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Abstract:

Transcriptome prediction models built with data from European-descent individuals are less
accurate when applied to different populations because of differences in linkage disequilibrium
patterns and allele frequencies. We hypothesized methods that |everage shared regulatory
effects across different conditions, in this case, across different populations may
improve cross-population transcriptome prediction. To test this hypothesis, we made
transcriptome prediction models for use in transcriptome-wide association studies
(TWAYS) using different methods (Elastic Net, Joint-Tissue Imputation (JTI), Matrix
eQTL, Multivariate Adaptive Shrinkage in R (MASHR), and Transcriptome-Integrated
Genetic Association Resource (TIGAR)) and tested their out-of-sample transcriptome
prediction accuracy in population-matched and cross-popul ation scenarios.
Additionally, to evaluate model applicability in TWAS, we integrated publicly
available multi-ethnic genome-wide association study (GWAS) summary statistics
from the Population Architecture using Genomics and Epidemiology Study (PAGE)
and Pan-UK Biobank with our developed transcriptome prediction models. In regard to
transcriptome prediction accuracy, MASHR models performed better or the same as
other methods in both population-matched and cross-popul ation transcriptome
predictions. Furthermore, in multi-ethnic TWAS, MASHR models yielded more
discoveries that replicate in both PAGE and PanUK BB across all methods analyzed,
including loci previously mapped in GWAS and new loci previously not found in
GWAS. Overall, our study demonstrates the importance of using methods that benefit


https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527747; this version posted May 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

available under aCC-BY-NC 4.0 International license.

from different populations’ effect size estimates in order to improve TWAS for multi-
ethnic or underrepresented populations.

1. INTRODUCTION

Through genome-wide association studies (GWAS), many associations between single
nucleotide polymorphisms (SNPs) and diverse phenotypes have been uncovered*. However,
most GWAS to date have been conducted on individuals of European descent, even though they
make up less than one fifth of the total global population®®. Ancestry diversity in human genetic
studies isimportant because as linkage disequilibrium and allele frequencies differ among
populations, associations found within European ancestry individuals may not reflect
associations for individuals of other ancestries and vice versa®. Some efforts to increase ancestry
diversity in human genetics studies include the NHLBI Trans-Omics for Precision Medicine
(TOPMed) consortium®, the Population Architecture using Genomics and Epidemiology
(PAGE) study®, the Human Heredity and Health in Africa (H3Africa) initiative®, and the Pan-
ancestry genetic analysis of the UK Biobank (PanUKBB’).

Alongside GWAS, transcriptome-wide association studies (TWAS) test predicted gene
expression levels for association with complex traits of interest, identifying gene-trait associated
pairs’. Different TWAS methods, such as PrediX can and FUSION, work by estimating gene
expression through genotype data using transcriptomic prediction models built on expression
quantitative trait loci (€QTL) data®*®. Similarly to GWAS, TWAS are also negatively affected
by ancestry underrepresentation, as gene expression prediction modelsfor usein TWAS are
often trained in European descent datasets, which reduces the power of studies conducted with
individuals of other ancestries™*. Still, we expect the underlying biological mechanisms of
complex traits to be shared across human populations™*3, and thus prediction methods that
account for allelic heterogeneity and better estimate effect sizes can improve the discovery rate
and interpretation of TWAS across popul ations.

Here, we used genomic and transcriptomic data from the Multi-Ethnic Study of
Atherosclerosis (MESA)™ multi-omics pilot study of TOPMed to build TWAS prediction
models (Figure 1). Using five different methods to estimate effect sizes, Elastic-Net*>*°, Joint-
Tissue Imputation (JT1)", Matrix eQTL"®, multivariate adaptive shrinkage (MASHR)", and
Transcriptome-I ntegrated Genetic Association Resource (TIGAR)®, we built population-
specific transcriptomic prediction models for four MESA-defined populations — African
American, Chinese, European, and Hispanic/Latino — acrossthree blood cell types and
evaluated their prediction performance in the Geuvadis® cohort using PrediX can’. From there,
we used S-PrediXcan? to apply our modelsto GWAS summary statistics of complex traits from
the multi-ethnic PAGE® study and PanUKBB’. We hypothesized that MASHR and JT| were
most likely to improve transcriptome prediction and increase the number of TWAS hitsin
comparison to the other methods, as they both leverage similar effect size estimates across
different conditions - in this case, different populations - to adjust effect sizes. In agreement to
that, our results indicated that in cross-population predictions, MASHR models have a higher
transcriptome prediction accuracy than other methods. Furthermore, in our TWAS, MASHR
models discovered the highest number of associated gene-trait pairs across all population
models. These findings illustrate that leveraging genetic diversity and effect size estimates
across populations can help improve current transcriptome prediction models, which may
increase discovery and replication in association studies in underrepresented popul ations or
multi-ethnic cohorts.
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100

101 2. METHODS

102 a. Training dataset

103

104 To build our transcriptome prediction models, we used data from the Multi-Ethnic Study
105  of Atherosclerosis (MESA)™ multi-omics pilot study of the NHLBI Trans-Omicsfor Precision
106  Medicine (TOPMed) consortium. This data set includes genotypes derived from whole genome
107  sequencing and transcripts per million (TPM) values derived from RNA-Seq for individual s of
108  four different populations— African American (AFA), Chinese (CHN), European (EUR), and
109  Hispanic/Latino (HIS) —for three different blood cell types: peripheral blood mononuclear cells
110 (PBMC, ALL n=1287, AFA n= 334, CHN n =104, EUR n =528, HIS n= 321), CD16+

111 monocytes (Mono, ALL n =395, AFA n =75, EURn =221, HISn =99), and CD4+ T-cells (T
112 cédls, ALL n=397, AFA n=75, EUR n = 224, HISn = 98).

113

114 b. Genotype and RNA-Seq QC

115

116 We performed QC on each MESA tissue-population pair separately. For the genotype

117  data’ (Freeze 8, phs001416.v2.p1), we excluded INDELSs, multi-allelic SNPs, and ambiguous-
118  drand SNPs (A/T, T/A, C/G, G/C), and removed the remaining variants with MAF < 0.01 and
119 HWE <1 x 10®using PLINK?® v1.9. For chromosome X, filtering by HWE was only applied in
120  variantsfound within the pseudoautosomal regions based on GRCh38 positions. Furthermore,
121  for the non-pseudoautosomal region of X, male dosages were assigned either 0 or 2. After QC,
122  theaverage numbers of non-ambiguous SNPs remaining per population across al cell types
123 were: AFA =15.7M; CHN = 8.4M; EUR = 9.7M; HIS = 13.2M.

124

125 For the RNA-Seq data, we also performed QC separately by tissue-population. First, we
126  removed genes with average TPM values < 0.1. For some individuals, RNA expression levels
127  were measured at two different time points (Exam 1 and Exam 5); thus, after log-transforming
128  each measurement and adjusting for age and sex as covariates using linear regression and

129  extracting the residuals, we took the mean of the two time points (or the single adjusted log-
130 transformed value, if expression levels were only measured once), performed rank-based

131  inverse normal transformation, and adjusted for the first 10 genotype and 10 expression PCs. To
132 estimate principal components, we used PC-AiR* with kinship threshold of ~0.022, which

133 corresponds to 4™ degree relatives. No individuals were removed. For each tissue, we removed
134  genesabsent in at least one population. After QC, we had 17,585 genesin PBMC, 14,503 in
135  Mono, and 16,647 in T cells. We used GENCODE?® annotation v38 to annotate gene types (e.g.
136  protein-coding, INcCRNA, etc.) and gene transcription start and end sites.

137

138 c. Gene expression cis-heritability estimation

139

140 We estimated gene expression heritability (h°) using cis-SNPs within the IMb region

141 upstream of the transcription start site and 1Mb region downstream of the transcription end site.
142  Using the genotype data filtered only by HWE P-value < 1 x 10°°, for each tissue-population
143 pair, wefirst performed LD-pruning with a 500 variants count window, a 50 variants count step,
144  and a0.2 r’threshold using PLINK? v1.9. Then, for each gene, we extracted cis-SNPs and

145  excluded SNPswith MAF < 0.01. Finally, to assess cis-SNP expression heritability, we

146  estimated the genetic relationship matrix and h* using GCTA-GREML?® with the “--reml-no-
147  constrain” option. We considered a gene heritable if it had a positive h? estimate (h? - 2*SE. >
148  0.01 and p-value < 0.05) in at least one MESA population. In total, 9,206 genes were heritable
149 inPBMC, 3,804 in Mono, and 4,053in T cells. We only built transcriptome prediction models
150  for these heritable genes across all populationsin their respective cell types.


https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527747; this version posted May 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

available under aCC-BY-NC 4.0 International license.

d. Transcriptome prediction models

With the aforementioned genotype and gene expression data, we built transcriptome
prediction models for each MESA tissue-population pair, and for each gene we considered cis-
SNPs as defined in the previous section. Additionally, we only considered SNPs present in the
GWAS summary statistics of the Population Architecture using Genomics and Epidemiology
(PAGE) study” to build our prediction modelsto make sure that there would be a high overlap
between SNPsin the transcriptome models and SNPs in the GWAS summary statistics. After
merging with PAGE SNPs, the average numbers of SNPsleft in our dataset were: AFA =
12.8M; CHN = 6.2M; EUR = 7.4M; HIS = 10.5M.

We built our population-based models using five different approaches. The first was
elastic-net (EN) regression using the glmnet package in R™*¢, with mixing parameter o = 0.5.
We considered EN as our baseline model, asit has been previously used to make transcriptome
prediction models for the TOPMed MESA data?’.

The second method implemented was mash (Multivariate Adaptive Shrinkage)™ in R
(MASHR). Unlike EN, MASHR does not estimate weights by itself; rather, it takes z-score (or
weight and standard error) matrices as input and adjusts them based on correlation patterns
present in the datain an empirical Bayes algorithm, allowing for both shared and condition-
specific effects. By doing so, MASHR increases power and effect size estimation accuracy™.
Originally, MASHR applicability was demonstrated by leveraging effect size estimates across
different tissues™, however, herein we sought to assess its potential to leverage effect sizes
across populations. We ran MASHR for each gene at atime, using cis-SNPs weights (effect
sizes) estimated by Matrix eQTL® and MESA populations as different conditions (Figure 2A).
Then, we split MASHR-adjusted weights according to their respective populations, and selected
the top SNP (lowest local false sign rate) per gene to determine which SNPs would end up in
the final models (Figure 2B). Local false sign rate issimilar to false discovery rate, but it is
more rigorous as it also takes into account the direction of effect'. Thus, by selecting one top
SNP per population, the maximum number of SNPs per gene in the final model is 4, which
corresponds to the number of populationsin our study. If two or more populations had the same
variant astop SNP, it was only included once. To make population-based models, we used
population-specific effect sizes, taken from the corresponding MASHR output matrices.

The third method was based on the unadjusted effect sizes estimated by Matrix eQTL®
using the linear regression model. We used the same approach taken to build the MASHR
models, including the SNP with the lowest p-value from each population, but the key difference
isthat we made the models using the unadjusted effect sizes.

The fourth method we used was Transcriptome-I ntegrated Genetic Association
Resource (TIGAR), which trains transcriptome imputation models using either EN or
nonparametric Bayesian Dirichlet Process Regression (DPR)®. As we already used EN to make
aset of transcriptome prediction models, we opted to make DPR-based models. We used
TIGAR' s default parametersto train our models, such as using the Variational Bayesian
algorithm and outputting fixed effect sizes. However, by default, TIGAR performs 5-fold cross
validation (CV) during training, and only outputs results if the final average CV R2isequal or
greater than 0.005; thus, since we did not implement CV for any of the af orementioned methods
and instead tested performance in an independent sample, we opted to skip this step of TIGAR's
pipeline and generate outputs for all genes. Most gene models generated by TIGAR had
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201  hundreds of SNPs with near-zero effect sizes. To reduce memory requirements for storage of
202  these models, we removed SNPs with effect sizes smaller than 1 x 10™.

203

204 The fifth and last method we implemented was Joint-Tissue Imputation (JT1)". JTI was
205  designed to leverage similarity in gene expression and DNase 1 hypersensitive sites across

206  different tissuesto possibly improve prediction performance. Thus, ssmilarly to MASHR, we
207  sought to assess whether the method could be adapted to use populations instead of tissues. To
208  assess gene expression similarity between MESA populations, we computed transcriptome-wide
209  pairwise correlations between populations using the median TPM value per gene. Additionally,
210  wedid not have population DNase 1 hypersensitivity Site data, so we set column fiveto 1 in our
211 input files. By default, JT1 performs 5-fold CV and only produces outputs for genes with

212 average CV R greater than 0.1. Thus, similarly to TIGAR, we removed thisfiltering step of the
213 pipelineto generate output for all genes regardless of CV performance.

214

215 To perform TWAS using GWAS summary statistics data, it is necessary to have

216  information about the correlation between the SNPs used to predict gene expression levels®.
217 Thus, for all our transcriptome prediction models previously mentioned, we computed pairwise
218  covariancesfor the SNPs within each TOPMed MESA population model using the respective
219  population dosage data. All model files are freely available for anyone to use (see Data

220  Availability section).

221

222 e. Assessing transcriptome prediction performance

223

224 To evaluate the gene expression prediction performance of all our transcriptome

225  prediction models, we used DNA and lymphoblastoid cell lines RNA-Seq data from 449

226  individualsin the Geuvadis® study. Individuals within the testing dataset belong to five

227  different populations (Utah residents with Northern and Western European ancestry (CEU), n=
228  91; Finnishin Finland (FIN), n = 92; British in England and Scotland (GBR), n = 86; Toscani in
229  ltaly (TSl), n=91; Yorubain Ibadan, Nigeria (Y RI), n = 89), which we analyzed both

230  separately and together (ALL). Similarly to our training dataset, we performed rank-based

231 inverse normal transformation on the gene expression levels, and adjusted for the first 10

232 genotype and 10 expression PCs, using the residuals as observed expression levels. With the
233 Geuvadis genotype data and our transcriptome prediction models, we used PrediX can® to

234 estimate gene expression levels. PrediXcan isatwo-step TWAS method, in which the first step
235  isto estimate genetically regulated expression levels (GReX). Thus, to assess transcriptome
236  prediction performance, we compared GReX to the adjusted, measured expression levels using
237  Spearman correlation.

238

239 f.  Assessing performance in transcriptome-wide association studies

240

241 To test the applicability of our transcriptome prediction models in multi-ethnic

242  association studies, we applied S-PrediX can” to GWAS summary statistics from the Population
243 Architecture using Genomics and Epidemiology (PAGE) study®. The PAGE study consists of
244 28 different phenotypes tested for association with variants within a multi-ethnic, non-European
245  cohort of 49,839 individuals (Hispanic/Latino (n=22,216), African American (n=17,299), Asian
246 (n=4,680), Native Hawaiian (n=3,940), Native American (n=652) or Other (n=1,052)). Since we
247  tested multiple phenotypes and transcriptome prediction modelsin our TWAS, we used a

248  conservative approach and considered genes as significantly associated with a phenotype if the
249  association p-value was less than the standard Bonferroni corrected GWAS significance

250  threshold of 5x 10°.

251
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To replicate the associations found in PAGE, we also applied S-PrediX can®® to
PanUKBB’ GWAS summary statistics (N=441,331; European (n=420,531), Central/South
Asian (n=8,876), African (n=6,636), East Asian (n=2,709), Middle Eastern (n=1,599) or
Admixed American (n=980)). For similarity purposes, we selected summary statistics of
phenotypes that overlap with the onestested in PAGE (Table S1). Aspreviously described, a
gene-trait pair association was considered significant if its p-value was less than the Bonferroni
corrected GWAS significance threshold of 5 x 10°®. Furthermore, we deemed significant gene-
trait pair associations as replicated if they were detected by the same MESA tissue-population
model and had the same direction of effect in PAGE and PanUKBB. To assessif the gene-trait
association pairsreported in our study are novel or not, we compared them to studies found in
the GWAS Catalog" (All associations v1.0.2 file downloaded on 11/9/2022).

3. RESULTS
a. Increased sample sizes improve gene expression cis-heritability estimation

With the goal of improving transcriptome prediction in diverse populations, we first
determined which gene expression traits were heritable and thus amenable to genetic prediction,
using genome-wide genotype and RNA-Seq data from three blood cell types (PBMCs,
monocytes, T cells) in TOPMed MESA. We estimated cis-heritability (h?) using datafrom four
different populations (African American - AFA, Chinese - CHN, European - EUR, and
Hispanic/Latino - HIS). Variation in h2 estimation between populationsis expected due to
differencesin alele frequenciesand LD patterns; however, we show that larger population
sample sizes yield more significant (p-value < 0.05) h2 estimates (Figure 3). Using the PBMC
dataset as an example, with the EUR dataset (n = 528), we assessed h? for 10,228 genes,
however, we estimated h? for 8,765 genes using the AFA dataset (n = 334) (Figure 3A).
Moreover, we see agreat impact on the CHN population, which has the smallest sample size.
For that population, we managed to estimate h2 for only 3,448 genes. The same pattern repeats
when analyzing only the heritable genes (h2 lower bound > 0.01). In EUR, 6,902 genes were
deemed heritable, whereas in AFA and CHN the amount of heritable genesis 5,537 and 1,367,
respectively (Figure 3B). Thus, larger sample sizes are needed to better pinpoint h2 estimates,
especially in non-European populations. In total, analyzing the union across all populations’
results, we detected 9,206 heritable genesin PBMCs, 3,804 in monocytes, and 4,053 in T Cells.

b. MASHR models improve cross-population transcriptome prediction performance

To improve TWAS power for discovery and replication across all populations, we sought
to improve cross-population transcriptome prediction accuracy. For this, we used data from four
different populations and built gene expression prediction models using five different methods
(Elastic Net (EN), Transcriptome-Integrated Genetic Association Resource (TIGAR), Matrix
eQTL, multivariate adaptive shrinkage in R (MASHR), and Joint-Tissue Imputation (JT1)). We
chose EN as a baseline approach for comparison in our analysis, asit has been previously
shown to have better performance than other common machine learning methods such as
random forest, K-nearest neighbor, and support vector regression®. Furthermore, we trained
gene expression prediction models by applying TIGAR’s nonparametric Bayesian Dirichlet
Process Regression pipeline”. Using Matrix eQTL, we estimated univariate effect sizesfor each
cis-SNP-gene relationship and we developed an algorithm to include top SNPs from each
population, but population-estimated effect sizes in each population’s model (Figure 2). Matrix
eQTL effect sizes arethe input for MASHR, which we hypothesized might better etimate
cross-population effect sizes, due to its flexibility in allowing both shared and population-
specific effects®?. Similarly, JTI was designed to leverage correlation across different tissues
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to improve gene expression prediction’’; thus, we also adapted its pipeline to perform cross-
population leveraging. By filtering our models to include only genes with positive h2 (h? lower
bound > 0.01) in at least one population, we saw that among all methods used, we obtained
more gene modelsin MatrixeQTL and MASHR (Figure 4A). The difference is especially
greater in the CHN population mode.

To evaluate model performance at popul ation-matched and cross-popul ation
transcriptome predictions, we used data from the Geuvadis study, which comprises individuals
of West African or European descent. We defined “ popul ation-matched predictions’ as the
scenarios in which the transcriptome model MESA training data and Geuvadis test data have the
closest genetic distance with available data, and we defined “cross-population predictions’ as
any other pairs (Figure S1). Overall, across all Geuvadis populations, the methods tested show
digtinct performances (Figure S2). This result, however, may be influenced by the fact that
different transcriptome models have a different number of genesin them (Figure 4A). Thus, we
sought to compare performances considering the intersection of genes with expression predicted
by all methods. Focusing on Geuvadis GBR and Y RI populations, which have similar sample
sizesand are of distinct continental ancestries, we observed that MASHR models significantly
outperform the other methods in cross-population transcriptome predictions, as seen in the
AFA-GBR and EUR-YRI MESA-Geuvadis populations pairs (Figure 4B, Table S2). The only
exceptionisin AFA-GBR, in which MASHR and MatrixeQTL have similar performances.
Additionally, in population-matched scenarios (AFA-YRI and EUR-GBR), prediction
performance does not significantly differ between MASHR, MatrixeQTL, and EN. All three
aforementioned methods significantly outperform JT1 and TIGAR in population-matched
predictions (Table S2). Moreover, we also performed pairwise comparisons between all
methods using all Geuvadis populations, taking into account the intersection of genes with
expression predicted in each case. Overall, across all MESA transcriptome models and
Geuvadis populations, MASHR models either performed better or the same as other methodsin
both population-matched or cross-population transcriptome prediction scenarios (Table S3).

c. Leveraging effect sizes across different populations improves discovery rate in multi-
ethnic TWAS

In order to invegtigate the applicability of the models we built in multi-ethnic TWAS, we
used S-PrediXcan with GWAS summary datistics of complex traits from PAGE and PanUKBB.
We show that across all tissue-population models, MASHR identified the highest number of
gene-trait pair associations (208) that replicated in both PAGE and PanUKBB (P < 5 x 107),
followed by Matrix eQTL (173), JT1 (131), EN (94), and TIGAR (91) (Table S3). When
analyzing the total number of discoveries separately for each population, MASHR had the
highest number of gene-trait pairs in most population models (Figure 5A). The only exception is
with HIS models, in which both MASHR and MatrixeQTL had the same number of discoveries.
The discovery rate improvement by MASHR is exceptionally high in CHN models, asit had
almost twice the number of discoveries as the second-highest method (27 by MASHR vs. 14 by
MatrixeQTL).

Additionally, when comparing gene-trait pairs, we saw that most MASHR hits were
shared between population models, whereas other methods have higher population-specific
discoveries (Figure 5B). Most MatrixeQTL hits were also shared by many population models,
but not to the same degree as MASHR. Altogether, these findings indicate that MASHR models
show high consistency and also suggest that TWAS results are not as affected by the MASHR
population model used as compared to other methods.
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To contextualize our models' findings, weinvestigated whether the discovered gene-trait
pairs had been previously reported in any studies in the GWAS Catalog
(https.//www.ebi.ac.uk/gwas’home). We saw that across 105 distinct gene-trait pairs
associations found (totaling 697 across all models), 38 (36.19%) have not been reported in the
GWAS Catalog, and therefore may be novel associations that require further investigation
(Table $4). Out of those potential new biological associations, most of them (13) were
discovered with MASHR AFA models (Table S4). Furthermore, out of the 67 distinct known
GWAS catalog associations discovered, MASHR models identified most of them (Table S3).
For ingtance, MASHR EUR models found 34 known associations, followed by MASHR AFA
with 33, and MatrixeQTL EUR with 32 (Figure $4).

4. DISCUSSION

In this work, we sought to build population-based transcriptome prediction models for
TWAS using data from the TOPMed MESA cohort using five distinct approaches. We saw that
although the AFA and HIS populations' datasets contained the highest numbers of SNPs after
quality control, EUR yielded the highest number of gene expression traits with significant
heritability estimates across all tissues analyzed. Thisis most likely due to the higher sample
sizein EUR in comparison to AFA and HIS, aslarger sasmple sizes provide higher statistical
power to detect eQTLs with smaller effects®. Furthermore, we saw that the number of genesin
each population transcriptome model is not the same across all methods tested. Some
transcriptome prediction models, such as the ones built using EN or JT1, only contain genes for
which the SNPs effect sizes converged during training, which is not a limiting factor for
MASHR, MatrixeQTL, and TIGAR. One of the factors that impacts the number of genesfor
which SNPs effect sizes converge during training is sample size, which explains the lower
number of genesin the EN and JTI CHN model in comparison to other population models.
Furthermore, although sample size does not impact the number of gene models trained for
TIGAR in the same degree as EN and JTI, it influences SNP effect size estimation®. Thus,
when we removed SNPs with near-zero effects, there was a drop in the number of genesin the
final population transcriptome modelsfor TIGAR. Test data sample size has also been shown to
positively correlate with gene expression prediction accuracy™.

In addition to sample size, gene expression prediction accuracy is known to be greater
when the training and testing datasets have similar ancestries™*>***:; however, non-European
ancestries are vastly underrepresented in human genetics studies”*, which compromises the
ability to build accurate TWAS models for them. Thus, using data from the Geuvadis cohort, we
evaluated the transcriptome prediction performance of our models and found that MASHR
models either significantly outperformed al other methodstested, or had similar performance.
Previous studies have shown that by borrowing information across different conditions, such as
tissues™ or cell types®™, MASHR identifies shared- or condition-specific eQTLs, which can
enhance causal gene identification®, as well asimprove effect size estimation accuracy™.
Similarly, by leveraging effect size estimates across multiple populations, MASHR improved
cross-population transcriptome prediction without compromising population-matched prediction
accuracy. Interestingly, another method we tested, JT1, was also originally designed to leverage
similarity in gene expression and DNase 1 hypersensitive sites across tissues in order to
improve transcriptome prediction accuracy*’. However, our results showed that it performed
worse than MASHR and the same as EN in cross-population transcriptome prediction. This
suggeststhat distinct cross-condition leveraging frameworks may have different performances
when applied across populations. One possible reason for differencesin performanceis that JTI
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uses EN weighted by condition similarity to estimate effect sizes and select SNPsto be included
in the final models, whereas for MASHR, our pipeline selects one SNP per condition. Since
more SNPs with less significant effect sizes were included in our EN and JT| models, greater
uncertainty in effect sizeslikely led to lower transcriptome prediction accuracy compared to
MASHR. Furthermore, among the methods evaluated, TIGAR had the lowest prediction
performance. Originally, TIGAR was benchmarked against EN, and showed better
transcriptome prediction accuracy; however, unlike in our analysis, their analysisincluded only
genes whose expression heritability was equal or lower than 0.2%°.

Discovery and replication of TWAS associations are also related to the ancestries of the
transcriptome prediction model training dataset and ancestries of the TWAS sample dataset™.
Thus, we assessed the applicability of our modelsin TWAS using S-PrediXcan on PAGE and
PanUKBB GWAS summary gatistics and found that across all tissues and populations,
MASHR modelsyielded the highest number of total gene-trait pairs associations, with MASHR
AFA reporting the highest number. In this manner, it seemsthat although MASHR improved
gene expression prediction accuracy for all populations analyzed, using transcriptome prediction
models that match the ancestries of the GWAS dataset still yields the highest number of TWAS
discoveries, which isin agreement with many previous studies™*. Our results also showed
that although JT| transcriptome prediction was not as accurate as baseline EN, JTI models had
more TWAS discoveriesthan EN. This exemplifies how integrating data from different genetic
ancestries may improve TWAS.

By investigating which associations had been previously reported in the GWAS
Catalog, we saw that most new discoveries were found by MASHR models. Some of these
possible new discoveries are unigue to MASHR models and have been corroborated previously,
such as YJEFN3 (also known as AIBP2) and triglycerides, whose low expression in zebrafish
increases cellular unesterified cholesterol levels®, consistent with our S-PrediX can effect size
directions (PAGE effect size = -0.52, p-value= 6.1 x 10'%: PanUK BB effect size = -0.86, p-
value = 7.1 x 10%%). Additionally, we also saw that MASHR models showed higher consistency
across the different population transcriptome prediction models, which meansthat TWAS
results are not as affected by the population model used as other methods.

One limitation of our TWAS isthat we used transcriptome prediction modelstrained in
PBMCs, monocytesand T cells, and those tissues might not be the most appropriate for some
phenotypes in PAGE or PanUKBB. Additionally, because of the smaller sample sizes for some
populations in our training dataset, h? and eQTL effect sizes estimates have large standard
errors, which may affect the ability of MASHR to adjust effect sizes across different conditions
based on correlation patterns present in the data. Regardless of that, our results mainly
demonstrate that we can implement cross-population effect size leveraging using a method first
applied to do cross-tissue effect size leveraging - and improve cross-population transcriptome
prediction accuracy in doing so. Thus, increasing sample size for underrepresented populations
will improve current MASHR TWAS models' performances, as well as increase genetic
diversity in the data. Another TWAS method, METRO, which implements a likelihood-based
inference framework to incorporate transcriptome prediction models built on datasets of two
different genetic ancestries, has also shown enhanced TWAS power*’. METRO jointly models
gene expression and the phenotype of interest®, and thus was not directly comparable to the five
methods we tested here, which all separate the transcriptome prediction step from the
association test. Given that this traditional two-stage TWAS procedure ignores uncertainty in
the expression prediction, the joint approach of METRO across more than two populations isan
area of future TWAS methods research. Furthermore, while our study focused on transcriptome
prediction, MASHR could also be adapted to possibly improve cross-population polygenic risk
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scores (PRS). Indeed, other methods like PRS-CSx jointly model complex traits effects across
populations in order to improve PRS*. MASHR is most useful when population effects are
shared, as demonstrated by the more consistent S-PrediX can results, but population-specific
effects are also relevant. For instance, a study in alarge African American and Latino cohort
discovered eQTLs only present at appreciable allele frequencies in African ancestry
populations®. Moreover, since our MASHR models focus on the top SNPs, we might not be
including enough eQTLs in the models, especially for those genes whose expression is
genetically regulated by multiple eQTLswith small effects.

In conclusion, our results demondtrate the importance and the benefits of increasing
ancestry diversity in the field of human genetics, especially regarding association studies. As
shown, sample size is valuable for assessing gene expression heritability and for accurately
estimating eQTL effect sizes, and thus some populations are negatively affected dueto the lack
of data. However, by making transcriptome prediction models that leverage effect size estimates
across different populations using multivariate adaptive shrinkage, we were able to increase
gene expression prediction performance for scenarios in which the training data and test data
have distant (“ cross-population”) genetic distances with available data. Additionally, when
applied to multi-ethnic TWAS, the aforementioned models yielded more discoveries across al
methods analyzed, even detecting well-known associations that were not detected by other
methods. Thus, in order to further improve TWAS in multi-ethnic or underrepresented
populations and possibly reduce health care disparities, it is necessary to use methods that
consider shared- and population-specific effect sizes, as well as increase available data of
underrepresented populations.

5. ACKNOWLEDGEMENTS

Thiswork is supported by the NIH National Human Genome Research Ingtitute
Academic Research Enhancement Award R15 HG009569 (HEW). Whole genome sequencing
(WGS) for the Trans-Omicsin Precision Medicine (TOPMed) program was supported by the
National Heart, Lung and Blood Institute (NHLBI). WGS for “NHLBI TOPMed: Multi-Ethnic
Study of Atherosclerosis (MESA)” (phs001416.v1.pl) was performed at the Broad Institute of
MIT and Harvard (3U54HG003067-13S1). Centralized read mapping and genotype calling,
along with variant quality metrics and filtering were provided by the TOPMed Informatics
Research Center (S3RO1HL-117626-02S1). Phenotype harmonization, data management,
sample-identity QC, and general study coordination, were provided by the TOPMed Data
Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics
(HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by
the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA
investigators. Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are
conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in
collaboration with MESA investigators. Support for MESA is provided by contracts
75N92020D00001, HHSN2682015000031, NO1-HC-95159, 75N92020D00005, NO1-HC-
95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, NO1-HC-95162,
75N92020D00006, NO1-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007,
N01-HC-95165, NO1-HC-95166, NO1-HC-95167, NO1-HC-95168, NO1-HC-95169, UL1-TR-
000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, and RO1HL105756.
The MESA Epigenomics and Transcriptomics Studies were funded by National Institutes of
Health grants 1R01HL 101250, 1RF1AG054474, RO1HL 126477, R0O1DK 101921, and
RO1HL135009. The authors thank the other investigators, the staff, and the participants of the

10


https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527747; this version posted May 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521

522

523
524
525
526

527
528
529
530

531
532
533

534
535
536
537

538
539
540
541

542
543
544
545

546
547

available under aCC-BY-NC 4.0 International license.

MESA sudy for their valuable contributions. A full list of participating MESA investigators
and ingtitutes can be found at http://www.mesa-nhlbi.org.

6. DATA AVAILABILITY

All scripts used for analyses, including a pipeline to derive new MASHR models, are
available at https://github.com/danielsarj/ TOPMed MESA crosspop portability. MESA
populations prediction models and raw S-PrediXcan TWAS output files are available at
https://doi.org/10.5281/zenodo.7551844. TOPMed MESA data are under controlled accessin
dbGaP at https://www.nchi.nlm.nih.gov/gap/ through study accession phs001416.v2.pl.
Geuvadis expression datais at Array Express (E-GEUV -1) and genotype data is at
http://www.internationalgenome.org/. PAGE GWAS summary datistics are availablein the
GWAS Catalog at https.//www.ebi.ac.uk/gwas/publications/31217584. PanUKBB GWAS
summary statistics are available at https://pan.ukbb.broadingtitute.org/phenotypes/index.html.

7. DECLARATION OF INTERESTS
All authors declare that they have no conflicts of interest.

8. REFERENCES

1. Buniello, A., MacArthur, JA.L., Cerezo, M., Harris, L.W., Hayhurg, J., Malangone, C.,
McMahon, A., Morales, J., Mountjoy, E., Sollis, E., et a. (2019). The NHGRI-EBI GWAS
Catalog of published genome-wide association studies, targeted arrays and summary
dtatistics 2019. Nucleic Acids Research 47, D1005-D1012. 10.1093/nar/gky1120.

2. Mordes, J., Welter, D., Bowler, E.H., Cerezo, M., Harris, L.W., McMahon, A.C., Hal, P,,
Junkins, H.A., Milano, A., Hastings, E., et a. (2018). A standardized framework for
representation of ancestry datain genomics studies, with application to the NHGRI-EBI
GWAS Catalog. Genome Biol 19, 21. 10.1186/s13059-018-1396-2.

3. Martin, A.R,, Kanai, M., Kamatani, Y., Okada, Y., Neale, B.M., and Daly, M.J. (2019).
Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet
51, 584-591. 10.1038/s41588-019-0379-x.

4, Tadiun, D., Harris, D.N., Kesder, M.D., Carlson, J., Szpiech, Z.A., Torres, R., Taliun,
S.A.G,, Corvelo, A., Gogarten, SM., Kang, H.M., et al. (2021). Sequencing of 53,831
diverse genomes from the NHLBI TOPMed Program. Nature 590, 290-299.
10.1038/s41586-021-03205-y.

5. Wojcik, G.L., Graff, M., Nishimura, K.K., Tao, R., Haesder, J., Gignoux, C.R., Highland,
H.M., Patel, Y.M., Sorokin, E.P., Avery, C.L., et a. (2019). Genetic analyses of diverse
populations improves discovery for complex traits. Nature 570, 514-518. 10.1038/s41586-
019-1310-4.

6. The H3Africa Consortium, Matovu, E., Bucheton, B., Chisi, J., Enyaru, J., Hertz-Fowler,
C., Koffi, M., Macleod, A., Mumba, D., Sidibe, |., et al. (2014). Enabling the genomic
revolution in Africa. Science 344, 1346-1348. 10.1126/science.1251546.

7. Pan UKBB Team (2022). Pan UKBB. https://pan.ukbb.broadinstitute.org/.

8. Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A.N., Knowles, D.A., Golan,
D., Ermel, R., Ruusalepp, A., Quertermous, T., Hao, K., et al. (2019). Opportunities and

11


https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527747; this version posted May 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

548 challenges for transcriptome-wide association studies. Nat Genet 51, 592-599.

549 10.1038/s41588-019-0385-z.

550 9. Gamazon, E.R., Wheeler, H.E., Shah, K.P., Mozaffari, S.V., Aquino-Michaels, K., Carroll,
551 R.J, Eyler, A.E., Denny, J.C., Nicolag, D.L., Cox, N.J, et al. (2015). A gene-based

552 association method for mapping traits using reference transcriptome data. Nature Genetics
553 47, 1091-1098. 10.1038/ng.3367.

554  10. Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W.JH., Jansen, R., de Geus,
555 E.J.C., Boomsma, D.I., Wright, F.A., et al. (2016). Integrative approaches for large-scale
556 transcriptome-wide association studies. Nat Genet 48, 245-252. 10.1038/ng.3506.

557 11. Geoffroy, E., Gregga, |., and Wheeler, H.E. (2020). Population-Matched Transcriptome
558 Prediction Increases TWAS Discovery and Replication Rate. i Science 23, 101850.

559 10.1016/j.isci.2020.101850.

560 12. Keys, K.L., Mak, A.C.Y., White, M.J,, Eckalbar, W.L., Dahl, A.W., Mefford, J.,

561 Mikhaylova, A.V., Contreras, M.G., Elhawary, J.R., Eng, C., et al. (2020). On the cross-
562 population generalizability of gene expression prediction models. PLOS Genetics 16,

563 €1008927. 10.1371/journal.pgen.1008927.

564  13. Hou, K., Ding, Y., Xu, Z., Wu, Y., Bhattacharya, A., Megter, R., Belbin, G.M., Buyske, S,
565 Conti, D.V., Dars, B.F., et a. (2023). Causal effects on complex traits are similar for

566 common variants across segments of different continental ancestries within admixed

567 individuals. Nat Genet 55, 549-558. 10.1038/s41588-023-01338-6.

568  14. Bild, D.E., Bluemke, D.A., Burke, G.L., Detrano, R., Diez Roux, A.V., Folsom, A.R,,

569 Greenland, P., JacobsJr., D.R., Kronmal, R, Liu, K., et al. (2002). Multi-Ethnic Study of
570 Atherosclerosis: Objectives and Design. Am J Epidemiol 156, 871-881.

571 10.1093/aje/kwf113.

572 15. Zou, H., and Hastie, T. (2005). Regularization and variable selection viathe elastic net.
573 Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 301-320.
574 10.1111/.1467-9868.2005.00503.X.

575  16. Friedman, JH., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized
576 Linear Models via Coordinate Descent. Journal of Statistical Software 33, 1-22.

577 10.18637/jss.v033.i01.

578 17. Zhou, D., Jiang, Y., Zhong, X., Cox, N.J,, Liu, C., and Gamazon, E.R. (2020). A unified
579 framework for joint-tissue transcriptome-wide association and Mendelian randomization
580 analysis. Nat Genet 52, 1239-1246. 10.1038/s41588-020-0706-2.

581  18. Shabalin, A.A. (2012). Matrix eQTL: ultrafast eQTL analysis vialarge matrix operations.
582 Bioinformatics 28, 1353—-1358. 10.1093/bioinformatics/bts163.

583  19. Urbut, SM., Wang, G., Carbonetto, P., and Stephens, M. (2019). Flexible statistical

584 methods for estimating and testing effects in genomic studies with multiple conditions. Nat
585 Genet 51, 187-195. 10.1038/s41588-018-0268-8.

586  20. Nagpal, S., Meng, X., Epstein, M.P., Tsoi, L.C., Patrick, M., Gibson, G., Jager, P.L.D.,
587 Bennett, D.A., Wingo, A.P., Wingo, T.S,, et a. (2019). TIGAR: An Improved Bayesian
588 Tool for Transcriptomic Data | mputation Enhances Gene Mapping of Complex Traits. The
589 American Journal of Human Genetics 105, 258-266. 10.1016/j.ajhg.2019.05.018.

12


https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527747; this version posted May 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

590
591
592
593

594
595
596
597

598
599
600
601

602
603
604

605
606
607

608
609
610
611

612
613
614
615

616
617
618
619

620
621
622
623

624
625
626

627
628
629

630
631
632

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

available under aCC-BY-NC 4.0 International license.

Lappalainen, T., Sammeth, M., Friedlander, M.R., ‘t Hoen, P.A.C., Monlong, J., Rivas,
M.A., Gonzalez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P.G., et al. (2013).
Transcriptome and genome sequencing uncovers functional variation in humans. Nature
501, 506-511. 10.1038/nature12531.

Barbeira, A.N., Dickinson, S.P., Bonazzola, R., Zheng, J., Wheeler, H.E., Torres, JM.,
Torstenson, E.S., Shah, K.P., Garcia, T., Edwards, T.L., et a. (2018). Exploring the
phenotypic consequences of tissue specific gene expression variation inferred from GWAS
summary satistics. Nat Commun 9, 1825, 10.1038/s41467-018-03621-1.

Purcell, S., Nedle, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller,
J., SKlar, P., de Bakker, P.I.W., Daly, M.J,, et a. (2007). PLINK: atool set for whole-
genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559—
575. 10.1086/519795.

Conomos, M.P., Miller, M.B., and Thornton, T.A. (2015). Robust Inference of Population
Structure for Ancestry Prediction and Correction of Stratification in the Presence of
Relatedness. Genetic Epidemiology 39, 276-293. 10.1002/gepi.21896.

Frankish, A., Diekhans, M., Jungreis, |., Lagarde, J., Loveland, J.E., Mudge, JM., Sisu, C,,
Wright, J.C., Armgtrong, J., Barnes, |., et a. (2021). GENCODE 2021. Nucleic Acids
Research 49, D916-D923. 10.1093/nar/gkaal087.

Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden,
P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., et a. (2010). Common SNPs explain
alarge proportion of the heritability for human height. Nat Genet 42, 565-569.
10.1038/ng.608.

Mogil, L.S., Andaleon, A., Badalamenti, A., Dickinson, S.P., Guo, X., Rotter, J.I., Johnson,
W.C., Im, H.K,, Liu, Y., and Wheeler, H.E. (2018). Genetic architecture of gene expression
traits across diverse populations. PLOS Genetics 14, €1007586.

10.1371/journal .pgen.1007586.

Okoro, P.C., Schubert, R., Guo, X., Johnson, W.C., Rotter, J.I., Hoeschele, I., Liu, Y., Im,
H.K., Luke, A., Dugas, L.R., et al. (2021). Transcriptome prediction performance across
machine learning models and diverse ancestries. Human Genetics and Genomics Advances
2, 100019. 10.1016/j.xhgg.2020.100019.

Barbeira, A.N., Melia, O.J,, Liang, Y., Bonazzola, R., Wang, G., Wheeler, H.E., Aguet, F.,
Ardlie, K.G., Wen, X., and Im, H.K. (2020). Fine-mapping and QTL tissue-sharing
information improves the reliability of causal gene identification. Genetic Epidemiology 44,
854-867. 10.1002/gepi.22346.

Aguet, F., Brown, A.A., Cagtel, S.E., Davis, JR., He, Y., Jo, B., Mohammadi, P., Park, Y .,
Parsana, P., Segre, A.V., et al. (2017). Genetic effects on gene expression across human
tissues. Nature 550, 204—213. 10.1038/nature24277.

Parrish, R.L., Gibson, G.C., Epstein, M.P., and Yang, J. (2022). TIGAR-V2; Efficient
TWAS tool with nonparametric Bayesian eQTL weights of 49 tissue typesfrom GTEx V8.
Human Genetics and Genomics Advances 3, 100068. 10.1016/j.xhgg.2021.100068.

Fryett, J.J., Morris, A.P., and Cordell, H.J. (2020). Investigation of prediction accuracy and

the impact of sample size, ancestry, and tissue in transcriptome-wide association studies.
Genet Epidemiol 44, 425-441. 10.1002/gepi.22290.

13


https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527747; this version posted May 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

633  33. Mikhaylova, A.V., and Thornton, T.A. (2019). Accuracy of Gene Expression Prediction

634 From Genotype Data With PrediX can Varies Across and Within Continental Populations.
635 Front. Genet. 10, 261. https://doi.org/10.3389/fgene.2019.00261.

636  34. Sheng, X., Guan, Y., Ma, Z., Wu, J, Liu, H., Qiu, C., Vitale, S,, Miao, Z., Seasock, M.J,
637 Palmer, M., et al. (2021). Mapping the genetic architecture of human traitsto cell typesin
638 the kidney identifies mechanisms of disease and potential treatments. Nat Genet 53, 1322—
639 1333. 10.1038/s41588-021-00909-9.

640  35. Schubert, R., Geoffroy, E., Gregga, ., Mulford, A.J,, Aguet, F., Ardlie, K., Gerszten, R.,
641 Clish, C,, Berg, D.V.D., Taylor, K.D., et a. (2022). Protein prediction for trait mapping in
642 diverse populations. PLOS ONE 17, €0264341. 10.1371/journal.pone.0264341.

643  36. Bhattacharya, A., Garcia-Closas, M., Olshan, A.F., Perou, C.M., Troegster, M.A., and Love,
644 M.1. (2020). A framework for transcriptome-wide association studies in breast cancer in
645 diverse study populations. Genome Biol 21, 42. 10.1186/s13059-020-1942-6.

646  37. Bhattacharya, A., Hirbo, J.B., Zhou, D., Zhou, W., Zheng, J., Kanai, M., the Global

647 Biobank Meta-analysis Initiative, Pasaniuc, B., Gamazon, E.R., and Cox, N.J. (2021). Best
648 practices for multi-ancestry, meta-analytic transcriptome-wide association studies: lessons
649 from the Global Biobank Meta-analysis Initiative (Genetic and Genomic Medicine)

650 10.1101/2021.11.24.21266825.

651  38. Kachuri, L., Mak, A.C.Y., Hu, D., Eng, C., Huntsman, S., Elhawary, JR., Gupta, N.,

652 Gabriel, S., Xiao, S., Keys, K.L., et al. (2021). Gene expression in African Americans and
653 Latinos reveals ancestry-specific patterns of genetic architecture (Genetics)

654 10.1101/2021.08.19.456901.

655 39. Fang, L., Choi, S.-H., Baek, J.S,, Liu, C., Almazan, F., Ulrich, F., Wiesner, P., Taleb, A.,
656 Deer, E., Pattison, J, et al. (2013). Control of angiogenesis by AlBP-mediated cholesterol
657 efflux. Nature 498, 118-122. 10.1038/nature12166.

658  40. Li, Z., Zhao, W., Shang, L., Mosley, T.H., Kardia, S.L.R., Smith, JA., and Zhou, X.

659 (2022). METRO: Multi-ancestry transcriptome-wide association studies for powerful gene-
660 trait association detection. The American Journal of Human Genetics 109, 783-801.

661 10.1016/j.ajhg.2022.03.003.

662  41. Ruan, Y., Lin,Y.-F.,, Feng, Y.-C.A., Chen, C.-Y., Lam, M., Guo, Z., Stanley Global Asia
663 Initiatives, Ahn, Y.M., Akiyama, K., Arai, M., et al. (2022). Improving polygenic

664 prediction in ancestrally diverse populations. Nat Genet 54, 573-580. 10.1038/s41588-022-
665 01054-7.

666

667

668

669

670

671  FigurelLegends& Supplementary Data

14


https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527747; this version posted May 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

672
673

674
675
676
677
678
679
680
681

682
683

684
685
686
687
688
689
690
691

available under aCC-BY-NC 4.0 International license.

Training Data Population-based models
r - — | * Elastic Net * Matrix eQTL
Fopdation Sizes by Tw;, . * Joint-Tissue Imputation * Transcriptome-Integrated Genetic

* Multivariate adaptive shrinkage Association Resource

oal 321 Tissue *

|
221224 W o Performance assessment
o et * QOut-of-sample transcriptome prediction performance:
. - = » GEUVADIS dataset

* Discoveries in multi-ethnic TWAS:
e > PAGE Study (N=49,839)
" Popuiason B PanUKBB (N=441,331)

Humber of individuals

Figure 1: Overall study methodology. Using TOPMed MESA as atraining dataset, we built
population-based transcriptome prediction models using five different methods (Elastic Net
(EN), Joint-Tissue Imputation (JT1), Multivariate adaptive shrinkage (MASHR), Matrix eQTL,
and Transcriptome-I ntegrated Genetic Association Resource (TIGAR)). With these
transcriptome models, we evaluated their out-of-sample transcriptome prediction accuracy using
the GEUVADIS dataset. Additionally, we assessed their applicability in multi-ethnic TWAS
using GWAS summary datistics from the PAGE Study and PanUKBB. AFA = African
American, CHN = Chinese, EUR = European, HIS = Hispanic/Latino.
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Figure 2: Design of the methodology implemented to make M ASHR modds. (A) Using
effect sizes estimated using Matrix eQTL within each population dataset, we combined them
across genes, with the different populations as conditions, to use as input for MASHR. The
output matrixes contain adjusted effect sizes. (B) For each population, we selected the top SNP
(lowest local false sign rate) per gene. Then, we concatenated the Gene-top SNP pairs across
populations to determine which SNPs would end up in the final models. Lastly, to make our
population-based transcriptome prediction models, we used population-specific effect sizes,
taken from the corresponding MASHR output matrices. AFA = African American, CHN =
Chinese, EUR = European, HIS = Hispanic/Latino.
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Figure 3: PBM C gene expression cis-heritability estimates acr oss M ESA populations. (A)
Gene expression cis-heritability (h?) estimated for different genes across different MESA
population datasets in PBMC. Only genes with significant estimated h? (p-value < 0.05) are
shown. Gray bars represent the standard errors (2*S.E.). Genes are ordered on the x-axisin
ascending h? order, and colored according to the h? lower bound (h? - 2*S.E.). (B) Number of
significant heritable genes (p-value < 0.05 and h? lower bound > 0.01) within each PBMC
population dataset, by sample size. AFA = African American, CHN = Chinese, EUR =
European, HIS = Hispanic/Latino.
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703  Figure4: Comparison of M ESA population transcriptome prediction models. (A) The
704  number of genesin each MESA population model, by method and tissue. (B) Prediction

705  performance (Spearman’srho) of EN, JTI, MASHR, MatrixeQTL, and TIGAR PBMC MESA
706  population modelsin Geuvadis GBR and YRI populations. Only the intersection of genes with
707  expression predicted by all methods for each MESA-Geuvadis population pair are shown.

708  MASHR performed better than or the same as all other methods (see Table S2 for all pairwise
709  comparisons).
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711  Figure5: Number of sgnificant S-PrediXcan gene-trait pairsin PAGE and PanUK BB
712  GWASsummary datistics. (A) Total number of significant gene-trait pairs discovered by each
713  MESA population model (considering the union of the three tissues), by method. (B) Number of
714  significant gene-trait pairs discovered with individual or multiple MESA populations colored by
715  method (considering the union of the three tissues). Population set intersections are indicated on
716  thex-axisin color.
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719  Figure Sl: Genotype principal component analysis. Plot of the first two principal
720  components of TOPMed MESA populations with Geuvadis populations. AFA = African
721  American (TOPMed), CEU = Utah residents with Northern and Western European ancestry
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722 (Geuvadis), CHN = Chinese (TOPMed), EUR = European (TOPMed), FIN = Finnish in Finland
723  (Geuvadis), GBR = British in England and Scotland (Geuvadis), HIS = Hispanic/Latino
724  (TOPMed), TSI = Toscani in Italy (Geuvadis), Y RI = Yorubain Ibadan, Nigeria (Geuvadis).
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727  Figure S2: Overall prediction performance of M ESA population modelsin Geuvadis.
728  Prediction performance (median Spearman’srho) of EN, JTI, MASHR, MatrixeQTL, and
729  TIGAR MESA population modelsin al Geuvadis populations.

19


https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.09.527747; this version posted May 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

30-
Method
m-
. JTI
. MASHR
" MarixeQTL
it TIGAR
0_

AFA CHN EUR HIS
Populations

Number of known GWAS catalog associations

730
731 Figure S3: Number of sgnificant S-PrediXcan gene-trait pairsin PAGE and PanUKBB

732  GWASsummary satisticsthat have been reported in the GWAS catalog. Total number of
733 dignificant gene-trait pairs discovered by each MESA population model (considering the union
734  of thethreetissues), by method.

735

736  Table S1: PAGE and PanUKBB summary statistics used in this study.

737

738  Table S2: Performance comparisons of PBMC AFA and EUR MESA transcriptome prediction
739  modelsinthe GBR and Y RI Geuvadis populations between all methods.

740

741  Table S3: Pairwise comparisons of the performance of EN, JT1, MASHR, MatrixeQTL, and
742  TIGAR MESA transcriptome prediction models in all Geuvadis populations.

743

744  Table S4: Compiled S-PrediXcan gene-trait pair discoveries, significant in PAGE and

745  PanUKBB GWAS summary statistics with the same direction of effect.

746

747  Table Sb: List of NHLBI TOPMed consortium members.
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