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Abstract: 29 

Transcriptome prediction models built with data from European-descent individuals are less 30 

accurate when applied to different populations because of differences in linkage disequilibrium 31 

patterns and allele frequencies. We hypothesized methods that leverage shared regulatory 32 

effects across different conditions, in this case, across different populations may 33 

improve cross-population transcriptome prediction. To test this hypothesis, we made 34 

transcriptome prediction models for use in transcriptome-wide association studies 35 

(TWAS) using different methods (Elastic Net, Joint-Tissue Imputation (JTI), Matrix 36 

eQTL, Multivariate Adaptive Shrinkage in R (MASHR), and Transcriptome-Integrated 37 

Genetic Association Resource (TIGAR)) and tested their out-of-sample transcriptome 38 

prediction accuracy in population-matched and cross-population scenarios. 39 

Additionally, to evaluate model applicability in TWAS, we integrated publicly 40 

available multi-ethnic genome-wide association study (GWAS) summary statistics 41 

from the Population Architecture using Genomics and Epidemiology Study (PAGE) 42 

and Pan-UK Biobank with our developed transcriptome prediction models. In regard to 43 

transcriptome prediction accuracy, MASHR models performed better or the same as 44 

other methods in both population-matched and cross-population transcriptome 45 

predictions. Furthermore, in multi-ethnic TWAS, MASHR models yielded more 46 

discoveries that replicate in both PAGE and PanUKBB across all methods analyzed, 47 

including loci previously mapped in GWAS and new loci previously not found in 48 

GWAS. Overall, our study demonstrates the importance of using methods that benefit 49 
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from different populations’ effect size estimates in order to improve TWAS for multi-50 

ethnic or underrepresented populations. 51 

 52 

1. INTRODUCTION 53 

 54 

Through genome-wide association studies (GWAS), many associations between single 55 

nucleotide polymorphisms (SNPs) and diverse phenotypes have been uncovered1. However, 56 

most GWAS to date have been conducted on individuals of European descent, even though they 57 

make up less than one fifth of the total global population2,3. Ancestry diversity in human genetic 58 

studies is important because as linkage disequilibrium and allele frequencies differ among 59 

populations, associations found within European ancestry individuals may not reflect 60 

associations for individuals of other ancestries and vice versa3. Some efforts to increase ancestry 61 

diversity in human genetics studies include the NHLBI Trans-Omics for Precision Medicine 62 

(TOPMed) consortium4, the Population Architecture using Genomics and Epidemiology 63 

(PAGE) study5, the Human Heredity and Health in Africa (H3Africa) initiative6, and the Pan-64 

ancestry genetic analysis of the UK Biobank (PanUKBB7). 65 

  66 

Alongside GWAS, transcriptome-wide association studies (TWAS) test predicted gene 67 

expression levels for association with complex traits of interest, identifying gene-trait associated 68 

pairs8. Different TWAS methods, such as PrediXcan and FUSION, work by estimating gene 69 

expression through genotype data using transcriptomic prediction models built on expression 70 

quantitative trait loci (eQTL) data9,10. Similarly to GWAS, TWAS are also negatively affected 71 

by ancestry underrepresentation, as gene expression prediction models for use in TWAS are 72 

often trained in European descent datasets, which reduces the power of studies conducted with 73 

individuals of other ancestries11,12. Still, we expect the underlying biological mechanisms of 74 

complex traits to be shared across human populations11,13, and thus prediction methods that 75 

account for allelic heterogeneity and better estimate effect sizes can improve the discovery rate 76 

and interpretation of TWAS across populations. 77 

  78 

Here, we used genomic and transcriptomic data from the Multi-Ethnic Study of 79 

Atherosclerosis (MESA)14 multi-omics pilot study of TOPMed to build TWAS prediction 80 

models (Figure 1). Using five different methods to estimate effect sizes, Elastic-Net15,16, Joint-81 

Tissue Imputation (JTI)17, Matrix eQTL18, multivariate adaptive shrinkage (MASHR)19, and 82 

Transcriptome-Integrated Genetic Association Resource (TIGAR)20, we built population-83 

specific transcriptomic prediction models for four MESA-defined populations – African 84 

American, Chinese, European, and Hispanic/Latino – across three blood cell types and 85 

evaluated their prediction performance in the Geuvadis21 cohort using PrediXcan9. From there, 86 

we used S-PrediXcan22 to apply our models to GWAS summary statistics of complex traits from 87 

the multi-ethnic PAGE5 study and PanUKBB7. We hypothesized that MASHR and JTI were 88 

most likely to improve transcriptome prediction and increase the number of TWAS hits in 89 

comparison to the other methods, as they both leverage similar effect size estimates across 90 

different conditions - in this case, different populations - to adjust effect sizes. In agreement to 91 

that, our results indicated that in cross-population predictions, MASHR models have a higher 92 

transcriptome prediction accuracy than other methods. Furthermore, in our TWAS, MASHR 93 

models discovered the highest number of associated gene-trait pairs across all population 94 

models. These findings illustrate that leveraging genetic diversity and effect size estimates 95 

across populations can help improve current transcriptome prediction models, which may 96 

increase discovery and replication in association studies in underrepresented populations or 97 

multi-ethnic cohorts.   98 

 99 
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 100 

2. METHODS 101 

a. Training dataset 102 

 103 

To build our transcriptome prediction models, we used data from the Multi-Ethnic Study 104 

of Atherosclerosis (MESA)14 multi-omics pilot study of the NHLBI Trans-Omics for Precision 105 

Medicine (TOPMed) consortium. This data set includes genotypes derived from whole genome 106 

sequencing and transcripts per million (TPM) values derived from RNA-Seq for individuals of 107 

four different populations – African American (AFA), Chinese (CHN), European (EUR), and 108 

Hispanic/Latino (HIS) – for three different blood cell types: peripheral blood mononuclear cells 109 

(PBMC, ALL n = 1287, AFA n = 334, CHN n = 104, EUR n = 528, HIS n= 321), CD16+ 110 

monocytes (Mono, ALL n = 395, AFA n  = 75, EUR n = 221, HIS n = 99), and CD4+ T-cells (T 111 

cells, ALL n = 397, AFA n = 75, EUR n = 224, HIS n = 98).   112 

 113 

b. Genotype and RNA-Seq QC 114 

 115 

We performed QC on each MESA tissue-population pair separately. For the genotype 116 

data4 (Freeze 8, phs001416.v2.p1), we excluded INDELs, multi-allelic SNPs, and ambiguous-117 

strand SNPs (A/T, T/A, C/G, G/C), and removed the remaining variants with MAF < 0.01 and 118 

HWE < 1 x 10-6 using PLINK23 v1.9. For chromosome X, filtering by HWE was only applied in 119 

variants found within the pseudoautosomal regions based on GRCh38 positions. Furthermore, 120 

for the non-pseudoautosomal region of X, male dosages were assigned either 0 or 2. After QC, 121 

the average numbers of non-ambiguous SNPs remaining per population across all cell types 122 

were: AFA = 15.7M; CHN = 8.4M; EUR = 9.7M; HIS = 13.2M. 123 

  124 

For the RNA-Seq data, we also performed QC separately by tissue-population. First, we 125 

removed genes with average TPM values < 0.1. For some individuals, RNA expression levels 126 

were measured at two different time points (Exam 1 and Exam 5); thus, after log-transforming 127 

each measurement and adjusting for age and sex as covariates using linear regression and 128 

extracting the residuals, we took the mean of the two time points (or the single adjusted log-129 

transformed value, if expression levels were only measured once), performed rank-based 130 

inverse normal transformation, and adjusted for the first 10 genotype and 10 expression PCs. To 131 

estimate principal components, we used PC-AiR24 with kinship threshold of ~0.022, which 132 

corresponds to 4th degree relatives. No individuals were removed. For each tissue, we removed 133 

genes absent in at least one population. After QC, we had 17,585 genes in PBMC, 14,503 in 134 

Mono, and 16,647 in T cells. We used GENCODE25 annotation v38 to annotate gene types (e.g. 135 

protein-coding, lncRNA, etc.) and gene transcription start and end sites. 136 

 137 

c. Gene expression cis-heritability estimation 138 

 139 

We estimated gene expression heritability (h2) using cis-SNPs within the 1Mb region 140 

upstream of the transcription start site and 1Mb region downstream of the transcription end site. 141 

Using the genotype data filtered only by HWE P-value < 1 x 10-6, for each tissue-population 142 

pair, we first performed LD-pruning with a 500 variants count window, a 50 variants count step, 143 

and a 0.2 r2 threshold using PLINK23 v1.9. Then, for each gene, we extracted cis-SNPs and 144 

excluded SNPs with MAF < 0.01. Finally, to assess cis-SNP expression heritability, we 145 

estimated the genetic relationship matrix and h2 using GCTA-GREML26 with the “--reml-no-146 

constrain” option. We considered a gene heritable if it had a positive h2 estimate (h2 - 2*S.E.  > 147 

0.01 and p-value < 0.05) in at least one MESA population. In total, 9,206 genes were heritable 148 

in PBMC, 3,804 in Mono, and 4,053 in T cells. We only built transcriptome prediction models 149 

for these heritable genes across all populations in their respective cell types.                 150 
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 151 

d. Transcriptome prediction models 152 

 153 

With the aforementioned genotype and gene expression data, we built transcriptome 154 

prediction models for each MESA tissue-population pair, and for each gene we considered cis-155 

SNPs as defined in the previous section. Additionally, we only considered SNPs present in the 156 

GWAS summary statistics of the Population Architecture using Genomics and Epidemiology 157 

(PAGE) study5 to build our prediction models to make sure that there would be a high overlap 158 

between SNPs in the transcriptome models and SNPs in the GWAS summary statistics. After 159 

merging with PAGE SNPs, the average numbers of SNPs left in our dataset were: AFA = 160 

12.8M; CHN = 6.2M; EUR = 7.4M; HIS = 10.5M.  161 

 162 

We built our population-based models using five different approaches. The first was           163 

elastic-net (EN) regression using the glmnet package in R15,16, with mixing parameter α = 0.5. 164 

We considered EN as our baseline model, as it has been previously used to make transcriptome 165 

prediction models for the TOPMed MESA data27.  166 

 167 

The second method implemented was mash (Multivariate Adaptive Shrinkage)19 in R 168 

(MASHR). Unlike EN, MASHR does not estimate weights by itself; rather, it takes z-score (or 169 

weight and standard error) matrices as input and adjusts them based on correlation patterns 170 

present in the data in an empirical Bayes algorithm, allowing for both shared and condition-171 

specific effects. By doing so, MASHR increases power and effect size estimation accuracy19. 172 

Originally, MASHR applicability was demonstrated by leveraging effect size estimates across 173 

different tissues19, however, herein we sought to assess its potential to leverage effect sizes 174 

across populations. We ran MASHR for each gene at a time, using cis-SNPs weights (effect 175 

sizes) estimated by Matrix eQTL18 and MESA populations as different conditions (Figure 2A). 176 

Then, we split MASHR-adjusted weights according to their respective populations, and selected 177 

the top SNP (lowest local false sign rate) per gene to determine which SNPs would end up in 178 

the final models (Figure 2B). Local false sign rate is similar to false discovery rate, but it is 179 

more rigorous as it also takes into account the direction of effect19. Thus, by selecting one top 180 

SNP per population, the maximum number of SNPs per gene in the final model is 4, which 181 

corresponds to the number of populations in our study. If two or more populations had the same 182 

variant as top SNP, it was only included once. To make population-based models, we used 183 

population-specific effect sizes, taken from the corresponding MASHR output matrices. 184 

 185 

The third method was based on the unadjusted effect sizes estimated by Matrix eQTL18 186 

using the linear regression model. We used the same approach taken to build the MASHR 187 

models, including the SNP with the lowest p-value from each population, but the key difference 188 

is that we made the models using the unadjusted effect sizes.  189 

      190 

 The fourth method we used was Transcriptome-Integrated Genetic Association 191 

Resource (TIGAR), which trains transcriptome imputation models using either EN or 192 

nonparametric Bayesian Dirichlet Process Regression (DPR)20. As we already used EN to make 193 

a set of transcriptome prediction models, we opted to make DPR-based models. We used 194 

TIGAR’s default parameters to train our models, such as using the Variational Bayesian 195 

algorithm and outputting fixed effect sizes. However, by default, TIGAR performs 5-fold cross 196 

validation (CV) during training, and only outputs results if the final average CV R² is equal or 197 

greater than 0.005; thus, since we did not implement CV for any of the aforementioned methods 198 

and instead tested performance in an independent sample, we opted to skip this step of TIGAR’s 199 

pipeline and generate outputs for all genes. Most gene models generated by TIGAR had 200 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2023. ; https://doi.org/10.1101/2023.02.09.527747doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527747
http://creativecommons.org/licenses/by-nc/4.0/


5 

 

hundreds of SNPs with near-zero effect sizes. To reduce memory requirements for storage of 201 

these models, we removed SNPs with effect sizes smaller than 1 x 10-4.      202 

      203 

The fifth and last method we implemented was Joint-Tissue Imputation (JTI)17. JTI was 204 

designed to leverage similarity in gene expression and DNase 1 hypersensitive sites across 205 

different tissues to possibly improve prediction performance. Thus, similarly to MASHR, we 206 

sought to assess whether the method could be adapted to use populations instead of tissues. To 207 

assess gene expression similarity between MESA populations, we computed transcriptome-wide 208 

pairwise correlations between populations using the median TPM value per gene. Additionally, 209 

we did not have population DNase 1 hypersensitivity site data, so we set column five to 1 in our 210 

input files. By default, JTI performs 5-fold CV and only produces outputs for genes with 211 

average CV R greater than 0.1. Thus, similarly to TIGAR, we removed this filtering step of the 212 

pipeline to generate output for all genes regardless of CV performance.  213 

 214 

To perform TWAS using GWAS summary statistics data, it is necessary to have 215 

information about the correlation between the SNPs used to predict gene expression levels22. 216 

Thus, for all our transcriptome prediction models previously mentioned, we computed pairwise 217 

covariances for the SNPs within each TOPMed MESA population model using the respective 218 

population dosage data. All model files are freely available for anyone to use (see Data 219 

Availability section).  220 

 221 

e. Assessing transcriptome prediction performance 222 

 223 

To evaluate the gene expression prediction performance of all our transcriptome 224 

prediction models, we used DNA and lymphoblastoid cell lines RNA-Seq data from 449 225 

individuals in the Geuvadis21 study. Individuals within the testing dataset belong to five 226 

different populations (Utah residents with Northern and Western European ancestry (CEU), n = 227 

91; Finnish in Finland (FIN), n = 92; British in England and Scotland (GBR), n = 86; Toscani in 228 

Italy (TSI), n = 91; Yoruba in Ibadan, Nigeria (YRI), n = 89), which we analyzed both 229 

separately and together (ALL). Similarly to our training dataset, we performed rank-based 230 

inverse normal transformation on the gene expression levels, and adjusted for the first 10 231 

genotype and 10 expression PCs, using the residuals as observed expression levels. With the 232 

Geuvadis genotype data and our transcriptome prediction models, we used PrediXcan9 to 233 

estimate gene expression levels. PrediXcan is a two-step TWAS method, in which the first step 234 

is to estimate genetically regulated expression levels (GReX). Thus, to assess transcriptome 235 

prediction performance, we compared GReX to the adjusted, measured expression levels using 236 

Spearman correlation.  237 

 238 

f. Assessing performance  in transcriptome-wide association studies 239 

 240 

To test the applicability of our transcriptome prediction models in multi-ethnic 241 

association studies, we applied S-PrediXcan22 to GWAS summary statistics from the Population 242 

Architecture using Genomics and Epidemiology (PAGE) study5. The PAGE study consists of 243 

28 different phenotypes tested for association with variants within a multi-ethnic, non-European 244 

cohort of 49,839 individuals (Hispanic/Latino (n=22,216), African American (n=17,299), Asian 245 

(n=4,680), Native Hawaiian (n=3,940), Native American (n=652) or Other (n=1,052)). Since we 246 

tested multiple phenotypes and transcriptome prediction models in our TWAS, we used a 247 

conservative approach and considered genes as significantly associated with a phenotype if the 248 

association p-value was less than the standard Bonferroni corrected GWAS significance 249 

threshold of 5 x 10-8.  250 

 251 
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To replicate the associations found in PAGE, we also applied S-PrediXcan19 to 252 

PanUKBB7 GWAS summary statistics (N=441,331; European (n=420,531), Central/South 253 

Asian (n=8,876), African (n=6,636), East Asian (n=2,709), Middle Eastern (n=1,599) or 254 

Admixed American (n=980)). For similarity purposes, we selected summary statistics of 255 

phenotypes that overlap with the ones tested in PAGE (Table S1). As previously described, a 256 

gene-trait pair association was considered significant if its p-value was less than the Bonferroni 257 

corrected GWAS significance threshold of 5 x 10-8. Furthermore, we deemed significant gene-258 

trait pair associations as replicated if they were detected by the same MESA tissue-population 259 

model and had the same direction of effect in PAGE and PanUKBB. To assess if the gene-trait 260 

association pairs reported in our study are novel or not, we compared them to studies found in 261 

the GWAS Catalog1 (All associations v1.0.2 file downloaded on 11/9/2022). 262 

 263 

3. RESULTS  264 

a. Increased sample sizes improve gene expression cis-heritability estimation 265 

With the goal of improving transcriptome prediction in diverse populations, we first 266 

determined which gene expression traits were heritable and thus amenable to genetic prediction, 267 

using genome-wide genotype and RNA-Seq data from three blood cell types (PBMCs, 268 

monocytes, T cells) in TOPMed MESA. We estimated cis-heritability (h²) using data from four 269 

different populations (African American - AFA, Chinese - CHN, European - EUR, and 270 

Hispanic/Latino - HIS). Variation in h² estimation between populations is expected due to 271 

differences in allele frequencies and LD patterns; however, we show that larger population 272 

sample sizes yield more significant (p-value < 0.05) h² estimates (Figure 3). Using the PBMC 273 

dataset as an example, with the EUR dataset (n = 528), we assessed h² for 10,228 genes, 274 

however, we estimated h² for 8,765 genes using the AFA dataset (n = 334) (Figure 3A). 275 

Moreover, we see a great impact on the CHN population, which has the smallest sample size. 276 

For that population, we managed to estimate h² for only 3,448 genes. The same pattern repeats 277 

when analyzing only the heritable genes (h² lower bound > 0.01). In EUR, 6,902 genes were 278 

deemed heritable, whereas in AFA and CHN the amount of heritable genes is 5,537 and 1,367, 279 

respectively (Figure 3B). Thus, larger sample sizes are needed to better pinpoint h² estimates, 280 

especially in non-European populations. In total, analyzing the union across all populations’ 281 

results, we detected 9,206 heritable genes in PBMCs, 3,804 in monocytes, and 4,053 in T Cells.  282 

 283 

b. MASHR models improve cross-population transcriptome prediction performance 284 

To improve TWAS power for discovery and replication across all populations, we sought 285 

to improve cross-population transcriptome prediction accuracy. For this, we used data from four 286 

different populations and built gene expression prediction models using five different methods 287 

(Elastic Net (EN), Transcriptome-Integrated Genetic Association Resource (TIGAR), Matrix 288 

eQTL, multivariate adaptive shrinkage in R (MASHR), and Joint-Tissue Imputation (JTI)). We 289 

chose EN as a baseline approach for comparison in our analysis, as it has been previously 290 

shown to have better performance than other common machine learning methods such as 291 

random forest, K-nearest neighbor, and support vector regression28. Furthermore, we trained 292 

gene expression prediction models by applying TIGAR’s nonparametric Bayesian Dirichlet 293 

Process Regression pipeline20. Using Matrix eQTL, we estimated univariate effect sizes for each 294 

cis-SNP-gene relationship and we developed an algorithm to include top SNPs from each 295 

population, but population-estimated effect sizes in each population’s model (Figure 2). Matrix 296 

eQTL effect sizes are the input for MASHR, which we hypothesized might better estimate 297 

cross-population effect sizes, due to its flexibility in allowing both shared and population-298 

specific effects19,29. Similarly, JTI was designed to leverage correlation across different tissues 299 
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to improve gene expression prediction17; thus, we also adapted its pipeline to perform cross-300 

population leveraging. By filtering our models to include only genes with positive h² (h² lower 301 

bound > 0.01) in at least one population, we saw that among all methods used, we obtained 302 

more gene models in MatrixeQTL and MASHR (Figure 4A). The difference is especially 303 

greater in the CHN population model.  304 

 305 

To evaluate model performance at population-matched and cross-population 306 

transcriptome predictions, we used data from the Geuvadis study, which comprises individuals 307 

of West African or European descent. We defined “population-matched predictions” as the 308 

scenarios in which the transcriptome model MESA training data and Geuvadis test data have the 309 

closest genetic distance with available data, and we defined “cross-population predictions” as 310 

any other pairs (Figure S1). Overall, across all Geuvadis populations, the methods tested show 311 

distinct performances (Figure S2). This result, however, may be influenced by the fact that 312 

different transcriptome models have a different number of genes in them (Figure 4A). Thus, we 313 

sought to compare performances considering the intersection of genes with expression predicted 314 

by all methods. Focusing on Geuvadis GBR and YRI populations, which have similar sample 315 

sizes and are of distinct continental ancestries, we observed that MASHR models significantly 316 

outperform the other methods in cross-population transcriptome predictions, as seen in the 317 

AFA-GBR and EUR-YRI MESA-Geuvadis populations pairs (Figure 4B, Table S2). The only 318 

exception is in AFA-GBR, in which MASHR and MatrixeQTL have similar performances.      319 

Additionally, in population-matched scenarios (AFA-YRI and EUR-GBR), prediction 320 

performance does not significantly differ between MASHR, MatrixeQTL, and EN. All three 321 

aforementioned methods significantly outperform JTI and TIGAR in population-matched 322 

predictions (Table S2). Moreover, we also performed pairwise comparisons between all 323 

methods using all Geuvadis populations, taking into account the intersection of genes with 324 

expression predicted in each case. Overall, across all MESA transcriptome models and 325 

Geuvadis populations, MASHR models either performed better or the same as other methods in 326 

both population-matched or cross-population transcriptome prediction scenarios (Table S3).   327 

      328 

 329 

c. Leveraging effect sizes across different populations improves discovery rate in multi-330 

ethnic TWAS 331 

 332 

In order to investigate the applicability of the models we built in multi-ethnic TWAS, we 333 

used S-PrediXcan with GWAS summary statistics of complex traits from PAGE and PanUKBB. 334 

We show that across all tissue-population models, MASHR identified the highest number of 335 

gene-trait pair associations (208) that replicated in both PAGE and PanUKBB (P < 5 x 10-8), 336 

followed by Matrix eQTL (173), JTI (131), EN (94), and TIGAR (91) (Table S3). When 337 

analyzing the total number of discoveries separately for each population, MASHR had the 338 

highest number of gene-trait pairs in most population models (Figure 5A). The only exception is 339 

with HIS models, in which both MASHR and MatrixeQTL had the same number of discoveries. 340 

The discovery rate improvement by MASHR is exceptionally high in CHN models, as it had 341 

almost twice the number of discoveries as the second-highest method (27 by MASHR vs. 14 by 342 

MatrixeQTL).  343 

      344 

Additionally, when comparing gene-trait pairs, we saw that most MASHR hits were 345 

shared between population models, whereas other methods have higher population-specific 346 

discoveries (Figure 5B). Most MatrixeQTL hits were also shared by many population models, 347 

but not to the same degree as MASHR. Altogether, these findings indicate that MASHR models 348 

show high consistency and also suggest that TWAS results are not as affected by the MASHR 349 

population model used as compared to other methods.  350 
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 351 

To contextualize our models’ findings, we investigated whether the discovered gene-trait 352 

pairs had been previously reported in any studies in the GWAS Catalog 353 

(https://www.ebi.ac.uk/gwas/home). We saw that across 105 distinct gene-trait pairs 354 

associations found (totaling 697 across all models), 38 (36.19%) have not been reported in the 355 

GWAS Catalog, and therefore may be novel associations that require further investigation 356 

(Table S4). Out of those potential new biological associations, most of them (13) were 357 

discovered with MASHR AFA models (Table S4). Furthermore, out of the 67 distinct known 358 

GWAS catalog associations discovered, MASHR models identified most of them (Table S3). 359 

For instance, MASHR EUR models found 34 known associations, followed by MASHR AFA 360 

with 33, and MatrixeQTL EUR with 32 (Figure S4).   361 

 362 

 363 

4. DISCUSSION 364 

 365 

In this work, we sought to build population-based transcriptome prediction models for 366 

TWAS using data from the TOPMed MESA cohort using five distinct approaches. We saw that 367 

although the AFA and HIS populations’ datasets contained the highest numbers of SNPs after 368 

quality control, EUR yielded the highest number of gene expression traits with significant 369 

heritability estimates across all tissues analyzed. This is most likely due to the higher sample 370 

size in EUR in comparison to AFA and HIS, as larger sample sizes provide higher statistical 371 

power to detect eQTLs with smaller effects30. Furthermore, we saw that the number of genes in 372 

each population transcriptome model is not the same across all methods tested. Some 373 

transcriptome prediction models, such as the ones built using EN or JTI, only contain genes for 374 

which the SNPs effect sizes converged during training, which is not a limiting factor for 375 

MASHR, MatrixeQTL, and TIGAR. One of the factors that impacts the number of genes for 376 

which SNPs effect sizes converge during training is sample size, which explains the lower 377 

number of genes in the EN and JTI CHN model in comparison to other population models. 378 

Furthermore, although sample size does not impact the number of gene models trained for 379 

TIGAR in the same degree as EN and JTI, it influences SNP effect size estimation31. Thus, 380 

when we removed SNPs with near-zero effects, there was a drop in the number of genes in the 381 

final population transcriptome models for TIGAR. Test data sample size has also been shown to 382 

positively correlate with gene expression prediction accuracy32.  383 

 384 

In addition to sample size, gene expression prediction accuracy is known to be greater 385 

when the training and testing datasets have similar ancestries11,12,32,33; however, non-European 386 

ancestries are vastly underrepresented in human genetics studies2,3, which compromises the 387 

ability to build accurate TWAS models for them. Thus, using data from the Geuvadis cohort, we 388 

evaluated the transcriptome prediction performance of our models and found that MASHR 389 

models either significantly outperformed all other methods tested, or had similar performance. 390 

Previous studies have shown that by borrowing information across different conditions, such as 391 

tissues19 or cell types34, MASHR identifies shared- or condition-specific eQTLs, which can 392 

enhance causal gene identification29, as well as improve effect size estimation accuracy19. 393 

Similarly, by leveraging effect size estimates across multiple populations, MASHR improved 394 

cross-population transcriptome prediction without compromising population-matched prediction 395 

accuracy. Interestingly, another method we tested, JTI, was also originally designed to leverage 396 

similarity in gene expression and DNase 1 hypersensitive sites across tissues in order to 397 

improve transcriptome prediction accuracy17. However, our results showed that it performed 398 

worse than MASHR and the same as EN in cross-population transcriptome prediction. This 399 

suggests that distinct cross-condition leveraging frameworks may have different performances 400 

when applied across populations. One possible reason for differences in performance is that JTI 401 
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uses EN weighted by condition similarity to estimate effect sizes and select SNPs to be included 402 

in the final models, whereas for MASHR, our pipeline selects one SNP per condition. Since 403 

more SNPs with less significant effect sizes were included in our EN and JTI models, greater 404 

uncertainty in effect sizes likely led to lower transcriptome prediction accuracy compared to 405 

MASHR. Furthermore, among the methods evaluated, TIGAR had the lowest prediction 406 

performance. Originally, TIGAR was benchmarked against EN, and showed better 407 

transcriptome prediction accuracy; however, unlike in our analysis, their analysis included only 408 

genes whose expression heritability was equal or lower than 0.220.  409 

 410 

Discovery and replication of TWAS associations are also related to the ancestries of the 411 

transcriptome prediction model training dataset and ancestries of the TWAS sample dataset11. 412 

Thus, we assessed the applicability of our models in TWAS using S-PrediXcan on PAGE and 413 

PanUKBB GWAS summary statistics and found that across all tissues and populations, 414 

MASHR models yielded the highest number of total gene-trait pairs associations, with MASHR 415 

AFA reporting the highest number. In this manner, it seems that although MASHR improved 416 

gene expression prediction accuracy for all populations analyzed, using transcriptome prediction 417 

models that match the ancestries of the GWAS dataset still yields the highest number of TWAS 418 

discoveries, which is in agreement with many previous studies11,35–38. Our results also showed 419 

that although JTI transcriptome prediction was not as accurate as baseline EN, JTI models had 420 

more TWAS discoveries than EN. This exemplifies how integrating data from different genetic 421 

ancestries may improve TWAS.  422 

 423 

By investigating which associations had been previously reported in the GWAS 424 

Catalog, we saw that most new discoveries were found by MASHR models. Some of these 425 

possible new discoveries are unique to MASHR models and have been corroborated previously, 426 

such as YJEFN3 (also known as AIBP2) and triglycerides, whose low expression in zebrafish 427 

increases cellular unesterified cholesterol levels39, consistent with our S-PrediXcan effect size 428 

directions (PAGE effect size = -0.52, p-value = 6.1 x 10-16; PanUKBB effect size = -0.86, p-429 

value = 7.1 x 10-86). Additionally, we also saw that MASHR models showed higher consistency 430 

across the different population transcriptome prediction models, which means that TWAS 431 

results are not as affected by the population model used as other methods. 432 

 433 

One limitation of our TWAS is that we used transcriptome prediction models trained in 434 

PBMCs, monocytes and T cells, and those tissues might not be the most appropriate for some 435 

phenotypes in PAGE or PanUKBB. Additionally, because of the smaller sample sizes for some 436 

populations in our training dataset, h² and eQTL effect sizes estimates have large standard 437 

errors, which may affect the ability of MASHR to adjust effect sizes across different conditions 438 

based on correlation patterns present in the data. Regardless of that, our results mainly 439 

demonstrate that we can implement cross-population effect size leveraging using a method first 440 

applied to do cross-tissue effect size leveraging - and improve cross-population transcriptome 441 

prediction accuracy in doing so. Thus, increasing sample size for underrepresented populations 442 

will improve current MASHR TWAS models’ performances, as well as increase genetic 443 

diversity in the data. Another TWAS method, METRO, which implements a likelihood-based 444 

inference framework to incorporate transcriptome prediction models built on datasets of two 445 

different genetic ancestries, has also shown enhanced TWAS power40. METRO jointly models 446 

gene expression and the phenotype of interest40, and thus was not directly comparable to the five 447 

methods we tested here, which all separate the transcriptome prediction step from the 448 

association test. Given that this traditional two-stage TWAS procedure ignores uncertainty in 449 

the expression prediction, the joint approach of METRO across more than two populations is an 450 

area of future TWAS methods research. Furthermore, while our study focused on transcriptome 451 

prediction, MASHR could also be adapted to possibly improve cross-population polygenic risk 452 
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scores (PRS). Indeed, other methods like PRS-CSx jointly model complex traits effects across 453 

populations in order to improve PRS41. MASHR is most useful when population effects are 454 

shared, as demonstrated by the more consistent S-PrediXcan results, but population-specific 455 

effects are also relevant. For instance, a study in a large African American and Latino cohort 456 

discovered eQTLs only present at appreciable allele frequencies in African ancestry 457 

populations38. Moreover, since our MASHR models focus on the top SNPs, we might not be 458 

including enough eQTLs in the models, especially for those genes whose expression is 459 

genetically regulated by multiple eQTLs with small effects.  460 

 461 

 In conclusion, our results demonstrate the importance and the benefits of increasing 462 

ancestry diversity in the field of human genetics, especially regarding association studies. As 463 

shown, sample size is valuable for assessing gene expression heritability and for accurately 464 

estimating eQTL effect sizes, and thus some populations are negatively affected due to the lack 465 

of data. However, by making transcriptome prediction models that leverage effect size estimates 466 

across different populations using multivariate adaptive shrinkage, we were able to increase 467 

gene expression prediction performance for scenarios in which the training data and test data 468 

have distant (“cross-population”) genetic distances with available data. Additionally, when 469 

applied to multi-ethnic TWAS, the aforementioned models yielded more discoveries across all 470 

methods analyzed, even detecting well-known associations that were not detected by other 471 

methods. Thus, in order to further improve TWAS in multi-ethnic or underrepresented 472 

populations and possibly reduce health care disparities, it is necessary to use methods that 473 

consider shared- and population-specific effect sizes, as well as increase available data of 474 

underrepresented populations.  475 

 476 
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 672 

Figure 1: Overall study methodology. Using TOPMed MESA as a training dataset, we built 673 

population-based transcriptome prediction models using five different methods (Elastic Net 674 

(EN), Joint-Tissue Imputation (JTI), Multivariate adaptive shrinkage (MASHR), Matrix eQTL, 675 

and Transcriptome-Integrated Genetic Association Resource (TIGAR)). With these 676 

transcriptome models, we evaluated their out-of-sample transcriptome prediction accuracy using 677 

the GEUVADIS dataset. Additionally, we assessed their applicability in multi-ethnic TWAS 678 

using GWAS summary statistics from the PAGE Study and PanUKBB. AFA = African 679 

American, CHN = Chinese, EUR = European, HIS = Hispanic/Latino. 680 

 681 

 682 

Figure 2: Design of the methodology implemented to make MASHR models. (A) Using 683 

effect sizes estimated using Matrix eQTL within each population dataset, we combined them 684 

across genes, with the different populations as conditions, to use as input for MASHR. The 685 

output matrixes contain adjusted effect sizes. (B) For each population, we selected the top SNP 686 

(lowest local false sign rate) per gene. Then, we concatenated the Gene-top SNP pairs across 687 

populations to determine which SNPs would end up in the final models. Lastly, to make our 688 

population-based transcriptome prediction models, we used population-specific effect sizes, 689 

taken from the corresponding MASHR output matrices. AFA = African American, CHN = 690 

Chinese, EUR = European, HIS = Hispanic/Latino.  691 
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 692 

Figure 3: PBMC gene expression cis-heritability estimates across MESA populations. (A) 693 

Gene expression cis-heritability (h²) estimated for different genes across different MESA 694 

population datasets in PBMC. Only genes with significant estimated h² (p-value < 0.05) are 695 

shown. Gray bars represent the standard errors (2*S.E.). Genes are ordered on the x-axis in 696 

ascending h² order, and colored according to the h² lower bound (h² - 2*S.E.). (B) Number of 697 

significant heritable genes (p-value < 0.05 and h² lower bound > 0.01) within each PBMC 698 

population dataset, by sample size. AFA = African American, CHN = Chinese, EUR = 699 

European, HIS = Hispanic/Latino.  700 

 701 
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     702 

Figure 4: Comparison of MESA population transcriptome prediction models. (A) The 703 

number of genes in each MESA population model, by method and tissue. (B) Prediction 704 

performance (Spearman’s rho) of EN, JTI, MASHR, MatrixeQTL, and TIGAR PBMC MESA 705 

population models in Geuvadis GBR and YRI populations. Only the intersection of genes with 706 

expression predicted by all methods for each MESA-Geuvadis population pair are shown. 707 

MASHR performed better than or the same as all other methods (see Table S2 for all pairwise 708 

comparisons).  709 
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     710 

Figure 5: Number of significant S-PrediXcan gene-trait pairs in PAGE and PanUKBB 711 

GWAS summary statistics. (A) Total number of significant gene-trait pairs discovered by each 712 

MESA population model (considering the union of the three tissues), by method. (B) Number of 713 

significant gene-trait pairs discovered with individual or multiple MESA populations colored by 714 

method (considering the union of the three tissues). Population set intersections are indicated on 715 

the x-axis in color. 716 

 717 

 718 

Figure S1: Genotype principal component analysis. Plot of the first two principal 719 

components of TOPMed MESA populations with Geuvadis populations. AFA = African 720 

American (TOPMed), CEU = Utah residents with Northern and Western European ancestry 721 
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(Geuvadis), CHN = Chinese (TOPMed), EUR = European (TOPMed), FIN = Finnish in Finland 722 

(Geuvadis), GBR = British in England and Scotland (Geuvadis), HIS = Hispanic/Latino 723 

(TOPMed), TSI = Toscani in Italy (Geuvadis), YRI = Yoruba in Ibadan, Nigeria (Geuvadis). 724 

 725 

     726 

Figure S2: Overall prediction performance of MESA population models in Geuvadis.      727 

Prediction performance (median Spearman’s rho) of EN, JTI, MASHR, MatrixeQTL, and 728 

TIGAR MESA population models in all Geuvadis populations. 729 
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     730 

Figure S3: Number of significant S-PrediXcan gene-trait pairs in PAGE and PanUKBB 731 

GWAS summary statistics that have been reported in the GWAS catalog. Total number of 732 

significant gene-trait pairs discovered by each MESA population model (considering the union 733 

of the three tissues), by method.  734 

 735 

Table S1: PAGE and PanUKBB summary statistics used in this study.  736 

 737 

Table S2: Performance comparisons of PBMC AFA and EUR MESA transcriptome prediction 738 

models in the GBR and YRI Geuvadis populations between all methods. 739 

 740 

Table S3: Pairwise comparisons of the performance of EN, JTI, MASHR, MatrixeQTL, and 741 

TIGAR MESA transcriptome prediction models in all Geuvadis populations. 742 

 743 

Table S4: Compiled S-PrediXcan gene-trait pair discoveries, significant in PAGE and 744 

PanUKBB GWAS summary statistics with the same direction of effect. 745 

 746 

Table S5: List of NHLBI TOPMed consortium members. 747 
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