

Synchronized LFP rhythmicity in the social brain reflects the context of social encounters

Alok Nath Mohapatra^{1,*}, David Peles¹, Shai Netser¹, Shlomo Wagner^{1,*}

¹ Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel

Short title: LFP rhythmicity in the social brain reflects the social context

***Corresponding author:** Alok Nath Mohapatra, Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.

Email: thinkalok@gmail.com

1 **Abstract**

2 Mammalian social behavior is highly context-sensitive. Yet, little is known about the mechanisms
3 that modulate social behavior according to its context. Recent studies have revealed a network of
4 mostly limbic brain regions, here termed the "social brain", which regulates social behavior. We
5 hypothesized that coherent theta and gamma rhythms reflect the organization of the social brain
6 regions into functional networks in a context-dependent manner. To test this concept, we
7 simultaneously recorded extracellular activity from multiple social brain regions in mice
8 performing three social discrimination tasks. Local field potential (LFP) rhythmicity across all
9 tasks was dominated by a general internal state. However, during stimulus investigation LFP
10 rhythmicity was sensitive to stimulus characteristics. Specifically, the pattern of LFP coherence
11 between the various regions reflected mainly the social context. Moreover, we found the ventral
12 dentate gyrus to play a pivotal role in coordinating the context-specific rhythmic activity in the
13 network.

14
15 Keywords: social context, social discrimination, social brain, theta rhythmicity, in vivo
16 electrophysiology, local field potential

17
18
19 Brain-region name abbreviations

20
21 **AcbC:** Accumbens nucleus, core
22 **AcbSh:** Accumbens nucleus, shell
23 **AhiAL:** Amygdalo-hippocampal area, anterolateral part
24 **BLA:** Basolateral amygdaloid nucleus
25 **BMP:** Basomedial amygdaloid nucleus, posterior part
26 **DMD:** Dorsomedial hypothalamic nucleus, dorsal part
27 **EA:** Extended amygdala
28 **IL:** Infralimbic prefrontal cortex
29 **LS:** Lateral septum
30 **MeAD:** Medial amygdaloid nucleus, anterodorsal
31 **Pir:** Piriform cortex
32 **PLH:** Peduncular part of the lateral hypothalamus
33 **PrL:** Prelimbic prefrontal cortex
34 **PVN:** Paraventricular hypothalamic nucleus
35 **vCA1:** Field CA1 of the hippocampus, ventral part
36 **vDG:** Dentate gyrus, ventral part
37 **VP:** Ventral pallidum

38 **Introduction**

39 Mammalian social behavior is highly complex and dynamic, involving multiple types of distinct,
40 sometimes even opposing, interactions between partners. Indeed, the identity of a partner can
41 completely change the nature and trajectory of social actions taken by an individual [1]. In addition
42 to these complexities, social interactions are highly dependent upon the social context. For
43 example, humans will most likely respond differently to a hand placed upon their shoulder from
44 behind if this happens in a frightening context, such as in a dark alley in a foreign city, then if the
45 same contact occurs in a cocktail party. Presently, little is known of the brain mechanisms and
46 neural circuits that encode the context of social encounters and change responses to social cues
47 accordingly.

48 In the last two decades, studies have begun to reveal the brain circuits that sub-serve various types
49 of social behavior [for recent review papers see for example 2, 3-5]. Such studies exposed the
50 involvement of a vast network of limbic brain regions, here termed the "social brain" [6], in
51 processing social sensory cues and regulating mammalian social behavior [7, 8]. These include
52 striatal regions, such as the nucleus accumbens core (AcbC) and shell (AcbSh), the prelimbic (PrL)
53 and infralimbic (IL) prefrontal cortical areas, several hippocampal and septal areas and multiple
54 amygdaloid and hypothalamic nuclei [9-12]. Many of these areas are highly interconnected in a
55 bidirectional manner [13-17], and some were shown to be involved in various, at times opposing,
56 types of social behavior [9, 18-21]. It remains, however, unclear how this intricate network of brain
57 areas generates the large repertoire of distinct types of social behavior. Recent studies using multi-
58 site brain recordings from behaving animals have demonstrated that system-level neural activity
59 in sub-networks of the social brain predicts individual social preferences [22] and decision-making
60 [23] better than does local neural activity at any single brain region. These results thus suggest that
61 coding of the various aspects of social behavior in the brain should be considered at the system
62 level.

63 Oscillatory neural activity, mostly in the theta (4-12 Hz) and gamma (30-80 Hz) bands, was
64 reported in many cortical and sub-cortical brain regions in various species [24-26], with its power
65 being shown to intensify during demanding cognitive functions, such as learning [27-29] and
66 social communication [30-32]. Furthermore, abnormal theta and gamma rhythms have been
67 reported in multiple neurodevelopmental disorders [33-35], such as autism spectrum disorder
68 (ASD) [36, 37]. Accordingly, one prominent hypothesis states that coherent manifestation of these

69 rhythms can dynamically coordinate the activity of neural ensembles dispersed over multiple brain
70 regions and link them into *ad hoc* functional networks [38].

71 In the present study, we hypothesized that coherent theta and gamma rhythms couple various
72 regions of the social brain into functional networks in a social context-dependent manner. In other
73 words, distinct social contexts dictate different patterns of coordinated rhythmic activity of
74 dispersed social brain neuronal ensembles, which in turn sub-serve context-dependent processing
75 of social cues and consequent behavioral responses. To test this hypothesis, we recorded
76 extracellular electrical activity simultaneously from multiple regions of the social brain in mice
77 performing three distinct binary social discrimination tasks (contexts). The same type of social
78 stimulus served as either preferred or less-preferred stimulus in all three tasks. Using this design,
79 we could link distinct patterns of rhythmic neural activity across the social brain to either stimulus
80 identity or its valence, or to the social context. Our results reveal that the pattern of coordinated
81 oscillatory activity (coherence) in the network is strongly correlated with the social context and
82 carries information that may be used to discriminate between distinct, albeit similar, social
83 contexts. Further, we revealed that the ventral dentate gyrus (vDG), an area previously linked to
84 contextual information [39, 40], seems to be involved in coordinating the coherent activity among
85 the various regions of the social brain.

86

87 **Results**

88 ***Analyzing the behavior of CD1 male mice during three distinct binary social discrimination*** 89 ***tasks***

90 Using custom-built electrode arrays (EAr) we simultaneously acquired local field potential (LFP)
91 signals from up to 16 brain regions at a time (cumulative count: 18 regions; Figure S1A and Table
92 S1) during interactions of adult male mice (subjects; n=14) with various stimuli [41]. We aimed
93 to sample widespread social-behavior associated regions in the cortex (prefrontal and piriform),
94 striatum (nucleus accumbens and ventral pallidum), hippocampus (e.g. dentate gyrus and CA1),
95 septal nuclei (latera septum), amygdala (e.g. basolateral and medial) and hypothalamus (e.g.
96 dorsomedial and paraventricular nuclei). The location of each electrode was verified *post mortem*
97 [41], and since the targeting accuracy was limited, not all brain regions were recorded in each
98 subject (see Fig. S1A and Table S1 for details). For social contexts,, we employed three distinct
99 binary social discrimination tasks [46, 47], namely the social preference (SP), (Fig 1A), emotional-

100 state preference (EsP) (Fig. 1E) and sex preference (SxP) (Fig 1I) tasks [46]. (See timeline in Fig.
101 S1B). Each task comprised a five min-long baseline period involving empty chambers located at
102 opposite corners of the arena, followed by a five min-long encounter period, when a distinct
103 stimulus was introduced into each chamber [42]. Mice performing the SP task tended to interact
104 with social stimuli (conspecifics) for significantly more time than with objects throughout the
105 encounter period (Fig. 1B-D). Similarly, mice performing the EsP task preferred to interact with
106 socially isolated rather than group-housed stimuli (Fig. 1E-H), while mice performing the SxP task
107 tended to interact more with female than with male stimuli (Fig 1I-L). Thus, in each task, the
108 subjects discriminated between a preferred and a less-preferred stimulus. Importantly, the same
109 type of stimulus (a group-housed male mouse) that was the preferred stimulus in the SP task was
110 the less-preferred stimulus in the other two tasks. Therefore, this set of tasks allowed us to analyze
111 brain-wide neural activity patterns in association with either the type of stimulus (i.e., a group-
112 housed male vs. an object/group-housed female/isolated male) or its valence (i.e., preferred vs.
113 less-preferred), or the social context (i.e., SP, EsP or SxP task). It should be noted, that in our
114 hands ICR female mice do not discriminate between group-housed and isolated stimuli, hence we
115 conducted this study using male subjects only.

116 We further compared multiple behavioral parameters across the various tasks. There were no
117 significant differences between the tasks in terms of total time dedicated to stimuli investigation
118 (Fig. 1M), the total number of transitions made by the subjects between the two stimuli (Fig. 1N)
119 or the distance traveled by the subjects during a task (Fig. 1O). Nonetheless, the preference
120 (reflected by the relative discrimination index, RDI) between the two stimuli was lower in the EsP
121 task, as compared to the SP task (Fig. 1P). Overall, subject behavior was similar across the various
122 tasks.

123

124 ***Different tasks elicit different profiles of rhythmic LFP signals in multiple brain regions***

125 The power spectral density (PSD) profiles of LFP signals recorded during the encounter period
126 (Fig. 2A-B), differed among the various tasks performed by the same subject in a brain region-
127 specific manner (Fig. S1C). For quantitative comparison, we calculated the mean theta (θ P) and
128 gamma (γ P) power separately for the baseline and encounter periods of each task for each brain
129 region. While the mean power during baseline across all regions did not significantly differ
130 between the tasks (Fig. 2C-D), the change in power during the encounter for both theta ($\Delta\theta$ P) and

131 gamma ($\Delta\gamma P$) rhythms was highest for the SP task, compared to the other two (Fig 2E-F). Thus,
132 despite the generally similar behavior exhibited by subjects across the tasks (Fig. 1), their system-
133 level brain LFP signals significantly and consistently differed in power across tasks. Specifically,
134 despite involving only one social stimulus, the SP task induced the strongest LFP rhythmicity.
135 When considering each brain region separately, we found that in almost all cases, the mean power
136 of both rhythms was enhanced during the encounter period, as compared to baseline. Notably, the
137 mean power change differed significantly among the various tasks and specific regions (Fig. 2G-
138 H). The similar patterns of $\Delta\theta P$ and $\Delta\gamma P$ across the various regions suggested the existence of a
139 link between them. Accordingly, we found statistically significant correlation (Pearson's, $r>0.25$,
140 $p<0.05$) between $\Delta\theta P$ and $\Delta\gamma P$ for the SP and SxP tasks, while borderline significant correlation
141 ($r=0.45$, $p=0.059$) was observed for the EsP task (Fig. 2K-M). Thus, when measured over the
142 course of the entire session, both rhythms seem to be driven by the same process.
143 To examine the temporal dynamics of LFP rhythmicity during the various tasks, we plotted $\Delta\theta P$
144 and $\Delta\gamma P$ as a function of time for each task and brain region. In accordance with our previous study
145 in rats [32], we found that both $\Delta\theta P$ and $\Delta\gamma P$ began to rise several seconds before stimulus
146 introduction, peaked within 20 s from this point and gradually declined in all brain regions and
147 tasks (Fig. S2). Thus, the dynamics of LFP rhythmicity across the session were similar among the
148 various tasks and did not seem to reflect the behavioral dynamics (shown in Fig. 1D, H, L). We
149 also found no significant correlation (Pearson's, $p>0.05$) between the mean power change and
150 speed of the subject during any task for either $\Delta\theta P$ or $\Delta\gamma P$ (Fig. S3A-F).
151 Overall, these results suggest that theta and gamma rhythmicity during the encounter period are
152 driven by an internal brain state that shows similar temporal dynamics across tasks, independent
153 of the behavioral dynamics.

154

155 ***LFP power changes during stimulus investigation are differentially modulated across brain***
156 ***regions and tasks***

157 Despite the uniform dynamics of LFP rhythmicity in the social brain during the encounter period,
158 it may be differentially modulated during specific behavioral events, such as stimulus
159 investigation. We thus examined the possibility that during investigation bouts, $\Delta\theta P$ and $\Delta\gamma P$
160 (henceforth termed $\Delta\theta P$ and $\Delta\gamma P$) differ between the various stimuli and tasks. As exemplified by
161 signals recorded from the amygdalo-hippocampal area (AhiAl) shown in Fig. 3A-F, a Z-score

162 analysis revealed elevation in theta power during investigation bouts towards social but not the
163 object stimuli in the SP task, during investigation of both stimulus types in the EsP task and during
164 investigation of female but not male stimuli in the SxP task. Very similar results were obtained for
165 gamma power (Fig. S4A-F). This analysis thus suggests a bias in the response towards specific
166 stimuli, in a task-specific manner. Interestingly, even though the same type of stimulus (a group-
167 housed male) was used in all tasks, this stimulus elicited a clear elevation in LFP rhythmicity only
168 during the SP and EsP tasks, but not during the SxP task. These results suggest that at least for the
169 AhiAl, the change in LFP power was not dictated by either the stimulus type nor by its valence.
170 To explore the stimulus-specific bias in LFP power change during each task, we calculated the
171 difference in ${}^{\Delta}\theta P$ and ${}^{\Delta}\gamma P$ between the two stimuli, separately for each brain region. Since a
172 possible bias of LFP rhythmicity of a given brain region may be associated with a behavioral bias
173 towards a specific stimulus, we examined the correlation between the two variables. To this end,
174 we correlated the ${}^{\Delta}\theta P$ bias (preferred minus less-preferred) to the RDI values of each task. We
175 found a negative correlation in a specific set of brain regions (i.e, extended amygdala (EA) and
176 lateral septum (LS,) only for the SP task. In contrast, a positive correlation was found in a distinct
177 set of brain regions (nucleus accumbens shell (AcbSh), AhiAl, ventral pallidum (VP) and
178 dorsomedial hypothalamic nucleus (DMD)) during the EsP and SxP tasks. Specifically, the VP
179 exhibited a very strong and highly significant linear correlation with RDI values during both the
180 EsP and SxP tasks (Fig 3G). These results suggest a link between stimulus-specific bias in ${}^{\Delta}\theta P$ and
181 behavioral preference in a task-specific manner.
182 To further explore this link, we plotted ${}^{\Delta}\theta P$ bias across all tasks on a 3D plot, separately for each
183 brain region. We found that almost no region showed bias towards the object stimulus in the SP
184 task, with the various regions being equally distributed between the two stimuli in the EsP and SxP
185 tasks (Fig. 4B). In contrast, when ${}^{\Delta}\gamma P$ was analyzed (Fig. 4C), we observed an opposite picture.
186 Here, almost all brain regions exhibited stronger responses to the grouped and male stimuli in the
187 EsP and SxP tasks, yet were rather equally distributed between the two stimuli in the SP task.
188 Thus, for ${}^{\Delta}\gamma P$, most brain regions (14/18) were equally divided between those biased towards less-
189 preferred stimuli (i.e., object+grouped+male) and those biased towards the type of stimulus used
190 in all three tasks (i.e, social+grouped+male). The probability of such an arrangement to occur by
191 chance is smaller than 0.001 (1-binomial test) for each of these two groups. The results thus suggest
192 that a bias in gamma power is mostly associated with the characteristics (i.e, valence or type) of

193 the stimulus. They also generally demonstrate opposite stimulus-dependent bias patterns between
194 the theta and gamma rhythms during stimulus investigation, in contrast to their significant
195 correlation when measured during the entire encounter period (Fig. 2E-G). This implies the
196 existence of an independent active state in the social brain during stimulus investigation. Notably,
197 of all brain regions considered, the vDG stood out as the only region biased to the combination of
198 object/isolated/female stimuli. Moreover, this region showed a strong bias for all these stimuli in
199 both $\Delta\theta P$ and $\Delta\gamma P$ (Fig. 3H-I). These results suggest a unique position for the vDG in the social
200 brain, as also supported by results presented below.

201

202 ***Social encounters modulate coherence between brain regions in a social context-dependent
203 manner***

204 Synchronous activity (coherence) enhances effective communication between neuronal groups in
205 different brain regions and dynamically binds them into functional networks [38]. We, therefore,
206 examined the coherence of LFP rhythmicity between each pair of brain regions recorded by us, in
207 both the theta and gamma bands. During the baseline period, the mean theta coherence (θCo)
208 between all pairs of brain regions (99 pairs with ≥ 5 sessions from at least two subjects in all three
209 tasks, see Table S2) was similar across all tasks (Fig. 4A). Thus, the subjects displayed similar
210 global brain synchronization while exploring the arena without stimuli, in all tasks. However, the
211 change in theta coherence ($\Delta\theta Co$) during the encounter period differed significantly between tasks.
212 While almost all pairs of brain regions exhibited increased θCo during the SP task, we observed
213 significantly milder increases during EsP and SxP tasks, with many paired regions showing
214 reduced θCo (Fig. 4B, E-G). Similar relationships among tasks were observed for changes in
215 gamma coherence (γCo), although here the general tendency was one of decreased coherence
216 during the encounter period (Fig. 4C-G). Notably, there was almost no correlation between the
217 baseline period coherence and the change in coherence during the encounter period for any task
218 (apart a weak correlation for SP gamma coherence; $r=-0.21$, $p=0.0111$; not shown). This suggests
219 that the encounter-induced coherence change represents an internal state, independent of the
220 resting state. Finally, when calculating the correlations in $\Delta\theta Co$ across all paired regions between
221 the various tasks, we found a statistically significant high correlation between SxP and EsP, while
222 no correlation was found between SP and SxP. A milder but significant correlation was found
223 between SP and EsP (Fig. 4H). In contrast, all correlations were found significant for $\Delta\gamma Co$. These

224 results suggest a gradual shift from SP to EsP and to SxP when in $\Delta\theta\text{Co}$ brain pattern is measured
225 across the whole encounter.

226 We, therefore, examined the encounter-induced coherence changes for each brain region
227 separately, by comparing the change in coherence between a given region and all other regions
228 across tasks in the theta (Fig. S5A) and gamma (Fig. S5B) bands. We found that differences
229 between tasks were brain-region specific, with most (13/18) regions showing significant
230 differences (after FDR corrections) between at least two tasks in $\Delta\theta\text{Co}$ and one third (6/18)
231 showing differences in $\Delta\gamma\text{Co}$. Notably, in all cases, we found significantly higher coherence
232 changes during the SP task, as compared to at least one task, and in many cases, to both other tasks.
233 Thus, a subset of the recorded brain regions displayed differential changes in theta or gamma
234 coherence among the social contexts, with this change being majorly increased in the SP task, as
235 compared to the other two tasks.

236

237 ***Brain-wide coherence changes during investigation bouts reflect the social context***

238 To explore possible modulation of LFP coherence during investigation bouts, we calculated the
239 mean $\Delta\theta\text{Co}$ between each pair of brain regions during all investigation bouts towards a given
240 stimulus, similarly to how we analyzed the power changes (Fig. 3). Since data had been collected
241 for a large number of brain-region pairs (99 pairs), we focused on pairs showing a mean coherence
242 change that crossed a cutoff value $\pm 1.5^*\text{standard deviation (SD)}$ for each stimulus (about 20% of
243 the pairs). When plotting the bias in $\Delta\theta\text{Co}$ and $\Delta\gamma\text{Co}$ between the two stimuli in each task on a 3D
244 plot (Fig. S6A-B), we observed a much wider distribution than was found for power (Fig. 3H-I),
245 suggesting distinct principles of distribution. To further explore this possibility, we examined all
246 pairs of brain region that passed the aforementioned threshold, separately for each stimulus (Fig.
247 5A). Surprisingly, the three stimuli of the same type (i.e, social, grouped, male) did not share even
248 a single pair of brain regions that passed the $\Delta\theta\text{Co}$ cutoff value. Similarly, the preferred stimuli
249 (i.e, social, isolated, female) also did not share even a single pair among them. In contrast, multiple
250 pairs of brain regions shared similar changes in theta coherence between both stimuli used in each
251 task (Fig. 5A). For example, CeA-PrL and MeAD-VP showed increased coherence for both social
252 and object stimuli, BLA-LS and EA-Acbc showed increased coherence for both isolated and
253 grouped stimuli and Pir-AcbC and EA-AcbC exhibited the strongest increase in theta coherence
254 for both male and female stimuli. Similar results were observed for $\Delta\gamma\text{Co}$ (Fig. S6C). Thus, changes

255 in coherence during stimulus investigation seem to be dictated by the social context rather than by
256 stimulus characteristics, such as its type or valence.
257 For quantitative examination of this possibility, we calculated the correlation across all brain
258 regions for either ${}^{\Delta}\theta\text{Co}$ (Fig. 5B) and ${}^{\Delta}\gamma\text{Co}$ (Fig. 5C), between pairs of stimuli which share common
259 context, type or valence. We found strong and highly significant correlations between all pairs of
260 stimuli used in the same task (sharing context). In contrast, among the three stimuli of the same
261 type, only grouped (ESP) and male (SxP) showed significant correlation. Similarly, among
262 preferred stimuli, only isolated (EsP) and female (SxP) showed significant correlations. Notably,
263 in both of these cases the correlation was weaker than the correlation between any pair of stimuli
264 sharing the same context (Fig. 5B). Similar results were found for ${}^{\Delta}\gamma\text{Co}$ (Fig. 5C). Thus, coherence
265 changes during stimulus investigation in both bands had the strongest association with the context
266 of the social interaction, relative to any characteristic of the stimulus.
267 Finally, we employed a Decision trees (multi-class Random forest) classifier to examine if ${}^{\Delta}\theta\text{Co}$
268 and ${}^{\Delta}\gamma\text{Co}$ contain information which may be used to discriminate between the various contexts or
269 stimuli. First, we validated that the model achieved good (~60%) and significant accuracy in
270 predicting the social stimulus vs. object in the SP task using either ${}^{\Delta}\theta\text{Co}$ or ${}^{\Delta}\gamma\text{Co}$. Notably, the
271 classification of the object vs. social was not accurate, suggesting that the presence of the social
272 stimulus (social context) mask the object classification (Fig. S7A-B). Then, we used the same
273 model for predicting the social context (SP, EsP and SxP) and found that using ${}^{\Delta}\theta\text{Co}$ (Fig. 5D),
274 but not ${}^{\Delta}\gamma\text{Co}$ (Fig. 5E), allowed the model to predict the right context better than any other context,
275 and that this prediction was the only one achieving more than a chance level (33.3%) accuracy
276 (although only SxP classification was statistically significant). In contrast, the same model worked
277 poorly for predicting stimulus identity among all six stimuli (Fig. S7C-D). Using the LFP theta
278 power (${}^{\Delta}\theta\text{P}$) for predicting the social context by the same model achieved good and significant
279 classification only for the SP (Fig. S7E), while using both theta power and coherence allowed
280 accurate prediction of both SP and SxP contexts (Fig. S7F). These results suggest that LFP
281 rhythmicity in the theta range, especially the coherence between the various brain regions, is
282 informative regarding the social context of the animal more than regarding the identity or valence
283 of the social stimuli.

284

285 ***Analysis of Granger causality suggests that specific brain regions serve as hubs***

286 The coherent LFP rhythmicity in the social brain can be dominated by specific regions serving as
287 hubs, thereby preceding other regions in terms of rhythmic neural activity. To identify hub
288 candidate regions, we first selected brain regions which are statistically over-represented (see
289 Methods) among pairs of regions exhibiting strong (mean $\pm 1.5^{\circ}$ SD) bias in any task, separately
290 for ${}^{\Delta}\theta$ Co (Fig. 6A) and ${}^{\Delta}\gamma$ Co (Fig. 6B). We then examined the dependence of LFP rhythmicity of
291 each of these regions in terms of preceding rhythmicity of other regions, by calculating the change
292 in Granger causality (GC) [43] during the encounter period (Fig. 6C-E), as compared to the
293 baseline. We found distinct patterns of statistically significant changes in GC (encounter vs.
294 baseline periods) between the various tasks (Fig. 6-H). Some regions, however, presented
295 significant GC changes in all tasks, suggesting that they might function as hubs. For example, the
296 vDG and AcbC participated in significant GC changes in both theta and gamma rhythms in all
297 tasks. At the same time, PrL and AhiAl were explicitly involved in theta GC changes in all tasks.
298 Interestingly, theta GC changes from vDG to AhiAl increased during a SP task but decreased
299 during a EsP task, while theta GC changes from PrL to vDG decreased during both EsP and SxP
300 tasks. These results suggest that these brain regions dictate LFP rhythmicity in the social brain
301 during social investigation.
302 To further explore this possibility, we have calculated the difference in GC change during
303 encounter between the two directions (from area 1 to area 2 and vice versa), for all couples of brain
304 regions across all tasks and rhythms (Fig. S8A-C). After applying FDR correction for multiple
305 comparisons, we found only vDG to LS, for gamma rhythmicity of the EsP task, which was
306 significantly higher in the vDG-LS direction than in the opposite direction (Fig. S8D).

307

308 ***Context-specific synchronization of LFP rhythmicity in the ventral dentate gyrus with precise
309 behavioral events***

310 To further examine the candidate hub regions, we exploited our ability to determine the exact
311 timing of each investigation bout to quantify the synchronized modulation of LFP rhythmicity,
312 relative to these events. Thus, we compared the modulation of theta and gamma power in all
313 regions associated with significant GC changes (Fig. 6) relative to a defined battery of specific
314 behavioral events (Fig. 7A). These events included the beginning and end of investigation bouts
315 towards specific stimuli, as well as transitions between stimuli. We found a main effect in ANOVA
316 for multiple events, although in most cases, none of the regions showed significance *in post-hoc*

317 analysis (see Table S3). One region, the vDG, did, however, exhibit significant differences
318 between stimuli. The vDG displayed significantly higher theta and gamma powers at the end of
319 investigation bouts of social stimuli, as compared to object stimuli, specifically in the SP task (Fig.
320 7B-G and S7A-B). The same region also exhibited decreased theta and gamma powers at the
321 beginning of transitions from isolated to grouped stimuli, as compared to non-transitional bouts,
322 specifically in the EsP task (Fig. 7H-M and S7C-D).

323 These results, together with those shown in Fig. 3B-C and Fig. 6, suggest that the vDG may
324 function as a hub in the social brain network by coordinating rhythmic neural activity of the
325 network in a social context-dependent manner.

326

327 **Discussion**

328 In this study, we used multi-site electrophysiological recordings from the murine social brain to
329 seek system-level neural correlates of three distinct aspects of social interaction, namely, the type
330 of the social stimulus, its relative valence (preference) and the social context. To distinguish
331 between these three aspects, we relied on three social discrimination tasks (i.e., SP, EsP, and SxP)
332 in which male mice clearly prefer one of two distinct stimuli. This design enabled us to employ
333 the same type of social stimulus, a novel group-housed male mouse, in all three tasks, with this
334 stimulus being the preferred stimulus in the SP task and the less-preferred stimulus in the other
335 two tasks. Importantly, all three tasks took place in the same experimental arena, which enables
336 uniform interactions between the subject and the stimuli, i.e., stimulus investigation by the subject
337 [42]. Consequently, as much as we could measure, subject behavior was almost identical in all
338 three tasks. Therefore, behavioral differences cannot explain the significant differences in the
339 patterns of rhythmic LFP signals observed among the different tasks.

340 We analyzed LFP signals at three different time resolutions, specifically, across the whole session,
341 during stimulus investigation, and during specific behavioral events, such as at the beginning and
342 end of investigation bouts. When analyzing the power of both theta and gamma rhythms over an
343 entire session, some aspects seemed to be dictated by a general internal state. In accordance with
344 previous studies by us and others [31, 32], virtually all brain regions exhibited higher level of theta
345 and gamma power during the encounter period, as compared to the baseline period. Our
346 observation that the level of enhanced power was both brain region- and task-specific strongly
347 suggests that the power elevation was not caused by enhanced electrical noise or any other artifact

348 but rather by a genuine internal state of the animal. The uniform dynamics of both theta and gamma
349 power changes across all brain regions and tasks during the encounter period further supports the
350 existence of a general internal state which is independent of behavioral dynamics or context.
351 Notably, we observed significant correlations across brain regions between theta and gamma
352 power changes in all tasks, suggesting that both rhythms are similarly influenced by the internal
353 state. In agreement with our previous studies in both rats and mice [30, 32], theta and gamma
354 power maintained their high levels for a time, even after removal of the stimuli from the arena (not
355 shown), further supporting an encounter-induced general internal state, which slowly fades away.
356 This state did not seem to be caused by subject movement, as we found no correlation between
357 subject speed and changes in theta or gamma power for any brain region.
358 While the dynamics of the internal state seemed to be similar across the distinct contexts, other
359 aspects of the general (session-wise) changes in theta and gamma power exhibited context-specific
360 characteristics. For example, the general changes in both power and coherence were highest in the
361 SP task, suggesting a higher level of the internal state. Assuming that the general state reflects
362 social motivation, these results are somewhat surprising, given how the SP task involved only one
363 social stimulus and reasoning that among the various stimuli tested, the female would be the most
364 attractive to the male subjects. Our interpretation is that the SP task is simpler in terms of social
365 motivation, as it requires the animal to choose between an inanimate object and a conspecific,
366 while the other two tasks involve two social stimuli, thereby presenting the subject with a more
367 challenging dilemma. The higher confidence of the subject during the SP task is in accord with the
368 simpler pattern of theta coherence changes observed during this task (seen as a general increase
369 across almost all brain region pairs). Overall, these results suggest that the internal state level may
370 distinguish between some contexts, which is in accordance with the ability of the Random forest
371 model to predict only the SP context based on the arousal-induced LFP power. Nevertheless, the
372 changes in theta and gamma power across the encounter period did not differ between the EsP and
373 SxP tasks, and thus cannot be the sole basis for the context-specific responses to social cues.
374 Notably, a recent paper [22] that employed similar recordings during the SP test, used the power,
375 coherence and GC data (termed *Electome network*) from various regions of the social brain in a
376 machine-learning model to discriminate between social and object investigation. In accordance
377 with our results, this study reported that the model's precision was higher for the social than for

378 the object, thus suggesting that the social stimulus masks the object, which may be attributed to
379 the context effect.

380 Analysis of the power change, specifically during stimulus investigation, yielded a different
381 picture than did session-wide analysis. First, we found no correlation between theta and gamma
382 power changes during these periods, suggesting a distinct state of active sensing which
383 characterizes stimulus investigation. Moreover, although both theta and gamma power changes
384 across brain regions showed bias to specific combinations of stimuli, they did so in distinct
385 manners. While theta power was biased towards the preferred stimulus in the SP task, with almost
386 no region (other than hippocampal areas) showing a higher level during investigation of object
387 stimuli, the gamma power was clearly biased towards the less-preferred stimuli in the EsP and SxP
388 tasks (grouped and male stimuli), while showing a mixed preference between stimuli in the SP
389 task. Thus, as related to gamma power, the social brain may be divided between regions associated
390 with the valence of stimulus (biased towards less-preferred stimuli) and brain regions associated
391 with the type of stimulus. It should be noted that theta rhythmicity is thought to reflect top-down
392 processes, such as arousal and attention, which are regulated by brain wide-active neuromodulators
393 and recruit distributed brain networks [48-52]. In contrast, gamma rhythmicity is considered a
394 bottom-up process [53, 54], associated with the synchrony of local inhibitory networks [53-56].
395 This distinction may explain why theta and gamma rhythms reflect stimulus characteristics in an
396 opposing manner.

397 In accordance with our hypothesis, that coherent theta and gamma rhythms couple various regions
398 of the social brain in a social context-dependent manner, we found that the correlation in the
399 coherence change during stimulus investigation was strongest between the two stimuli in each
400 task, even the EsP and SxP tasks. In contrast, there were weaker correlations, if any, among the
401 three stimuli of the same type (social, grouped, male) or the preferred stimuli (social, isolated,
402 female). The fact that the same correlation pattern was observed for the coherence of both theta
403 and gamma rhythms supports the validity and significance of the observation. Moreover, using a
404 Decision Tree classifier, we demonstrated that the theta coherence between the recorded areas
405 could generate predictions regarding the social context, but not the specific stimulus, which are
406 accurate above the chance level. The limited accuracy of the model may be attributed to the
407 restricted number of recorded regions. Thus, we expect that a more comprehensive analysis of the
408 coherence within the social brain will be able to generate highly accurate prediction of the social

409 context. Moreover, GC analysis, representing causal time relationships between various brain
410 regions, also suggests distinct patterns of changes across the various contexts. Altogether, these
411 results are in accordance with the idea that the social brain processes information during stimulus
412 investigation in a context-dependent manner dictated by the context-dependent pattern of
413 coherence within the network. Such a mechanism may explain how the same stimulus induces
414 distinct patterns of brain activity in different social contexts, which then elicits distinct behavioral
415 responses to a stimulus.

416 Finally, the coherence changes and GC analyses led us to identify a small subset of brain regions
417 that seem highly influential within the network during the various tasks. Of these, the vDG and
418 AcbC were involved in significant GC changes during all tasks in both the theta and gamma bands,
419 and thus may serve as hubs that influence the activities of other regions. Analysis of LFP power
420 in relation to a battery of specific behavioral events demonstrated that while the small group of
421 brain regions considered showed differential responses as a whole, the vDG was the only region
422 that alone showed statistically significant responses. Together with its strong bias towards specific
423 stimuli, as demonstrated for both theta and gamma power during investigation bouts (Fig. 4B-C),
424 these results suggest a role for the vDG in orchestrating neural activity across the social brain
425 during social behavior. This conclusion agrees with previous studies reporting a central role of the
426 dentate gyrus in social behavior [57-59], and specifically in social discrimination [60, 61]. Notably,
427 multiple studies have implicated the DG in coding contextual changes. For example, DG neurons
428 were shown to rapidly detect and encode contextual changes [62], while knocking out NMDA
429 receptors specifically in DG granule cells abolished the ability of mice to distinguish between two
430 similar contexts [40]. Moreover, hypothalamic supramammillary neurons projecting to the DG
431 were shown to be activated by contextual novelty [39], while the activity of ventral hippocampal
432 neurons was shown to process information in a social context-sensitive manner [63]. These studies
433 are thus in line with our findings regarding the involvement of the vDG in context-dependent social
434 behavior.

435 In conclusion, our results suggest that the distribution of LFP rhythmic activity in the social brain
436 and, most specifically, the synchronization between the various regions is context-specific and
437 may thus mediate context-specific processing of social information, leading to social context-
438 dependent social responses and behavior.

439

440 **Methods**

441 **Animals**

442 Adult male and female CD1 mice (12-14 weeks old) were acquired from Envigo (Rehovot, Israel).
443 All mice were housed in groups of 3-5 in a dark/light 12-hour cycle (lights on at 7 pm), with *ad*
444 *libitum* food and water. Following surgery, implanted mice were housed in isolation so as to not
445 disturb the implanted EAr. Experiments were performed in the dark phase of the dark/light cycle
446 in a sound- and electromagnetic noise-attenuated chamber. All experiments were approved by the
447 Institutional Animal Care and Use Committee of the University of Haifa (Ethical approval
448 #616/19).

449

450 **Surgery**

451 Mice were anesthetized using isoflurane (induction 3%, 0.5%-0.8% maintenance in 200mL/min
452 of air; SomnoSuite) and placed over a custom-made heating pad (37°C) in a standard stereotaxic
453 device (Kopf Instruments, Tujunga, CA). Two burr holes were drilled for placing the ground and
454 reference wires (silver wire, 127 μ m, 300-500 Ω ; A-M Systems, Carlsborg, WA). Two watch
455 screws (0-80, 1/16", M1.4) were inserted into the temporal bone. The coordinates for Prl (AP=
456 2mm, ML= -0.3, DV= -1.8), AcbC (AP= 1, ML= -2.3, DV= -4.7), Pir (AP= -2, ML= -3.3, DV = -
457 5) and CA1 (AP= -3, ML= -3.3, DV = -4.7) were indicated over the left hemisphere using a marker.
458 The skull covering these marked coordinates was removed using a dental drill, and the exposed
459 brain was kept moist with cold, sterile saline. We custom-designed the EA [41] from 16 individual
460 50 μ m formvar-insulated tungsten wires (50-150 k Ω , #CFW2032882; California Wire Company).
461 Before implantation, the EAr was dipped in DiI (1,1'-Dioctadecyl-3,3,3',3'-
462 tetramethylindocarbocyanine perchlorate; 42364, Sigma-Aldrich) to visualize electrode locations
463 *post-mortem*. The reference and ground wires were inserted into their respective burr holes. The
464 EAr was lowered onto the surface of the exposed brain using a motorized manipulator (MP200;
465 Sutter instruments). The dorsoventral coordinates were marked using the depth of the electrode
466 targeting the PVN (AP= -1 mm, ML= -0.3), which was lowered slowly to -4.7 mm. The EA and
467 exposed skull with the screws were secured with dental cement (Enamel plus, Micerium). Mice
468 were sub-cutaneously injected with Baytril (5mg/kg; Bayer) and Norocarp (5 mg/kg; Carprofen,
469 Norbrook Lab) post-surgery and allowed to recover for three days.

470

471 **Electrophysiological and video recordings**

472 Following brief exposure to isoflurane, subjects were attached to the headstage (RHD 32 ch,
473 #C3314, Intan Technologies) through a custom-made Omnetics to Mill-Max adaptor (Mill-Max
474 model 852-10-100-10-001000). Behavior was recorded using a monochromatic camera (30 Hz,
475 Flea3 USB3, Flir) placed above the arena. Electrophysiological recordings were made with the
476 RHD2000 evaluation system using an ultra-thin SPI interface cable connected to the headstage
477 board (RHD 16ch, #C3334, Intan Technologies). Electrophysiological recordings (sampled at 20
478 kHz) were synchronized with recorded video using a TTL trigger pulse and by recording camera
479 frame strobes.

480

481 **Experiment design**

482 We recorded the behavior and neural activity of 14 males in the SP task, 13 males in the EsP task,
483 and 11 males in the SxP task (Table S1), while targeting 18 distinct brain regions. All the stimuli
484 used for the tasks were unfamiliar to the subject mice. In experiments, the mice were briefly
485 exposed to isoflurane, and the EAr was connected to the evaluation system. After 10 minutes of
486 habituation, the recordings started in the arena (30 x 22 x 35 cm) with empty triangular chambers
487 (12 cm isosceles, 35 cm height), as previously described [42]. The triangular chambers had one
488 face ending with metal mesh (18 mm x 6 cm; 1 cm x 1 cm holes) through which the mice interacted
489 with the stimuli. The test was divided into two 5 min periods, a baseline period (pre-encounter)
490 and a period of encounter with the stimuli. The stimuli for the SP task were a novel group-housed
491 male mouse (social) and a Lego toy (object). For the ESP task, isolated (7-14 days) male and
492 group-housed male mice served as stimuli. Finally, for the SxP task, group-housed male and
493 female mice were used as stimuli. Each subject was evaluated for three sessions of each task. The
494 subjects first performed SP and free interactions, with 10 min between these tasks for three
495 sessions, and then EsP and SxP tasks were performed likewise. Each day four sessions were
496 recorded, two in the morning and two in the afternoon, six hours apart (See Fig. S1B). The free
497 interaction data were not used in this study. We excluded sessions from further evaluations when
498 there was a removal of the headstage from the EA by subjects or in a case of a missing video
499 recording from a session . This accounts for the unequal number of sessions and subjects across
500 tasks.

501

502 **Histology**

503 Subjects were transcardially perfused, and their brains was kept cold in 4% paraformaldehyde for
504 48 h. Brains were sectioned (50 μ m) horizontally (VT 1200s, Leica). Electrode marks were
505 visualized (DiI coated, Red) against DAPI-stained sections with an epifluorescence microscope
506 (Ti2 eclipse, Nikon). The marks were used to locate the respective brain regions, based on the
507 mouse atlas. Out of all implanted electrodes (256), 9% (23 electrodes from 14 mice) were found
508 to be mistargeted and 36% (93) were non-functional (Table S1).

509

510 **Behavioral analysis**

511 Subject behavior was tracked using the TrackRodent algorithm [42] for tethered mice. Further
512 parameters of behavior, like duration of interaction, interaction bouts, distance traveled by the
513 subjects, subject speed, transitions between stimuli, and RDI values were calculated from the
514 tracked results with custom codes written in MATLAB 2020a.

515

516 **Electrophysiological data analysis**

517 Only brain regions recorded for more than 5 sessions across at least 3 mice were analyzed. All
518 signals were analyzed with codes custom-written in MATLAB 2020a. We excluded the signals
519 recorded during 30 seconds around stimulus removal and insertion times, to avoid any effect of
520 this action. First, the signals were down-sampled to 5 kHz and low-pass filtered to 300 Hz using a
521 Butterworth filter. The power and time for the different frequencies were estimated using the
522 'spectrogram' function in MATLAB with the following parameters: Discrete prolate spheroidal
523 sequences (dpss) window = 2 s; overlap = 50% ; increments = 0.5 Hz; and time bins = 0.5 s. The
524 power of each frequency band (theta: 4-12 Hz and gamma: 30-80 Hz) was averaged for both the
525 baseline and encounter periods (5-min long each). Changes in theta ($\Delta\theta$ P) and gamma ($\Delta\gamma$ P)
526 powers for each brain region were defined as the mean difference in power between the encounter
527 and baseline periods (Fig. 2C-D, H-I). For Z-score analysis of $\Delta\theta$ P and $\Delta\gamma$ P during investigation
528 bouts for a given stimulus we used the pre-bout 5 s period as baseline, and averaged the Z-score
529 across all bouts with the same stimulus in each session. Notably, throughout the study we have
530 analyzed only investigation bouts that were longer than 2 s, for two reasons: 1) only >2 s bouts
531 showed statistically significant differences between the stimuli in the various tasks and 2) only >2
532 s bouts allow a reliable calculation of theta coherence. LFP power ($\Delta\theta$ P and $\Delta\gamma$ P) for specific bouts

533 with each stimulus was estimated by calculating the difference between the average power per
534 second during an investigation bout (which was longer than 2 s) during the encounter period and
535 the average power per second for investigation of both empty chambers in the baseline period of
536 the same session, followed by averaging these values over all sessions (Fig. 4).

537

538 **Coherence analysis**

539 We used the 'mscoh' function of MATLAB to estimate coherence values using Welch's
540 overlapped averaged periodogram method. The magnitude-squared coherence between two
541 signals, x, and y, was defined as follows:

542

$$Coherence_{xy} = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}}$$

543 where S_{xy} is the cross-power spectral density of x and y, S_{xx} is the power spectral density of x
544 and S_{yy} is the power spectral density of y. All coherence analysis was quantified between brain
545 regions pairs involved in at least five sessions of behavior tasks. Coherence for the baseline period
546 was quantified as the average coherence of all brain region pairs for each context (Fig. 5A and F).
547 Changes in coherence ($\Delta\theta\text{Co}$ and $\Delta\gamma\text{Co}$) during the encounter period (Fig. 5B and G) between a
548 pair of brain regions were calculated as follows:

549

550

$$Change\ in\ Coherence = \frac{\mu (Coherence_{encounter} - Coherence_{baseline})}{\sigma (Coherence_{encounter} - Coherence_{baseline})}$$

551 where, $Coherence_{encounter}$ is the absolute coherence value between a pair of regions within a
552 frequency band during whole encounter period. $Coherence_{baseline}$ is the absolute coherence value
553 between a pair of regions within a frequency band during an entire encounter period. The change
554 in coherence for specific bouts ($\Delta\theta\text{Co}$ and $\Delta\gamma\text{Co}$) to each stimulus was estimated by calculating the
555 difference between the average coherence per second during an investigation bout (≥ 2 s) in the
556 encounter period and the average coherence per second for investigation with both empty
557 chambers during the baseline period of the same session, followed by averaging these values over
558 all sessions (Fig. 6A and S5C). Brain regions that displayed higher frequencies of crossing the
559 threshold of mean ± 1.5 SD $\Delta\theta\text{Co}$ and $\Delta\gamma\text{Co}$, based on a binomial distribution test, were considered
560 to be hubs in the coherent social brain (Fig. 7A-B).

561

562 **Inter-regional pairwise conditional Granger causality**

563 We employed the multi-variate GC toolbox [43] to calculate GC values separately for baseline and
564 encounter periods between brain regions separately for each task and rhythm. To this end, we
565 selected brain regions most represented among brain region pairs that crossed the mean $\pm 1.5^{\circ}$ SD
566 threshold for the difference in coherence change between preferred and less preferred stimuli in
567 any task, separately for ${}^{\Delta}\theta$ Co and ${}^{\Delta}\gamma$ Co. For GC analysis, LFP signals were measured at a reduced
568 sampling rate of 500 Hz. We used the "tsdata_to_infocrit" function to determine the model order
569 of the vector autoregressive (VAR) model. The median model order for all three tasks was 38
570 (Bayesian information criterion). To further fit the VAR model to our multi-session, multivariate
571 LFP data, the "tsdata_to_var" function of LWR (Levinson-Whittle recursion) in the regression
572 mode and a median model order of 38 was used separately for the baseline and encounter periods
573 of each task. Next, we estimated the autocovariance sequence of the fitted VAR model with the
574 "var_to_autocov" function. To maximize the computational efficiency of the function, an
575 acmaxlags of 1500 was chosen. This process did not violate the autocovariance VAR model, as
576 was estimated by the "var_info" function. Finally, we calculated the pairwise conditional
577 frequency-domain multivariate GC matrix using the "autocov_to_spwgc" function, and summed
578 the GC for the relevant frequency band (theta or famma) using the "smvgc_to_mvgc" function.

579

580 **Neural responses to behavioral events**

581 We divided all investigation bouts into specific behavioral events, such as the start and end of an
582 investigation bout or transition from one stimulus to the other (Fig. 7A, nine distinct types). We
583 aligned LFP power and behavior events for each stimulus by calculating mean power 5 s before
584 and 5 s after the beginning (or end) of all investigation bouts (0.5 s bins) in a session. Furthermore,
585 for each bout, the mean power was normalized using Z-score analysis, where a pre-bout duration
586 of 5 s served as baseline (Table S2).

587

588 **Statistical analysis**

589 Statistical analysis was performed using GraphPad Prism 9.5. To test for normal distribution of
590 the data, we used the Kolmogorov-Smirnov and Shapiro-Wilk tests. Table S3 summarizes the
591 specific tests conducted for each figure. A paired t-test or Wilcoxon matched-pairs signed rank
592 test was used to compare different stimuli or conditions for the same group. An unpaired t-test or

593 Mann-Whitney test was performed to compare a parameter between distinct groups. For
594 comparison among multiple groups and parameters, ANOVA (normal distribution), Welch's
595 ANOVA (assuming unequal variance), and Kruskal-Wallis test (non-normal distribution) were
596 applied to the data. If a main effect or interaction were found in the tests above, Šídák's test,
597 Dunnett's T3 test or Dunn's *post-hoc* multiple comparison corrections were applied. Repeated
598 measures ANOVA or a Friedman test was used to compare multiple groups and parameters with
599 repeated variables. When main effects were observed in above tests, Šídák's or Dunn's test were
600 used for multiple comparisons corrections, respectively. Additionally, for comparison of two
601 factors and the interaction between them, from multiple groups and parameters where one of the
602 factors has repeated measurements, was performed using two-way ANOVA (no missing variables)
603 or mixed-models ANOVA (Restricted maximum likelihood model, REML). The ANOVA tests
604 were followed by Šídák's multiple comparison test if main effects or interactions were found. The
605 association between two groups or parameters was compared with either Pearson's or Spearman's
606 tests. A binomial distribution test was performed to compare the probability of brain regions
607 representing above-chance levels for specific parameters.

608

609 **Decision tree classifier model**

610 **Data normalization – subtracting the mean value for each brain regions pair per mouse:**

611 The data from two mice (total 14) were ignored as they had less than 40 recorded brain regions
612 pairs (out of 99). The mean value of each pair was computed and subtracted for each mouse
613 separately. This helped to reduce the variability of the measurements across mice and improved
614 classification accuracy. To reduce over-representation of a single stimulus in the computation of
615 the mean value for a pair, we first averaged the mean value per stimulus (for a specific mouse) and
616 then subtracted the average of these means.

617 **Averaging bouts:**

618 The average bout for each stimulus was computed for each session.

619 **Data Imputation:**

620 For each mouse, a slightly different set of brain areas were recorded due to slight inaccuracies in
621 placing the electrodes and slight difference in the individual mouse anatomy. This resulted in
622 missing entries from some of the brain regions pairs. We used a data imputation strategy to restore
623 these missing entries. Note that before this step, we subtracted the mean value per brain region per

624 mouse and averaged all the bouts from the same stimuli of the same session. The imputation
625 algorithm is based on the MICE algorithm [44]. It is an iterative algorithm. In each iteration, it
626 estimates the missing entries by a linear combination of (some of) the other entries. The used data
627 imputation algorithm was defined as follows:

628 1. For each missing value of brain pair i in bout b , ($bp_{i,b}$), replace $bp_{i,b}$ with the average
629 value of bp_i across the valid values bp_i (from all bouts of all mice with a valid measurement
630 of bp_i).

631 2. For each bp_i (*order of brain pairs is randomized*):

632 a. Randomly choose a set of predicting brain pairs $\{bp_j\}$ such that $bp_i \notin \{bp_j\}$ and
633 $|\{bp_j\}| < 0.5 * \text{number_of_equations}$. Where the `number_of_equations` equals to the
634 number of (averaged) bouts from all the mice (66 predicting brain pairs as the
635 number of bouts in our dataset is 131 average bouts).

636 b. Compute linear regression coefficients $\{a_j\}$ (by least square method) to minimize:

$$\underset{\{a_j\}}{\text{argmin}} \sum_b \left(bp_{i,b} - \left(a_0 + \sum_j a_j bp_{j,b} \right) \right)^2$$

638
639 c. For each bout b in which $bp_{i,b}$ was not measured in-vivo, replace it with its
640 estimation: $a_0 + \sum_j a_j bp_{j,b}$

641 3. Repeat steps 2 for 20 iterations.

642 Code was implemented in Matlab 2021a.

643

644 **Classification and computation of confusion matrixes**

645 We used Matlab's `TreeBagger()` function to train a multi-class Random forest classifier for
646 discriminating between a pair of stimuli (social vs object) or contexts (3 classes) or between stimuli
647 (6 classes) or between. We used 80 random trees (a parameter of the `TreeBagger` function). We
648 used cross-validation with "one mouse leave out" strategy to compute a confusion matrix for each
649 mouse based on a training set that includes examples from all of the other mice. We balanced the
650 training set to have the same number of examples from each class by randomly removing some of
651 the training examples. Since both the balancing and the Random forest algorithm have a random
652 component, we repeated the estimation of confusion matrixes 100 times (for each mouse) to better

653 estimate the confusion matrixes. We then summed up all of the confusion matrixes (totally 1200
654 confusion matrixes: 12 mice and 100 confusion matrixes per mouse) and computed for each pair
655 of classes (i,j) the percent of cases where the prediction was i for bouts of class j.

656 **Statistical Analysis**

657 All tests were corrected for multiple comparisons using FDR corrections [45]. To compute p-
658 values, we used the average (over 100 iterations) confusion matrix for each mouse (totally 12
659 confusion matrixes in which each cell i,j represents the % of predictions of class i for bouts of class
660 j) and compare those with a set of random confusion matrixes which were generated by the same
661 procedure except for replacing the trained classifier with a random classifier. This random
662 classifier generated random labels with uniform distribution. To better describe the distribution of
663 the random confusion matrixes, we generated 83 random confusion matrixes per mouse (each one
664 of them is an average of 100 confusion matrixes). Then, the p-value for each cell in the confusion
665 matrix was computed separately by comparing the 12 values from the confusion matrix of the
666 trained classifier to the $83*12=996$ values from the confusion matrixes of the random classifier
667 using Mann-Whitney U test. In case a mouse did not have a bout from a specific class, this mouse
668 was ignored in the computation of the p-value for the cells of this ground truth class.

669 **Author contributions**

670 A.N.M.: Formal analysis, Investigation, Methodology, Validation, Visualization, Writing -
671 original draft, and Writing - review & editing; D.P.: Formal analysis, and software.; S.N.: Data
672 curation, Project administration, Software, Validation, Visualization, Writing - original draft, and
673 Writing - review & editing. S.W.: Conceptualization, Funding acquisition, Project administration,
674 Resources, Supervision, Writing - original draft, and Writing - review & editing

675

676 **Declaration of interests**

677 The authors declare no competing interests.

678

679 **Acknowledgments**

680 We thank Boris Shklyar, Head of the Bio-imaging Unit and Dr. Maya Lalzar, Head of the
681 Bioinformatics Unit of the Faculty of Natural Sciences of the University of Haifa for their guidance
682 and technical assistance. We also thank Eng. Alex Bizer, the experimental systems engineer of the
683 Faculty of Natural Sciences of the University of Haifa, for their help.

684

685 **Funding**

686 This study was supported by ISF-NSFC joint research program (grant No. 3459/20 to SW), the
687 Israel Science Foundation (grants No. 1361/17 and 2220/22 to SW), the Ministry of Science,
688 Technology and Space of Israel (Grant No. 3-12068 to SW) and the United States-Israel Binational
689 Science Foundation (grant No. 2019186 to SW).

690 **References**

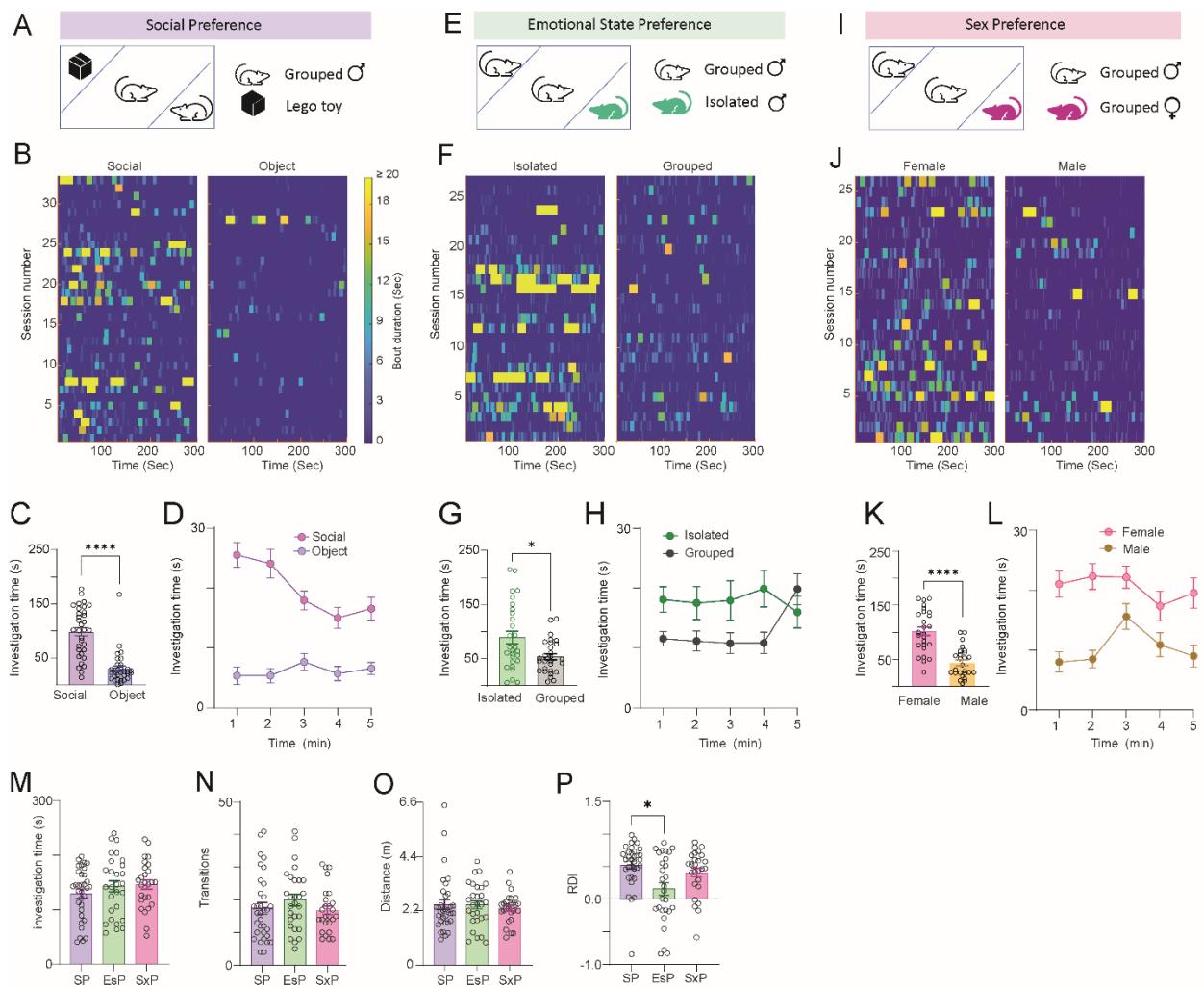
- 691 1. Adolphs R. Conceptual challenges and directions for social neuroscience. *Neuron*.
692 2010;65(6):752-67. Epub 2010/03/30. doi: 10.1016/j.neuron.2010.03.006. PubMed PMID:
693 20346753; PubMed Central PMCID: PMCPMC2887730.
- 694 2. Ford CL, Young LJ. Translational opportunities for circuit-based social neuroscience:
695 advancing 21st century psychiatry. *Curr Opin Neurobiol*. 2021;68:1-8. Epub 2020/12/02. doi:
696 10.1016/j.conb.2020.11.007. PubMed PMID: 33260106; PubMed Central PMCID:
697 PMCPMC8160019.
- 698 3. Kohl J, Dulac C. Neural control of parental behaviors. *Curr Opin Neurobiol*. 2018;49:116-22.
699 Epub 2018/02/27. doi: 10.1016/j.conb.2018.02.002. PubMed PMID: 29482085; PubMed
700 Central PMCID: PMCPMC6029232.
- 701 4. McKinsey G, Ahmed OM, Shah NM. Neural control of sexually dimorphic social behaviors.
702 *Curr Opin Physiol*. 2018;6:89-95. Epub 2019/09/20. doi: 10.1016/j.cophys.2018.08.003.
703 PubMed PMID: 31535059; PubMed Central PMCID: PMCPMC6750220.
- 704 5. Wei D, Talwar V, Lin D. Neural circuits of social behaviors: Innate yet flexible. *Neuron*.
705 2021;109(10):1600-20. Epub 2021/03/12. doi: 10.1016/j.neuron.2021.02.012. PubMed PMID:
706 33705708; PubMed Central PMCID: PMCPMC8141016.
- 707 6. Insel TR, Fernald RD. How the brain processes social information: searching for the social
708 brain. *Annu Rev Neurosci*. 2004;27:697-722. Epub 2004/06/26. doi:
709 10.1146/annurev.neuro.27.070203.144148. PubMed PMID: 15217348.
- 710 7. Dickinson SY, Kelly DA, Padilla SL, Bergan JF. From Reductionism Toward Integration:
711 Understanding How Social Behavior Emerges From Integrated Circuits. *Front Integr
712 Neurosci*. 2022;16:862437. Epub 2022/04/19. doi: 10.3389/fnint.2022.862437. PubMed
713 PMID: 35431824; PubMed Central PMCID: PMCPMC9010670.
- 714 8. Goodson JL. The vertebrate social behavior network: evolutionary themes and variations.
715 *Horm Behav*. 2005;48(1):11-22. Epub 2005/05/12. doi: 10.1016/j.yhbeh.2005.02.003.
716 PubMed PMID: 15885690; PubMed Central PMCID: PMCPMC2570781.
- 717 9. Dai B, Sun F, Tong X, Ding Y, Kuang A, Osakada T, et al. Responses and functions of
718 dopamine in nucleus accumbens core during social behaviors. *Cell Rep*. 2022;40(8):111246.
719 Epub 2022/08/25. doi: 10.1016/j.celrep.2022.111246. PubMed PMID: 36001967; PubMed
720 Central PMCID: PMCPMC9511885.

- 721 10. Felix-Ortiz AC, Tye KM. Amygdala inputs to the ventral hippocampus bidirectionally
722 modulate social behavior. *J Neurosci*. 2014;34(2):586-95. Epub 2014/01/10. doi:
723 10.1523/JNEUROSCI.4257-13.2014. PubMed PMID: 24403157; PubMed Central PMCID:
724 PMCPMC3870937.
- 725 11. Kingsbury L, Huang S, Raam T, Ye LS, Wei D, Hu RK, et al. Cortical Representations of
726 Conspecific Sex Shape Social Behavior. *Neuron*. 2020;107(5):941-53 e7. Epub 2020/07/15.
727 doi: 10.1016/j.neuron.2020.06.020. PubMed PMID: 32663438; PubMed Central PMCID:
728 PMCPMC7486272.
- 729 12. Leroy F, Park J, Asok A, Brann DH, Meira T, Boyle LM, et al. A circuit from
730 hippocampal CA2 to lateral septum disinhibits social aggression. *Nature*.
731 2018;564(7735):213-8. Epub 2018/12/07. doi: 10.1038/s41586-018-0772-0. PubMed PMID:
732 30518859; PubMed Central PMCID: PMCPMC6364572.
- 733 13. Kohl J, Babayan BM, Rubinstein ND, Autry AE, Marin-Rodriguez B, Kapoor V, et al.
734 Functional circuit architecture underlying parental behaviour. *Nature*. 2018;556(7701):326-
735 31. Epub 2018/04/13. doi: 10.1038/s41586-018-0027-0. PubMed PMID: 29643503; PubMed
736 Central PMCID: PMCPMC5908752.
- 737 14. Scheggia D, La Greca F, Maltese F, Chiacchierini G, Italia M, Molent C, et al. Reciprocal
738 cortico-amygdala connections regulate prosocial and selfish choices in mice. *Nat Neurosci*.
739 2022;25(11):1505-18. Epub 2022/10/26. doi: 10.1038/s41593-022-01179-2. PubMed PMID:
740 36280797; PubMed Central PMCID: PMCPMC7613781.
- 741 15. Swanson LW, Hahn JD, Sporns O. Structure-function subsystem models of female and
742 male forebrain networks integrating cognition, affect, behavior, and bodily functions. *Proc
743 Natl Acad Sci U S A*. 2020;117(49):31470-81. Epub 2020/11/25. doi:
744 10.1073/pnas.2017733117. PubMed PMID: 33229546; PubMed Central PMCID:
745 PMCPMC7733829.
- 746 16. Twining RC, Vantrease JE, Love S, Padival M, Rosenkranz JA. An intra-amygdala
747 circuit specifically regulates social fear learning. *Nat Neurosci*. 2017;20(3):459-69. Epub
748 2017/01/24. doi: 10.1038/nn.4481. PubMed PMID: 28114293; PubMed Central PMCID:
749 PMCPMC5323274.
- 750 17. Yamamoto R, Ahmed N, Ito T, Gungor NZ, Pare D. Optogenetic Study of Anterior
751 BNST and Basomedial Amygdala Projections to the Ventromedial Hypothalamus. *Eneuro*.

- 752 2018;5(3). Epub 2018/07/05. doi: 10.1523/ENEURO.0204-18.2018. PubMed PMID:
753 29971248; PubMed Central PMCID: PMCPMC6027956.
- 754 18. Dolen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated
755 activity of nucleus accumbens oxytocin and serotonin. *Nature*. 2013;501(7466):179-84. doi:
756 10.1038/nature12518. PubMed PMID: 24025838; PubMed Central PMCID:
757 PMCPMC4091761.
- 758 19. Felix-Ortiz AC, Burgos-Robles A, Bhagat ND, Leppla CA, Tye KM. Bidirectional
759 modulation of anxiety-related and social behaviors by amygdala projections to the medial
760 prefrontal cortex. *Neuroscience*. 2016;321:197-209. Epub 2015/07/25. doi:
761 10.1016/j.neuroscience.2015.07.041. PubMed PMID: 26204817; PubMed Central PMCID:
762 PMCPMC4721937.
- 763 20. Huang WC, Zucca A, Levy J, Page DT. Social Behavior Is Modulated by Valence-
764 Encoding mPFC-Amygdala Sub-circuitry. *Cell Rep*. 2020;32(2):107899. Epub 2020/07/16.
765 doi: 10.1016/j.celrep.2020.107899. PubMed PMID: 32668253; PubMed Central PMCID:
766 PMCPMC7410267.
- 767 21. Reis FM, Lee JY, Maesta-Pereira S, Schuette PJ, Chakerian M, Liu J, et al. Dorsal
768 periaqueductal gray ensembles represent approach and avoidance states. *Elife*. 2021;10. Epub
769 2021/05/07. doi: 10.7554/elife.64934. PubMed PMID: 33955356; PubMed Central PMCID:
770 PMCPMC8133778.
- 771 22. Mague SD, Talbot A, Blount C, Walder-Christensen KK, Duffney LJ, Adamson E, et al.
772 Brain-wide electrical dynamics encode individual appetitive social behavior. *Neuron*.
773 2022;110(10):1728-41 e7. Epub 2022/03/17. doi: 10.1016/j.neuron.2022.02.016. PubMed
774 PMID: 35294900; PubMed Central PMCID: PMCPMC9126093.
- 775 23. Schaich Borg J, Srivastava S, Lin L, Heffner J, Dunson D, Dzirasa K, et al. Rat
776 intersubjective decisions are encoded by frequency-specific oscillatory contexts. *Brain Behav*.
777 2017;7(6):e00710. Epub 2017/06/24. doi: 10.1002/brb3.710. PubMed PMID: 28638715;
778 PubMed Central PMCID: PMCPMC5474713.
- 779 24. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. *Science*.
780 2004;304(5679):1926-9. doi: 10.1126/science.1099745. PubMed PMID: 15218136.

- 781 25. Harris AZ, Gordon JA. Long-range neural synchrony in behavior. *Annu Rev Neurosci.*
782 2015;38:171-94. Epub 2015/04/22. doi: 10.1146/annurev-neuro-071714-034111. PubMed
783 PMID: 25897876; PubMed Central PMCID: PMCPMC4497851.
- 784 26. Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S, Nikolic D, et al. Neural
785 synchrony in cortical networks: history, concept and current status. *Front Integr Neurosci.*
786 2009;3:17. Epub 2009/08/12. doi: 10.3389/neuro.07.017.2009. PubMed PMID: 19668703;
787 PubMed Central PMCID: PMCPMC2723047.
- 788 27. Bocchio M, Nabavi S, Capogna M. Synaptic Plasticity, Engrams, and Network
789 Oscillations in Amygdala Circuits for Storage and Retrieval of Emotional Memories. *Neuron.*
790 2017;94(4):731-43. Epub 2017/05/19. doi: 10.1016/j.neuron.2017.03.022. PubMed PMID:
791 28521127.
- 792 28. Chen S, Tan Z, Xia W, Gomes CA, Zhang X, Zhou W, et al. Theta oscillations
793 synchronize human medial prefrontal cortex and amygdala during fear learning. *Sci Adv.*
794 2021;7(34). Epub 2021/08/20. doi: 10.1126/sciadv.abf4198. PubMed PMID: 34407939;
795 PubMed Central PMCID: PMCPMC8373137.
- 796 29. Taub AH, Perets R, Kahana E, Paz R. Oscillations Synchronize Amygdala-to-Prefrontal
797 Primate Circuits during Aversive Learning. *Neuron.* 2018;97(2):291-8 e3. Epub 2018/01/02.
798 doi: 10.1016/j.neuron.2017.11.042. PubMed PMID: 29290553.
- 799 30. John SR, Dagash W, Mohapatra AN, Netser S, Wagner S. Distinct Dynamics of Theta
800 and Gamma Rhythmicity during Social Interaction Suggest Differential Mode of Action in the
801 Medial Amygdala of Sprague Dawley Rats and C57BL/6J Mice. *Neuroscience.* 2022;493:69-
802 80. Epub 2022/05/02. doi: 10.1016/j.neuroscience.2022.04.020. PubMed PMID: 35490969.
- 803 31. Kuga N, Abe R, Takano K, Ikegaya Y, Sasaki T. Prefrontal-amygdalar oscillations
804 related to social behavior in mice. *Elife.* 2022;11. Epub 2022/05/18. doi:
805 10.7554/eLife.78428. PubMed PMID: 35580019; PubMed Central PMCID:
806 PMCPMC9113747.
- 807 32. Tendler A, Wagner S. Different types of theta rhythmicity are induced by social and
808 fearful stimuli in a network associated with social memory. *Elife.* 2015;4. doi:
809 10.7554/eLife.03614. PubMed PMID: 25686218; PubMed Central PMCID:
810 PMCPMC4353977.

- 811 33. Buzsaki G, Watson BO. Brain rhythms and neural syntax: implications for efficient
812 coding of cognitive content and neuropsychiatric disease. *Dialogues Clin Neurosci.*
813 2012;14(4):345-67. Epub 2013/02/09. doi: 10.31887/DCNS.2012.14.4/gbuzsaki. PubMed
814 PMID: 23393413; PubMed Central PMCID: PMCPMC3553572.
- 815 34. Cannon J, McCarthy MM, Lee S, Lee J, Borgers C, Whittington MA, et al.
816 Neurosystems: brain rhythms and cognitive processing. *Eur J Neurosci.* 2014;39(5):705-19.
817 Epub 2013/12/18. doi: 10.1111/ejn.12453. PubMed PMID: 24329933; PubMed Central
818 PMCID: PMCPMC4916881.
- 819 35. Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W. Neural synchrony and
820 the development of cortical networks. *Trends Cogn Sci.* 2010;14(2):72-80. doi:
821 10.1016/j.tics.2009.12.002. PubMed PMID: 20080054.
- 822 36. Geschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection
823 syndromes. *Curr Opin Neurobiol.* 2007;17(1):103-11. Epub 2007/02/06. doi:
824 10.1016/j.conb.2007.01.009. PubMed PMID: 17275283.
- 825 37. Lazaro MT, Taxidis J, Shuman T, Bachmutsky I, Ikrar T, Santos R, et al. Reduced
826 Prefrontal Synaptic Connectivity and Disturbed Oscillatory Population Dynamics in the
827 CNTNAP2 Model of Autism. *Cell Rep.* 2019;27(9):2567-78 e6. Epub 2019/05/30. doi:
828 10.1016/j.celrep.2019.05.006. PubMed PMID: 31141683; PubMed Central PMCID:
829 PMCPMC6553483.
- 830 38. Fries P. Rhythms for Cognition: Communication through Coherence. *Neuron.*
831 2015;88(1):220-35. Epub 2015/10/09. doi: 10.1016/j.neuron.2015.09.034. PubMed PMID:
832 26447583; PubMed Central PMCID: PMCPMC4605134.
- 833 39. Chen S, He L, Huang AJY, Boehringer R, Robert V, Wintzer ME, et al. A hypothalamic
834 novelty signal modulates hippocampal memory. *Nature.* 2020;586(7828):270-4. Epub
835 2020/10/02. doi: 10.1038/s41586-020-2771-1. PubMed PMID: 32999460.
- 836 40. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, et al. Dentate
837 gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network.
838 *Science.* 2007;317(5834):94-9. Epub 2007/06/09. doi: 10.1126/science.1140263. PubMed
839 PMID: 17556551.

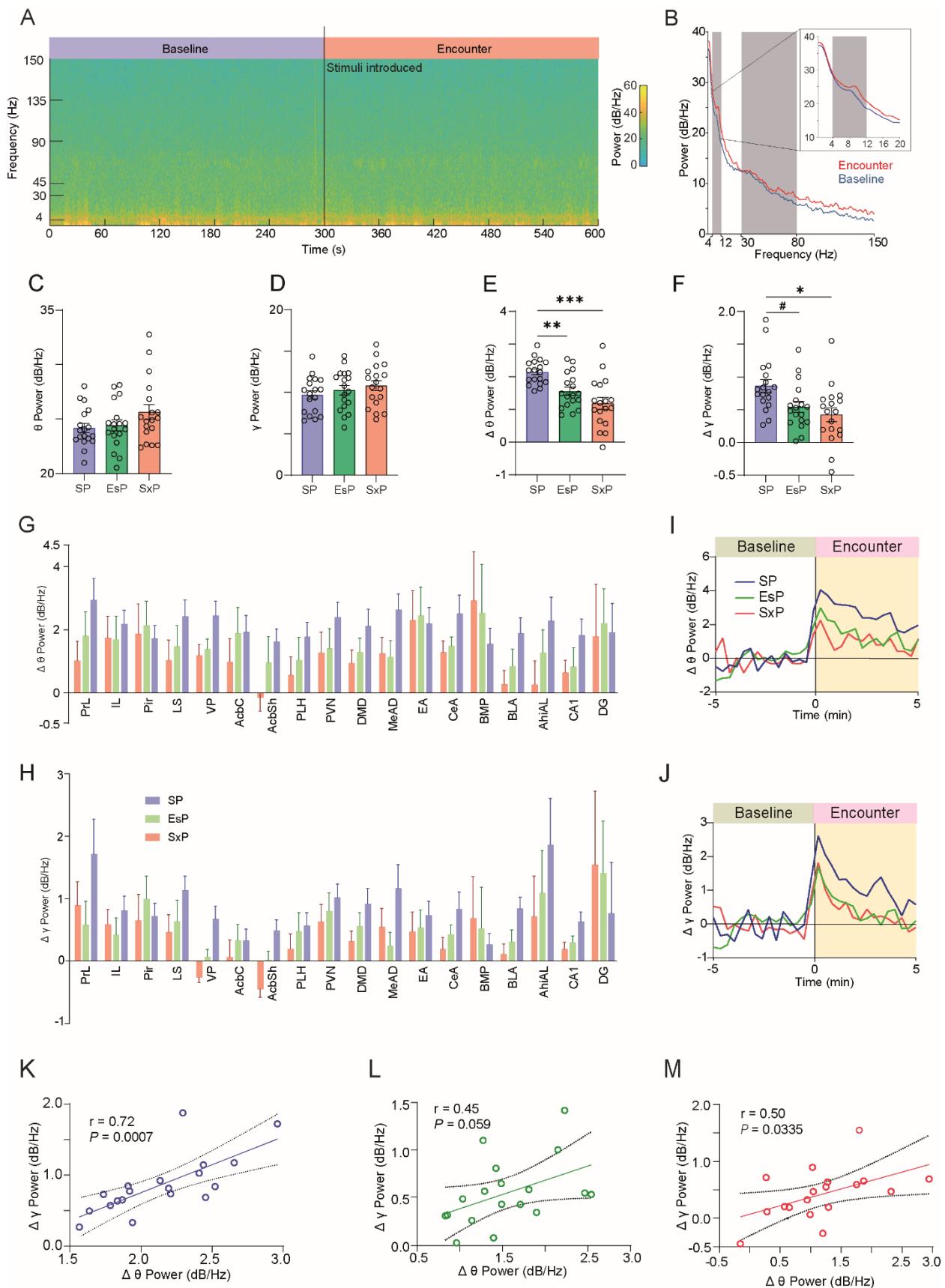

- 840 41. Mohapatra AN, Netser S, Wagner S. Modular Electrode Array for Multi-site
841 Extracellular Recordings from Brains of Freely Moving Rodents. *Curr Protoc.*
842 2022;2(5):e399. Epub 2022/05/11. doi: 10.1002/cpz1.399. PubMed PMID: 35536117.
- 843 42. Netser S, Haskal S, Magalnik H, Bizer A, Wagner S. A System for Tracking the
844 Dynamics of Social Preference Behavior in Small Rodents. *J Vis Exp.* 2019;(153). doi:
845 10.3791/60336. PubMed PMID: 31814614.
- 846 43. Barnett L, Seth AK. The MVGC multivariate Granger causality toolbox: a new approach
847 to Granger-causal inference. *J Neurosci Methods.* 2014;223:50-68. Epub 2013/11/10. doi:
848 10.1016/j.jneumeth.2013.10.018. PubMed PMID: 24200508.
- 849 44. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations:
850 what is it and how does it work? *Int J Methods Psychiatr Res.* 2011;20(1):40-9. Epub
851 2011/04/19. doi: 10.1002/mpr.329. PubMed PMID: 21499542; PubMed Central PMCID:
852 PMCPMC3074241.
- 853 45. Boca SM, Leek JT. A direct approach to estimating false discovery rates conditional on
854 covariates. *PeerJ.* 2018;6:e6035. Epub 2018/12/26. doi: 10.7717/peerj.6035. PubMed PMID:
855 30581661; PubMed Central PMCID: PMCPMC6292380.
- 856 46. Jabarin R, Levy N, Abergel Y, Berman JH, Zag A, Netser S, et al. Pharmacological
857 modulation of AMPA receptors rescues specific impairments in social behavior associated
858 with the A350V Iqsec2 mutation. *Transl Psychiatry.* 2021;11(1):234. Epub 2021/04/24. doi:
859 10.1038/s41398-021-01347-1. PubMed PMID: 33888678; PubMed Central PMCID:
860 PMCPMC8062516.
- 861 47. Netser S, Meyer A, Magalnik H, Zylbertal A, de la Zerda SH, Briller M, et al. Distinct
862 dynamics of social motivation drive differential social behavior in laboratory rat and mouse
863 strains. *Nat Commun.* 2020;11(1):5908. Epub 2020/11/22. doi: 10.1038/s41467-020-19569-0.
864 PubMed PMID: 33219219; PubMed Central PMCID: PMCPMC7679456.
- 865 48. Clayton MS, Yeung N, Kadosh RC. The roles of cortical oscillations in sustained
866 attention. *Trends in Cognitive Sciences.* 2015;19(4):188-95. doi: 10.1016/j.tics.2015.02.004.
867 PubMed PMID: WOS:000352674600006.
- 868 49. Fiebelkorn IC, Kastner S. A Rhythmic Theory of Attention. *Trends in Cognitive
869 Sciences.* 2019;23(2):87-101. doi: 10.1016/j.tics.2018.11.009. PubMed PMID:
870 WOS:000455717200005.

- 871 50. Helfrich RF, Breska A, Knight RT. Neural entrainment and network resonance in support
872 of top-down guided attention. *Curr Opin Psychol.* 2019;29:82-9. Epub 2019/01/29. doi:
873 10.1016/j.copsyc.2018.12.016. PubMed PMID: 30690228; PubMed Central PMCID:
874 PMCPMC6606401.
- 875 51. Karakas S. A review of theta oscillation and its functional correlates. *Int J Psychophysiol.*
876 2020;157:82-99. Epub 2020/05/20. doi: 10.1016/j.ijpsycho.2020.04.008. PubMed PMID:
877 32428524.
- 878 52. Knyazev GG. Motivation, emotion, and their inhibitory control mirrored in brain
879 oscillations. *Neurosci Biobehav R.* 2007;31(3):377-95. doi: 10.1016/j.neubiorev.2006.10.004.
880 PubMed PMID: WOS:000246316100006.
- 881 53. Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. *Annu Rev Neurosci.*
882 2012;35:203-25. Epub 2012/03/27. doi: 10.1146/annurev-neuro-062111-150444. PubMed
883 PMID: 22443509; PubMed Central PMCID: PMCPMC4049541.
- 884 54. Headley DB, Pare D. In sync: gamma oscillations and emotional memory. *Front Behav
885 Neurosci.* 2013;7:170. Epub 2013/12/10. doi: 10.3389/fnbeh.2013.00170. PubMed PMID:
886 24319416; PubMed Central PMCID: PMCPMC3836200.
- 887 55. Benchenane K, Tiesinga PH, Battaglia FP. Oscillations in the prefrontal cortex: a
888 gateway to memory and attention. *Curr Opin Neurobiol.* 2011;21(3):475-85. Epub
889 2011/03/25. doi: 10.1016/j.conb.2011.01.004. PubMed PMID: 21429736.
- 890 56. Palva JM, Palva S. Functional integration across oscillation frequencies by cross-
891 frequency phase synchronization. *Eur J Neurosci.* 2018;48(7):2399-406. Epub 2017/11/03.
892 doi: 10.1111/ejn.13767. PubMed PMID: 29094462.
- 893 57. Cai Y, Tang X, Chen X, Li X, Wang Y, Bao X, et al. Liver X receptor beta regulates the
894 development of the dentate gyrus and autistic-like behavior in the mouse. *Proc Natl Acad Sci
895 U S A.* 2018;115(12):E2725-E33. Epub 2018/03/07. doi: 10.1073/pnas.1800184115. PubMed
896 PMID: 29507213; PubMed Central PMCID: PMCPMC5866608.
- 897 58. Doucette E, Merfeld E, Leblanc H, Monasterio A, Cincotta C, Grella SL, et al. Social
898 behavior in mice following chronic optogenetic stimulation of hippocampal engrams.
899 *Neurobiol Learn Mem.* 2020;176:107321. Epub 2020/11/10. doi: 10.1016/j.nlm.2020.107321.
900 PubMed PMID: 33164892; PubMed Central PMCID: PMCPMC7708439.

- 901 59. Leung C, Cao F, Nguyen R, Joshi K, Aqrabawi AJ, Xia S, et al. Activation of Entorhinal
902 Cortical Projections to the Dentate Gyrus Underlies Social Memory Retrieval. *Cell Rep.*
903 2018;23(8):2379-91. Epub 2018/05/24. doi: 10.1016/j.celrep.2018.04.073. PubMed PMID:
904 29791849.
- 905 60. Cope EC, Waters RC, Diethorn EJ, Pagliai KA, Dias CG, Tsuda M, et al. Adult-Born
906 Neurons in the Hippocampus Are Essential for Social Memory Maintenance. *Eneuro.*
907 2020;7(6). Epub 2020/10/17. doi: 10.1523/ENEURO.0182-20.2020. PubMed PMID:
908 33060182; PubMed Central PMCID: PMCPMC7768285.
- 909 61. Li J, Sun X, You Y, Li Q, Wei C, Zhao L, et al. Auts2 deletion involves in DG
910 hypoplasia and social recognition deficit: The developmental and neural circuit mechanisms.
911 *Sci Adv.* 2022;8(9):eabk1238. Epub 2022/03/03. doi: 10.1126/sciadv.abk1238. PubMed
912 PMID: 35235353; PubMed Central PMCID: PMCPMC8890717.
- 913 62. Leutgeb JK, Leutgeb S, Moser MB, Moser EI. Pattern separation in the dentate gyrus and
914 CA3 of the hippocampus. *Science.* 2007;315(5814):961-6. Epub 2007/02/17. doi:
915 10.1126/science.1135801. PubMed PMID: 17303747.
- 916 63. Wu WY, Yiu E, Ophir AG, Smith DM. Effects of social context manipulation on dorsal
917 and ventral hippocampal neuronal responses. *Hippocampus.* 2023. Epub 2023/02/16. doi:
918 10.1002/hipo.23507. PubMed PMID: 36789678.

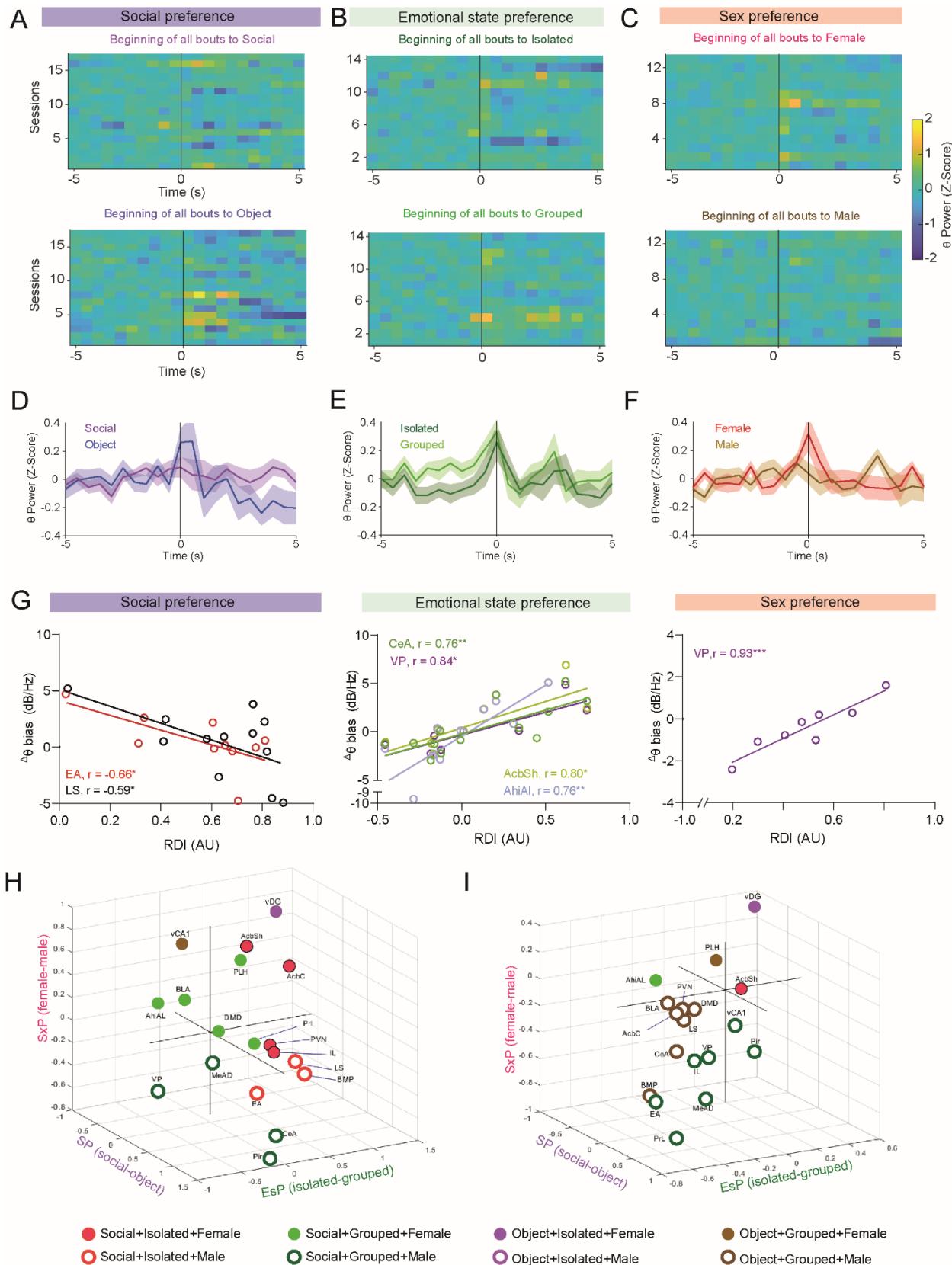
919

920 **Figures**

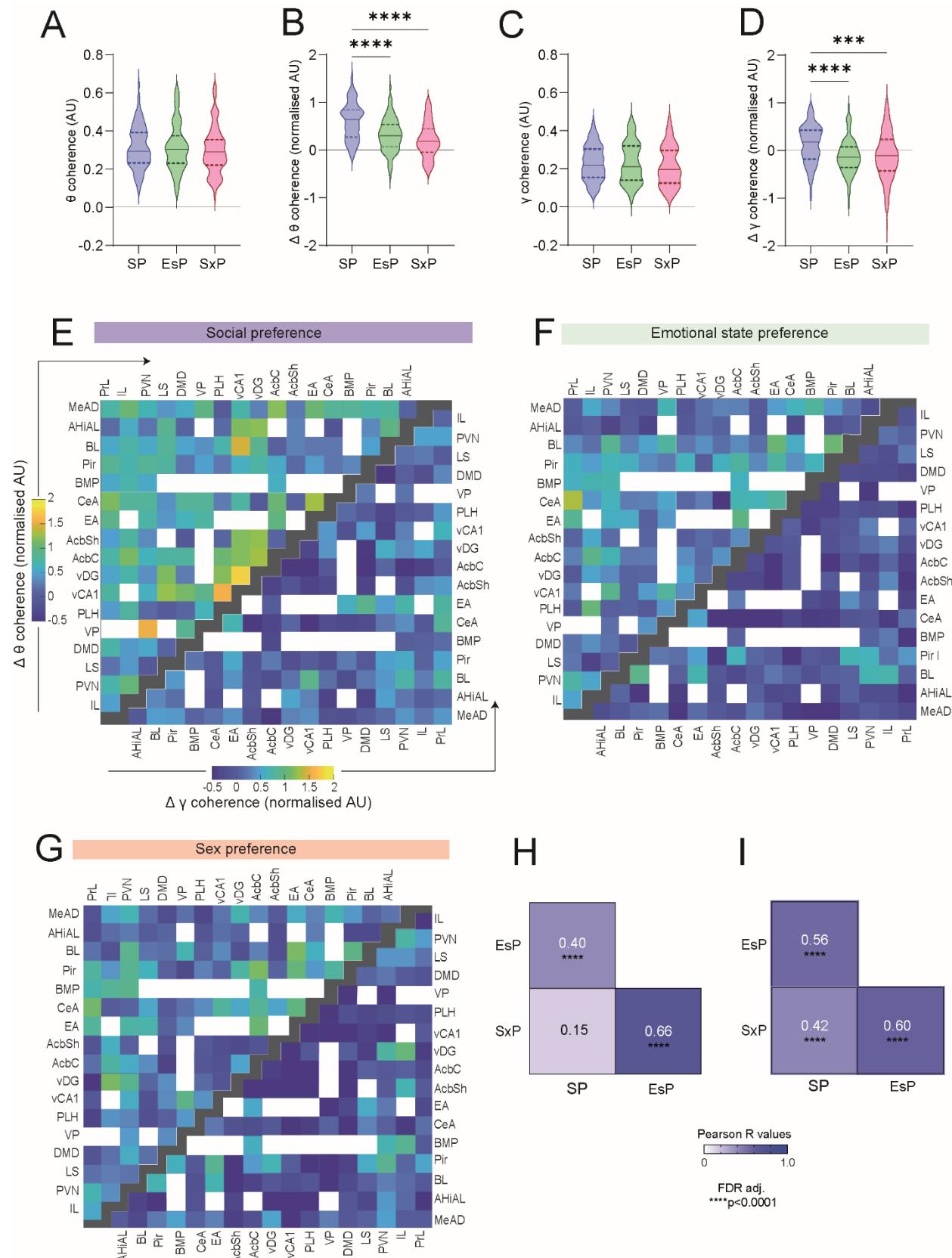


921

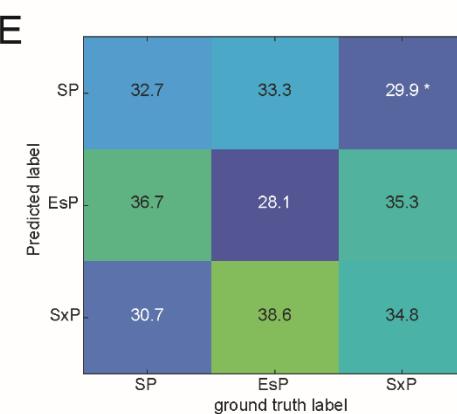
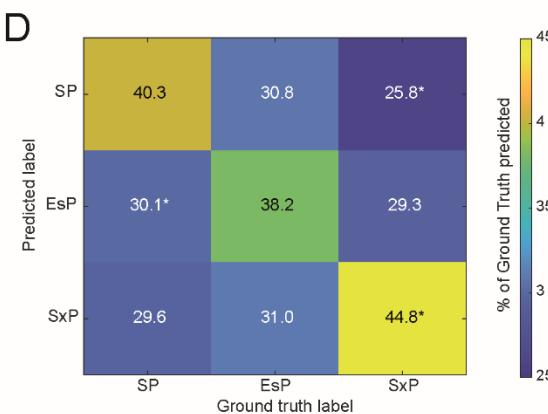
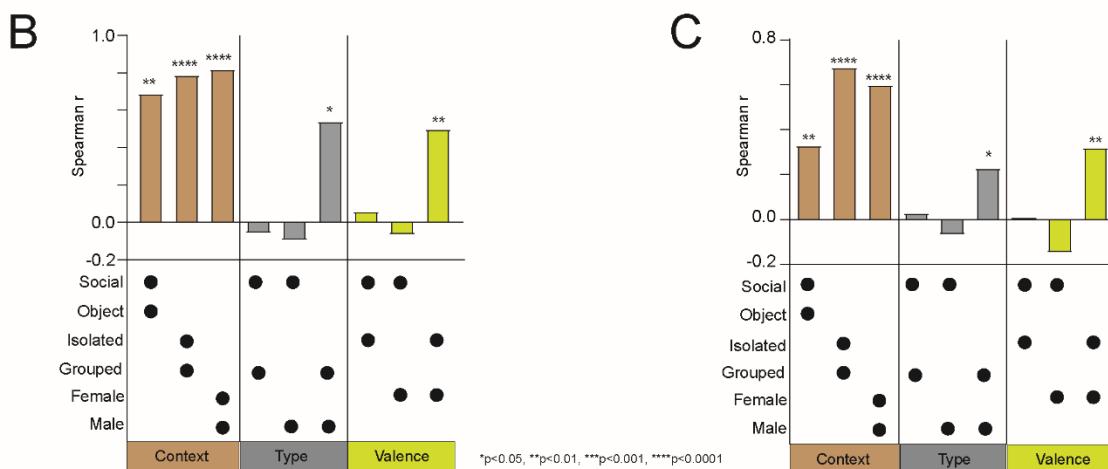
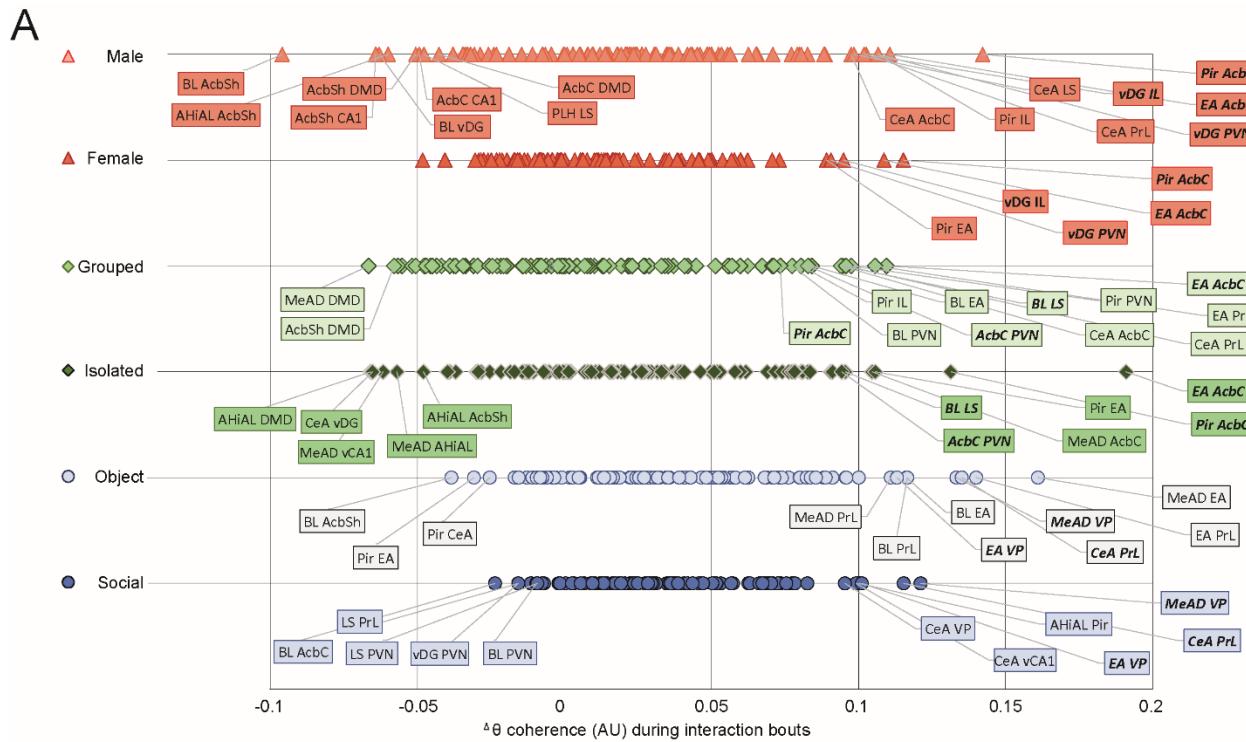
922 **Figure 1. Similar behavior of subject mice across three binary social discrimination tasks.**


- 923 A. A scheme of the arena during SP task session. The two stimuli types are indicated on the right
924 side.
- 925 B. Heat maps of investigation bouts made by the subjects toward each of the stimuli (stimulus
926 type is noted above) across the five min-long encounter period of the SP task, with color-
927 coding of the investigation bout duration (see scale on the right of the panel). Each line
928 represents a distinct session.
- 929 C. Mean (\pm SEM) time dedicated by a subject for investigating each stimulus during the SP task
930 sessions shown in B. Wilcoxon matched pairs signed rank test, $n = 33$ sessions, $W = -495$,
931 $****p < 0.0001$.
- 932 D. As in C, plotted vs. time using one min bins.

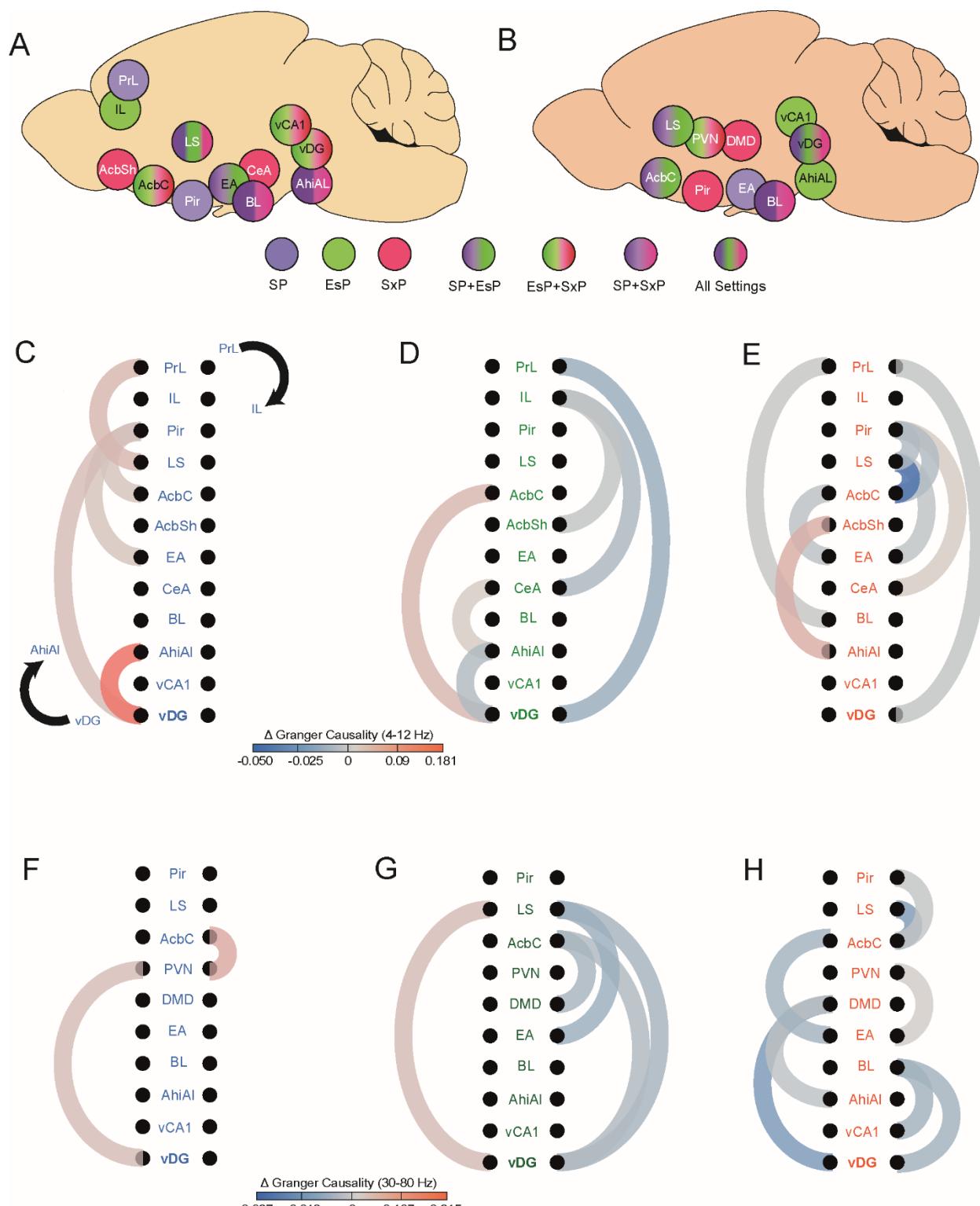
- 933 E-H. As in A-D, for the EsP task. Paired t-test, n = 28 sessions, t (27) =2.374, * p = 0.025.
- 934 I-L. As in A-D, for the SxP task. Paired t-test, n = 26 sessions, t (25) =5.75, *** p <0.0001.
- 935 M. Mean (\pm SEM) total time dedicated by a subject to investigate both stimuli during the encounter
- 936 stage of each task.
- 937 N. Mean (\pm SEM) number of transitions between stimuli made by the subject during the encounter
- 938 period of each task.
- 939 O. Mean (\pm SEM) distance traveled by the subjects during the encounter stage of each task.
- 940 P. Mean (\pm SEM) RDI for each task. Kruskal-Wallis test, n = 3 tests, 87 sessions, H = 8.509, p =
- 941 0.0142; Dunn's *post-hoc* test, * p <0.05.


943 **Figure 2. Brain region- and context-specific changes in the levels of theta and gamma power**
944 **during a social encounter.**

- 945 A. Color-coded spectrogram of LFP signals recorded in the AcbSh during the baseline (left) and
946 encounter (right) periods of SP task conducted by a subject. The black line at 300 s represent
947 the time of stimuli introduction into the arena. The color-coding scale is shown on the right.
- 948 B. PSD profiles of the baseline (blue) and encounter (red) periods of the example shown in A.
949 The gray areas mark the theta and gamma ranges. The inset shows the theta range in higher
950 resolution.
- 951 C. Mean (\pm SEM) theta power (θ P) during the baseline period for each brain region in the three
952 contexts Kruskal-Wallis test, $n = 3$ tests, 87 sessions, $H = 2.725$, $P = 0.2561$.
- 953 D. As in C, for gamma power (γ P; Welch's ANOVA, W (DFn, DFd) = 0.9496(2,33.84), $P =$
954 0.2561)
- 955 E. Mean (\pm SEM) $\Delta\theta$ P, averaged across all brain regions, for each task. W (DFn, DFd) = 14.67
956 (2, 31.80), $p < 0.0001$. Dunnett's T3 multiple comparisons test, SP vs. EsP, $p = 0.0018$; SP vs.
957 SxP, $p = 0.0002$; EsP vs. SxP, $P = 0.2653$.
- 958 F. As in G, for $\Delta\gamma$ P. W (DFn, DFd) = 5.134 (2, 33.65), $p = 0.0113$. SP vs. EsP, $p = 0.0531$; SP
959 vs. SxP, $p = 0.0127$; EsP vs. SxP, $p = 0.7467$.
- 960 G. Mean (\pm SEM) change in theta power ($\Delta\theta$ P) during the encounter period, relative to the
961 baseline period for each brain region in the three contexts (2-way ANOVA. Contexts: F (2,
962 659) = 3.838, $p = 0.0220$; Brain regions: F (17, 659) = 1.727, $p = 0.0341$; Interaction: F (34,
963 659) = 0.4548, $p = 0.9970$)
- 964 H. As in E, for change in gamma power ($\Delta\gamma$ P; 2-way ANOVA. Contexts: F (2, 659) = 1.459, P
965 = 0.2333; Brain regions: F (17, 659) = 2.050, $P = 0.0076$; Interaction: F (34, 659) = 0.5732,
966 $P = 0.9764$).
- 967 I. Super-imposed traces of $\Delta\theta$ P averaged across all brain regions for the SP (blue), EsP (green)
968 and SxP (red) tasks. Time 0 min represents the time of stimuli insertion.
- 969 J. As in I, for $\Delta\gamma$ P.
- 970 K. Mean $\Delta\gamma$ P as a function of mean $\Delta\theta$ P during the SP task, for each brain region. Pearson's
971 correlation coefficient (r) and significance (p) are given.
- 972 L. As in K, for the EsP task.
- 973 M. As in K, for the SxP task. $#p = 0.053$, $*p < 0.05$, $**p < 0.01$, $***p < 0.001$. See also Figs. S1, S2.





975 **Figure 3. Stimulus- and task-specific LFP power changes during investigation bouts.**

- 976 A. Heat maps of average theta power in AhiAl, before and during social investigation bouts made
977 by AhiAl-Implanted subjects with social (above) and object (below) stimuli during SP task
978 sessions (n=17 sessions). Each row represents the mean Z-score of all bouts in a single session
979 (using 0.5 s bins). Time '0' represents the beginning of the bout. The color code scale is on the
980 right.
- 981 B. As in A, for investigation bouts of isolated (above) and grouped (below) social stimuli during
982 EsP task sessions (n=14 sessions).
- 983 C. As in A, for investigation bouts of female (above) and male (below) social stimuli during SxP
984 task sessions (n=13 sessions).
- 985 D. Mean (\pm SEM) Z-score trace of the data shown in A for both stimuli.
- 986 E. As in D. for the data shown in B.
- 987 F. As in D, for the data shown in C.
- 988 G. Correlation between mean change in theta power during investigation bouts ($\Delta\theta P$) in specific
989 brain regions and RDI values during the various tasks. Only statistically significant linear
990 correlations are shown. Note that one outlier SP session which made the correlation even
991 stronger was excluded (Fig. S4G)
- 992 H. A 3D plot of the mean difference between preferred and less-preferred stimuli in $\Delta\theta P$. Each
993 circle represents a given brain region, color- and shape-coded according to the combined bias
994 across all tasks. See legend of the color and shape code of the distinct combinations below.
- 995 I. As in B, for $\Delta\gamma P$.
- 996 See also Fig. S4.

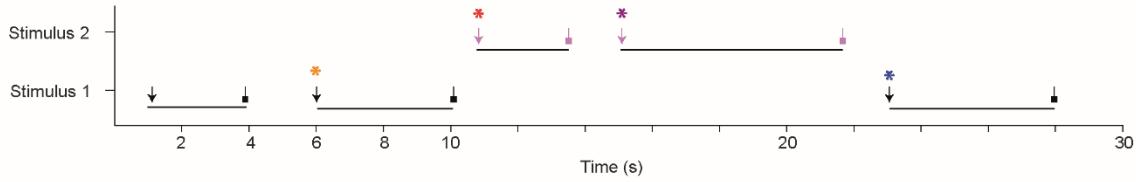

998 **Figure 4. Social encounters modulate the coherence between brain regions in a social context-
999 dependent manner.**

- 1000 A. Mean theta coherence during the baseline period for each task, across all (n=99) pairs of brain
1001 regions recorded during all tasks (Kruskal-Wallis test, $H = 0.75$, $P = 0.687$).
1002 B. As in A, for mean normalized change in theta coherence ($\Delta\theta\text{Co}$) during the encounter period.
1003 Note the significant difference between the SP and other tasks (**** $p < 0.0001$, Dunn's *post-hoc*
1004 test following the main effect in a Kruskal-Wallis test).
1005 C-D. As in A and B, for gamma coherence (*** $p < 0.001$, **** $p < 0.0001$).
1006 E. Color-coded matrix of the mean normalized $\Delta\theta\text{Co}$ (upper left) and $\Delta\gamma\text{Co}$ (lower right) values
1007 for all pairs of brain regions in the SP task. Empty spots represent brain region pairs with fewer
1008 than five recorded sessions. Black spots separate between the $\Delta\theta\text{Co}$ and $\Delta\gamma\text{Co}$ matrices.
1009 F. As in E, for EsP.
1010 G. As in E, for SxP.
1011 H. Coefficients and significance of Pearson's correlations of $\Delta\theta\text{Co}$ across all coupled brain regions
1012 for each pair of tasks (**** $p < 0.0001$, FDR adjusted).
1013 I. As in H, for $\Delta\gamma\text{Co}$.
1014 See also Fig. S5.

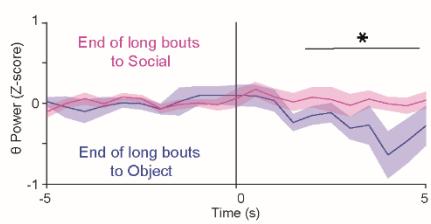
1016 **Figure 5. Coherence changes during social investigation are informative regarding the social**
1017 **context.**

- 1018 A. Distribution of changes in theta coherence during investigation bouts (${}^{\Delta}\theta\text{Co}$) between each pair
1019 of brain regions, plotted separately for each stimulus used in the SP (blue), EsP (green) and SxP
1020 (red) tasks. The names of brain region pairs which passed the mean cutoff value $\pm 1.5^{\circ}\text{SD}$ are
1021 labeled, with those showing similarly high ${}^{\Delta}\theta\text{Co}$ values for both stimuli of the same task in bold.
1022 B. Spearman's correlation coefficients of mean ${}^{\Delta}\theta\text{Co}$ across all paired brain regions, for couples of
1023 stimuli which were either used in the same task (left, brown bars), of the same type (middle,
1024 gray) or having the same valence (right, yellow). The correlated two stimuli are denoted by
1025 asterisk below each bar, while the statistical significance of the correlation is marked above the
1026 bars.
1027 C. As in B, for ${}^{\Delta}\gamma\text{Co}$.
1028 D. A color-coded confusion matrix for a multi-class Random forest classifier employed for
1029 predicting the social context from ${}^{\Delta}\theta\text{Co}$ values across all brain regions and stimuli. The scale
1030 of the accuracy's color code is shown to the right. The percentage of cases a label was predicted
1031 for each ground truth are marked in the middle of each spot. * $p<0.05$, Mann-Whitney test, FDR
1032 adjusted.
1033 E. As in D, for ${}^{\Delta}\gamma\text{Co}$.
1034 See also Figs. S6, S7.

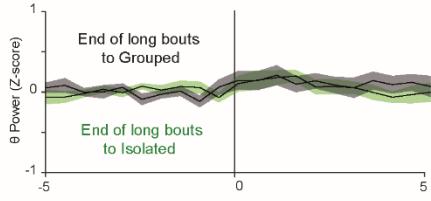
1035

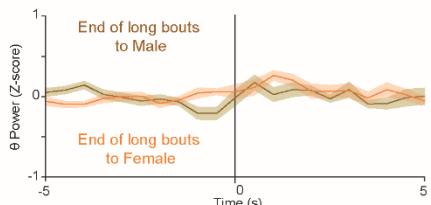

1036 **Figure 6. Distinct patterns of changes in Granger causality (GC) during the encounter period**
1037 **among tasks.**

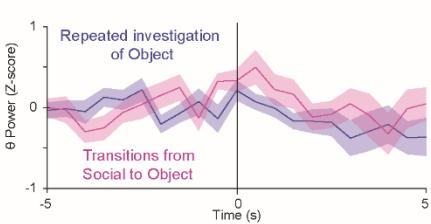
- 1038 A. Schematic representation of the brain regions over-represented among the pairs that exhibited
1039 strong (mean $\pm 1.5 \times \text{SD}$) theta coherence bias towards one of the stimuli in any task. The regions
1040 are color-coded according to the task in which they were over-represented.
1041 B. As in A, for gamma coherence.
1042 C. Schematic representation of significant changes (encounter vs. baseline) in theta band GC
1043 during a SP task, among the regions listed in A. The direction of the GC changes is shown by
1044 a black arrow (top to bottom on the right and bottom to top on the left).
1045 D. As in C, for EsP.
1046 E. AS in C, for SxP.
1047 F-H. As in C-E, for gamma band
1048 See also Fig. S8

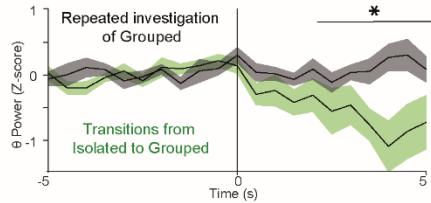

A

Behavior event types:

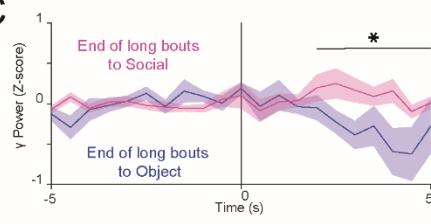

- ▼ Beginning of all bouts to stimulus 1
- ▼ Beginning of all bouts to stimulus 2
- █ Ending of all bouts to stimulus 1
- █ Ending of all bouts to stimulus 2
- █ Transitions from stimulus 1 to stimulus 2
- █ Transitions from stimulus 2 to stimulus 1
- █ Repeated investigation of stimulus 1
- █ Repeated investigation of stimulus 2

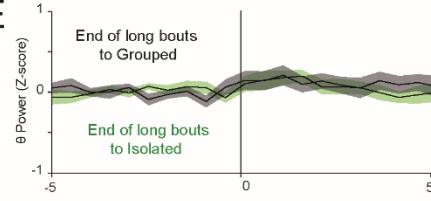

B

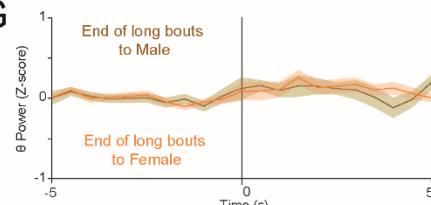

D

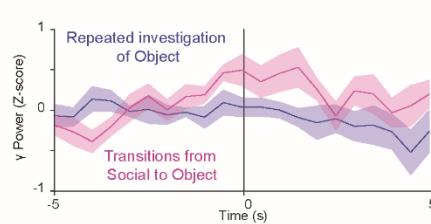

F

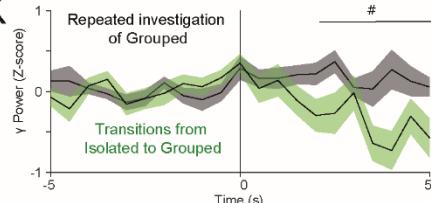
H

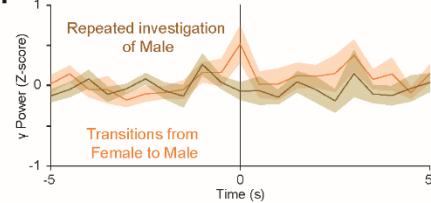

J


L


C


E


G


I

K

M

- 1050 **Figure 7. Context-specific differences in vDG LFP rhythmicity in specific behavioral events**
- 1051 A. Color-coded scheme of specific behavior event types, with ↓ indicating the beginning of an ,
1052 while ↴ indicating the end of an investigation bout, and * indicating the beginning of a bout
1053 after transition between stimuli or repeated investigation of the same stimulus. Events showing
1054 significant differences in vDG LFP power are highlighted in yellow.
- 1055 B. Super-imposed traces of the mean (\pm SEM) Z-score of changes in vDG theta power at the end
1056 of long bouts towards either a social stimulus (pink) or an object stimulus (purple) in the SP
1057 task. Time 0 represents the end of the bout, while the 5 s period before time 0 was considered
1058 as baseline. $*p<0.05$, Student's t-test between the mean Z-score values averaged over the last 3
1059 s of the traces.
- 1060 C. As in B, for gamma power in the vDG during SP tasks.
- 1061 D-E. As in B-C, for the EsP task.
- 1062 F-G. as in B-C, for the SxP task.
- 1063 H-I. As in B-C, for changes in LFP power at the beginning of repeated vs. transitional (between
1064 stimuli) investigation bouts of social and object stimuli across SP task sessions.
- 1065 J-K. As in H-I, for the EsP task. $**p<0.01$ by a Mann-Whitney test following the main effect in
1066 ANOVA.
- 1067 L-M. As in H-I, for the SxP task.
- 1068 See also Fig. S9.