

1 **Loss of NR5A1 in Sertoli cells after sex determination changes their**
2 **cellular identity and induces their death by anoikis**

3 Sirine SOUALI-CRESPO¹, Diana CONDREA¹, Nadège VERNET¹, Betty FÉRET¹,
4 Muriel KLOPFENSTEIN¹, Erwan GRANDGIRARD^{1,3}, Violaine ALUNNI^{1,2}, Marie
5 CERCIAT^{1,3}, Matthieu JUNG^{1,3}, Chloé MAYERE⁴, Serge NEF⁴, Manuel MARK^{1,5},
6 Frédéric CHALMEL^{6*}, and Norbert B. GHYSELINCK^{1*#}

7 1. Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC),
8 Département de Génétique Fonctionnelle et Cancer, Centre National de la
9 Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la
10 Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA),
11 1 rue Laurent Fries, BP-10142, F-67404 Illkirch Cedex, France
12 2. GenomEast Platform, France Génomique consortium, IGBMC, 1 rue Laurent
13 Fries, F-67404 Illkirch Cedex, France
14 3. Imaging Center, IGBMC, F-67404 Illkirch Cedex, France
15 4. Department of Genetic Medicine and Development, Faculty of Medicine,
16 University of Geneva, Geneva, Switzerland
17 5. Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg
18 (HUS), France
19 6. Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé,
20 environnement et travail) - UMR_S 1085, F-35000 Rennes, France

21 * These authors contributed equally to this work

22 # Author for correspondence: norbert@igbmc.fr

23 Tel: +33 388 655 674; Fax: +33 388 653 201

24 **Keywords:** anoikis, cell-death, fetal gonad, integrin, Leydig, testis, SF-1, single-cell.

25

26 ABSTRACT

27 NR5A1 is an orphan nuclear receptor crucial for gonadal development in
28 mammals. In the mouse testis it is expressed both in Sertoli cells (SC) and
29 Leydig cells (LC). To investigate its role posteriorly to sex determination, we
30 have generated and analysed mice lacking NR5A1 in SC from embryonic day
31 (E) 13.5 onwards (*Nr5a1*^{SC-/-} mutants). Ablation of *Nr5a1* impairs the expression
32 of genes characteristic of SC identity (e.g., *Sox9*, *Amh*), makes SC to
33 progressively die from E14.5 by a *Trp53*-independent mechanism, and induces
34 disorganization of the testis cords, which, together, yields germ cells (GC) to
35 prematurely enter meiosis and die, instead of becoming quiescent. Single-cell
36 RNA-sequencing experiments revealed that *Nr5a1*-deficient SC acquire a pre-
37 granulosa cell-like identity, and profoundly modify the landscape of the
38 adhesion molecules and extracellular matrix they express. We propose
39 therefore that SC lacking NR5A1 transdifferentiate and die by anoikis. Fetal LC
40 do not display major changes in their transcriptome, indicating that SC are not
41 required beyond E14.5 for their emergence or maintenance. In contrast, adult
42 LC were missing in *Nr5a1*^{SC-/-} postnatal testes. In addition, adult males display
43 Müllerian duct derivatives (i.e., uterus, vagina), as well as a decreased
44 anogenital distance and a shorter penis that can be explained by loss of AMH
45 production and defective HSD17B1- and HSD17B3-mediated synthesis of
46 testosterone in SC during fetal life. Together, our findings indicate that *Nr5a1*
47 expressed in SC after the period of sex determination safeguards SC identity,
48 which maintains proper seminiferous cord organization and prevents GC to
49 enter meiosis.

50 INTRODUCTION

51 Testis and ovary both originate from a bipotential gonad, which is composed of
52 somatic progenitor cells that are competent to adopt one or the other sex-specific cell
53 fate, and of primordial germ cells (GC). Sex determination initiates at around
54 embryonic day (E) 11.5, from when somatic progenitor cells undergo sex-specific cell
55 differentiation. The specification of the supporting cell lineage [i.e., either Sertoli cells
56 (SC) in the testis upon SRY expression, or pre-granulosa cells (pGrC) in the ovary
57 upon WNT/CTNNB1 signalling stabilization] is the first essential step in this process.
58 Following supporting cell differentiation, the sex-specific fate decision propagates to
59 the GC and to other somatic lineages, including the steroidogenic cells Leydig cells
60 (LC) in the testis, which, in turn, drive acquisition of primary and secondary sexual
61 characters at later stages of development, through hormone secretion [1-3]. In
62 humans, mutations in genes driving this complex developmental process can give
63 rise to a group of defects known as disorders of sex development (DSD), the
64 diagnosis and the management of which requires an understanding of the molecular
65 mechanisms underpinning cell differentiation [4].

66 Amongst the genes responsible for DSD is *Nr5a1*, encoding the orphan nuclear
67 receptor NR5A1 [5], a transcription factor expressed at early stages of development,
68 when cells are partitioned into adrenal and gonadal primordium [6]. NR5A1 controls
69 the expression of genes implicated in proliferation, survival and differentiation of
70 somatic progenitor cells [7]. Therefore, knock-out of *Nr5a1* in the mouse results in
71 regression of the gonads by E11.5 due to apoptosis of somatic cells, and agenesis of
72 the adrenal gland [8]. From E11.5, NR5A1 and SRY are expressed in the bipotential
73 supporting cells of male embryos, where they upregulate SOX9 expression, initiating
74 thereby pre-SC and ultimately SC differentiation [2,3,9]. Once specified, the SC start

75 forming cords by enclosing GC as early as E12.5 in the mouse [10], providing them
76 with a specialized environment that promotes their survival and orchestrates their
77 differentiation [11]. SC also (i) allow the differentiation of fetal LC (FLC) through
78 paracrine Desert Hedgehog (DHH) signalling [12], (ii) produce, under the control of
79 NR5A1 and SOX9, high levels of anti-Müllerian hormone (AMH), which triggers the
80 regression of the Müllerian duct normally giving rise to the female genitalia [13].

81 Because gonads are absent in *Nr5a1*-null mice [8], studying the cell-specific
82 roles of NR5A1 in the developing testis required analysis of mice bearing tissue-
83 targeted mutations. Here we have analysed the outcome of *Nr5a1* ablation in SC
84 from E13.5 onwards. We show that loss of NR5A1 from this stage induces some SC
85 to transdifferentiate into female somatic cells, and to die by a *Trp53*-independent
86 mechanism related to anoikis.

87 RESULTS

88 ***Deletion of Nr5a1 in Sertoli cells***

89 To achieve *Nr5a1* ablation in SC after sex determination, we introduced the
90 *Plekha5*^{Tg(AMH-cre)1Flor} transgene [14] in mice bearing *loxP*-flanked alleles of *Nr5a1* and
91 a Cre-dependent reporter transgene [15]. Cre-mediated recombination was assessed
92 by immunohistochemistry (IHC) using antibodies recognizing the yellow fluorescent
93 protein (YFP). Surprisingly, YFP was detected in all SC of embryonic day (E) 12.5
94 gonads (arrows, **Fig.1A,B**), indicating Cre-mediated excision occurred earlier than
95 anticipated [14]. However, the NR5A1 protein was still detected in SC at E12.5
96 (**Fig.1A,B**). At E13.5, the nuclei of SC were all NR5A1-positive in the control
97 (**Fig.1C**), but NR5A1-negative in the mutant testis (**Fig.1D**). Importantly, NR5A1 was
98 still detected in the nuclei of LC, identified by their expression of the steroid 3 beta-
99 hydroxy-steroid dehydrogenase type 1 (HSD3B1), in both control and mutant testes

100 (Fig.1E,F). Thus, NR5A1 was lost selectively in SC from E13.5 onwards, generating
101 males hereafter called *Nr5a1*^{SC-/-} mutants.

102 ***Ablation of Nr5a1 in SC impairs expression of SOX9, SOX8, SOX10 and AMH***

103 As NR5A1 regulates the expression of *Amh* and *Sox9* genes [9,16], we tested
104 expression of these two proteins by IHC. Both AMH and SOX9 were detected at
105 normal levels at E12.5 (Fig.2A,B,G,H). Their expression decreased progressively
106 between E13.5 and E14.5 in *Nr5a1*^{SC-/-} mutant testes (Fig.2C-F,I-L). At E14.5, only
107 few *Nr5a1*-deficient SC were SOX9-positive, some of which with cytoplasmic SOX9
108 (compare insets, Fig.2K,L). The expression of SOX8 and SOX10 was also
109 decreased in *Nr5a1*^{SC-/-} gonads (Suppl.Fig.1). Accordingly, the steady state levels of
110 *Amh*, *Sox9* and *Sox8* mRNAs was decreased in *Nr5a1*^{SC-/-} whole gonads (Fig.2S).
111 The level of prostaglandin D2 synthase (*Ptgds*) mRNA, another SOX9 target-gene
112 [17], was also reduced in E14.5 *Nr5a1*^{SC-/-} testes. This finding may explain the
113 cytoplasmic localization of SOX9 in some SC since prostaglandin D2, the end
114 product of PTGDS, is required for SOX9 nuclear translocation [18].

115 In parallel, we analysed the expression of GATA4 and WT1, important for *Amh*
116 expression and SC differentiation, respectively [19,20]. Both were detected at similar
117 levels in SC nuclei of control and mutant testes, from E12.5 to E14.5 (Fig.2M-R;
118 Suppl.Fig.1).

119 ***Nr5a1-deficient SC die through a TRP53-independent mechanism***

120 Thanks to the expression of the YFP-reporter we quantified the surface
121 occupied by SC (green pixels) relative to the whole testis surface (Fig.3A,D). At
122 E14.5, this ratio was about 30% lower in mutant than in control testes [28.3 ± 3.8
123 (n=5) versus 37.9 ± 2.5 (n=5), respectively; p<0.01]. This suggested that *Nr5a1*-

124 deficient SC had either shut down expression of YFP or had disappeared from the
125 testis. If YPF expression was shut down, the excised *Nr5a1* allele (L-) should be
126 present in the testis at birth. If SC were lost, it should no longer be detected. PCR
127 analysis of genomic DNA showed that the L- allele was not amplified in *Nr5a1*^{SC-/-}
128 mutants (**Suppl.Fig.2A**), indicating that *Nr5a1*-deficient SC were lost from the mutant
129 testis. In agreement with this possibility, numerous cells displaying features of SC
130 (i.e., located at the periphery of the testis cords, amongst GATA4-expressing SC)
131 were TUNEL-positive in E14.5 *Nr5a1*^{SC-/-} testis (arrowheads, **Fig.3E,F**). This
132 indicates that NR5A1-deficient SC progressively died.

133 Because TRP53 was not detected in fetal SC at E14.5 (**Fig.3G,H**), we
134 wondered whether it was functionally involved in SC-death. We introduced
135 conditional alleles of *Trp53* [21] in *Nr5a1*^{SC-/-} mutants bearing the YFP reporter
136 transgene. Efficient ablation of *Trp53* was assessed by PCR on genomic DNA
137 extracted form FACS-purified, YFP-positive, SC (**Suppl.Fig.2B**). E14.5 *Nr5a1*^{SC-/-}
138 and *Nr5a1*^{SC-/-}; *Trp53*^{SC-/-} mutants displayed similar reduced surfaces occupied by
139 SC (**Fig.3I,J**, compare with 3A), out of which most of them had lost expression of
140 SOX9. At post-natal day 15 (PND15), both *Nr5a1*^{SC-/-} and *Nr5a1*^{SC-/-}; *Trp53*^{SC-/-}
141 testes lacked SC-surrounded seminiferous tubules, but contained interstitial cells, out
142 of which about half of them were HSD3B1-positive LC (**Fig.3K-P**). At adulthood, none
143 of the interstitial cells expressed the adult LC-specific marker BHMT [22], indicating
144 this cell-type was unable to emerge (**Fig.3Q-S**). Altogether, this indicates that
145 NR5A1-deficient SC died, even though they lacked TRP53, yielding a postnatal testis
146 made of FLC and other interstitial cells.

147 ***Nr5a1*^{SC-/-} adult males exhibit Müllerian duct retention**

148 To analyse the outcome of the loss of SC and AMH production in *Nr5a1*^{SC-/-}
149 mutants, the male phenotype was investigated at PND60. They all were sterile and
150 had a shorter anogenital distance (AGD) index [0.30 ± 0.03 mm/g of body weight
151 (n=16), versus 0.36 ± 0.02 mm/g (n=17) in controls; p<0.001] (**Fig.4A,C**). At autopsy
152 (n = 8), they displayed normal derivatives of the Wolffian ducts (i.e., epididymis, vas
153 deferent, seminal vesicle, ampullary glands) and the urogenital sinus (i.e., prostatic
154 lobes) (**Fig.4E,F**). However, they also displayed Müllerian duct derivatives (**Fig.4F-H**), namely a vagina, an uterine body and bilateral, uterine horns, which were either
155 incomplete and truncated (6 out of 8), or complete on one side (2 out of 8).
156 Histological analyses revealed that the uterine body and vagina displayed a columnar
157 epithelium (**Fig.4I**) and a stratified, squamous epithelium (**Fig.4J**), as anticipated for
158 these female organs.

160 Nonetheless, *Nr5a1*^{SC-/-} males displayed 40% lighter seminal vesicles
161 [4.71 ± 1.66 mg/g of body weight (n=17) versus 7.43 ± 1.22 mg/g (n=16) in controls;
162 p<0.05] and 10% shorter penis bones [6.7 ± 0.4 mm (n=17) versus 7.5 ± 0.3 mm
163 (n=16) in controls; p<0.05] (**Fig.4B,D**). As AGD, seminal vesicle growth and penis
164 bone length vary as a function of androgen exposure [23], we tested blood
165 testosterone levels. They were comparable at birth [0.25 ± 0.17 ng/ml (n=10) in
166 mutants, versus 0.22 ± 0.10 ng/ml serum (n=10) in controls; p=0.59], and at PND60
167 [0.38 ± 0.17 ng/ml (n=17) in controls, versus 0.43 ± 0.23 ng/ml serum (n=16) in
168 controls; p=0.68], indicating normal testosterone production.

169 **Transcriptomic signatures of cells in control and *Nr5a1*-deficient gonads.**

170 We then performed single-cell RNA sequencing (scRNA-seq) experiments
171 using dissociated cell suspensions obtained from 12 control and 16 *Nr5a1*^{SC-/-} whole
172 testes at E14.5. After data processing and quality control, we assembled an atlas

173 composed of 3,988 and 5,010 control and mutant testicular cells, respectively. On
174 average, we detected ~13,860 unique molecular indices (UMIs) and ~3,556 genes in
175 each individual cell. The 8,998 testicular cells were partitioned into 23 cell clusters
176 (termed C1-C23) and projected into a two-dimensional space (**Fig.5A**; **Table.S1**).
177 Known marker genes of distinct cell-types were used to identify each cluster
178 (**Suppl.Fig.3**).

179 Only a few changes of gene expression were observed between control and
180 *Nr5a1*^{SC-/-} testes for endothelial, immune and perivascular cells. In Leydig, interstitial,
181 and coelomic epithelium cells the expression of 59, 49, and 47 genes was
182 deregulated (**Table.S2**). Functional analysis revealed that down-regulated genes
183 were related to ribosome in Leydig (14 genes, *p* value<4.8^{e-15}) and interstitial cells
184 (12 genes, *p* value<1.3^{e-10}) (**Suppl.Fig.4**; **Table.S3**). In GC, the expression of 636
185 genes was significantly deregulated (**Table.S1**), amongst which *Stra8* and *Rec8* were
186 up, while *Nanos2* and *Piwi4* were down (**Fig.5B**). Processes such as DNA
187 recombination (33 genes, *p* value<2.0^{e-10}), meiotic cell cycle (32 genes, *p* value<1.1^{e-9})
188 and oocyte differentiation (8 genes, *p* value<5.6^{e-3}) were identified amongst the
189 upregulated genes (**Suppl.Fig.4**; **Table.S3**). In agreement with this finding we
190 showed that GC were in the S-phase of the meiotic prophase at E14.5 and E15.5 in
191 *Nr5a1*^{SC-/-} testes instead of becoming mitotically quiescent, as in the control
192 situation. Accordingly, many GC of the *Nr5a1*^{SC-/-} testes expressed meiotic proteins,
193 such as *STRA8* or *REC8*, and died because of premature meiotic initiation
194 (**Suppl.Fig.5**).

195 Three clusters of SC were identified (C18, C19 and C21), out of which C19 and
196 C21 were mainly composed of control and NR5A1-deficient SC, respectively
197 (**Fig.5A**). Almost all SC of C18 were mitotic (**Suppl.Fig.3**). In total, 1,671 genes were

198 significantly deregulated in SC (**Suppl.Table.S1**), amongst which *Amh*, *Sox9* and
199 *Ptgds* were down as anticipated (see above), while *Wnt4*, *Fst* and *Rspo1* were up
200 (**Fig.5C**). We confirmed deregulated expression of some by IHC (**Fig.5D-K**) and that
201 of others by RT-qPCR (**Fig.5L**), validating thereby the scRNA-seq experiment.

202 According to its transcriptomic signature, cluster C20 was assigned the *rete
203 testis* identity (**Suppl.Fig.3**). This structure is a set of ducts, through which
204 spermatozoa are transported from the gonad via the efferent duct to the epididymis
205 [24]. At E14.5, the *rete testis* is identified as epithelial cords between the
206 mesonephric tubules and the testis cords (**Suppl.Fig.6A**). The *rete testis* cells
207 express *Nr5a1*, *Pax8* and *Aldh1a3* [25]. As the *Plekha5*^{Tg(AMH-cre)1Flor} transgene is not
208 functional in the *rete testis* [26], we anticipated that C20 could comprise cells in which
209 NR5A1 expression was not lost. In agreement, we observed that cells in C20
210 organized as a continuum, which stemmed from C19 with *Nr5a1*^{+/−}/*Yfp*[−]/*Pax8*[−]
211 /*Aldh1a3*[−] cells and extended with *Nr5a1*^{+/−}/*Yfp*[−]/*Pax8*^{+/−}/*Aldh1a3*^{+/−} cells (*rete*) originating
212 from both control and *Nr5a1*^{SC−/−} testes. It ended at the junction with C21 with *rete
213 testis* cells, originating exclusively from the *Nr5a1*^{SC−/−} testes, and in which cre was
214 active (*Nr5a1*^{+/−}/*Yfp*^{+/−}/*Pax8*^{+/−}/*Aldh1a3*^{+/−} cells) (**Suppl.Fig.6B**). Accordingly, IHC
215 experiments confirmed that *rete testis* cells actually expressed NR5A1, but not YFP,
216 control and *Nr5a1*^{SC−/−} testes (**Suppl.Fig.6C-J**).

217 **Nr5a1-deficient SC change their molecular identity.**

218 As indicated above, the NR5A1-deficient SC from cluster C21 gained
219 expression of *Wnt4*, *Fst* and *Rspo1*, which characterize the fetal ovary somatic cells
220 [4]. This raised the question as to whether SC had changed their identity. To test for
221 this possibility, we decided to compare our data with a reference atlas of embryonic
222 and fetal gonad development ranging from E10.5 to E16.5 [25]. After processing this

223 atlas with the pipeline that we used for our data set, (**Suppl.Fig.7**), we next mapped
224 our data set to this reference atlas (**Fig.6A**). Most of control and *Nr5a1*^{SC-/-} cell
225 clusters were predicted to correspond to clusters with identical (or compatible)
226 identities, as expected (**Fig.6B**). In addition, GC from control testes matched in the
227 atlas with E13.5 male GC, while those from *Nr5a1*^{SC-/-} testes matched with E13.5
228 female (i.e., meiotic) GC (**Fig.6C**), as expected from IHC analyses (**Suppl.Fig.5**), and
229 validating thereby the whole prediction. Interestingly, cluster C20 was predicted to
230 match the best with *rete testis* cells, a feature fitting well with our analysis by IHC
231 (see above, **Suppl.Fig.6**). Most importantly, cluster C21 was predicted to correspond
232 to pGrC in the atlas. Further analysis distinguishing the developmental stages
233 indicated that they actually matched with E16.5 pGrC (**Fig.6C**). The remaining cells
234 matched with E13.5 SC. Thus, a fraction of NR5A1-deficient SC lost their identity,
235 and acquired a “pGrC-like” identity. Accordingly, functional analysis of genes
236 differentially expressed by NR5A1-deficient SC assigned upregulated genes to WNT
237 signalling pathway (54 genes, *p* value<4.3e⁻⁸), known to drive pGrC differentiation in
238 the fetal ovary [27] (**Suppl.Fig.4**; **Table.S3**). Nonetheless, the process of *trans*-
239 differentiation was not fully achieved because IHC experiments failed to evidence
240 expression of FOXL2 in the *Nr5a1*^{SC-/-} mutant testis at E15.5 (**Fig.6D,E**).

241 ***Ablation of Nr5a1 in SC induces disorganisation of the testis cords.***

242 On histological sections at E14.5, the majority of *Nr5a1*^{SC-/-} seminiferous cords
243 displayed reduced diameters, as well as poorly defined and discontinuous contours
244 (broken dotted line and arrows, **Fig.7E**). At E15.5, the cords had almost fully
245 disappeared (broken dotted line, **Fig.7F**). Such irregularities were never observed in
246 the control testes (**Fig.7A,B**).

247 Importantly, functional analysis of the genes differentially expressed between
248 control and NR5A1-deficient SC highlighted extracellular matrix (ECM; 74 genes, *p*
249 value<2.6^{e-16}), cell adhesion (118 genes, *p* value<5.9^{e-9}), basement membrane (26
250 genes, *p* value<2.1^{e-8}), as well as integrin binding (25 genes, *p* value<2.5^{e-6})
251 (**Suppl.Fig.4; Table.S2**). Accordingly, the expression level of some genes involved in
252 cell junction/adhesion (e.g., *Gja1*, *Jam2*, *Ptk2b*) and integrin signalling (e.g., *Itga6*)
253 were down-regulated. As to genes for ECM components, some were down (e.g.,
254 *Col4a1*, *Col4a2*), while many others (e.g., *Col3a1*, *Col5a2*, *Col6a6*, *Fn1*, *Fbln1*, *Mdk*,
255 *Mgp*) were up-regulated (**Fig.7I**). To verify this point, we analysed collagen type IV
256 (COL-IV) expression by IHC. At E14.5, COL-IV was surrounding the whole periphery
257 of all cords in control testes (yellow edging, **Fig.7C**). In *Nr5a1*^{SC-/-} testes, COL-IV was
258 greatly reduced and even absent at the periphery of many cords (arrows, **Fig.7G**), in
259 areas corresponding to regions where the expression of SOX9 was also lost
260 (arrowheads, **Fig.7H**). As *Col4a1* and *Col4a2* are regulated by SOX9 [28], it is
261 reasonable to propose that loss of SOX9 in NR5A1-deficient SC yielded loss of COL-
262 IV and altered basement membrane, which, in turn, disorganized the cord structure.
263 Searching further for ligand-receptor interactions in our data set, we identified a
264 deregulated network related to integrin-dependent cell adhesion (**Suppl.Fig.8**).
265 Together our findings indicate that NR5A1-deficient SC lost their appropriate cell-cell
266 and cell-ECM interactions.

267 DISCUSSION

268 Alteration of gene expression in *Nr5a1*^{SC-/-} testes could result from either loss of
269 NR5A1 or death of SC. The decreased expression of *Sox9*, *Amh*, *Gja1*, and possibly
270 *Cyp26b1* and *Dhh*, is likely directly related to the loss of NR5A1 in SC. Actually,
271 NR5A1 initiates SC differentiation by directing *Sox9* expression [9]. Then, it maintains

272 Sox9 transcription and activates downstream genes by binding to *cis*-regulatory
273 elements (e.g., *Amh*, *Gja1*) or synergizing through unknown mechanisms (e.g.,
274 *Cyp26a1*, *Dhh*) [16,29-32]. As to *Dmrt1*, *Sox8* and *Ptgds*, their decreased expression
275 was also expected because SOX9 regulates their expression [17,31,33,34].
276 However, our finding that *Ptgds* is undetectable as early as E13.5, while SOX9 is still
277 present, suggests that NR5A1 may regulate *Ptgds* expression directly (Fig.8).

278 **NR5A1-deficient SC transdifferentiate into pre-granulosa-like cells**

279 Based on genetic studies, SOX9 has emerged as the master regulator
280 instructing SC differentiation during testis development, notably by repressing the
281 WNT4/RSPO1-dependent pathways involved in pGrC differentiation [1-3]. However,
282 human fibroblasts can be reprogramed into SC by forcing expression of NR5A1 and
283 GATA4, but not SOX9 [35]. Here we show that SC lacking NR5A1 from E13.5 loose
284 expression of genes defining or maintaining SC identity (e.g., *Sox9*, *Sox8*, *Ptgds*,
285 *Dmrt1*), further illustrating the primary role of NR5A1 in instructing SC differentiation.
286 In parallel, they gain expression of genes specifying pGrC differentiation (e.g., *Wnt4*,
287 *Rspo1*) and their transcriptome projected to a gonad atlas clearly shows that they
288 display an identity close to that of pGrC. Nonetheless, these “pGrC-like” cannot reach
289 a functional state of differentiation since they keep FOXL2-negative. Another study
290 has shown that SC lacking *Nr5a1* from E12.5 reach a functional, FOXL2-positive,
291 granulosa cell identity, resulting in complete male-to-female sex reversal [36]. This
292 indicates that SC devoid of NR5A1 from E12.5 can transdifferentiate into functional
293 pGrC, while those loosing NR5A1 from E13.5 are no longer licensed to do so. We
294 further show that these “pGrC-like” subsequently die through a *Trp53*-independent
295 mechanism since concomitantly removing *Trp53* and *Nr5a1* does not prevent death.
296 Quite interestingly, SC loosing *Nr5a1* later than E14.5 either die by MDM2/TRP53-

297 dependent apoptosis or survive, since the resulting testis at adulthood still contains
298 clearly defined seminiferous tubules [37]. Thus, the sooner NR5A1 is lost in SC, the
299 highest their plasticity remains, suggesting that NR5A1 progressively locks the SC
300 identity over time. In addition, SC die by distinct mechanisms, depending on the
301 stage at which NR5A1 is lost.

302

303

304 **Sertoli cells lacking NR5A1 from E13.5 die by anoikis**

305 It is accepted that cell adhesion/junction molecules and ECM components play
306 important roles in maintaining the integrity of seminiferous cords [38-40]. Because
307 many genes deregulated in NR5A1-deficient SC are coding for such molecules,
308 including collagen-coding genes, testis cord disruption is likely linked to breakdown of
309 SC adhesion to their environment. Interestingly enough, some of the upregulated
310 genes coding for ECM components such as *Col18a1*, *Fn1*, *Nid2* and *Dcn* (**Table.S2**)
311 are characteristics of pGrC [41].

312 Cells sense their location and maintain their adhesion through specific
313 interactions with the ECM. This plays a major role in regulating various processes,
314 including cell-survival. This function is mediated by integrins, which are the cell-
315 membrane receptors interacting with components of the ECM. They recruit
316 nonreceptor tyrosine focal adhesion kinases (FAK), that are activated in response to
317 adhesion [42]. Therefore, disruption or loss of integrin-ECM adhesion impairs cell-
318 survival, and often causes detachment-induced cell death, called anoikis [43,44]. We
319 found that expression of *Itga6*, an integrin subunit crucial for fetal testis organization
320 [45], and *Ptk2b*, a member of the FAK family expressed in SC in a SOX9-dependent

321 manner [46] is reduced in NR5A1-deficient SC. Thus, it is conceivable that these
322 changes may cause SC to lose their anchorage to the modified ECM (see above)
323 and initiate death of detaching SC by anoikis, altering thereby integrity of the testis
324 cord epithelium (**Fig.8**). It is worth noting that anoikis still occurs in the absence of
325 TRP53 [47], which is fully consistent with our finding that NR5A1-deficient SC die
326 independently of TRP53.

327

328

329 **NR5A1-deficient SC and differentiation of the other testicular cell-types**

330 As to the GC fate, the data show that most of them become meiotic and die in
331 *Nr5a1*^{SC-/-} testes. The fact that expression of *Cyp26b1* is lost in NR5A1-deficient SC
332 is sufficient to explain why GC entered meiosis (**Fig.8**). Actually, CYP26B1 is
333 required in SC to prevent meiotic initiation and to maintain GC in an undifferentiated
334 state [48].

335 As to FLC, their specification and/or development rely on SC, notably thanks to
336 DHH- and PDGF-signalling pathways [49,50]. Our finding that FLC are present in
337 *Nr5a1*^{SC-/-} testes, despite decreased expression of *Dhh* and *Pdgfa* in SC, reveals
338 that these pathways are no longer required beyond E13.5 to allow proper emergence
339 or survival of FLC, as observed when SC are ablated after E15.5 [51,52].
340 Furthermore, these FLC appear functional since testicular descent is occurring in
341 *Nr5a1*^{SC-/-} mutants, suggesting normal INSL3 production [53].

342 As to peritubular myoid cell (PTMC), it is admitted that SC are required during
343 the fetal period to support their differentiation, notably by producing DHH and ECM.
344 Genetic ablation of SC from E14.5 or *Dhh*-null mutations actually induce seminiferous

345 cords defects closely resembling those observed in *Nr5a1*^{SC-/-} testes [54-56]. Thus,
346 the decreased expression of *Dhh* in NR5A1-deficient SC and their death questions
347 the fate of PTMC. As a matter of fact, we could not distinguish PTMC from the
348 interstitial or coelomic epithelium cell clusters. This is not really surprising as PTMC,
349 sparse at E14.5, become obvious only from E16.5 [57], i.e., 2 days later than the
350 stage at which we performed analysis. It is nonetheless worth noting that expression
351 of *Ptch1*, *Tagln*, *Acta2* and *Tpm1*, which are generally considered as hallmarks of
352 PTMC [58,59], were significantly reduced in interstitial or coelomic epithelium cluster
353 cells (**Table S2**). It is therefore possible that PTMC, included in these clusters, are
354 altered, or even lost, following ablation of *Nr5a1* in SC. Interestingly, both PTMC and
355 “dormant” steroidogenic progenitors (SP) at the origin of adult LC stem from a single
356 population of *Wnt5a*+ SP [60]. In this context, it is conceivable that the absence of
357 adult LC in PND60 testis is related to an alteration of PTMC during fetal
358 development. Further investigations are required to trace the fate of these *Wnt5a*+

359 SP in *Nr5a1*^{SC-/-} testis.

360 **Death of the NR5A1-deficient SC affects genital tract development**

361 Müllerian duct regression in males proceeds rostro-caudally, and is dependent
362 on the action of AMH, which begins as early as E13.5 [61,62]. As *Amh* expression in
363 *Nr5a1*^{SC-/-} mutants is lost only from E14.5, AMH production starts normally and then
364 gradually decreases to zero after E14.5. It is therefore not surprising that the rostral
365 part of the Müllerian ducts regresses normally, making their derivatives (oviducts,
366 anterior portions of the uterine horns absent in the mutants. On the other hand, it is
367 reasonable to propose that the caudal part of the Mullerian ducts persists beyond
368 E14.5, and is at the origin of the posterior portions of the uterine horns, body of the
369 uterus and the vagina of adult *Nr5a1*^{SC-/-} mutants (**Fig.8**).

370 In addition, *Nr5a1*^{SC-/-} mutants display normal Wolffian duct-derived genitalia
371 (epididymis, vas deferens, seminal vesicles) [63]. These develop under the influence
372 of testosterone, the synthesis of which starts as early as E13.5 in mice [64]. Their
373 presence indicates therefore that *Nr5a1*^{SC-/-} mutants were exposed to testosterone
374 during fetal development. This is surprising since SC, converting FLC-produced
375 androstenedione into testosterone thanks to expression of *Hsd17b1* and *Hsd17b3*
376 [65], are progressively lost in *Nr5a1*^{SC-/-} mutants. Thus, another enzyme necessarily
377 compensates for the loss of *Hsd17b1* and *Hsd17b3*, as considered elsewhere [66]. In
378 this regard, the HSD17B12 is a good candidate since it can convert androstenedione
379 to testosterone [67]. However, the fact that FLC are not able to produce testosterone
380 from androstenedione [65] means one has to consider HSD17B12 allows
381 testosterone synthesis in a cell-type other than FLC. This production is nevertheless
382 insufficient since AGD and penile bone length, both of which are highly sensitive to
383 testosterone levels between E14.5 and E17.5 in mice [68], are reduced in *Nr5a1*^{SC-/-}
384 mutants (**Fig.8**).

385 Our study shows that SC lacking NR5A1 from E13.5 transiently
386 transdifferentiate to acquire a pre-granulosa cell-like identity, profoundly modify the
387 landscape of the adhesion molecules and ECM they express and die by a TRP53-
388 independent mechanism related to anoikis. This yields a disorganization of the testis
389 cords, making GC to prematurely enter meiosis instead of becoming quiescent.
390 Interestingly, the maintenance of fetal LC is not altered in the *Nr5a1*^{SC-/-} mutant, but
391 the emergence of adult LC is clearly compromised. Further studies are now required
392 to understand the reason for the absence of adult LC in the postnatal testis.

393 **MATERIALS AND METHODS**

394 **Mice**

395 They were on a mixed C57BL/6 (50%)/129/SvPass (50%) genetic background.

396 The *Nr5a1* conditional mutant mouse line was established at the Institut Clinique de

397 la Souris (*i*CS, Illkirch, France), in the context of the French National Infrastructure for

398 Mouse Phenogenomics PHENOMIN (<http://www.phenomin.fr>). To construct the

399 targeting vector a 1.9 kb-long DNA fragment encompassing exon 7

400 (ENSMUSE00000 693512) was amplified by PCR using 129/SvPass genomic DNA

401 and cloned into an *i*CS proprietary vector containing a *loxP* site, as well as a *loxP*-

402 and *FRT*-flanked neomycin resistance cassette (step1 plasmid). Then, 3 kb- and

403 3.7 kb-long fragments corresponding to 5' and 3' homology arms were amplified by

404 PCR and introduced into step1 plasmid to generate the targeting construct. This

405 linearized construct was electroporated into 129/SvPass mouse embryonic stem (ES)

406 cells. After selection, targeted clones were identified by PCR using external primers

407 and confirmed by Southern blots (5' and 3' digests) hybridized with neomycin, 5' and

408 3' external probes. One positive ES clone was injected into C57BL/6J blastocysts. To

409 remove the selection cassette from the *Nr5a1* locus, chimeric males were crossed

410 with *Gt(ROSA)26Sor*^{tm1(FLP1)Dym} females [69]. Germline transmission was obtained,

411 and a further breeding step was needed to segregate animals bearing the *Nr5a1* L2

412 allele from animals bearing the transgene. To inactivate *Nr5a1* in SC, female mice

413 bearing *Plekha5*^{Tg(AMH-cre)1Flor} [14] and *Gt(ROSA)26Sor*^{tm1(EYFP)Cos} [15] transgenes,

414 and heterozygous for the L2 allele of *Nr5a1* were mated with males heterozygous or

415 homozygous for L2 alleles of *Nr5a1*. The resulting *Plekha5*^{Tg(AMH-cre)1Flor}; *Nr5a1*^{+/+};

416 *Gt(ROSA)26Sor*^{tm1(EYFP)Cos} and *Plekha5*^{Tg(AMH-cre)1Flor}; *Nr5a1*^{L2/L2}; *Gt(ROSA)26Sor*^{tm1(EYFP)Cos}

417 males are referred to as control and *Nr5a1*^{SC-/-} mutant fetuses, respectively. To test

418 for the role of TRP53, the L2 allele of *Trp53* gene [21] was further introduced in the

419 mice described above.

420 Noon of the day of a vaginal plug was taken as 0.5 day embryonic development
421 (E0.5). All fetuses were collected by caesarean section (no randomization, no blind
422 experiments). Yolk sacs or tail biopsies were taken for DNA extraction. Primers 5'-
423 GTCAAGCGCCCCATGAATGC-3' and 5'-TTAGCCCTCCGATGAGGCTG-3' were
424 first used to amplify *Sry* gene (230 bp-long fragment) for male sex determination.
425 Then, primers 5'-TGAGCCCTGGCACATCCCTCC-3' and 5'-
426 CCTCTGCCCTGCAGGCTTC TG-3' were used to detect *Plekha5*^{Tg(AMH-cre)1Flor}
427 transgene (273 bp-long amplicon), and primers 5'-AAGGGAGCTGCAGTGGAGTA-3'
428 and 5'-GCCAGAGGCCACTTGTGTAG-3' to detect *Gt(ROSA)26Sor*^{tm1(EYFP)Cos}
429 reporter (520 bp-long amplicon). Primers 5'-CTGTCTCCTGTCTTCTACTACCCTG-3'
430 and 5'-AGCCATTCAACAGTCCCC TTCC-3' were used to amplify wild-type (+,
431 290 bp-long) and L2 (400 bp-long) alleles of *Nr5a1*, while primers 5'-
432 GTGGCACATGCATTAGTCCACTTGG-3' and 5'-
433 AGCCATTCAACAGTCCCC TTCC-3' were used to amplify the excised, null, L-
434 (243 bp-long) allele. Primers 5'-CACAAAAACAGGTTAACCCAG-3' and 5'-
435 AGCACATAGGAGGCAGAGAC-3' were used to amplify the wild-type (288 bp-long)
436 and L2 (370 bp-long) alleles of *Trp53*. Primers 5'-CACAAAAACAGGTTAACCCAG-
437 3' and 5'-GAAGACAGAAAAGGGGAG GG-3' were used to amplify the excised, null,
438 L- (612 bp-long) allele of *Trp53*. The PCR conditions were 30 cycles with
439 denaturation at 95°C for 30 seconds, annealing at 61°C for 30 seconds and
440 elongation at 72°C for 30 seconds. The amplicons were resolved on 1.5% (w/v)
441 agarose gels, stained by ethidium bromide and visualized under UV light, using
442 standard protocols.

443 **Blood sample collection and testosterone measurement**

444 After anesthesia with a lethal dose of Xylasin and Ketamine as described
445 above, the blood of 9-11-week-old adult mice was collected into heparinized
446 Microvette tubes (Sarstedt, Nümbrecht, Germany) by intra-cardiac sampling. The
447 tubes were then centrifuged at 5000 g for 5 minutes and the resulting plasma
448 samples were frozen until further use. Testosterone concentrations were determined
449 by ELISA using a commercially available kit AR E-8000 (LDN, Labor Diagnostika
450 Nord, Nordhorn, Germany). Statistical significance was further assessed by using
451 two-tail Student's *t*-tests.

452 **Morphology, histology and immunohistochemistry**

453 Adult mice (PND60) were anesthetized by intraperitoneal injection of a lethal
454 anesthetic mixture made of Xylasin (3 mg/ml) and Ketamine (20 mg/ml), and tissues
455 were immediately fixed by intracardiac perfusion of 4% (w/v) paraformaldehyde
456 (PFA) dissolved in phosphate buffered saline (PBS). Following collection, E12.5-
457 E15.5 fetuses and tissues were fixed for 16 hours in 4% (w/v) PFA at 4°C or in
458 Bouin's fluid at 20°C. After removal of the fixative, samples were rinsed in PBS and
459 placed in 70% (v/v) ethanol for long-term storage, external morphology evaluation
460 and organ weight measurement. They were next embedded in paraffin and 5 µm-
461 thick sections were made. For histology, sections were stained with hematoxylin and
462 eosin (H&E).

463 For IHC, antigens were retrieved for 1 hour at 95°C either in 10 mM sodium
464 citrate buffer at pH 6.0 or in Tris-EDTA at pH 9.0 [10 mM Tris Base, 1 mM EDTA,
465 0.05% (v/v) Tween 20]. Sections were rinsed in PBS, then incubated with appropriate
466 dilutions of the primary antibodies (**Table 1**) in PBS containing 0.1% (v/v) Tween 20
467 (PBST) for 16 hours at 4°C in a humidified chamber. After rinsing in PBST (3 times
468 for 3 minutes each), detection of the bound primary antibodies was achieved for

469 45 minutes at 20°C in a humidified chamber using Cy3-conjugated or Alexa Fluor
470 488-conjugated antibodies. Nuclei were counterstained with 4',6-diamidino-2-phenyl-
471 indole (DAPI) diluted at 10 µg/ml in the mounting medium (Vectashield; Vector
472 Laboratories, Newark, CA, USA). ImmPRESS® Polymer Detection Kits MP-7500 and
473 MP-7405 were used according to the manufacturer's protocol (Vector Laboratories).

474 The surface area occupied by YFP-positive cells was measured using a macro
475 command designed for Fiji software (Imaging Center of IGBMC). Data were
476 expressed as percentage of YFP-positive surface areas relative to the entire testis
477 section surface areas. At least four samples were analyzed per genotype. Statistical
478 analysis was done by a two-tail Student *t*-test, assuming equal variances after
479 arcsine transformation of the percentages.

480

481

482 **BrdU incorporation and TUNEL assays**

483 BrdU (Sigma-Aldrich, Saint-Quentin-Fallavier, France) dissolved at 5 mg/ml in
484 PBS was injected intraperitoneally to pregnant females at 50 mg/kg of body weight.
485 Two hours later, fetuses were collected (E13.5-E15.5), fixed and embedded as
486 described above. BrdU incorporation was detected on 5 µm-thick sections by using
487 an anti-BrdU mouse monoclonal antibody (diluted 1:100) and indirect IHC as
488 described above. At least three samples per stage and per genotype were analyzed.
489 Data were expressed as percentages of BrdU-positive cells related to the number of
490 DDX4-positive cells. Statistical analysis was done by a two-tail Student *t*-test,
491 assuming equal variances after arcsine transformation of the percentages.

492 TUNEL-positive cells were detected on sections from PFA-fixed samples using
493 the In Situ Cell Death Detection Kit, Fluorescein, according to the manufacturer's
494 instructions (Roche, Mannheim, Germany). At least three samples were analyzed per
495 genotype. Data were expressed as the ratio between the number of TUNEL-positive
496 cells quantified on entire sections and the surface areas of the testis sections (μm^2).
497 Statistical significance was assessed by using two tail Student's *t*-tests.

498 **Real-time RT-qPCR analyses of RNA extracted from whole gonad**

499 Fetal testes were dissected, isolated from mesonephros, snap frozen in liquid
500 nitrogen and stored at -80°C until use. Whole testis total RNA was extracted using
501 RNeasy Mini Kit (Qiagen, Les Ulis, France). RT-qPCR was performed on 5 ng RNA
502 aliquots using Luna® Universal One-Step RT-qPCR Kit, according to the
503 manufacturer's instructions (New England Biolabs, Evry, France). The primers are
504 listed in **Table 2**. Triplicates of at least four samples were used for each genotype, at
505 each stage. The relative transcript levels were determined using the $\Delta\Delta\text{Ct}$ method,
506 and normalized to *Hprt* whose expression is not affected by ablation of *Nr5a1*.

507 **Purification of YFP-positive Sertoli cells**

508 To dissociate cells, the testes of controls and mutants additionally bearing the
509 *Gt(ROSA)26Sor^{tm1(EYFP)Cos}* transgene were incubated for 10 minutes at 37°C in
510 350 μl of trypsin/EDTA 0.05% (w/v), phenol red solution (Gibco Invitrogen, Auckland,
511 New-Zealand), filtered through a 40 μm cell strainer to generate single cell
512 suspensions, centrifuged at 3000g and suspended in 300 μl PBS as described [70].
513 The YFP-positive and -negative cells were sorted separately by FACS using an
514 Aria® II flow cytometer (BD Biosciences, Le Pont de Claix, France). Sorted cell
515 suspensions were then lysed for overnight at 55°C in a proteinase K-containing

516 buffer, DNA was extracted and genotyped by PCR using standard protocols and
517 primers as indicated above.

518 **Single cell RNA sequencing and data processing**

519 Gonads from E13.5 and E14.5 control and mutant fetuses were dissected out in
520 PBS, sexed by their appearance under the microscope and cell suspensions were
521 prepared as described above. Cell number and viability were determined by a Trypan
522 Blue exclusion assay on a Neubauer Chamber. Samples consisting of > 90% viable
523 cells were processed on the Chromium Controller from 10X Genomics (Leiden, The
524 Netherlands). Ten thousand cells were loaded per well to yield approximately 5000 to
525 6000 captured cells into nanoliter-scale Gel Beads-in-Emulsion (GEMs). Single cell 3'
526 mRNA sequencing libraries were generated according to Chromium Single Cell 3'
527 Reagent Kits User Guide (v3 Chemistry) from 10X Genomics. Briefly, GEMs were
528 generated by combining barcoded gel beads, a reverse transcription master mix
529 containing cells, and partitioning oil onto Chromium Chip B. Following full length
530 cDNA synthesis and barcoding from poly-adenylated mRNA, GEM were broken and
531 pooled before cDNA amplification by PCR using 11 cycles. After enzymatic
532 fragmentation and size selection, sequencing libraries were constructed by adding
533 Illumina P5 and P7 primers (Illumina, Evry, France), as well as sample index via end
534 repair, A tailing, adaptor ligation and PCR with 10 cycles. Library quantifications and
535 quality controls were determined using Bioanalyzer 2100 (Agilent Technologies,
536 Santa Clara, CA, USA). Libraries were then sequenced on Illumina HiSeq 4000TM as
537 100 bases paired-end reads, using standard protocols.

538 Sequencing data were processed using 10X Genomics software
539 (<https://support.10xgenomics.com/single-cell-gene-expression/software/overview/welcome>).
540 Fastq files were processed with CellRanger (v6.0) on a chimeric genome composed

541 of mm10 *Mus musculus* assembly and 753 bp-long YFP sequence (European
542 Nucleotide Archive accession number AGM20711) [71]. The resulting count matrices
543 were aggregated with the Read10X function implemented in Seurat (v4.0.1) [72].
544 Cells with less than 200 detected genes and genes detected in less than 10 cells
545 were removed. Doublets were filtered out independently in each individual matrix by
546 using the DoubletFinder R package (v.2.0.2) [73]. Subsequently, the Single-Cell
547 Analysis Toolkit for Gene Expression Data in R (scater v1.10.1) was used to remove
548 outlier cells by using several cell features including the proportions of reads mapping
549 mitochondrial and ribosomal genes, the number of genes and UMIs per cell [74].
550 Data were normalized using the NormalizeData and the SCT function implemented
551 into Seurat by regressing out the unwanted variation due to cell cycle and to the
552 proportion of mitochondrial genes. The top-3000 most varying genes were used to
553 perform a principal component analysis with the RunPCA function implemented in
554 Seurat. Cells were then clustered by using Seurat graph-based clustering
555 (FindNeighbors and FindClusters functions) on the top-30 principal components, with
556 default parameters. Finally, we used the Uniform Manifold Approximation and
557 Projection (UMAP) method (RunUMAP function) to project cells in a 2D space. Cell
558 clusters were annotated using a set of known marker genes. The FindAllMarkers
559 function implemented in Seurat was used to identify significantly differentially
560 expressed genes (DEGs) between cell clusters. Gene ontology (GO) and pathway
561 enrichment analysis was conducted for each gene expression cluster using the
562 AMEN suite of tools [75] with an BH-adjusted p value of ≤ 0.05 . The current dataset
563 was mapped on top of a reference atlas of gonadal development [25] using
564 FindTransferAnchors and MapQuery functions with default settings. To address this
565 issue, the reference atlas was first processed by using the same pipeline.

566 **ACKNOWLEDGEMENTS**

567 The *Nr5a1* mouse mutant line was established at the Institut Clinique de la
568 Souris (PHENOMIN iCS) in the Genetic Engineering and Model Validation
569 Department with funds from the ANR (see below). We thank Pr Anne-Marie
570 LEFRANCOIS-MARTINEZ for discussions and advices. We also thank Dr Christelle
571 Thibault-CARPENTIER from the Genomeast platform for her input
572 (<http://genomeast.igbmc.fr/>). This research was funded by Agence Nationale pour la
573 Recherche Grants (see below). A CC-BY-4.0 public copyright license has been
574 applied by the authors to the present document and will be applied to all subsequent
575 versions up to the Author Accepted Manuscript arising from this submission, in
576 accordance with the grant's open access conditions.

577 **FUNDING**

578 This work was supported by grants from Fondation pour la Recherche Médicale
579 (FRM FDT201904008001), CNRS, INSERM, UNISTRA and Agence Nationale pour
580 la Recherche project ARESSERC (ANR-16-CE14-0017). It was also supported in
581 part by the grant ANR-10-LABX-0030-INRT, a French State fund managed by the
582 ANR under the frame Programme Investissements d'Avenir labelled ANR-10-IDEX-
583 0002-02.

584 **AUTHOR INFORMATION**

585 These authors contributed equally: Frédéric Chalmel, Norbert B. Ghyselinck.

586 **Contributions**

587 SSC, MM and NBG conceptualized and designed the study. SSC and DC
588 performed all the experiments. BF and MK provided technical and material support.
589 EG contributed to image analysis. SSC, VA, MC, MJ and FC performed the scRNA-

590 seq experiment and analysed data. CM and SN provided datasets for the mouse
591 gonad atlas. SSC, NV, MM, FC and NBG analysed all experiments, managed the
592 overall study, wrote the manuscript, and supervised its preparation and submission.
593 NV, MM, FC and NBG acquired funding for this research.

594 **Corresponding authors**

595 Correspondence to [Norbert B. Ghyselinck](#).

596 **ETHICS DECLARATIONS**

597 **Competing interests**

598 The authors declare no competing interests.

599 **Ethics statement**

600 Mice were housed in a licensed animal facility (agreement #C6721837). All
601 experiments were approved by the local ethical committee (Com'Eth, accreditation
602 APAFIS#18323- 2018113015272439_v3), and were supervised by N.B.G., M.M. and
603 N.V., who are qualified in compliance with the European Community guidelines for
604 laboratory animal care and use (2010/63/UE).

605 **DATA AVAILABILITY**

606 The data sets described in this paper are available at Gene Expression
607 Omnibus (GEO) database under the accession number GSE219271.

608 **SUPPLEMENTARY INFORMATION**

609 Supplementary information is available at *Cell Death and Differentiation*'s
610 website.

611 **REFERENCES**

612 1. Yao HH, Ungewitter E, Franco H & Capel B. Establishment of fetal Sertoli cells
613 and their role in testis morphogenesis. In: Griswold MD (ed). Sertoli Cell Biology.
614 2nd edn. Academic Press, Cambridge, 2015) 57-79.
615 <https://doi.org/10.1016/B978-0-12-417047-6.00002-8>

616 2. Rotgers E, Jørgensen A & Yao HH. At the Crossroads of Fate-Somatic Cell
617 Lineage Specification in the Fetal Gonad. *Endocr Rev* **39**, 739-759 (2018)
618 [PMID:29771299](#)

619 3. Nef S, Stévant I & Greenfield A. Characterizing the bipotential mammalian
620 gonad. *Curr Top Dev Biol* **134**, 167-194 (2019) [PMID:30999975](#)

621 4. Eggers S, Ohnesorg T & Sinclair A. Genetic regulation of mammalian gonad
622 development. *Nat Rev Endocrinol* **10**, 673-683 (2014) [PMID:25246082](#)

623 5. Fabbri-Scallet H, de Sousa LM, Maciel-Guerra AT, Guerra-Júnior G & de Mello
624 MP. Mutation update for the NR5A1 gene involved in DSD and infertility. *Hum
625 Mutat* **41**, 58-68 (2020) [PMID:31513305](#)

626 6. Morohashi K, Baba T & Tanaka M. Steroid hormones and the development of
627 reproductive organs. *Sex Dev* **7**, 61-79 (2013) [PMID:22986257](#)

628 7. Morohashi KI, Inoue M & Baba T. Coordination of Multiple Cellular Processes by
629 NR5A1/Nr5a1. *Endocrinol Metab (Seoul)* **35**, 756-764 (2020) [PMID:33397036](#)

630 8. Luo X, Ikeda Y & Parker KL. A cell-specific nuclear receptor is essential for
631 adrenal and gonadal development and sexual differentiation. *Cell* **77**, 481-490
632 (1994) [PMID:8187173](#)

633 9. Sekido R & Lovell-Badge R. Sex determination involves synergistic action of
634 SRY and SF1 on a specific Sox9 enhancer. *Nature* **453**, 930-934 (2008)
635 [PMID:18454134](#)

636 10. Cool J, DeFalco T & Capel B. Testis formation in the fetal mouse: dynamic and
637 complex de novo tubulogenesis. *Wiley Interdiscip. Rev Dev Biol* **1**, 847-859
638 (2012) [PMID:23799626](#)

639 11. Griswold MD. 50 years of spermatogenesis: Sertoli cells and their interactions
640 with germ cells. *Biol Reprod* **99**, 87-100 (2018) [PMID:29462262](#)

641 12. Bitgood MJ, Shen L & McMahon AP. Sertoli cell signaling by Desert hedgehog
642 regulates the male germline. *Curr Biol* **6**, 298-304 (1996) [PMID:8805249](#)

643 13. Josso N & Picard JY. Genetics of anti-Müllerian hormone and its signaling
644 pathway. *Best Pract Res Clin Endocrinol Metab* **36**, 101634 (2022)
645 [PMID:35249805](#)

646 14. Lécureuil C, Fontaine I, Crepieux P & Guillou F. Sertoli and granulosa cell-
647 specific Cre recombinase activity in transgenic mice. *Genesis* **33**, 114-118 (2002)
648 [PMID:12124943](#)

649 15. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al. Cre
650 reporter strains produced by targeted insertion of EYFP and ECFP into the
651 ROSA26 locus. *BMC Dev Biol* **1**, 4 (2001) [PMID:11299042](#)

652 16. De Santa Barbara P, Bonneaud N, Boizet B, Desclozeaux M, Moniot B, Sudbeck
653 P et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor
654 1 regulates transcription of the human anti-Müllerian hormone gene. *Mol Cell Biol*
655 **18**, 6653-6665 (1998) [PMID:9774680](#)

656 17. Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y et al.
657 SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure
658 testis development. *J Biol Chem* **282**, 10553-10560 (2007) [PMID:17277314](#)

659 18. Malki S, Nef S, Notarnicola C, Thevenet L, Gasca S, Méjean C *et al.*
660 Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via
661 its cAMP-PKA phosphorylation. *EMBO J* **24**, 1798-1809 (2005) [PMID:15889150](#)

662 19. Tremblay JJ & Viger RS. Transcription factor GATA-4 enhances Müllerian
663 inhibiting substance gene transcription through a direct interaction with the
664 nuclear receptor SF-1. *Mol Endocrinol* **13**, 1388-1401 (1999) [PMID:10446911](#)

665 20. Buganim Y, Itskovich E, Hu YC, Cheng AW, Ganz K, Sarkar S *et al.* Direct
666 reprogramming of fibroblasts into embryonic Sertoli-like cells by defined factors.
667 *Cell Stem Cell* **11**, 373-386 (2012) [PMID:22958931](#)

668 21. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M & Berns
669 A. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional
670 mouse model for breast cancer. *Nat Genet* **29**, 418-425 (2001) [PMID:11694875](#)

671 22. Sararols P, Stévant I, Neirijnck Y, Rebouret D, Darbey A, Curley MK *et al.*
672 Specific Transcriptomic Signatures and Dual Regulation of Steroidogenesis
673 Between Fetal and Adult Mouse Leydig Cells. *Front Cell Dev Biol* **9**, 695546
674 (2021) [PMID:34262907](#)

675 23. Welsh M, Suzuki H & Yamada G. The masculinization programming window.
676 *Endocr Dev* **27**, 17-27 (2014) [PMID:25247641](#)

677 24. Kulibin AY & Malolina EA. Formation of the rete testis during mouse embryonic
678 development. *Dev Dyn* **249**, 1486-1499 (2020) [PMID:32852840](#)

679 25. Mayère C, Regard V, Perea-Gomez A, Bunce C, Neirijnck Y, Djari C *et al.*
680 Origin, specification and differentiation of a rare supporting-like lineage in the
681 developing mouse gonad. *Sci Adv* **8**, eabm0972 (2022) [PMID:35613264](#)

682 26. Teletin M, Vernet N, Yu J, Klopfenstein M, Jones JW, Féret B *et al.* Two
683 functionally redundant sources of retinoic acid secure spermatogonia
684 differentiation in the seminiferous epithelium. *Development* **146**, dev170225
685 (2019) [PMID:30487180](#)

686 27. Chassot AA, Gillot I & Chaboissier MC. R-spondin1, WNT4, and the CTNNB1
687 signaling pathway: strict control over ovarian differentiation. *Reproduction* **148**,
688 R97-110 (2014) [PMID:25187620](#)

689 28. Sumi E, Ichihara N, Akiyama H, Matsubara T, Mima A, Kanamori H *et al.* SRY-
690 related HMG box 9 regulates the expression of Col4a2 through transactivating its
691 enhancer element in mesangial cells. *Am J Pathol* **170**, 1854-1864 (2007)
692 [PMID:17525254](#)

693 29. Arango NA, Lovell-Badge R & Behringer RR. Targeted mutagenesis of the
694 endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of
695 vertebrate sexual development. *Cell* **99**, 409-419 (1999) [PMID:10571183](#)

696 30. Kashimada K, Svingen T, Feng CW, Pelosi E, Bagheri-Fam S, Harley VR *et al.*
697 Antagonistic regulation of Cyp26b1 by transcription factors SOX9/SF1 and
698 FOXL2 during gonadal development in mice. *FASEB J* **25**, 3561-3569 (2011)
699 [PMID:21757499](#)

700 31. Li Y, Zheng M & Lau YF. The sex-determining factors SRY and SOX9 regulate
701 similar target genes and promote testis cord formation during testicular
702 differentiation. *Cell Rep* **8**, 723-733 (2014) [PMID:25088423](#)

703 32. Couture R & Martin LJ. The transcription factors SF-1 and SOX8 cooperate to
704 upregulate Cx43 expression in mouse TM4 sertoli cells. *Biochem Biophys Rep*
705 **24**, 100828 (2020) [PMID:33088929](#)

706 33. Chaboissier MC, Kobayashi A, Vidal VI, Lützkendorf S, van de Kant HJ, Wegner
707 M et al. Functional analysis of Sox8 and Sox9 during sex determination in the
708 mouse. *Development* **131**, 1891-1901 (2004) [PMID:15056615](#)

709 34. Rahmoun M, Lavery R, Laurent-Chaballier S, Bellora N, Philip GK, Rossitto M et
710 al. In mammalian foetal testes, SOX9 regulates expression of its target genes by
711 binding to genomic regions with conserved signatures. *Nucleic Acids Res* **45**,
712 7191-7211 (2017) [PMID:28472341](#)

713 35. Liang J, Wang N, He J, Du J, Guo Y, Li L et al. Induction of Sertoli-like cells from
714 human fibroblasts by NR5A1 and GATA4. *Elife* **8**, e48767 (2019)
715 [PMID:31710289](#)

716 36. Ikeda Y, Tagami A, Maekawa M & Nagai A. The conditional deletion of
717 steroidogenic factor 1 (Nr5a1) in Sox9-Cre mice compromises testis
718 differentiation. *Sci Rep* **11**, 4486 (2021) [PMID:33627800](#)

719 37. Anamthathmakula P, Miryala CSJ, Moreci RS, Kyathanahalli C, Hassan SS,
720 Condon JC et al. Steroidogenic Factor 1 (Nr5a1) is Required for Sertoli Cell
721 Survival Post Sex Determination. *Sci Rep* **9**, 4452 (2019) [PMID:30872705](#)

722 38. Barrionuevo F, Georg I, Scherthan H, Lécureuil C, Guillou F, Wegner M et al.
723 Testis cord differentiation after the sex determination stage is independent of
724 Sox9 but fails in the combined absence of Sox9 and Sox8. *Dev Biol* **327**, 301-312
725 (2009) [PMID:19124014](#)

726 39. Georg I, Barrionuevo F, Wiech T & Scherer G. Sox9 and Sox8 are required for
727 basal lamina integrity of testis cords and for suppression of FOXL2 during
728 embryonic testis development in mice. *Biol Reprod* **87**, 99 (2012)
729 [PMID:22837482](#)

730 40. Chen SR, Chen M, Wang XN, Zhang J, Wen Q, Ji SY et al. The Wilms tumor
731 gene, Wt1, maintains testicular cord integrity by regulating the expression of
732 Col4a1 and Col4a2. *Biol Reprod* **88**, 56 (2013) [PMID:23325811](#)

733 41. Piprek RP, Kolasa M, Podkowa D, Kloc M & Kubiak JZ. Transcriptional profiling
734 validates involvement of extracellular matrix and proteinases genes in mouse
735 gonad development. *Mech Dev* **149**, 9-19 (2018) [PMID:29129619](#)

736 42. Lu Q & Rounds S. Focal adhesion kinase and endothelial cell apoptosis.
737 *Microvasc Res* **83**, 56-63 (2012) [PMID:21624380](#)

738 43. Gilmore AP. Anoikis. *Cell Death Differ* **12 Suppl 2**, 1473-1477 (2005)
739 [PMID:16247493](#)

740 44. Vachon PH. Integrin signaling, cell survival, and anoikis: distinctions, differences,
741 and differentiation. *J Signal Transduct* **2011**, 738137 (2011) [PMID:21785723](#)

742 45. Fröjdman K & Pelliniemi LJ. Differential distribution of the alpha 6 subunit of
743 integrins in the development and sexual differentiation of the mouse testis.
744 *Differentiation* **57**, 21-29 (1994) [PMID:8070619](#)

745 46. Beverdam A, Svingen T, Bagheri-Fam S, McClive P, Sinclair AH, Harley VR et al.
746 Protein tyrosine kinase 2 beta (PTK2B), but not focal adhesion kinase (FAK), is
747 expressed in a sexually dimorphic pattern in developing mouse gonads. *Dev Dyn*
748 **239**, 2735-2741 (2010) [PMID:20737507](#)

749 47. McGill G, Shimamura A, Bates RC, Savage RE & Fisher DE. Loss of matrix
750 adhesion triggers rapid transformation-selective apoptosis in fibroblasts. *J Cell*
751 *Biol* **138**, 901-911 (1997) [PMID:9265655](#)

752 48. Li H, MacLean G, Cameron D, Clagett-Dame M & Petkovich M. Cyp26b1
753 expression in murine Sertoli cells is required to maintain male germ cells in an

754 undifferentiated state during embryogenesis. *PLoS One* **4**, e7501 (2009)

755 [PMID:19838304](#)

756 49. Yao HH, Whoriskey W & Capel B. Desert Hedgehog/Patched 1 signaling
757 specifies fetal Leydig cell fate in testis organogenesis. *Genes Dev* **16**, 1433-1440
758 (2002) [PMID:12050120](#)

759 50. Brennan J, Tilmann C & Capel B. Pdgfr-alpha mediates testis cord organization
760 and fetal Leydig cell development in the XY gonad. *Genes Dev* **17**, 800-810
761 (2003) [PMID:1265189](#)

762 51. Reboucet D, O'Shaughnessy PJ, Pitetti JL, Monteiro A, O'Hara L, Milne L *et al.*
763 Sertoli cells control peritubular myoid cell fate and support adult Leydig cell
764 development in the prepubertal testis. *Development* **141**, 2139-2149 (2014)
765 [PMID:24803659](#)

766 52. Fouchécourt S, Livera G, Messiaen S, Fumel B, Parent AS, Marine JC *et al.*
767 Apoptosis of Sertoli cells after conditional ablation of murine double minute 2
768 (Mdm2) gene is p53-dependent and results in male sterility. *Cell Death Differ* **23**,
769 521-530 (2016) [PMID:26470726](#)

770 53. Verma-Kurvari S, Nef S & Parada LF. Hormonal regulation of male reproductive
771 tract development. *Ann N Y Acad Sci* **1061**, 1-8 (2005) [PMID:16467252](#)

772 54. Clark AM, Garland KK & Russell LD. Desert hedgehog (Dhh) gene is required in
773 the mouse testis for formation of adult-type Leydig cells and normal development
774 of peritubular cells and seminiferous tubules. *Biol Reprod* **63**, 1825-1838 (2000)
775 [PMID:11090455](#)

776 55. Pierucci-Alves F, Clark AM & Russell LD. A developmental study of the Desert
777 hedgehog-null mouse testis. *Biol Reprod* **65**, 1392-1402 (2001) [PMID:1167325](#)

778 56. Wang YQ, Cheng JM, Wen Q, Tang JX, Li J, Chen SR *et al.* An exploration of the
779 role of Sertoli cells on fetal testis development using cell ablation strategy. *Mol*
780 *Reprod Dev* **87**, 223-230 (2020) [PMID:32011766](#)

781 57. Aksel S, Cao M, Derpinghaus A, Baskin LS & Cunha GR. Ontogeny of mouse
782 Sertoli, Leydig and peritubular myoid cells from embryonic day 10 to adulthood.
783 *Differentiation* **Mar7**, S0301-4681(22)00015-9 (2022) [PMID:35317954](#)

784 58. Jeanes A, Wilhelm D, Wilson MJ, Bowles J, McClive PJ, Sinclair AH *et al.* Evaluation of candidate markers for the peritubular myoid cell lineage in the
785 developing mouse testis. *Reproduction* **130**, 509-516 (2005) [PMID:16183868](#)

787 59. Sohni A, Tan K, Song HW, Burow D, de Rooij DG, Laurent L *et al.* The Neonatal
788 and Adult Human Testis Defined at the Single-Cell Level. *Cell Rep* **26**, 1501-
789 1517.e4 (2019). [PMID:30726734](#)

790 60. Ademi H, Djari C, Mayère C, Neirijnck Y, Sararols P, Rands CM *et al.* Deciphering the origins and fates of steroidogenic lineages in the mouse testis.
791 *Cell Rep* **39**, 110935 (2022). [PMID:35705036](#)

793 61. Staack A, Donjacour AA, Brody J, Cunha GR & Carroll P. Mouse urogenital
794 development: a practical approach. *Differentiation* **71**, 402-413 (2003)
795 [PMID:12969333](#)

796 62. Mullen RD & Behringer RR. Molecular genetics of Müllerian duct formation,
797 regression and differentiation. *Sex Dev* **8**, 281-296 (2014) [PMID:25033758](#)

798 63. Zhao F & Yao HH. A tale of two tracts: history, current advances, and future
799 directions of research on sexual differentiation of reproductive tracts. *Biol Reprod*
800 **101**, 602-616 (2019) [PMID:31058957](#)

801 64. Livera G, Delbes G, Pairault C, Rouiller-Fabre V & Habert R. Organotypic culture,
802 a powerful model for studying rat and mouse fetal testis development. *Cell Tissue
803 Res* **324**, 507-521 (2006). [PMID:16520975](#)

804 65. Shima Y, Miyabayashi K, Haraguchi S, Arakawa T, Otake H, Baba T *et al.*
805 Contribution of Leydig and Sertoli cells to testosterone production in mouse fetal
806 testes. *Mol Endocrinol* **27**, 63-73 (2013) [PMID:23125070](#)

807 66. Reboucet D, Mackay R, Darbey A, Curley MK, Jørgensen A, Frederiksen H *et
808 al.* Ablation of the canonical testosterone production pathway via knockout of the
809 steroidogenic enzyme HSD17B3, reveals a novel mechanism of testicular
810 testosterone production. *FASEB J* **34**, 10373-10386 (2020) [PMID:32557858](#)

811 67. Blanchard PG & Luu-The V. Differential androgen and estrogen substrates
812 specificity in the mouse and primates type 12 17beta-hydroxysteroid
813 dehydrogenase. *J Endocrinol* **194**, 449-455 (2007) [PMID:17641292](#)

814 68. Welsh M, Suzuki H & Yamada G. The masculinization programming window.
815 *Endocr Dev* **27**, 17-27 (2014) [PMID:25247641](#)

816 69. Farley FW, Soriano P, Steffen LS, Dymecki SM. Widespread recombinase
817 expression using FLPeR (flipper) mice. *Genesis* **28**, 106-110 (2000) [PMID:
818 11105051](#)

819 70. Stévant I, Neirijnck Y, Borel C, Escoffier J, Smith LB, Antonarakis SE *et al.*
820 Deciphering Cell Lineage Specification during Male Sex Determination with
821 Single-Cell RNA Sequencing. *Cell Rep* **22**, 1589-1599 (2018) [PMID:29425512](#)

822 71. Aliye N, Fabbretti A, Lupidi G, Tsekota T & Spurio R. Engineering color variants
823 of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and

824 improved folding kinetics. *Appl Microbiol Biotechnol* **99**, 1205-1216 (2015)

825 [PMID:25112226](#).

826 72. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A *et al.*
827 Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587 (2021)

828 [PMID: 34062119](#)

829 73. McGinnis CS, Murrow LM & Gartner ZJ. DoubletFinder: Doublet Detection in
830 Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* **8**,
831 329-337 (2019) [PMID:30954475](#)

832 74. McCarthy DJ, Campbell KR, Lun AT & Wills QF. Scater: pre-processing, quality
833 control, normalization and visualization of single-cell RNA-seq data in R.
834 *Bioinformatics* **33**, 1179-1186 (2017). [PMID:28088763](#)

835 75. Chalmel F & Primig M. The Annotation, Mapping, Expression and Network
836 (AMEN) suite of tools for molecular systems biology. *BMC Bioinformatics* **9**, 86
837 (2008) [PMID:18254954](#)

838 76. Best D, Sahlender DA, Walther N, Peden AA & Adams IR. Sdmg1 is a
839 conserved transmembrane protein associated with germ cell sex determination
840 and germline-soma interactions in mice. *Development* **135**, 1415-1425 (2008)
841 [PMID:18321981](#)

842 **FIGURE LEGENDS**

843 **Figure 1. Ablation of *Nr5a1* is efficient from E13.5 onwards. (A-F)** Detection of
844 NR5A1 (red nuclear signals), YFP (green cytoplasmic signal), and HSD3B1 (red
845 cytoplasmic signal) by IHC on transverse histological sections of the testis of a
846 control (A,C,E) and a *Nr5a1*^{SC-/-} mutant fetus (B,D,F) at E12.5 (A,B) and E13.5 (C-
847 F). Efficient excision of the reporter transgene by cre is assessed by YFP expression
848 in virtually all SC (arrows) as early as E12.5 (A,B). However, loss of NR5A1 in SC is
849 only achieved at E13.5 (compare C with D). At this stage, expression of NR5A1 is
850 maintained in Leydig cells (arrowheads in C,D), as identified on consecutive sections
851 by their expression of HSD3B1 (E,F). Nuclei are counterstained with DAPI (blue
852 signal). Scale bar (in F): 50 μ m.

853 **Figure 2. Ablation of *Nr5a1* in Sertoli cells impairs AMH and SOX9 expression.**
854 **(A-R)** Detection of AMH, SOX9 and GATA4 (red signals) on transverse histological
855 sections of testes of control (A,C,E,G,I,K,M,O,Q) and *Nr5a1*^{SC-/-} mutant fetuses
856 (B,D,F,H,J,L,N,P,R) at E12.5 (A,B,G,H,M,N), E13.5 (C,D,I,J,O,P) and E14.5
857 (E,F,K,L,Q,R). In (G-R) nuclei are counterstained with DAPI (blue signal). Insets (in
858 K,L) are high magnifications showing nuclear localisation of SOX9 in control SC
859 versus cytoplasmic localisation in mutant SC. Note that at each developmental stage,
860 AMH, SOX9 and GATA4 IHC are performed on consecutive sections. Scale bar (in
861 R): 50 μ m. **(S)** RT-qPCR analyses comparing the expression levels of *Amh*, *Sox9*,
862 *Sox8* and *Ptgds* mRNAs in whole testis RNA from control (n=4) and *Nr5a1*^{SC-/-}
863 mutant (n=4) fetuses at E13.5 and E14.5. Each point represents the mean value of a
864 technical triplicate, and the bars indicate the mean value.

865 **Figure 3. NR5A1-deficient Sertoli cells die even when they lack TRP53. (A,D)**
866 Detection of YFP (green signal) and TUNEL-positive cells (red signal) on histological

867 sections from testis of control (A) and *Nr5a1*^{SC-/-} mutant fetuses (B) at E14.5 (A,B)
868 and E15.5 (C,D). **(E,F)** Detection of GATA4 (red signal) and TUNEL-positive cells
869 (green signal) on histological sections of control (E) and *Nr5a1*^{SC-/-} mutant testes (F)
870 fetuses at E14.5. Nuclei are counterstained with DAPI (blue signal). Arrowheads
871 point to TUNEL-positive SC in the mutant. **(G,H)** Detection of TRP53 (brown signal)
872 on histological sections of control (G) and *Nr5a1*^{SC-/-} mutant (H) testes at E14.5. The
873 insets show larger magnifications. Arrowheads and arrows point to SC and GC,
874 respectively. **(I,J)** Detection of SOX9 (red signal) and YFP (green signal) by IHC on
875 histological sections of *Nr5a1*^{SC-/-} (I) and *Nr5a1*^{SC-/-}; *Trp53*^{SC-/-} (J) mutants at E14.5.
876 Arrowheads point to SC. **(K-M)** Haematoxylin and eosin staining (H&E) on
877 histological sections of testes from control (K), *Nr5a1*^{SC-/-} (L) and *Nr5a1*^{SC-/-}; *Trp53*^{SC-/-}
878 (M) mutants at PND15. **(N-P)** Detection of HSB3B1 (red signal) on transverse
879 histological sections of testes from control (N), *Nr5a1*^{SC-/-} (O) and *Nr5a1*^{SC-/-}
880; *Trp53*^{SC-/-} mutants (P) at PND15. **(Q-S)** Detection of HSB3B1 (red signal) on
881 transverse histological sections of testes from control (Q), *Nr5a1*^{SC-/-} (R) and
882 *Nr5a1*^{SC-/-}; *Trp53*^{SC-/-} mutants (S) at PND60. The dotted white lines (in K,N,Q)
883 delineate seminiferous tubules. Nuclei are counterstained with DAPI (blue signal).
884 LC, Leydig cells. Scale bar (in S): 25 µm (A-D,I,J), 15 µm (E,F), 100 µm (G,H), 80 µm
885 (K-P), 20 µm (Q-S).

886 **Figure 4. Abnormal external genitalia and Müllerian duct retention in *Nr5a1*^{SC-/-}**
887 **males. (A,C)** Anogenital distance in control and *Nr5a1*^{SC-/-} males at PND60. **(B,D)**
888 Penis bones dissected from control and *Nr5a1*^{SC-/-} males at PND60 and stained with
889 alizarin red and alcian blue. **(E-H)** Reproductive tracts of control (E) and *Nr5a1*^{SC-/-}
890 (F-H) males at PN60. **(I-J)** Histological sections from the *Nr5a1*^{SC-/-} mutant sample
891 shown in (H) and stained by H&E. The uterine surface consists of a simple columnar

epithelium and the vaginal epithelium is typically stratified squamous. Legend: A, ampullary gland; CP, cranial prostate; E, epididymis; F, fat pad; SV, seminal vesicle; T, testis; UB, uterus body; UH, uterine horn; V, vagina; VD, vas deferens; VP, ventral prostate. Scale bar (in J): 10 μ m (I,J).

Figure 5. Transcriptomes of control and *Nr5a1*^{SC-/-} testicular cells at a single-cell resolution. (A) UMAP plot of single cell transcriptomes from control (blue) and *Nr5a1*^{SC-/-} (pink) testes at E14.5, partitioned into 23 cell clusters (named C1-C23) by using Seurat graph-based clustering. The proportion of control and mutant cells in each cell cluster is indicated below as coloured bars. Legend: Legend: coel. ep., coelomic epithelium. **(B,C)** Volcano plots of differential gene expression in GC (panel B, clusters C22 and C23) and SC (panel C, clusters C18, C19 and C21) from control and *Nr5a1*^{SC-/-} testes. Red dots correspond to genes deregulated more than 1.2-fold. **(D-K)** Detection of ALDH1A1, TMEM184A (red signals), TRA98, AMH, DDX4 (green signals) or TUBB3 and PCP4 (brown signals) by IHC on transverse histological sections of control (D-G) and *Nr5a1*^{SC-/-} mutant (H-K) testes at E14.5. In (D,E,H,I) nuclei are counterstained with DAPI (blue signal). The dotted lines (in D,I) delimit seminiferous cords. The arrowheads (in G,L) point to SC nuclei. Scale bar (in K): 25 μ m (D,E,H,I), 100 μ m (F,J), 15 μ m (G,K). **(L)** RT-qPCR analyses comparing the expression levels of selected mRNAs as indicated in whole testis RNA from control (n=4) and *Nr5a1*^{SC-/-} mutant (n=4) fetuses at E14.5. Each point represents the mean value of a technical triplicate, and the bars indicate the mean value.

Figure 6. NR5A1-deficient Sertoli change their identity. (A) Predicted projection of control (blue) and *Nr5a1*^{SC-/-} (pink) cells on a reference single-cell transcriptomic atlas of gonad development. **(B,C)** Dot plots representing the predicted association of cell clusters from the control and *Nr5a1*^{SC-/-} single-cell dataset (y axis) to cell-types

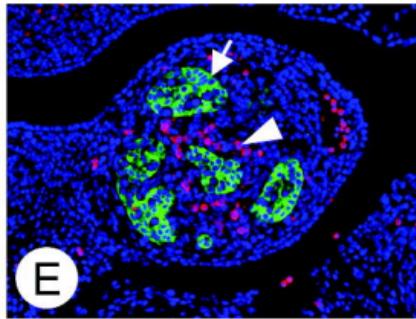
917 (panel B) and to sex and developmental stages (panel C) according to the atlas
918 previously published [29] (x axis). The dot size represents the prediction score
919 (ranging from 0.0 to 1.0) of a given cell cluster to be associated with a given cell-type
920 based on the TransferData function implemented in Seurat. The color intensity (from
921 white to dark red) indicates the percentage of cells of a given cell cluster that have
922 been associated with a given cell-type. Legend: coel., coelomic; ctrl, control; ep.,
923 epithelium; mes., mesenchyme; meso., mesonephros; mut, mutant; prog., progenitor.
924 **(D,E)** Detection of FOXL2 (red signal) and DDX4 (green signal) by IHC on transverse
925 histological sections of control (D) and *Nr5a1*^{SC-/-} mutant (G) testes at E15.5. Nuclei
926 are counterstained with DAPI (blue signal). The inset (in D) shows detection of
927 FOXL2 in a E15.5 fetal ovary, used as a positive control for IHC. Scale bar (in E):
928 15 μ m (D,E).

929 **Figure 7. Loss of NR5A1 in Sertoli cells induces disorganisation of the testis**
930 **cords. (A,B,E,F)** Histological sections through E14.5 (A,E) and E15.5 (B,F) control
931 (A,B) and *Nr5a1*^{SC-/-} mutant (E,F) fetuses stained by hematoxylin and eosin (H&E).
932 In controls, the seminiferous cords are well defined (dotted lines). In mutants, they
933 are poorly defined from E14.5 onwards (broken dotted lines with arrows). **(C,D,G,H)**
934 Detection of COL-IV, SOX9 (red signals), and YFP (green signal) on transverse
935 histological sections of the testis from control (C,D) and *Nr5a1*^{SC-/-} mutant fetuses
936 (G,H) at E14.5. Note that (C,D) and (G,H) are consecutive sections. Arrows (in G)
937 point to the loss of COL-IV at the periphery of seminiferous cords, where SOX9 is lost
938 in SC (arrowheads in H). Scale bar (in D): 10 μ m (A,B,E,F), 15 μ m (C,D,G,H). **(I)**
939 Tukey box plots illustrating medians, ranges and variabilities of log normalized
940 expression of the indicated genes involved in either cell junction/adhesion (CJA) or
941 ECM composition.

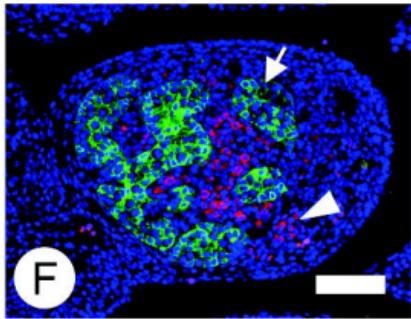
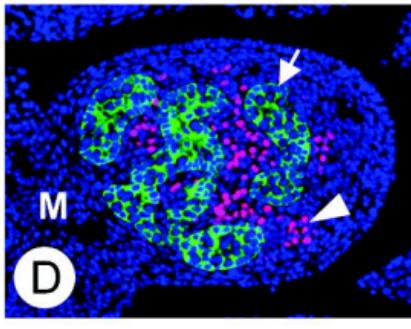
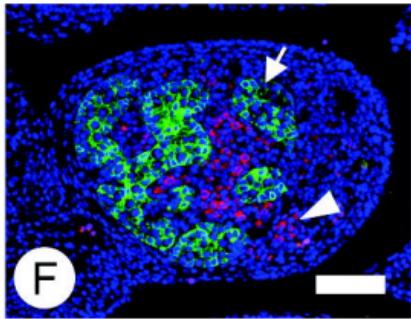
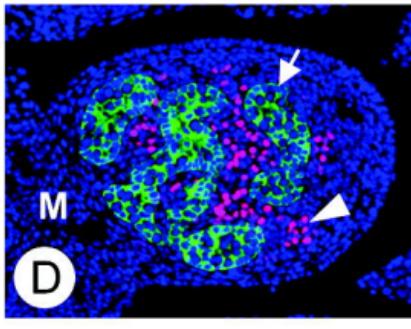
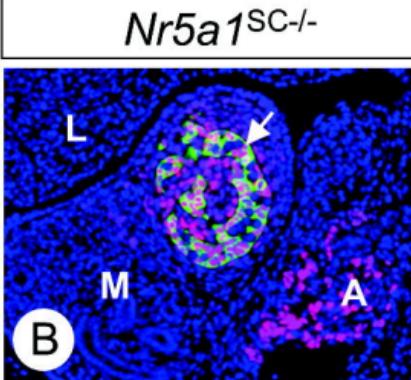
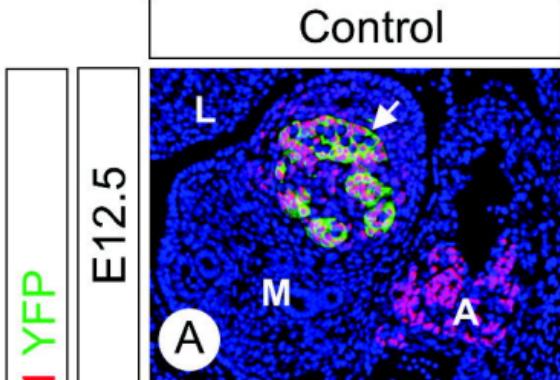
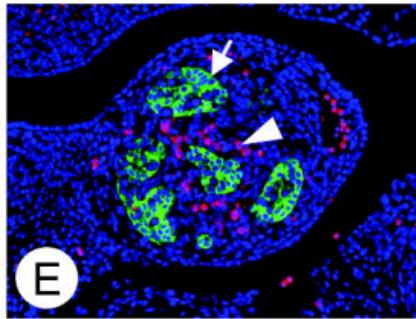
942 **Figure 8. Summary of the alterations induced by the loss of NR5A1 in Sertoli**
943 **cells after the sex determination period. (A)** Control situation. **(B)** $Nr5a1^{SC-/-}$
944 mutant situation. Blue and yellow ovals are up- and down-regulated genes,
945 respectively. Legend: AGD, anogenital distance; PGD2, prostaglandin D2.

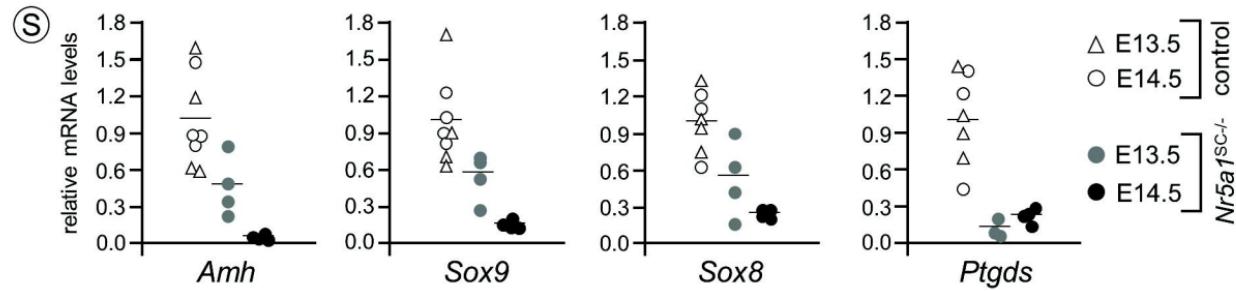
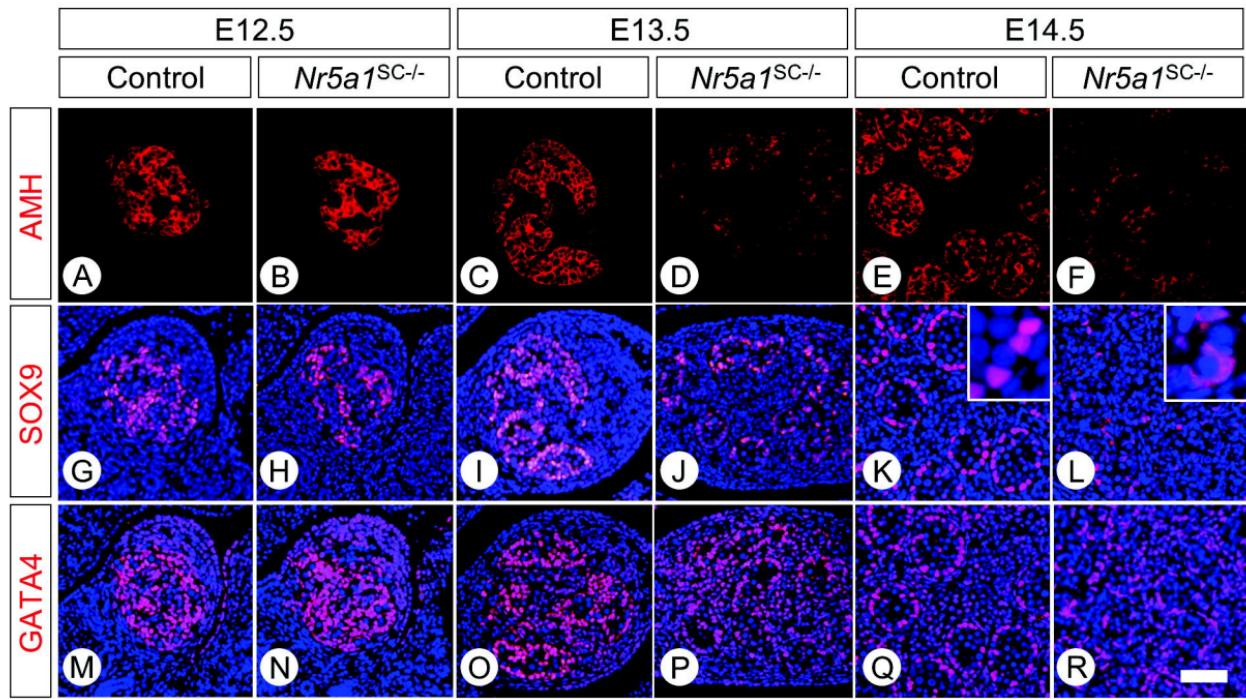
Table 1. Primary antibodies used for immunohistochemistry experiments.

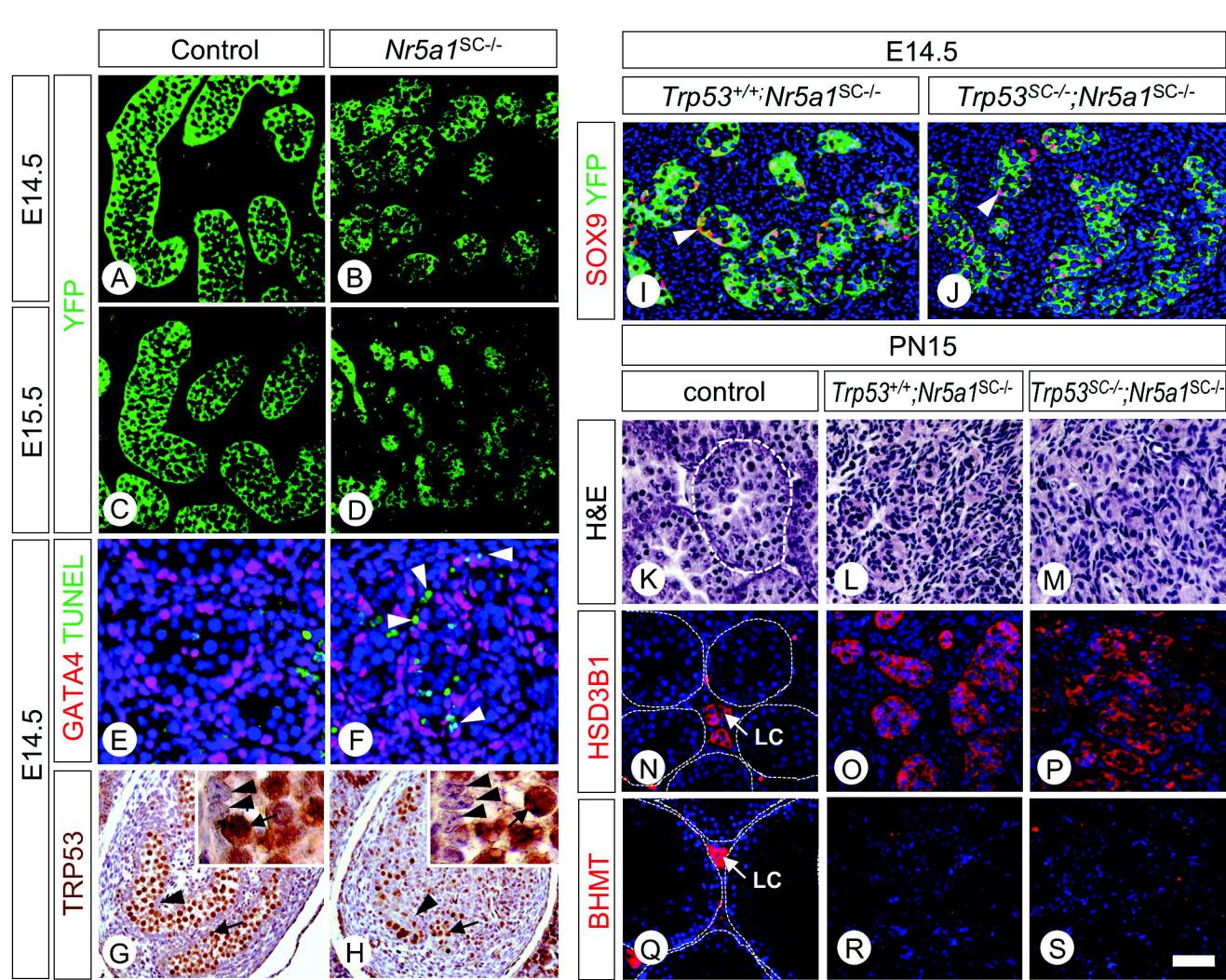
Antibodies	Species	Dilution	Source	Reference
ALDH1A1	Rabbit polyclonal	1/50	Abcam	ab52492
ALDH1A3	Rabbit polyclonal	1/20	Sigma	HPA046271C106318
AMH	Goat polyclonal	1/100	Santa-Cruz	sc-6886
BHMT	Rabbit polyclonal	1/200	Anticorps-enligne.fr	ABIN310161
BrdU	Rat monoclonal	1/100	Bio Rad	OBT0030S
COL-IV	Rabbit polyclonal	1/50	Abcam	ab19808
DDX4	Rabbit polyclonal	1/2000	Abcam	ab13840
FOXL2	Goat polyclonal	1/250	Abcam	ab5096
GATA 4	Goat polyclonal	1/50	Santa-Cruz	sc-1237
H2AFX	Mouse monoclonal	1/500	Millipore	05-636 (JBW301)
HSD3B1	Rabbit polyclonal	1/1000	Trans Genic's Inc	KO607
NR5A1	Rabbit polyclonal	1/100	Cosmo Bio	KAL-KO611
PAX8	Mouse monoclonal	1/10	Abcam	ab53490
PCP4	Rabbit polyclonal	1/500	Novus Biologicals	NBP1-80929
REC8	Rabbit monoclonal	1/200	Abcam	ab192241
SOX8	Mouse monoclonal	1/100	Novus Biologicals	H00030812-M01
SOX9	Rabbit polyclonal	1/1000	Sigma Aldrich	ab5535
SOX10	Goat polyclonal	1/1000	R&D Systems	AF2864
STRA8	Rabbit polyclonal	1/1000	Abcam	ab49602
TMEM184A	Rabbit polyclonal	1/200		[76]
TRA98	Rat monoclonal	1/500	Abcam	ab82527
TRP53	Rabbit polyclonal	1/200	Santa-Cruz	sc-6243
TUBB3	Mouse monoclonal	1/1000	Covance	MMS-435P-0100 (TUJ1 clone)
WT1	Mouse monoclonal	1/500	Cell Marque	348M-94
YFP	Chicken polyclonal	1/500	Aves	GFP-1020


Table 2. Primers used for quantification of mRNA levels by real-time RT-qPCR.

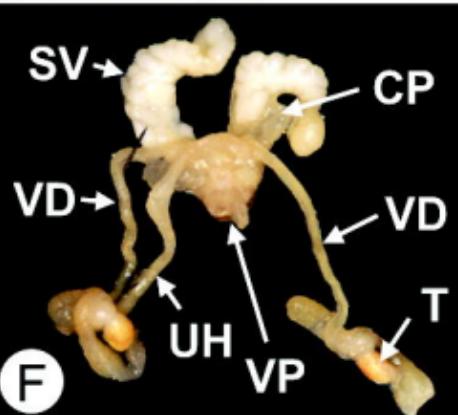
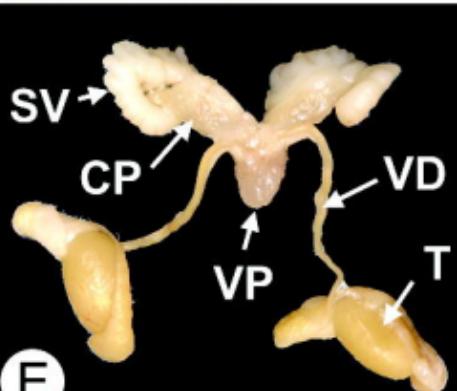
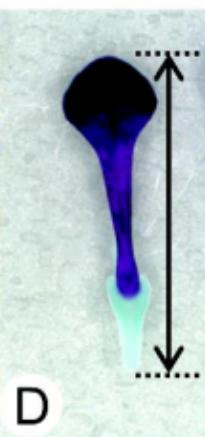
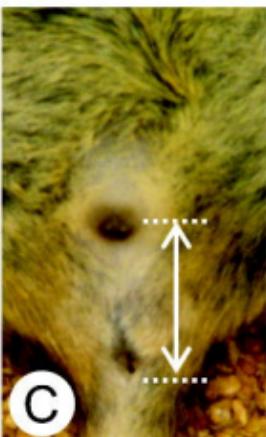
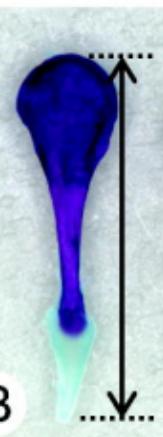
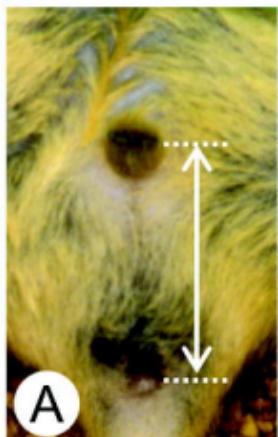
Gene	Accession number	Forward primer sequence	Reverse primer sequence	Amplicon size (bp)
<i>Amh</i>	NM_007445.3	5'-TCCTACATCTGGCTGAAGTGATATG-3'	5'-CAGGTGGAGGCTCTTGGAACT-3'	66
<i>Col6a6</i>	NM_001102607.1	5'-TGATTGCGTTCAGCAACGTG-3'	5'-TCCGGCTTGCATAGATCATAG-3'	157
<i>Cyp26b1</i>	NM_001177713.1	5'-CGACATCCACCGCAACAAG-3'	5'-GGCCTCCTGATATACATTGATGG-3'	151
<i>Dhh</i>	NM_007857.5	5'-GCACAGGATTCACTCCACTACGA-3'	5'-CCAGTGAGTTATCAGCTTGACC-3'	172
<i>Fst</i>	NM_001301373.1	5'-CTGCTGCTACTCTGCCAGTT-3'	5'-ACATCCTCCTCGGTCCATGA-3'	167
<i>Hsd17b3</i>	NM_008291.3	5'-ATGGAGTCAAGGAGGAAAGGC-3'	5'-ATGGAGTCAAGGAGGAAAGGC-3'	76
<i>Inhbb</i>	NM_008381.4	5'-GCGTCTCCGAGATCATCAGC-3'	5'-CACCTTGACCCGTACCTTCC-3'	188
<i>Itga6</i>	NM_001277970.1	5'-GCGGCTACTTCACTAAGGACT-3'	5'-TTCTTTGTTCTACACGGACGA-3'	92
<i>Pcp4</i>	NM_008791.3	5'-GCGACCAACGGAAAAGACAA-3'	5'-TTCAGGTGGACCAGGAAGCA-3'	194
<i>Ptgds</i>	NM_008963.3	5'-GCTCTTCGCATGCTGTGGAT-3'	5'-GCCCGAGGAACTTGTCTTGTT-3'	118
<i>Sox8</i>	NM_011447.3	5'-ACCCGCATCTCCATAACGCA-3'	5'-TGGTGGCCCAGTTCACTTAC-3'	214
<i>Sox9</i>	NM_011448.4	5'-CAGCAAGACTCTGGGCAAG-3'	5'-TCCACGAAGGGCTCTTCTC-3'	63
<i>Tubb3</i>	NM_023279.3	5'-CGTGAAGTCAGCATGAGGGA-3'	5'-TCCAAGTCCACCAAGAATGGC-3'	218

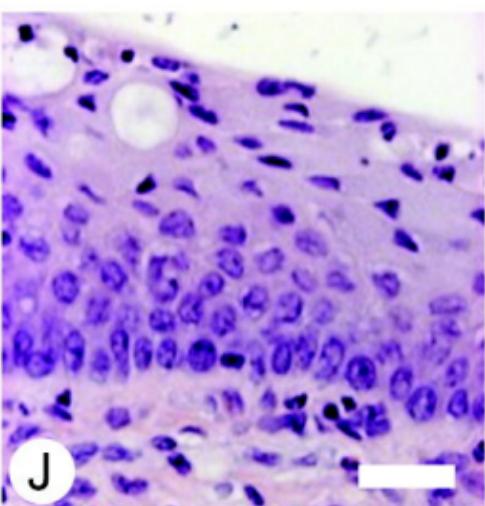
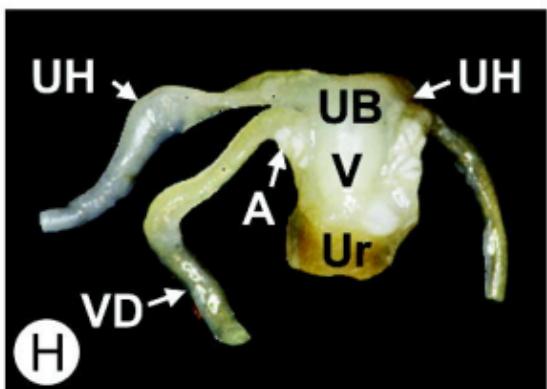
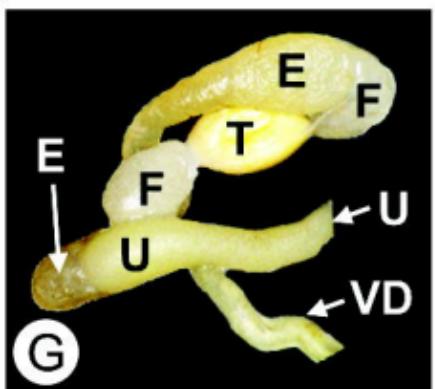







HSD3B1 YFP

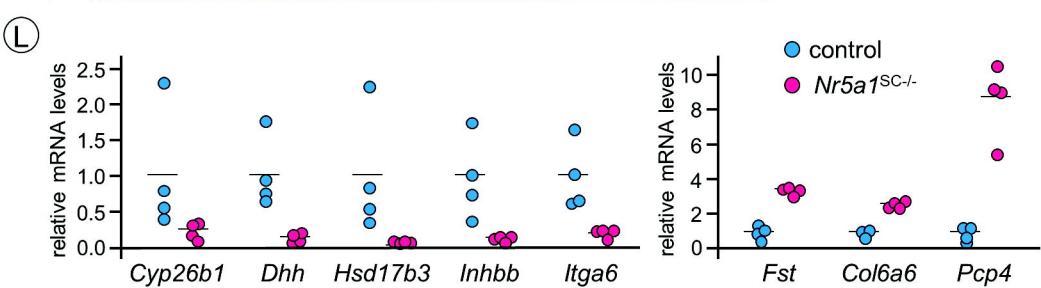
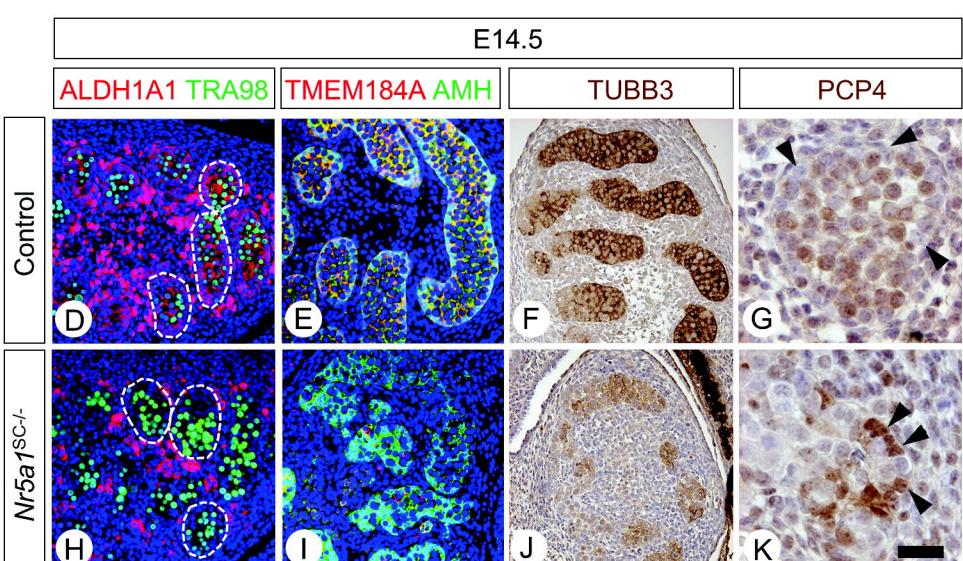
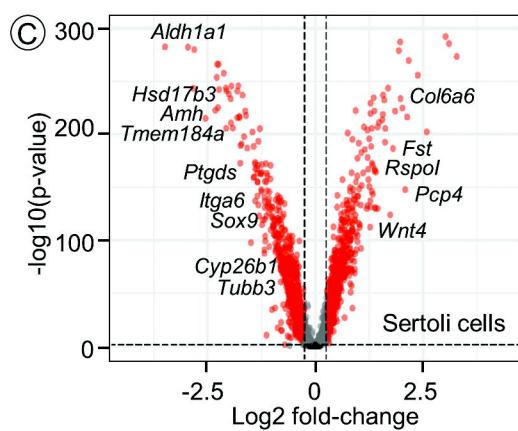
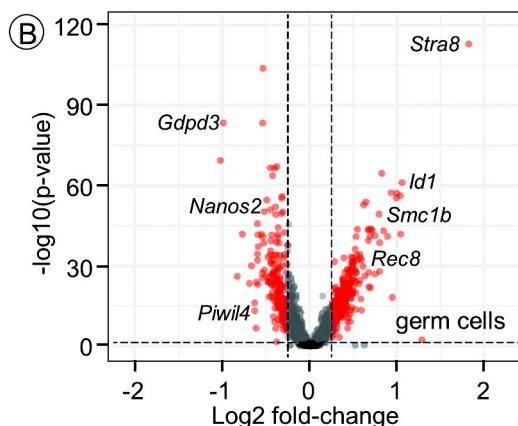
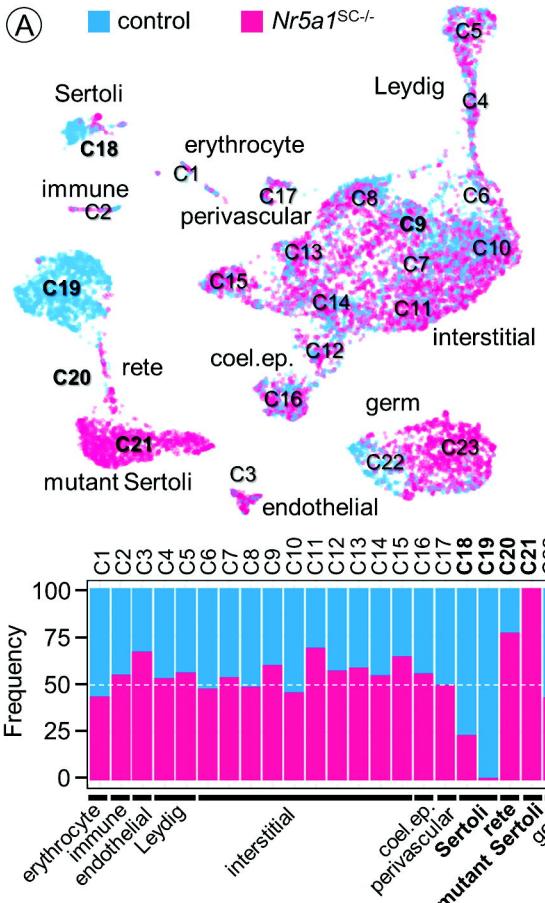


E12.5

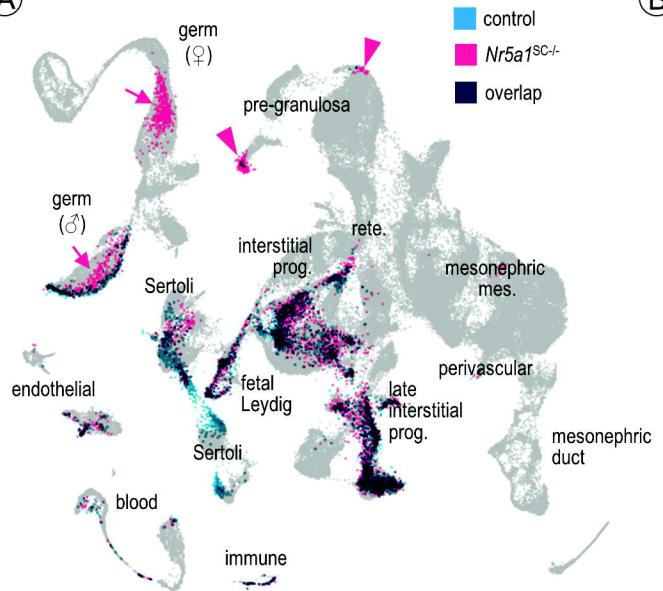
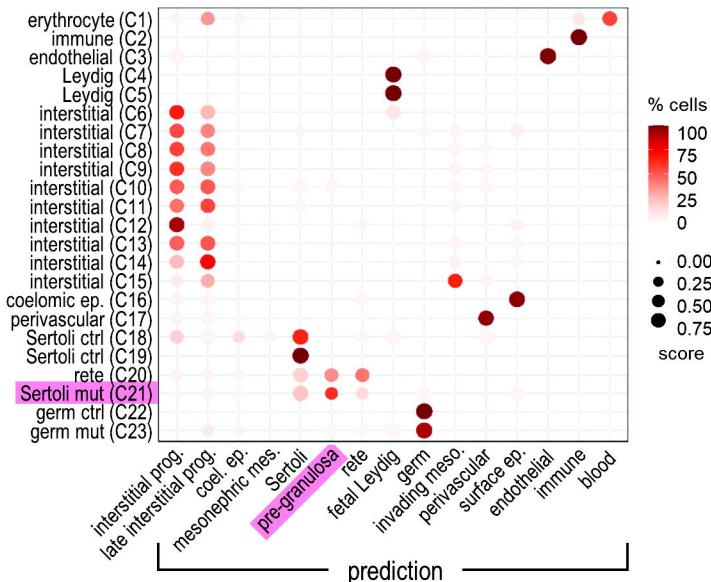
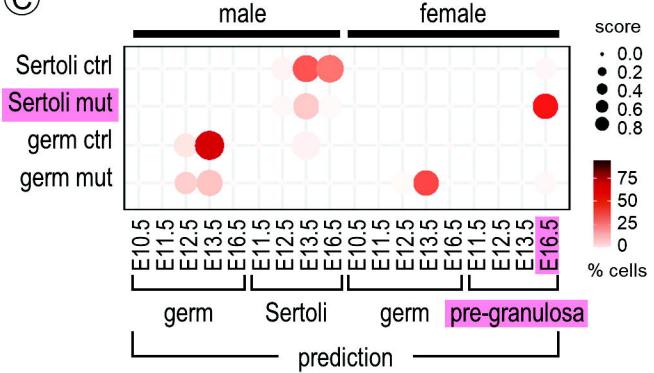


NR5A1 YFP

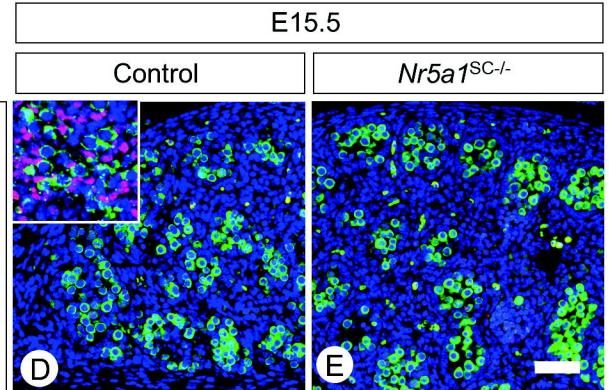






E13.5

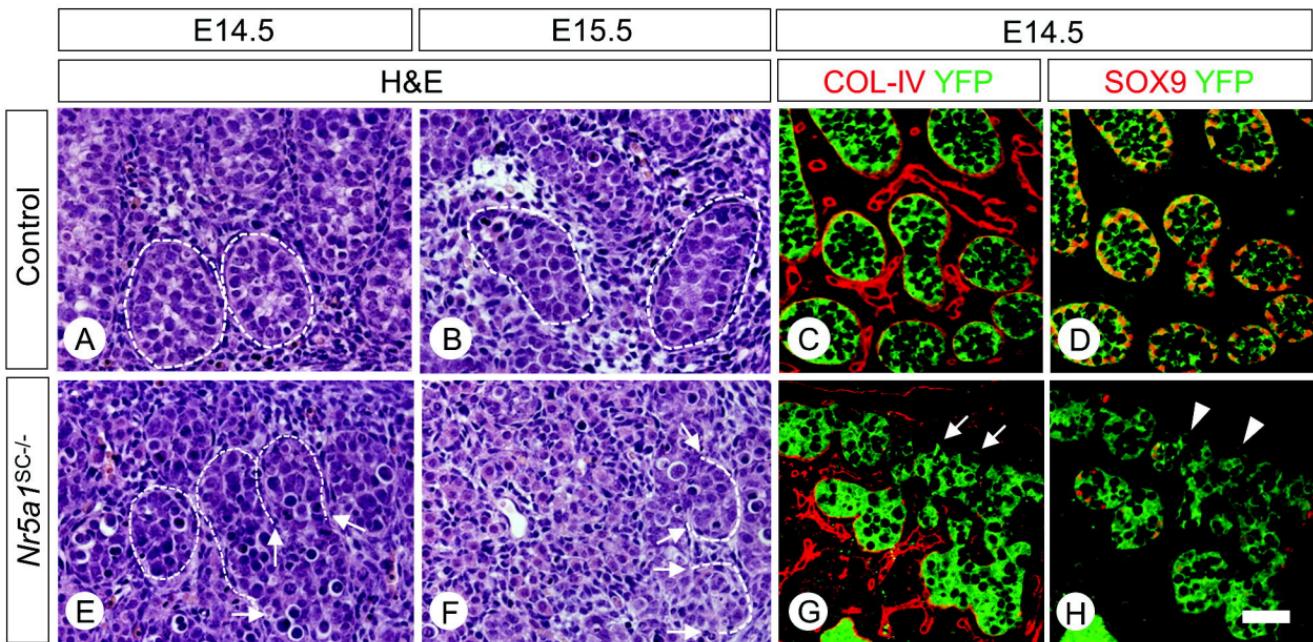




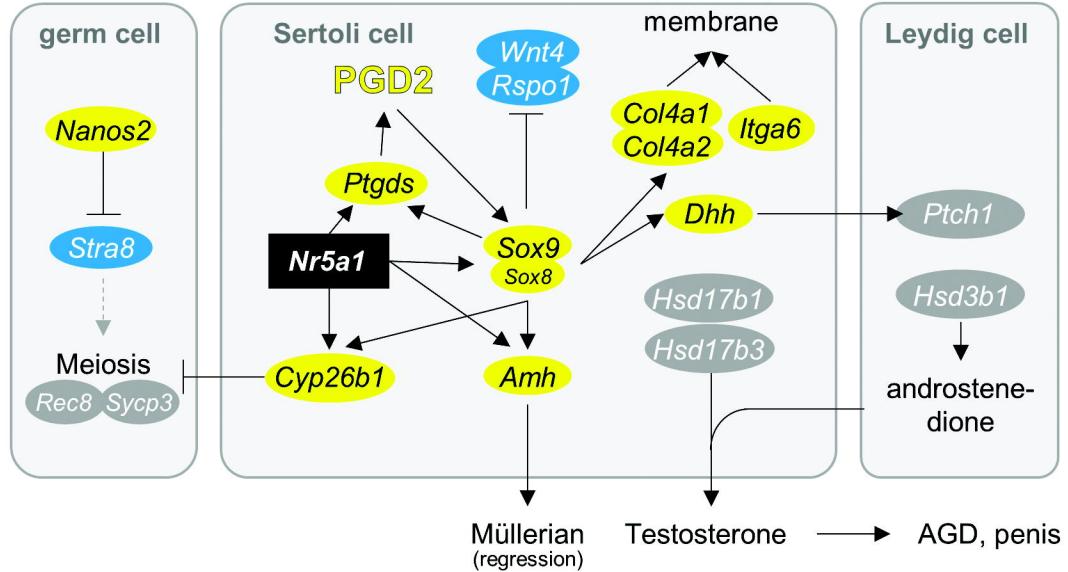



Control

Nr5a1^{SC-/-}

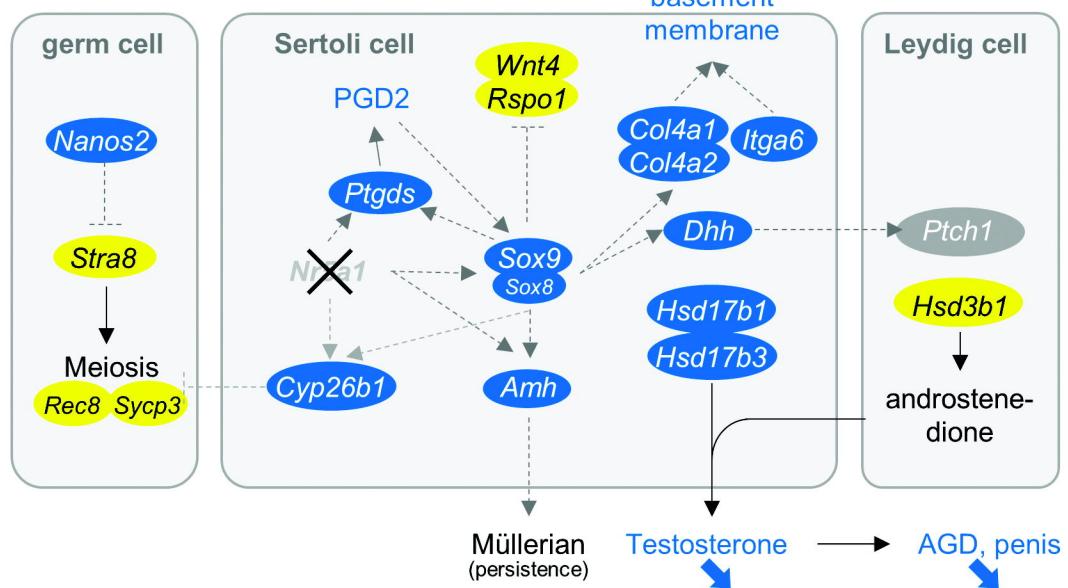




A**B****C**


FOXL2 DDX4

D



A control situation

B *Nr5a1^{SC-/-}* situation

