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ABSTRACT

High-grade gliomas are aggressive primary brain cancers with poor response to standard regimens,
driven by immense heterogeneity. In isocitrate dehydrogenase (/DH) wild-type high-grade glioma
(glioblastoma, GBM), increased intra-tumoral heterogeneity is associated with more aggressive
disease. Recently, spatial technologies have emerged to dissect this complex heterogeneity within
the tumor ecosystem by preserving cellular organization in situ. Here, we construct a high-
resolution molecular landscape of GBM and /DH-mutant high-grade glioma patient samples to
investigate the cellular subtypes and spatial communities that compose high-grade glioma using
digital spatial profiling and spatial molecular imaging. This uncovered striking diversity of the
tumor and immune microenvironment, that is embodied by the heterogeneity of the inferred copy-
number alterations in the tumor. Reconstructing the tumor architecture revealed two distinct
niches, one composed of tumor cell states that most closely resemble normal glial cells, associated
with microglia; and the other niche populated by monocytes and mesenchymal tumor cells. We
further reveal that communication between tumor and immune cells is underpinned by tumor-
specific ligands, such as TGFp signaling in astrocyte-like tumor cells. This primary study reveals
high levels of intra-tumoral heterogeneity in high-grade gliomas, associated with a diverse immune

landscape within spatially localized regions.
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INTRODUCTION

High-grade gliomas, characterized as world health organization (WHO) grades 3 and 4, are
aggressive forms of brain cancer with poor survival outcomes and treatment regimens that have
not changed in decades. The evolution of WHO grading' has increasingly incorporated molecular
analysis that stratifies glioma based on isocitrate dehydrogenase (/DH) status into groups with
distinct biology and clinical outcomes with mutations in /DH1/2 predicting improved survival (5
— 15 years, depending on grade)’>. IDH mutated gliomas are further stratified into
oligodendroglioma which is defined by the presence of 1p19q co-deletion and astrocytoma (1p19q
intact). IDH wild type status characterizes grade 4 glioblastoma (GBM) with a median prognosis
with treatment of just 13-18 months®. Multiple genetic alterations are additionally used to classify
gliomas, including ATRX loss, deletions or inactivating mutations in 7P53, PTEN, NFI, and
CDKN2A/B, amplification of EGFR, PDGFRA, and CDK4/6, and gain of chromosome 7 and loss
of 107, While molecular profiling provides important prognostic value, novel therapies that target
the molecular drivers of high-grade glioma have yet to show clinical benefit®’. Thus, patients still

4,5,10,11

receive radiation and alkylating chemotherapy using regimens unchallenged for the past 25

years, highlighting a need for improved stratification and treatment options.

In addition to genetic alterations, intrinsic cellular plasticity adds to the intra- and inter-patient
phenotypic variability observed in glioma'?. Advances in single cell sequencing revealed that
tumor cells exhibit transcriptional signatures mirroring early development of the healthy human
brain; including astrocytic, oligodendrocytic, neural, mesenchymal and highly proliferative

13-17

progenitor cell states’>'’. IDH-mutant high-grade glioma displays a bi-lineage hierarchy of

astrocytic and oligodendrocytic cell states, with a rare subpopulation of progenitor cells!®!7,
defining astrocytoma and oligodendroglioma tumors. In comparison to /DH-mutant high-grade
glioma, GBM tumors are characterized by greater intra-tumoral heterogeneity, the extent
correlating with survival'®, resulting in a mixture of each cell state within the tumor'>!*!8, Upon
recurrence, there is a shift towards the mesenchymal lineage likely induced by immune cells and
interferon signaling!'®~?!. The immense plasticity of glioma tumor cells allows them to reprogram

and evade treatment, contributing to the poor survival of patients??.
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Overcoming tumor heterogeneity is a major challenge for cancer treatment, with the past decade
focusing on novel immunotherapies that drive an antigen-mediated anti-tumor response,
determined by the composition and extent of immune infiltration. While these strategies have been
successful in many solid cancers, particularly those with high tumor mutational burden, to date
efficacy in glioma has been limited. A number of factors likely contribute to the lack of benefit in
glioma. Firstly, the immune microenvironment of the brain is classically associated with poor
infiltration, with an immunosuppressive environment and largely composed of resident microglia
cells?. Indeed, both IDH-mutant high grade and GBM tumors are dominated by myeloid cells,
though GBM tumors exhibit increased bone marrow derived macrophages (BDM) and
lymphocytes compared to /DH-mutant tumors?*. However, there have been reported association
of tumor cell states and specific immune cell infiltrate, such as mesenchymal cells with
myeloid'*?° and T cell infiltration?, which were associated with a more unfavorable prognosis®’.
Tumor cells together with the immune microenvironment create a complex milieu that ultimately
promotes adaptability and disease progression, highlighting the need for a detailed understanding

of the interactions between immune cells and different tumor cell states.

To capture a deeper understanding of the tumor microenvironment of high-grade gliomas, we
perform a combination of digital spatial profiling (DSP)?¢ and spatial molecular imaging (SMI)?’.
In concert, these technologies, which preserve the tissue architecture, uncover the overall identity
of the spatial environment®® with complementary strengths. Sequencing based technologies
capture regions of tissue to provide next-generation sequencing (NGS) output of the whole
transcriptome, and while not providing single-cell resolution, these technologies are not limited by
gene number. In contrast, high-plex imaging technologies using a probe-based readout offer
subcellular resolution, but are currently limited to a restricted number of gene targets. Integrating
these technologies, we confirm immense spatial heterogeneity in GBM samples compared to
IDH-mutant tumors, characterized by the presence of the mesenchymal tumor cell lineage.
Through the isolation and analysis of cycling Ki67" tumor cells, we find that progenitor cells
emerge within this subset, highlighting the plasticity of glioma cell states. Analysis of the immune
compartment revealed discrete neighborhoods with patterns of tumor and immune cell interaction
that validated across GBM cohorts and independent spatial sequencing technologies. Finally, we

create a map of tumor cell state and immune cell interaction in the GBM microenvironment. Our
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findings highlight the immense heterogeneity of tumor cell states in GBM and their relationship

with the immune microenvironment.

RESULTS

Spatial transcriptomics analysis of high-grade glioma

To interrogate the spatial intra-tumoral heterogeneity of high-grade glioma, we selected three /DH-
wild type WHO grade 4 GBM and three /DH /-mutant grade 3 astrocytoma (A) samples for spatial
whole transcriptome analysis. Pathology review of the six cases found these were representative
and showed diagnostic morphological features, with astrocytoma samples displaying homogenous
pleomorphic cells and glioblastomas demonstrating a higher degree of anaplasia (Table 1, Fig.
1a). Regions of interest (ROI) were selected based on histological features, distribution of
proliferating tumor cells and areas of central tumor (CT) bordering on infiltrating tumor (IT) and
leading edge (LE) regions across the six samples (Supplementary Fig. 1a). By immunostaining
for GFAP, CD45 and Ki67 protein expression, 34 areas of illumination (AOI) representing tumor
cells (T, GFAP"), 10 AOIs representing proliferating tumor cells (K, GFAP'Ki67") and 20 AOIs
representing immune cells (I, CD45") were isolated within each ROI using Digital Spatial Profiling
(DSP) on the NanoString GeoMx® platform (Table 2, Supplementary Fig. 1b, Supplementary
Tables 1 and 2).

To analyze the tumor cell compartment, we first combined the bulk transcriptomic data from the
tumor AOIs (T combined with K for the same ROI). Principal component analysis
(Supplementary Fig. 1¢, d) and deconvolution into the core tumor cell states'? (Supplementary
Fig. 2a) reveal large differences between astrocytoma and GBM; most notably the increase of
mesenchymal (p<0.001) and progenitor (p<0.001) tumor cell states in GBM compared to
astrocytoma (Fig. 1b). Further investigation of the tumor states within each ROI revealed spatial
heterogeneity with significant increases in intra-tumoral heterogeneity in the GBM samples
compared to astrocytoma in the mesenchymal (variance test, p<0.001) and progenitor (variance
test, p<0.001) tumor cell populations (Fig. 1¢). As expected, proliferating (K) AOIs were

significantly enriched with progenitor tumor cell states compared to AOIs of non-proliferating
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tumor (T) AOIs (26.2% and 4.5% of estimated nuclei respectively, p<0.001) (Fig. 1e). This finding
is consistent with the association of proliferation and the glioma stem cell (GSC) with the
progenitor subtype in previous studies'? and a significant portion of the progenitor cell signature
contained key cycling genes (including TOP2A4, MKI67, AURKB) (Supplementary Fig. 2b).
Hierarchical clustering of all tumor AOIs did not seem to be driven by patient sample, histological
classification, cycling state, immune infiltration of the region nor hypoxic status in this small
cohort (Fig. 1d), suggesting that the heterogeneity of these glioma samples may not be associated

by macroscopic events.

Spatially localized tumor cells display distinct chromosomal alterations

Utilizing the whole transcriptome sequencing data, we applied CNVkit* to investigate
chromosomal regions containing under- or over-represented housekeeping genes, to predict
chromosomal alterations. For the GBM and /DH[-mutant glioma samples, 7.5 % and 70.5 % of
all copy number alterations (CNA) beyond two standard deviations from the mean, were
heterogeneous between patients, respectively; however, the majority of CNAs were driven by both
inter- (between) and intra-tumoral (within) heterogeneity (Supplementary Fig. 3a, b). In the
IDHI-mutant Astrocytoma samples, intra-tumoral heterogeneity was identified in chromosomal
regions involved in tumor promotion and immune evasion (NOTCH1, TP5313, HLA) (Fig. 2a).
Inter-tumoral heterogeneity was identified significantly in chromosome arm 1 p, driven by A-1,
and associated with loss of chromosome 19 ¢, indicative of an oligodendroglioma® (Fig. 2b).
Further examination of the intra- and inter-tumoral gene expression heterogeneity across the
astrocytoma samples clearly indicated that the oligodendrocytic cell state was a key driver of
heterogeneity between astrocytoma samples, independent of cell cycling state (Fig. 2¢). Follow-
up with the treating hospital confirmed that patient A-1 had received an updated diagnosis after
next generation sequencing, thus independently validating our CNVkit CNA analysis on DSP
technology. Partitioning the heterogeneity of only A-2 and A-3 demonstrated disposition towards
intra-tumoral over inter-tumoral heterogeneity driven by the proliferating progenitor tumor state
(Supplementary Fig. 4a). Differential gene expression analysis between the oligodendroglioma
and astrocytoma samples revealed an enrichment of genes involved in neural signaling pathways

in oligodendroglioma (including IGFBP3 33, KIF3C *33% and SCG2 3°3¢) (Supplementary Fig.
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4b, c¢), however future analysis with a larger sample size will be required to investigate these

aspects further.

Next, investigating the GBM patient samples, the highest inter-tumoral heterogeneity in terms of
CNAs was identified in GBM-2, whilst the highest intra-tumoral heterogeneity was found between
the ROIs in GBM-1 (Supplementary Fig. 3a, b). Across all GBM samples, the majority of ROIs
displayed the prominent GBM genetic alteration, gain of chromosome 7 and loss of chromosome
10 (Fig. 2d) further confirming the validity of the CNVkit approach. Both spatial distribution and
proliferation appear to play a role in the CNA heterogeneity within samples. For example, in GBM-
1 three ROIs in close proximity display heterogeneity in gain of chromosome 7 and loss of
chromosome 10 (Fig. 2e), reflected in substantial cell state heterogeneity between the regions (Fig.
1¢). Furthermore, within region 3 of GBM-1, proliferative and non-proliferative AOI also display
substantial CNA heterogeneity on chromosomes 15-17 (Fig. 2e). To further examine tumor
heterogeneity, we examined the impact of the tumor state and proliferative status on the GBM
samples using a Shannon entropy approach (Supplementary Fig. Sa). This analysis finds that the
tumor states of non-proliferating tumor samples drive inter-tumoral heterogeneity, while the
proliferating (Ki67") samples mostly contribute towards intra-tumoral heterogeneity. Intra-
tumoral entropy was highest when looking at the progenitor signature among separated T and K
AOIs (3.2 standard deviations from the overall mean intra-tumoral entropy score). This evidence
suggests that the proliferative tumor cells drive a significant phenotypic divide within samples.
Examination of the gene expression heterogeneity (Supplementary Fig. 5b, ¢) finds genes
associated with the astrocytic (APOE, AQP4, GFAP) and oligodendrocytic (PDGFRA) lineages
driving heterogeneity between tumors and mesenchymal-associated genes (CHI3LI, VEGFA)
driving intra-tumoral heterogeneity. Notably, the heterogeneity seen in PDGFRA expression
across patients is mirrored by a focal gain in chromosome 4 in GBM-2, with resulting inter-tumoral
differences in RNA and protein expression (Fig. 2f, g). To validate our findings in an independent
dataset, we interrogated a recently deposited GBM Visium® spatial transcriptomics cohort!’.
Visium® technology analyzes the whole transcriptome from 55 um spots?®. The lipid transporter
Apolipoprotein E (4POE), identified as highly associated with inter-tumoral heterogeneity in our
data (Supplementary Fig. Sb), similarly displayed homogenous expression within individual

GBM samples, yet showed variable expression between samples in the Visium® dataset
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(Supplementary Fig. 5d). Furthermore VEGFA, a variable gene within patient samples
(Supplementary Fig. 5b), was similarly found to occur in patches in the independent GBM
samples, highly correlating with the mesenchymal signature (Supplementary Fig. Se). Consistent

with recent single-cell studies'®’

, our findings point to individual CNAs leading to overall
heterogeneity of patient’s transcriptional profiles, while proliferation status determines intra-

tumoral differences.

Glioblastoma architecture reveals distinct cell state niches

To further dissect the cellular identities and interactions of individual cells within the regions of
interest, we performed Spatial Molecular Imaging (SMI) of 1,000 RNA probes at subcellular
resolution?’” on sample GBM-1 using the NanoString CosMx® platform. Fields of view (FOV) for
SMI analysis were selected based on the location of ROI in the initial DSP analysis, with seven
FOV selected across the tumor (Fig. 3a). From the 1,000 RNA probes, we calculated sufficient
gene distribution to assign tumor cell states and immune cell types of interest for the study
(Supplementary Fig. 6a). A total of 11,801 cells were assigned, containing 1,978,131 total
transcripts with a mean of 168 molecules expressed per cell. These cells were clustered identifying
35 clusters (Supplementary Fig. 6b), which were first annotated by tumor, vasculature, or
immune cells (Fig. 3b). Unsupervised prediction of cell types identified 21 unique cell types of
the tumor microenvironment (Supplementary Fig. 6¢), highlighting major glial and immune cell
types predicted in the tumor. To better characterize the tumor cell compartment relative to the
initial DSP study, the tumor cells were re-clustered and reannotated using unsupervised prediction
according to the five cell lineages'? (Fig. 3¢). Assignment of these clusters to groupings based on
our available data from SMI analysis resulted in five updated clusters: mesenchymal; astrocytic; a
progenitor cluster comprising of neural progenitor cells (NPC), oligodendrocyte progenitor cells
(OPC) and radial glia (RG); oligodendrocytic (mature, normal-like); and one mixed population of
tumor cells (Fig. 3d). As expected, the progenitor cluster was the most transcriptionally active,
three-fold higher than the astrocytic cell lineage (Fig. 3e, f). To further investigate the mixed
population, we identified the top differentially expressed genes compared to every other cluster
and found that cells in the mixed cluster are characterized by a strong down-regulation of VIM,
CLU and SERPINA3 (Supplementary Fig. 7a, b). Consistent with this differential expression,

protein expression of Vimentin was moderate throughout GBM-1, further suggesting a population
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of tumor cells absent in the marker (Supplementary Fig. 7¢). Investigation of scRNAseq data
from independent datasets harmonized from 26 glioblastoma studies'* confirmed that regions of
low VIM expression co-localized with cells matching the signature of the mixed cluster
(Supplementary Fig. 7d). To determine the identity of the population, upregulated genes were
examined relative to the other cell states, finding that gene programs associated with chemokines
and signaling to be enriched in the population, suggesting these cells may create an immune-
responsive niche in the tumor (Supplementary Fig. 7e, f). Downregulated pathways highlighted
differentiation from the neural progenitor lineage (Supplementary Fig. 7g), together suggesting

that this cluster may represent cells differentiating towards a more mesenchymal-like cell fate.

To examine the spatial distribution of tumor states, we calculated the overall composition in each
FOV. This identified regions enriched with mesenchymal cells, in close proximity to those
enriched in astrocytic and progenitor cells (Fig. 3g), similar to the degree of spatial heterogeneity
observed in the DSP study (Fig. 1¢). Examining the spatial architecture at a single cell level
revealed well-defined patterns of mesenchymal patches and diffuse regions of astrocytic and
progenitor cell types (Fig. 3h, Supplementary Fig. 8a, b). To quantify the structures of the
different tumor states, we performed a modularity analysis, which measures the purity of localized
patches of a certain type. As observed visually, the mesenchymal and mixed tumor populations
cluster by themselves more than cells of astrocytic (versus mesenchymal p-value = 0.01, versus
mixed p-value = 0.06), oligodendrocytic and progenitor tumor states (versus mesenchymal p-value
= 0.01, versus mixed p-value = 0.04) (Fig. 3i), which co-occur in tumor regions. Therefore, two
tumor niches emerge from the spatial data: a brain-native niche derived of intermixed tumor cell
states with direct transcriptional and phenotypic relationship with their glial cell-of-origin,
comprised of astrocytic, oligodendrocytic and neural progenitor tumor cells; and a second niche,
containing tightly packed tumor cells of mesenchymal and mixed phenotype, that have markers

suggesting enhanced interaction with immune cells.

Immune infiltration is associated with the tumor niche
The brain has a distinct immune composition within the tumor microenvironment, largely
consisting of Tumor Associated Macrophages (TAMs) - microglia (MG) and bone marrow derived

macrophages (BDM), with poor infiltration of lymphocytes?’. Investigation of the immune
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compartment across the GBM samples from the DSP data revealed variation in CD45" infiltration,
and an enrichment of CD68" TAMs in GBM-1 and GBM-2 (Fig. 4a). Consistent with the
immunostaining, immune deconvolution of the CD45" immune AOI (Supplementary Fig. 9a)
revealed an enrichment in microglia and macrophages in GBM-1 and 2, while in GBM-3 a
substantial increase in lymphocytes and neutrophils was identified (Fig. 4b). While the immune
AOIs were contaminated with neoplastic cells (Supplementary Fig. 1d), immune cell proportions
were unchanged independent of the addition of neoplastic cell types to the deconvolution reference
(Supplementary Fig. 9b, c). Further deconvolution by region of interest revealed a correlation
between the astrocytic lineage and TAMs (correlation: 0.72) and the mesenchymal population with
lymphocytes and neutrophil inflammation (correlation: 0.58) (Fig. 4c¢). Enrichment in BDMs
associated with the expression of macrophage gene AHR, while microglia associated with the
expression of P2RY12 and TMEM 119 (Supplementary Fig. 9d). To dissect the immune subtypes
and location at a single-cell level, the immune cluster in the SMI analysis of GBM-1 (Fig. 3b) was
extracted and re-clustered (Fig. 4d, Supplementary Fig. 10a). Gene expression analysis revealed
a cluster with dominant expression of AHR, denoting the identification of BDMs (Fig. 4e), opposed
to microglia. Taken together, the SMI immune analysis revealed a predominance of macrophages
and microglia, with few monocytes and T cells (Fig. 4d). The proportions of immune cells in
GBM-1 from the deconvolution DSP analysis and single cell SMI analysis revealed similar
predictions from each technology, validating both our analysis approaches (Fig. 4f). Next, we
investigated the spatial distribution of the key immune cell types present in GBM-1, with FOV 2,
4 and 10 having the highest proportion of monocytes, BDMs and microglia, respectively (Fig. 4g).
When present, monocytes generally distribute in dense clusters of cells (average distance to each
other 185 £ 57 um), while microglia (average distance to each other 356 + 34 um) and BDMs
(average distance to each other 347 + 50 um), were more broadly dispersed throughout the tissue.
Thus, the cooccurrence of immune cells with other immune and tumor cell states may be a key

factor in the localization of these myeloid cells.

To investigate the direct interactions that may be driving immune cells to co-occur more frequently
within different tumor niches, we performed ligand/receptor analysis on the whole transcriptomics
data from the GBM samples (DSP study). Filtering the ligand/receptor pair interaction based on

pattern of expression (ie. tumor to immune, tumor to tumor), we identified interactions that
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preferentially occurred between tumor and immune cells, such as TGFf signaling (Fig. Sa,
Supplementary Fig. 11a). Analysis of a cohort of tumor to immune genes revealed patterns of
communication, such as signaling via the TGFf pathway, where regions enriched for TGFBRI
signaling expression saw significantly increased BDM and microglia infiltrate (correlation: 0.88,
p-value < 0.001), and ACVRIB receptor expression correlated with neutrophil and lymphoid
infiltrate (correlation: 0.58) (Fig. Sb). To gain a better resolution of the individual immune cell
types and tumor states involved in these signaling pathways, we applied the top filtered
ligand/receptor genes to the SMI data in GBM-1 (Fig. 5S¢, Supplementary Fig. 11b). Strikingly,
signaling pathways appeared to dominate the interactions between each tumor state and the
immune compartment within. Astrocytic cells were characterized by TGF3 and BMP signaling
pathway signaling (BMP7, TGFB2 expression, Fig. Sb-e), supporting findings that increased
microglia and BDM infiltrate identified in the DSP study may be due to the high proportion of
astrocytic cells in the tumor regions. Mesenchymal cell interactions were dominated by the integrin
pathway (SPPI, VEGFA expression, Fig. Sc, e), Mixed cells signaled predominantly through the
WNT pathway (WIF1, NPPC expression, Fig. Sc, e) and the progenitor subset (NPC, OPC, RG)
displayed Notch and PDGF signaling (DLL1, PDGFA expression, Fig. Sc, e). Notably, the TGFB1
was an important ligand for signaling in the tumor microenvironment, with receptor specificity to
TGFBI defining interactions with different tumor and immune cell states (Supplementary Fig.
12). This suggests that GBM microenvironments are partially shaped by subtype-specific

ligand/receptor signaling, controlling interactions with both tumor and immune cells.

To investigate the spatial association of tumor cells within their microenvironment, we identified
neighborhoods of similar cell type composition across all FOVs of GBM-1. This approach defined
five unique neighborhoods characterized by distinct groups of cells, likely dictated by secreted
factors in the microenvironment and receptor/ligand interactions (Fig. 6a, Supplementary Fig
13a). The most distinct cellular architecture is observed in neighborhood 4, which is dominated by
vasculature (endothelial and mural cells) together with T cells and macrophages, captured entering
the tumor via the vessels (Fig. 6b). Neighborhood 5 reveals the brain-intrinsic tumor niche
(astrocytic, oligodendrocytic and progenitor cell states) together with the microglial cells. This
association represents a classical feature of the brain microenvironment under normal conditions,

where resident microglial cells associate with glial cells in an absence of lymphocyte
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infiltration'#?>24, In contrast, the mesenchymal and mixed tumor cell populations more broadly
associate with circulating immune cells, including macrophages, T cells and monocytes in
neighborhoods 1-3 (Fig. 6b). To interrogate cell interactions within the neighborhoods, we created
network plots and examined proximity between different cell types within approximately 30 um
radius (Supplementary Fig. 13b). Neighborhood 1 was dominated by mesenchymal, mixed and
monocytes, that cluster into discrete arms highlighting distinct and direct interactions between
these cells (Fig. 6¢). Visualization of these cell states revealed the distinct co-localization in FOV1,

and highlighted the clustered nature of Neighborhood 1 (Fig. 6d, Supplementary Fig. 13c¢).

To investigate these associations in an independent analysis and across multiple GBM tumors, we
next interrogated co-localization of our deconvoluted cell states in the DSP dataset in addition to
physical locations in the tumor. Correlation between the cell states identified three domains: tumor,
outer and mesenchymal-enriched. Within the tumor domain, astrocytic cells and microglia
associate with the central tumor, while at the tumor edge, dendritic cells and regulatory T cells
preferentially occur (Fig. 6e). Consistent with poor infiltration of lymphocytes, T cells, mast cells
and NK cells were enriched in the outer domain, while the mesenchymal tumor cells defined a
distinct domain rich in monocytes, neutrophils, B cells and neural progenitor cells
(Supplementary Fig. 14). Consistent with our SMI analysis of GBM-1, the relationship between
mesenchymal cells and monocytes was strong (correlation: 0.76). To extend this observation to a
larger independent dataset, we obtained the spatial transcriptomic data from a cohort of GBM
(n=16) analyzed in the Visium dataset'*. Deconvolution of cell types from each spot revealed
distinct patches of astrocytic and progenitor cells within the tumor, distinct from the mesenchymal
regions (Fig. 6f). Consistent with our observations, monocytes localized to the mesenchymal
domain in the representative GBM sample and were absent from the regions rich in brain-intrinsic
tumor cell types. To extend this analysis across all the 16 GBM samples and broaden to more cell
types, we performed co-localization analysis (Fig. 6g). We found that microglia most frequently
associated with astrocytic tumor cells and macrophages strongly associate with the mesenchymal
tumor cells, validating the neighborhood analyses we performed across an independent cohort of
patient samples. Taken together, we identify consistent patterns of tumor architecture and immune
infiltration across two cohorts of GBM using three independent spatial transcriptomic technologies

(Fig. 6h). We find a brain-intrinsic tumor niche comprised of astrocytic, oligodendrocytic and
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neural progenitor tumor cell states associating with the brain resident microglia. A second niche
we call the brain-extrinsic tumor niche contains mesenchymal patches infiltrated by monocytes
and is rich in TGFf signaling. Within these patches, neutrophils, T cells, monocytes and
macrophages are located near blood vessels and respond to specific ligands via CXCR4. The niche
also contains regions marked by the absence of Vimentin where mixed tumor cells comingle with
macrophages and monocytes. Collectively, our results provide a model of the GBM
microenvironment encompassing discrete niches characterized by the activity of separate

signalling pathways.

DISCUSSION

Here, we provide a spatial characterization of the tumor microenvironment in /DH wild type and
IDHI-mutant high-grade glioma, revealing vast heterogeneity and discrete interactions between
tumor cell states and immune cells within a highly organized tumor architecture. Although past
studies have identified tumor cell states in glioma and shown the vast heterogeneity of these cell
states within individual tumors'®*%3, this is the first study to spatially interrogate transcriptional
heterogeneity of glioma at a single cell level. Through the adaptation of bioinformatic tools to
analyze new datasets of spatial transcriptomics (DSP, SMI), we observe immense molecular and
cell composition heterogeneity, which were conserved across both independent cohorts of GBM

samples and spatial transcriptomics technologies.

In our study, both GBM and /DH-mutant glioma displayed significant inter- and intra-tumoral
clonal heterogeneity as inferred by CNAs. GBM harbors many individual-specific genetic
alterations mostly associated with initial malignant transformation, but with minimal evidence for
regional variation as observed by multi-site sampling®®. We also find heterogeneity between
patients, but in contrast to previous work, our admittedly limited GBM samples showed significant
evidence of intra-tumoral heterogeneity. Our finding closely aligns with work by others utilizing

spatial transcriptomics that finds regional accumulation of CNAs in response to hypoxia'>.
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Recent stratification of GBM based on cell lineages of the normal fetal brain characterized five
cell states in two broad groups'®. The normal neural lineages: astrocytic, oligodendrocytic and
neuronal, together with the proliferative progenitor cell state; and the mesenchymal lineage which
does not have a direct parallel in the normal brain. Like previous studies that rely on multi-site
sampling from different anatomical locations*!, we demonstrate tumors contain multiple subtypes
sometimes in close proximity. We extend these initial observations in the context of their spatial
relationship with the immune compartment, that defines a brain-intrinsic niche — comprised of
astrocytic, oligodendrocytic, neuronal and progenitor cell states — closely associated with the
resident microglial cells and rarely interacting with immune cells migrated from the circulation. In
contrast, a brain-extrinsic niche characterized by mesenchymal tumor cells, closely associated with
macrophages, monocytes and other lymphocytes, is consistent with recently described
mesenchymal patches in GBM that are clearly spatially demarcated'4, and thought to be linked to
tumor progression*?, The nature of immune infiltration in mesenchymal patches concurs with work
by Varn et al. finding that myeloid cells in mesenchymal tumor subtypes are likely to be
macrophages®’. The mixed tumor state, possibly representing cells differentiating towards the
mesenchymal lineage, is preferentially located in brain-extrinsic niches. We also show that the
conditions in brain-intrinsic and extrinsic tumor niches are likely dictated by specialized
ligand/receptor interactions in agreement with Gangoso ef al. who demonstrated tumor state
specific transcriptional and epigenetic changes reshape the immune microenvironment?'. The
immune and regulatory underpinning of the dichotomy of the glioma microenvironment suggests
that the success of immunotherapy agents such as chimeric antigen receptor (CAR) T cell infusion,
checkpoint inhibitor blockade or dendritic cell therapies®’, may be influenced by tumor

composition.

In /DH-mutant glioma, scRNAseq analysis had identified the presence of cell states restricted to

the astrocytic and oligodendrocytic lineages!'®!”

. Here, we demonstrate the dominance of the
oligodendrocytic lineage across both astrocytoma and oligodendroglioma samples, conserved
spatially throughout the tissue. The neuronal lineage was also present in these tumors and increased
in frequency as the tumor purity declined, likely representative of normal neural cells. Notably,
progenitor cells were identified in the tumor regions, and stratified to the proliferative tumor

compartment only, consistent with previous reports of a rare subpopulation of progenitor cells'®.
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Indeed, the intra-tumoral heterogeneity of /DHI-mutant high-grade glioma was substantially
reduced in comparison to GBM. In contrast, inter-tumoral heterogeneity was increased, though
this was driven by the oligodendroglioma re-diagnosis of A-1, which limited our ability to closely
examine the /DH-mutant cohort. This marked difference in heterogeneity between grade 3 and
grade 4 gliomas has been postulated to reflect a more lineage-restricted cell-of-origin in /DH-

mutated tumors'”.

Heterogeneity is a hallmark of GBM and has been on display in this spatial analysis in comparison

to astrocytoma, as in other recent GBM datasets'*!>

, with implications for the limitations of
personalized therapies for patients. Further, spatial heterogeneity highlights the challenge of
identifying biomarkers for treatment from potentially un-representative diagnostic sampling, and
will likely create a hurdle in future clinical decision making. We, and others, have highlighted the
association of the mesenchymal lineage with increased infiltration of circulating immune cells and
as described above, may represent an avenue to leverage immunotherapeutic approaches, in
patients who are more likely to respond. This is in contrast to chemotherapy treatment, whereby
mesenchymal cells appear to be resistant to standard therapy and are frequently observed in

recurrent tumors!%42

, requiring novel treatment strategies. Thus, routine mechanisms to predict the
proportion of mesenchymal lineage cells would likely aid in diagnostic and prognostic predictions.
We show that the combination of central tumor (CT) annotation with the proliferative state (Ki67
immunostaining) may provide meaningful information in estimating the prevalence of progenitor
and mesenchymal cell lineages in the tumor, which could aid assessment of the propensity of the
tumor to recur and provide insight into the cell state of the GBM in the absence of advanced
genomic testing. Future studies employing high-plex spatial molecular imaging with an increased
sample size will aid in the further characterization of spatially distinct domains to identify
mechanisms of plasticity and immune infiltration and their secreted factors in patients with high-
grade glioma. Ultimately, understanding the spatial distribution of tumor cells within their

microenvironment will provide clinical impact with the potential to selectively modulate cellular

plasticity and reshape the landscape of therapeutic targeting in GBM.
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METHODS

Clinical Samples

All tissue samples were obtained from the Royal Melbourne Hospital Neurosurgery Brain and
Spine Tumour Tissue Bank (Melbourne Health Ethics # 2020.214). Formalin fixed paraffin
embedded (FFPE) tissue were sectioned at 5 um thickness and mounted onto Superfrost Plus slides
within one month of spatial transcriptomics analysis. Slides were stored at 4 °C with desiccator
and shipped to NanoString (Seattle, USA) for Technology Access Program (TAP) processing for
both GeoMx® DSP and CosMx® SMI analyses.

Immunohistochemistry of GFAP (Dako Z0334; 1:50 dilution; epitope retrieval: Roche Ventana
ULTRA Cell Conditioning Solution 1 pH 8.0-8.5 (CC1) 32 minutes at 36 °C), IDH1-R132H
(Dianova IDA-HO09; 1:50 dilution; epitope retrieval: CC1 32 minutes at 100 °C), CD45 (Dako
MO0701; 1:1000 dilution; epitope retrieval CC1 32 minutes at 100 °C), KI67 (Dako M7240; 1:100
dilution; epitope retrieval: CC1 32 minutes at 100 °C) and PDGFRA (Abcam ab203491; 1:200
dilution; epitope retrieval: EDTA buffer, pH 8.0-8.5 at 100 °C for 15 minutes) was performed.
Hematoxylin and eosin (H&E) stained sections and immunohistochemistry slides were scanned

using the 3D Histech Brightfield (20X) and processed using CaseCentre online software.

Pathology review was performed on all the six cases. The tissue sections demonstrated distinct
morphological features and were assessed using the cellularity of the tumor cells, nuclear
pleomorphisms, presence of mitoses, necrosis, and microvascular proliferation. The five anatomic
features proposed by The Ivy Glioblastoma Atlas Project (Ivy GAP) were used to annotate the
tumors into regions. These included: Leading edge (LE): the outermost part of tumour with the
least tumor cell density and bordering on the normal tissue area; Cellular tumor (CT): the core of
the tumor with highest cell density; Infiltrating tumor (IT): the zone interposed between LE and
CT with moderate tumour cell density; Microvascular proliferation (MVP): Areas with endothelial
proliferation; Pseudopalisading cells around necrosis (PAN): dense tumour cells geographically
fenced around core necrosis. Other features recognized are regions of large non-palisaded necrosis

(NEC) and normal brain tissue (N). Annotations were performed by two pathologists.
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The evaluation of Ki67 and CD45 immunostaining was performed according to standard
established protocols using light microscopy. The intensity and percentage of tumour Ki67 positive
cells were assessed semi-quantitatively. The intensity was graded as 0, +, ++ and +++ representing
negative, weak, moderate, and strong staining respectively. The percentage was calculated by
dividing the number of positive cells (minimum number required was 200 positive cells) by total
number of tumour cells in the tumour areas assessed as a percentage. Multiple areas of tumours
were counted and the average range of percentages were recorded for each case. The intensity of
CD45 immunostaining was semi-quantitatively graded as 0, +, ++ and +++ representing negative,
weak, moderate, and strong staining respectively. Each tumour was assigned the grade

corresponding to its degree of immunoreactivity.

GeoMx® Dataset

Digital Spatial Profiling (DSP)

After baking the slides for 2 hours for paraffin removal, slides were loaded onto a Leica BOND
RX for tissue rehydration, heat-induced epitope retrieval (ER2 for 20 minutes at 100 °C) and
proteinase K treatment (0.1 pg/ml for 15 minutes at 37 °C). The tissue sections were then
hybridized with the Human WTA probes overnight. Following 2 x 5 min stringent washes (1:1 4x
SSC buffer & formamide), the slides were blocked and then incubated morphology marker
antibodies: GFAP (488 channel, NBP2-3318AF488, Novus), CD45 (594 channel, 13917BF, Cell
Signaling Technologies), and Ki67 (647 channel, 9027BF, Cell Signaling Technologies). Syto83
(532 channel, S11364, Invitrogen) was used as a nuclear stain. Tissue sections were then loaded
into the GeoMx® platform and Regions of interest (ROIs) were selected guided by the
immunofluorescence of the morphology markers antibodies listed above. Segmentation was used
in some ROIs used to enrich for Ki67+ and/or CD45+ populations. UV light was then directed by
the GeoMx® at each AOI and released the RNA ID and UMI-containing oligonucleotide tags from
the WTA probes for collection and sequencing preparation. Illumina 15 and 17 dual indexing
primers were added to the oligonucleotide tags during PCR to uniquely index each AOI. AMPure
XP beads (Beckman Coulter) were used for PCR purification. Library concentration as measured
using a Qubit fluorometer (Thermo Fisher Scientific) and quality was assessed using a Bioanalyzer
(Agilent). Sequencing was performed on an [llumina NovaSeq 6000 and .fastq files were processed

into gene count data for each AOI using the GeoMx® NGS Pipeline.
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Preprocessing

For all computational analysis methods were run using defaults unless otherwise specified. Raw
counts from the two separate experimental batches were grouped into a single dataset. AOIs were
removed if their nuclei count was below 100 nuclei, as provided by NanoString. Genes were
filtered out unless above limit of quantitation in 5 % of remaining AOIs, calculated for each AOI
as the geometric mean of all negative probes multiplied by the geometric standard deviations of

the negative probes to the second power.

From filtered raw counts of each region, a combined dataset was constructed, where Ki67 (K) and
Ki67 (T) tumor AOIs from the same region were joined together into a single tumor AOI ( [T +
K] ). This was done to ensure the entire neoplastic compartment of each region was being
compared when desired. Further preprocessing of both the original separated [T] + [K] dataset and

the combined [T + K] dataset were performed independently but identically as follows.

Remaining genes were normalized by upper quartile normalization. Batch correction was required
as we observed different signal-to-noise ratios, as previously observed*. Here we performed batch
correction on the logged normalized count data, using limma via geomxBatchCorrection in standR
(v1.0.0), separately for astrocytoma and GBM, with experimental batch and sex considered.
Correcting for batch effects on all astrocytoma and GBM samples simultaneously showed
inappropriate mixing of tumor classes in PCA and suggested loss of biologically relevant
differences. PCAs were plotted using functions from the standR package (v1.0.0). Cell cycle
scoring was estimated by Seurat (v4.1.1). Hypoxia levels were measured by abundance of genes
in each AOI from the respective KEGG pathway using the keggGet function (KEGGREST
v1.36.3).

Deconvolution

The tumor deconvolution reference was constructed from Couturier ef al. dataset with unassigned
tumor cells excluded'. The top 5,000 highly variable genes also present in the DSP filtered gene
list were used to form signature profiles for each cell state, via the spatialDecon package (v1.6.0).
Testing for difference in cell state proportions between astrocytoma and GBM as well as Ki67*

and Ki67 regions was performed using propeller in the speckle package (v0.0.3), using t-tests and
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estimated number of nuclei of each cell state. A logit transformation was used to test the
proportions and multiple testing was corrected using false discovery rate (FDR).

t14 via the

The immune deconvolution reference was constructed from Ruiz-Moreno ef al. datase
spatialDecon package (v1.6.0). Immune cell type signatures were derived from Ruiz-Moreno ‘cell
type’ annotation; for segregating T cells, only cells that were labelled as ‘mature T cell’ in the
‘cell type’ annotations and contained either ‘CD4’, ‘CD8’, or ‘reg’ in the ‘celltype original’
annotations were included for each respective cell type. Alongside the immune cell types, a
neoplastic signature and non-immune non-neoplastic signature were also included from
‘annotation level 1,” to account for possible contamination of immune AOIs. All genes
intersecting the safeTME profile as well as the DSP filtered gene list were included (n = 859).
Testing for differences in cell type proportions between classifications was performed using
propeller in the speckle package (v0.0.3), using F-tests via ANOVA and estimated number of

nuclei of each cell state. A logit transformation was used to test the proportions and FDR was

applied.

DEG

DEG analysis was performed with limma-voom (limma v3.52.4) /edgeR (v3.38.4). Voom was
applied twice, with duplicate correlation considered both times for AOIs coming from the same
region. Sex and Batch were also added to the model where appropriate. GO term analysis was
performed on DEG lists using goana, with trend set to TRUE (limma v3.52.4). GO terms were
then clustered using semantic clustering via simplifyEnrichment (v1.6.1), and further clustered
with kappa clustering to separate into groups of similarly worded GO terms that share similar gene

sets.

CNA analysis

CNA analysis was performed using cnvkit (v0.9.9) to infer copy number alterations from raw
count data. GBM samples from The Cancer Genome Atlas with matched CNA and gene expression
data were used to calculate the correlation of each gene’s expression to copy number changes.
Immune AOI were used as ground truth normal samples to which alterations were compared to.

Circular binary segmentation was performed. CNA results were visualized using
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ComplexHeatmap (v2.12.1) and GenomicRanges (v1.48.0), with windows binned to 10,000 base
pairs using EnrichedHeatmap (v1.26.0).

Shannon Entropy

Shannon entropy across all individual genes was calculated from upper-quartile normalized counts
using a shrinkage estimator to counter the effect of under sampling for lower nuclei AOIs. For
entropy of tumor cell states, the entropy of the top 50 scaled genes contributing to the respective
cell state signature in the Couturier et al. reference profile was summed together'3. Entropy was
calculated for various subsets of the data, including: the combined [T + K] tumor samples; the
separated [T] + [K] tumor samples; the Ki67* tumor regions only; and the Ki67" tumor regions

only.

Sum of Squares approach

A sum of squares approach was applied to each window of 10,000 base pairs along the genome.
For every chromosomal window assessed, the total sum of squares is the combined result of: the
between sum of squares, which aggregates the difference of each sample’s average value to the
global average (inter-tumoral heterogeneity); and the within sum of squares, which aggregates the
difference of each AOI of a sample to that sample average, and then combines values for all
samples (intra-tumoral heterogeneity). This approach was applied separately to the GBM samples

and the astrocytoma samples, revealing genomic regions of heterogeneity for each glioma.

Correlation plot

GBM ROIs with matched immune and tumor AOIs were correlated along with their location
classifications based on immunostaining, employing the combined [T + K] dataset. ROIs labelled
as ‘Ki67 Border’ and ‘Normal regions’ constituted the ‘Outside’ locations, and ROIs labelled as
‘Border’ formed the ‘Edge’ location signature. The correlation plot was made using corrplot

(v0.92).

Ligand-receptor analysis
Ligand-receptor analysis employed the connectomeDB2020 list of literature-supported ligand-

receptor pairs. Only ROIs with matching tumour and immune AOIs were included. Correlations
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between ligand and receptor expression was calculated in the same AOI (immune to immune, and
tumor to tumor signaling) and in matched AOI pairs (tumor to immune, and immune to tumor
signaling). Displayed ligand-receptor pairs were manually selected based on the recurrent
increased correlation of particular signaling pathways in the same direction (for example, increased
correlation of WNT signaling pairs in tumor to tumor interactions). Spiderplots were constructed

with ggradar (v0.2).

CosMx® Dataset
Spatial Molecular Imaging (SMI)

Tissue samples were obtained and prepared for analysis as previously described?’. Briefly, serial
sections were H&E stained to identify FOVs for RNA target readout and protein detection. RNA
readout was performed by flowing 100 pl of Reporter Pool 1 into the flow cell and incubating for
15 min. Reporter Wash Buffer (1 mL) was then flowed to wash unbound reporter probes, and
Imaging Buffer was added for imaging. Nine Z-stack images (0.8 um step size) for each FOV were
acquired, and photocleavable linkers on the fluorophores of the reporter probes were released by
UV illumination and washed with Strip Wash buffer. The fluidic and imaging procedure was
repeated for the 16 reporter pools, and the 16 rounds of reporter hybridization-imaging were
repeated multiple times to increase RNA detection sensitivity. After RNA readout, the tissue
samples were incubated with a 4-fluorophore-conjugated antibody cocktail against Histone H3,
18s TRNA, GFAP and DAPI stain in the CosMx SMI instrument for 2 h. Imaging Buffer was added

to the flow cell and nine Z-stack images for the 4 channels (3 antibodies and DAPI) were captured.

Cell segmentation

For cell segmentation the NanoString pipeline combining image preprocessing and machine
learning techniques was used on tissue images stained with Histone H3, 18s rRNA, GFAP and
DAPI. Briefly, the pipeline first performs pre-processing for boundary enhancement followed by

cell segmentation via a pretrained neural network in Cellpose (v2.0).

Preprocessing
We next generated single-cell expression matrix by counting molecules of each gene within the

area assigned to a cell by the segmentation algorithm. We removed any cells with fewer than
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20 total transcripts or more than 3 negative control probes. We then applied a log-normalization to
the expression matrix using scater (v1.26.1) in combination with SpatialExperiment (v1.9.4).

Highly expressed MALATI was removed before any subsequent analyses.

Cell type annotation

Data dimensions were reduced using PCA and the number of components kept was determined
via a global maximum likelihood based on translated Poisson mixture model approach with 20
nearest neighbors implemented in intrinsicDimension (v1.2.0). This approach has recently been
shown to produce the best separation of challenging subpopulations.We also generated a Uniform
Manifold Approximation and Projection (UMAP) embedding based on the PCA with spread set
to 3 and mindist set to 0.01 with 15 nearest neighbors. Cells were then clustered based on the PCA
via Leiden clustering implemented in bluster (v1.8.0). Cells were automatically annotated using

t14

SingleR (v2.0.0) with the reference set as the downsampled GBM harmonized dataset'® (see

description in Deconvolution).

Clustering of the entire dataset produced 35 clusters. Clusters were first annotated as Vasculature,
Immune or Tumor according to the predicted cell type labels from SingleR and marker genes
(Vasculature: COL4A42, Tumor: APO-J, Immune: CDI163). Cells in the immune and tumor
compartment were reclustered following the process outlined above, including dimension
reductions (during the immune cell reclustering we identified further mesenchymal cells). This
produced 16 clusters for the immune cells and 27 clusters for the tumor cells. Cell type labels for
the tumor cells were additionally predicted using SingleR with the reference set to the Couturier
et al. dataset'®. Clusters for both immune and tumor cells were annotated according to the

predicted labels and known markers genes.

Networks and modularity

Using reticulate (v1.28), the preprocessed dataset was converted to an anndata object to be
analyzed by squid.py (v1.2.3). We were then able to build an adjacency matrix indicating the cells
that are in ~30um radius (179 pixels) of each cell within the same FOV. By combining the
adjacency matrix with the cell type annotations for each cell the modularity of each cell type can

be worked out using igraph (v1.4.0). The modularity measures how strongly separated cells of the
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same type are compared to a random null model with higher values showing less spatial separation

between cells of the same cell type.

Neighborhood clustering

To identify tumor niches, we developed our own version of a neighborhood composition approach.
Briefly, we first divide each FOV into overlapping 500 by 500 pixel windows that are shifted by
100 pixels. In each window, we count the number of different cell types. Using a Bray-Curtis
dissimilarity implemented in vegan (v2.6-4), we built a hierarchical clustering tree utilizing Aclust.
With the help of the hierarchical clustering tree, we decided on 5 clusters and identified cluster
labels for each window using cutree. As each 100 by 100 pixel tile of each FOV is overlapped by
multiple windows with an associated cluster label, we use a majority voting strategy to identify
the cluster label for each 100 by 100 pixel tile. This results in neighborhoods being identified
across the FOVs, which can be described by their enrichment of cell types using a simple chi-

square test approach.

Ligand-receptor analysis

Based on the adjacency matrix, we identified significant ligand-receptor interactions (adjusted p-
value <0.01) according to the CellPhoneDB algorithm as implemented in squid.py. We selected
ligand-receptor interactions that were previously found to occur mainly in one direction; either
tumor to tumor, tumor to immune, immune to tumor or immune to immune, such as the genes in
the TGFB pathway. We also selected ligand-receptor interactions that were specific to the ligand
cell type.

Visium® Dataset

Processed data were downloaded from https://doi.org/10.5061/dryad.h70rxwdmj. Deconvolution

of spots as described in Ravi ef al. were obtained from the authors upon request'.

Co-location testing
To test co-location of two cell types, we modified a method for the identification of proximal
interacting cell types in Giotto. We first determined whether the cell types were present in any spot

by multiplying the predicted proportion with the number of cells in the spot. Like for the SMI data,
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we built an adjacency matrix indicating the direct neighbors for each spot. Using this adjacency
matrix, we can then find the number of times the cell types of interest are co-located. By permuting
the cell type labels 1000 times, we can find distribution of the number of expected co-location
events, which allows us to determine a z-score and can be tested. P-values from tests were

corrected for multiple testing using p.adjust with a FDR method.

Data availability

The GeoMx® DSP data and CosMx® SMI is available from the authors on request during the

review period and will be made available in public repositories upon publication.

Code availability

All code required for the analysis of the data can be found at:

https://github.com/SaskiaFreytag/spatial brain_cancer/.
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Fig. 1 | Detecting regions of interest in high-grade glioma.

a. Immunostaining of GFAP, IDH1-R132H, Ki67, CD45 and H&E stain of representative regions
in GBM and astrocytoma (A) samples. Scale, 200 um. b. Deconvolution of tumor cell states per
patient sample (A n=3, GBM n=3). ¢. H&E of GBM and astrocytoma samples with tumor cell
state proportions plotted over each region of interest (ROI). Scale, 1 mm. d. Complex heatmap of
each tumor (T) and Ki67" tumor (K) AOI deconvolution and key characteristics. Rows and
columns are clustered by expression of selected genes, following splitting into GBM (left) and
astrocytoma (right) samples, and splitting into clinically relevant (above) and differentially
expressed (below) genes. Above the heatmap, columns are annotated with the tumor deconvolution
of each AOI; below, columns are annotated for each AOI patient sample of origin, location of ROI
in relation to tumor immunostaining, pathology classification based on Ivy GAP, K167 status based
on immunohistochemistry, level of immune infiltration based on CD45 immunohistochemistry,
cell cycling phase based on gene expression, and tumor hypoxia based on gene expression. e.
Deconvolution of GBM-1 (n=3) and GBM-2 (n=2) Ki67" vs Ki67" AOI in CT regions. Proportions

averaged across AOL.
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Fig. 2 | Spatial heterogeneity detected by copy number alteration.

a. Copy number alteration (CNA) analysis per chromosome of astrocytoma samples, with
heterogeneity overview. Left, inferred CNA segmentation, displaying windows of 10,000 base
pairs. Right, between sum of squares and within sum of squares values for each window, log»-
transformed. Sum of squares was calculated using only astrocytoma samples. b. Chromosome
arms 1p and 19q comparison across astrocytoma samples. Average CNA value across chromosome
arm, compared to average CNA value across the whole genome. ¢. Shannon Entropy analysis of
cell state in astrocytoma tumor samples. Colored by cell state, and repeated for both combined (
[T + K] ) and separated ( [T] + [K] ) datasets, as well as Ki67- and Ki67" samples only. d. CNA
analysis per chromosome of GBM samples, with heterogeneity overview. Left, inferred CNA
segmentation, displaying windows of 10,000 base pairs. Right, between sum of squares and within
sum of squares values for each window, logy-transformed. Sum of squares was calculated using
only GBM samples. e. GBM-1 ROI 1-3 location (left) and CNA plots depicting chromosome 7
and chromosome 10 (right). ROI 3 (below) Ki67 immunostaining and GFAP'Ki67" (K) and
GFAP'Ki67 (T) CNA plots depicting chromosomes 15-17. f. PDGFRA gene expression in GBM
samples (n=3). g. Immunohistochemistry of PDGFR alpha expression in GBM samples. Scale,
100 pm.
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Fig. 3 | Spatial heterogeneity at the single cell level in glioblastoma.

a. Schematic of GBM-1 with ROI from GeoMx® DSP analysis (left) and fields of view (FOV)
from CosMx® SMI analysis. Scale, 1 mm. b. UMAP plot depicting 11,801 cells separated in tumor,
immune, and vasculature cell types. Insets show UMAP colored by log expression of marker
genes, APO-J, CDI163, and COL4A2. c. UMAP plot depicting 8,974 tumor cells colored by
predicted DSP tumor states based on Couturier et al. d. UMAP plot of tumor cells annotated by
identified tumor states. e. UMAP depicting presence of TOP24 expression. f. Percentage of cells
expressing 7OP24 in each tumor state across all FOVs. g. Proportions of each tumor cell state as
estimated from the SMI in GBM-1 FOV regions. Scale, 1 mm. h. Overview of representative FOV
2,4, 10 SMI immunofluorescence protein expression (Histone H3, 18s rRNA, GFAP) and Voronoi
plots showing cell segmentation and colored by tumor state assignment. Scale, 100 pm. i.
Modularity score for each tumor cell state, measuring the number of connections between cells of

the same state compared to those to other states. Each point indicates one FOV in GBM-1.
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Fig. 4 | Immune infiltration in glioblastoma.

a. [HC staining of CD45 and CD68 protein expression of GBM-1 ROI 1, GBM-2 ROI 6 and GBM-
3 ROI 7. Scale, 100 um. b. Average proportion of myeloid and lymphoid immune infiltrate in
GBM ROIs for each sample, as determined from deconvolution. ¢. Complex heatmap of immune
and cell state deconvolution, including only GBM samples with matched immune and tumor AOIs
in combined dataset (n = 15). The top 5 genes with highest signature scores for each cell type in
the reference profile are displayed as a heatmap and inform the clustering of rows. d. UMAP of
1,862 immune cells colored by cell state type. Inset, UMAP of all cells with immune cluster
indicated by red box. e. UMAP of immune cells indicating presence of AHR expression. f. Average
immune infiltrate detected in GeoMx® DSP compared to CosMx® SMI analysis for GBM-1. All
T cell populations in DSP analysis were combined into a single population to mirror the SMI
populations. g. Spatial gene expression of PTPRC mRNA with inset of immune infiltrate
proportions; and Voronoi plots of monocyte, macrophage and microglia in GBM-1 FOV2, 4 and

10. Scale, 100 pm.
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Fig. 5 | Ligand-Receptor pairs coordinate cells into niches.

a. Correlation spider plots of ligand receptor pairs with pronounced tumor to immune, tumor to
tumor and immune to immune signaling. b. Heatmaps of ligand receptor signaling pair expression.
Left, cell state deconvolution and heatmap of tumor cell ligand expression. Right, immune
deconvolution and heatmap of respective immune cell receptor expression. ¢. Product of
expression of significant ligand/receptor interaction pairs between tumor (ligand) and immune
(receptor) that show specificity with regards to tumor state in GBM-1. d. UMAP of 11,801 cells
colored by inferred cell type. e. UMAP of all cells showing gene expression level (main) and probe

presence/absence (inset) of key genes in each tumor cell state.
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Fig. 6 | Tumor and immune cell types associate in discrete neighborhoods.

a. Immunofluorescence image (left) and plot indicating predicted neighborhoods (right)
corresponding to spatial niches of field of view (FOV) 1 in GBM-1 SMI analysis. Scale, 100 pm.
b. Enrichment heatmap of each cell type over expected within neighborhoods in GBM-1. c.
Network where each node represents a cell, colored by their cell type, and each edge represents
that another cells is within 30 um radius for all cells assigned to neighborhood 1. d. Voronoi plots
of mesenchymal, mix and monocyte populations in FOV 1. e. Correlation plot of immune cell
types, tumor cell states, and location classifications across matched GBM immune samples (n=15).
f. Representative GBM Visium® sample!> with spots colored by estimated number of cells of
mesenchymal, NPC-like, OPC-like and astrocytic tumor state (above) and Monocyte score
(below). g. Number of Visium® samples'> with significant positive or negative co-localization
between tumor and immune cell types. h. Schematic of tumor and immune architecture in GBM

samples highlighting key findings from this study.
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TABLE 1 | Characteristics of patient samples.

Patient information Clinical information
Sample Age | Sex | Tumor IDH1 ATRX TP53 CDKN2A | Ki67 CD45 | Cytology | WHO Comments
location grade
A-1 35 F | Left frontal Mutated | Intact Intact Intact 8-13% - A* 3 Nil
A-2 27 F | Right parietal | Mutated | Mutated | Mutated | Intact 18-23% + A 3 Pre-treated: radiation
A-3 45 M | Right frontal Mutated | Mutated | Mutated | Mutated 10-15% + A 3 Pre-treated: radiation,
temozolomide
GBM-1 67 M | Right Intact Intact Mosaic Intact 10-15% - GBM 4 MGMT methylated
temporo-
occipital
GBM-2 49 M | Left frontal Intact Intact Intact Mutated 10-15% | ++ GBM 4 MGMT unmethylated
GBM-3 47 M | Left temporal | Intact Intact Mosaic Mutated 20-30% + GBM 4 MGMT unmethylated

GBM, glioblastoma; A, astrocytoma; F, female; M, male.
* Sample A-1 was re-diagnosed to an oligodendroglioma following the detection of 1p/19q codeletion by next generation sequencing

panel
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TABLE 2 | GeoMx® DSP spatial transcriptomics key features

Features A GBM

Patients 3 3

[*)

= ROI 16 18

E Aol 32 39

N
Excluded 6 1
Tumor 16 18

§ Ki67+ 5 5
CD45 5 15
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