

1 **Title:** Autophagy in maternal tissues contributes to *Arabidopsis thaliana* seed
2 development.

3

4 **Authors:** Ori Erlichman^{1***}, Shahar Weiss¹, Maria Abu-Arkia¹, Moria Ankary Khaner¹,
5 Yoram Soroka¹, Weronika Jasinska², Leah Rosental², Yariv Brotman² and Tamar Avin-
6 Wittenberg^{1*}

7

8 **Author Affiliations**

9 ¹ Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life
10 Sciences, The Hebrew University of Jerusalem, Givat Ram, 9190401, Jerusalem, Israel

11 ² Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva,
12 Israel

13 * Corresponding author: tamar.avin-wittenberg@mail.huji.ac.il

14 ** Current affiliation: Faculty of Biology, Technion-Israel Institute of Technology,
15 3200003, Haifa, Israel

16

17 **Running Head:** Autophagy in the mother plant and seed development.

18

19 **Keywords (5-8, in alphabetical order):** *Arabidopsis thaliana*, Autophagy, Maternal
20 tissue, Seed, Source-sink relationship, Storage compounds.

21

22 **Abstract**

23 Seeds are an essential food source, providing nutrients for germination and early seedling
24 growth. Degradation events in the seed and the mother plant accompany seed development.
25 One degradation mechanism is autophagy, facilitating cellular component breakdown in
26 the lytic organelle. Autophagy influences various aspects of plant physiology, specifically
27 nutrient availability and remobilization, suggesting its involvement in source-sink
28 interactions. During seed development, autophagy was shown to affect nutrient
29 remobilization from mother plants and function in the embryo. Yet, these studies examined
30 autophagy-knockout (*atg* mutant) plants, making it impossible to distinguish between the
31 contribution of autophagy in the source (i.e., the mother plant) and the sink tissue (i.e., the
32 embryo).

33 To address this, we employed a novel approach to differentiate between autophagy in
34 source and sink tissues. We investigated how autophagy in the maternal tissue affects seed
35 development by performing reciprocal crosses between WT and *atg* mutant *Arabidopsis*
36 *thaliana* plants. Although F1 seedlings possessed a functional autophagy mechanism,
37 etiolated F1 plants from maternal *atg* mutants displayed reduced growth. This was
38 attributed to altered protein but not lipid accumulation in the seeds, suggesting autophagy
39 differentially regulates carbon and nitrogen remobilization. Surprisingly, F1 seeds of
40 maternal *atg* mutants exhibited faster germination, resulting from different seed coat
41 development.

42 Our study emphasizes the significance of examining autophagy in a tissue-specific manner,
43 revealing valuable insights into the interplay between different tissues during seed
44 development. It sheds light on the tissue-specific functions of autophagy, offering potential
45 for new research into the underlying mechanisms governing seed development and crop
46 yield.

47 **Introduction**

48 Seeds are a major source of food and feed, providing approximately 70% of the world's
49 human caloric intake (Sreenivasulu and Wobus, 2013). The nutritional value of seeds is
50 attributed to storage compounds accumulating in the seed during development (Cernac and
51 Benning, 2004). These include starch, storage lipids (mostly triacylglycerols - TAGs), and
52 storage proteins, the relative amount of which varies between plant species. Storage
53 compounds are degraded during germination and early seedling development to facilitate
54 germination and seedling growth until photosynthesis establishment (Baud et al., 2008). In
55 annual plants, seed development is accompanied by mother plant senescence, resulting in
56 nutrient remobilization to the developing seeds, used to produce storage compounds
57 (Distelfeld et al., 2014). Another vital seed trait is longevity, defined as seed viability after
58 seed dry storage (Nguyen et al., 2012). Seed longevity can directly affect germination and,
59 as a result, crop productivity and food security (Zhou et al., 2019). With a growing world
60 population (Ort et al., 2015), specifically in light of current climate change (Lobell et al.,
61 2011), an increased understanding of nutrient remobilization to seeds and seed longevity
62 is vital to ensure food security.

63 Nutrient trafficking and partitioning to various tissues in the plant, i.e. source-sink
64 relationship, are vital for seed development (Sonnewald and Fernie, 2018; Tegeder and
65 Masclaux-Daubresse, 2018). Nutrients from source tissues can be used for organ growth
66 and later exported to sink tissues following catabolism and nutrient recycling (Osorio et
67 al., 2014; Li et al., 2015). Nutrient demand of the sink tissue can also affect export from
68 the source (Lemoine et al., 2013). Plant source-sink relationship has been studied for many
69 years. However, there is still a debate as to which process controls plant growth and yield
70 the most (Sonnewald and Fernie, 2018). During seed development, both carbon, in the form
71 of sucrose, and nitrogen, in the form of the amino acids glutamine and asparagine, are
72 transported from the mother plant (source tissue) to the developing seeds (sink tissue)
73 (Dourmap et al., 2023).

74 Macroautophagy (hereafter termed "Autophagy") is a conserved eukaryotic mechanism for
75 the degradation of cytoplasmic constituents in the lytic organelle (vacuoles in yeast and
76 plants and lysosomes in animals) (Bassham et al., 2006; Marshall and Vierstra, 2018). The
77 targets of autophagy are diverse and include long-lived proteins, protein complexes, and

78 whole organelles (Reumann et al., 2010). The autophagy machinery relies on highly-
79 conserved AuTophagy-related (*ATG*) genes (Bassham, 2009; Avin-Wittenberg et al.,
80 2012; Liu and Bassham, 2012; Ryter et al., 2013), which have been characterized in many
81 plant species (Chung et al., 2009; Kurusu et al., 2014; Zhou et al., 2014). In recent years,
82 autophagy was shown to be involved in many aspects of plant life, from plant development
83 to biotic and abiotic stress response (Avin-Wittenberg et al., 2018).

84 Autophagy-deficient plants (*atg* mutants) are hypersensitive to carbon and nitrogen
85 starvation and display early senescence and reduced yield (Doelling et al., 2002; Li et al.,
86 2015; Barros et al., 2017), as well as slightly slower germination rates and impaired
87 seedling establishment (Yoshimoto et al., 2014; Avin-Wittenberg et al., 2015). Autophagy
88 was shown to promote nutrient remobilization in plants, functioning in the supply of lipids
89 and primary metabolites (Masclaux-Daubresse et al., 2014; Avin-Wittenberg et al., 2015;
90 Wada et al., 2015; Barros et al., 2017; Hirota et al., 2018; McLoughlin et al., 2018;
91 McLoughlin et al., 2020; Barros et al., 2021). Moreover, overexpression of *ATG* genes in
92 *Arabidopsis thaliana* (*Arabidopsis*) was reported to increase seed yield and fatty acid
93 content (Minina et al., 2018).

94 Autophagy was shown to play a dual role in seed development, affecting both the mother
95 plant and the developing embryo. Studies in *Arabidopsis* and maize (*Zea mays*)
96 demonstrated that impaired autophagy causes altered nitrogen mobilization from the
97 mother plant to the seed, resulting in changes in seed C/N ratio (Guiboileau et al., 2012; Li
98 et al., 2015). Alternatively, microscopic evidence from wheat (*Triticum aestivum*)
99 suggested the possible involvement of autophagy in the transport of storage proteins to
100 protein storage vacuoles within the developing seeds (Levanony et al., 1992). Furthermore,
101 an additional publication demonstrated the presence of an active autophagy mechanism
102 within developing seeds as well as altered storage protein content and processing in
103 *Arabidopsis atg* mutants (Di Berardino et al., 2018).

104 Though autophagy has been established as a major player in plant nutrient remobilization,
105 the work thus far analyzed knockout plants, in which autophagy is inactive in both source
106 and sink tissues. Indeed, although the studies above suggest autophagy is essential for seed
107 development, it was impossible to distinguish between the impact of autophagy in the
108 mother plant and in the seed itself. Moreover, the seed is comprised of several tissues with

109 differing parental contributions. The seed coat is of maternal origin, while the embryo and
110 endosperm are zygotic tissues, and the genomic contribution of the triploid single-layer
111 endosperm is unevenly divided between the female parent (2n) and the male parent (1n)
112 (Bentsink and Koornneef, 2008). In this work, we devised an experimental system that
113 allowed us to separate the effect of autophagy in source and sink tissues and elucidate how
114 autophagy in the maternal tissue affects seed development. To that end, we performed
115 reciprocal crosses between *Arabidopsis* wild type (WT) and *atg* mutants to receive *ATG*-
116 heterozygous F1 seeds with different maternal tissues. We discovered F1 seeds
117 differentially accumulated storage compounds according to the genotype of the mother
118 plant. Surprisingly, we observed that F1 seeds from maternal *atg* mutant origin had a faster
119 germination rate, in striking contrast to homozygous *atg* mutants, which germinate slower
120 than WT seeds. This possibly stems from differences in seed coat structure, which also
121 influences seed longevity. Our work suggests that *atg* mutant seeds display a compound
122 phenotype, merging the impact of autophagy in the mother plant and the embryo.

123 **Results**

124 F1 progeny of WT and *atg* mutants possess a functional autophagy mechanism but reduced
125 growth when germinated in the dark

126 To differentiate between autophagy in the mother plant and in the embryo, we performed
127 reciprocal crosses between WT and *atg* mutant (*atg5-1* or *atg7-2*) *Arabidopsis* plants. This
128 novel approach allowed us to produce F1 seeds in which the embryos are heterozygous for
129 either *atg5* or *atg7* mutation while maintaining maternal tissues that are homozygous to
130 either WT, *atg5-1*, or *atg7-2* (Fig. 1) mutants. The heterozygous genotype of F1 plants was
131 validated by PCR (Fig. S1a,b).

132 We did not observe any developmental difference between the F1 seeds (Fig. 2a). In
133 addition, we did not detect any aborted seeds, as previously reported in *atg5-1* plants (Di
134 Berardino et al., 2018). Homozygous *atg* mutant seeds are smaller than WT seeds (Barros
135 et al., 2017; Minina et al., 2018). We thus compared the weight of reciprocally crossed F1
136 seeds to examine whether we see a similar effect due to different maternal tissues. We did
137 not see a significant difference between the lines, suggesting this phenotype might be
138 governed by autophagy in the developing embryo (Fig. 2b).

139 We next wished to determine whether the F1 plants display a functional autophagy
140 mechanism. One hallmark phenotype of *atg* mutants is hypersensitivity to carbon
141 starvation (Marshall and Vierstra, 2018). We thus exposed two-week-old F1 seedlings and
142 their respective paternal lines to carbon starvation and recovery. As can be seen in Fig. 3a-
143 c and Fig. S1c-d, the *atg* mutant parental lines were more susceptible to carbon starvation
144 than WT plants and did not recover, as expected. F1 seedlings displayed a WT-like
145 phenotype, irrespective of the identity of the maternal or paternal lines. *atg* mutant etiolated
146 seedlings were also shown to exhibit shorter hypocotyls when grown without exogenous
147 sugars (Avin-Wittenberg et al., 2015). In light of the results of the carbon starvation
148 experiments, we were expecting not to see a difference between the F1 progeny of our
149 reciprocal crosses. Interestingly, when we performed this assay on the F1 seeds, seedlings
150 stemming from *atg* mutant mother plants had significantly shorter hypocotyls than
151 seedlings from WT mother plants (Fig. 3d,e). As etiolated seedlings are reliant on nutrients
152 from the seeds alone, we hypothesized this phenotype resulted from altered storage
153 compound amounts deposited in the seeds from different mother plants.

154 *atg* mutants display an early senescence phenotype (Marshall and Vierstra, 2018), which
155 was shown to stem from an accumulation of salicylic acid during plant aging (Yoshimoto
156 et al., 2009). We thus wished to ascertain whether the observed phenotype did not originate
157 from the premature senescence of the mother plant, resulting in diminished reserve
158 accumulation. To that end, we performed reciprocal crosses between NahG and *atg5*.NahG
159 plants. NahG is a bacterial enzyme that degrades salicylic acid, and its overexpression in
160 an *atg* mutant background inhibits the early senescence phenotype (Yoshimoto et al.,
161 2009). F1 etiolated seedlings from maternal *atg5*.NahG plants displayed shorter hypocotyls
162 than seedlings from maternal NahG plants, similar to F1 seedlings from maternal *atg*
163 mutant origin (Fig. 3f). This result suggests the phenotype observed for F1 seedlings from
164 maternal *atg* mutants is not a result of early senescence.

165 F1 seeds of maternal *atg* mutant plants display reduced storage protein but no difference
166 in lipid content

167 We next wished to test our hypothesis of reduced storage compounds in F1 seeds of
168 maternal *atg* mutant origin. As *Arabidopsis* is an oil seed, we performed lipidomics of dry
169 F1 seeds of reciprocal crosses between WT, *atg5-1*, or *atg7-2*. Though we annotated more

170 than 120 lipids, we did not observe any separation between the groups in the principal
171 component analysis (PCA – Fig. 4a). A closer look at TAG species revealed no significant
172 differences or apparent trends between F1 seeds of WT and *atg* mutant maternal origin
173 (Fig. 4b). These results are in line with previous works, demonstrating no reduction in the
174 total lipid content of *atg* mutant seeds compared to WT seeds (Minina et al., 2018 1218).

175 We then examined the total protein content of F1 seeds, as they are mostly composed of
176 storage proteins. We extracted total proteins of similar amounts (2mg) of F1 dry seeds.
177 Surprisingly, though no difference in the lipid content was observed, F1 seeds of maternal
178 autophagy-deficient origin contained lower total protein levels than the reciprocally-
179 crossed seeds. The difference was significant for the *atg7-2* crosses, and a similar trend
180 was observed for the *atg5-1* crosses (Fig. 5a). The results indicate that the protein content,
181 but not the lipid content of the seed, is affected by the mother plant, suggesting a possible
182 differential regulation of carbon and nitrogen allocation by autophagy in the mother plant.
183 To confirm our hypothesis, we analyzed the polar metabolites of dry F1 seeds by GC-MS.
184 We could detect 17 metabolites, yet we could not observe significant differences between
185 the reciprocally-crossed lines, including sucrose (Fig. S2). Unfortunately, we did not detect
186 free amino acids and thus could not determine the amounts of glutamine and asparagine in
187 the F1 seeds.

188 Previous work indicated that homozygous *atg* mutant seeds display altered storage protein
189 processing (Di Berardino et al., 2018). We, therefore, wanted to examine whether the
190 altered protein amounts in F1 seeds correlated with altered storage protein processing. To
191 that end, we performed Western blot analysis against 12S globulin using total proteins
192 extracted from equal seed quantity. Though we observed a general reduction in protein
193 amounts, we did not observe a change in the storage protein pattern (Fig. 5b). For example,
194 no accumulation of globulin precursor (P12S) was observed in F1 seeds, as previously
195 described for *atg5* mutants (Di Berardino et al., 2018). Our results indicate no difference
196 in protein processing in F1 seeds, suggesting that the altered storage-protein processing in
197 *atg* mutant seeds is due to a lack of autophagic activity in the embryo. This is in line with
198 the normal autophagy phenotype of F1 plants (Fi. 3a-c, Fig. S1c-e). We thus show that the
199 reduced protein quality of *atg* mutant seeds stems from a lack of autophagy in the source
200 tissues, while storage protein processing results from autophagy in the sink tissue.

201 F1 seeds of maternal *atg* mutant plants display faster germination rates stemming from
202 altered seed coat morphology

203 A typical phenotype of *atg* mutants is slightly delayed germination and seedling
204 establishment (Avin-Wittenberg et al., 2015). We wanted to determine whether this
205 phenotype stems from autophagy in the mother plant and thus tested germination and
206 seedling establishment rates. We expected no difference in germination or slightly slower
207 germination in the F1 seeds from maternal *atg* mutant origin. Surprisingly, increased
208 germination rates were observed for F1 progeny of *atg* mutant mother plants than WT
209 mother plants (Fig. 6a). No significant differences were seen in seedling establishment of
210 F1 seeds (Fig. 6b). We repeated the experiment for F1 seeds of reciprocally-crossed NahG
211 and *atg5*.NahG plants and received similar results, suggesting the phenotype is unrelated
212 to early senescence (Fig. S3).

213 We postulated the higher germination rate of F1 progeny of *atg* mutant mother plants
214 resulted from faster water penetration into the seed. We thus examined seed permeability
215 by tetrazolium chloride staining. Tetrazolium salts are amphipathic cations. After
216 penetrating the dead cells of the seed coat, they are reduced by active dehydrogenases
217 (NADH-dependent reductases) in the embryo to red-colored insoluble precipitates
218 composed of formazans (Berridge, 1996). The intensity of red coloration is directly
219 proportional to the permeability of the seeds. We stained dry F1 seeds for 24 and 48 hours.
220 As shown in Fig. 6c and d, F1 seeds of maternal *atg5-1* plants displayed significantly higher
221 water permeability than F1 seeds of maternal WT origin. A similar, albeit insignificant
222 trend, was observed for the *atg7-2* reciprocal crosses. Interestingly, we also observed
223 increased water permeability in homozygous *atg* mutant seeds, suggesting this phenotype
224 is ubiquitous in *atg* mutants (Fig. 6e).

225 As water permeability is influenced by the seed coat, which is of maternal origin (Marbach
226 and Mayer, 1974), we took a closer look at the seed coat of F1 seeds and their parental
227 lines. We first verified that *ATG5* and *ATG7* were expressed in the *Arabidopsis* seed coat.
228 A previous study performed detailed gene expression analysis in the seed coat at different
229 developmental stages (Dean et al., 2011); the data is available at the eFP browser
230 (https://bar.utoronto.ca/efp_seedcoat/cgi-bin/efpWeb.cgi)(Baxter et al., 2007). Both *ATG5*
231 and *ATG7* were expressed in the seed coat, starting from 3 days post-anthesis (Fig. S4),

232 strengthening our hypothesis that autophagy is functional in the seed coat during seed
233 development.

234 We then wished to characterize how seed-coat traits differed between WT and *atg* mutant
235 seeds. We first focused on the hilum, the scar left on the seed coat after detachment from
236 the funiculus. In mature *Arabidopsis* seeds, the hilum is adjacent to the micropyle (where
237 the radicle will emerge) and faces the chalazal pole (Beisson et al., 2007). The hilum
238 contains high levels of suberin, inhibiting the entrance of water and pathogens. We
239 compared the suberin levels of homozygous WT and *atg* mutant seeds by autofluorescence.
240 We did not observe any differences between the lines (Fig. S5a). We next examined the
241 integrity of the cuticle layer that wraps the embryo (Steinbrecher and Leubner-Metzger,
242 2018). We stained WT and *atg* mutant seeds with toluidine blue (TB), which stains the
243 layers underneath the cuticle when it is damaged. As a positive control, seeds were pre-
244 incubated with EDTA to perforate the coticule. We did not detect any differences between
245 the lines; none were stained, suggesting their cuticle was intact (Fig. S5b). The seed coat
246 contains phenols in many species, inhibiting water entrance (Werker et al., 1979). We
247 stained WT and *atg* mutant seeds with FeCl₃ to observe phenols. No genotype displayed
248 dark spots as expected in the presence of phenols (Fig. S5c).

249 Hydrated *Arabidopsis* seeds are coated by a gelatinous layer called mucilage, which is
250 mainly composed of cell wall polysaccharides (Voiniciuc et al., 2016). It is deposited in
251 the seed coat epidermal cells during seed development in a structure at the center of the
252 cell termed “columella”. The mucilage is maintained in the epidermal cells following cell
253 death and is released from the seed coat during imbibition (Griffiths and North, 2017).
254 Mucilage is rich in pectin, and its architecture can be visualized by ruthenium red (RR)
255 dye. When F1 seeds were dyed with RR staining, we found that seeds from maternal *atg5-*
256 *I* plants displayed lower mucilage content than their reciprocal F1 seeds. We observed a
257 similar trend for F1 seeds of WT and *atg7-2*, yet not statistically significant (Fig. 7a,b).
258 Adherent mucilage is partially anchored by cellulosic rays (Sullivan et al., 2011). We
259 performed calcofluor staining of F1 seeds to visualize mucilage rays. Seeds of maternal
260 *atg5-1* plants displayed higher ray density than their reciprocal F1 seeds. A similar trend
261 was observed for the *atg7-2* cross (Fig. 7c,d).

262 Finally, we assessed the general structure of F1 seeds and seed coat cells by scanning
263 electron microscopy (SEM). F1 progeny of maternal *atg* mutants displayed altered seed
264 shape compared to F1 seeds originating from WT mother plants, stemming from reduced
265 seed width (Fig. 8a-top panel,b). We also observed that the seed coat cells of F1 seeds from
266 *atg* mutant mother plants were misshapen (Fig. 8a-bottom panel). The columella of these
267 cells occupied more of the cell area than in seeds from WT mother plants. When we
268 quantified the ratio between the columella and total cell area, we observed a significantly
269 higher ratio for F1 seeds of maternal *atg7-2* plants than WT plants (Fig. 8c). A similar trend
270 was seen in F1 seeds of *atg5-1* and WT reciprocal crosses (Fig. S6). We thus postulate the
271 increased water permeability of maternal *atg* mutants stems from altered columella
272 development, leading to differential mucilage accumulation.

273 ***atg* mutants exhibit more rapid seed aging compared to WT plants**

274 The seed coat structure, as well as seed permeability, play a vital role in seed longevity and
275 aging (Zhou et al., 2019). We thus hypothesized that *atg* mutant seeds would be more
276 sensitive to seed aging. We performed artificial aging of WT and *atg* mutant seeds and
277 tested their germination ability following aging. Without aging, *atg* mutants displayed
278 slightly delayed germination, as previously described (Avin-Wittenberg et al., 2015).
279 Indeed, all lines were affected by seed aging, showing reduced germination after 10 weeks
280 of artificial aging. As expected, the germination of *atg* mutants was more strongly affected
281 by artificial aging than that of WT seeds. This observation strengthens the link between the
282 altered seed coat of *atg* mutants and seed longevity (Fig. 8d). We also scored seedling
283 development following 5 weeks of artificial aging (Boyes et al., 2001) to assess the longer-
284 term effects of seed aging. Artificial aging resulted in delayed development of all the lines.
285 Yet, *atg* mutants developed slower than WT seedlings, further strengthening our
286 assumption that their increased water permeability results in reduced seed longevity (Fig.
287 S7).

288 **Discussion**

289 Autophagy is gaining attention as a fundamental mechanism in plants, affecting
290 differentiation (Rodriguez et al., 2020), stress response (Tang and Bassham, 2021), and
291 nutrient availability and remobilization (Magen et al., 2022). However, the standard

292 approach to studying plant autophagy involves using ubiquitous knockout or knockdown
293 mutants. Though applicable in many cases, it may obscure our understanding of the
294 function of autophagy in specific tissues or time points, specifically when examining
295 source-sink relationships. *atg* mutant seeds display a plethora of phenotypes, from reduced
296 storage protein processing (Di Berardino et al., 2018) to altered C/N ratio (Guiboileau et
297 al., 2012). Yet, it was impossible to determine the tissue responsible for the phenotype
298 using the current system.

299 We implemented a novel approach to address this issue described above, performing
300 reciprocal crosses to separate autophagy in the mother plant and the embryo (Fig. 1). This
301 allowed us to determine the role of autophagy exclusively in the mother plant during seed
302 development. We used two well-studied *atg* mutants, *atg5-1* (Yoshimoto et al., 2009) and
303 *atg7-2* (Hofius et al., 2009), to come to general conclusions regarding autophagy function.
304 Although some phenotypes were significant only for one *atg* mutant line, the other line
305 used always showed a similar trend. This aligns with previous studies, in which the
306 phenotypes of different *atg* mutants were not always at the same degree of severity yet
307 displayed a similar trend (Barros et al., 2017; Minina et al., 2018).

308 The main challenge of our approach is the relatively small number of seeds we could
309 achieve by reciprocal crosses. We were thus unable to perform certain analyses requiring
310 larger material quantities, such as seed coat composition and metabolic flux analysis.
311 Generating transgenic plants in which autophagy is selectively downregulated either in the
312 embryo or the mother plant will allow conducting experiments on a larger scale as well as
313 investigate both sides of the “source-sink coin” concerning autophagy activity. In addition,
314 a transgenic system could be used to investigate the seed set phenotype of *atg* mutants,
315 which reciprocal crosses can not address. A recent example is a study examining autophagy
316 in root cap cells that used tissue-specific CRISPR to down-regulate autophagy specifically
317 in this tissue (Feng et al., 2022). Nevertheless, we believe our work lays the foundation for
318 the in-depth investigation of autophagy in discrete plant tissues and the relationship
319 between tissues.

320 We determined that F1 seeds displayed a WT carbon starvation phenotype when exposed
321 to dark treatment at the seedling stage, suggesting the autophagy mechanism is active in
322 F1 seedlings (Fig. 2a-c, S1c-e). In contrast, when we examined etiolated seedlings grown

323 without exogenous sugars, F1 seeds from maternal *atg* mutants displayed reduced growth
324 (Fig. 2d,e). These results suggest altered storage compound accumulation, depending on
325 the presence of autophagy in the mother plant. We observed no significant difference in
326 seed lipid content between F1 seeds (Fig. 3). This aligns with previously reported data, in
327 which homozygous *atg* mutant seeds did not display altered total fatty acid content.
328 Interestingly, the same paper showed that overexpression of *ATG5* or *ATG7* yielded higher
329 fatty acid content (Minina et al., 2018). This could stem from higher sink strength in the
330 mother plant, pushing carbon to the seeds, or increased demand by the embryo.
331 Unlike lipids, we observed reduced protein levels in F1 seeds of maternal *atg* mutant origin
332 (Fig. 4a). Previous studies showed that *atg* mutant plants remobilize less nitrogen from the
333 mother plant to developing seeds (Guiboileau et al., 2012; Li et al., 2015). Together with
334 our observations, this strengthens our hypothesis that the altered protein amounts in F1
335 seeds stem from differential remobilization from the mother plant. Surprisingly, carbon
336 remobilization (depicted by the lipid quantity) is less influenced by autophagy than
337 nitrogen remobilization (depicted by the protein quantity). Interestingly, we did not observe
338 any difference in storage protein processing, as described for *atg5* mutant seeds (Di
339 Berardino et al., 2018), suggesting that autophagy in the embryo functions in storage
340 protein processing. The involvement of autophagy in storage protein delivery in seeds has
341 been implied yet hardly investigated, and mostly in monocot, rather than dicot seeds
342 (Levanony et al., 1992; Reyes et al., 2011). More work is needed to elucidate the role of
343 autophagy in storage protein processing, and we believe downregulating autophagy
344 specifically in the embryo will shed light on this fascinating topic.
345 An important seed tissue we did not address in the scope of this research is the endosperm.
346 This is a triploid tissue that is partly maternal (2n) and partly paternal (1n) (Bentsink and
347 Koornneef, 2008). This uneven distribution creates a situation in which F1 seeds of
348 maternal WT plants possess more copies of *ATG* genes in their endosperm than F1 seeds
349 of maternal *atg* mutant origin (Fig. 1). We could not directly investigate this issue due to
350 the seed amount issue described above. We are unaware of studies examining the effect of
351 *ATG* gene copy number on plant autophagy activation. However, We did observe that F1
352 seedlings, containing a lower copy number of *ATG* genes, behaved similarly to WT plants
353 under carbon starvation (Fig. 2a-c, S1c-e), suggesting that one copy is sufficient for

354 autophagy activation. Nonetheless, we cannot disregard the contribution of the endosperm
355 to proper embryo growth and development (Song et al., 2021). Future studies are necessary
356 to investigate the function of autophagy in the seed endosperm, perhaps utilizing monocot
357 seeds that have a larger endosperm.

358 We were most surprised by the observation that F1 seeds of maternal *atg* mutant plants
359 exhibited faster germination compared to F1 seeds from maternal WT plants (Fig. 5a). This
360 was unexpected, as homozygous *atg* mutant seeds display delayed germination compared
361 to WT seeds (Avin-Wittenberg et al., 2015). Of note, the early germination phenotype does
362 not result from the early senescence phenotype of the *atg* mutant mother plant, as F1 seeds
363 of stay-green *atg* mutants displayed a similar phenotype (Fig. S3). We attributed this
364 phenotype to increased water permeability of F1 seeds of maternal *atg* mutant origin (Fig.
365 5c,d). Interestingly, homozygous *atg* mutant seeds also exhibited increased water
366 permeability, though they are known to germinate slightly slower than WT seeds (Avin-
367 Wittenberg et al., 2015). We postulate that the slower germination of homozygous *atg*
368 mutants is, in fact, a compound phenotype affected by the lack of autophagy in the seed
369 coat and the embryo. Examining the germination of seeds in which autophagy is selectively
370 downregulated in the embryo might help differentiate between the two options.

371 The reason for the increased water permeability of *atg* mutants is still unclear. Yet, we
372 could observe several differences in the seed coat of F1 seeds of maternal *atg* mutant origin,
373 specifically mucilage accumulation and columella shape (Fig. 6, Fig. 7a-c). More extensive
374 analysis of the seed coat of *atg* mutants is required to fully elucidate the causes of this
375 phenotype. One possibility is the involvement of autophagy in regulating the programmed
376 cell death of the seed coat cells (Sueldo and van der Hoorn, 2017), resulting in deformed
377 seed coat in *atg* mutants and improper deposition of mucilage. Our hypothesis is
378 strengthened by the fact both *ATG5* and *ATG7* are expressed in the *Arabidopsis* seed coat
379 from early stages of seed development (Fig. S4).

380 To conclude, our work presents a novel approach to dissecting the function of autophagy
381 in source and sink tissues and examining their effect at the whole plant level. We have
382 shown, for the first time, that the seed phenotype of *atg* mutants is a compound phenotype
383 resulting from the lack of autophagy in both the mother plant and the embryo. Moreover,
384 we implicated autophagy in the mother plant in nitrogen, but not carbon remobilization.

385 Our work highlights the importance of studying the role of autophagy in higher resolution
386 while keeping in mind the whole-plant context. We believe that the generation of plant
387 lines in which autophagy is down-regulated explicitly in space or time will prove to be a
388 valuable tool to achieve this goal.

389 **Materials and Methods**

390 Plant material and growth conditions

391 *Arabidopsis thaliana* ecotype Columbia (Col-0) was used in this study. The lines used were
392 *atg5-1* (SAIL_129B079) (Yoshimoto et al., 2009), *atg7-2* (GK-655B06) (Hofius et al.,
393 NahG over-expression (NahG) (Yoshimoto et al., 2009) and *atg5.NahG* (Yoshimoto
394 et al., 2009). Seeds were surface sterilized with Cl₂ for 2h and sown on Nitsch medium
395 (Duchefa) plates pH 5.8, with 1% sucrose. The seeds were imbibed at 4°C for 72h in the
396 dark. Plants were grown in a growth chamber (Fitoclima S600PLH, Aralab) at 22°C and
397 50% humidity in constant light (125 μmol photons m⁻² s⁻¹) for 2 weeks. They were then
398 transferred to pots containing Perlite: Vermiculite: Garden mix (1:1:2 v/v) and grown at
399 22°C under long-day conditions (8h dark / 16h light) with 150 μmol photons m⁻² s⁻¹.

400 Plant crosses and genotype validation

401 We conducted reciprocal crosses between Col-0 and *atg5-1* or *atg7-2*. Seeds were collected
402 20 days after the cross. PCR analyses were performed for genotype validation. DNA from
403 10 plants grown from crossed seeds was extracted for each cross (DellaPorta et al., 1983).
404 The *atg5-1* crosses were analyzed with *ATG5* forward primer
405 (ATTCACTTCCTCCTGGTGAAG), and either *ATG5* reverse primer for the WT allele
406 (TTGTGCCTGCAGGATAAGCG) or T-DNA left border for the mutant allele
407 (TAGCATCTGAATTCATAACCAATCTCGATACAC). The *atg7-2* crosses were
408 analyzed with *ATG7* forward primer (GATTCAATCAACTCGCTAAGGCGT), and either
409 *ATG7* reverse primer for the WT allele (TGCTAATTCCATGGATCCAAC) or T-DNA
410 left border for the mutant allele (CCCATTTGGACGTGAATGTAGACAC).
411 Reciprocal crosses between NahG and *atg5.NahG* were performed as well.

412

413 Embryo development

414 Siliques (5 from each genotype) were collected 8 and 12 days after flowering (DAF) and
415 opened. The seeds were discolored for 30min in Hoyer's Solution (7.5g gum arabic, 100g
416 chloral hydrate, 5ml glycerol, and 30ml water). Discolored seeds (40±5) were then placed
417 between a slide and coverslip and observed using a Nomarski objective (20x/0.50 DIC
418 M/N2) on an Eclipse 80i microscope (Nikon) coupled to a digital camera.

419 Carbon starvation and recovery

420 Reciprocally crossed seeds and seeds of the parental lines were sown on Nitsch plates
421 without exogenous sugars (24 plants per line per plate). After imbibition, the plants were
422 placed in a growth chamber for 2 weeks, covered by aluminum foil for 1 week, and exposed
423 to light for an additional week. The plates were photographed before and after carbon
424 starvation and following a week of recovery.

425 Hypocotyl length measurements

426 Reciprocally crossed seeds were sown on Nitsch plates without exogenous sugars.
427 Following imbibition, covered plates were transferred to a growth chamber, and the seeds
428 were grown vertically in dark conditions for 7 days. The plates were photographed, and
429 hypocotyl length was measured by ImageJ (Schneider et al., 2012)(15-40 seedlings per
430 line).

431 Metabolite extraction for lipidomics and GC-MS analysis

432 10 seeds from reciprocally crossed lines were weighed using the MX5 microbalance
433 (Mettler Toledo) as previously described (Bromke et al., 2015). Lipids and polar
434 metabolites were extracted from 4-8 biological replicates using the MTBE method (Salem
435 et al., 2016). The organic phase was dried and used for lipid analysis, and the polar phase
436 was dried and used for polar metabolite analysis.

437 Lipid analysis by liquid chromatography-mass spectrometry (LC-MS)

438 Vacuum-dried organic phases were processed using ultra-performance liquid
439 chromatography (on a C8 reverse-phase column) coupled with Fourier transform mass
440 spectrometry (Q exactive mass spectrometer; Thermo Fisher Scientific) in positive and
441 negative ionization modes. Processing of chromatograms, peak detection, and integration
442 were performed using REFINER MSH 10 (GeneData). Mass spectrometry data processing

443 included removing fragmentation information, isotopic peaks, and chemical noise.
444 Selected features were annotated using an in-house lipid database (Lapidot-Cohen et al.,
445 2020). More information can be found in Supplemental Table S1.

446 Polar metabolite analysis by gas-chromatography-mass spectrometry (GC-MS)

447 Vacuum-dried polar metabolites were measured by the Agilent 7200B GC/Q-TOF. The
448 injection and separation procedures were performed according to Dahtt *et al.* using the DB-
449 35MS column (Dhatt et al., 2019). Metabolite detection and annotation were performed by
450 Quant software (Agilent), according to an accurate mass library of known markers
451 generated by our group. More information can be found in Supplemental Table S2.
452 Following blank subtraction, the peak area of each metabolite was normalized to the
453 internal standard (i.e., ribitol) and the weight of the sample.

454 Total protein extraction, quantification, and immunoblotting

455 Seeds (2mg, three replicates for each line) were ground. Total proteins were extracted using
456 a protein extraction buffer [50mM pH 7.5 Tris-HCl, 3% SDS, 10% glycerol, 150mM NaCl,
457 1 × protease inhibitor (Roche), 20mM DTT], based on a previously described extraction
458 buffer (Di Berardino et al., 2018). After the addition of buffer and centrifugation for 15min
459 at 13,000g, supernatants were collected. Samples were incubated in SDS-PAGE sample
460 buffer (Laemmli, 1970) for 10min at 100°C.

461 Total protein content was measured based on Minamide and Bamburg method(Minamide
462 and Bamburg, 1990)with slight modifications. Bovine serum albumin (BSA) powder
463 dissolved in distilled water to a concentration of 10 mg/ml was used to generate a standard
464 curve, and a series of dilutions were made (0, 0.156, 0.312, 0.625, 1.25 and 2.5mg/ml). A
465 grid of 1.5x1.5 cm squares was drawn on a sheet of Whatman number 3 filter paper and
466 divided into 24 squares. 10µl of the standard curve dilutions and the total protein samples
467 were applied within the squares and stained in Coomassie brilliant blue (0.25% w/v in
468 destain solution: 50% methanol, 10% acetic acid, 40% DDW, Raymond A. Lamb) for 10
469 minutes.

470 The Whatman paper was destained with destain solution (50% methanol, 10% acetic acid,
471 40% distilled water) for 10 minutes and washed in water for 2 minutes. Samples were
472 transferred to a 24-well plate with 200µl DMSO in each well. The plate was mixed gently

473 for 10 minutes. 100 μ l of each sample was taken to a new 96-well plate in two technical
474 replicates, and the absorbance of the standard curve dilutions and samples were obtained
475 at 600 and 400 nm.

476 For immunoblotting, total proteins were separated by SDS-PAGE using Tris-Glycine
477 running buffer (Fling and Gregerson, 1986) and transferred to a polyvinylidene difluoride
478 membrane (GE Healthcare Life science), as previously described (Towbin et al., 1979).
479 Equal loading was validated using Coomassie Brilliant Blue staining of the membrane. For
480 immunodetection, 12S Globulin antibody (Agrisera; AS204403) was used in combination
481 with horseradish peroxidase-conjugated goat anti-rabbit antibody (Sigma; ab920).

482 Seed germination assay

483 Seeds were sown as described above on Nitsch plates without exogenous sugars (five plates
484 per line, 10-60 seeds from different siliques per plate). After imbibition, the plates were
485 transferred to a growth chamber, and the number of germinated seeds was counted every
486 day for 4 days. Germination was scored by radicle protrusion and seedling establishment
487 by the appearance of two green cotyledons. Germination percentage was calculated
488 accordingly.

489 Seed permeability staining

490 Dry seeds (five replicates of 20 seeds) of each genotype were placed in a 1.5ml
491 microcentrifuge tube. 1ml of 1% (w/v) aqueous solution of 2,3,5-triphenyltetrazolium
492 chloride (Sigma) was added to each tube as previously described (Vishwanath et al., 2014).
493 The tubes were incubated in an air incubator at 30°C in the dark for a period of 24 and 48
494 hours. After incubation, seeds (10 seeds of each genotype) were observed for changes in
495 seed color and imaged using a stereomicroscope.

496 The extraction of formazans was performed as previously described (Vishwanath et al.,
497 2014). After incubation, as mentioned above, seeds were washed twice with distilled water.
498 Then 1ml of 95% ethanol was added to the seeds, and the mix was ground using a mortar
499 and pestle. The ground seed material in ethanol solution was transferred to a
500 microcentrifuge tube, and the final volume was adjusted to 1ml with 95% ethanol. The
501 tubes were immediately centrifuged at 15,000xg for 3min. The supernatant was collected
502 into a spectrophotometer cuvette, and the absorbance of the formazan extracts was

503 measured at 485nm using a spectrophotometer. As the blank, 95% ethanol solution was
504 used.

505 **Seed coat visualization**

506 For seed coat visualization, mature seeds were pre-hydrated with water for 90min and then
507 stained as follows. Ruthenium Red staining for pectins was prepared as previously
508 described (Willats et al., 2001), and hydrated seeds were incubated in 0.01% (w/v)
509 Ruthenium Red (Sigma) for 90min at room temperature. Seeds were washed twice in water
510 and then photographed. Image analysis was performed by ImageJ (Schneider et al., 2012).
511 Calcofluor staining was conducted as previously described (Willats et al., 2001) using 25 μ g
512 ml⁻¹ calcofluor (Fluorescent Brightener 28, Sigma) for 20min at room temperature (5 seeds
513 for each genotype, cesa5 (SALK_118491) as a negative control). Seeds were washed for
514 2h in water and then photographed. Observations were conducted using the FV-1200
515 confocal microscope (Olympus), with a 10x/0.4 or 20x/0.75 objective microscope
516 equipped with 405nm (Excitation) and 430-470nm (Emission) laser diode. Image analysis
517 was performed by ImageJ (Schneider et al., 2012).

518 For seed coat autofluorescence, mature seeds of WT, *atg5-1*, and *atg7-2* were illuminated
519 and observed with an IX81 microscope (Olympus) using DAPI interference and absorption
520 filter (excitation filter, 350/50nm; emission filter, 460/50nm) coupled to a digital camera
521 (Li et al., 2007).

522 For phenol dyeing, green seeds (12-16 DAF) of WT, *atg5-1*, and *atg7-2* were incubated in
523 FeCl₃ solution (2% in 95% EtOH (Mace, 1963)) for 5min. 95% EtOH was used as A
524 negative control. For cuticle permeability, green seeds (12-16 DAF) of Col-0, *atg5-1*, and
525 *atg7-2* were hydrated for 10min. Hydrated seeds were incubated in an aqueous solution of
526 0.05% (w/v) Toluidine-Blue (Sigma) for 2 min and then washed with DDW twice (Mace,
527 1963). Hydration in 0.5% EDTA solution with three DDW washes was used as a positive
528 control.

529 **Scanning electron microscopy (SEM)**

530 Dry seeds were mounted on aluminum stubs (Electron Microscopy Sciences), sputter-
531 coated with 10nm of Au/Pd (5% Pd), and viewed using "Quanta 200", field emission
532 scanning electron microscope (Field Emission Instruments). 6 seeds were examined for

533 each genotype. Measurement of 15 epidermis cells from each seed was performed by
534 ImageJ (Schneider et al., 2012).

535 **Artificial seed aging**

536 Artificial aging was performed as previously described (Nguyen et al., 2012). 50mg of
537 seeds were stored above a saturated NaCl solution in a closed desiccator (relative humidity
538 of 75%) for 70 days. Germination assay was performed on aged and non-aged seeds as
539 described above. For developmental stage scoring, seeds were artificially aged for 35 days
540 and sown on Nitsch plates without exogenous sugars. The plants were grown as described
541 above for 14 days after imbibition. Seedling development was scored daily as previously
542 described (Boyes et al., 2001).

543 **Statistical analysis**

544 The experiments were conducted in a random blocks design with three to six biological
545 replicates of each genotype. Data were statistically examined using analysis of variance
546 and tested for significant (* = $p < 0.05$, ** = $p < 0.01$) differences using Student's *t-test* from
547 an algorithm embedded in Microsoft Excel. Heatmaps were generated using the
548 MultiExperiment Viewer (MeV) freely available software application (Howe et al., 2010).
549 Principle Component Analysis was performed using Metaboanalyst 5.0 (Chong et al.,
550 2019). Mixed model analysis was performed using Prism (GraphPad Software).

551 **Acknowledgments**

552 We thank Dr. Smadar Harpaz-Saad of the Hebrew University of Jerusalem for her
553 assistance with *Arabidopsis* seed coat analysis. We also thank Dr. Naomi Melamed-Book
554 from the microscopy core facility at The Hebrew University's Life Science core facility
555 for her technical support with confocal analysis and Dr. Evgenia Blayvas from the Hebrew
556 University's Unit for Nanoscience, for technical support with SEM.

557 **Author Contributions**

558 O.E. designed the research, performed research, analyzed data, and wrote the manuscript.
559 S.W., M.A-A, M.A., Y.S., W.J, L.R, and Y.B performed research and analyzed data. T.A-

560 W designed the research and wrote the manuscript. The project was funded by the Israeli
561 Science Foundation, grant number 1942/19.

562 **Competing interests**

563 The authors declare no competing interests.

564 **Data availability**

565 All data presented in the manuscript is available in the figures or supplementary material.

566 **Figure legends**

567 **Fig 1. Schematic representation of the experimental system.** Reciprocal crosses
568 between WT and *atg5-1* or *atg7-2* mutants were performed. The illustration denoted the
569 genetic makeup of the resulting F1 seeds as well as the mother plants.

570 **Fig. 2: F1 progeny of WT and *atg* mutants display normal development.** (a) F1 seeds
571 were collected at 8DAF and 12DAF, uncolored, and photographed. No aborted embryos
572 were observed. Representative image of 40±5 seeds examined. Scale bar=100µm. (b)
573 Weight of 10 F1 seeds. Data are presented as a box&whiskers plot. No significant
574 differences were observed (n=4-8).

575 **Fig. 3: F1 seedlings display a WT under carbon starvation and recovery, yet
576 differential growth as etiolated seedlings.** (a-c) Representative images of F1 progeny of
577 reciprocal crosses between WT and *atg5-1* and their respective parental lines. Seeds were
578 germinated and grown on Nitsch plated without exogenous sucrose for 14 days after
579 imbibition (a). The plants were incubated in the dark for additional 7 days (b). The plants
580 were then returned to light for another 7 days to examine their recovery (c). The experiment
581 was performed in triplicate. (d) Representative image of F1 progeny of reciprocal crosses
582 between WT and *atg5-1* or *atg7-2*. Seeds were sown on Nitsch plates without exogenous
583 sugars and grown in the dark for 7 days after imbibition. (e) Hypocotyl length of the lines
584 described in (d), as quantified by ImageJ. Data are presented as a box&whiskers plot. One
585 asterisk (p<0.05) or two asterisks (p<0.01) denote a significant difference following

586 Student's *t-test* (n=15-30). (f) Hypocotyl length of F1 progeny of reciprocal crosses
587 between NahG and *atg5*.NahG. Seeds were sown on Nitsch plates without exogenous
588 sugars, grown in the dark for 7 days after imbibition, and their hypocotyl length was
589 measured by ImageJ. Two asterisks (p<0.01) denote a significant difference following
590 Student's *t-test* (n=20-30).

591 **Fig. 4: Autophagy deficiency in the mother plant does not affect seed lipid content.**
592 Dry seeds of F1 progeny of reciprocal crosses between WT and *atg5-1* or *atg7-2* were
593 collected, and their lipid content was analyzed by UPLC-MS (n=4-8). Detailed results are
594 presented in Supplemental table S1. (a) PCA of lipid levels. (b). Heat map of log₂ of TAG
595 relative levels in comparison to seeds from maternal WT lines. No significant differences
596 between reciprocally crossed lines were identified by student's *t-test*.

597 **Fig. 5: Lack of autophagy in the mother plant alters total seed protein content but not**
598 **storage-protein processing.** Total proteins were extracted from similar amounts of dry
599 seeds of F1 progeny of reciprocal crosses between WT and *atg5-1* or *atg7-2*. (a) Total
600 protein quantification. Data are presented as average \pm SE. An asterisk denotes a significant
601 difference between reciprocally crossed lines in Student's *t-test* (p<0.05, n=3). (b) Total
602 proteins were separated by SDS-PAGE. Top panel – Western blot using anti-12S antibody.
603 Bottom panel – Coomassie blue stain. Three biological replicates were performed. P12S –
604 precursors of the 12S protein, α and β – 12S globulin subunits.

605 **Fig. 6: F1 seeds of maternal *atg* mutants exhibit faster germination and increased**
606 **permeability.** (a,b) F1 seeds of reciprocal crosses between WT and *atg* mutants were sown
607 on Nitsch plates without exogenous sucrose, imbibed for 72h, and transferred to continuous
608 light conditions. Germination (defined by radicle protrusion) and seedling establishment
609 (defined by the appearance of two green cotyledons) were scored each day for 4 days. (a)
610 Average percent germination is presented \pm SE. (b) Average percent of seedling
611 establishment is presented \pm SE. An asterisk denotes a significant difference between
612 reciprocally-crossed lines in Student's *t-test* (p<0.05, n=5). (c) Representative image of F1
613 seeds from reciprocal crosses after incubation for 24h (top panel) or 48h (bottom panel) in
614 tetrazolium chloride solution. Scale bar=0.5mm. (d, e) Quantification of tetrazolium

615 chloride staining, Stained seeds were ground and dissolved in 95% EtOH. absorption in
616 485nm was measured. Average absorption is presented \pm SE for F1 seeds (d) or
617 homozygous parental lines. One asterisk ($p<0.05$) or two asterisks ($p<0.01$) denote a
618 significant difference between reciprocally-crossed lines following Student's *t-test* ($n=5$).

619 **Fig. 7: Altered mucilage structure of maternal *atg* mutant F1 seeds.** (a,b) F1 seeds of
620 reciprocal crosses between WT and *atg* mutants were stained with ruthenium red solution.
621 (a) Representative images of F1 seeds from reciprocal crosses. Scale bar = 200 μ m. (b)
622 Quantification of mucilage area. Data are presented as a box&whiskers plot. One asterisk
623 denotes a significant difference following Student's *t-test* ($p<0.05$, $n=10$). (c,d) Calcofluor
624 staining for β -glucans of F1 seeds. (c) Representative images of whole-seed views (top
625 panel) and close-ups (bottom panel). Scale bars = 250 μ m (top panel) and 100 μ m (bottom
626 panel). (d) Quantification of ray density. Data are presented as a box&whiskers plot. One
627 asterisk denotes a significant difference between reciprocally-crossed lines following
628 Student's *t-test* ($p<0.05$, $n=3-4$).

629 **Fig. 8: Autophagy in the mother plants has a negative effect on seed shape and aging.**
630 (a) Scanning electron microscopy (SEM) of F1 seeds produced by reciprocal crosses
631 between WT and *atg* mutant plants. Top panel, scale bar = 100 μ m, bottom panel, scale bar
632 = 50 μ m. The columella tip is marked in purple, and the cell area is marked in yellow
633 (bottom panel). (b) Seed dimensions were measured by ImageJ. Data are presented as a
634 box&whiskers plot. One asterisk denotes a significant difference between reciprocally-
635 crossed lines following Student's *t-test* ($p<0.05$, $n=6$). (c) The ratio between the columella
636 and total cell area in individual F1 seeds of WT and *atg7-2* reciprocal crosses. Data are
637 presented as a box&whiskers plot, p-value denotes the statistical difference between the
638 seeds by mixed model analysis ($n=12-15$ cells per seed). (d) WT and *atg* mutant seeds
639 without artificial aging and following 10 weeks of artificial aging were sown on Nitsch
640 plates without exogenous sucrose, imbibed for 72h, and transferred to continuous light
641 conditions. Germination (defined by radicle protrusion) was scored each day for 4 days.
642 Average percent germination is presented \pm SE. One asterisk ($p<0.05$) or two asterisks
643 ($p<0.01$) denote a significant difference from WT at each time point following Student's
644 *t-test* ($n=5$, dark gray - *atg5-1*, light gray – *atg7-2*).

645 **Supporting information**

646 **Fig. S1: F1 seedlings of reciprocal crosses are heterozygous and display a WT**
647 **phenotype.** a,b: PCR analysis for DNA extracted from F1 seedlings (n=5 from different
648 siliques) and parental lines, with primers for the WT allele and T-DNA insertion. (a) atg5-
649 1, (b) atg7-2. c-e: Representative images of F1 progeny of reciprocal crosses between WT
650 and atg7-2 and their respective parental lines. Seeds were germinated and grown on Nitsch
651 plated without exogenous sucrose for 14 days after imbibition (c). The plants were
652 incubated in the dark for additional 7 days (d). The plants were then returned to light for
653 another 7 days to examine their recovery (e). The experiment was performed in triplicate.

654 **Fig. S2: No difference between F1 seeds in primary metabolites.** Dry seeds of F1
655 progeny of reciprocal crosses between WT and *atg5-1* or *atg7-2* were collected, and their
656 polar metabolite content was analyzed by GC-MS (n=4-8). Detailed results are presented
657 in Supplemental Data Set S2. (a) PCA of metabolite levels. (b). Heat map of log2 of
658 metabolite relative levels in comparison to seeds from maternal WT lines. An asterisk
659 denotes a significant difference between reciprocally crossed lines by Student's *t-test*
660 (p<0.05).

661 **Fig. S3: The early germination of maternal *atg* mutant seedlings is not salicylic acid-
662 dependent.** (a,b) F1 seeds of reciprocal crosses between NahG and *atg5*.NahG mutants
663 were sown on Nitsch plates without exogenous sucrose, imbibed for 72h, and transferred
664 to continuous light conditions. Germination (defined by radicle protrusion) and seedling
665 establishment (defined by the appearance of two green cotyledons) were scored each day
666 for 4 days. (a) Average percent germination is presented \pm SE. (b) Average percent of
667 seedling establishment is presented \pm SE. An asterisk denotes a significant difference in
668 Student's *t-test* (p<0.05, n=5).

669 **Fig. S4: ATG5 and ATG7 are expressed in the seed coat during seed development.**
670 ATG5 (At5g17290 – left panel) and ATG7 (At5g45900 – right panel) gene expression in
671 Arabidopsis Col-2 seed coat as measured by Dean *et al.* (2011). Seed coat was sampled at

672 3,7 and 11 days post-anthesis (DPA), and RNA was analyzed by microarray analysis. Data
673 were extracted from the Arabidopsis seed coat eFP browser.

674 **Fig. S5: No difference between WT and *atg* mutant seeds in several biochemical**
675 **factors affecting water permeability.** (a) Seed coat autofluorescence was visualized using
676 DAPI filter. All genotypes show saturation in the hilum region (designated by yellow
677 arrowheads) because of high Suberin content. 30-50 seeds per genotype were examined.
678 Scale bar=200 μ m. (b) TB staining for cuticle permeability. No genotype shows blue
679 staining as the positive control (pre-incubation in 0.5% EDTA solution). 5 siliques were
680 examined per genotype. Scale bar=0.5mm. (c) FeCl3 staining for phenols. No genotype
681 shows dark spots predicted to appear in the presence of phenols. Negative control with
682 DDW. 5 siliques were examined per genotype. Scale bar=0.5mm.

683 **Fig. S6: Autophagy in the mother plant has a negative effect columella/cell area ratio.**
684 The ratio between the columella and total cell area in individual F1 seeds of WT and *atg5-*
685 *1* reciprocal crosses. Data are presented as a box&whiskers plot, p-value denotes the
686 statistical difference between the seeds by mixed model analysis (n=12-15 cells per seed).

687 **Fig. S7: Artificial aging affects seedling development of *atg* mutants.** WT and *atg*
688 mutant seeds without artificial aging and following 5 weeks of artificial aging were sown
689 on Nitsch plates without exogenous sucrose, imbibed for 72h, and transferred to continuous
690 light conditions. Growth stage progression was scored for seedlings grown vertically. Data
691 represent average \pm SE (n35). Asterisk indicates significant differences from WT in each
692 aging time (Student's t test; p<0.05).

693 **Supplemental Table S1:** Relative lipid content of reciprocally crossed *Arabidopsis*
694 *thaliana* F1 seeds.

695 **Supplemental Table S2:** Relative polar metabolite content of reciprocally crossed
696 *Arabidopsis thaliana* F1 seeds.

697

698 **References**

699 **Avin-Wittenberg T, Bajdzenko K, Wittenberg G, Alseekh S, Tohge T, Bock R, Giavalisco P, Fernie AR** (2015) Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in *Arabidopsis* seedlings under carbon starvation. *Plant Cell* **23**:306-322 :7

700 **Avin-Wittenberg T, Baluška F, Bozhkov PV, Elander PH, Fernie AR, Galili G, Hassan A, Hofius D, Isono E, Le Bars R, Masclaux-Daubresse C, Minina EA, Peled-Zehavi H, Coll NS, Sandalio LM, Satiat-Jeunemaitre B, Sirko A, Testillano PS, Batoko H, Hawes C** (2018) Autophagy-related approaches for improving nutrient use efficiency and crop yield protection. *Journal of Experimental Botany* **69**: 1335-1353

701 **Avin-Wittenberg T, Honig A, Galili G** (2012) Variations on a theme: plant autophagy in comparison to yeast and mammals. *Protoplasma* **249**: 285-299

702 **Barros J, Magen S, Lapidot-Cohen T, Rosental L, Brotman Y, Araújo W, Avin-Wittenberg T** (2021) Autophagy is required for lipid homeostasis during dark-induced senescence. *Plant Physiology* **185**: 1542-1558

703 **Barros JAS, Cavalcanti JHF, Medeiros DB, Nunes-Nesi A, Avin-Wittenberg T, Fernie AR, Araújo WL** (2017) Autophagy Deficiency Compromises Alternative Pathways of Respiration following Energy Deprivation in *Arabidopsis thaliana*. *Plant Physiology* **175**: 62-76

704 **Bassham DC** (2009) Function and regulation of macroautophagy in plants. *Biochim Biophys Acta* **1793**: 1397-1403

705 **Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K** (2006) Autophagy in development and stress responses of plants. *Autophagy* **2**: 2-11

706 **Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L** (2008) Storage reserve accumulation in *Arabidopsis*: metabolic and developmental control of seed filling. *Arabidopsis Book* **6**: e0113

707 **Baxter I, Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ** (2007) An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. *PLoS ONE* **2**: e718

708 **Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB** (2007) The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of *Arabidopsis*. *The Plant Cell* **19**: 351-368

709 **Bentsink L, Koornneef M** (2008) Seed Dormancy and Germination. *The Arabidopsis Book* **6**: e0119

710 **Berridge MV, Tan, A. S., McCoy, K. D. , Wang, R.** (1996) The Biochemical and Cellular Basis of Cell Proliferation Assays That Use Tetrazolium Salts. *Biochemica* **4**: 15-19

711 **Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlich J** (2001) Growth Stage-Based Phenotypic Analysis of *Arabidopsis*. *The Plant Cell* **13**: 1499-1510

712 **Bromke MA, Hochmuth A, Tohge T, Fernie AR, Giavalisco P, Burgos A, Willmitzer L, Brotman Y** (2015) Liquid chromatography high-resolution mass spectrometry for fatty acid profiling. *Plant J* **81**: 529-536

743 **Cernac A, Benning C** (2004) WRINKLED1 encodes an AP2/EREB domain protein
744 involved in the control of storage compound biosynthesis in *Arabidopsis*. *The Plant*
745 *Journal* **40**: 575-585

746 **Chong J, Wishart DS, Xia J** (2019) Using MetaboAnalyst 4.0 for Comprehensive and
747 Integrative Metabolomics Data Analysis. *Current Protocols in Bioinformatics* **68**

748 **Chung T, Suttangkakul A, Vierstra RD** (2009) The ATG autophagic conjugation system
749 in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated
750 by development and nutrient availability. *Plant Physiology* **149**: 220-234

751 **Dean G, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A, White R, Selvaraj G, Datla**
752 **R, Haughn G** (2011) Analysis of Gene Expression Patterns during Seed Coat
753 Development in *Arabidopsis*. *Molecular Plant* **4**: 1074-1091

754 **Dellaporta SL, Wood J, Hicks JB** (1983) A plant DNA minipreparation: Version II. *Plant*
755 *Molecular Biology Reporter* **1**: 19-21

756 **Dhatt BK, Abshire N, Paul P, Hasanthika K, Sandhu J, Zhang Q, Obata T, Walia H**
757 (2019) Metabolic Dynamics of Developing Rice Seeds Under High Night-Time
758 Temperature Stress. *Front Plant Sci* **10**: 1443

759 **Di Berardino J, Marmagne A, Berger A, Yoshimoto K, Cueff G, Chardon F,**
760 **Masclaux-Daubresse C, Reisdorf-Cren M, Bozhkov P** (2018) Autophagy
761 controls resource allocation and protein storage accumulation in *Arabidopsis* seeds.
762 *Journal of Experimental Botany* **69**: 1403-1414

763 **Distelfeld A, Avni R, Fischer AM** (2014) Senescence, nutrient remobilization, and yield
764 in wheat and barley. *Journal of Experimental Botany* **65**: 3783-3798

765 **Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD** (2002) The
766 APG8/12-activating enzyme APG7 is required for proper nutrient recycling and
767 senescence in *Arabidopsis thaliana*. *J Biol Chem* **277**: 33105-33114

768 **Dourmap C, Marmagne A, Lebreton S, Clément G, Guivarc'h A, Savouré A,**
769 **Masclaux-Daubresse C, Xu G** (2023) Carbon and nitrogen remobilization during
770 seed filling in *Arabidopsis* is strongly impaired in the pyrrole-5-carboxylate
771 dehydrogenase mutant. *Journal of Experimental Botany* **74**: 1489-1500

772 **Feng Q, De Rycke R, Dagdas Y, Nowack MK** (2022) Autophagy promotes programmed
773 cell death and corpse clearance in specific cell types of the *Arabidopsis* root cap.
774 *Current Biology* **32**: 2110-2119.e2113

775 **Fling SP, Gregerson DS** (1986) Peptide and protein molecular weight determination by
776 electrophoresis using a high-molarity tris buffer system without urea. *Anal*
777 *Biochem* **155**: 83-88

778 **Griffiths JS, North HM** (2017) Sticking to cellulose: exploiting *Arabidopsis* seed coat
779 mucilage to understand cellulose biosynthesis and cell wall polysaccharide
780 interactions. *New Phytologist* **214**: 959-966

781 **Guiboileau A, Yoshimoto K, Soulay F, Bataille MP, Avice JC, Masclaux-Daubresse**
782 **C** (2012) Autophagy machinery controls nitrogen remobilization at the whole-plant
783 level under both limiting and ample nitrate conditions in *Arabidopsis*. *New Phytol*
784 **194**: 732-740

785 **Hirota T, Izumi M, Wada S, Makino A, Ishida H** (2018) Vacuolar Protein Degradation
786 via Autophagy Provides Substrates to Amino Acid Catabolic Pathways as an
787 Adaptive Response to Sugar Starvation in *Arabidopsis thaliana*. *Plant and Cell*
788 *Physiology* **59**: 1363-1376

789 **Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O,**
790 **Jorgensen LB, Jones JD, Mundy J, Petersen M** (2009) Autophagic components
791 contribute to hypersensitive cell death in *Arabidopsis*. *Cell* **137**: 773-783

792 **Howe E, Holton K, Nair S, Schlauch D, Sinha R, Quackenbush J** (2010) MeV:
793 MultiExperiment Viewer. *In* *Biomedical Informatics for Cancer Research*, pp 267-
794 277

795 **Kurusu T, Koyano T, Hanamata S, Kubo T, Noguchi Y, Yagi C, Nagata N, Yamamoto**
796 **T, Ohnishi T, Okazaki Y, Kitahata N, Ando D, Ishikawa M, Wada S, Miyao**
797 **A, Hirochika H, Shimada H, Makino A, Saito K, Ishida H, Kinoshita T, Kurata**
798 **N, Kuchitsu K** (2014) OsATG7 is required for autophagy-dependent lipid
799 metabolism in rice postmeiotic anther development. *Autophagy* **10**: 878-888

800 **Laemmli UK** (1970) Cleavage of structural proteins during the assembly of the head of
801 bacteriophage T4. *Nature* **227**: 680-685

802 **Lapidot-Cohen T, Rosental L, Brotman Y** (2020) Liquid Chromatography-Mass
803 Spectrometry (LC-MS)-Based Analysis for Lipophilic Compound Profiling in
804 Plants. *Curr Protoc Plant Biol* **5**: e20109

805 **Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N,**
806 **Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M,**
807 **Girousse C, Lemonnier P, Parrilla J, Durand M** (2013) Source-to-sink transport
808 of sugar and regulation by environmental factors. *Frontiers in Plant Science* **4**

809 **Levanony H, Rubin R, Altschuler Y, Galili G** (1992) Evidence for a novel route of wheat
810 storage proteins to vacuoles. *J Cell Biol* **119**: 1117-1128

811 **Li F, Chung T, Pennington JG, Federico ML, Kaepller HF, Kaepller SM, Otegui**
812 **MS, Vierstra RD** (2015) Autophagic recycling plays a central role in maize
813 nitrogen remobilization. *Plant Cell* **27**: 1389-1408

814 **Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J** (2007) Identification of
815 acyltransferases required for cutin biosynthesis and production of cutin with
816 suberin-like monomers. *Proc Natl Acad Sci U S A* **104**: 18339-18344

817 **Liu Y, Bassham DC** (2012) Autophagy: pathways for self-eating in plant cells. *Annu Rev*
818 *Plant Biol* **63**: 215-237

819 **Lobell DB, Schlenker W, Costa-Roberts J** (2011) Climate Trends and Global Crop
820 Production Since 1980. *Science* **333**: 616-620

821 **Mace ME** (1963) Histochemical Localization of Phenols in Healthy and Diseased Banana
822 Roots. *Physiologia Plantarum* **16**: 915-925

823 **Magen S, Seybold H, Laloum D, Avin-Wittenberg T** (2022) Metabolism and autophagy
824 in plants—a perfect match. *FEBS Letters* **596**: 2133-2151

825 **Marbach I, Mayer AM** (1974) Permeability of Seed Coats to Water as Related to Drying
826 Conditions and Metabolism of Phenolics. *Plant Physiology* **54**: 817-820

827 **Marshall RS, Vierstra RD** (2018) Autophagy: The Master of Bulk and Selective
828 Recycling. *Annual Review of Plant Biology* **69**: 173-208

829 **Masclaux-Daubresse C, Clement G, Anne P, Routaboul JM, Guiboileau A, Soulay F,**
830 **Shirasu K, Yoshimoto K** (2014) Stitching together the Multiple Dimensions of
831 Autophagy Using Metabolomics and Transcriptomics Reveals Impacts on
832 Metabolism, Development, and Plant Responses to the Environment in
833 *Arabidopsis*. *Plant Cell* **26**: 1857-1877

834 **McLoughlin F, Augustine RC, Marshall RS, Li F, Kirkpatrick LD, Otegui MS,**
835 **Vierstra RD** (2018) Maize multi-omics reveal roles for autophagic recycling in
836 proteome remodelling and lipid turnover. *Nat Plants* **4**: 1056-1070

837 **McLoughlin F, Marshall RS, Ding X, Chatt EC, Kirkpatrick LD, Augustine RC, Li**
838 **F, Otegui MS, Vierstra RD** (2020) Autophagy Plays Prominent Roles in Amino
839 Acid, Nucleotide, and Carbohydrate Metabolism during Fixed-Carbon Starvation
840 in Maize. *The Plant Cell* **32**: 2699-2724

841 **Minamide LS, Bamburg JR** (1990) A filter paper dye-binding assay for quantitative
842 determination of protein without interference from reducing agents or detergents.
843 *Anal Biochem* **190**: 66-70

844 **Minina EA, Moschou PN, Vetukuri RR, Sanchez-Vera V, Cardoso C, Liu Q, Elander**
845 **PH, Dalman K, Beganovic M, Yilmaz JL, Marmon S, Shabala L, Suarez MF,**
846 **Ljung K, Novak O, Shabala S, Stymne S, Hofius D, Bozhkov PV** (2018)
847 Transcriptional stimulation of rate-limiting components of the autophagic pathway
848 improves plant fitness. *J Exp Bot* **69**:1415-1432

849 **Nguyen T-P, Keizer P, van Eeuwijk F, Smeekens S, Bentsink L** (2012) Natural
850 Variation for Seed Longevity and Seed Dormancy Are Negatively Correlated in
851 *Arabidopsis*. *Plant Physiology* **160**: 2083-2092

852 **Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson**
853 **MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Parry MAJ,**
854 **Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, van Wijk KJ,**
855 **Vermaas WFJ, von Caemmerer S, Weber APM, Yeates TO, Yuan JS, Zhu XG**
856 (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy
857 demand. *Proceedings of the National Academy of Sciences* **112**: 8529-8536

858 **Osorio S, Ruan Y-L, Fernie AR** (2014) An update on source-to-sink carbon partitioning
859 in tomato. *Frontiers in Plant Science* **5**

860 **Reumann S, Voitsekhovskaja O, Lillo C** (2010) From signal transduction to autophagy
861 of plant cell organelles: lessons from yeast and mammals and plant-specific
862 features. *Protoplasma* **247**: 233-256

863 **Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS** (2011) Delivery of
864 prolamins to the protein storage vacuole in maize aleurone cells. *Plant Cell* **23**: 769-
865 784

866 **Rodriguez E, Chevalier J, Olsen J, Ansbøl J, Kapousidou V, Zuo Z, Svenning S,**
867 **Loefke C, Koameda S, Drozdowskyj PS, Jez J, Durnberger G, Kuenzl F,**
868 **Schutzbier M, Mechtler K, Ebstrup EN, Lolle S, Dagdas Y, Petersen M** (2020)
869 Autophagy mediates temporary reprogramming and dedifferentiation in plant
870 somatic cells. *The EMBO Journal* **39**

871 **Ryter SW, Cloonan SM, Choi AM** (2013) Autophagy: a critical regulator of cellular
872 metabolism and homeostasis. *Mol Cells* **36**: 7-16

873 **Salem MA, Juppner J, Bajdzenko K, Giavalisco P** (2016) Protocol: a fast,
874 comprehensive and reproducible one-step extraction method for the rapid
875 preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell
876 wall polymers from a single sample. *Plant Methods* **12**: 45

877 **Schneider CA, Rasband WS, Eliceiri KW** (2012) NIH Image to ImageJ 25 :years of
878 image analysis. *Nat Methods* **9**: 671-675

879 **Song J, Xie X, Cui Y, Zou J** (2021) Endosperm-Embryo Communications: Recent
880 Advances and Perspectives. *Plants (Basel)* **10**

881 **Sonnewald U, Fernie AR** (2018) Next-generation strategies for understanding and
882 influencing source–sink relations in crop plants. *Current Opinion in Plant Biology*
883 **43**: 63-70

884 **Sreenivasulu N, Wobus U** (2013) Seed-development programs: a systems biology-based
885 comparison between dicots and monocots. *Annu Rev Plant Biol* **64**: 189-217

886 **Steinbrecher T, Leubner-Metzger G** (2018) Tissue and cellular mechanics of seeds.
887 *Current Opinion in Genetics & Development* **51**: 1-10

888 **Suelo DJ, van der Hoorn RAL** (2017) Plant life needs cell death, but does plant cell
889 death need Cys proteases? *FEBS J* **284**: 1577-1585

890 **Sullivan S, Ralet M-C, Berger A, Diatloff E, Bischoff V, Gonneau M, Marion-Poll A,**
891 **North HM** (2011) CESA5 Is Required for the Synthesis of Cellulose with a Role
892 in Structuring the Adherent Mucilage of *Arabidopsis* Seeds. *Plant Physiology* **156**:
893 1725-1739

894 **Tang J, Bassham DC** (2021) Autophagy during drought: function, regulation, and
895 potential application. *The Plant Journal* **109**: 390-401

896 **Tegeder M, Masclaux-Daubresse C** (2018) Source and sink mechanisms of nitrogen
897 transport and use. *New Phytologist* **217**: 35-53

898 **Towbin H, Staehelin T, Gordon J** (1979) Electrophoretic transfer of proteins from
899 polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc
900 Natl Acad Sci U S A* **76**: 4350-4354

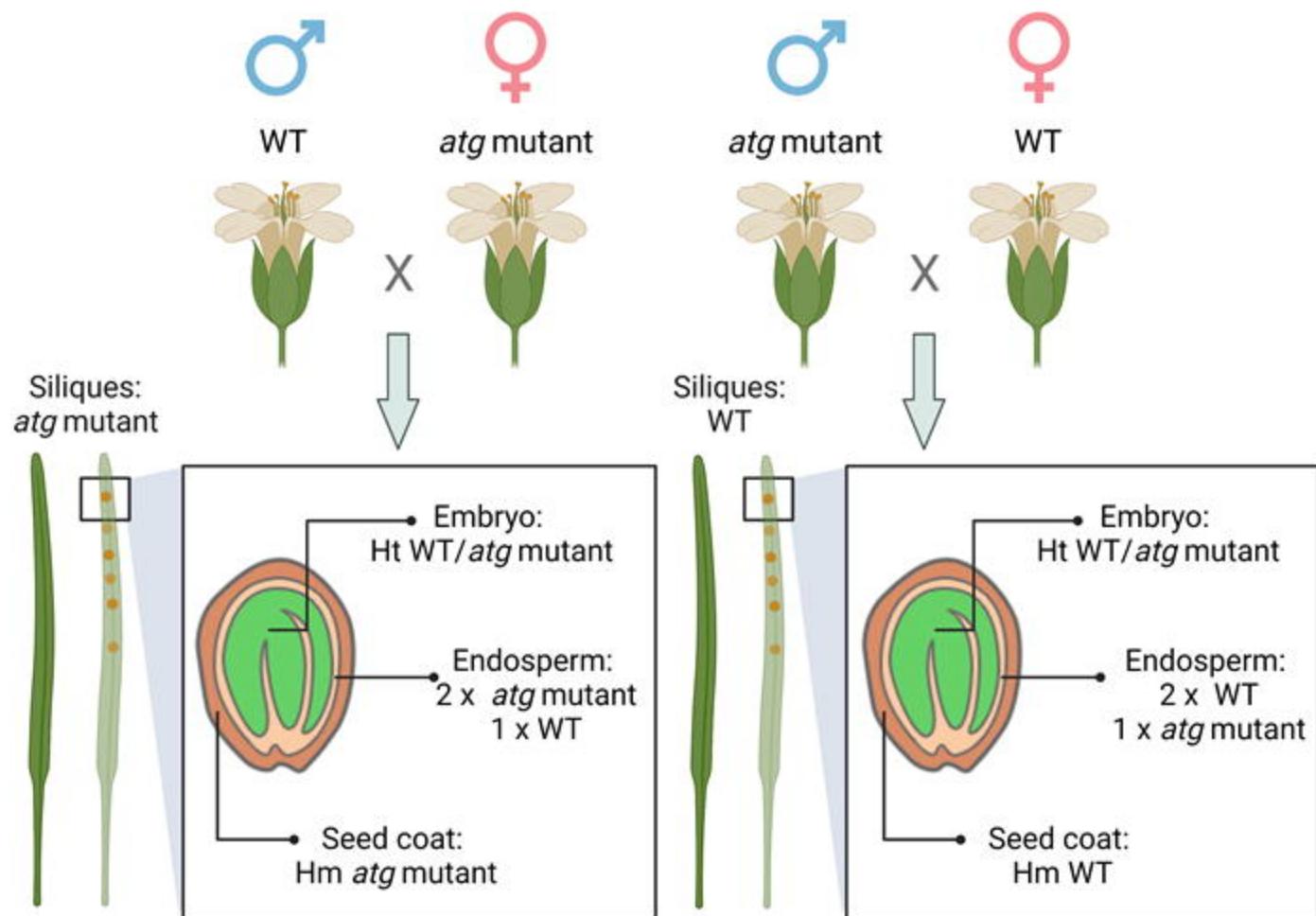
901 **Vishwanath SJ, Domergue F, Rowland O** (2014) Seed coat permeability test: tetrazolium
902 penetration assay. *Bio-protocol* **4**: e1173-e1173

903 **Voiniciuc C, Zimmermann E, Schmidt MH-W, Günl M, Fu L, North HM, Usadel B**
904 (2016) Extensive Natural Variation in *Arabidopsis* Seed Mucilage Structure.
905 *Frontiers in Plant Science* **7**

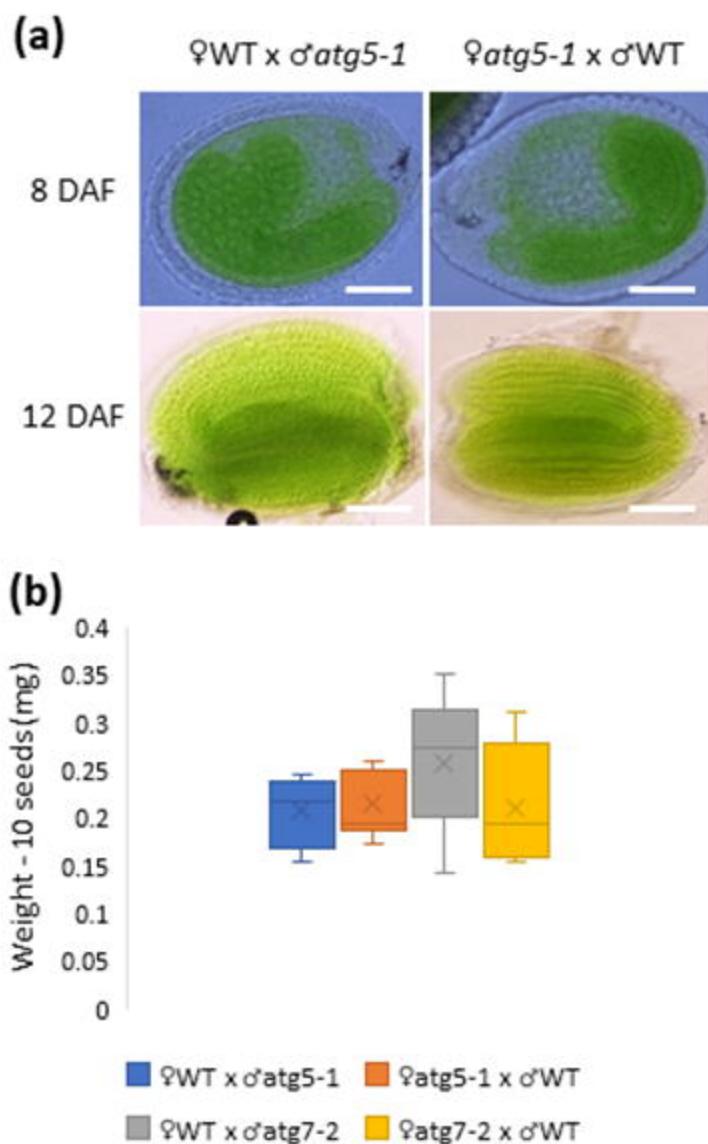
906 **Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S,**
907 **Yamaya T, Kuchitsu K, Makino A, Ishida H** (2015) Autophagy supports biomass
908 production and nitrogen use efficiency at the vegetative stage in rice. *Plant Physiol*
909 **168**: 60-73

910 **Werker E, Marbach I, Mayer AM** (1979) Relation Between the Anatomy of the Testa,
911 Water Permeability and the Presence of Phenolics in the Genus *Pisum*. *Annals of
912 Botany* **43**: 765-771

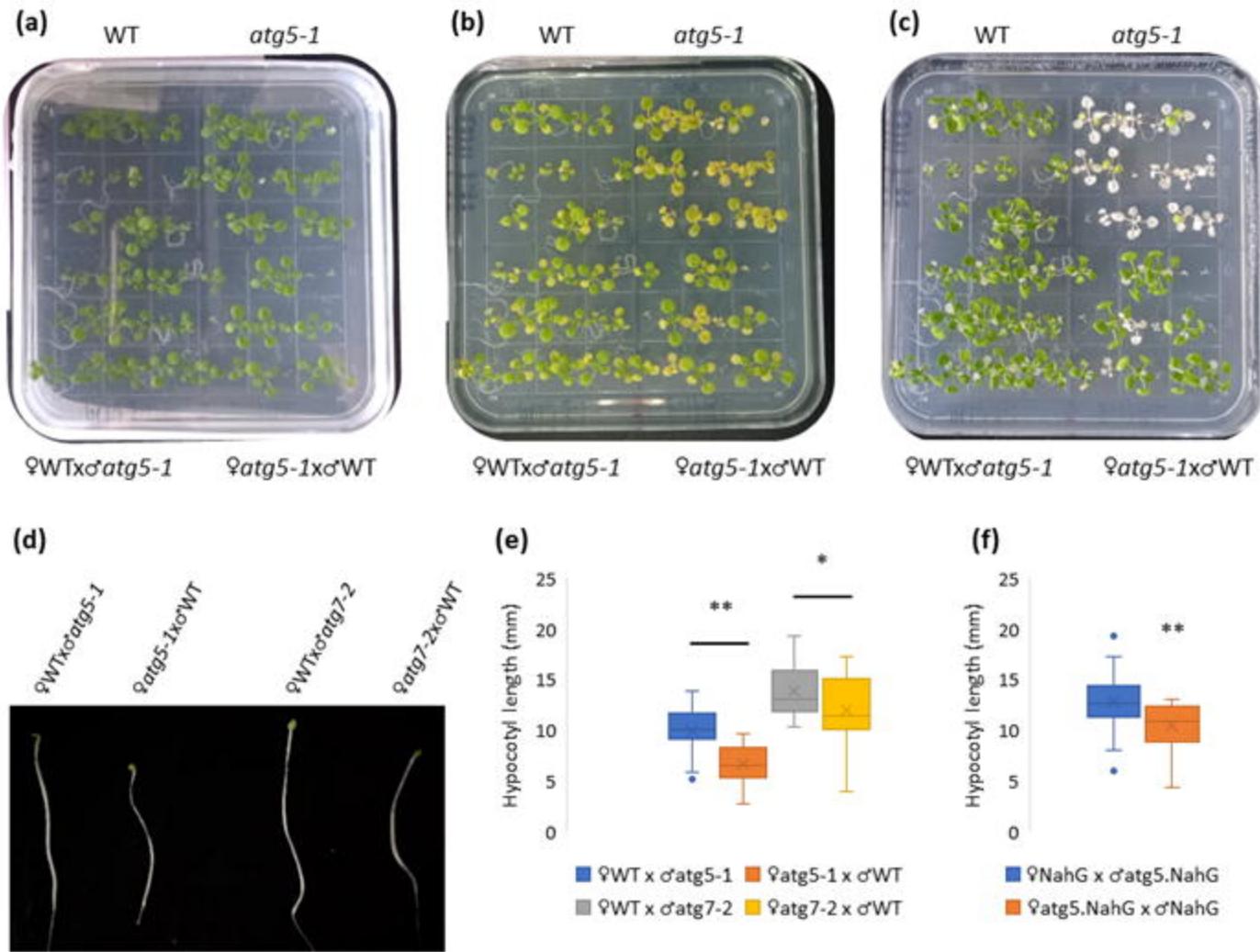
913 **Willats WG, McCartney L, Knox JP** (2001) In-situ analysis of pectic polysaccharides in
914 seed mucilage and at the root surface of *Arabidopsis thaliana*. *Planta* **213**: 37-44

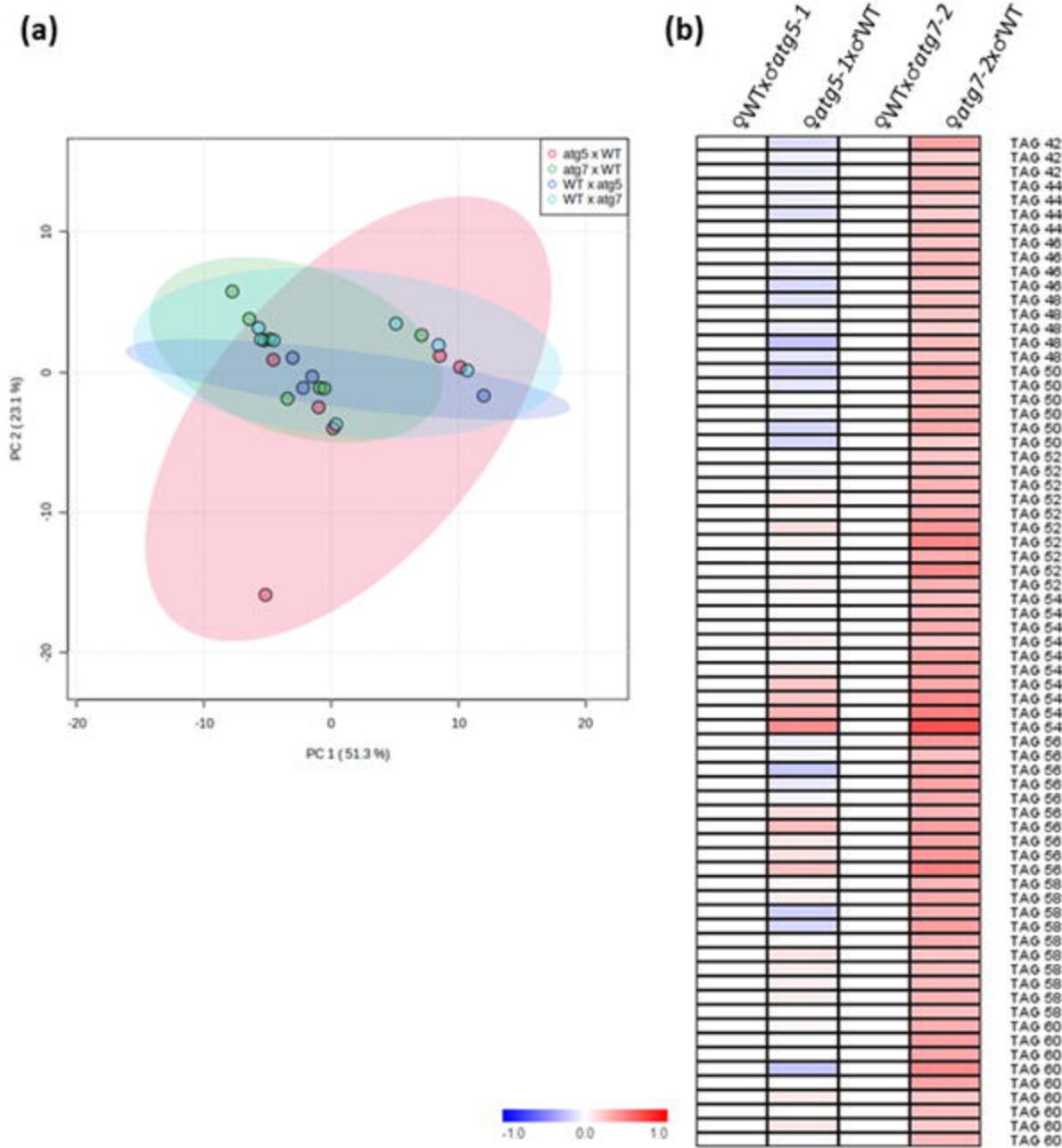

915 **Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi
916 Y, Shirasu K** (2009) Autophagy negatively regulates cell death by controlling
917 NPR1-dependent salicylic acid signaling during senescence and the innate immune
918 response in *Arabidopsis*. *Plant Cell* **21**: 2914-2927

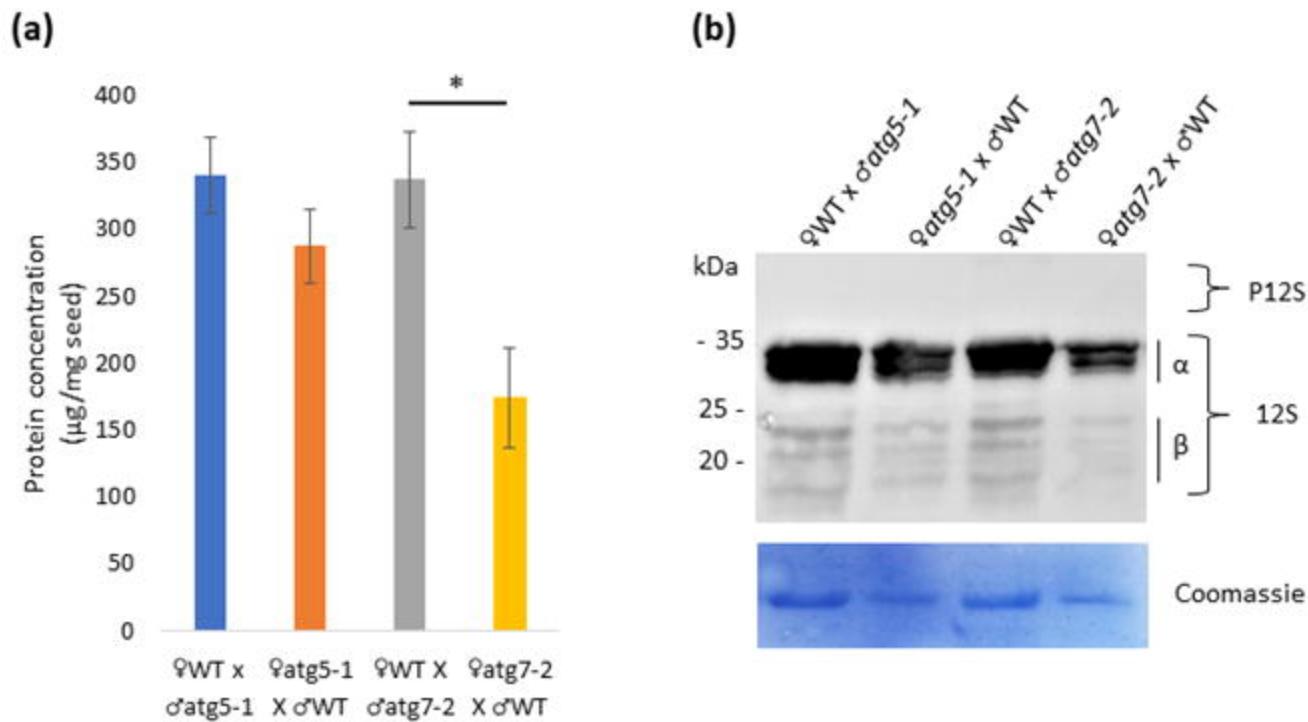
919 **Yoshimoto K, Shibata M, Kondo M, Oikawa K, Sato M, Toyooka K, Shirasu K,
920 Nishimura M, Ohsumi Y** (2014) Organ-specific quality control of plant
921 peroxisomes is mediated by autophagy. *J Cell Sci* **127**: 1161-1168


922 **Zhou J, Wang J, Yu JQ, Chen Z** (2014) Role and regulation of autophagy in heat stress
923 responses of tomato plants. *Front Plant Sci* **5**: 174

924 Zhou W, Chen F, Luo X, Dai Y, Yang Y, Zheng C, Yang W, Shu K (2019) A matter of
925 life and death: Molecular, physiological, and environmental regulation of seed
926 longevity. *Plant, Cell & Environment* **43**: 293-302


927


Fig 1. Schematic representation of the experimental system. Reciprocal crosses between WT and *atg*⁵⁻¹ or *atg*⁷⁻² mutants were performed. The illustration denotes the genetic makeup of the resulting F1 seeds as well as the mother plants.


Fig. 2: F1 progeny of WT and *atg* mutants display normal development. (a) F1 seeds were collected at 8DAF and 12DAF, uncolored, and photographed. No aborted embryos were observed. Representative image of 40±5 seeds examined. Scale bar=100 μ m. (b) Weight of 10 F1 seeds. Data are presented as a box&whiskers plot. No significant differences were observed (n=4-8).

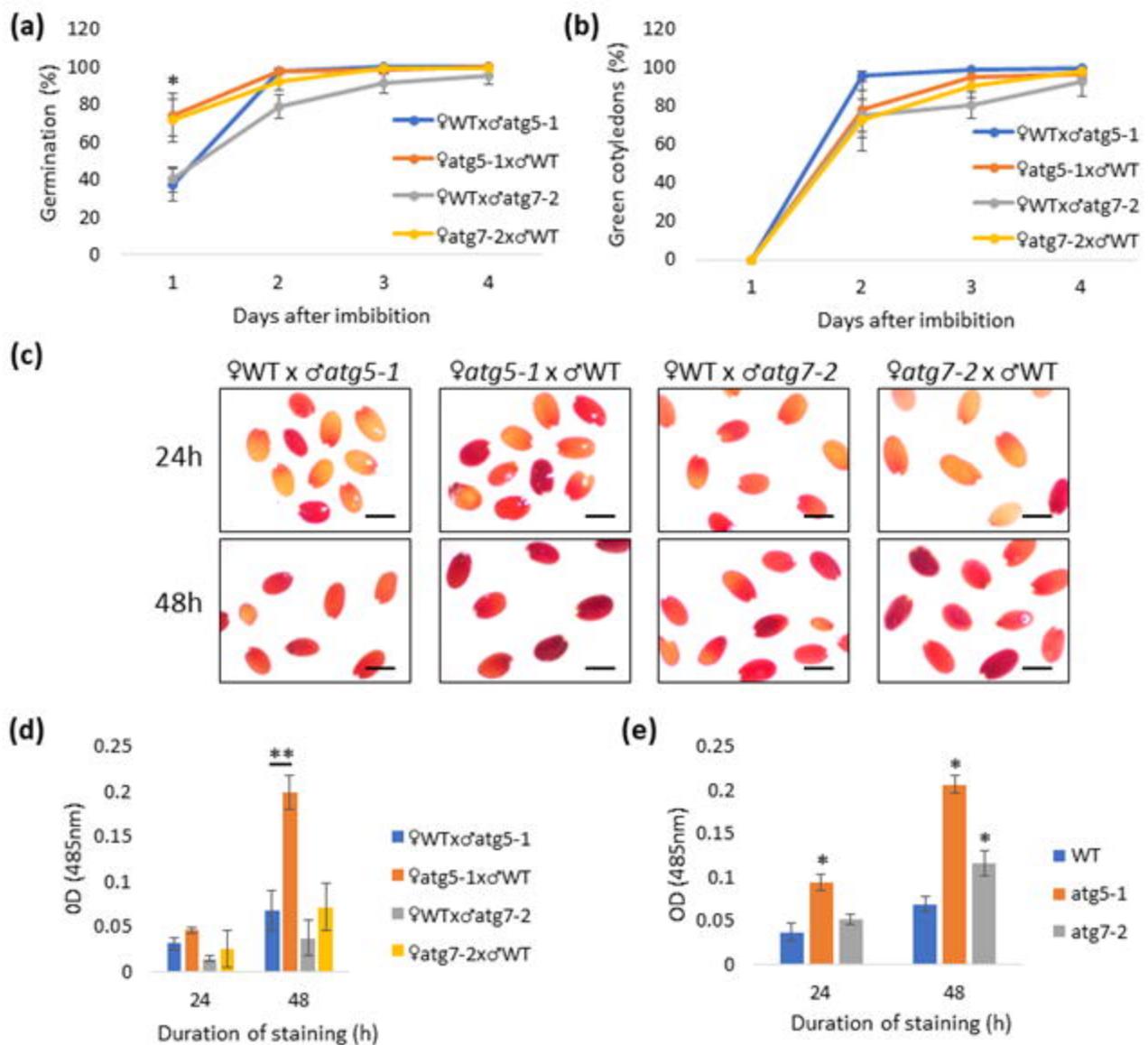

Fig. 3: F1 seedlings display a WT under carbon starvation and recovery, yet differential growth as etiolated seedlings. (a-c) Representative images of F1 progeny of reciprocal crosses between WT and *atg5-1* and their respective parental lines. Seeds were germinated and grown on Nitsch plated without exogenous sucrose for 14 days after imbibition (a). The plants were incubated in the dark for additional 7 days (b). The plants were then returned to light for another 7 days to examine their recovery (c). The experiment was performed in triplicate. (d) Representative image of F1 progeny of reciprocal crosses between WT and *atg5-1* or *atg7-2*. Seeds were sown on Nitsch plates without exogenous sugars and grown in the dark for 7 days after imbibition. (e) Hypocotyl length of the lines described in (d), as quantified by ImageJ. Data are presented as a box&whiskers plot. One asterisk ($p < 0.05$) or two asterisks ($p < 0.01$) denote a significant difference following Student's *t*-test ($n=15-30$). (f) Hypocotyl length of F1 progeny of reciprocal crosses between *NahG* and *atg5.NahG*. Seeds were sown on Nitsch plates without exogenous sugars, grown in the dark for 7 days after imbibition, and their hypocotyl length was measured by ImageJ. Two asterisks ($p < 0.01$) denote a significant difference following Student's *t*-test ($n=20-30$).

Fig. 4: Autophagy deficiency in the mother plant does not affect seed lipid content. Dry seeds of F1 progeny of reciprocal crosses between WT and *atg5-1* or *atg7-2* were collected, and their lipid content was analyzed by UPLC-MS (n=4-8). Detailed results are presented in Supplemental table S1. (a) PCA of lipid levels. (b) Heat map of \log_2 of TAG relative levels in comparison to seeds from maternal WT lines. No significant differences between reciprocally crossed lines were identified by student's *t*-test.

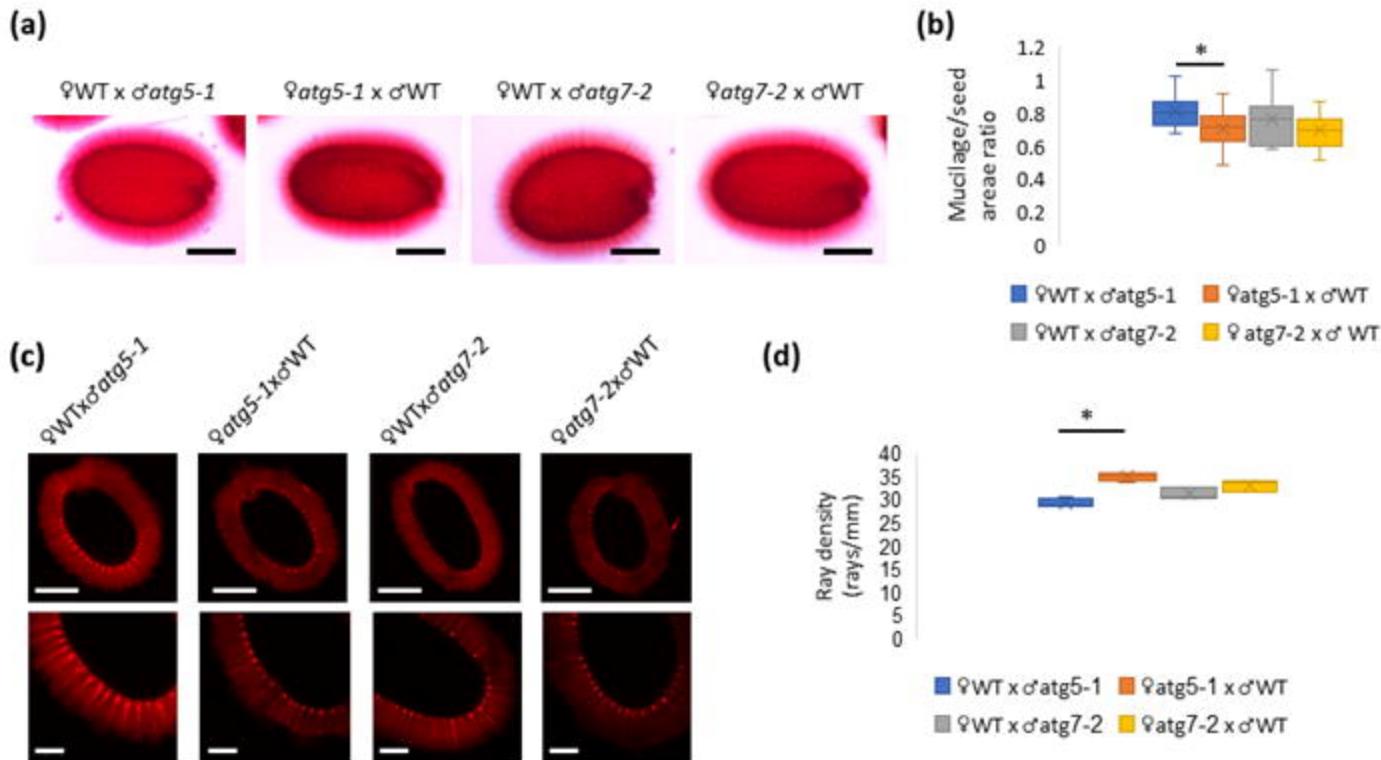


Fig. 5: Lack of autophagy in the mother plant alters total seed protein content but not storage-protein processing. Total proteins were extracted from similar amounts of dry seeds of F1 progeny of reciprocal crosses between WT and *atg5-1* or *atg7-2*. (a) Total protein quantification. Data are presented as average \pm SE. An asterisk denotes a significant difference between reciprocally crossed lines in Student's *t*-test ($p < 0.05$, $n=3$). (b) Total proteins were separated by SDS-PAGE. Top panel – Western blot using anti-12S antibody. Bottom panel – Coomassie blue stain. Three biological replicates were performed. P12S – precursors of the 12S protein, α and β – 12S globulin subunits.

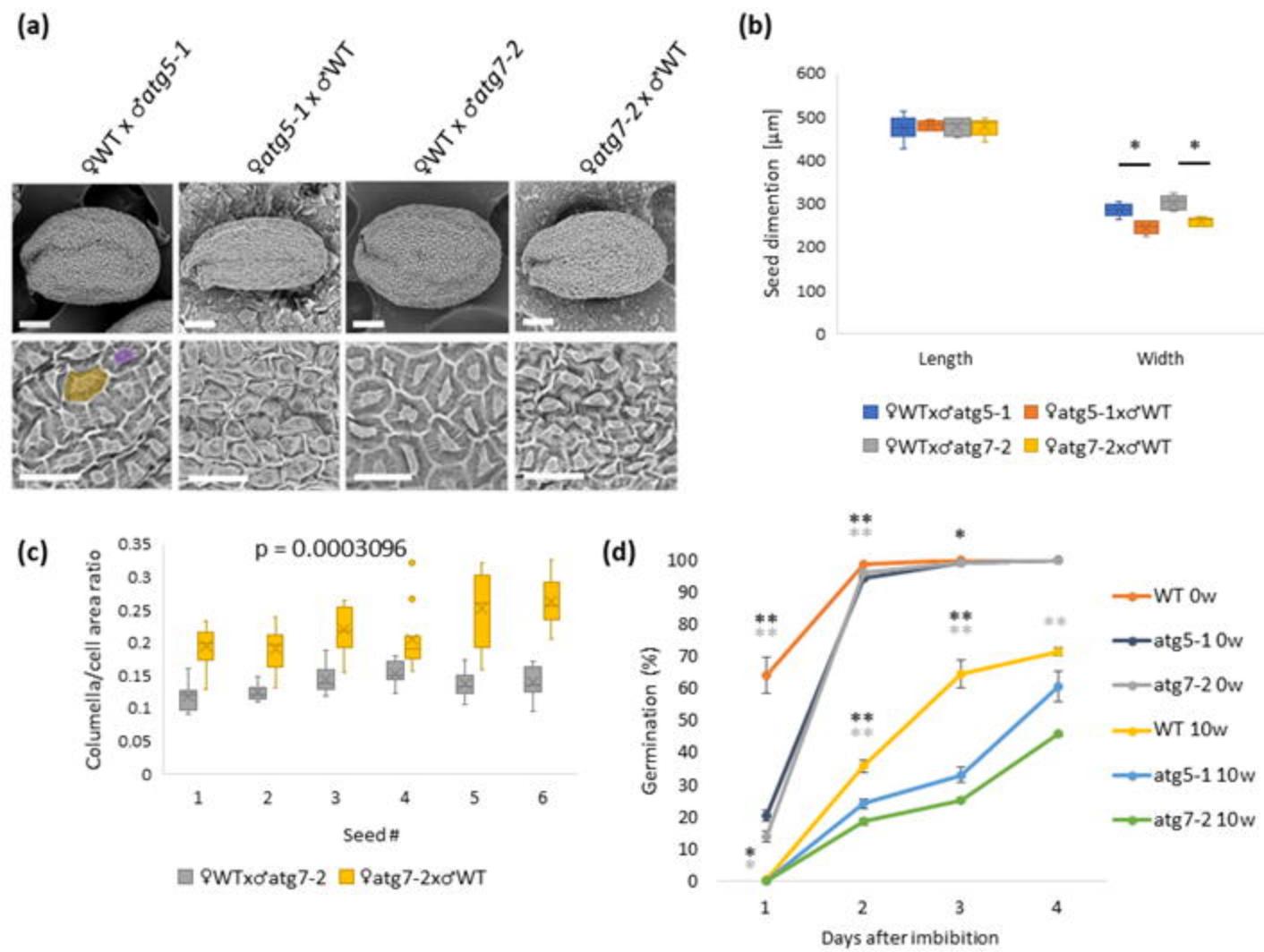


Fig. 6: F1 seeds of maternal *atg* mutants exhibit faster germination and increased permeability.

(a,b) F1 seeds of reciprocal crosses between WT and *atg* mutants were sown on Nitsch plates without exogenous sucrose, imbibed for 72h, and transferred to continuous light conditions. Germination (defined by radicle protrusion) and seedling establishment (defined by the appearance of two green cotyledons) were scored each day for 4 days. (a) Average percent germination is presented \pm SE. (b) Average percent of seedling establishment is presented \pm SE. An asterisk denotes a significant difference between reciprocally-crossed lines in Student's *t*-test ($p<0.05$, $n=5$). (c) Representative image of F1 seeds from reciprocal crosses after incubation for 24h (top panel) or 48h (bottom panel) in tetrazolium chloride solution. Scale bar=0.5mm. (d, e) Quantification of tetrazolium chloride staining. Stained seeds were ground and dissolved in 95% EtOH. absorption in 485nm was measured. Average absorption is presented \pm SE for F1 seeds (d) or homozygous parental lines. One asterisk ($p<0.05$) or two asterisks ($p<0.01$) denote a significant difference between reciprocally-crossed lines following Student's *t*-test ($n=5$).

Fig. 7: Altered mucilage structure of maternal *atg* mutant F1 seeds. (a,b) F1 seeds of reciprocal crosses between WT and *atg* mutants were stained with ruthenium red solution. (a) Representative images of F1 seeds from reciprocal crosses. Scale bar = 200 μ m. (b) Quantification of mucilage area. Data are presented as a box&whiskers plot. One asterisk denotes a significant difference following Student's *t*-test ($p<0.05$, $n=10$). (c,d) Calcofluor staining for β -glucans of F1 seeds. (c) Representative images of whole-seed views (top panel) and close-ups (bottom panel). Scale bars = 250 μ m (top panel) and 100 μ m (bottom panel). (d) Quantification of ray density. Data are presented as a box&whiskers plot. One asterisk denotes a significant difference between reciprocally-crossed lines following Student's *t*-test ($p<0.05$, $n=3-4$).

Fig. 8: Autophagy in the mother plants has a negative effect on seed shape and aging. (a) Scanning electron microscopy (SEM) of F1 seeds produced by reciprocal crosses between WT and *atg* mutant plants. Top panel, scale bar = 100 μ m, bottom panel, scale bar = 50 μ m. The columella tip is marked in purple, and the cell area is marked in yellow (bottom panel). (b) Seed dimensions were measured by ImageJ. Data are presented as a box&whiskers plot. One asterisk denotes a significant difference between reciprocally-crossed lines following Student's *t*-test ($p<0.05$, $n=6$). (c) The ratio between the columella and total cell area in individual F1 seeds of WT and *atg7-2* reciprocal crosses. Data are presented as a box&whiskers plot, *p*-value denotes the statistical difference between the seeds by mixed model analysis ($n=12-15$ cells per seed). (d) WT and *atg* mutant seeds without artificial aging and following 10 weeks of artificial aging were sown on Nitsch plates without exogenous sucrose, imbibed for 72h, and transferred to continuous light conditions. Germination (defined by radicle protrusion) was scored each day for 4 days. Average percent germination is presented \pm SE. One asterisk ($p<0.05$) or two asterisks ($p<0.01$) denote a significant difference from WT at each time point following Student's *t*-test ($n=5$, dark gray - *atg5-1*, light gray - *atg7-2*).