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Abstract

Exploratory spatial data analysis (ESDA) can be a powerful approach to understanding
single-cell genomics datasets, but it is not yet part of standard data analysis workflows. In
particular, geospatial analyses, which have been developed and refined for decades, have yet
to be fully adapted and applied to spatial single-cell analysis. We introduce the Voyager
platform, which systematically brings the geospatial ESDA tradition to (spatial) -omics, with
local, bivariate, and multivariate spatial methods not yet commonly applied to spatial -omics,
united by a uniform user interface. Using Voyager, we showcase biological insights that can be
derived with its methods, such as biologically relevant negative spatial autocorrelation.
Underlying Voyager is the SpatialFeatureExperiment data structure, which combines Simple
Feature with SingleCellExperiment and AnnData to represent and operate on geometries
bundled with gene expression data. Voyager has comprehensive tutorials demonstrating ESDA
built on GitHub Actions to ensure reproducibility and scalability, using data from popular
commercial technologies. Voyager is implemented in both R/Bioconductor and Python/PyPI,
and features compatibility tests to ensure that both implementations return consistent results.

Introduction

From the developing embryo to the hepatic lobule, spatial organization of cells is essential to the
functions of many tissues. Recent breakthroughs in technology development, data collection,
and data analysis tools for spatial transcriptomics, have led to a plethora of possibilities and
applications'. Among these data analysis tools are overarching data analysis frameworks for
data organization and exploratory data analysis (EDA), including frameworks such as Seurat?,
squidpy?, Giotto*, and semla (formerly STUtility®), which add spatial data analysis functionalities
and visualizations to traditional single-cell RNA-seq (scRNA-seq) analysis workflows. In
addition, for the purpose of EDA, many visualization tools have been developed for spatial
-omics data. Many of these visualization tools are designed to be scalable and interactive for
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large imaging-based data such as MERFISH® and imaging mass cytometry, plotting gene
expression and cell metadata in space, or utilizing virtual reality”".

EDA is an approach to understanding data “without many preconceived ideas, theories, or
hypotheses”'2. It encourages a mindset of asking questions and exploring possible answers by
visualizing, transforming, and modeling relevant data, leading to further, more refined questions
without a formal process or strict set of rules'. The spirit of EDA is that “it is important to
understand what you can do before you learn to measure how well you seem to have done it"".
Exploratory spatial data analysis (ESDA) is EDA explicitly focusing on spatial aspects of the
data, especially spatial autocorrelation, where nearby observations are not independent from
each other'?. ESDA has a long history of use in geography, where a rich tradition has been
developed™. The widely used spatial autocorrelation metrics Moran’s I'® and Geary’s C'" are
among the global univariate spatial statistics used in ESDA, which produce one set of results for
the entire dataset. The characteristics of Moran’s | and Geary’s C have been further elaborated
over the years'®2. In addition, there are tools to explore the length scale of spatial
autocorrelation, such as the correlogram?' and variogram?®2. Local versions of spatial statistics,
such as local Moran’s I? and Getis-Ord Gi* ?* can be used to explore local spatial heterogeneity
and find spatial clusters of high or low values, producing a set of results for each location. There
are also spatially informed global and local bivariate and multivariate statistics that account for
spatial autocorrelation and correlation between features simultaneously, such as Lee’s L% and
MULTISPATI PCA?%.

Much of this ESDA tradition can benefit spatial -omics, but has not been utilized in existing EDA
frameworks. For example, while Seurat, squidpy, Giotto, and semla implement some spatial
analysis methods; none of these tools have systematically and comprehensively implemented
the entire breadth of the geospatial ESDA tradition (Supplementary Table 1). In particular,
methods to explore length scales and local spatial heterogeneity of spatial autocorrelation and
spatially informed correlation among genes have not been fully explored in these existing
frameworks (Supplementary Table 1). Furthermore, the data structures underlying Seurat,
squidpy, Giotto, and semla have limited if any support for representation and operations on
geometries such as cell segmentation polygons (Supplementary Table 2). In addition, packages
that specialize in visualization often do not implement any ESDA methods. Many other spatial
-omics data analysis packages focus on data preprocessing before the exploratory stage, such
as image processing?’, cell type deconvolution of Visium spots?, integrating data from different
modalities or tissue sections?®, and predicting gene expression from H&E images™.
Downstream analysis packages tend to implement novel methods for specific tasks such as
finding spatially variable genes®', cell-cell interactions®?, spatially informed dimension
reduction®, and finding spatial regions defined by gene expression®, accompanied by claims of
superior performance compared to existing packages performing the same tasks. These
packages focus on “how well you seem to have done it” in Tukey’s words while “what you can
do” remains unaddressed.

The Voyager project fills this gap by facilitating geospatial ESDA to spatial -omics, placing the
spatial information front and center in the EDA workflow. The SpatialFeatureExperiment (SFE)
object underlying Voyager brings geospatial Simple Features to spatial -omics, thereby enabling
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geometric operations, such as to relate characteristics of cells to those of Visium spots. EDA is
to “feel free to investigate every idea that occurs to you"'*. Many univariate, bivariate, and
multivariate global and local methods are included (Supplementary Table 1), with a consistent
user interface extensible to new methods, enabling researchers to easily investigate more such
ideas. Some classic methods have been reimplemented to be more scalable to larger datasets,
and we demonstrate the utility of ESDA by applying Voyager to real data. Our case studies
show what we “can do” with an expanded palette of ESDA tools beyond areas commonly
addressed by specialized downstream methods: we find correlation between library size and
histological characteristics, and show an example of biologically relevant negative spatial
autocorrelation. We also show that ESDA can be applied to non-spatial scRNA-seq datasets via
the k-nearest-neighbor graph, thereby making Voyager immediately applicable to a wide range
of single-cell genomics datasets.

Finally, we address an increasingly challenging problem in single-cell genomics, namely the
divergence between R and Python' implementations of standard methods, that has led to
programming-language dependent results. Voyager is implemented in both R and Python, with
compatibility tests to ensure that the two implementations give consistent results for core
functionalities. Voyager also has comprehensive documentation and tutorials for common
spatial -omics technologies and spatial analysis methods. While the tutorials are built on spatial
transcriptomics, proteomics, and non-spatial scRNA-seq data, in principle Voyager can be
applied to other -omics as well. The R packages Voyager, SpatialFeatureExperiment, and
SFEData (which provides example datasets for the tutorials) are available on Bioconductor. The
Python implementation is available on PyPI.
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Results

The Voyager framework
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Figure 1: Schematic overview of the Voyager framework. Voyager brings exploratory spatial
data analysis (ESDA) methods initially developed for geospatial data to spatial -omics, with a
consistent user interface for different methods. Voyager is based on the
SpatialFeatureExperiment (SFE) object. In R, SFE uses sf and terra to extend
SingleCellExperiment (SCE) and SpatialExperiment (SPE). In Python, SFE extends AnnData
with GeoPandas. Voyager implements plotting functions for gene expression, cell attributes, and
spatial analysis results. Spatial results shown in this schematic are local Moran’s | (left),
correlogram (center top), Moran scatter plot (center bottom), and variogram map (right). The
documentation website includes tutorials that demonstrate ESDA on data from multiple spatial
-omics technologies, including Visium, Slide-seq, Xenium, CosMX, MERFISH, seqFISH, and
CODEX. The website is built automatically with GitHub Actions for reproducibility, and Google
Colab notebooks are automatically generated from the vignettes. Compatibility tests are used to
make sure that the R and Python implementations return consistent results for core
functionalities.
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Voyager is built on the SFE data structure, which bundles geometries such as cell segmentation
polygons with gene expression data, and implements geometric operations on such geometries
and related SFE data. Geometries in SFE are represented with Simple Features, which is a
standard framework to represent geometries in the geospatial field and provides access to the
GEOS C++ library for fast geometric operations. SFE extends existing scRNA-seq data
structures and conforms to their syntaxes and conventions. In Python, AnnData® is extended
with GeoPandas®®, and in R, SingleCellExperiment (SCE)* and SpatialExperiment (SPE)* are
extended with sf* for the Simple Features (Figure 1, Supplementary Note 1). Importantly, spatial
information need not be physical: single-cell RNA-seq data structures can also be analyzed
spatially, where “space” is abstracted to the k-nearest-neighbor graph.

Spatial data analysis methods can be categorized as neighborhood or distance view; the former
uses a spatial neighborhood graph to indicate spatial adjacency, while the latter uses physical
distance'. Voyager wraps many spatial methods from widely used packages, such as spdep
(neighborhood) and gstat (distance) in R, and PySAL in Python. ESDA methods can also be
broadly categorized by the number of variables analyzed: univariate (e.g. Moran’s 1'°), bivariate
(e.g. Lee’s L?), and multivariate (e.g. MULTISPATI PCA®). In Voyager, each of these has a
main function providing a uniform user interface to a variety of methods, thereby simplifying
access for users (Figure 1). This structure was inspired by the Tidymodels machine learning
framework*. These methods can also be categorized as global, where one set of results is
returned for the entire dataset, or local, where each location or cell has its own set of results.
The latter facilitates explorations of local heterogeneity in spatial relations. Genes can have
different length scales of spatial autocorrelation, which can be explored with the correlogram?'
and variogram?? (Figure 1). The length scale can differ in different directions, i.e. exhibit
anisotropy, which can be explored with anisotropic variograms and variogram maps?? (Figure 1).
Users can extend Voyager and make the uniform user interface run custom ESDA methods to
reduce redundant code and facilitate organization and visualization of results. Hypothesis
testing is implemented for some of these methods to identify genes or regions whose spatial
characteristics are unlikely to occur by chance (Table 1). However, since the assumptions
behind some of the tests might not hold well for non-normal gene expression data, significant
results should be interpreted as indicating “interesting” genes or regions.

Geospatial data tend to have a much smaller number of features and observations than modern
single-cell spatial -omics datasets, so Voyager implements parallel processing when running a
univariate or bivariate spatial method over a large number of genes. Voyager also reimplements
methods whose current implementations don’t scale to modern spatial -omics data, thereby
drastically speeding up computation. These methods include MULTISPATI PCA, Lee’s L, finding
bounds of Moran’s | from spatial neighborhood graphs®, and distance-based edge weighting of
k-nearest-neighbors or distance-based graphs (Supplementary Figures 1-2).

Visualization is an essential part of the EDA process. Voyager implements static plotting
functions for gene expression, cell attributes, and cell projections along dimensions obtained by
dimension reduction plotted in histological space. The histology image can be optionally plotted
behind the cells, or in the case of Visium technology, the spots. While most existing packages
plot cells as points, Voyager can plot cell or nuclei segmentation polygons as well. For larger
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datasets, users can specify a bounding box to zoom into a smaller area. The default palettes
are designed to have color values discernible with color vision deficiencies (Supplementary
Figure 3). Default continuous palettes come from ColorBrewer*', scico*?, and viridis. A
sequential palette is used by default, but a divergent palette is available when there is a
meaningful center of divergence, such as 0 in local Moran’s | and Lee’s L. The default
categorical palette comes from dittoSeq*’, which was designed for colorblind-friendly
scRNA-seq data visualization. In addition, Voyager implements plotting functions for spatial
analysis results, such as the Moran scatter plot, correlograms, variograms, and local spatial
statistics shown in histological space (Figure 1).

Voyager has a comprehensive documentation website that features tutorials on applying EDA
and ESDA to datasets from multiple spatial -omics technologies, including 10X Visium and
Xenium*, Nanostring CosMX*, Vizgen MERFISHS, Slide-seq*®, seqFISH*, and CODEX*
(Figure 1). On the website, each -omics technology has a landing page with an introduction to
the technology and a table linking to tutorials using a dataset from the technology. Each ESDA
method has a similar landing page, with an introduction to the method and a similar table,
linking to sections in each tutorial using the ESDA method, some of which include further
considerations on the ESDA methods and references to the geospatial ESDA literature.
Example datasets used in the tutorials are available as SFE objects in the SFEData package. In
addition, there are tutorials instructing users on constructing an SFE object and extending
Voyager for custom ESDA methods.

While Voyager is focused on spatial data, neighborhood view ESDA methods can be applied to
the k-nearest-neighbor graph in gene expression PCA space. This is illustrated in depth for a
10X Chromium and a Visium dataset. Basic tutorials also introduce analysis for Split-seq,
ATAC-seq, 10X single cell multiome ATAC + gene expression, ClickTags, 10X single nuclei, and
10X single cell CRISPR screen performing data preprocessing and quality control.

To ensure that the tutorials are reproducible, Voyager builds the documentation website on
GitHub Actions, rendering all the tutorials on the cloud. Because the GitHub Actions runner has
fewer computational resources than a typical modern laptop, this ensures that the vignettes are
scalable to larger datasets, such as a MERFISH mouse liver dataset with almost 400,000 cells.
The tutorials are also automatically converted into Google Colab notebooks to be run
interactively, allowing users to experiment with different parameters, and facilitating exploration
of new datasets and customization of workflows.

In order to ensure that analysis results are not language dependent, as is the case currently in
single-cell and spatial -omics data analysis where results differ depending on whether analysis
was performed in R or Python, we have developed a Python implementation of core
functionalities of the more comprehensive R package Voyager. The implementation, called
VoyagerPy, is equivalent to the R implementation, as ensured via compatibility tests. Because
Bioconductor requires software packages to have unit tests and pass a daily automated check,
whereas PyPl and conda do not perform automated tests, the Python implementation is thus
indirectly held to the Bioconductor standard. VoyagerPy has the added advantage of facilitating
the utilization of deep learning and image analysis methods for spatial -omics, as there is better
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support for such methods in Python than R. The Python implementation also supports
visualization in Matplotlib.
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Figure 2: Applications of Voyager on spatial transcriptomics datasets. A) In a mouse skeletal
muscle dataset, the total UMI counts, or library size per spot (nCounts), are plotted in space as
blue open circles and myofibers are colored in red according to their cross section areas. Only
spots that intersect tissue are plotted. The H&E image is plotted on the side as a reference. B)
Scatter plot of the number of genes detected per spot (nGenes) vs. nCounts, colored by mean
area of myofibers that intersect each spot. C) Simulated (density plot) and observed (vertical
line) difference between Moran’s | in nCounts of spots that intersect tissue (in) and that of spots
that don’t (out). D) The 20 most positive and 20 most negative eigenvalues from MULTISPATI
PCA of a mouse liver MERFISH dataset. As other eigenvalues were not computed, there is a
break after PC20 in this plot. E) The most positive and negative gene loadings for PCs 1, 2, and
40. F) A subset of the MERFISH data showing a portal triad (near top right) and two central
veins (left and bottom right), with cell polygons colored by their projections into 2 PCs with the
most positive eigenvalues and the PC with the most negative eigenvalue (“PC407). The first 2
PCs show zonation.

Select sase studies taken from the documentation website showcase the potential biological
insights that can be gleaned from ESDA. First, we examined a mouse skeletal muscle Visium
dataset*’, two days after notexin injury (Figure 2A-C). In the H&E image, the region with many
blue leukocyte nuclei is the injury site, the darker red strip and blocks are muscle-tendon
junctions, and the remaining pink regions are myofibers (Figure 2A). When the library size
(nCounts) per spot among spots that intersect the tissue is plotted in space, we find that
different histological regions have different library sizes. For example, the muscle-tendon
junctions tend to have smaller library sizes than myofibers and part of the injury site, and
regions with tightly packed myofibers (top and bottom left) tend to have larger library sizes than
the region with larger myofibers surrounded by leukocytes (right). While there is no one-to-one
correspondence between Visium spots and myofibers, geometric operations can find the
myofibers that intersect each Visium spot and their areas using myofiber segmentation. In this
dataset, the library size and number of genes detected (nGenes), often used as QC metrics, are
related to myofiber size — spots on larger myofibers tend to have more genes detected given the
same library size than spots on smaller myofibers (Figure 2A-B).

Moreover, the library size in the tissue has stronger spatial autocorrelation than outside the
tissue, as indicated by a larger positive Moran’s | (Figure 2C, Supplementary Note 2). The
library size values are permuted in space for spots that intersect the tissue and those that don't,
and Moran’s | is computed for these permutations to estimate a null distribution. The density plot
in Figure 2C shows the null distribution of permuted Moran’s | from spots intersecting tissue
minus that from spots not intersecting tissue. The vertical line indicates the actual difference,
which is much larger than all 499 simulated values. This confirms the finding that in spatial
transcriptomics, library size is biologically relevant and should not be treated as a technical
artifact as is commonly done for scRNA-seq *°.

The ESDA method MULTISPATI PCA is particularly interesting, as we see from analysis of a
mouse liver MERFISH dataset from the Vizgen website®' (Figure 2D-F, Supplementary Note 2).
While non-spatial PCA maximizes variance explained by each principal component (PC) given
that the PCs are orthogonal, MULTISPATI PCA maximizes the product of variance explained
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and Moran’s |, which is the eigenvalues (Figure 2D). Positive eigenvalues mean that the PCs
not only explain more variance, but also are spatially coherent (large positive Moran’s |).
Negative eigenvalues mean that the PCs not only explain more variance, which is non-negative,
but also have negative spatial autocorrelation, i.e. nearby values tend to be more different. In
this dataset, the positive eigenvalues show an elbow as in non-spatial PCA, and there is one
substantial negative eigenvalue (Figure 2D). In non-spatial PCA, the PCs are not spatially
structured until PC5, which picks up zoning (Supplementary Figure 4). PC1 highlights Kupffer
cells (Cdh5) and endothelial cells (Egfr), and PC2 also highlights endothelial cells
(Supplementary Figure 4A). In contrast, because MULTISPATI PCA also maximizes Moran’s |,
zonation is picked up by the first 2 PCs. PC1 is periportal and PC2 is pericentral (Figure 2E-F).
This may complement existing methods to find spatially variable genes (maximize Moran’s |)
that are also more likely to be biologically relevant (maximize variance explained). Furthermore,
spatially coherent PCs can be used for clustering to find more spatially coherent clusters in
some cases, complementing clusters found with non-spatial PCs (Supplementary Figures 5-6,
Supplementary Note 2).

Negative spatial autocorrelation is one of the most neglected topics in spatial data analysis®, as
there are many more examples of positive than negative spatial autocorrelation. Negative
spatial autocorrelation can arise from competition between neighbors (see®?) or from functional
roles played by spatial contacts between different types of entities. In this dataset, the latter
seems to be the case: the PC with the most negative eigenvalue separates endothelial cells
(Kdr) and Kupffer cells (Cdh5) from hepatocytes (Hsd3b3, Figure 2E-F). Existing methods of
spatially informed dimension reduction®*-*° and methods to find spatially variable genes®*° tend
to only consider positive spatial autocorrelation. This example shows that negative spatial
autocorrelation is relevant to biology at the single-cell level and should be further investigated,
as the cells, unlike Visium spots and administrative boundaries, are meaningful and
non-arbitrary units of observations and biological function.
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Figure 3: Application of neighborhood view spatial statistics on non-spatial scRNA-seq. A) Violin
plots of log normalized counts of the top marker gene of each Leiden cluster in the PBMC
dataset. B) Moran scatter plot of nCounts in a 10X Chromium human PBMC dataset. The
spatial lags were computed with the k nearest neighbors graph in PCA gene expression space.
Colors indicate clusters, and point shape indicates whether the point is influential to the fit of the
blue line, which is the least square fit to the scatter plot. The gray shade around the line is the
95% confidence interval of the fit. Contours show the area with the highest point density. The
gray dotted lines show the mean on the x and y axes. C) Histograms of local Moran’s | values

per cell of top marker genes

of each cluster in the PBMC dataset, colored by cell cluster. The y

axis (number of cells per bin) is log-transformed for better dynamic range. The histograms are
plotted as lines instead of bars to avoid overlapping bars from different clusters. D) Concordex
heatmap for the PBMC Leiden clusters. High diagonal and low off diagonal values indicate high
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clustering quality, or that the Leiden clusters reflect the k-nearest-neighbor graph well, but
cluster 6 has somewhat lower quality.

Finally, we note that neighborhood view spatial methods can be applied to neighborhood graphs
in gene expression space rather than histological or geographical space. We applied spatial
statistics to quality control metrics and gene expression in a 10X Genomics Chromium
peripheral blood mononuclear cells (PBMC) dataset® using the k-nearest-neighbors graph in
PCA gene expression space as the “spatial” neighborhood graph (Figure 3). Moran scatter plot
of library size shows further evidence that library size is confounded by biology even in
non-spatial data (Figure 3B). In a Moran scatter plot, the x-axis is the value of a variable at each
cell, and the y-axis is the spatially lagged value (i.e. sum of values from spatial neighbors
weighted by edge weights of the spatial neighborhood graph). When the adjacency matrix of the
spatial neighborhood graph is row normalized, it is shown in Anselin 19962 that the slope of the
line fitted to the scatter plot is global Moran’s |, while the scatter plot shows local heterogeneity
in spatial autocorrelation. Here, above the fitted line, cluster 5 (activated T cells) tends to have
larger library sizes and stronger “spatial” autocorrelation in library size than average (Figure 3B).

Local Moran’s | is a locally disaggregated form of Moran’s |, that measures the contribution of
each cell to Moran’s 12 (Supplementary Note 2). Positive values indicate neighborhoods
homogeneous in the variable of interest, and negative values indicate heterogeneous
neighborhoods. We computed local Moran’s | (li) for the top marker gene of each cluster
(Methods). The marker gene has much higher li in cells in the cluster of interest than cells in
other clusters, except for clusters 3 and 6, whose top marker genes don’t clearly distinguish
these clusters from most other clusters and don’t seem to have cell type-specific functions
(Figure 3A, C). When the marker gene is highly specific, cells in other clusters display an li
tightly clustered around 0, as shown for clusters 4 (B cells) and 8 (platelets). When the marker
gene is not very specific, cells in other clusters that also express the marker gene often display
an li higher than clusters not expressing the gene (e.g. cluster 1 T cells and cluster 7 natural
killer cells and cytotoxic T cells for IL32 and PRF1; cluster 5 activated T cells, cluster 2
monocytes, and cluster 4 B cells for HLA-DRB1, Figure 3A, C).

However, li as an index of local homogeneity, does not always correspond to expression level,
hence revealing additional nuances of the clusters and marker genes. For example, CTSS, a
marker gene of cluster 2 which is also somewhat expressed in clusters 4 and 5, is not more
homogeneous in clusters 4 and 5 than clusters with lower expression (Figure 3A, C).
Furthermore, cluster 1 marker IL32 has locally negative li among some cells in clusters 1, 3, 6,
and 7 that have higher expression, indicating local heterogeneity, while unlike for the other
marker genes, cells in clusters with low expression of this IL32 have somewhat positive li,
indicating homogeneity (Figure 3C). The Concordex metric was devised to quantify
k-nearest-neighbor graph based cluster quality as an alternative to UMAP, by indicating how
well the clusters match the graph structure °'. As Leiden clustering is graph-based, li on cluster
marker genes can give nuances to the single numbers from Concordex and to the quality of the
marker genes (Figure 3D). While li has been used to identify spatially variable genes®, this case
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study shows that it can potentially be applied to the k-nearest-neighbor graph in gene
expression PCA space as another form of differential expression (DE). While these univariate
methods can only be applied to one out of thousands of genes at a time, they can give a more
nuanced view of genes of interest discovered by other methods as shown here, or applied to
features derived from multiple genes such as dimension reduction cell or spot embeddings to
explore spatial characteristics of gene programs (Supplementary Figures 5-6).

Compatibility tests
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Figure 4. Comparisons between results obtained by Seurat and scanpy, and between Voyager
R and Python for a mouse olfactory bulb Visium dataset. A) Comparison of Visium spot
embeddings in the first 2 PCs from Seurat and scanpy with default parameters. The lines
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connect corresponding spots in Seurat and scanpy. B) As in A, but for Voyager R and
VoyagerPy, with parameters stated in this section. C) Cosine distances between the first 20
PCA eigenvectors (gene loadings) from Seurat and scanpy (yellow), and from Voyager R and
Python (blue). The dashed line is the magnitude that can be explained by machine double
precision. The text part of the line is somewhat smoothed for readability but should not affect
interpretation. D) Absolute values of differences in the proportion of variance explained by each
of the top 20 PCs. E) Moran’s | from VoyagerPy vs. Voyager R. The blue line is y = x, showing
that the results are consistent. F) Same as E but for local Moran’s | for gene S100a5. G) Plotting
the local Moran’s | values in space, with the H&E image behind the spots, from Voyager R (top)
and VoyagerPy (bottom).

In scRNA-seq, Seurat and scanpy are both commonly used EDA frameworks. However, their
default settings not only yield different log fold changes® but also highly divergent PCA results,
as exemplified using a mouse olfactory bulb Visium dataset® (Figure 4A, C-D), which might lead
to different biological conclusions. To avoid such discrepancies, Voyager implements extensive
compatibility tests to ensure that the R and Python implementations return the same results for
core functionalities. Thus, there are no visible differences in Visium spot embeddings in the first
two PCs returned by the scater (Voyager R workflow) and VoyagerPy implementations (Figure
4B). In Seurat vs. scanpy, the cosine difference (see Methods) between PCA eigenvectors
(gene loadings) in each of the top 50 PCs is nearly 1 after the first few PCs, which means the
angles between the corresponding eigenvectors are nearly 90 degrees (Figure 4C). In Voyager,
this difference is much smaller, well below machine epsilon (dashed line, around 1.5e-8, see
Methods) until PC20 (Figure 4C). While the difference sometimes rises above machine epsilon
after PC20, it does not exceed 1e-5. While Seurat and scanpy implementations of PCA with
default parameters produce sizable differences in the proportion of variance explained by each
PC, these differences in the R and Python implementations of Voyager are generally within
machine epsilon (Figure 4D).

For spatial statistics, the R and Python implementations of Voyager also produce consistent
results for global Moran’s | of the highly variable genes (Figure 4E), with differences within
epsilon (1.61e-17, see Methods). For local Moran’s | (Figure 4F-G), the results are the same
(within epsilon, 3.89e-16) but with a non-default spdep parameter (Supplementary Note 3). In
both implementations, besides the different default styles of ggplot2 and matplotlib, the
plotting functions produce visually similar plots with the same palettes (Figure 4G).

While the R and Python implementations of Voyager may eventually diverge in functionalities,
as the two languages have better support for different types of analyses, the compatibility tests
will continue to ensure that the core functionalities and basic vignettes return the same results in
R and Python, so language preference does not inadvertently lead to different interpretations of
data.

Notably, Seurat and scanpy produce different PCA results largely due to their different methods
of finding highly variable genes. However, the PCA results remain somewhat different even
when using the same set of highly variable genes because of a hidden default in Seurat that
clips scaled data to 10, while scanpy by default does not clip the scaled data (Supplementary
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Figure 7). Moreover, Seurat and scanpy return different marker gene rankings from ostensibly
the same DE method (e.g. t-test or Wilcoxon test) because they rank the genes differently and
even estimate different log fold changes differently®® (Supplementary Note 4). Most users may
be unaware of such inconsistencies and the hidden parameter defaults and method choices that
cause them. In the interests of transparency, we have therefore documented Voyager’s default
parameters and the reasons for choosing them (Supplementary Note 3). We have also
elucidated reasons for the divergent log fold changes in Seurat vs. scanpy and compared effect
sizes and p-values from DE with Wilcoxon rank sum test in Seurat vs. scanpy and in scran
(Voyager R workflow) vs. VoyagerPy. In contrast to Seurat and scanpy, VoyagerPy and scran
give largely consistent results (Supplementary Note 4, Supplementary Figures 8-10).

At present, Voyager implements compatibility testing for two tutorials: a mouse olfactory bulb
Visium dataset from the 10X website, and a univariate spatial statistics analysis of the k-nearest
neighbor-graph of a human peripheral blood mononuclear cells (PBMC) 10X Genomics
Chromium dataset. The defaults used in these tutorials covered by the compatibility tests are
listed in Supplementary Note 3; some of the defaults come from conventions and defaults in
established packages and hence are subject to further research and improvement.

Discussion

Software packages for data visualization, general EDA frameworks, and more specialized tasks
have proliferated in the field of spatial -omics, but much of the ESDA tradition has not been
utilized. As an EDA framework, Voyager is similar to software packages such as Seurat,
squidpy, Giotto, and semla, but Voyager is unique in systematically facilitating the porting of
decades of ESDA research to spatial -omics, with a consistent user interface. Just as the
discovery of overdispersion in RNA-seq data led to the widespread adoption of negative
binomial models in transcriptomics®®*7, better characterization of spatial properties of gene
expression in different tissues with ESDA—such as by taking local heterogeneity, length scales,
and anisotropy of spatial autocorrelation, and negative spatial autocorrelation into account—can
lead to better specialized downstream models such as those identifying spatially variable genes
or simulating data for benchmarking®®.

By building upon the SCE and AnnData infrastructures and ecosystems, Voyager complements
many other spatial and non-spatial data analysis methods. The SFE class extends SCE and
AnnData with efficient tools from the geospatial field to represent and operate on vector
geometries and raster images. Voyager has a comprehensive, reproducible, and
easy-to-navigate documentation website with tutorials on data from various technologies and
ESDA methods, with references for further reading and considerations from the ESDA tradition.
Extensive compatibility tests ensure that the R and Python implementations of Voyager return
consistent results for core functionalities and transparency on defaults. The Voyager project also
bridges the R vs. Python divide in single-cell and spatial -omics bioinformatics, where hidden
defaults and undocumented divergent implementations cause language preference to
inadvertently lead to different results that may affect biological conclusions. Thus, even for
non-spatial EDA, it provides a substantial advantage over current packages.
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The scholar Jaroslav Pelikan wrote that “Tradition is the living faith of the dead, traditionalism is
the dead faith of the living.”®® While the ESDA tradition was largely developed prior to the rise of
spatial -omics, it can help us gain insights by taking the spatial aspects of biological data into
consideration. As the ESDA tradition is ever evolving, Voyager is designed to be extensible by
users and developers to facilitate the application of novel methods with a consistent user
interface. Future versions of Voyager can also take into account the peculiarities of spatial
-omics data, such as larger dataset sizes, case and control comparisons, multiple biological
replica, non-normal distribution of the data, and 3-dimensional data from thick slices and
multiple sections. At present, unlike squidpy, Giotto, and semla, Voyager does not implement
ESDA for categorical data (Supplementary Table 1), as this is less developed in the geospatial
field®"’°. Furthermore, categorical spatial methods using SCE such as lisaClust’’ can be easily
applied without being incorporated into Voyager. However, with more considerations on the
nature of cell types’" and ESDA of categorical variables, categorical methods may be added in
future versions.

Additional future directions include storing geometries and spatial results on-disk. While the
SCE infrastructure already allows for on-disk gene count matrices with DelayedArray, the
geometries and spatial analysis results are currently stored in memory. Moreover, while we
extensively documented the Voyager defaults to avoid inconsistencies between the R and
Python implementations, the reasoning behind them is often based on convention in the field.
Further research should scrutinize the effects of changing these parameters, such as the type of
spatial neighborhood graph and edge weights. The problem of choosing a spatial neighborhood
graph has long been studied, and some methods to find a graph based on the data have been
devised’™, but they may or may not be suitable for spatial -omics data. Finally, while we have
chosen colorblind-friendly default palettes to make Voyager more accessible, future research
should be conducted on the accessibility of spatial -omics data analysis, such as in data
sonification.

Methods

All R plots in the figures were made with R 4.3.0 with Apple vecLib BLAS, Bioconductor 3.17,
Voyager 1.2.4, SpatialFeatureExperiment 1.2.1, scater 1.28.0, spdep 1.2.8, Seurat 4.3.0, sf
1.0.12, and ggplot2 3.4.2, on MacOS Ventura 13.3.1, 2.3 GHz Dual-Core Intel Core i5, 8 GB
RAM. R package profvis 0.3.7 was used to profile time and memory usage by lines of code in
the benchmarks, and bench 1.1.2 was used for the benchmarks over different numbers of cells.
When comparing Seurat vs. scanpy and the R and Python implementations of Voyager, the
Python code was run through reticulate (v1.28) in RStudio. Python 3.10, scanpy 1.9.3, and
VoyagerPy 0.1.1 were used. Multipanel plots were assembled with patchwork 1.1.2 when all
panels are R plots, and were otherwise assembled in LibreOffice Draw.

Spatial methods

At present, all neighborhood view spatial methods are implemented in spdep and wrapped by
Voyager, except for Lee’s L, which has a more efficient implementation in Voyager. Defaults
follow those of spdep. All distance view spatial methods are implemented in gstat and wrapped
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by Voyager. Variogram model fitting is implemented in automap, which is a user-friendly wrapper
of gstat that tries a number of different models and selects the one with the best fit. Voyager
features its own, more efficient implementation of MULTISPATI PCA, and hence does not
depend on adespatial which originally implemented MULTISPATI PCA.

In contrast to the plotting functions in spdep and gstat, Voyager plotting functions are based on
ggplot2” to be more visually appealing and customizable by users and are designed to visualize
results from multiple features and tissue sections at once.

Compatibility tests

Functionalities such as finding highly variable genes, PCA, and DE have been reimplemented in
VoyagerPy to match the implementations in scater and scran used in the Voyager R workflow to
ensure that the two implementations of Voyager give consistent results for these procedures.

Everything in the two core tutorials other than the plots themselves—i.e. procedures that yield
numeric output, such as PCA and Moran’s |—is subject to compatibility tests to verify that the R
and Python implementations of Voyager produce the same results for core functionalities. The
plots cannot be quantitatively and automatically compared because of the different default styles
and mechanisms of ggplot2 and matplotlib, so the comparison is performed based on visual
similarity. The “epsilon”, or numeric differences that can be accounted for by machine double
precision, was established as sqrt(.MachineSdouble.eps) in R. To compare PCA
eigenvectors (gene loadings), cosine difference is used to geometrically compare the vectors.
This is measured as the magnitude of difference between the cosine of the angle between the
two vectors and 1, i.e. cosine of 0 and 180 degrees. The value 180 degrees was chosen
because the eigenvectors can be flipped and yet produce equivalent results in PCA. This
comparison was performed on each of the first 50 PCs individually for Figure 4. To compare the
proportion of variance explained, the absolute value of the difference was used.

For the comparisons in Supplementary Note 4 and Supplementary Figures 8-10, the same
PBMC 5k dataset used in Figure 3 was used. Standard Seurat and scanpy log normalization
was performed. Seurat was used to find HVGs, scale the data so each gene has mean 0 and
variance 1, and perform PCA on the scaled data with the HVGs. Fifty PCs were computed, and
all were used to find a k-nearest-neighbor graph with k = 20, the default in FindNeighbors().
Then Seurat was used to cluster the cells, with the Louvain algorithm, with resolution = 0.5.
Wilcoxon rank sum test was performed with Seurat, scanpy, scran, and VoyagerPy. Default
parameters as of versions mentioned in the first paragraph of the Methods section were used,
except that for scran, non-default pval.type = “all” and direction = “up” in the findMarkers()
function were used, because the only DE functionality implemented in VoyagerPy is equivalent
to using these parameters in scran.

Website build

The R Voyager documentation website is built with pkgdown on GitHub Actions, which builds
function references and vignettes from the R package source code. All imported and suggested
packages are installed on a fresh machine on the cloud and all vignettes are run on the cloud to
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be rendered, to ensure that they are reproducible. The Google Colab notebooks are
automatically generated from the R Markdown vignettes with another GitHub Action. Because
Bioconductor limits the installed size of the package, which includes the rendered vignettes, the
vignettes on the documentation website are in a documentation branch separate from the main
and devel branches that sync with Bioconductor, while a shorter vignette is on Bioconductor.
Also, there are packages suggested in the documentation branch but not the main branch, as
while they are used in vignettes on the website, they are not used in the Bioconductor vignette
or the package itself. The code in the documentation branch is synchronized with code from the
main branch by merging from the main branch, but the documentation branch is never merged
into the main branch.

The VoyagerPy website is built with sphinx and deployed via GitHub Actions.
Performance improvements

In the benchmarks, a mouse liver MERFISH dataset from the Vizgen website with over 390,000
cells after QC was used. After removing cells with a high proportion of transcripts from blank
barcodes (and removing the blank barcodes themselves), the dataset was subsetted with
bounding boxes of different sizes to produce datasets of different sizes while preserving spatial
relationships among cells, which were used in the benchmarks.

K-nearest-neighbors with inverse distance weighting

The spdep implementation of distance-based edge weights is slow because while spdep uses
an efficient implementation of k nearest neighbors and distance neighbors in dbscan, it discards
the distances between neighbors returned by dbscan. As a result, spdep has to re-compute the
distances to compute the edge weights, which is time consuming (Supplementary Figure 2A).
The implementation in SFE uses BiocNeighbors to find the k nearest and distance-based
neighbors, allowing users to choose from a number of different algorithms. Then the distances
are saved for edge weight computations, skipping the most time-consuming step. While dbscan
is not much slower than BiocNeighbors when finding the neighbors (Supplementary Figure
2A-B), we found that not recomputing the distances speeds up finding the spatial neighborhood
graph from 8 to over 30 folds and uses over 25 times less memory (Supplementary Figure
1A-B).

MULTISPATI PCA

The adespatial implementation of MULTISPATI PCA uses base R eigen decomposition, which
always computes all eigenvalues and eigenvectors. Subsequently, when the user specifies a
small number of eigenvectors, adespatial discards the remaining eigenvectors. Furthermore,
adespatial in fact performs the eigendecomposition twice. The first time is in dudi.pca, which
performs non-spatial PCA, whose results are passed to the multispati function, which takes
some weights and the original data but not the eigenvalues or eigenvectors from the dudi.pca
output, and then performs eigen decomposition of the spatially weighted covariance matrix
(Supplementary Figure 2C). The implementation in Voyager uses RSpectra for partial
eigendecomposition of the spatially weighted covariance matrix, only for the eigenvectors the
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user requested and only once, hence avoiding a lot of unnecessary computation, speeding up
computation by 2 to 20 folds, and using over 5 times less memory (Supplementary Figure
1C-D).

Lee’s L

The spdep implementation of Lee’s L computes both local and global Lee’s L for one pair of
genes at a time. As spatial transcriptomics data has hundreds (smFISH based) to thousands of
genes (sequencing based), Voyager’s implementation uses matrix operations to make it more
efficient to compute Lee’s L for a large number of genes than iterating through each pair. This
speeds up computation over 800 fold and uses 100 times less memory, where one thread was
used to iterate through all pairs of genes in the dataset for the spdep implementation
(Supplementary Figure 1E-F). The inefficiency of spdep’s implementation is not only due to
iterating through the pairwise combinations, but also because of a less efficient computation of
the spatially lagged values and the sum of edge weights (Supplementary Figure 2E). Iterating
through the pairs with the spdep implementation is so slow that it was only run for the smallest
subset with 105 cells in the benchmark.

Moran bounds

Bounds of Moran’s | given a spatial neighborhood graph can be computed from the largest and
smallest eigenvalues of the double-centered adjacency matrix of the graph?. In the adespatial
implementation of the function finding Moran bounds, all eigenvalues are computed. In
Voyager’s implementation, RSpectra is used to find only the largest and smallest eigenvalues of
the matrix without computing eigenvectors or the other irrelevant eigenvalues, speeding up
computation by 4 folds and using 4 times less memory (Supplementary Figure 1G-H). While
much of the time was spent on the eigendecomposition in the adespatial implementation, most
of the time was spent on double centering in the Voyager implementation (Supplementary
Figure 2G-H). Due to double centering, a dense matrix with as many columns and rows as the
number of cells is produced. Unless this can be avoided, this computation consumes a lot of
memory for larger datasets. As a result, neither implementation scaled beyond around 6000
cells.

ESDA case studies

Mouse skeletal muscle Visium data

Space Ranger processed data were downloaded from GEO accession GSE161318, sample
Vis5A, 2 days after notexin injury. Myofiber segmentation was performed manually with the
LabKit ImageJ plugin, exported as TIFF raster, and converted to polygons with R package terra.
Redundant vertices of the polygons were removed when the polygons were simplified with
rmapshaper (v0.4.5). Visium spot polygons were found from the centroids and spot diameters in
pixels in the full-resolution image from the Loupe image alignment JSON file. The tissue was
segmented by thresholding the H&E image and removing small pieces. Then, the thresholded
mask was converted into polygon with terra, which was used to find spots intersecting the tissue
with sf. The gene count matrix and polygons were made into an SFE object available to
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download from the SFEData package. The sf package was used to find myofiber areas and to
determine which myofibers intersected each Visium spot polygon. Only the full-resolution H&E
images were available on GEO; to facilitate reproducibility of the vignette and examples, the
image was downsampled to fit into a 1024x1024 pixel box. Moran’s | permutation tests were
performed on nCounts for spots intersecting the tissue and spots not intersecting the tissue
separately, with 499 permutations. The values are permuted in space. Subsequently, the
simulated Moran’s I's from spots not intersecting tissue were subtracted from those from spots
intersecting tissue to form a null distribution of this difference. The “observed” value was the
observed Moran’s | from spots not intersecting tissue subtracted from that of spots intersecting
tissue. Leiden clustering (Supplementary Figure 5) was performed on the first 30 non-spatial
and MULTISPATI PCs, with resolution 1 and objective function “modularity” in the R package
bluster v1.10.0. Neighbor purity was computed with the neighborPurity() function in bluster.
Concordex was computed with the concordexR package v1.0.0. Neighbor purity and Concordex
were computed with the k-nearest-neighbor graph (k=6 not including self because of the
hexagonal grid) in histological space, although the graph in PCA space was used to generate
the clusters. This way the cluster quality indices displayed spatial coherence of the clusters.

Mouse liver MERFISH data

The gene count matrix, cell metadata, and cell segmentation polygons were downloaded from
Vizgen's website, and parsed into an SFE object, which is available in the SFEData package.
The scuttle package (1.10.0) was used to remove low-quality cells. The proportion of transcripts
attributed to blank barcodes was computed, log2 transformed, and cells with log proportion
more than 3 median absolute deviations (MADs) higher than the median were deemed low
quality and removed. Subsequently, the filtered gene count matrix was normalized by
logNormCounts() in scater, and the genes were scaled and centered before performing
non-spatial PCA with IRLBA through scater, and MULTISPATI PCA. MULTISPATI PCA requires
a spatial neighborhood graph and a k-nearest-neighbor graph with k = 5 (not including self) was
used; see Supplementary Note 3 for reasons behind the parameters chosen. Leiden clustering,
neighbor purity, and the Concordex index were computed as in the mouse skeletal muscle
Visium dataset, except that the first 20 PCs were used with the same spatial neighborhood
graph as in MULTISPATI PCA.

Chromium PBMC data

The filtered 5k PBMC NextGem v3 data, processed with Cell Ranger 3.0.2, was downloaded
from the 10X Genomics website and loaded into R as an SCE object, and was then converted
to SFE for “spatial” analyses. Cells with at least 20% of UMIs from mitochondrially encoded
genes were removed. Highly variable genes (HVGs) were found with the scran method but
without the Lowess fit. The 2000 genes with the highest biological component were used for
PCA. The data was normalized with logNormCounts() in scater, and the genes were scaled and
centered before performing PCA with the IRLBA algorithm. Based on the variance explained
elbow plot, the 10 PCs were used to build a k nearest neighbor graph, with k = 10 (not including
self). For Leiden clustering, k = 10 was also used so the clustering results can be compared to
the “spatial” results. The objective function selected was “modularity” and the resolution
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parameter was 0.5. For the “spatial” neighborhood graph, inverse distance weighting and W
style normalization were used, for reasons similar to those in k-nearest-neighbor graphs in
histological space explained in Supplementary Note 3. The R package scran was used for DE,
with pval.type = “all” and direction = “up” in the findMarkers() function to identify genes more
highly expressed in each cluster of interest than in the rest of the cells.

Data and code availability

The mouse skeletal muscle Visium dataset and the mouse liver MERFISH datasets are
available in the SFEData R package. These are the GitHub repositories and websites related to
this paper:

Voyager R package: https://github.com/pachterlab/voyager

SpatialFeatureExperiment: https://github.com/pachterlab/SpatialFeatureExperiment
SFEData: https://github.com/pachterlab/SFEData

Voyager Python package: https://github.com/pmelsted/voyagerpy

Voyager R documentation website: https://pachterlab.qithub.io/voyager/

Voyager Python documentation website: https://pmelsted.qithub.io/voyagerpy

Compatibility tests: https://github.com/pachterlab/voyager-testing

Code to reproduce figures in this paper: https://github.com/pachterlab/MEJLBAMP 2023
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