformly sampled 900 
concentration drawn from the ranges shown in Supplemental Table 1, multiplied by a scaling factor 901 
determined by a uniformly sampled scalar from these ranges provided in Supplemental Table 2. 902 
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Synthetic Range (ms) 
Metabolite Low High 
Acetate 0.00 0.00 
Alanine* 100.00 250.00 
Ascorbate 100.00 250.00 
Aspartate 120.15 204.55 
Adenosine Triphosphate 0.00 0.00 
β-Hydroxybutyrate 0.00 0.00 
β-Hydroxyglutarate 0.00 0.00 
Citrate 0.00 0.00 
Creatine 3.03 164.08 242.70 
Creatine 3.91 135.18 213.80 
Creatine 6.65 164.08 242.70 
Cysteine 0.00 0.00 
Ethanolamine 0.00 0.00 
Ethyl Alcohol 0.00 0.00 
γ-Amino Butyric Acid 77.37 161.77 
Glucose 100.00 250.00 
Glutamine 103.96 184.89 
Glutamate 140.96 219.58 
Glycerophosphocholine 198.77 278.54 
Glutathione 108.59 188.36 
Glycine 121.31 204.55 
Glycerol 0.00 0.00 
Histamine 0.00 0.00 
Histidine 0.00 0.00 
Homocarnosine 0.00 0.00 
Lactate 142.12 226.52 
Macromolecule 0.92 20.00 60.00 
Macromolecule 1.21 20.00 60.00 
Macromolecule 1.39 20.00 60.00 

 

Synthetic Range (ms) 
Metabolite Low High 
Macromolecule 1.67 20.00 60.00 
Macromolecule 2.04 20.00 60.00 
Macromolecule 2.26 20.00 60.00 
Macromolecule 2.56 20.00 60.00 
Macromolecule 2.70 20.00 60.00 
Macromolecule 2.99 20.00 60.00 
Macromolecule 3.21 20.00 60.00 
Macromolecule 3.62 20.00 60.00 
Macromolecule 3.75 20.00 60.00 
Macromolecule 3.86 20.00 60.00 
Macromolecule 4.03 20.00 60.00 
Myo-inositol† 139.80 219.58 
N-Acetylaspartate 242.70 320.17 
N-Acetylaspartylglutamate 132.87 216.11 
Phosphocholine 100 250 
Phosphocreatine 3.03 130 210 
Phosphocreatine 3.93 100 180 
Phosphocreatine 6.58 130 210 
Phosphocreatine 7.30 130 210 
Phosphoethanolamine 100 250 
Phosphoethyl Alcohol 0.00 0.00 
Phenylalanine 0.00 0.00 
Scyllo-inositol 100 250 
Serine 0.00 0.00 
Taurine 151.37 231.14 
Threonine 0.00 0.00 
Tryptophan 0.00 0.00 
Tyrosine 0.00 0.00 
Valine 0.00 0.00 

 

 909 

Supplemental Table 3: T2 Relaxation time ranges in milliseconds for the healthy brain derived from 1.5 910 
T multiple meta-regression preliminary to (Gudmundson et al., 2023). Relaxation times were sampled 911 
uniformly between the low and high values.  912 
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B0 (T) Every 
Point 

Every 
2nd 

Point 

Every  
3rd 

Point 

Every  
4th Point 

Every  
5th Point 

Every  
6th Point 

Every  
7th Point 

Every  
8th Point 

1.4 3733.33 1866.67 1244.44 933.33 746.67 622.22 533.33 466.67 
1.5 4000.00 2000.00 1333.33 1000.00 800.00 666.67 571.43 500.00 
1.6 4266.67 2133.33 1422.22 1066.67 853.33 711.11 609.52 533.33 
1.7 4533.33 2266.67 1511.11 1133.33 906.67 755.56 647.62 566.67 
1.8 4800.00 2400.00 1600.00 1200.00 960.00 800.00 685.71 600.00 
1.9 5066.67 2533.33 1688.89 1266.67 1013.33 844.44 723.81 633.33 
2.0 5333.33 2666.67 1777.78 1333.33 1066.67 888.89 761.90 666.67 
2.1 5600.00 2800.00 1866.67 1400.00 1120.00 933.33 800.00 700.00 
2.2 5866.67 2933.33 1955.56 1466.67 1173.33 977.78 838.10 733.33 
2.3 6133.33 3066.67 2044.44 1533.33 1226.67 1022.22 876.19 766.67 
2.4 6400.00 3200.00 2133.33 1600.00 1280.00 1066.67 914.29 800.00 
2.5 6666.67 3333.33 2222.22 1666.67 1333.33 1111.11 952.38 833.33 
2.6 6933.33 3466.67 2311.11 1733.33 1386.67 1155.56 990.48 866.67 
2.7 7200.00 3600.00 2400.00 1800.00 1440.00 1200.00 1028.57 900.00 
2.8 7466.67 3733.33 2488.89 1866.67 1493.33 1244.44 1066.67 933.33 
2.9 7733.33 3866.67 2577.78 1933.33 1546.67 1288.89 1104.76 966.67 
3.0 8000.00 4000.00 2666.67 2000.00 1600.00 1333.33 1142.86 1000.00 
3.1 8266.67 4133.33 2755.56 2066.67 1653.33 1377.78 1180.95 1033.33 

         
 

Supplemental Table 4: Field strengths (Tesla) and possible spectral widths (Hertz) available using the 
AGNOSTIC basis sets. These combinations are achievable by subsampling the time-domain from 
every timepoint to every 8th timepoint and allows for maintaining a minimum of 2048 timepoints. Each 
of these combinations is available for the 15 echo times, from 10 ms to 80 ms, in steps of 5 ms.  

 920 
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