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Abstract 5 

Background: The X chromosome is often omitted in disease association studies despite 6 

containing thousands of genes which may provide insight into well-known sex differences in the 7 

risk of Alzheimer’s Disease. 8 

Objective: To model the expression of X chromosome genes and evaluate their impact on 9 

Alzheimer’s Disease risk in a sex-stratified manner.  10 

Methods: Using elastic net, we evaluated multiple modeling strategies in a set of 175 whole 11 

blood samples and 126 brain cortex samples, with whole genome sequencing and RNA-seq data. 12 

SNPs (MAF>0.05) within the cis-regulatory window were used to train tissue-specific models of 13 

each gene. We apply the best models in both tissues to sex-stratified summary statistics from a 14 

meta-analysis of Alzheimer’s disease Genetics Consortium (ADGC) studies to identify AD-15 

related genes on the X chromosome.  16 

Results: Across different model parameters, sample sex, and tissue types, we modeled the 17 

expression of 217 genes (95 genes in blood and 135 genes in brain cortex). The average model 18 

R2 was 0.12 (range from 0.03 to 0.34). We also compared sex-stratified and sex-combined 19 

models on the X chromosome. We further investigated genes that escaped X chromosome 20 

inactivation (XCI) to determine if their genetic regulation patterns were distinct. We found ten 21 

genes associated with AD at p � 0.05, with only ARMCX6 in female brain cortex (p � 0.008) 22 

nearing the significance threshold after adjusting for multiple testing (α � 0.002).  23 
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Conclusions: We optimized the expression prediction of X chromosome genes, applied these 1 

models to sex-stratified AD GWAS summary statistics, and identified one putative AD risk gene, 2 

ARMCX6.  3 

 4 

 5 

 6 

Keywords: Alzheimer's disease, X Chromosome, Gene Expression, Bioinformatics, 7 

Transcriptome, Sex Differences, Elastic Net Regression, Gene Prediction 8 
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Introduction 1 

Nearly two-thirds of individuals with Alzheimer’s Disease (AD) are women [1], as many other 2 

human traits also present sex disparities. While these differences may be due to systematic 3 

exposure to sex hormones or other endogenous factors, X chromosome genetic variation and its 4 

expression are potential contributing factors. The human X chromosome is composed of 155 5 

million base pairs and contains thousands of genes. The copy number of the X chromosome 6 

defines biological sex. While females have two copies, genes on one X chromosome are 7 

randomly silenced via DNA methylation in a process called X-chromosome inactivation (XCI). 8 

The XCI patterns vary from person to person, with a proportion of genes escaping the silencing 9 

process [2–5]. The choice of the silenced copy within a cell is random early in embryo 10 

development. At the same time, X-linked genes' mosaic expression at the individual level can be 11 

skewed towards the maternal or paternal copy of the gene [6,7]. Functionally, X-linked genes are 12 

responsible for various processes, most notably human cognition and the development of 13 

multiple tissues, including neural and bone [8].  14 

Despite its potential importance, X chromosome variants are typically removed from genome-15 

wide association studies (GWAS) during quality control due to the complexity of accounting for 16 

differences in chromosomal copy number between males and females. In general, methods used 17 

for autosomal genotypes cannot be applied directly to X chromosome variants as they do not 18 

account for the genetic imbalance or expected X-inactivation. [9–11] As a result, only one-third 19 

of genome-wide association studies include evaluations of variants on the X [12]. None of the 20 

recent large sample AD GWAS [13–17] included X chromosome. However, one smaller MRI-21 

based study (N � 931) by Homann et al. [18] is notable as they meta-analyzed sex-specific X 22 

chromosome associations. The number of reported GWAS associations on the X chromosome is 23 
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smaller than that of autosomes [19], and Kukurba et al. discovered a relative depletion of cis-1 

eQTLs on the X chromosome using a general eQTL-mapping pipeline on both autosomes and 2 

the X chromosome [20]. These differences can either result from the inefficient power of the 3 

tests or the underlying different biological mechanisms and genetic architecture between 4 

autosomes and the X chromosome. The exclusion of X chromosome variants also propagates 5 

into the post-GWAS era. Expression QTL (quantitative trait loci) and other studies of molecular 6 

phenotypes also often exclude the sex chromosomes. MetaBrain [21], which harmonized RNA-7 

seq samples from 14 studies and prioritized cis- and trans-eQTLs for brain-related traits, also did 8 

not report any loci on the X chromosome. Similarly, the largest harmonized blood cis- and trans-9 

eQTLs resource, eQTLGEN [22], also excluded the X chromosome.  Popular extensions of 10 

GWAS, such as transcriptome-wide association studies (TWAS) [23,24], omit the X 11 

chromosome due to lack of adequate models of X-linked gene expression. Tissue-specific and 12 

cross-tissue TWAS on AD [25,26] did not include the X chromosome.  13 

In this study, we evaluated multiple approaches to fit expression prediction models for X 14 

chromosome genes and produced a set of sex-stratified X-chromosome prediction models. By 15 

applying these models in a TWAS on AD GWAS summary statistics, we detected one gene, 16 

ARMCX6, borderline associated with AD risk in the cortex in female-only samples.  17 

 18 

Methods 19 

Data resources 20 

We retrieved WGS and RNA-seq expression levels data (phs000424.v7.p2) from the brain cortex 21 

and whole blood sample from the GTEx data [27] to train the prediction models. We selected 22 

cortex because of the availability and larger sample size of the validation dataset, in addition to 23 
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its direct relevance to the AD disease process.  Whole blood is the most accessible tissue for 1 

transcriptome evaluations and also captures immune cell expression, which is also likely relevant 2 

for AD. For validation, we used (1) whole-genome imputed genotype data and whole blood 3 

sample RNA-seq data from the DGN (Depression susceptibility Genes and Network) expression 4 

cohort [28] and (2) WGS and temporal cortex (TCX) RNA-seq data from the MayoRNAseq 5 

study [29]. Gene expression data of the MayoRNAseq cohort has already been adjusted with 6 

Alzheimer's Disease (AD) diagnosis, sex, and age at death.   7 

Table 1. Overview of the study datasets for training and validating the models.  8 

 
GTEx blood GTEx cortex DGN blood MayoRNAseq cortex 

Sample size 175 126 917 255 

Female  58 46 648 130 

Male 117 80 269 125 

Age  56.1(10.5) 57.3(10.6) 44.7(10.9) 80.5(8.5) 

Female 57.4(9.0) 57.9(11.4) 45.0(10.5) 81.5(8.5) 

Male 55.5(11.2) 57.0(10.3) 44.1(11.7) 79.4(8.3) 

Platform 
WGS 

RNA-seq 
WGS 

RNA-seq 
Genotype 
RNA-seq 

WGS 
RNA-seq 

Genome Assembly GRCh37 GRCh37 GRCh37 GRCh37 

Number of expressed 
genes 

600 766 486 587 

 9 

The GTEx donors were from post-mortem autopsy or organ and tissue transplantation settings. 10 

The DGN cohort reported no differences in eQTL detection between depression cases and 11 

controls. [28] MayoRNAseq study included patients with AD and related dementias and health 12 

control on donors from the Mayo Clinic Brain Bank and Banner Health. [29] These datasets can 13 

represent typical patterns of gene expression in blood and cortex.  14 
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The key features of the three study populations are listed in Table 1. DGN and MayoRNAseq 1 

only recruited subjects of European descent from the United States. To evaluate different 2 

modeling strategies in a homogeneous study population and make generalizable 3 

recommendations, we restricted the samples to the GTEx participants who were self-identified as 4 

non-Hispanic white (NHW). The age data in GTEx and MayoRNAseq is the age at death of the 5 

donors, while that for DGN is the age at sampling. MayoRNAseq subjects over 90 years old 6 

(recorded as 90+) were treated as age 91. It is noteworthy that the three studies exhibit different 7 

sex ratios, with males comprising two-thirds of the GTEx NHW cohort, females comprising two-8 

thirds of the DGN cohort, and the MayoRNAseq TCX cohort displaying gender balance. 9 

Additionally, MayoRNAseq subjects are significantly older than GTEx and DGN.  Human 10 

subjects and ethics statements for these studies are available in their respective publications [27–11 

29]. 12 

Data processing 13 

To keep the analysis concise, we dropped pseudoautosomal regions (PARs) (GRCh37, X:60,001-14 

2,699,520, and X:154,931,044-155,260,560) for this study. The PAR boundaries were retrieved 15 

from https://www.ncbi.nlm.nih.gov/grc/human. Genetic variants with missing call rates 16 

exceeding 5% and samples with missing call rates exceeding 10% were removed. A minor allele 17 

frequency (MAF) threshold of >5% was applied to the overall dataset. In both sex-stratified and 18 

sex-combined modeling, the genotypes of female subjects were encoded as 0/1/2, which assumed 19 

entirely random X chromosome inactivation (XCI), and male genotypes were encoded as 0/2. 20 

[30] For sex-stratified analyses, the normalized expression was adjusted for covariates, including 21 

top 3 PCs, PEER factors [31], and sequencing platform. We also adjusted for sex in the sex-22 

combined analysis. We fit linear regression models of expression against the covariates and kept 23 
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the residuals as the adjusted expression. (Supplementary Figure 1) We obtained a list of 59 genes 1 

(Supplementary Table 1) that escape the XCI  (XCI escapees) from Navarro-Cobos et al. [3] and 2 

investigated whether a different modeling strategy would improve the predictions of these 3 

escaping genes. 4 

Elastic net regression 5 

We selected the elastic net regression to model gene expression levels on the X chromosome. 6 

While other approaches are available, elastic net regression allows for comparisons to both the 7 

autosomal models from PrediXcan [23] pipeline and published sex-stratified models of 8 

autosomal genes [32]. Elastic net regression is a regularized method that combines the LASSO 9 

(��) and ridge (��) penalties to select variables while fitting a linear regression model. Both 10 

penalty terms shrink regression coefficients by penalizing the regression model. The difference is 11 

that the LASSO penalty �� often reduces some regression coefficients to 0 when the ridge 12 

penalty �� does not. 13 

The estimate from elastic net regression is �� � argmin
�

��� � ���� � ���1 � � �� � ���! , 14 

where � is the vector of the measured expression of one gene in all the individuals, and � is the 15 

genotype matrix of all the individuals. The genotypes of female subjects were encoded as 0/1/2, 16 

and male genotypes were encoded as 0/2. The shrinkage parameter � controls the amount of 17 

penalization applied to the regression. Theoretically, an elastic net model favoring the LASSO 18 

penalty (mixing parameter � � 0) will lead to a sparse model with a few SNPs with non-zero 19 

effects, while favoring the ridge penalty (mixing parameter � � 1) will lead to a polygenic 20 

model. We implemented k-fold nested cross-validation to tune each gene’s shrinkage parameter 21 

� at any given mixing parameter � and evaluate the model performance for how the model 22 

predicts on the hold-out fold. The best shrinkage parameter � was selected by the lowest mean 23 
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squared error (MSE). The model assessment metrics include the coefficient of determination "� 1 

and p-value, where the null hypothesis is that there is no correlation between predicted and 2 

measured expression. We only kept models with " # 0.1 and p-value � 0.05, the significant 3 

models, for the downstream analyses. 4 

PrediXcan implements the elastic net regression model with a mixing parameter � � 0.5, where 5 

the penalty is defined as a balanced (50%-50%) combination of �� and ��. This selection of 6 

� � 0.5 has been shown to be optimal by previous studies of autosomes. [23,33] Since we are 7 

unclear about the underlying regulatory function on the X chromosome, we fit elastic net 8 

regression models with different mixing parameters � � 0.05, 0.25, 0.5, 0.75, and 0.95. The 9 

models were fit in both sex-stratified and sex-combined manners. (Figure 1).  10 
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1 

Figure 1. The working flow of model training using GTEx data. Elastic net regression models of the X chromosome 2 

gene expressions were trained in whole blood and brain cortex with different mixing parameters, in both sex-3 

stratified and sex-combined manner. Genetic variants on the X chromosome were coded as 0/1/2 in female samples 4 

and 0/1 in male samples. 5 

Model comparisons with two-way ANOVA 6 

We compared the performance of the fitted prediction models to determine (1) whether the 7 

widely adopted mixing parameter  also works the best in X chromosome models; (2) 8 

whether sex-stratified models outperform the sex-combined models. Two-way ANOVA serves 9 

perfectly for our goal. Compared to one-way ANOVA, two-way ANOVA allows us to examine 10 

the combined effects of modeling strategies and biological factors. 11 

We applied a data transformation  to the model’s coefficient of determination  to 12 

meet the normality assumption of two-way ANOVA since the distribution is right skewed with a 13 

long tail. The density plots and QQ plots of the original  and the transformed  are in 14 

Supplementary Figure 2. Though a light tail still exists, the transformed prediction performance 15 

metrics exhibit a more normal distribution than the original . The transformed  shows 16 

 

 

 a 
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homoscedasticity (homogeneity of variance) (see Supplementary Table 2). The design of GTEx 1 

and most other studies measuring human transcriptome provide independent observations of 2 

tissue-specific gene expression levels in each individual. Therefore, there is no violation of the 3 

assumptions of the two-way ANOVA test. 4 

After transformation, we compare the model performance in different settings (mixing 5 

parameters, tissue types, female- vs. male-specific models, and sex-stratified vs. sex-combined 6 

analysis). We drew conclusions from the F statistics and p-values from the two-way ANOVA.  7 

Model Validation 8 

We predicted the gene expression levels in the whole blood and brain cortex by applying the sex-9 

stratified GTEx gene prediction models to DGN and MayoRNAseq data, respectively [23]. 10 

Genotypes of the DGN cohort were imputed to the HRC reference panel using the Michigan 11 

Imputation Server. We estimated the genetically regulated expression for each gene and tested its 12 

correlation with the measured expression with "� statistics.   13 

AD risk analysis 14 

We applied the validated significant models to sex-stratified GWAS meta-analysis summary 15 

statistics from the ADGC (Alzheimer's Disease Genetics Consortium) with S-PrediXcan [34] 16 

pipeline, to identify potentially causal X-linked genes for AD. S-PrediXcan is a TWAS pipeline 17 

that allows summary statistics instead of individual-level data to impute the transcriptome and 18 

test for disease-associated genes. Due to the need for meta-analysis of the ADGC cohorts, we 19 

chose to perform this analysis using summary statistics rather than individual-level data. We 20 

matched the SNPs by rsIDs, since the models were trained in GRCh37 WGS data and the ADGC 21 

sex-stratified summary statistics are in GRCh38.  A detailed description of the ascertainment of 22 

age at AD onset along with the descriptive statistics of each cohort can be found in Kunkle et al. 23 
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[13]. All study participants were recruited under protocols approved by the appropriate 1 

institutional review boards. Written informed consent was obtained from study participants or, 2 

for those with substantial cognitive impairment, from a caregiver, legal guardian, or other proxy.  3 

The sex-stratified ADGC summary statistics detailed the effect of SNPs on clinically diagnosed 4 

AD in independent NHW subjects of the ADGC cohort. The summary statistics were from three 5 

different models stratified by sex: model 1 – additive effect of genetic variants adjusting for the 6 

first 3 PCs, model 2 – additive effect of genetic variants adjusting for the first 3 PCs and age, 7 

model 3 – additive effect of genetic variants adjusting for the first 3 PCs, age and APOE e4 allele 8 

count. These GWAS tests assumed no XCI. A total of 12,906 case participants (N=7,235 female 9 

cases) and 14,111 cognitively normal controls (N=8,411 female controls) were analyzed across 10 

26 ADGC studies. Mean age-at-onset across studies ranged from 61.2 (standard deviation = 10.5) 11 

to 85.8 (SD = 5.7) and mean age-at-exam ranged from 64.0 (SD = 2.9) to 83.8 (SD = 7.5). 12 

Summary demographics of all studies can be found in Supplementary Table 3. The total number 13 

of SNPs analyzed for the male models ranged from 347,663 to 348,800 and for female models 14 

ranged from 487,238 to 489,735.  15 

 16 

Results 17 

Given that there are numerous possible approaches to the analysis of X chromosome variants, we 18 

evaluated multiple options to determine the best modeling strategy for estimating the genetically 19 

regulated component of expression for genes on the X chromosome. We assessed whether the 20 

model parameters may differ by sex, and also attempted sex-combined and sex-stratified 21 

analyses. Given the unique biological features of the X chromosome, we also examined possible 22 

differences in the modeling of genes based on their X chromosome inactivation status. We 23 
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further applied the significant models to AD summary statistics for a TWAS to identify AD risk 1 

genes on the X chromosome. 2 

Evaluation of mixing parameters within sex-stratified models 3 

We trained sex-stratified models with GTEx data using five different mixing parameters: 4 

� � 0.05, 0.25, 0.5, 0.75, and 0.95. We used a nested cross-validation approach (similar to 5 

PrediXcan: https://github.com/hakyimlab/PredictDB-Tutorial) that tunes the shrinkage parameter 6 

� in an inner loop while model performance was evaluated in an outer loop. The models were fit 7 

in four tissue-sex sets: female-cortex, female-blood, male-cortex, and male-blood. We dropped 8 

intercept-only models since we are only interested in models that included genetic variants, and 9 

all the models will have at least one cis-eQTL with non-zero effect size on gene expression 10 

trait. As described in Methods, models with " � 0.1 and & # 0.05 were removed for 11 

downstream analyses.  12 

Across different �, sex, and tissue types, we trained 499 significant gene models for 95 genes in 13 

whole blood and 135 genes in brain cortex. The average number of SNPs in each model is 21.3, 14 

and the average "� � 0.12 (range from 0.03 to 0.54) (Table 2).  15 

Table 2. Summary of sex-specified models in blood and cortex with different mixing parameters. Only models with 16 

� � 0.1 and � � 0.05 were kept. 17 

Sex α 
Whole blood (600 genes) Brain Cortex (766 genes) 

Models 
number 

Average 
SNPs 

Average 
�� �� range 

Models 
number 

Average 
SNPs 

Average 
�� �� range 

Female 

0.05 18 52.3 0.15 (0.08, 0.37) 26 66.0 0.18 (0.09, 0.35) 
0.25 21 29.0 0.14 (0.08, 0.39) 33 30.3 0.21 (0.09, 0.54) 
0.5 30 16.2 0.11 (0.06, 0.21) 25 17.2 0.18 (0.10, 0.34) 

0.75 22 23.1 0.16 (0.07, 0.49) 25 15.2 0.21 (0.11, 0.38) 
0.95 17 15.5 0.16 (0.06, 0.38) 27 10.7 0.19 (0.11, 0.37) 

Male 
0.05 22 36.2 0.06 (0.03, 0.16) 33 35.6 0.08 (0.05, 0.15) 
0.25 23 12.6 0.07 (0.04, 0.13) 31 14.3 0.08 (0.05,0.17) 
0.5 22 11.3 0.07 (0.03, 0.24) 26 8.3 0.09 (0.06, 0.17) 
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0.75 20 10.3 0.07 (0.03, 0.24) 28 8.6 0.09 (0.05, 0.24) 
0.95 21 7.1 0.07 (0.04, 0.17) 29 5.9 0.08 (0.05, 0.15) 

 1 

In both whole blood and brain cortex, the transformed "� of female-only models present a wider 2 

spread and higher central tendency than male-only models (Supplementary Figure 3). We 3 

checked the distributions of the original "� in the sex-stratified models. For each tissue-sex set, 4 

we compared the original "� of the significant gene models with the "� of the same genes in the 5 

other tissue-sex set. (See Figure 2 for the comparison of � � 0.5 and Supplementary Figure 4-7 6 

for the other mixing parameters)   7 
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15 

 1 

Figure 2. Comparison matrix of the balanced sex-stratified elastic net models trained in GTEx whole blood and 2 

brain cortex data (	 
 0.5). The four diagonal panels are the distributions of model ��. The number of genes being 3 

modeled in each tissue-sex set is listed in the distribution plot. The off-diagonal panels compared the �� of the 4 

models in pairs of tissue-sex sets. The four rows are for the female-blood, female-cortex, male-blood, and male-5 

cortex. For each row, the genes of the significant models in the tissue-sex set were matched in the other sets for the 6 

matching ��. The diamonds represent genes with a significant model (� � 0.1 and � � 0.05) in another tissue-sex 7 
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set, while the circles represent genes with a non-significant model in another tissue-sex set. The number of gene 1 

models and the Pearson correlation coefficients were listed in the comparison plots. 2 

We performed a two-way ANOVA under the null hypothesis that there are no differences in the 3 

transformed "� among sex-stratified elastic net models with different mixing parameters 4 

� � 0.05, 0.25, 0.5, 0.75, and 0.95. In both cortex and whole blood models, we found no 5 

significant differences in the average "� among different �’s in sex-stratified models (& � 0.21 6 

for blood, & � 0.55 for cortex), but did observe significant differences in the average "� by the 7 

sample sex (& � 1.58 ' 10��� for blood, & � 1.83 ' 10��� for cortex). This result is driven by 8 

lower average "� in male-only models conditioned on tissue and �, as shown in Table 2. Sex by 9 

� interaction was also non-significant (& � 0.69 for blood, & � 0.55 for cortex). This finding 10 

indicates that different mixing parameters generally do not impact the performance of gene 11 

expression prediction models. In contrast, the models trained in female- and male-only samples 12 

have different coefficients of determination. While our elastic net models capture more genes 13 

with � � 0.25, to keep consistent with the literature and existing PredictDB autosomal models, 14 

we used a mixing parameter of � � 0.5 (balanced penalty) for all subsequent analyses. 15 

Differences in the tissue-specific sex-stratified models 16 

For 103 models with a mixing parameter of � � 0.5, the average number of SNPs in each model 17 

is 13.4, and the average "� � 0.116 (range from 0.03 to 0.34). There are 30, 22, 25, and 26 18 

significant models for female-only blood, male-only blood, female-only cortex, and male-only 19 

cortex samples, respectively (see Figure 2). Among all the genes modeled, no blood-specific 20 

expression was modeled both in males and females, while two cortex-specific expressions 21 

(ENSG00000005893 LAMP2, ENSG00000101955 SRPX) were modeled in both sexes, and one 22 
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gene was modeled in both tissues in male- or female-only data (ENSG00000197582 GPX1P1, 1 

ENSG00000013563 DNASE1L1).  2 

We further compared the differences between models trained with data from different tissue 3 

types. We found a statistically significant difference in the model's average "� by sex (& �4 

1.93 ' 10���). As expected, we observed a statistically significant difference between whole 5 

blood and brain cortex (& � 5.33 ' 10��). As shown in Table 2, the average "� of blood-6 

specific models is lower than cortex-specific models, and the average "� of male-only models is 7 

lower than female-only models. Notably, there were no significant differences noted between 8 

sex-stratified models of autosomal genes from the same dataset (reported in Table 1 of Mahoney 9 

et al. [32]), regardless of sample size differences between males and females. The interaction 10 

between sex and tissue, however, was not significant (& � 0.59). We highlight that sex 11 

differences are just as crucial as tissue differences for X chromosome gene expression.  12 

Sex-combined models with a balanced penalty 13 

The tissue-specific sex-combined models were trained in blood and cortex, respectively, with a 14 

balanced mixing parameter � � 0.5. After removing intercept-only models and models with 15 

" � 0.1 and & # 0.05, we have 45 significant sex-combined models in whole blood and cortex. 16 

The average number of SNPs in the sex-combined models across different tissues is 10, while the 17 

average "� � 0.052 (range from 0.023 to 0.11). (Table 3) The average "� of the sex-combined 18 

models is smaller than that of sex-stratified models (single-sided t-test & � 2.2 ' 10���).  19 

  20 
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Table 3. Summary of sex-combine, balanced penalty models in blood and cortex. Models with � � 0.1 and � � 0.05 1 

were removed. The models are summarized conditioned on the XCI escaping status. None of the genes escaping XCI 2 

were significant in blood. 3 

Tissue Escape XCI Models number Average SNPs Average �� �� range 

Blood × 23 8.96 0.045 (0.023, 0.087) 

Cortex 
× 20 11 0.059 (0.03, 0.11) 

√ 2 11.5 0.051 (0.034, 0.067) 

We compared different modeling strategies (stratified-female, stratified-male, and sex-combined 4 

models) to determine whether the sex-combined analysis would improve the overall fit for X 5 

chromosome genes by increasing the sample size. Considering the potential different underlying 6 

regulatory effects, we tested the genes escaping X chromosome inactivation (XCI escapees) and 7 

the other genes separately. Besides, there are some XCI escapees in the sex-stratified balanced 8 

penalty models (3 for female-blood, 2 for male-blood, and 1 for male-cortex).  9 

For the models of XCI escapees (n=8), we found no significant differences in the average "� in 10 

the modeling strategies (& � 0.15) nor tissue types (& � 0.55). Contrarily, in both blood and 11 

cortex, genes not escaping from the XCI show significantly different "� between any pair of 12 

modeling strategies (one-way ANOVA & � 3.4 ' 10��� for blood and & � 1.01 ' 10��� for 13 

cortex).  14 

Model Validation 15 

The sex-stratified GTEx gene prediction models in blood and cortex were applied to DGN and 16 

MayoRNAseq validation datasets, respectively. 65 SNPs from GTEx whole blood models were 17 

not available in DGN whole-genome imputed genotype data, and 15 SNPs from GTEx brain 18 

cortex models were not available in MayoRNAseq WGS data (Figure 3 A and B). In DGN whole 19 

blood validation, 20 and 15 genes were predicted by stratified-female and stratified-male 20 
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significant models, respectively. There is no gene predicted in both sexes. In MayoRNAseq TCX 1 

validation, we predicted 19 and 18 genes with stratified-female and stratified-male significant 2 

models, respectively, among which two genes were predicted in both females and males. (Figure 3 

3 C and D). In addition, two sex-combined significant models were applied to genes that escape 4 

from XCI in MayoRNAseq data. 5 

6 

X 

re 
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Figure 3. The number of SNPs in the validation datasets and the number of genes predicted. A and B: Venn 1 

diagrams representing the number of SNPs in the tissue-matching validation datasets and our sex-stratified 2 

prediction models. C and D: Venn diagrams illustrating the number of genes predicted by the sex of the models and 3 

validation samples.  4 

We calculated prediction "� by regressing the estimated expressions against the measured 5 

expression via RNA-seq from the validation datasets (range from 9.94 ' 10�� to 0.091). Table 4 6 

lists the prediction "� of the sex-stratified and sex-combined models in each tissue. Comparisons 7 

of the expected and observed distribution of prediction "� in blood samples (DGN) and cortex 8 

samples (MayoRNAseq) for all models (Supplementary Figure 8) show a deviation from the 9 

expected null distribution, demonstrating that models generally explain variability in X 10 

chromosome gene expression.   11 

Table 4. Prediction �� in validation datasets. Note that there is no significant blood-specific sex-combined models 12 

for XCI escapees. 13 

 Blood – DGN Cortex – MayoRNAseq 

 
Models 
Number 

Average 
�� 

�� range 
Models 
Number 

Average 
�� 

�� range 

Female-only model 20 0.014 (9.99 � 10��, 0.074) 21 0.0097 (9.94 � 10��, 0.091) 
Male-only model 15 0.034 (0, 0.44) 20 0.010 (1.05 � 10��, 0.036) 

Sex-combined model 
(Only XCI escapees) 

- - - 2 0.0010 (1.28 � 10��, 0.0020) 

 14 
Identify AD risk genes on X chromosome 15 

We applied sex-stratified gene prediction models with a balanced penalty to the ADGC sex-16 

stratified GWAS summary statistics on the X chromosome for TWAS analysis, using the S-17 

PrediXcan [34] pipeline. In this sex-stratified analysis of X-linked AD risk genes, 25 and 26 18 

genes were tested in cortex in females and males respectively, while 30 and 22 genes were tested 19 

in blood in females and males respectively. We found a marginally significant gene ARMCX6 in 20 
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cortex in female-only data (& � 0.0082, while the Bonferroni correction significance threshold 1 

is 
	.	�

��
� 0.002). Other associations we found from this TWAS are presented in Table 5. 2 

Table 5. S-PrediXcan results (p<0.05) on sex-stratified AD summary statistics. 3 

Sex GWAS model Tissue Gene Name Z score p-value 
Number of 
SNPs used 

Female Additive + Age + APOE Cortex ARMCX6 2.64 0.0082 23 
Male Additive + Age + APOE Cortex DIAPH2 -2.31 0.0211 15 

Female Additive Blood LL0XNC01-116E7.2 2.3 0.0217 17 
Female Additive + Age Blood TENM1 -2.26 0.0238 52 
Male Additive Blood SUV39H1 -2.16 0.0308 2 

Female Additive Blood TENM1 -2.15 0.0316 52 
Male Additive + Age Blood SUV39H1 -2.05 0.0407 2 

Female Additive + Age Cortex ARMCX6 2.03 0.0426 23 
Female Additive + Age Cortex LAMP2 2.02 0.0435 20 
Female Additive + Age Blood LL0XNC01-116E7.2 2.01 0.0444 17 
Female Additive Cortex UBQLN2 2.01 0.0446 5 
Male Additive + Age Cortex TMSB4X -2.01 0.0447 2 

Female Additive Cortex ARMCX6 2 0.0454 23 
Female Additive Cortex LAMP2 2 0.0456 20 
Male Additive + Age + APOE Blood TBC1D25 1.99 0.0465 1 

Female Additive Cortex DNASE1L1 -1.96 0.0494 8 
 4 

The prediction model of ARMCX6 in brain cortex, trained with female-only data, selected 23 5 

SNPs from the 164 SNPs in the cis-regulatory region. The shrinkage parameter � of the model is 6 

0.25. From 5-fold cross-validation, the correlation between predicted and observed expression 7 

levels is "� � 0.333 (& � 1.3 ' 10��). This gene model was also trained in male-only cortex 8 

data, but it is not significant ("� � 0.01, & � 0.39), while no model of ARMCX6 from blood 9 

data exists. Based on our TWAS results, increases in the genetically predicted expression of 10 

ARMCX6 in cortex will increase the AD risk of a female subject (& � 0.0082).   11 

We visualized the putative AD-risk gene, ARMCX6 in Figure 4. All the SNPs were plotted in the 12 

GRCh37 positions to make them comparable across panels. The positions and weights of the 23 13 
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SNPs included in the ARMCX6 female-only penalized prediction model are presented in Figure 1 

4A. Only 2 SNPs are located upstream of the ARMCX6 gene. The remaining 21 SNPs form 2 

multiple clusters localized to 1,000 bp windows downstream of the ARMCX6 gene. Figure 4B 3 

and Figure 4C show the p-values of SNPs within the same region (as Figure 4A) from female-4 

only eQTL mapping and female-only GWAS on AD (adjusted for age and APOE), respectively. 5 

The SNPs in the prediction model are in red. None of the selected SNPs are of the most extreme 6 

eQTL or GWAS p-values. The female-only eQTL p-values were calculated with GTEx NHW 7 

female subjects with brain cortex samples (N=46). The distributions of ARMCX6 gene 8 

expression in both sexes in brain cortex and blood from GTEx are in Supplementary Figure 9. 9 

One-way ANOVA suggests the expression levels vary among the four tissue-sex sets (& �10 

0.014), while two-way ANOVA indicates the differences come from tissue (& � 0.0062) but 11 

not sex (& � 0.18). 12 

 13 
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Figure 4. Genetic architecture of TWAS significant hit, ARMCX6. All three panels show the same region. A: The 1 

positions and effect sizes of the 23 selected SNPs in the cortex-specific expression prediction model trained with 2 

female-only samples. B: Hudson plot of eQTLs of ARMCX6 in female-only GTEx cortex samples. C: Hudson plot of 3 

ADGC meta-analysis GWAS in female-only samples. The red dots in B and C represent the SNPs in the expression 4 

prediction model.     5 

 6 

Discussion 7 

In this work, we examined multiple modeling strategies for generating X chromosome gene 8 

expression prediction models. Based on our cross-validation results from analyses of the GTEx 9 

data for whole blood and brain cortex, we concluded that sex-stratified models (with � � 0.5) 10 

provided the optimal "�. We validated these models in two external tissue-matched datasets and 11 

found an average prediction performance of 0.012, which deviates from the expected distribution 12 

under a null hypothesis. With these models, we implemented a TWAS and tested the association 13 

between AD risk and 20 genes for females and 15 genes for males on the X chromosome in 14 

whole blood, 21 genes for females and 20 genes for males on the X chromosome in brain cortex. 15 

ARMCX6 is our most compelling finding, as we did not find any gene significant after strict 16 

Bonferroni correction.  17 

DNA methylation silences one copy of X chromosome genes in females via X inactivation, and 18 

there are noted non-random patterns associated with this phenomenon, particularly skewed [6,7] 19 

and escaped [2,3] X inactivation. We were surprised to observe that modeling genes escaping 20 

XCI with different strategies produced no substantial differences compared to non-escaped genes. 21 

In our sex-stratified models, we noted that our modeling approach assumes equal impact of each 22 

allele, which for the X chromosome would also assume totally random X chromosome 23 
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inactivation. Accounting for skewed X-inactivation may be possible with availability of DNA 1 

methylation data or allele-specific expression analyses.   2 

We note that the heterogeneity in gene expression prediction between males and females was 3 

substantial, and that these differences were not overcome by the power gain from increasing the 4 

sample size when combining males and females. Our X chromosome gene models fit within 5 

males and females are remarkably different from prior reports of similar sex-stratified analyses 6 

of the autosomes, also of the GTEx dataset [32]. This finding provides support that differences 7 

between male and female models are not driven by sample size differences and may also point to 8 

biological differences in the evolution of the X chromosome. For example, prior reports have 9 

shown depletion of regulatory variants on the X chromosome [20], etc.  10 

Our strategy of selecting statistically significant expression prediction models only is 11 

conservative, and the general distribution of prediction "� suggests that models not meeting our 12 

statistical significance criteria may still be useful in TWAS predictions. We also chose an 13 

� � 0.5 for all subsequent analyses as the "� distribution was not significantly different from 14 

our ANOVA analyses; however, we note that in cortex specifically, slightly more genes are 15 

modeled using an � � 0.25. Therefore, for some TWAS applications, a lower alpha threshold 16 

may be preferred to capture additional genes.   17 

Even though we only reported the elastic net penalized models in brain cortex and blood, the 18 

modeling strategy can be applied to all the other tissues to train the tissue-specific gene 19 

expression prediction models. It will then be possible to detect putative sex-specific disease risk 20 

genes on the X chromosome with individual level genetic data or GWAS summary statistics.  21 

ARMCX6, as our putative AD risk gene, also has nominally significant p-values (p<0.05) when 22 

the GWAS model did not adjust for APOE (& � 0.0426) or age (& � 0.0454). Due to the 23 
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correlation among gene expression models by tissue and sex, a Bonferroni correction for all 1 

statistical tests is overly conservative; we, therefore, corrected our hypothesis tests for 25 tests 2 

(in female-only cortex TWAS) to establish an α � 0.002.   3 

ARMCX6 was reported to be associated with mitochondrial dynamics in neurons [35]. ARMCX6 4 

and other genes in the Armcx cluster are highly expressed in the human nervous system. These 5 

genes encode a family of mitochondrial proteins regulating mitochondrial trafficking, which may 6 

increase the risk of neurodegenerative diseases. A human brain proteomics study [36] suggests 7 

that ARMCX6 has sex-differentiated expression at the mRNA level. 8 

There are a few SNPs near ARMCX6 that were reported to be GWAS hits from the GWAS 9 

Catalog[37]. None of these variants were selected in our modeling process; some variants were 10 

not sequenced in GTEx, while others were removed by the MAF threshold. One GWAS hit, 11 

rs5951278, 25,389 base pairs upstream of ARMCX6 is associated with educational acquisition 12 

[38]. This association on the X chromosome can either represent education as a potential 13 

confounder of the protection from AD or suggest a potentially shared pathway between neural 14 

development/degeneration and educational attainment. In addition, rs148260947, 271,216 base 15 

pairs upstream of ARMCX6, is reported to be associated with cognitive function measured by 16 

mini-mental state examination (MMSE) at baseline [18].  17 

The TWAS Atlas [39] reports two X chromosome genes associated to AD, ZC3H12B [40] and 18 

ARHGAP4 [41]. We could not generate reliable sex-stratified TWAS models for either of these 19 

genes in our analyses. Notably, these prior studies applied TWAS pipelines to the X 20 

chromosome without addressing genetic differences due to sex. We have demonstrated from our 21 

models that gene expression on the X chromosome should be studied in a sex-stratified manner.  22 
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There are several limitations to our study. First, we have a limited sample size; while the sex-1 

combined eQTL sample sizes are generally substantially smaller than other types of genetic 2 

studies due to the expected larger effect sizes, our sex-stratified analyses are effectively halving 3 

the total sample. This extremely small sample size on the X chromosome limits the power for 4 

both eQTL mapping and prediction modeling. We also restricted analyses to whole blood and 5 

cortex tissues in this study. This was due to the availability of validation datasets and their 6 

relevance for AD. Many AD GWAS datasets and eQTL datasets of brain samples have excluded 7 

genetic variation on the X chromosome, a practice which persists despite attempts by funding 8 

agencies to promote sex chromosome studies. Our small X chromosome eQTL sample size 9 

limited the power to detect AD risk genes with TWAS pipelines. Another potential approach to 10 

allow for sex-specific effects while conserving statistical power is meta-analysis [21,22]. 11 

Therefore, we explored the possibility of performing a meta-analysis across sex-stratified models 12 

in each tissue using the LASSOSum approach [42]; however, these models were difficult to fit 13 

due to model convergence issues and were not included in our evaluations.  14 

Despite these limitations, this work provides a set of prediction models to enable X chromosome 15 

TWAS analyses of blood and cortex. Based on our results, we recommend using sex-stratified 16 

models for all X chromosome genes. We also detect a putative risk gene, ARMCX6, for AD on 17 

the X chromosome, which highlights the potential role of X chromosome variation in 18 

Alzheimer’s disease.  19 

 20 
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