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An X Chromosome Transcriptome Wide Association Study ImplicatesARMCX6 in
Alzheimer’s Disease
Xueyi Zhang, Lissette Gomez, Jennifer Below, Adam Nagj, Eden Martin, Brian Kunkle*, William

S. Bush*

Abstract

Background: The X chromosome is often omitted in disease association studies despite
containing thousands of genes which may provide insight into well-known sex differencesin the
risk of Alzheimer’s Disease.

Objective: To mode the expression of X chromosome genes and evaluate their impact on
Alzheimer’s Disease risk in a sex-stratified manner.

Methods: Using elastic net, we evaluated multiple modeling strategiesin a set of 175 whole
blood samples and 126 brain cortex samples, with whole genome sequencing and RNA-seq data.
SNPs (MAF>0.05) within the cis-regulatory window were used to train tissue-specific models of
each gene. We apply the best models in both tissues to sex-stratified summary statistics from a
meta-analysis of Alzheimer’s disease Genetics Consortium (ADGC) studies to identify AD-
related genes on the X chromosome.

Results: Across different model parameters, sample sex, and tissue types, we modeled the
expression of 217 genes (95 genesin blood and 135 genesin brain cortex). The average model
R? was 0.12 (range from 0.03 to 0.34). We also compared sex-stratified and sex-combined
models on the X chromosome. We further investigated genes that escaped X chromosome
inactivation (XCI) to determineif their genetic regulation patterns were distinct. We found ten
genes associated with AD at p < 0.05, with only ARMCXG6 in female brain cortex (p = 0.008)

nearing the significance threshold after adjusting for multiple testing (a = 0.002).
2
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Conclusions: We optimized the expression prediction of X chromosome genes, applied these
models to sex-stratified AD GWAS summary statistics, and identified one putative AD risk gene,

ARMCXG.

Keywords: Alzheimer's disease, X Chromosome, Gene Expression, Bioinformatics,
Transcriptome, Sex Differences, Elastic Net Regression, Gene Prediction

Running title: An X Chromosome TWAS Implicates ARMCX6 in AD
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Introduction

Nearly two-thirds of individuals with Alzheimer’s Disease (AD) are women [1], as many other
human traits also present sex disparities. While these differences may be due to systematic
exposure to sex hormones or other endogenous factors, X chromosome genetic variation and its
expression are potential contributing factors. The human X chromosome is composed of 155
million base pairs and contains thousands of genes. The copy number of the X chromosome
defines biological sex. While females have two copies, genes on one X chromosome are
randomly silenced via DNA methylation in a process called X-chromosome inactivation (XCI).
The XCI patterns vary from person to person, with a proportion of genes escaping the silencing
process [2-5]. The choice of the silenced copy within acell israndom early in embryo
development. At the sametime, X-linked genes' mosaic expression at the individual level can be
skewed towards the maternal or paternal copy of the gene[6,7]. Functionally, X-linked genes are
responsible for various processes, most notably human cognition and the devel opment of
multiple tissues, including neural and bone [8].

Despiteits potential importance, X chromosome variants are typically removed from genome-
wide association studies (GWAS) during quality control due to the complexity of accounting for
differences in chromosomal copy number between males and females. In general, methods used
for autosomal genotypes cannot be applied directly to X chromosome variants as they do not
account for the genetic imbalance or expected X-inactivation. [9-11] As aresult, only one-third
of genome-wide association studies include evaluations of variants on the X [12]. None of the
recent large sample AD GWAS [13-17] included X chromosome. However, one smaller MRI-
based study (N = 931) by Homann et al. [18] is notable as they meta-analyzed sex-specific X

chromosome associations. The number of reported GWAS associations on the X chromosomeis
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smaller than that of autosomes[19], and Kukurba et al. discovered a relative depletion of cis-
eQTLson the X chromosome using a general eQTL-mapping pipeline on both autosomes and
the X chromosome [20]. These differences can ether result from the inefficient power of the
tests or the underlying different biological mechanisms and genetic architecture between
autosomes and the X chromosome. The exclusion of X chromosome variants also propagates
into the post-GWAS era. Expression QTL (quantitative trait loci) and other studies of molecular
phenotypes also often exclude the sex chromosomes. MetaBrain [21], which harmonized RNA-
seg samples from 14 studies and prioritized cis- and trans-eQTLs for brain-related traits, also did
not report any loci on the X chromosome. Similarly, the largest harmonized blood cis- and trans-
eQTLsresource, eQTLGEN [22], also excluded the X chromosome. Popular extensions of
GWAS, such as transcriptome-wide association studies (TWAS) [23,24], omit the X
chromosome due to lack of adequate models of X-linked gene expression. Tissue-specific and
cross-tissue TWAS on AD [25,26] did not include the X chromosome.

In this study, we evaluated multiple approachesto fit expression prediction models for X
chromosome genes and produced a set of sex-stratified X-chromosome prediction models. By
applying these modelsin a TWAS on AD GWAS summary statistics, we detected one gene,

ARMCX®6, borderline associated with AD risk in the cortex in female-only samples.

Methods

Data resour ces

We retrieved WGS and RNA-seq expression levels data (phs000424.v7.p2) from the brain cortex
and whole blood sample from the GTEx data[27] to train the prediction models. We sdlected

cortex because of the availability and larger sample size of the validation dataset, in addition to
5
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its direct relevance to the AD disease process. Whole blood isthe most accessible tissue for
transcriptome evaluations and also captures immune cell expression, which isalso likely relevant
for AD. For validation, we used (1) whole-genome imputed genotype data and whole blood

sample RNA-seq data from the DGN (Depression susceptibility Genes and Network) expression

cohort [28] and (2) WGS and temporal cortex (TCX) RNA-seq data from the MayoRNAseq
study [29]. Gene expression data of the MayoRNAseq cohort has already been adjusted with
Alzheimer's Disease (AD) diagnosis, sex, and age at death.
Table 1. Overview of the study datasets for training and validating the models.
GTEX blood GTEX cortex DGN blood MayoRNAseq cortex
Sample size 175 126 917 255
Female 58 46 648 130
Male 117 80 269 125
Age 56.1(10.5) 57.3(10.6) 44.7(10.9) 80.5(8.5)
Female 57.4(9.0) 57.9(11.4) 45.0(10.5) 81.5(8.5)
Male 55.5(11.2) 57.0(10.3) 44.1(11.7) 79.4(8.3)
WGS WGS Genotype WGS
Platform RNA-seq RNA-seq RNA-seq RNA-seq
Genome Assembly GRCh37 GRCh37 GRCh37 GRCh37
Number of expressed 600 766 486 587
genes

The GTEXx donors were from post-mortem autopsy or organ and tissue transplantation settings.

The DGN cohort reported no differencesin eQTL detection between depression cases and

controls. [28] MayoRNAseq study included patients with AD and related dementias and health
control on donors from the Mayo Clinic Brain Bank and Banner Health. [29] These datasets can

represent typical patterns of gene expression in blood and cortex.


https://doi.org/10.1101/2023.06.06.543877
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.06.543877; this version posted October 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

The key features of the three study populations are listed in Table 1. DGN and MayoRNAseq
only recruited subjects of European descent from the United States. To evaluate different
modeling strategies in ahomogeneous study population and make generalizable
recommendations, we restricted the samples to the GTEXx participants who were self-identified as
non-Hispanic white (NHW). The age datain GTEx and MayoRNAseq is the age at death of the
donors, while that for DGN is the age at sampling. MayoRNAseq subjects over 90 years old
(recorded as 90+) were treated as age 91. It is noteworthy that the three studies exhibit different
sex ratios, with males comprising two-thirds of the GTEx NHW cohort, females comprising two-
thirds of the DGN cohort, and the MayoRNAseq TCX cohort displaying gender balance.
Additionally, MayoRNAseq subjects are significantly older than GTEx and DGN. Human
subjects and ethics statements for these studies are available in their respective publications [27—
29].

Data processing

To keep the analysis concise, we dropped pseudoautosomal regions (PARs) (GRCh37, X:60,001-
2,699,520, and X:154,931,044-155,260,560) for this study. The PAR boundaries were retrieved

from https://www.ncbi.nlm.nih.gov/grc/human. Genetic variants with missing call rates

exceeding 5% and samples with missing call rates exceeding 10% were removed. A minor allele
frequency (MAF) threshold of >5% was applied to the overall dataset. In both sex-stratified and
sex-combined modeling, the genotypes of female subjects were encoded as 0/1/2, which assumed
entirely random X chromosome inactivation (X Cl), and male genotypes were encoded as 0/2.
[30] For sex-stratified analyses, the normalized expression was adjusted for covariates, including
top 3 PCs, PEER factors [31], and sequencing platform. We also adjusted for sex in the sex-

combined analysis. We fit linear regression models of expression against the covariates and kept
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the residuals as the adjusted expression. (Supplementary Figure 1) We obtained a list of 59 genes
(Supplementary Table 1) that escapethe XCl (X CI escapees) from Navarro-Cobos et al. [3] and
investigated whether a different modeling strategy would improve the predictions of these
escaping genes.

Elastic net regression

We selected the elastic net regression to model gene expression levels on the X chromosome.
While other approaches are available, elastic net regression allows for comparisonsto both the
autosomal models from PrediX can [ 23] pipeine and published sex-stratified models of
autosomal genes [32]. Elastic net regression is a regularized method that combines the LASSO
(L,) and ridge (L) penalties to select variables while fitting a linear regression model. Both
penalty terms shrink regression coefficients by penalizing the regression model. The differenceis
that the LASSO penalty L, often reduces some regression coefficients to O when the ridge
penalty L, does not.

The estimate from eastic net regression is 8 = argmin(||y — GB||> + A[(1 — @)L, + aL,)]),
B

where y is the vector of the measured expression of one genein all theindividuals, and G isthe
genotype matrix of all theindividuals. The genotypes of female subjects were encoded as 0/1/2,
and male genotypes were encoded as 0/2. The shrinkage parameter A controls the amount of
penalization applied to the regression. Theoretically, an eastic net model favoring the LASSO
penalty (mixing parameter « = 0) will lead to a sparse model with afew SNPs with non-zero
effects, while favoring the ridge penalty (mixing parameter « = 1) will lead to a polygenic
model. We implemented k-fold nested cross-validation to tune each gene' s shrinkage parameter
A at any given mixing parameter a and evaluate the model performance for how the model

predicts on the hold-out fold. The best shrinkage parameter A was selected by the lowest mean
8
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squared error (M SE). The model assessment metrics include the coefficient of determination R?
and p-value, where the null hypothesisisthat thereis no correlation between predicted and
measured expression. We only kept models with R > 0.1 and p-value < 0.05, the significant
models, for the downstream analyses.

Predi X can implements the elastic net regression model with amixing parameter « = 0.5, where
the penalty is defined as a balanced (50%-50%) combination of L, and L,. This selection of

a = 0.5 has been shown to be optimal by previous studies of autosomes. [23,33] Since we are
unclear about the underlying regulatory function on the X chromosome, we fit elastic net
regression models with different mixing parameters ¢ = 0.05,0.25,0.5,0.75, and 0.95. The

models were fit in both sex-stratified and sex-combined manners. (Figure 1).
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Figure 1. The working flow of model training using GTEx data. Elastic net regression models of the X chromosome
gene expressions were trained in whole blood and brain cortex with different mixing parameters, in both sex-
stratified and sex-combined manner. Genetic variants on the X chromosome were coded as 0/1/2 in femal e samples
and 0/1 in male samples.

Model comparisons with two-way ANOVA

We compared the performance of the fitted prediction models to determine (1) whether the
widely adopted mixing parameter also works the best in X chromosome models; (2)
whether sex-stratified models outperform the sex-combined models. Two-way ANOV A serves
perfectly for our goal. Compared to one-way ANOV A, two-way ANOV A allows us to examine
the combined effects of modeling strategies and biological factors.

We applied a data transformation to the model’ s coefficient of determination  to
meet the normality assumption of two-way ANOV A since the distribution is right skewed with a
long tail. The density plots and QQ plots of theoriginal  and thetransformed  arein
Supplementary Figure 2. Though alight tail still exists, the transformed prediction performance

metrics exhibit a more normal distribution than the original . Thetransformed  shows
10
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homoscedasticity (homogeneity of variance) (see Supplementary Table 2). The design of GTEX
and most other studies measuring human transcriptome provide independent observations of
tissue-specific gene expression levelsin each individual. Therefore, there isno violation of the
assumptions of the two-way ANOV A test.

After transformation, we compare the mode performance in different settings (mixing
parameters, tissue types, female- vs. male-specific models, and sex-stratified vs. sex-combined

analysis). We drew conclusions from the F statistics and p-values from the two-way ANOVA.

Model Validation

We predicted the gene expression levels in the whole blood and brain cortex by applying the sex-
stratified GTEX gene prediction models to DGN and MayoRNAseq data, respectively [23].
Genotypes of the DGN cohort were imputed to the HRC reference panel using the Michigan
Imputation Server. We estimated the genetically regulated expression for each gene and tested its
correlation with the measured expression with R? statigtics.

AD risk analysis

We applied the validated significant models to sex-stratified GWAS meta-analysis summary
statistics from the ADGC (Alzheimer's Disease Genetics Consortium) with S-PrediXcan [34]
pipeling, to identify potentially causal X-linked genes for AD. S-PrediXcanisa TWAS pipeline
that allows summary statistics instead of individual-level datato impute the transcriptome and
test for disease-associated genes. Due to the need for meta-analysis of the ADGC cohorts, we
chose to perform this analysis usng summary statistics rather than individual-level data. We
matched the SNPs by rsIDs, since the models were trained in GRCh37 WGS data and the ADGC
sex-stratified summary statistics arein GRCh38. A detailed description of the ascertainment of

age at AD onset along with the descriptive statistics of each cohort can be found in Kunkle et al.

11
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[13]. All study participants were recruited under protocols approved by the appropriate
ingtitutional review boards. Written informed consent was obtained from study participants or,
for those with substantial cognitive impairment, from a caregiver, legal guardian, or other proxy.
The sex-stratified ADGC summary statistics detailed the effect of SNPs on clinically diagnosed
AD in independent NHW subjects of the ADGC cohort. The summary statistics were from three
different models stratified by sex: moddl 1 — additive effect of genetic variants adjusting for the
first 3 PCs, model 2 — additive effect of genetic variants adjusting for the first 3 PCs and age,
model 3 — additive effect of genetic variants adjusting for the first 3 PCs, age and APOE &4 allele
count. These GWAS tests assumed no XCI. A total of 12,906 case participants (N=7,235 female
cases) and 14,111 cognitively normal controls (N=8,411 female controls) were analyzed across
26 ADGC studies. Mean age-at-onset across studies ranged from 61.2 (standard deviation = 10.5)
to 85.8 (SD = 5.7) and mean age-at-exam ranged from 64.0 (SD = 2.9) t0 83.8 (SD = 7.5).
Summary demographics of all studies can be found in Supplementary Table 3. The total number
of SNPs analyzed for the male models ranged from 347,663 to 348,800 and for female models

ranged from 487,238 to 489,735.

Results

Given that there are numerous possible approaches to the analysis of X chromosome variants, we
evaluated multiple options to determine the best modeling strategy for estimating the genetically
regulated component of expression for genes on the X chromosome. We assessed whether the
model parameters may differ by sex, and also attempted sex-combined and sex-stratified
analyses. Given the unique biological features of the X chromosome, we also examined possible

differences in the modeling of genes based on their X chromosome inactivation status. We

12
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further applied the significant modelsto AD summary statistics for a TWAS to identify AD risk
genes on the X chromosome.

Evaluation of mixing parameter swithin sex-stratified models

We trained sex-stratified models with GTEXx data using five different mixing parameters:

a = 0.05,0.25,0.5,0.75, and 0.95. We used a nested cross-validation approach (similar to
PrediX can: https.//github.com/hakyimlab/PredictDB-Tutorial) that tunes the shrinkage parameter
A inaninner loop while modd performance was evaluated in an outer loop. The models were fit
in four tissue-sex sets. female-cortex, female-blood, male-cortex, and male-blood. We dropped
intercept-only models since we are only interested in models that included genetic variants, and
all the models will have at |east one cis-eQTL with non-zero effect size on gene expression

trait. As described in Methods, modelswith R < 0.1 and p > 0.05 were removed for
downstream analyses.

Across different a, sex, and tissue types, we trained 499 significant gene models for 95 genesin

whole blood and 135 genesin brain cortex. The average number of SNPsin each moddl is21.3,

and the average R? = 0.12 (range from 0.03 to 0.54) (Table 2).

Table 2. Summary of sex-specified modelsin blood and cortex with different mixing parameters. Only models with

R > 0.1andp < 0.05 were kept.
Whole blood (600 genes) Brain Cortex (766 genes)
Sex o  Modes Average Average Models Average Average
number Sngg Rzag R range number Sng Rzag R range
0.05 18 52.3 0.15 (0.08,0.37) 26 66.0 0.18 (0.09, 0.35)
0.25 21 29.0 0.14 (0.08,0.39) 33 30.3 021 (0.09,0.54)
Femae 0.5 30 16.2 0.11  (0.06,0.21) 25 17.2 0.18 (0.10,0.34)
0.75 22 23.1 0.16  (0.07,0.49) 25 15.2 021 (0.11,0.38)
0.95 17 155 0.16  (0.06, 0.38) 27 10.7 0.19 (0.11,0.37)
0.05 22 36.2 0.06 (0.03,0.16) 33 35.6 0.08 (0.05,0.15)
Mae 0.25 23 12.6 0.07 (0.04,0.13) 31 14.3 0.08 (0.05,0.17)
0.5 22 11.3 0.07 (0.03,0.29) 26 8.3 0.09 (0.06,0.17)

13
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075 20 10.3  0.07 (0.03,0.24) 28 8.6 0.09 (0.05,0.24)
095 21 71 007 (0.04,017) 29 59 008 (0.05,0.15)
2 In both whole blood and brain cortex, the transformed R? of female-only models present a wider

3  spread and higher central tendency than male-only models (Supplementary Figure 3). We

4  checked the distributions of the original R? in the sex-stratified models. For each tissue-sex set,

5 we compared the original R? of the significant gene models with the R? of the same genesin the

6  other tissue-sex set. (See Figure 2 for the comparison of @ = 0.5 and Supplementary Figure 4-7

7  for the other mixing parameters)

14
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Figure 2. Comparison matrix of the balanced sex-stratified elastic net models trained in GTEx whole blood and
brain cortex data (& = 0.5). The four diagonal panels are the distributions of model R2. The number of genes being
modeled in each tissue-sex set is listed in the distribution plot. The off-diagonal panels compared the R? of the
modelsin pairs of tissue-sex sets. The four rows are for the femal e-blood, femal e-cortex, male-blood, and male-

cortex. For each row, the genes of the significant models in the tissue-sex set were matched in the other sets for the
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matching R?. The diamonds represent genes with a significant model (R < 0.1 and p > 0.05) in another tissue-sex
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set, while the circles represent geneswith a non-significant model in another tissue-sex set. The number of gene

models and the Pearson correlation coefficients were listed in the comparison plots.

We performed a two-way ANOV A under the null hypothesisthat there are no differencesin the
transformed R? among sex-stratified elastic net models with different mixing parameters

a = 0.05,0.25,0.5,0.75, and 0.95. In both cortex and whole blood models, we found no
significant differencesin the average R among different a’s in sex-stratified models (p = 0.21
for blood, p = 0.55 for cortex), but did observe significant differences in the average R? by the
sample sex (p = 1.58 x 1072 for blood, p = 1.83 x 10755 for cortex). Thisresult is driven by
lower average R? in male-only models conditioned on tissue and «, as shown in Table 2. Sex by
a interaction was also non-significant (p = 0.69 for blood, p = 0.55 for cortex). Thisfinding
indicates that different mixing parameters generally do not impact the performance of gene
expression prediction models. In contrast, the models trained in female- and male-only samples
have different coefficients of determination. While our elastic net models capture more genes
with & = 0.25, to keep consistent with the literature and existing PredictDB autosomal models,

we used amixing parameter of « = 0.5 (balanced penalty) for all subsequent analyses.

Differencesin the tissue-specific sex-stratified models

For 103 models with a mixing parameter of « = 0.5, the average number of SNPsin each model
is13.4, and the average R? = 0.116 (range from 0.03 to 0.34). There are 30, 22, 25, and 26
significant models for female-only blood, male-only blood, female-only cortex, and male-only
cortex samples, respectively (see Figure 2). Among all the genes modeled, no blood-specific
expression was modeled both in males and females, while two cortex-specific expressions

(ENSG00000005893 LAMP2, ENSG00000101955 SRPX) were modeled in both sexes, and one
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gene was modeled in both tissuesin male- or female-only data (ENSG00000197582 GPX1P1,
ENSG00000013563 DNASE1L1).

We further compared the differences between models trained with data from different tissue
types. We found a statistically significant difference in the model's average R? by sex (p =

1.93 x 10713). As expected, we observed a statistically significant difference between whole
blood and brain cortex (p = 5.33 x 10~8). Asshown in Table 2, the average R? of blood-
specific modelsis lower than cortex-specific models, and the average R? of male-only modelsis
lower than female-only models. Notably, there were no significant differences noted between
sex-stratified models of autosomal genes from the same dataset (reported in Table 1 of Mahoney
et al. [32]), regardless of sample size differences between males and females. The interaction
between sex and tissue, however, was not significant (p = 0.59). We highlight that sex
differences are just as crucial as tissue differences for X chromosome gene expression.
Sex-combined modelswith a balanced penalty

The tissue-specific sex-combined models were trained in blood and cortex, respectively, with a
balanced mixing parameter « = 0.5. After removing intercept-only models and models with

R < 0.1 andp > 0.05, we have 45 significant sex-combined models in whole blood and cortex.
The average number of SNPs in the sex-combined models across different tissuesis 10, while the
average R? = 0.052 (range from 0.023 to 0.11). (Table 3) The average R? of the sex-combined

modelsis smaller than that of sex-stratified models (single-sided t-test p < 2.2 x 1071¢),
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1 Table3. Summary of sex-combine, balanced penalty modelsin blood and cortex. Modelswith R < 0.1 andp > 0.05
2  wereremoved. The models are summarized conditioned on the XCI escaping status. None of the genes escaping XClI

3 weresignificant in blood.

Tissue Escape XCl Models number Average SNPs Average R? R? range
Blood X 23 8.96 0.045 (0.023, 0.087)
x 20 11 0.059 (0.03, 0.11)
Cortex
v 2 11.5 0.051 (0.034, 0.067)

4  We compared different modeling strategies (stratified-female, stratified-male, and sex-combined
5 models) to determine whether the sex-combined analysis would improve the overall fit for X
6 chromosome genes by increasing the sample size. Considering the potential different underlying
7  regulatory effects, we tested the genes escaping X chromosome inactivation (XCl escapees) and
8 theother genes separately. Besides, there are some X Cl escapees in the sex-stratified balanced
9 penalty modds (3 for female-blood, 2 for male-blood, and 1 for male-cortex).
10  For the models of X Cl escapees (n=8), we found no significant differencesin the average R? in
11  the modeling strategies (p = 0.15) nor tissue types (p = 0.55). Contrarily, in both blood and
12  cortex, genes not escaping from the XCl show significantly different R? between any pair of
13  modeling strategies (one-way ANOVA p = 3.4 x 1071 for blood andp = 1.01 x 107> for
14  cortex).
15 Modéd Validation
16 Thesex-stratified GTEX gene prediction modelsin blood and cortex were applied to DGN and
17 MayoRNAseq validation datasets, respectively. 65 SNPs from GTEx whole blood models were
18 not available in DGN whole-genome imputed genotype data, and 15 SNPs from GTEX brain
19 cortex models were not available in MayoRNAseq WGS data (Figure 3 A and B). In DGN whole

20 blood validation, 20 and 15 genes were predicted by stratified-female and stratified-male
18
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1 significant models, respectively. Thereis no gene predicted in both sexes. In MayoRNAseq TCX
2 validation, we predicted 19 and 18 genes with stratified-female and stratified-male significant

3 models, respectively, among which two genes were predicted in both females and males. (Figure
4 3 CandD). In addition, two sex-combined significant models were applied to genes that escape

5 from XCl in MayoRNAseq data.

A B
SNPs in blood DGN imputed SNPs in cortex  Mayo WGS
models SNPs models SNPs
C D
Female-only Male-only Female-only Male-only
models models models models
Blood Cortex
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Figure 3. The number of SNPs in the validation datasets and the number of genes predicted. A and B: Venn
diagrams representing the number of SNPs in the ti ssue-matching validation datasets and our sex-stratified
prediction models. C and D: Venn diagramsillustrating the number of genes predicted by the sex of the models and

validation samples.

We calculated prediction R? by regressing the estimated expressions against the measured
expression via RNA-seq from the validation datasets (range from 9.94 x 107> to 0.091). Table 4
lists the prediction R? of the sex-stratified and sex-combined modelsin each tissue. Comparisons
of the expected and observed distribution of prediction R? in blood samples (DGN) and cortex
samples (MayoRNAseq) for al models (Supplementary Figure 8) show a deviation from the
expected null distribution, demonstrating that models generally explain variability in X

chromosome gene expression.

Table 4. Prediction R? in validation datasets. Note that thereis no significant blood-specific sex-combined models

for XCl escapees.
Blood - DGN Cortex — MayoRNAseq
Models Average 2 Models Average 2
Number R? R”range Number R? R*range
Female-only model 20 0.014  (9.99 x 1075, 0.074) 21 0.0097  (9.94 x 107>, 0.091)
Male-only model 15 0.034 (0, 0.44) 20 0.010  (1.05 x 107*, 0.036)

Sex-combined model
(Only XCI escapees)

- - - 2 0.0010  (1.28 x 10~*, 0.0020)
Identify AD risk geneson X chromosome

We applied sex-stratified gene prediction models with a balanced penalty to the ADGC sex-
stratified GWAS summary statistics on the X chromosome for TWAS analysis, using the S-
PrediXcan [34] pipeline. In this sex-stratified analysis of X-linked AD risk genes, 25 and 26

genes were tested in cortex in females and males respectively, while 30 and 22 genes were tested

in blood in females and males respectively. We found a marginally significant gene ARMCX6 in
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cortex in female-only data (p = 0.0082, while the Bonferroni correction significance threshold

0.05

is; = (0.002). Other associations we found from this TWAS are presented in Table 5.

Table 5. SPrediXcan results (p<0.05) on sex-stratified AD summary statistics.
Sex GWAS model Tissue Gene Name Z score  p-value Number of
SNPs used
Female Additive + Age+ APOE Cortex ARMCX6 2.64 0.0082 23
Male Additive+ Age+ APOE Cortex DIAPH2 -2.31 0.0211 15
Female Additive Blood LLOXNCO1-116E7.2 2.3 0.0217 17
Female Additive + Age Blood TENM1 -2.26 0.0238 52
Male Additive Blood SUV39H1 -2.16  0.0308 2
Female Additive Blood TENM1 -215  0.0316 52
Male Additive + Age Blood SUV39H1 -2.05  0.0407 2
Female Additive + Age Cortex ARMCX6 2.03 0.0426 23
Female Additive + Age Cortex LAMP2 2.02 0.0435 20
Female Additive + Age Blood LLOXNCO01-116E7.2 2.01 0.0444 17
Female Additive Cortex UBQLN2 2.01 0.0446 5
Male Additive + Age Cortex TMSB4X -2.01 0.0447 2
Female Additive Cortex ARMCX6 2 0.0454 23
Female Additive Cortex LAMP2 2 0.0456 20
Male Additive+ Age+ APOE Blood TBC1D25 1.99 0.0465 1
Female Additive Cortex DNASE1L1 -1.96  0.0494 8

The prediction model of ARMCX6 in brain cortex, trained with female-only data, selected 23

SNPs from the 164 SNPsin the cis-regulatory region. The shrinkage parameter A of the model is

0.25. From 5-fold cross-validation, the correlation between predicted and observed expression

levelsisR? = 0.333 (p = 1.3 x 10™%). This gene model was also trained in male-only cortex

data, but it isnot significant (R? = 0.01, p = 0.39), while no model of ARMCX6 from blood

data exists. Based on our TWAS results, increases in the genetically predicted expression of

ARMCXG6 in cortex will increase the AD risk of afemale subject (p = 0.0082).

We visualized the putative AD-risk gene, ARMCXG6 in Figure 4. All the SNPs were plotted in the

GRCh37 positions to make them comparable across panels. The positions and weights of the 23
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SNPs included in the ARMCX6 female-only penalized prediction model are presented in Figure
4A. Only 2 SNPs are located upstream of the ARMCX6 gene. The remaining 21 SNPs form
multiple clusters localized to 1,000 bp windows downstream of the ARMCXG6 gene. Figure 4B
and Figure 4C show the p-values of SNPs within the same region (as Figure 4A) from female-
only eQTL mapping and female-only GWAS on AD (adjusted for age and APOE), respectively.
The SNPs in the prediction model are in red. None of the selected SNPs are of the most extreme
eQTL or GWAS p-values. The female-only eQTL p-values were calculated with GTEx NHW
femal e subjects with brain cortex samples (N=46). The distributions of ARMCX6 gene
expression in both sexesin brain cortex and blood from GTEXx are in Supplementary Figure 9.
One-way ANOV A suggests the expression levels vary among the four tissue-sex sets (p =
0.014), while two-way ANOV A indicates the differences come from tissue (p = 0.0062) but

not sex (p = 0.18).

ARMCX®6 in cortex, female-only
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Figure 4. Genetic architecture of TWASsignificant hit, ARMCX6. All three panels show the same region. A: The
positions and effect sizes of the 23 selected SNPs in the cortex-specific expression prediction model trained with
femal e-only samples. B: Hudson plot of eQTLs of ARMCX6 in female-only GTEX cortex samples. C: Hudson plot of
ADGC meta-analysis GWASin female-only samples. The red dotsin B and C represent the SNPs in the expression

prediction model.

Discussion

In this work, we examined multiple modeling strategies for generating X chromosome gene
expression prediction models. Based on our cross-validation results from analyses of the GTEx
data for whole blood and brain cortex, we concluded that sex-stratified models (with ¢ = 0.5)
provided the optimal R%. We validated these models in two external tissue-matched datasets and
found an average prediction performance of 0.012, which deviates from the expected distribution
under anull hypothesis. With these models, we implemented a TWAS and tested the association
between AD risk and 20 genes for females and 15 genes for males on the X chromosomein
whole blood, 21 genes for females and 20 genes for males on the X chromosome in brain cortex.
ARMCX6 is our most compelling finding, as we did not find any gene significant after strict
Bonferroni correction.

DNA methylation silences one copy of X chromosome genesin females via X inactivation, and
there are noted non-random patterns associated with this phenomenon, particularly skewed [6,7]
and escaped [2,3] X inactivation. We were surprised to observe that modeling genes escaping
XCI with different strategies produced no substantial differences compared to non-escaped genes.
In our sex-stratified models, we noted that our modeling approach assumes equal impact of each

alele, which for the X chromosome would also assume totally random X chromosome
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inactivation. Accounting for skewed X-inactivation may be possible with availability of DNA
methylation data or allele-specific expression analyses.

We note that the heterogeneity in gene expression prediction between males and females was
substantial, and that these differences were not overcome by the power gain from increasing the
sample size when combining males and females. Our X chromosome gene models fit within
males and females are remarkably different from prior reports of similar sex-stratified analyses
of the autosomes, also of the GTEx dataset [32]. Thisfinding provides support that differences
between male and female models are not driven by sample size differences and may also point to
biological differencesin the evolution of the X chromosome. For example, prior reports have
shown depletion of regulatory variants on the X chromosome [20], etc.

Our strategy of selecting statigtically significant expression prediction models only is
conservative, and the general distribution of prediction R? suggests that models not meeting our
statistical significance criteriamay still be useful in TWAS predictions. We aso chose an

a = 0.5 for all subsequent analyses as the R? distribution was not significantly different from
our ANOV A analyses; however, we note that in cortex specifically, slightly more genes are
modeled using an a = 0.25. Therefore, for some TWAS applications, alower apha threshold
may be preferred to capture additional genes.

Even though we only reported the elastic net penalized models in brain cortex and blood, the
modeling strategy can be applied to all the other tissues to train the tissue-specific gene
expression prediction models. It will then be possible to detect putative sex-specific disease risk
genes on the X chromosome with individual level genetic dataor GWAS summary statistics.
ARMCX®6, as our putative AD risk gene, also has nominally significant p-values (p<0.05) when

the GWAS model did not adjust for APOE (p = 0.0426) or age (p = 0.0454). Duetothe
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correlation among gene expression models by tissue and sex, a Bonferroni correction for all
statistical testsis overly conservative; we, therefore, corrected our hypothesis tests for 25 tests
(in female-only cortex TWAS) to establish an a = 0.002.

ARMCX6 was reported to be associated with mitochondrial dynamics in neurons [35]. ARMCX6
and other genesin the Armex cluster are highly expressed in the human nervous system. These
genes encode a family of mitochondrial proteins regulating mitochondrial trafficking, which may
increase the risk of neurodegenerative diseases. A human brain proteomics study [36] suggests
that ARMCX6 has sex-differentiated expression at the mRNA level.

There are afew SNPs near ARMCXG6 that were reported to be GWAS hits from the GWAS
Catalog[ 37]. None of these variants were selected in our modeling process; some variants were
not sequenced in GTEX, while others were removed by the MAF threshold. One GWAS hit,
rss951278, 25,389 base pairs upstream of ARMCXG6 is associated with educational acquisition
[38]. This association on the X chromosome can either represent education as a potential
confounder of the protection from AD or suggest a potentially shared pathway between neural
devel opment/degeneration and educational attainment. In addition, rs148260947, 271,216 base
pairs upstream of ARMCXG, is reported to be associated with cognitive function measured by
mini-mental state examination (MM SE) at baseline [18].

The TWAS Atlas [39] reportstwo X chromosome genes associated to AD, ZC3H12B [40] and
ARHGAPA4 [41]. We could not generate reliable sex-stratified TWAS models for either of these
genesin our analyses. Notably, these prior studies applied TWAS pipelinesto the X
chromosome without addressing genetic differences due to sex. We have demonstrated from our

models that gene expression on the X chromosome should be studied in a sex-stratified manner.
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There are several limitations to our study. First, we have a limited sample size; while the sex-
combined eQTL sample sizes are generally substantially smaller than other types of genetic
studies due to the expected larger effect sizes, our sex-stratified analyses are effectively halving
the total sample. This extremely small sample size on the X chromosome limits the power for
both eQTL mapping and prediction modeling. We also restricted analyses to whole blood and
cortex tissues in this study. Thiswas dueto the availability of validation datasets and their
relevance for AD. Many AD GWAS datasets and eQTL datasets of brain samples have excluded
genetic variation on the X chromosome, a practice which persists despite attempts by funding
agencies to promote sex chromosome studies. Our small X chromosome eQTL sample size
limited the power to detect AD risk genes with TWAS pipelines. Another potential approach to
allow for sex-specific effects while conserving statistical power is meta-analysis [21,22].
Therefore, we explored the possibility of performing a meta-analysis across sex-stratified models
in each tissue using the LASSOSum approach [42]; however, these models were difficult to fit
due to mode convergence issues and were not included in our evaluations.

Despite these limitations, this work provides a set of prediction models to enable X chromosome
TWAS analyses of blood and cortex. Based on our results, we recommend using sex-stratified
models for all X chromosome genes. We also detect a putative risk gene, ARMCX6, for AD on
the X chromosome, which highlights the potential role of X chromosome variation in

Alzheimer’ s disease.
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