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Abstract
Cell-surface proteins play a critical role in cell
function and are primary targets for therapeutics.
CITE-seq is a single-cell technique that enables
simultaneous measurement of gene and surface
protein expression. It is powerful but costly and
technically challenging. Computational methods
have been developed to predict surface protein ex-
pression using gene expression information such
as from single-cell RNA sequencing (scRNA-seq)
data. Existing methods however are computation-
ally demanding and lack the interpretability to
reveal underlying biological processes. We pro-
pose CrossmodalNet, an interpretable machine
learning model, to predict surface protein expres-
sion from scRNA-seq data. Our model with a cus-
tomized adaptive loss accurately predicts surface
protein abundances. When samples from multiple
time points are given, our model encodes tem-
poral information into an easy-to-interpret time
embedding to make prediction in a time point-
specific manner able to uncover noise-free causal
gene-protein relationships. Using two publicly
available time-resolved CITE-seq data sets, we
validate the performance of our model by compar-
ing it to benchmarking methods and evaluate its
interpretability. Together, we show our method
accurately and interpretably profiles surface pro-
tein expression using scRNA-seq data, thereby
expanding the capacity of CITE-seq experiments
for investigating molecular mechanisms involving
surface proteins.
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1. Introduction
Single-cell RNA sequencing (scRNA-seq), which allows
transcriptomic data collection from thousands of cells in par-
allel (Quake, 2021), enables examination of cellular states
at individual cell level, leading to insights into diverse cell
type identification, gene regulation, and cellular communi-
cation (Jindal et al., 2018; Osorio et al., 2020; 2022; Yang
et al., 2023). Compared to traditional single-cell techniques
that measure only one aspect of cellular activity, the abil-
ity of multimodal (Ling et al., 2023; Han et al., 2022a;b)
approaches has the potential to significantly improve our
understanding of cellular behavior and function, thereby
shedding light on a vast array of biological questions. Cellu-
lar Indexing of Transcriptomes and Epitopes by Sequencing
(CITE-seq) (Stoeckius et al., 2017) is a cutting-edge se-
quencing method that allows simultaneous measurement of
gene and surface protein expression at the single-cell level.
CITE-seq, however, faces some challenges. First, CITE-seq
experiments are costly and require specialized equipment
and trained personnel. Second, the number of available anti-
bodies limits the number of surface proteins that CITE-seq
can measure. This is problematic when attempting to an-
alyze complex cell populations. Antibody cross-reactivity
and non-specific binding may also result in false CITE-seq
discoveries (Restani et al., 2002).
Machine learning methods have been developed to learn
the relationship between genes and proteins and translate
between single-cell measurements of these two modalities.
Seurat 4 (Hao et al., 2021) and totalVI (Gayoso et al., 2021),
for instance, have been developed, but their computational
cost is especially high. Recent work scIPENN (Lakkis
et al., 2022) is a multi-use framework for CITE-seq and
scRNA-seq integration with surface protein prediction and
imputation. However, scIPENN’s RNN blocks could cause
the gradient vanishing problem and potentially hinder the
training process (Pascanu et al., 2013). More importantly,
the inability to interpret what and how genes significantly
regulate protein expression levels over time may limit its
application in understanding essential cellular system ques-
tions.
Here we propose CrossmodalNet, an interpretable machine
learning model with customized adaptive loss that learns
to translate between modalities of genes and proteins using
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Figure 1. The framework of CrossmodalNet predicting protein ex-
pressions given gene expression profiles using temporal CITE-seq
data.

CITE-seq data while encoding temporal information, and
can accurately predict protein expression using only scRNA-
seq data at chosen time points. We evaluate the performance
of our model using two publicly available CITE-seq data sets
containing hematopoietic stem and progenitor cells (HSPCs)
and peripheral blood mononuclear cells under development,
respectively. By combining the interpretability of linear
models with the flexibility of non-linear models, we show
that our model decomposes transcriptional information of
cells into basal and temporal domain, with the latter form-
ing an easy-to-interpret time embedding. Using the learned
time embedding, we demonstrate that our model outper-
forms other benchmarking methods for protein prediction
at both observed and unobserved time points. Moreover, we
show our model is capable of elucidating noise-free causal
gene-protein relationships that are typically investigated in
large-scale genomic studies.

2. Methods
2.1. Notations

Let X ∈ Rm×g and Y ∈ Rm×p represent gene and protein
expression profiles from CITE-seq, respectively, with m
cells, g genes, and p proteins. We are given a training data
set D = {(x1, y1, t1), . . . , (xm, ym, tm)}, and our objec-
tive is to learn yi given xi at discrete time ti for each cell i
using D.

2.2. Proposed model

We recruit a framework similar to Fader Networks (Lample
et al., 2017) that enables interpretable covariets in addition
to nonlinear mapping between gene and protein expression

and use multitask training strategy to optimize the model
performance (Figure 1). Recent work CPA (Lotfollahi et al.,
2023) and its further research MultiCPA (Inecik et al., 2022),
for example, leverage the Fader Networks for predictions
of drug responses and genetic perturbations. Details are
introduced as follows.

2.3. Fader Networks

2.3.1. MODEL ARCHITECTURE

We first initialize a learnable time embedding T ∈ Rc×d,
where c is the number of unique class of time and d rep-
resents the latent dimension of the model. We denote the
d-dimensional time representation as Ti := T (ti). Let Ck

be a Linear-BatchNorm block with k output features. The
first MLP (MLP1) consists of Cd−ReLU−Dropout−Cd

and the second MLP (MLP2) consists of Cd−ReLU−Cout

without BatchNorm (Santurkar et al., 2018) in the last output
layer.

2.3.2. DISCRIMINATOR OBJECTIVE

We introduce a discriminator that calculates the probability
of a time point ti given the input xi. The objective function
of the discriminator is defined as

Ldis(θdis; θMLP1) = − 1

m

m∑
i=1

logPθdis

(
ti|FθMLP1

(xi)
)
,

where θdis and θMLP1 are parameters of discriminator and
MLP1. A well-trained discriminator will enable a cell’s
basal latent state disentangled from the time.

2.3.3. ADVERSARIAL OBJECTIVE

Denote the the basal latent state as zi = FθMLP1
(xi), we

next aggregate zi of cell i and its time representation Ti into
a unified space, and then map the sum to the protein expres-
sion. The Fader loss, given the discriminator parameters
θdis, is:

LFader(θMLP1, θMLP2; θdis)

=
1

m

m∑
i=1

(
∥FθMLP2

(
FθMLP1

(xi), Ti

)
− yi∥22

+ λdis · logPθdis

(
ti;FθMLP1(xi)

))
,

where θMLP2 is parameters of MLP2 and λdis is a regularize
parameter. Minimizing the training loss requires optimizing
both the mean squared error (MSE) reconstruction loss,
which is used to reconstruct yi, and the cross entropy loss,
which is used to predict ti. We denote the reconstructed
protein expression by

ŷi = FθMLP2

(
FθMLP1(xi), Ti

)
.
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2.4. Multitask training

We introduce a new loss function called negative log-
correlation (NLC) loss (Figure S1). The NLC loss directly
regulates the correlation between the predicted values ŷi and
the actual values yi, and can be used for backpropagation.
The formula for the NLC loss is:

LNLC,i = − log

(
max

(
(Corr(ŷi, yi) + 1)

2
, ϵ

))
,

where ϵ is a small value to stable the computation. Denote
the NLC loss by

LNLC =
m∑
i=1

LNLC,i,

and the total loss of the entire model is defined as:

Ltotal = w1LNLC + w2LFader(θMLP1, θMLP2; θdis),

where w1 and w2 are adaptive parameters balancing the two
losses.

We employ GradNorm method proposed by (Chen et al.,
2018) to optimize the loss function, which would improve
model performance and reduce overfitting when compared
to single-task models. To this end, we define

GNLC = ∥∇ωw1LNLC∥22

and
GFader = ∥∇ωw2LFader∥22

as the L2 norm of the gradient of the weighted single-task
loss with respect ω, where we choose ω as the first layer
parameters of θMLP1. We also define the average gradient
norm across all tasks as Ḡ = 1

2 (GNLC +GFader). The goal
of GradNorm is to match the scale of GNLC and GFader.
Let LNLC(t) and LFader(t) be the loss function values at
the t-th iteration, we define

L̃NLC(t) = LNLC(t)/LNLC(0)

as the NLC loss ratios at time t, where LNLC(0) is the loss
at initialization, and L̃Fader(t) and LFader(0) are defined
similarly. We also define the average loss function value
at time t as L̄(t) = 1

2 (L̃NLC(t) + L̃Fader(t)), and the rela-
tive inverse training rate by rNLC(t) = L̃NLC(t)/L̄(t) and
rFader(t) similarly. Algorithm 1 explicitly demonstrates the
training with CrossmodalNet.

2.5. Hyperparameter tuning and implementation

We perform a random hyperparameter search using Ray
Tune v2.0.0 (Liaw et al., 2018) of 100 trials. Table S1
outlines the distribution of values for hyperparameter search.
To implement, we first split cells into three data sets for

Algorithm 1 Training with CrossmodalNet

Input: data D, time embedding {Ti}mi=1

Initialize w1 = w2 = 1
Initialize network weights θdis, θMLP1 and θMLP2

Compute the loss function value LNLC(0) and LFader(0).
for t = 1 to max train steps do

if t mod learning step = 0 then
Calculate discriminator loss Ldis

Compute gradients ∇θLdis with respect to θdis
Update θdis using ∇θLdis

else
Compute LFader(t), LNLC(t) and Ltotal(t)
Compute standard gradients ∇θLtotal(t) with re-
spect to θMLP1 and θMLP2

Compute GNLC, GFader and Ḡ.
Compute
LG = ∥GNLC − Ḡ × rαNLC∥1 + ∥GFader − Ḡ ×
rαFader∥1
Compute GradNorm gradients ∇wi

LG for i = 1, 2
Update w1 and w2 using ∇wiLG

Update θMLP1 and θMLP2 using ∇θLtotal

end if
end for

training (80%), validation (5%), and testing (15%). For
in-distribution predictions, cells are randomly sampled such
that proportion of cells at different time points remain equal
in each set. For out-of-distribution predictions, cells at a
given time point are kept as the testing set, while other cells
are treated as the training and validation set. The maximum
iteration number was set to 500, and early stopping is added
after Pearson correlation coefficient of validation set reaches
the maximum for 10 iterations. The Adam optimizer is used
for all trainings.

2.6. Causal gene-protein relationship inference

Given the nonlinearity of CrossmodalNet, we apply saliency
maps (Simonyan et al., 2013) to differentiate the importance
of input features for output. In the case of causal gene-
protein relationship analysis, given a protein j, its saliency
with respect to genes can be computed by aggregating all
cells:

γj =
m∑
i=1

∂yi(j)

∂xi
∈ Rg.

Since our latent inference only contains basal information,
we anticipate the saliency analysis will reveal more noise-
free gene-protein relationships.
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3. Experiment setup
3.1. Data

We use two real CITE-seq data sets for model training and
evaluation.
HSPC data set: This data set was collected from over 70,000
mobilized peripheral CD34+ HSPCs isolated from four
healthy human donors across three time points from Kag-
gle Open Problems in Single-Cell Analysis (Cellarity et al.,
2022) guided by (Velten et al., 2017) where 140 surface
proteins were measured.
Myeloid data set: This data set was collected from over
47,000 peripheral blood mononuclear cells of patients with
advanced biliary tract cancer (BTC) across three time points
following anti-PD-1 treatment (Keenan et al., 2022) where
99 surface proteins were measured. Four CD14+ monocyte
sub-populations by responsive BTC patients are used.

3.2. Preprocessing

We perform RNA library-size normalization and log1p trans-
formation on scRNA-seq data using NormalizeData function
from Seurat v4.0.2 package (Hao et al., 2021). We perform
dsb transformation for surface protein data using DSBNor-
malizeProtein function from dsb package v1.0.2 (Mulè et al.,
2022). Both normalization methods are performed after data
split. All default settings are retained and used.

3.3. Model evaluation

We evaluate our model against several baseline methods
including linear regression, ridge regression, lightGBM (Ke
et al., 2017), MLP, and scIPENN. ScIPENN consequently
provides more accurate results than totalVI and Seurat 4, so
we have excluded them in our evaluation. We utilize scikit-
learn v1.2 to build the linear and ridge regression models
with default hyperparameters. The LightGBM model is
built using LightGBM v3.3.5, and we use randomized cross-
validation to select the optimal hyperparameters. Pytorch
v2.0 (Paszke et al., 2019) and pytorch-lightning v2.0.2 (Fal-
con et al., 2019) are used to create the MLP models. Similar
to how we tune our model, we utilize Ray to determine the
best model structure and hyperparameters. We evaluate each
model’s performance using MSE and Pearson correlation
coefficient.

4. Results
4.1. CrossmodalNet accurately translates between

gene-protein modalities

We first demonstrate the performance and functionality of
CrossmodalNet using two publicly available CITE-seq data.
These two data sets represent two application scenarios of
CrossmodalNet—i.e., homogeneous and heterogeneous cell

Table 1. In-distribution predictions.

DATA SET HSPC MYELOID
METHOD CORR MSE CORR MSE

CROSSMODALNET 0.593 0.259 0.819 0.249
MLP+MSE 0.561 0.140 0.792 0.160
MLP+NLC 0.490 0.316 0.560 0.670
LIGHTGBM 0.575 0.259 0.791 0.151
LINEAR REG. 0.559 0.269 0.745 0.301
RIDGE REG. 0.560 0.268 0.772 0.304
SCIPENN 0.379 0.456 0.429 0.489

types developing across time. Table 1 compares the per-
formance of CrossmodalNet and other methods under the
in-distribution setting. Our result indicates that Crossmodal-
Net is capable of attaining the highest Pearson correlation
coefficient of all methods. In addition, even though linear
models show good predictive performance, they are not su-
perior to lightGBM and MLPs. In particular, MLP trained
with MSE loss achieves the lowest MSE, which is expected.
It should be noted, however, that this MSE model does not
produce the highest Pearson correlation coefficient, indicat-
ing that a single MSE loss may not be the optimal choice
for this task.

4.2. CrossmodalNet generalizes to unobserved time
point

To demonstrate the generalization of the CrossmodalNet
model, we hold out cells at an intermediate time point
and train with cells preceding and following the time point.
Specifically, we hold out HSPCs from day 3 and train day
2 and 4; monocytes from week 2 and train week 1 and
3, respectively. After obtaining the learnable time embed-
ding, the unseen time representation is inferred through a
linear interpolation between two learned vectors of the time
embedding. During testing, we manually concatenate this
inferred time representation vector with basal latent rep-
resentations of cells given by the trained model to obtain
predictions. In table 2, we compare the performance of
CrossmodalNet and other methods under this setting. Our
results show that CrossmodalNet outperforms other meth-
ods, indicating its high generalizability. Interestingly, most
models trained with myeloid data exhibit relatively inferior
performance relative to in-distribution predictions, whereas
models trained with HSPC data do not compromise. This
might reflect a more prominent temporal batch effect in
myeloid data, which cannot be modeled linearly. In addi-
tion, we see that the Pearson correlation coefficients of MLP
models trained with NLC loss are greater than those with
MSE loss. This observation suggests that our NLC loss may
aid neural networks at a certain level of generalization.
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Table 2. Out-distribution predictions.

DATA SET HSPC MYELOID
METHOD CORR MSE CORR MSE

CROSSMODALNET 0.564 0.268 0.246 0.382
MLP+MSE 0.511 0.134 0.093 0.202
MLP+NLC 0.549 0.260 0.150 0.372
LIGHTGBM 0.554 0.267 0.098 0.829
LINEAR REG. 0.534 0.282 0.102 0.910
RIDGE REG. 0.535 0.281 0.105 0.862
SCIPENN 0.374 0.437 0.238 0.408

4.3. CrossmodalNet infers causal gene-protein
relationships

The development of HSPCs is tightly regulated by changes
in gene and protein expression, but there is currently limited
understanding of how these two measurements co-vary in
HSPCs when they develop into more mature blood cells.
The first CITE-seq data set contains more than 70,000
CD34+ HSPCs based in (Velten et al., 2017), which sug-
gests that discrete cell populations are established only when
differentiation has progressed to the level of restricted pro-
genitors associated with the upregulation of surface protein
CD38.
We first illustrate the correlation of expression between the
surface protein CD38 and its coding gene is low (0.411,
Figure 2a) whereas our model’s prediction significantly im-
proved it (0.708, Figure 2b). We visualize the learned high
dimensional time embedding in PCA where three time vec-
tors are found to be almost evenly separated from each other
(Figure S2a). We compute the saliency of features to deter-
mine which features (genes) our model pays attention to for
predicting the expression level of CD38. Figure 2c depicts
the saliency ranking of the top ten most prominent genes.
Gene CD38 is at the top of the list despite its low expression
level, which causes it to be obscured (Figure 2d) by other
highly expressed genes, indicating that our method success-
fully recognizes the gene CD38’s significant contribution
to the protein CD38’s expression. Gene Set Enrichment
Analysis (GSEA) with the KEGG pathway database using
top 100 saliency genes ranks Hematopoietic cell lineage
at the top (Figure 4a), which corresponds to the potential
central role of CD38 in cell differentiation presented in the
study of HSPCs (Velten et al., 2017). Together, our results
show our model accurately model the intrinsic gene-protein
relationships across time and shed light on the molecular
mechanism underlying the functioning of CD38.

Myeloid cells contribute to immunotherapy resistance; how-
ever, their role in response to checkpoint inhibition (CPI) in
anti-PD-1 refractory cancers is unclear. Next we explore the
second CITE-seq data set from (Keenan et al., 2022), where
the researchers conclude that CD14+ monocytes linked to

(a) Scatter plot of CD38 gene
and protein expression.

(b) Scatter plot of CD38 protein
expression and prediction.

(c) Top ten genes ranked by
CD38 saliency.

(d) Scatter plot of gene expres-
sion and CD38 saliency.

Figure 2. Gene-protein relationship analysis for protein CD38.

anti-PD-1 resistance in human biliary cancer cause T cell
paralysis. T cells are dysfunctional when co-cultured with
monocytes that express high levels of Tim3.
We first show the expression correlation between surface
protein Tim3 and its coding genes HAVCR2 (0.152, Figure
3a) as well as our model’s prediction (0.649, Figure 3b).
Figure S2b depicts the learned time embedding, and the
proximity of weeks 2 and 3 indicates that an interpretable
embedding has been learned to reveal their inherent similar-
ity. The saliency ranking of the ten most prominent Tim3
genes is depicted in Figure 3c. Due to the intrinsically low
correlations between the protein Tim3 and gene HAVCR2,
the gene has not been ranked highly (Figure 3d) and has
had less of an impact on our prediction of Tim3. GSEA
ranks phagosome as the most significant pathway (Figure
4b), correlating with the finding that PD-1 signaling can
polarize macrophages to an M2 phenotype, cause defects
in phagocytosis, and impair antitumor immunity (Keenan
et al., 2022).

4.4. CrossmodalNet is scalable

We simulate three CITE-seq data sets of varying sizes as
input and evaluate the scalability of our model by comparing
the total training time with other baseline methods. Without
using GPUs, our model exhibits a 7.4- to 14.3-fold faster
running speed than the average of baseline methods tested
on equivalent hardware (Intel Xeon 6248R at 3.0 GHz with
24 GB RAM requested, Table S2). Our model is expected to
run faster by enabling GPU implementation. The scalability
of our model would allow large experiments with more than
thousands of genes.
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(a) Scatter plot of Tim3 gene
and protein expression.

(b) Scatter plot of Tim3 protein
expression and prediction.

(c) Top ten genes ranked by
Tim3 saliency.

(d) Scatter plot of gene expres-
sion and Tim3 saliency.

Figure 3. Gene-protein relationship analysis for protein Tim3.

(a) Hematopoietic pathway as-
sociated with the protein CD38.

(b) Phagosome pathway associ-
ated with the protein Tim3.

Figure 4. GSEA plots depict the top enriched pathways associated
with CD38 and Tim3 proteins. Gene rank represents the position
of each gene based on its saliency.

5. Discussion
We present CrossmodalNet as a highly interpretable and
scalable model that can be generalized for the prediction
of proteomics data from transcriptomics data. Our exper-
iments show that our model with the customized adaptive
loss outperforms benchmarking methods including linear,
nonlinear and tree-based models, as evidenced by higher
Pearson correlation coefficients in most benchmarking sce-
narios. In practice, once scRNA-seq data of a cell system
is available, our model can accurately estimate the patterns
of surface proteins. Thus, our model provides an in-silico
alternative to CITE-seq experiments and may facilitate the
generation of hypotheses and the design of experiments.
Our method for decomposing temporal gene expression
into basal and time embeddings of cells is an advancement
step towards understanding the mechanisms that govern
gene-protein regulation and cell state transitions. The time

embedding offers insights into the underlying mechanisms
of cell system development and is useful for predicting pro-
tein expression in a time-specific manner. In addition, our
inference for basal embedding uncovered by our model is
biologically interpretable, and we demonstrate that causal
gene-protein relationships that provides a fundamental un-
derstanding of how genetic information is translated into
functional proteins can be deduced from this inference. This
quantitative understanding is essential for identifying cel-
lular development and can be expanded to detect disease-
causing genes, develop new drugs, and understand complex
cellular processes.
Future work will be directed to investigate strategies for in-
corporating gene-protein prior knowledge into model train-
ing, and to extend this work to model scATAC-seq data
(Buenrostro et al., 2015). As scATAC-seq and scRNA-
seq are naturally causally related, we expect to discover
more robust causal relations underlying the central dogma
of molecular biology.

Data availability
The implementation of CrossmodalNet is available at:
https://github.com/yjgeno/Multimodal_22
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A. Supplementary tables

Table S1. Random search spaces for hyperparameter tuning.

MODULE HYPERPARAMETER DEFAULT VALUE SEARCH SPACE

MLP GENERAL BATCH NORMALIZATION TRUE CHOICE([TRUE, FALSE])
MLP GENERAL LEARNING RATE 0.001 QLOGUNIFORM(1E-4, 1E-1, 5E-5)
MLP GENERAL WEIGHT DECAY 5E-6 10randint(−3,−7)

MLP1 DROPOUT 0.05 CHOICE([0, 0.05, 0.15, 0.3])
MLP1 LATENT DIMENSION 512 CHOICE([256, 512])
DISCRIMINATOR HIDDEN DIMENSION 128 CHOICE([128, 32])
DISCRIMINATOR REGULARIZATION 0.5 QUNIFORM(0, 2, 0.1)
DISCRIMINATOR GRADIENT PENALTY 0.4 QUNIFORM(0, 2, 0.1)
DISCRIMINATOR LEARNING RATE 0.0087 QLOGUNIFORM(1E-4, 1E-1, 5E-5)
DISCRIMINATOR WEIGHT DECAY 5E-5 10randint(−3,−7)

DISCRIMINATOR LEARNING STEP 3 CHOICE([3, 5, 10])
GRADNORM WEIGHT LEARNING RATE 0.01475 QLOGUNIFORM(1E-4, 1E-1, 5E-5)
GRADNORM ALPHA 0.5 QUNIFORM(0, 3, 0.1)

Table S2. Running time (s) on synthetic data sets (samples, features).

MODEL
D1

(1,000, 3,000)
D2

(3,000, 5,000)
D3

(10,000, 8,000)

CROSSMODALNET 22.17 147.66 791.84
MLP 89.96 302.67 1604.53
LIGHTGBM 638.01 4364.12 29606.51
LINEAR REG. 48.53 850.14 23845.28
RIDGE REG. 11.16 97.32 1099.67
SCIPENN 42.28 154.48 626.36
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B. Supplementary figures

Figure S1. NLC loss curve across correlations.

(a) Latent time embedding trained on HSPC data. (b) Latent time embedding trained on myeloid data.

Figure S2. PCA representation of trained latent time embeddings.
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